
AFIPS
CONFERENCE
PROCEEDINGS

VOLUME 41
PART IT

1972
FALL JOINT
COMPUTER

CONFERENCE

December 5 - 7, 1972

Anaheim, California

The ideas and opinions expressed herein are solely those of the authors and are not necessarily representative of or
endorsed by the 1972 Fall Joint Computer Conference Committee or the American Federation of Information
Processing Societies, Inc.

Library of Congress Catalog Card Number 55-44701

AFIPS PRESS
210 Summit Avenue

Montvale, New Jersey 07645

©1972 by. the American Federation of Information Processing Societies, Inc., Montvale, New Jersey 07645. All
rights reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publisher.

Printed in the United States of America

CONTENTS

PART II

Cognitive and creative test generators
A conversational item banking and test construction system

MEASUREMENT OF COMPUTER SYSTEMS-EXECUTIVE
VIEWPOINT

Measurement of computer systems-An introduction

ARCHITECTURE-,-TOPICS OF GENERAL INTEREST

A highly parallel computing system for information retrieval
The architecture of a context addressed segment-sequential storage .. .

A cellular processor for task assignments in polymorphic multiprocessor
computers

A register transfer module FFT processor for speech recognition

A systematic approach to the design of digital bussing structures

DISTRIBUTED COMPUTING AND NETWORKS

Improvement in the design and performance of the ARPA network ...

Cost effective priority assignment in network computers

C.mmp-A multi-mini processor

C.ai-A computer architecture for multiprocessing in AI research

NATURAL LANGUAGE PROCESSING

Syntactic formatting of science information
Dimensions of text processing
Social indicators from the analysis of communication content

MEASUREMENT OF COMPUTER SYSTEMS-SOFTWARE
VALIDATION AND RELIABILITY

The DOD COBOL compiler validation system
A prototype automatic program testing tool
An approach to software reliability prediction and quality control
The impact of problem statement languages in software evaluation .. .

649
661

669

681
691

703
709

719

741

755

765

779

791
801
811

819
829
837
849

F. D. Vickers
F. B. Baker

A. Goodman

B. Parhami
L. D. Healy
K. L. Doty
G. Lipovski

J. A. Anderson
D. Casasent
W. Sterling
K. Thurber
E. Jensen

J. McQuillan
W. Crowther
B. Cosell
D. Walden
F. E. Heart
E. K. Bowdon, Sr.
W. J. Barr
W. A. Wulf
C. G. Bell
C. G. Bell
P. Freeman

N. Sager
G. R. Martins
P. J. Stone

G. Baird
L. G. Stucki
N. Schneidewind
A. Merten
D. Teichroew

COMPUTER AIDED DESIGN

The solution of the minimum cost flow network problem using associa-
tive processing .. .

Minicomputer models for non-linear dynamics systems
Fault insertion techniques and models for digital logic simulation

A program for the analysis and design of general dynamic mechanical
systems .. .

COMPUTER NETWORK MANAGEMENT

A wholesale retail concept for computer network management

A functioning computer network for higher education in North
Carolina .. .

SYSTEMS FOR PROGRAMMING·

Multiple evaluators in an extensible programming system
Automated programmering-The programmer's assistant " .. .
A programming language for real-time systems

Systems for system implementors-Some experiences from BLISS

MEASUREMENT OF COMPUTER SYSTEMS-MONITORS AND
THEIR APPLICATIONS

The CPM-X-A systems approach to performance measurement
System performance evaluation-Past, present, and future
A philosophy of system measurement

HISTORICAL PERSPECTIVES

Historical perspectives-Computer architecture.
Historical perspectives on computers-Components
Mass storage-Past, present, future " .. .
Software-Historical perspectives and current trends

INTERACTIVE PROCESSING-EXPERIENCES AND
POSSIBILITIES

NASDAQ-A real time user driven quotation system
The Weyerhaeuser information systems-A progress report
The future of remote information processing systems

Interactive processing-A user's experience

859

867
875

885

889

899

905
917
923

943

949
959
965

971
977
985
993

1009
1017
1025

1037

V. A. Orlando
P. B. Berra
J. Raamot
S. Szygenda
E. W. Thompson

D. A. Calahan
N.Orlandea

D. L. Grobstein
R .. P. Uhlig

L. H. Williams

B. Wegbreit
W. Teitelman
A. Kossiakoff
T. P. Sleight
W. A. Wulf

R. Ruud
C. D. Warner
H. Cureton

M. V. Wilkes
J. H. Pomerene
A. S. Hoagland
W. F. Bauer
A. M. Rosenberg

G. E. Beltz
J. P. Fichten
M. J. Tobias
G. M. Booth
H. F. Cronin

IMPACT OF NEW TECHNOLOGY ON ARCHITECTURE

The myth is dead-Long live the myth

Distributed intelligence for user-oriented computing
A design of a dynamic, fault-tolerant modular computer with dynamic

redundancy

MOS LSI minicomputer comes of age ... ,

ROBOTICS AND TELEOPERATORS

Control of the Rancho electric arm

Computer aiding and motion trajectory control in remote manipulators.

A robot conditioned reflex system modeled after the cerebellum.

DATA MANAGEMENT SYSTEMS

Data base design using IMSj360
An information structure for data base and device independent report

generation .. .

SIMS-An integrated user-oriented information system

A data dictionary j directory system within the context of an integrated
corporate data base _

MEASUREMENT OF COMPUTER SYSTEMS-ANALYTICAL
CONSIDERATIONS

Framework and initial phoses for computer performance improvement ..

Core complement policies for memory migration and analysis
Data modeling and- analysis for users-A guide to the perplexed

TECHNOLOGY AND ARCHITECTURE

(Panel Discussion-No Papers in this Volume)

1045

1049

1057

1069

1081

1089

1095

1105

1111

1117

1133

1141

1155
1163

E. Glaser
F. Way III
T. C. Chen

R. B. Conn
N. Alexandridis
A. Avizienis
G. W. Schultz
R. M. Holt

M. L. Moe
J. T. Schwartz
A. Freedy
F. Hull
G. Weltman
J. Lyman
J. S. Albus

R. M. Curtice

C. Dana
L. Presser
M. E. Ellis
W. Katke
J. R. Olson
S. Yang

B. K. Plagman
G. P. Altshuler

T. Bell
B. Boehm
R. Watson
S.Kimbleton
A. Goodman

LANGUAGE FOR ARTIFICIAL INTELLIGENCE

Why conniving is better than planning

The QA4 language applied to robot planning

'Recent developments in SAIL-An ALGOL-based language for
artificial intelligence

USER REQUIREMENTS OF AN INFORMATION SYSTEM

A survey of language for stating requirements for computer-based
information systems

MEASUREMENT OF COMPUTER SYSTEMS-CASE STUDIES

A benchmark study .. .

SERVICE ASPECTS OF COMMUNICATIONS FOR REMOTE
COMPUTING

Toward an inclusive information network :

TRAINING APPLICATIONS FOR VARIOUS GROUPS OF
COMPUTER PERSONNEL

Computer jobs through training-A final project report

Implementation of the systems approach to central EDP training in
the Canadian government

Evaluations of simulation effects in management training

ADVANCED TECHNICAL DEVICES

Conceptual design of an eight megabyte high performance charge-
coupled storage device

Josephson tunneling devices for high performance computers
Magnetic bubble general purpose computer

1171

1181

1193

1203

1225

1235

1243

1251
1257

1261

1269
1279

G, J. Sussman
D. V. McDermott
J. A. Derksen
J. F. Rulifson
R. J. Waldinger

J. A. Feldman
J. R.Low
D. C. Swinehart
R .. H. Taylor

D. Teichroew

J. C. Strauss

R. R. Hench
D. F. Foster

M. G. Morgan
N. J. Down
R. W. Sadler

G. H. Parrett
H. A. Grace

B. Augusta
T. V. Harroun
W. Anacker
P. Bailey
B. Sandfort
R. Minnick
W. Semon

ADVANCES IN NUMERICAL COMPUTATION

On the numerical solution of III-posed problems using interactive
graphics .. .

Iterative solutions of elliptic difference equations using direct methods ..
Tabular data fitting by computer
On the implementation of symmetric factorization for sparse positive-

definite systems

1299
1303
1309

1317

J. Varah
P. Concus
K. M. Brown

J. A. George

Cognitive and creative test generators

by F. D. VICKERS

University of Florida
Gainesville, Florida

INTRODUCTION

Noone in education would deny the desirability of
being able to produce quizzes and tests by machine.
If one is careful and mechanically inclined, a teacher
can build up, over a period of time, a bank of questions
which can be used in a computer aided test production
system. Questions can be drawn from the question
(or item) bank on various bases' such as random,
subject area, level of difficulty, type of question,
behavioral objective, or other pertinent characteristic.
However, such an item bank requires constant main
tenance and new questions should periodically be
added.

It is the intention of this paper to demonstrate a
more general approach, one that may require more
initial effort but in the long run should almost elimi
nate the need to compose additional questions unless
the subject material covered changes or the course
objectives change. This approach involves the design
and implementation of a computer program that
generates a set of questions, or question elements, on
a guided but random basis using a set of predetermined
question models. Here the word generate is used in a
different sense from that used in item banking systems.
The approach described here involves a system that
creates questions from an item bank which is, for all
practical purposes, of infinite size yet does not require
a great deal of storage space. Storage is primarily
devoted to the program.

It appears at this stage of our research that this
approach would only be applicable to subject material
which obeys a set of laws involving quantifiable pa
rameters. However, these quantities need not be purely
numerical as the following discussion will demon
strate. The subject area currently being partially
tested with this approach is the Fortran language and
its usage.

The following section of this paper presents a brief
summary of a relatively simple concept which has

649

yielded a useful generator for a particular type of test
question. This presentation provides background ma
terial for the discussion of concepts which are not so
simple and which are now under investigation. Fi
nally, the last section provides some ideas for future
development.

SYNTAX QUESTION GENERATION

A computer program has been in use at the Uni
versity of Florida for over six years that generates a
set of quizzes composed of questions concerning the
syntax of Fortran language elements. See Figures 1
through 5. The student must discriminate between
each syntactic type of element as well as invalid con
structions. The program is capable of producing quizzes
on four different sets of subject area as well as any
number of variations within each area. Thus a dif
ferent variation of a quiz can be produced for each
section of the course. Figure 2 contains such a variation
of the quiz shown in Figure 1. The only change re
quired in the computer program to obtain the variation
is to provide a single different value on input which
becomes the seed of a psuedo random number genera
tor. With a different seed a different sequence of ran
dom numbers is produced thereby generating different
variations of question elements.

For each question, the program first generates a
random integer between 1 and 5 to determine the
answer category in which to generate the element. As
an example, consider Question 27 in Figure 1. The
random integer in this case was 2 thus a Fortran
integer variable name had to be created for this ques
tion. A call was made to a subroutine which proceeds
to generate the required / name. This subroutine first
obtains a random integer between 1 and 6 which repre
sents the length of the name. For Question 27, the
result was a 2. The routine then enters a loop to gen
erate each character in the name. Since for integer
names the first character must be I, J, K, L, M or N,

650 Fall Joint Computer Conference, 1972

CIS 3"2 ~l Ar·~ E ••••••••••••• ~ ••••••••••••

OUIZ 1 SECTION 1 1 n •••••••.•••••••

THE 25 ELEr1ENTS BELO\'! BELONG TO ONE OF THE FOLLO\'IING FIVE CATEGORIES.
I NO I CATE ON BOTI-I TH I S SHEET Arm YOUR ANS\.'!ER SHEET IN \'JH I CH CATEGORY
EACH ELEMEtJT BELONG5.

1. A FORTRAN IV SPEC'fi.L CHAPACTER
2. A FORTPAN IV CON5TANT
3. f\ FORTPAN IV SYtv1BOL
4. A VALID JOB CONTROL LANGUAGE COHMANO
5. NONE t"IF THE ABOVE

1. MH..JA68 • ••• 11J • l$r·10YV2
2. , • ••• 1.5. IENO
3. 65KNFI2ST · ... 16. (

4. 15856251 • ••• 17. ICALC
5. ICALC • ••• 18.)

6. ..J~16 K • ••• 1. q •
,

7. r.J55 • ••• 20. $\'1$4 T
t) 6.9543E-5 • ••• 21. 78L7KUJ n.
fl. l~hJ2 • ••• 22. 110 838475,56

• •• • ,. n •) • ••• 23 .. 42760.
· .. . 11. 1~4793F)460 • ••• 24. =
• ••• 1.? • . • ••• 2 5 • L6QIX
· ••• l3 .. IFllST

THE 25 ELEMENTS BELOW BELONG TO ONE OF THE FOLLOWING FIVE CATEGORIES.

1. A FORTRAN INTEGER CONSTANT
2. A ~nRTRAN INTEGER VARIABLE
3. A FORTRAN REAL CONSTANT
4. A FORTRAN REAL VARIABLE
5. NnNE OF THE ABOVE

• ••• 2 ~ • 1'lY- • ••• ~ 9.
• ••• 27 • KS • ••• 40.
• ••• 28. APV~' K • ••• l~ 1 •
• ••• 2 q • 584 • ••• 42.
• •• . 30. *OO5g0 • ••• 43.
· .. . 31. .655147 • •• ;lJ 4.
• ••• 3? • • 61~O 176 • ••• lJ 5 •
• ••• 3:3. MN • ••• 46.
· .. . 34. KOKLTP • ••• 47.
• ••• 35. PHK4Q(• ••• 48-.
• ••• 3f1 • 5.l~{)E-5 • ••• 4 ~.
• ••• 37 • Y5Z • ••• 50.
• ••• 3R • 37

SCOI1ING FORMULA = I1IGHT*2
~~ I N H~tJM SCORE = 10

24.20

Figure I-Quiz 1 example

2.70E+7
.449E-3
.04G39E+4
447675023
J
EHHY$G5
JUPTAH47F
50.E+l
725
3.E+3
fJYR
U$QQR*S3447

Cognitive and Creative Test Generators 651

CIS 3t')~ r'~A ~.~ E ••••••••••••••••••••••••••

('(lIZ 1 SECT !CHI 2 In .•.•......•....

THE 25 ELEr1E~!TS Br:LOH BELONG TO ONE DF THE FnLl()VIING FIVE CATEGORIES.
IN!1ICATE NJ ~nTH THIS SIIEET ANn YOllR AnS"'ER SHEET n~ '1HICH CATEGORY
EACH ELFYENT BEUHJ3S.

1. ' .A. FORTRAN IV SPECIAL CHARACTER
2 • ,,\ FORTR~.N IV CONSTAnT
3. A FonT Ri\tJ IV SYM[H'~L

4. l\ VALl!) Jon CONTrOL LANGUAGE cnm1AtlO
5. NONE OF THE ABOVE

1. X57.1=!(• ••• 14. I
2. = • ••• 15. .78242E+9
3. . · •.. 1 n • IV
4. .62522E+8 • ••• 1.7 • IlllJ'I7T
5. IFLIST · ..• 18. CY0KF.
~. q I "'~ n~~1 • ••• 11) • ,
7 • n • ••• 2 n • IINSERT I)

8. 5134 r "J81l • ••• ,21. 4XI
0 PPh~~KIJ u-w • ••• 22. 1/7KG
" .

• ••• 1 n • OTEf1A0KG • •.• 23. 7f'20SQSR2
· ... '.1. 45048833 • ••• 24. 8. E +ll
• •• It 1 ~ • 3.7 • ••• 25. KOV
• .•. 13. IINT[P.

THE 25 ELEMENTS BELOW BELONG TO ONE OF T.'E ~OLL()WING FIVE CATEGORIES.

1. '\ FORTRAN I NTEGEP. COtlSTANT
2. r... FOPTP.AtI INTEGEr VAP.Il\BlE
3. A FORTRAN REAL CONSTANT
4. A FORTRAN REAL VARIABLE
5. rWNE OF THE ABOVE

• • ., • 26. JJ8 • ••• 3<1.
• ••• 27 • K2NP3 • ••• 4" •
• ••• 28. PFR • ••• 41.
• ••• 29. AZJVM7 • ••• 42.
· .. . 30. 41 • ••• 43.
• ••• 31. H8Z • • ~ • l~ 4 •
• ••• 32. L3F5 • .' • • l,~5.
• ••• 33. SEEXQH • ••• 4 f' •
• ••• 3lJ • .8FF.+5 • ••• 47 •
• ••• 35. VFKCY • ••• 48.
• ••• 3n • R*JVYP • ••• 4 q •
• ••• 37 • • FE-l~ • ••• 50.
• ••• 38. 9.E-2

SCORING FO~MtJLA = nlGHT*2
t·1INI~·11H·1 sconE = 10

24.30

Figure 2-Quiz 1 variation

H3VOG
5. 7453l~E-3
184
Q 5 Ll 0 1HOQUVT
Y70D+$7PO
9.04E+1
,!;810E4DL
H03(
8.2873c}E+4
2
096
1'13

652 Fall Joint Computer Conference, 1972

CIS 302 NAt~ E ••••••••••••••••••••••••••

QUIZ 2 SECTION 1 I O •••••••••••••••

THE 25 ELEMENTS BELOW BELONG TO ONE OF THE FOLLOWING FIVE CATEGORIES.
INDICATE ON BOTH THIS SHEET AND YOUR ANSHER SHEET IN WHICH CATEGORY
EACH ELEMENT BELONGS.

1. AN EXPRESSION CONTAINING ONLY ONE r-10DE OF OPERAND (INTEGER OR RE
2. ALL OTHER EXPRESSIONS
3. A VALID ARITHMETIC STATEMENT
4. AN INVALID ARITm~ETIC STATEMENT (CONTAINS AN =SIGN)
5. NONE OF THE ABOVE

1. LG09'F9= (I TM-JSC) • ••• 1 r. • «7239+XDZU»
2. N55W=ALOG(.4/Z$D/.Q5) • ••• 15. N=OROBLI)
3. 28(• ••. 15. Y1K)(l)
4. BI=NY7M-5 · .. . 17 . A,(395278364)
5. EXP«-O.5f1255» · ..• 18. S$X·«.~OE-9»
5. -8+3 · .. . 19. 2358(
7. (+(-L) •••• 20. -\tJ5'HJFX**1
8. K=(-JUPT21)+5 · .. . 21. +JQ*l
9. COS (+ til J - D) • ••• 22. TQ=*~3296*q

· ... '.0. ARS(COS(5.6QSOE+4**4» • ••• 2 3. 37=(LE)+9
· .. . 11. 9.48E+4=(-IX6RY) • ••• 24. +DE=6591')
• ••• 1.2. TANH {ZXH**\JTHY) • ••• 25. .504111
• ••. 13. ,«53)/LlS8R1)

THE 25 ELEMENTS BELOW BELONG TO ONE OF THE FOLLOWING FIVE CATEGORIES.

• ••• 2 f) •

• ••• 27 •
• ••• 28.
• ••• 29.
• ••• 30.
· .. . 31.
• ••• 3? •
• ••• 3 3 •
• ••• 3 r~ •
• ••• 35.
• ••• 36.
• ••• 37 .
• ••• 38 •

1. A STATn·1E~IT CAUSING AN UNCONniTIONAL TRANSFER
2. A STATp·1ENT HAVING A 2 HAY CONDITIONAL TPANSFER (ASSUME NO
3. A STATEt-1ENT HAVItJG A. 3 HAY CONDITIONAL TRANSFER (ABNOR~1.1\L
4. J\ STATEMENT HAVING A 4 t .. ,.A.Y CONDITIONAL TRANSFER (TERMINATIONS
5. NONE OF THE APOVE ANn/OR A SYNTACTICALLY INCORRECT STATEMENT

GOTO(796,562,282),K18BWB
GO TO 175
GOTO(7886,~S,q,1),INAIGO
GOTO(7,7,7),HYI
I F (N p- 4) q, 2 5, C)

GO TO 65
GOTO(77,5,402,524S),L81V
GOTn(3),N3017
GOTO(Q6,210,210,Q6),N
GOTO(8,8,8,S),CfZ
IF«A»31,31,31
(KL)3350,672,33S0
GOTO(282,6Rl,1,5),NKS

• ••• 3 q •
• .•• 40.
· ••• 41.
• ••. 42.
• ••• 43.
• ••.• 4 r~ •
• ••• 45.
• ••• 46.
• ••• f.s. 7 •
• ••• 48.
• ••. 49.
• ••• 5 0'.

GO TO 989
(9,82,30,952S),IUK
GOTn(514,55,648,8),K$J
IFC-LGUZN)4,3,814
IF(O~FG»16,4,22
IF(OW02/.5)5~70,1,S3
00TO(917,657,3433), I
IF«DZTLY»2,2,2
GnTO(S,813,S,QS),MOXO
GnTO(Q,8383,8,48),NOIAO
GOTO(4,1,2,5283),LRIGP9
IF{ALOG(W»376,413,413

SCOR I NG FORr'aJLA = R I CHT*2
MINIMUM SCORE = 10

24.20

Figure 3-Quiz 2 example

CIS 302

OUIZ 4

Cognitive and Creative Test Generators 653

NAt~E ••••••••••••••••••••••••••

SECTION 1 I D

THE 25 ELEMENTS BELOW BELONG TO ONE OF THE FOLLOWING FIVE CATEGORIES.
INDICATE ON BOTH THIS SHEET ANn YOUR ANSWER SJiEET IN WHICH CATEGORY
EACH ELEMENT BELONGS.

1. A VALID INPUT STATEMENT
2. A VALlO OUTPUT STATEMENT
3. A VALID FIELO SPECIFICATION OR FOR~1AT CODE
4. A VALID FORHAT STATEMENT
5. NONE OF THE ABOVE

1. PR I NT, JJN I , PZ · .• . 14. RE.f\O, MLGN, G4 K, J
2. FORMAT(5HI7ZV(,217) • ••• 15. 12
3. E13.6 · ••• 16. F 0 Rr·,1A T (E 11 • 0 , E 1 fl • 4)
4. PRINT,VCXNl • ••• 17 • PRINT,N,uonER5,L

• • 4J: • 5. PRINT,IAOSI · .. . 18. REAO,IF
6. READ(5, 988)l~ZS • ••• 1 q • PRINT,G,LT,XIHJC
7. PRINT,C,62,NCOZ~ • ••• 2 () • FORMAT(2A2)
8. FORMAT(832) • ••• ? l . El1.12
9. 551 • ••• 22. 2X

• ••• 10. 41 • ••• 23. READ, t;18
• ••• 11. 2Ell.4 • ••• 24. 291
• ••• 12. REAn(S,73)X,MBWDVZ,JSY3Y • ••• 25. REAn(5,32)E2146
• •••] .. 3. FORMATC'F',4H2RH*)

THE 25 ELEMENTS BELOW BELONG TO ONE nF THE FOLLOWING FIVE CATEGORIES.

1. A VALID SURSCnlPT
2. A VALID INTEGER SUBSCRIPTED VAPIABLE
3. A VALID REAL SUBSCRIPTED VARIABLE
4. A VALID Dn~ENSION STATE~~ENT FOR r1AIN PROGRAMS ONLY
5. NONE OF THE ABOVE

• ••• 2[1. -74
• ••• 27. N5Z(161)
• ••• 28. 9*LVDMS4-9
• •• 0 • 2 !l. K3GOJY(5*K-2)
• ••• 30. LP-5
.... 31. 0
• ••• 32. DIHENSION Q$OC(13,4,7,3)
•••• 33. DAYB7A(LXPG)
• •• • 34 . -4
• ••• 35.·, DIMENSION 0(5,8,7,1,1,3)
• ••• 36. ~HX(4*ILMHP-5)
• ••• 37 • ~ I B(NONU8, 7*,JRl-8,IJ4M)
• ••• 38. WSSC C 3 *N~1)

SCOR f NG FOP.~1IJLA = R I CHT*2
M~NIMU~ SCORE = 10

• ••• 3 q •
• ••• 40.
· .. . 41.
• ••• IJ 2.
• ••• 43.
• ••• 44.
• ••• 45. · ... 'l () .
• ••• 47 •
• ••• 48.
• ••• 4 Q.

• ••• 50.

24.10

Figure 4-Quiz 4 example

DIMEN~ION S(R,5,6,3,63)
K$V1SV+8
E~Q(7*LV9JY2,~*N,644)
ZZI2U(S*NNBLW-4,M9U,5Q)
OIMENSION ZA05T(7,8,3)
DI~1ENSION FRO(1,5,6)
M34B(N,M8+5,q*JRC,S,N~)
D7NOCM+9,NRG74E,8*NY)
IR7K4
DIMENSION dF91 (4,5,7)
AZ(I+9~5*L9,8*f,MVOV8+7)
ITA4UCM8U+4, K-6, 8*t1~'1pr'.~2)

654 Fall Joint Computer Conference, 1972

CIS 302

nUlz 5

tJA~ ... 1E ••••••••••••••••••••••••••

SECTION 1 I D •••••••••••••••

THE 25 ELEMENTS BELOW BELONG Tn ONE OF THE FOLLOWING FIVE CATEGORIES.
INDICATE ON BOTH THIS SHEET AND YOUR ANSWER SHEET IN WHICH CATEGORY
EACH ELEMENT BELONGS.

1. A VALID DO STATEMENT WITH IMPLIED INCREMENT
2. A VALlO DO STATEMENT WITH EXPLICIT INCREMENT
3 • CAN BE EITHER AN INDEX, INITIAL VALUE, UPPER L I ,..11 T OR INC REM EN '1
4. CAN ONLY BE AN INITIAL VALUE, UPPER LIMIT OR INCREMENT
5. NONE OF THE ABOVE

1. DO 90 J :I ~, 94, 6 • ••• 14. 0090 M • 4, J30 · ... 2. DO 7566 JDKAUT :I 885, KI · . .. 15. DO 9431 NY6P$ • 3, LM
3. DO 22 IAo.S == K, 52 •••• 16. DO 7 NOWY • 225, 1861 · ... 4. LT2 · . .• 17 . 1.6378E-8 · ... 5. DO 5 N :I NACICR, 98 · . .• 18. 009290 KM58NI • 85, N
6. 00 4978 I :I 4, 2fl • ••• 19. N5
7. 5 • ••• 20. DO 82 J == 38, 927 · ... 8. DO 8 JAg IiII MYJ9, 351, 21 • ••• 21. L1YVOS · ... 9. 431436592 • ••• 22. o.

•••• 10. 8489622 • ••• 23. DO 453 KXR I: J3, 7437
.... 11. DO 9 MCSXLU = 3, N7LC, H • ••• 24. 105
• ••• 12. I • ••• 25. DO 1583 K == 241), K
• ••• 13. DO 8847 L :I 35, 880, LIl

THE 25 ELEMENTS BELOW BELONG TO ONE OF THE FOLLOWING FIVE CATEGORIES.

1. A VALID ARITHMETIC STATEMENT
2. A VALID CONTROL STATEMENT
3. A VALID INPUT OR OUTPUT STATEMENT
4. A VALID SPECIFICATION STATEMENT
5. NONE OF THE ABOVE

•••• 26. GO TO NNBL . •••• 39.
••.• 27. WRITE(6,17)CQU,YB7,VY • 40 ..
•••• 28. FORMAT(6X,18) · .• . 41 •
•••• 29. READ,V9E,Ll • ••• 42 •
•••• 30. GOTOC17,5148),COPAAF • ••• 43 •
· .. . 31. STOP • ••• 44.
•••• 32. G=ALOGCO.E-2)*9462.56 • ••• 45 •
•••• 33. CONTINUE • ••• 46 •
• ••• 34. DIMENSION JBCLC2,3,5) • ••• 47.
•••• 35. (823~4,837,4},MZPRI •••• 48.
•••• 36. FORMAT(7X) • ••• 49 •
•••• 37. O.QYPP==N I D •••• 50.
•••• 38. PRINT,63777729,SC,AK14

SCORING FORMULA == RIGHT*2
MINIMUM SCORE = 10

24.10

Figure 5-Quiz 5 example

5.3E+21i11+40052*MW2
GO TO 9150
READ,UU2CK,NX
FORMAT(')=),',lA3,2F6.5)
FORMAT('=M+L',lX,'('}
PRINT,S,FW4KNL,NX~J4
WGAME=Y~T**L/S2VFON
READ,KI,$QJ9U,W
DIMENSION LX(6,5,4!J,1)
GO TO 653
L-029668-MGR
FORMAT(7H041$D2/,')')

Cognitive and Creative Test Generators 655

KEY KEY KEY KEY KEY
('lUll 1 nUIZ 1 OUIZ 1 QUIZ 1 01.117. 1

SEC 1 SEC 1 SEC 1 SEC 1 SEC 1

1. 3 1. 3 1. 3 1. 3 1. 3
2. 1 '- . 1 2. 1 2. 1 2. 1
3. 5 3. 5 3. 5 3. 5 3. 5
4. '- 4. 2 4. '- 4. 2 4. 2
5. 4 5. 4 5. I~ 5. 4 5. 4
6. 3 6. 3 6. 3 n. 3 6. 3
7. ?> 7. 3 7. 3 7. 3 7. 3
8. 2 8. 2 8. 2 8. 2 8. 2
11. 5 C). 5 9. 5 ~ . 5 9. 5

10. 1 10. 1 10. 1 10. 1 10. 1
11. '- 11. 2 11. 2 11. 2 11. 2
12. 1 12. 1 12. 1 12. 1 12. 1
13. 4 13. 4 13. lJ 13. 4 13. 4
14. 5 14. 5 14. 5 14. 5 14. 5
15. 4 15. 4 15. 4 15. 4 15. 4
1fi. 1 16. 1 16. 1 16. 1 16. 1
17. 4 17. 4 17. 4 17. 4 17. 4
18. 1 18. 1 lR. 1 18. 1 18. 1
1"l. 1 lq. 1 19. 1 ltl. 1 19. 1
20. 3 20. 3 20. 3 20. 3 20. 3
21. 5 21. 5 21. 5 21. 5 21. 5
?2. 4 22. 4 22. l~ 22. 4 22. 4
23. 2 23. 2 23. 2 23. '- 23. 2
24. 1 24. 1 24. 1 24. 1 24. 1
25. 3 25. 3 25. 3 25. 3 25. 3
26. 5 2fi. 5 26. 5 2F.. 5 26. 5
?7. 2 27. 2 27. 2 27. 2 27. 2
2R. l~ 28. l~ 28. 4 28. 4 28. 4
2g. 1 2fl. 1 29. 1 29. 1 29. 1
30. 5 30. 5 30. 5 30. 5 30. 5
31. ~

31. 3 31. 3 31. 3 31. 3
32. 32. 3 32. 3 32. 3 32. 3
33. 2 33. 2 33. 2 33. 2 33. 2
34. 2 34. 2 34. 2 34. 2 34. 2
35. 5 35. 5 35. 5 35. 5 35. 5
36. 3 36. 3 36. 3 36. 3 36. 3
37. 4 37. 4 37. 4 37. 4 37. 4
38. 1 38. 1 38. 1 38. 1 38. 1
39. 3 3t). 3 3q. 3 39. 3 39. 3
40. 3 40. 3 40. 3 40. 3 40. 3
41. 3 41. 3 41.. 3 41. 3 41. 3
42. 1 42. 1 42. 1 42. 1 42. 1
43. 2 43. 2 43. 2 43. 2 43~ 2
44. 5 44. 5 44. 5 44. 5 44. 5
45. 5 45. 5 45. 5 45. 5 45. 5
46. 3 46. 3 46. 3 'J6. 3 46. 3
47. 1 47. 1 47. 1 47. 1 47. 1
48. 3 48. 3 48. 3 48. 3 48. 3
49. 4 49. 4 4q. 4 49. 4 49. 4
SO. 5 50. 5 50. S 50. 5 50. 5

24.20 24.20 24.20 24.20 24.20

Figure 6-Key example

656 Fall Joint Computer Conference, 1972

the first random number in this loop would be limited
to a value between 1 and 6. Subsequent random num
bers produced in this loop would be between 1 and 37
corresponding to the 26 letters, 10 digits and the $
sign. Thus, for Question 27, the characters KS resulted.
In similar fashion, the names for Questions 33, 34, and
43 were produced.

table is listed for each quiz and section as shown in
Figure 6 for use in class after quiz administration is
complete. A card is also punched containing the key
for input to a computerized grading system which is.
used to grade tests and homework and maintain
records for the course.

To illustrate the scope of this quiz generator in terms
of programming effort, the following list gives the
name and purpose of each subroutine in the total
package. Each routine is written in Fortran IV:

As each category for each question is determined
by the main program, the values between 1 and 5 are
kept in a table to be used as the answer key. This

Name
MAIN
SETUP
QUIZi
ALPNUM
SYMBOL
CONSTA
SPECHA
JCLCOM
NONEi
INTCON
INTEXP
REAEXP
MIXEXP
MIXILE
UNIARY
PAREN
BINARY
FUNCT
ARITH
GOTON
IFSTAT
COGOTO
INOUT
FIESPE
FORMAT
DOSTAT
SIZCON
CONTRL
SPESTA
INTVAR
REACON
REAVAR
STANUM
SUBSCR
INTSUB
REASUB
DIMENS

Purpose
General test formatting and key production
Prints a leader to help operator setup printer
Calls routines for categories in each quiz
Generates single alphanumeric characters

" a Fortran symbol
" " " constant, real or integer
" " " special character
" " job command
" none of the above entries for each quiz
" a Fortran integer constant
/I

II

II

"
"
"
II

II

II

II

"
II

II

II

"
II

II

"
"
"
1/

1/

1/

1/

1/

1/

1/

" "
" "
" "

"
real
mixed

expression

"
"

" illegal expression
" uniary operator expression
" expression within parentheses
" binary operator expression
" function call
" Fortran arithmetic statement
" " GO TO statement
" " IF "
" " comp GO TO
" " I/O statement
" format field specification
" format statement
" Fortran DO statement
" constant of a given size
" control statement
" specification statement
" integer variable
" real constant
" " variable
" statement number
" subscripted variable
" integer "
" real "
" dimension statement

"
"

"

The only major criticism that can be made of these
quizzes is that they fail to test the student on his
understanding of the behavior of the computer under
the control of these various statements either singly

or in combination. This understanding of the semantics
of Fortran, of course, is imperative if a programmer is
to be successful. Thus a method is needed for generat
ing questions which will test the student in this under-

standing. It is this problem the solution of which is
now being sought. The following sections describe
some of the major concepts discovered so far and
possible methods of solution.

SEMANTIC QUESTION GENERATION

Work is now under way for designing a system to
produce questions which require semantic understand
ing as well as syntactic recognition of various Fortran
program segments. The major difficulties in such a
process is the determination of the correct answer for
the generation of a key and the computation of the
most probable incorrect answers for the distractors of
a question. Both of these determinations sometimes
involve semantic meanings (i.e., evaluation of expres
sions or the execution of statements) which would be
difficult to determine in the same program that gen
erates the question element in the first place. As a good
illustration, consider the following question model:

Given the following statement:

IF (X + 2.0 - SQRT(A» 5,27,13
where X = 6.5
and A = 22.7
Transfer is made to the statement whose number is
(1) 5 (2) 27 (3) 13 (4) indeterminant
(5) none of the above as
the statement is invalid

Here the generator would have created the ex
pression X + 2.0 - SQRT(A) , the three statement
numbers 5, 27 and 13 and finally the two values of X

MAIN TEST I GENERATOR ..

~ KEY KEY
GENERATOR

Figure 7-2nd stage involvement of key

and A. The order of the first four answer choices could
also be determined randomly. In this particular ques
tion, determination of the distractors is no problem
but the determination of the correct answer involves
an algorithm similar to the following:

X = 6.5

A = 22.7

IF (X + 2.0 - SQRT(A» 5,27,13

Cognitive and Creative Test Generators 657

MAIN
GENERATOR

ANSl'lER AND
DISTRACTOR
GENERATOR

KEY
GENERATOR

Figure 8-2nd stage involvement of key and distractors

5 KEY = 1

GO TO 10

27 KEY=2

GO TO 10

13 KEY=3

10 CONTINUE

This problem can be solved by letting the main
generator program generate a second program to com
pute the key as well as generate the question for the
test. This second program would then be passed to
further job steps which would compile and execute
the program and determine the key for the question.
Figure 7 illustrates this concept.

As an illustration of a question involving more
difficult determination of answer and distractors, the
following question model is presented.

Given the statement:

I = J/2 + X

where J = 11

and X = 6.5

the resulting value of I is

(1) 11.5 (2) 11 (3) 12 (4) 6.5 (5) 6

The determination of the five answer choices would
have to be determined by an algorithm such as the

~,1A IN
GENERATOR

Figure 9-No 2nd stage involvement

658 Fall Joint Computer Conference, 1972

THE NEXT FOUR QUESTIONS REFER TO THE FOLLOWING STATEMENT:

DO 746 LS21Q4 = K, N, 537

WHERE N = 961 AND K = 1

1. THE FINAL VALUE OF THE 00 VAPIAP,LE, LS2IQ4, IS:

(1) 1 (2) 537 (3) 538 (4) 2
(5) NONE OF THE ABOVE

2. THE STATEMENTS WITHIN THE DO LOOP ARE EXECUTED M TIMES,
\~HERE ~.1 IS:

(1) 1 (2) 537 (3) 538 (4) 2
(5) NONE OF THE ABOVE

3. IF K = 962, THE STATEtAENTS ~nTHIN THE LOOP \'!OULO BE
EX ECUTEQ N T U~ES \\IHERE N IS:

(1) 0 (2) 1 (3) UNDETEPMINARLE
(4) THE PROGRAM WILL NOT BE EXECUTED
(5) NONE OF THE ,ABOVE

4. ONE LEGITIMATE STATEMENT FOR THE LAST STATEMENT IN THE LOOP IS:

(1) 25G/XKL+L~6
(2) GO TO 31
(3) STOP
(Ld RETURN
(5) "'!R I TE (G, 20) I

5. GIVEN THE STATE~ENT:

GO TO (578,95~,q75,852,212,864,4g8,7q3),K6

~"'HERE K6 IS 4
TRANSFER IS "1AOE TO THE STATH1ENT ~JHOSE NW1BER IS:

(1) TRANSFER IS ~.~ADE TO THE FIRST 8 NIH}.BEPS HITHIN
THE PARENTHESIS IN THAT ORnER

(2) 852
(3) 4
(4) MORE INFORMATION IS NEEDED
(5) TRANSFER I S NOT tAAOE REC.A.USE THE STATH·1ENT I S I NVAL I D

6. GIVEN THE STATEMENT:

IF(CXPJE+797) 43, 326, 896

IF CXPJE = .24
TRANSFER IS t"AOE TO THE STATEt)nn NUMREREO:

(1) 0.24000 (2) 43 (3) 326 (4) 8gB
(5) ~.'()NE OF THE ABOVE

Figure lO-Semantic question examples

following:

J = 11

X = 6.5

ANSI = J/2 + X

IANS2 = J/2 + X

IANS3 = J/2. + X

ANS4 = X

IANS5 = X

In this problem not only does the determination of
the key depend on further computation but also the
distractors and the correct answer. Thus the second

\ program generated by the first program must be in
volved in the production of the test as well as the key.
Figure 8 illustrates this concept.

Some questions are very simple to produce as neither
key nor answer choices depend on a generated al
gorithm. An example is:

Given the following statement:

DO 35 J5 = 3, 28, 2

The DO loop would normally be iterated N times
where N is

(1) 13 (2) 12 (3) 14 (4) 28 (5) 35

Here the answer choices are determined from known
algorithms independent of the random question ele
ments. No additional program is therefore required
for producing this test question and its key. Figure 9
illustrates this condition.

It would then appear that a general semantic test
generator would have to satisfy at least the conditions
exhibited in Figures 7, 8 and 9.

Figure 10 illustrates results obtained from a working
pilot program utilizing the method illustrated in
Figure 8. This program is a very complicated one and
was very difficult to write. To produce a Fortran
program as output from a Fortran program involved
a good deal of tedious work such as writing Format
statements within Format statements. It has become

Cognitive and Creative Test Generators 659

TEST
ORIENTED

SOURCE
LANGUAGE

TOSL
PROCESSOR
(SNOBOL)

FORTRAN
PROGRAM

Figure ll-TOSL Language environment

obvious that a more reasonable method of writing the
source program is needed.

FUTURE INVESTIGATION

An attempt will be made to design a source language
oriented toward test design which will then be trans
lated by a new processor into a Fortran program. See
Figure 11.

This new language is visualized as being composed
of a mixture of languages including the possibility of
passing simple English statements (for the textural
part of a question) through the entire process to the
test. Fortran statements could be written into the
source language where such algorithms are required.
Finally, statements to allow the specification of ran
dom question elements and the linkage of these ran
dom elements to the algorithms mentioned above will
be necessary.

Several special source language operators can be
introduced to facilitate the writing of question models.
Certain special characters can be chosen to represent
particular requirements such as question number
control, random variable control, answer choice con
trol, answer choice randomization, and key production.
It is anticipated that SNOBOL would make an ex
cellent choice for the processor language as it will
allow for rapid recognition of the source language
elements and operations and in a natural way gen
erate and maintain strings which will find their way
into the Fortran output program and finally into the
test and key. The possibilities of such a system look
very promising and hopefully, such a system can be
made applicable to other subject fields as well as the
current one.

A conversational item banking and test construction system

by FRANK B. BAKER

University of Wisconsin
Madison, Wisconsin

INTRODUCTION

Most conscientious college instructors maintain a pool
of items to facilitate the construction of course examina
tions. Typically, each item is typed on a 5" X 8" card
and coded by course, book chapter, concept and other
such keys. The back of the card usually contains data
about the item collected from one or more administra
tions of the item. To construct a test, the instructor
peruses this item bank looking for items that meet his
current needs. Items are selected on the basis of their
content and further filtered by examining the item data
on the card, overlapping items are eliminated, and the
emphasis of the test is balanced. After having main
tained such a system for a number of years, it became
obvious that there should be a better way. Conse
quently, the total process of maintaining an item bank
and creating a test was examined in detail. The result
of this study was the design and implementation of the
Test Construction and Analysis Program (TCAP).
The design goal was to provide an instructor with a
computer based item banking and test construction
system. Because the typical instructor maintains a
rather modest item bank, the design emphasis was upon
flexibility and capabilities rather than upon capacity.
In order to achieve the necessary flexibility TCAP was
implemented as a conversational system using an inter
active terminal. Considerable care was taken to build a
system that had a very simple computer-user inter
face.

The purpose of the present paper is to describe the
TCAP system. The order of discussion proceeds from
the file structure to the software to the use of the system.
This particular order enables the reader to see the
underlying system logic without becoming enmeshed in
excessive interaction between components.

661

SYSTEM DESIGN

File structure

The three basic files of the TCAP system are the Item,
Statistics and Test files. A record in the Item file con
tains the actual item and is a direct analogy to the
5"X8" card of the manual scheme. A record in the
Statistics file contains item analysis results for up to ten
administrations of a given item. Test file records con
tain summary statistics for each test that has been ad
ministered. The general structure of all files is essentially
the same although they vary in internal detail. Each
file is preceded by a header (see Figure 1) that describes
the layout of the record in the file. Because changing
computers has been a way of life for the past ten years,
the header specifies the number of bits per character and
number of characters per word of the target computer.
These parameters are used to make the files word length
independent. In addition, it contains the number of
sections per record, the number of characters per record
section, characters per record and the number of
records in the file. The contents of the headers allow all
entries to data items within a record to be located via a
relative addressing scheme based upon character counts.
This character oriented header scheme enables one to
arbitrarily specify the record size and layout at run
time rather than compile time; thus, enabling several
different users of the system to employ their own record
layouts without affecting the TCAP software.

A record is divided into sections of arbitrary length,
each preceded by a unique two character flag and termi
nated by a double period. Sub sections within a section
are separated by double commas. These flags serve a
number of different functions during the file· creation
phase and facilitate the relative addressing scheme used
to search within a record. Figure 2 contains an item

662 Fall Joint Computer Conference, 1972

File Header
Element

1
2

3
4
5
6-15

Contents
Name of file
Number of bits per character in target

computer
Characters per word in the target computer
Characters per record in the file
Number of sections in the record
Number of characters in section where

i = 1,2, ... 10

Figure I-Typical file header

file record that represents a typical record layout. The
basic record layout scheme is the same in all files, but
they differ in the contents of the sections. A record in
the item file consists of seven sections: Identification,
Keyword, Item, Current item statistics, Date last used,
and Frequency of use, previous version identification.
The ID section contains a unique identification code for
the item that must begin with *$. The keyword section
contains free field keyword descriptors of the item
separated by commas. The item section contains the
actual item and was intended primarily for multiple
choice items. Since the item section is free field, other
item types could be stored, but it has not been tried to
date. The current item statistics section stores the item
analysis information from the most recent administra
tion of the item. The first element of this section is the
identification code of the test from which the item
statistics were obtained. The internal layout of this
section is fixed so that the FORTAP item analysis pro
gram outputs can be used to update the information.
The item statistics section contains information such as
the number of persons selecting each item response, item
difficulty, and estimates of the item parameters. The
next section contains the date of the most recent ad
ministration of the item. The following section contains

Item File Record

*$ STAT 01 520170 ..
ZZ EDPSY,STATISTICS,ESTIMATORS,MLE. .

a count of the total number of times the item has been
administered. These two pieces of information are used
in the test construction section to prevent over use of
an item. The final section of the item record contains
the unique identification code of a previous version of
the same item. This link enables one to follow the
development of a given item over a number of
modifications.

A record in the Statistics file contains 11 sections, an
item identification section and 10 item statistics sec
tions identical in format to the current item statistics
section of the item record. These 10 sections are main
tained as a first in, last out push down stack with an
eleventh data set causing the first set to be pushed end
off. Records in the Test file are similar to those of. the
Item file and have five sections: Identification, Key
words, Comments, Summary statistics of the test, and
a link to other administrations of the same test. The
comments section allows the instructor to store any
anecdotal information he desires in a free field format.
The link permits keeping track of multiple uses of the
same test such as occurs when a course has many sec
tions.

The record layouts were designed so that there was a
one to one correspondence between each 72 characters
in a section and the punched cards used to create the
file. Such a correspondence greatly facilitates the ease
with which an instructor can learn to use the system.
Once he has key punched his item pool, the record lay
outs within each file are quite familiar to him and the
operations upon these records are easily understood.
This approach also permitted integration of the FOR
TAP item analysis program into the TCAP system with
a minimum conversion effort.

It should be noted that the file design allows many
different instructors to keep their items in the same
basic files. Alternatively, each instructor can maintain

QQ ONE OF THE CHARACTERISTICS OF MAXIMUM LIKELIHOOD ESTIMATORS IS THAT IF SUFFICIENT ESTI
MATES EXIST, THEY WILL BE MAXIMUM LIKELIHOOD ESTIMATORS. ESTIMATES ARE CONSIDERED SUFFI
CIENT IF THEY, ,
(A) USE ALL OF THE DATA IN THE SAMPLE"
(B) DO NOT REQUIRE KNOWLEDGE OF THE POPULATION VALUE, ,
(C) APPROACH THE POPULATION VALUE AS SAMPLE SIZE INCREASES, ,
(D) ARE NORMALLY DISTRIBUTED.
VlW TEST 01 220170 ..
1 1 0 0014 .18 - .21 -01.36 -0.22"
1 2 1 0054 .69 + .53 -00.93 .63, ,
1 3 0 0010 .12 + .64 -01.77 -0.83 ..
VV 161271. .
yy 006 ..
$$ STAT 02 230270 ...

Figure 2-A record in the item file

Conversational Item Banking and Test Construction System 663

his own unique set of basic files, yet, use a common copy
of the TCAP program. The latter scheme is preferred
as it minimizes file search times.

Software design

The basic programming philosophy adopted was one
of cascaded drivers with several levels of utility rou
tines. Such an approach enables the decision making at
each functional level to be controlled by the user inter
actively from a terminal. It also enables each level of
software to share lower level utility routines appropriate
to its tasks. Figure 3 presents a block diagram of the
major software components of the TCAP system. The
main TCAP driver is a small program that merely pre
sents a list of operational modes to the user: Explore,
Construct and File Maintenance. Selection of a particu-, .
lar mode releases control to the correspondmg next
lower level driver. These second level drivers have ac
cess to four search routines that form a set of high level
utility routines. The Identification search routine
enables one to locate a record in a file by its unique
identification code. The Keyword search routine imple
ments a search of either the item or test file for records
containing the combination of keywords specified by the
user. At present a simple conjunctive match is used, but
more complex logic can be added easily. The Parameter
search utility searches the item or statistics files for
items whose item parameter values fall within bounds
specified by the user. The Linked search routine all~ws
one to link from a record in one file to a correspondIng
record in another file. For example, from the item file
to the statistics file or from the item file to the test file.
Due to the extremely flexible manner in which the user
can interact with the three files it was necessary to ac
cess these four search routines through the Basic File
Handling routine. The BFH routine initializes the file

Figure 3-TCAP software structure

handlers from the parameters in the headers, coordinates
the file pointers, and handles certain error conditions.
Such centralization relieves both the mode implementa
tion routines and the search routines of considerable
internal bookkeeping related to file usage. The four
search routines in turn have access to a lower level of
utility routines, not depicted in Figure 3. These lowest
level utilities are routines that read and write records,
pack and unpack character strings, convert numbers
from alphanumeric to integer or floating point, and
handle communication with the interactive terminal.

The purpose of the EXPLORE routine is to permit
the user to peruse the three basic files in a manner
analogous to thumbing through a card index. The EX
PLORE routine presents the user with a display listing
seven functions related to accessing records within a
file. These functions are labeled: Identification, Key
word, Parameter, Linked, Restore, Mode and Con
tinue. The first four of these correspond to the four
utility search routines. The Restore option merely re
verses the linkage process and causes the predecessor
record to become the active record. The Mode option
causes an exit from the EXPLORE routine and a re
turn to the Mode display of the TCAP driver. The Con
tinue option allows one to continue a given search using
the present set of search specifications.

The Test Construction Routine is used to assemble an
educational test from the items in the item file. Test
construction is achieved by specifying a set of general
characteristics all items should have and then defining
sub sections of the test called areas. The areas within
the test are defined by user supplied keywords and the
number of items desired in an area. The Test Construc
tion routine then employs the Keyword search routine,
via BFH to locate items possessing the proper key-, .
words. This process is continued until the speCIfied num-
ber of items for an area are retrived or the end of the
item file is reached. Once the requirements of an area
are satisfied the user is free to define another area or
terminate this phase. Upon termination certain sum
mary data, predicted test statistics, and the items are
printed.

The function display of the File Maintenance routine
presents the user with three options: Create, FORTAP
and Single. The Create option is a batch mode proc~ss
that uses the File Creation from Cards subroutIne
(FCC) to create any of the three basic files !rom a ca:d
deck. To use this option, it is necessary to SImulate, Via

cards, the interaction leading to this point. The FOR
TAP option is interactive, but it assumes th~t the
FORTAP item analysis routine has created a card Image
drum file containing the test and item analysis results.
The file contains the current item statistics section for
each item in the test accompanied by the appropriate

664 Fall Joint Computer Conference, 1972

identification sections and test links. A test file record
for the test is also in this file. The File Maintenance
routine transfers the current item statistics section of the
item record of each item in the test to the corresponding
record in the statistics file. It then uses the FCC
subroutine toreplace the current item statistics section
of the item records with the item statistics section from
the FORTAP generated file. If an item record does not
exist in the Item file a record is created containing only
the identification sections and the current item sta
tistics. The test record is then stored in the Test file
and the header updated. The Single option is used to
perform line item updates on a single file. Under this
option the File Maintenance routine assumes that card
images are stored in an update file and that only parts
of a given record are to be changed.

OPERATION OF THE SYSTEl\1

The preceding sections have described the file struc
ture and the software design. The present section de
scribes some interactive sequences representing typical
uses of the TCAP system. The sequences contained in
Figure 4 have had the lengthy record printouts deleted.
The paragraphs below follow these scripts and are in
tended to provide the reader with a "feel" for the sys
tem operation.

Upon completion of the usual remote terminal sign
in procedures, the TCAP program is entered and the
mode selection message--TYPE IN TCAP MODE=
EXPLORE, CONSTRUCT, FILE MAINTENANCE
is printed at the terminal. The user selects the appropri
ate mode, say EXPLORE, by typing the name. The
computer replies by printing the function display mes
sage. In the EXPLORE mode, this message is the list of
possible search functions. The user responds ty typing
the name of the function he desires to pe~form, key
word in the example. The computer 'responds by asking
the user for the name of the file he wishes to search.
N ext, the user is instructed to type in the keywords
separated by commas and terminated by a double
period. The user must be aware of the keywords em
ployed to describe the items and tests in the files.
Hence, it is necessary to maintain a keyword dictionary
external to the system. This should cause little trouble
as the person who created the files is also the person us
ing the system. Upon receipt of the keywords, the EX
PLORE routine calls the Keyword Search routine to
find an item containing the particular set of keywords.
The contents of the item record located are then typed
at the terminal. At this point the system asks the user
for further instructions. It presents the message
FUNCTION DISPLAY NEEDED. A negative reply

causes a return to the Mode selection display of the
TCAP driver. A YES response causes the EXPLORE
function list to reappear. If one wishes to find the next
item in the file possessing the same keyword pattern,
CONTINUE, is typed and the search proceeds from
the last item found. In Figure 4 this option was not
selected. Returning to the Mode selection or reaching
the end of the file being searched causes the Basic File
Handler to restore the file pointers to the file origin.

The next sequence of interactions in Figure 4 links
from a record in the Item file to the corresponding rec
ord in the Statistics file. It is assumed that one of the
other search functions has been used to locate a record
prior to selection of the LINKED option, the last item
found via the Keyword search in the present example.
The computer then prompts the user by asking for the
name of the file from which the linking takes place,
item in the present example. It then asks for the name
of the file the user wishes to link to statistics in the ex
ample. There are several illegal linkages and the Linked
search routine checks for a legal link. The Linked search
routine extracts the identification section of the item
record and establishes the inputs to the Identification
Search routine. This routine then searches the Sta
tistics file for a record having the same identification
section. It should be noted that a utility routine used a
utility routine at this point, but the cascaded control
was supervised by the EXPLORE routine. When the
proper Statistics record is found its contents are printed
at the terminal. Again, the system asks for directions
and the user is asked if he desires the function display.
In the example, the user obtained the function display
,and selected the Restore option. This results in the prior
record, the item record, being returned to active record
status. and the name of the active file being printed.
The system allows one to link and restore to a depth of
three records. Although not shown in the example se
quences, the other options under the EXPLORE mode
operate in an analogous fashion.

The third sequence of interactions in Figure 4 shows
the construction of an examination via the TCAP sys
tem. Upon selection of the Construct mode, the com
puter instructs the user to supply the general item
specifications, namely the correct response weight and
the bounds for the item parameters X50 and {3. These
minimum, maximum values are used to filter out items
having poor statistical properties. The remainder of the
test construction process consists of using keywords to
define areas within the test. The computer prints AREA
DEFINITION FOLLOWS: YES, NO. After receiving
a YES response the computer asks for the number of
items to be included in the area. The user can specify
any reasonable number, usually between 5 and 20.
The program then enters the normal keyword search

Conversational Item Banking and Test Construction System 665

TYPE IN TCAP M~DE =EXPL~RE, C~NSTRUCTIPN, FILE MAINTENCE EXPL~RE
FUNCTIPN DISPLAY

TYPE KIND ~F SEARCH DESIRED
IDENT,KEYW~RD,PARAMETER,LINKED,REST~RE,CPNTINUE,M~DE

KEYWORD
TYPE IN FILE NAME

ITEM
TYPE IN KEYW0RDS SEPARATED BY C0MMAS

TERMINATE WITH ..
SKEWNESS,MEAN,MEDIAN ..

THE ITEM REC0RD WILL BE PRINTED HERE
{

*$AAAC 02 230270 ..

FUNCTI0N DISPLAY NEEDED YES,N0
YES

FUNCTI0N DISPLAY
TYPE KIND 0F SEARCH DESIRED

IDENT,KEYW0RD,PARAMETER,LINKED,REST0RE,C0NTINUE,M0DE
LINKED

LINKED SEARCH REQUESTED
TYPE NAME 0F FILE FR0M

ITEM
TYPE NAME 0F FILE LINKED T0

STAT

THE STATISTICS REC0RED WILL BE PRINTED HERE
{

*$AAAC 02 230270 ..

FUNCTI0N DISPLAY NEEDED YES,N0
YES

FUNCTI0N DISPLAY
TYPE KIND 0F SEARCH DESIRED

IEDNT,KEYW0RD,PARAMETER,LINKED.REST0RE,C0NTINUE,M0DE
REST0RE

ITEM REC0RD FILE REST0RED
FUNCTI0N DISPLAY NEEDED YES,N0
YES

FUNCTI0N DISPLAY
IDENT,I<:EYW0RD,PARAMETER,LINKED,REST0RE,C0NTINUE,M0DE

M0DE
TYPE IN TCAP M0DE = EXPL0RE,C0NSTRUCTI0N,FILE MAINTENANCE

C0NSTRUCT
TYPE IN WEIGHT ASSIGNED T0 ITEM RESP0NSE

1
TYPE IN MINIMUM VALUE 0F X50

-2.5
TYPE IN MAXIMUM VALUE 0F X50

+2.5
TYPE IN MINIMUM VALUE 0F BETA

.20
TYPE IN MAXIMUM VALUE 0F BETA

1.5
AREA DEFINITI0N F0LL0WS YES,N0

YES
TYPE IN NUMBER 0F ITEMS NEEDED F0R AREA

10
TYPE IN KEYW0RDS SEPARATED BY C0MMAS
TERMINATE WITH ..

CHAPTER1,STATISTICS,THE0RY,FISHER. .
AREA DEFINITI0N F0LL0vVS YES,N0

YES
TYPE IN NUMBERS 0F ITEMS NEEDED F0R AREA

10

Figure 4-0perational sequences

666 Fall Joint Computer Conference, 1972

TYPE IN KEYW0RDS SEPARATED BY C0MMAS
TERMINATE WITH ..

CHAPTER2,DISTRIBUTI0N,FREQUENCY,INTERVAL ..
AREA DEFINITI0N F0LL0WS YES,N0

YES
TYPE IN NUMBER 0F ITEMS NEEDED F0R AREA

10
TYPE IN KEYW0RDS SEPARATED BY C0MMAS
TERMINATE WITH ..

CHAPTER3,BIN0MIAL,PARAMETER,C0MBINATI0N,PERMUTATI0N ..
AREA DEFINITI0N F0LI.J0W8 YES,N0

YES
TYPE IN NUMBER 0F ITEMS NEEDED F0R AREA
10

TYPE IN KEYW0RDS SEPARATED BY C0MMAS
TERMINATE WITH ..

CHAPTER4,HYP0THESES,LARGE SAMPLE,Z TEST ..
AREA DEFINITI0N F0LL0WS YES,N0

N0
ITEMS REQUESTED PER AREA 10 10 10 10
ITEMS F0UND PER AREA 6 9 8 10
PREDICTED TEST STATISTICS

MEAN = 16.0758
STANDARD DEVIATI0N = 4.561111
RELIABILITY = .893706

D0 Y0U WANT ITEMS PRINTED YES,N0
N0

ITEM IDENTIFICATI0N X50 BETA
h$AAAA 03 230270. . .470000 .450000

(THIS INF0RMATI0NWILL BE PRINTED F0R ALL ITEMS)
TYPE IN TCAP M0DE =EXPL0RE,C0NSTRUCTI~N,FILE MAINTENANCE

EXIT
THAT IS END 0F RUN,G00DBY

Figure 4-tContinued)

procedures and the user enters the keywords that de
fine this area of the test. Upon receipt of the keywords
the item file is searched for items possessing the proper
descriptors and whose item parameters are within
bounds. Completion of the keyword search results in a
return to the area definition message. The area defini
tion and search process can be repeated up to ten times.
A NO response to the area definition message results in

. the printing of the table showing the number of items
requested per area and the number actually found per
area. The table is followed by the predicted values of
the test mean, standard deviation, and internal con
sistency reliability index. These values are computed
from the current values of the item parameters X50 and
{3 of the retrieved items. These predicted values assist
the test constructor in determining if an appropriate
set of items has been selected by the system. The pro
gram then asks the user if he wants the selected items
printed. If not, only the identification section and the
values of the item parameters are printed. This informa
tion allows one to use the Identification search option
of the EXPLORE routine to retrieve the items at a
later date. A minor deficiency of the present test con-

struction procedures is that a reproducible copy of the
test is not produced. A secretary uses the hard copy to
prepare a stencil or similar master. With some minor
programming this final step could be accomplished.

Some enhancements

At the present time the full TCAP design has not
been implemented and a number of additional features
should be mentioned. Two sections of the item record,
date of use, and frequency of use can be employed to
prevent over use of the same items. A step in the test
construction mode will enable the user to specify that
an item used since a certain date or more than a specified
number of times should not be retrieved. The software
for this additional filtering has been written but not de
bugged.

A significant enhancement is one that enables the
test constructor to manipulate the items constituting a
test. For example, an instructor may not be satisfied
with the items the computer has retrieved in certain
areas. He may wish to delete items from one area and

Conversational Item Banking and Test Construction System 667

add items to another. This can be done interactively
and the predicted test statistics should be re-calculated
as each transaction occurs. At the present time, such
manipulations require a re-run of the total test construc
tion process. An extension allowing considerable freedom
in manipulating items of the constructed examination
via the utility search routines has been designed but not
implemented.

The TCAP system was originally designed to be
operated from an alphanumeric display, hence the mode
display, function display terminology, but the present
implementation was accomplished using teletypes.
Alphanumeric displays have been acquired and many
user actions will be changed from typed in responses to
menu selections via a cursor. These displays will relieve
the user of the major portion of the typing load and
make the system a great deal easier to use.

Some observations

The TCAP design goals of flexibility, capability and
ease of use produced a conflicting set of software require
ments. These requirements combined with the fact that
the operating system of the computer forced one to
treat all drum files as if they were magnetic tapes re
sulted in a challenging design problem. The require
ment for providing the user with computer based
equivalents of present capabilities was solved through
the use of cascaded drivers and multiple levels of utility
routines. Such a scheme enables the drivers to be con
cerned with operational logic and the utility routines
with performing the functions. The use of multiple
levels of utility routines provided functional isolation
that simplified the structure of the programs. The final
TCAP program was highly modular, hierarchical in
structure and quite compact.

The use of relative addressing in conjunction with
the character oriented file records and a header scheme
proved to be advantageous. The approach makes trans
ferring TCAP to other computers an easy task. Hope
fully, the only conversion problem will be adjusting
the FORTRAN A formats to the target computer. A
significant feature of the approach is that record lay
outs within files are defined at run time rather than at
compile time. The practical effect is that each instructor
can tailor the number of sections within a record and
their size to suit his own needs. Thus, the item, sta
tistics, and test files can be unique to a given user.
TCAP modifies its internal file manipulations to process

the record specifications it receives. Such flexibility is
important in the university setting where each in
structor feels his instructional procedures are unique.

One consequence of the high degree of operational
flexibility and the range of capabilities provided is that
housekeeping within TCAP is extensive. A good ex
ample of this housekeeping occurs when the File Main
tenance routine updates the item files from the item
analysis results file generated by the FORTAP pro
gram. Because not all items in the test will have records
in the item file, the File Maintenance routine must keep
track of them, create records for them, add them to the
item file, and'inform the user that the records have
been added. There are numerous other situations of
comparable complexity throughout the TCAP system.
Handling them smoothly and efficiently is a difficult
task. Because TCAP was implemented on a large com
puter, such situations were generally handled by creat
ing supplementary drum files and provided working
arrays in core. The use of random access files would
have greatly simplified many of the internal house
keeping problems.

On the basis of the author's experience with the de
sign and implementation of the TCAP system o'ne
salient conclusion emerges. Such programs must be
designed as complete software systems. To attempt to
design them in a sequential fashion and implement
them piecemeal is folly. The total system needs to be
thought through very carefully and the possible inter
actions explored. If provision is to be made for future,
but undefined, extensions, the structure of the program
and the files must be kept simple to reduce the interac
tion effects of such enhancements. It appears to be a
characteristic of this area of computer programming
that complexity and chaos await your every decision.
This caveat is a reflection of the many design iterations
that were necessary to achieve the TCAP system. The
end product of this process is a system that provides
the instructor with an easy to use tool that can be of
considerable assistance. Being able to maintain an item
bank and assemble tests to meet arbitrary specifications
aids one in performing an unavoidable task. To do so
quickly and efficiently is worth the investment it takes
to convert one's item bank into machine readable form.
The TCAP system illustrates again that tasks per
formed by manual means can often be quite difficult to
implement by computer. In the present case a reason
able implementation was achieved by making the
system interactive and taking advantage of the capa
bilities of both man and machine.

Measurement of computer systems
An introduction

by ARNOLD F. GOODl\1AN

McDonnell Douglas Astronautics Company
Huntington Beach, California

NEED FOR MEASUREMENT

Computer systems have become indispensable to the
advancement of management, science and technology.
They are widely employed by academic, business and
governmental organizations. Their contribution to
today's world is significant in terms of both quantity
and quality.

This significant growth of computer utilization has
been accompanied by a similar growth in computer
technology. Faster computers with larger memories
and more flexible input and output have been intro
duced, one after another. Interactive, multiprocessing,
multiprogramming, realtime and timesharing have
been transformed from catchy slogans into costly
reality-or at least, partial reality.

In addition, computer science has come into being,
and has made great progress from an art toward a
science. Departments of computer science have ap
peared within many colleges and universities. A new
profession has been created and is attempting to
mature.

These three areas of phenomenal growth-computer
utilization, computer technology and computer
science-have produced the requirement for a new
field, measurement of computer systems. In an at
mosphere of escalating computer cost and increasing
budget scrutiny, measurement provides a bridge
between design promises and operational performance.
This function of measurement is complemented by the
traditional need for measurement of any art in search
of a science.

ACTIVITY INVOLVING MEASUREMENT

A limited survey was conducted of the 1960-1970
literature on measurement of computer systems. This
survey included all Proceedings of Spring Joint Com-

669

puter Conferences, Proceedings of Fall Joint Computer
Conferences, Journals of the Association for Computing
Machinery and Communications of the ACM, as well
as selected Proceedings of ACM National Conferences
and Proceedings of Conferences on Application of
Simulation. The resulting personal bibliography and
the unpublished bibliographies of BeIP, Miller2 and
Robinson3-each with its own bias and deficiency
were utilized to obtain an initial indication of pioneer
activity involving measurement.

Measurement of computer systems was presaged by
Herbst, Metropolis and Wells4 in 1945, Shannon6 in
1948, Hamming6 in 1950 and Grosch7 in 1953. Bagley,S
Black,9 Codd,10 Fein,11 Flores,12 Maron13 and N agler14

published articles concerning it during 1960. These
were followed in 1961 with the related contributions
of Barton,16 Flores,16 Gordonp Gurk and Minker,18
Hosier,19 and Jaffe and Berkowitz.20 During 1962, there
were pertinent papers by Adams,21 Baldwin, Gibson
and Poland,22 Dopping,23 Gosden and Sisson,24 Hibbard,26
Patrick,26 Sauder,27 Simonsen28 and Smith.29

Many of the concepts and techniques which . were
developed for defense and space systems-whose focal
point was hardware rather than software-are also
applicable to computer systems. The system design,
development and testing sequence was perfected by
the late 1950's. Since the early 1960's, system verifi
cation, validation, and cost and effectiveness evalua
tion have been prevalent. The adaptation of these
concepts and techniques to measurement of computer
systems-especially software-is not as simple as
system specialists tend to believe, yet not as difficult
as software specialists tend to believe.

In the middle 1960's, sucb..concepts and techniques
began to be applied to the selection and evaluation of
computer systems, and to software as well as hardware.
Ratynski,30 Searle and Neil,31 Liebowitz32 and Piligian
and Pokorney33 describe the Air Force and National
Aeronautics and Space Administration (N ABA) adapta-

670 Fall Joint Computer Conference, 1972

tion of their system acquisition procedures to software
acquisition. Attention then shifted to measurement of
computer system performance, with a corresponding
increase of activity. Sackman34 discusses computer
system development and testing, based upon the Air
Force and NASA experience. An important develop
ment of the period was the formation of a Hardware
Evaluation Committee within SHARE35 during early
1964, and its evolution into the SHARE Computer
Measurement and Evaluation Project36 during August
1970, which served as a focal point for significant
progress.37

A preliminary but informative indication of activity
involving computer system effectiveness evaluation
prior to 1970 appears below. When a comprehensive
bibliography on measurement of computer systems is
compiled and annotated, the gross characterization
of activity given in this paper may be re'finedand
expanded-especially in the area of practical contribu
tions and contributors to measurement. Raw material
for that bibliography and characterization may be
found in the unpublished bibliographies of Bell, l

Miller,2 Robinson3 and the author mentioned above
as well as a bibliography by Crooke and Minker,38 one
in preparation by Menck,39 and the selected papers in
Hall. 37

During a keynote address at Computer Science and
Statistics: Fourth Annual Symposium on the Interface
in September 1970, Hamming coined the name of
"compumetrics"-in the spirit of biometrics,econo
metrics and psychometrics-for measurement of com
puter systems. 40 It is fitting _ that the naming of
compumetrics occurred at this symposium, since
measurement of computet systems is truly a part of
the interface-or area of interaction-of computer
science and statistics,4l

Hamming phrased it well when he stated: 40

"The director of a computer center is respon
sible -for managing the utilization of large
amounts of money, people and resources.
Although he has a complex and important
statistical problem, his decisions are normally
based upon the simplest collection and anal
ysis of data-since he usually knows little
statistics beyond such elementary concepts
as the mean and variance. His need for sta
tistics involves both the operational perfor
mance of his hardware and software, and the
environment provided by his organization
and users."

"A new discipline that seeks to answer these
questions-and that might be called 'compu-

metrics'-is in the process of evolving. Karl
Pearson and R. A. Fisher established them
selves by developing novel statistical solutions
to significant problems of their time. Compu
metrics may well provide contemporary
statisticians with many such opportunities."

Workshop sessions on compumetrics followed
Hamming's remarks at the Fourth Symposium on the
Interface. During these sessions,40 "there developed a
feeling that this symposium marked a beginning which
must not be _ allowed to be an end" -that sessions on
compumetrics be scheduled at the Fifth Symposium
on the Interface, and that a local steering committee
be formed to promote interest in compumetrics.

It is not surprising, therefore, that a Special Interest
Committee on Measurement of Computer Systems
SICMETRICS-was initiated within the Los Angeles
Chapter of the Association for Computing Machinery
during April 1971. SICMETRICS is compiling a
bibliography on compumetrics.39

There were sessions on computer system models and
analysis at the Fifth Annual Princeton Conference on
Information Sciences and Systems42 in March 1971.
In April 1971, the ACM Special Interest Group on
Operating Systems-8IGOPS-sponsored a Workshop
on System Performance Evaluation43-with sessions
on instrumentation, mathematical models, queuing

-models, simulation models and performance evalua
tion. There were sessions on system evaluation and
diagnostics at the 1971 Spring Joint Computer Con
ference44 during May 1971. This was followed in No
vember 1971 by workshop sessions on compumetrics
at the Fifth Symposium on the Interface,45 by a session
on operating system models and measures at the 1971
Fall Joint Computer Conference,46 and by a Conference
on Statistical Methods for Evaluation of Computer
Systems Performance47-with sessions on general ap
proaches, evaluation of current systems, input analysis,
software reliability, system management, design of
experiments and regression analysis. During November
1971, the ACl\I Special Interest Committee on Mea
surement and Evaluation-SICME-was also formed.

The ACM Special Interest Groups on Programming
Languages-SIGPLAN-and on Automata and Com
putability Theory-SIGACT-sponsored a Conference
on Proving Assertions about Programs48 in January
1972. A Symposium on Effective Versus Efficient
Computing49-with sessions on responsibility, getting
results, implementation, evaluation, education and
looking ahead-was held during March 1972, and so
was a session on computer system models at the Sixth
Annual Princeton Conference on Information Sciences
and Systems. 50 In May 1972, there was a session on

compumetrics at the 1972 Technical Symposium of
the Southern California Region of ACM, and there
were sessions on system performance measurement
and evaluation at the 1972 Spring Joint Computer Con
ference. 51 An ACM Special Interest Group on Pro
gramming Languages-SIGPLAN-Symposium on
Computer Program Test Methods followed during
June 1972. 52

The National Bureau of Standards and AC1VI are
jointly sponsoring a series of workshops and con
ferences on performance measurement. An informative
discussion of many practical aspects of compumetrics
is contained in Canning. 53 Finally, the 1972 Fall Joint
Computer Conference 54 in December 1972, has co
ordinated sessions on meas~rement of computer sys
tems-executive viewpoints, system performance, soft
ware validation and reliability, analysis considerations,
monitors and their application, and case studies.

Across the Atlantic, a Performance Measurement
Specialist Group was organized within the British
Computer Society in early 1971. A number of its work
ing groups are functioning on specific projects, and it
sponsored a conference in September 1972.

This summary of activity involving measurement
of computer systems clearly outlines the growth and
increasing importance of compumetrics. Proposal of
a structure for compumetrics is, therefore, quite ap
propriate. The presentation below is general and sug
gestive, rather than detailed and complete-as is
appropriate for an introduction.

STRUCTURE FOR MEASUREMENT

A structure-or framework-is proposed for measure
ment of computer systems, to serve as a background
for both understanding and developing the subject.
I t provides not only a common set of terms-which
may be familiar to some and new to others, but also a
guide to the current-as well as potential-extent and
content of compumetrics. Such a structure is critical
for subjects that have matured and crucial otherwise,
whether or not there is universal agreement on detailed
portions of it. The conceptual framework for Air Force
and NASA acquisition of computer systems30- 34 pro
vides a context in which not only the structure for
measurement, but also the structure for effectiveness
evaluation, should be considered.

Compumetrics . concerns measurement in-internal
to-or of-external to-computer systems. As for
biometrics, econometrics and psychometrics, this means
measurement of a general nature applied to computer
systems in a broad sense. A computer system is taken
to be a collection of properly related elements, including

Measurement of Computer Systems 671

a computer, which possesses a computing or data
handling objective. The structure for compumetrics is
described in terms of computer system evolution and
computer system operation. Computer system evolution
is divided into design, development and testing, and
computer system operation is divided into objective,
composition and management. A sequence of ques
tions-including the if, why, what, where, when, how
much and how of measurement-should be developed
and then answered for each element of the structure.

The structure is presented from the viewpoint of a
statistician who is knowledgeable about computers, in
order to augment Hamming's viewpoint as a computer
scientist who is knowledgeable about statistics. In
addition, this structure is considerably more compre
hensive and definitive than that which is implied by
Hamming's original discussion.40 An outline version
of it appeared in Locks.45

At present, measurement of computer systems might
be characterized as a growing collection of measure
ments on their way toward a science, and in need of
planning and analysis to help them get there. Bell,
Boehm and Watson 55 provide an adaptation of the
scientific method to performance measurement and
improvement of a computer system: from under
standing the system and analyzing its operation,
through formulating performance improvement hy
potheses and analyzing the probable cost-effectiveness

) of the corresponding modifications, to testing specific
hypotheses and implementing the appropriate com
binations of modifications-as well as testing the cost
effectiveness of these combinations. As a complement
to this approach, the author 56 presents a user's guide
to data modeling and analysis-including a perspective
for viewing and utilizing such a framework for the
collection and analysis of measurements. That paper56
discusses the sequence of steps which leads from a
problem through a solution to its assessment, some
aspects of solving problems which should be considered,
and an approach to the design and analysis of a com
plex system through utilization of both experimental
and computer simulation data ..

Measurement and system evolution

Within this and the following sections, appropriate
terms appear in capital letters for emphasis. Such a
procedure· produces not only clarity of exposition, but
also a lack of smoothness, in the resulting text. The
advantage of the former is sought, even at the dis
advantage of the latter. In addition, words are employed
in their usual nontechnical sense.

Computer systems evolve from DESIGN through

672 Fall Joint Computer Conference, 1972

DEVELOPMENT to TESTING. For illustrative
purposes, we present one partition-from among the
many which are possible-of this evolution into more
basic components. It is meaningful from both a mana
ger's and a user's point of view. For a given computer
system, the accomplishment of more than one com
ponent may be occurring simultaneously, and the
accomplishment of all components may not be feasible.

The DESIGN of a computer system involves the
system what and how. A REQUIREMENTS ANALY
SIS ascertains user needs and generates system ob
jectives, and a FUNCTIONAL ANALYSIS translates
system objectives into a desired system framework.
Then SPECIFICATION SYNTHESIS transforms
the objectives and desired framework into desired
performance and its description. Finally, STRUCTURE
develops system framework from the desired frame
work, and SIZING infers system size from its frame
work.

System· DEVELOPMENT is concerned with im
plementing the system what and how. It proceeds from
HARDWARE AND SOFTWARE SELECTION
which includes the decision to make or buy, through
HARDWARE AND SOFTWARE ACQUISITION
which involves either making or buying-and HARD
WARE AND SOFTWARE COMBINATION
which implements the framework in terms of acquired
hardware and software, to SOFTWARE PROGRAM
MING-which includes the programming of additional
software. How well the framework was implemented
is then determined by HARDWARE AND SOFT
WARE VERIFICATION. Development is completed
by SYSTEM DOCUMENTATION to describe the
system what and how, and by PROCEDURE DOCU
MENTATION to describe the how of system operation
and use.

TESTING of a computer system has the objective
of assessing how well the system performs. First,
system INTEGRATION-which could have been
included under development-assembles the hardware,
software and other elements into. a system. This is
followed by system VALIDATION, for ascertaining
how well the specifications were implemented and for
contributing to quality assurance. COST EVALUA
TION determines how much the system costs in terms
of evolution and operation, and EFFECTIVENESS
EVALUATION determines how well the system per
forms in terms of operational time, quality and impact
upon the user. The final step in testing is, of course,
OPERATION-performance for the user.

McLean57 proposes a characterization for the "all-too
true life cycle of a typical EDP system: unwarranted
enthusiasm, uncritical acceptance, growing concern,
unmitigated disaster, search for the guilty, punishment

of the innocent, and promotion of the uninvolved." An
excellent discussion of computer system development
and testing-whose application should alter this cycle
is provided by Sackman.34 In addition, measurement
was apparently employed in many places within the
design, development and testing sequence for the in
formation system of Winbrow. 58

Where is measurement currently utilized in the sys
tem evolution sequence? Measurement is inherently
involved in hardware specification synthesis, sizing
and cost evaluation. It is employed to a limited extent
during hardware requirements analysis and selection,
and it emerged in importance as a significant con
tributor to hardware validation and performance
monitoring-which is a portion of effectiveness evalua
tion. Weare only beginning to consider serious and
systematic measurement as it concerns software veri
fication, validation, and cost and effectiveness evalua
tion. In fact, we are beginning to use the same ter
minology for hardware and software that was used in
the early 1960's for defense and space systems-which
were predominately noncomputer hardware. "Re
quirements for AVAILABILITY of Computing System
Facilities"59 provides an excellent example, with its
use of reliability, maintainability, repairability and
recoverability.

Where should measurement be utilized in the evolu
tion sequence? It probably· has an appropriate use in
most, if not almost all, components of the sequence.
In particular, system verification, validation, and cost
and effectiveness evaluation-as well as reliability and
its fellow ilities59-have no real meaning without
measurement.

Measurement and system operation

A computer system operation has COMPOSITION
and an OBJECTIVE, as well as being subject to
MANAGEMENT. As a guide to discussion and
thought, a useful-but not unique-division of system
operation into more ba&ic elements is now described.
A given computer system, however, may not involve
all of these elements.

COMPOSITION of a computer system concerns
what constitutes the system. The main component,
by tradition, has been computer HARDW ARE-which
may involve input, memory, processing, output, com
munication or special purpose equipment. Since the
means for communicating with that equipment currently
costs from one to ten times as much as the hardware,
the main component really is SOFTW ARE-which
may involve input, storage and retrieval, operating,
application, simulation, output or communication
program packages. The system may also contain

FIRMW ARE, which is either soft hardware or hard
software-such as a microprogram, and PERSONNEL.
How to operate and use the system is covered by the
operating PROCEDURE. The system aspects include
all two way INTERFACES such as hardware-software,
all three way INTERFACES such as firmware
personnel-procedure, all four way INTERFACES such
as hardware-software-personnel-procedure, and the five
way INTERFACE of hardware-software-firmware
personnel-procedure.

What the computer system does primarily-al
though it may do many things concurrently or se
quentially-is the system OBJECTIVE. DATA MAN
AG EMENT emphasizes storage and retrieval of data
by the system. Operating upon data by the system is
the focus of DATA PROCESSING. COl\1l\1AND
AND CONTROL stresses input and output of data
by the system, and decisions aided by the system.

As observed by Boehm, an alternative view is that
all three types of systems aid the making of decisions:
data management systems provide the least aid, data
processing systems provide more aid, and command
and control systems provide the most aid. The dis
tinction among these also depends upon what the
environment is and who the user is-data manage
ment or command and control systems are frequently
called information systems. In addition, the same
system- or a portion of it-might frequently be utilized
for more than one objective.

Computer system MANAGEMENT involves sys
tem administration and supervision. PLANNING is
projecting the system's future. Getting operations
together and focused constitutes COORDINATION,
and keeping operations together and directed con
stitutes CONTROL. REVIEW provides an assessment.
of the past and present, while TRAINING provides
system operators. Finally, USER INTERACTION
concerns system calibration and acceptance by the user.

Measurement has traditionally been employed on
computer hardware and personnel, has begun to be
employed on software and firmware, and may someday
be employed on procedure and interfaces. It has been
applied in data management and data processing, but
should also be applied in command and control. As
for management in general, measurement is only be
ginning to be utilized in computer system planning,
coordination, control, review, training and user inter
action.

STRUCTURE FOR EFFECTIVENESS
EVALUATION

Consideration of the need for, activity involving,
and structure for measurement implies that an impor-

Measurement of Computer Systems 673

tant unsolved problem for the 1970's is the evaluation
of computer system effectiveness. That this is true for
library information systems is explicitly stated in a
recent report by the National Academy of Sciences
Computer Science and Engineering Board,60 and that
it is true for computer systems in general is implicitly
stated in arecent report by GUIDE Int~rnationa1.59
As Maclean observed,57 we are like Oscar Wilde's
cynic: "A man who knows the price of everything, and
the value of nothing."

Effectiveness evaluation determines how well the
system performs in terms of operational time, quality
and impact upon the user. It has both an internal or .
inwardly oriented aspect-which determines how well
the system responds to any need, and is more efficiency
than effectiveness-and an external or outwardly
oriented aspect-which determines how well the sys
tem responds to the actual need, and is truly effective
ness. The point of view that is taken as to what
effectiveness is and how it should be evaluated is also
extremely important. Viewpoints of the user and his
management should be considered, as well as view
points of the system and its management. In terms
of both aspects and viewpoints, effectiveness evaluation
is much broader than mere performance measurement.

Evaluating the impact of the system upon a user is
essentially the reverse of system design or selection,
which evaluates the impact of the user upon a potential
or real system. In order to accomplish this, it is neces
sary to evaluate how well the promises of system
design or selection are fulfilled by system operation.
An informative, as well as interesting, exercise would
be the real impact evaluation of applications such as
those surveyed in 1965 by Rhodes,61 Ramo,62, Gerard,63
lVialoney,64 l\1cBrier;65 11erkin and Long,66 Gates and
Pickering,67 Ward,68 Baran69 and Schlager.7o

Based upon Air Force and NASA experience,
Sackman34 provides a thorough treatment of computer
system development and testing. This treatment in
cludes:

• A survey of system engineering, human factors,
software and operations research points of view
on testing and evaluation-all of which are im
plicitly oriented inwardly toward the system,
rather than outwardly toward the user.

• A description of test levels, objectives, phasing
within development and operation, approach and
chronology.

• A discussion of the analogy between scientific
method and system development--during which,
a sequence of increasingly specific hypotheses is
posed and tested, as the implicit promises of

674 Fall Joint Computer Conference, 1972

XXXII.
USER
MANAGEMENT

XXIX. xxx.

XXXIII.
UNIT MANAGEMENT
AN~ USER

XXXI.

xxxv.
_ CENTER MANAGEMENT

AND UNIT

XXVIII.
USE R GENE RAL -

UNIT AND USER UNIT AND CENTER CENTE R AND UNIT
GENERAL GENERAL GENERAL

XXIV.
USER AND TASK

xxv.
UNIT, USER
'ANDTASK

- - ,--;;.-------, -
_ .,. -:....l USER DATA L __ _

XXVI.
UNIT, CENTER
AND TASK

r--------..,

XXVII.
CENTER, UNIT
AND TASK

----=1 XI·~:~~"OATA ~----I INPUT r
~--~ I ~--------~ ~ ____ -.~ L ________ ~ ~------~

II
I

I
I
I

:;:-.J

r------,------I
: XX~::d:PUT : XX:~!~~PUT

I :X:----
I UNIT INPUT
I QUALITY

: XI~,o::~ INPUT

L _____ '---___ -' L ______ L-__ --'

Figure I-Structure for evaluation of data management or command and control system effectiveness

design become explicit promises during develop
ment and explicit performance during operation.

• A summary of the philosophical roots of this
analogy and approach.

• A short bibliography.

It constitutes an excellent contribution to effectiveness
evaluation, as well as a firm foundation for the frame
work of Bell, Boehm and Watson, 55 but more is needed.
In addition, almost all library system effectiveness
evaluation has been centered around--'-if not actually
restricted to-variations of two simple ratios, called
relevance and recall. And Fingings 1 and 2 in the
National Academy of Sciences report60 state that much
more is needed.

The complexity and importance of effectiveness
evaluation combine to require a significantly broader
and deeper, as well as more meaningful, structure. Most
of the significance and ultimate payoff associated with
computer systems involve the external environment
and aspects of the system, from various points of view.
Despite that fact, the preponderance of effectiveness
evaluation has not focused upon such aspects from the
appropriate points of view.34.71-79

A structure for computer system effectiveness evalua
tion is proposed, as both a step toward fulfilling that
need and an elaboration of the structure for compu
metrics. Figure 1 contains a general version of the
structure for data management or command and

control systems, and Figure 2 contains a general version
of the structure for data processing systems. The
graphic presentations of the figures are complemented
by the corresponding' verbal descriptions-which em
ploy words in their usual nontechnical sense. Effective
ness evaluation of a computer system might require a
combination of the structures in Figures 1 and 2, since
the system might frequently be utilized for more than
one objective. In addition, the entire structure might
not be of interest for a given system.

An initial indication of activity involving computer
system effectiveness evaluation is then summarized.
Finally, selected papers that illustrate such activity
are briefly discussed. This summary and discussion
serve as a background against which to view the pro
posed structures.

Evaluation of data management or command and
control systems

In Figure 1, there are three main categories of
characteristics-FLOW, EFFECTIVENESS and
VIEWPOINTS-all of which reside within an ECO
NOMIC AND POLITICAL ENVIRONMENT.
FLOW characteristics (I-XI) involve the flow of data
and need for data, from a user and his task through the
system unit and center back to the user and his task.
Those characteristics (XII-XXIII) which describe
how well the flow of data satisfies the need for data-

both internal and external to the system-comprise
EFFECTIVENESS. VIEWPOINTS contain the
various points of view (XXIV-XXXV) regarding the
flow and its· effectiveness. All of these characteristics
are embedded within an ECONOl\1IC AND PO
LITICAL ENVIRONMENT, whose influence is
sometimes explicit and sometimes implicit yet always
present.

A USER (I) of the system and a TASK (II) which
he is performing jointly generate a need for data, called
USER DATA NEED (III). To satisfy this need, the
user contacts either the appropriate outlet of the
system-SYSTEM UNIT (IV)-or other sources for
data-OTHER USER SOURCES (V). The unit es
sentially becomes a user now and contacts either the
SYSTEM CENTER (VII) or OTHER UNIT
SOURCES (VIII), in order to satisfy its UNIT DATA
NEED (VI). DATA (IX) is then output by the system
or other sources to the user for performance of his task.
Finally, there may also be USER DATA INPUT (X)
such as data generated by the user in his task or by user
management regarding an impending change in its
basic need-by the user to the unit, and UNIT DATA
INPUT (XI)-such as data generated by the unit or
by unit management regarding an impending change
in its basic need-by the unit to the system.

Operational characteristics of the unit and center
in terms of time-how quickly or how often-are

XXX.
USER MANAGEMENT -

USER GENERAL

XXVII.
UNIT AND

XXVI.
USER GENERAL

~ z

l\1easurement of Computer Systems 675

grouped under UNIT OUTPUT TIME (XII) and
CENTER OUTPUT TIME (XIII), those in terms
of quality-how well or how completely-are grouped
under UNIT OUTPUT QUALITY (XIV) and CEN
TER OUTPUT QUALITY (XV), and those in terms
of impact-how responsively or how significantly
are grouped under UNIT OUTPUT IMPACT (XVI)
and CENTER OUTPUT IMPACT (XVII). Time
characteristics emphasize the internal aspects of the
system and impact characteristics emphasize the ex
ternal aspects of the system, while quality charac
teristics emphasize both the internal and external
aspects of the system. In addition, time is the easiest
to measure objectively as well as the least meaningful
quality is more difficult to measure objectively than
time and less difficult to measure objectively than
impact, as well as more meaningful than time and less
meaningful than impact ... impact is the most dif
ficult to measure objectively as well as the most mean
ingful. Effectiveness may be viewed as the average,
over all users and tasks, of the effectiveness for specific
user and task combinations.

There may also be USER INPUT TIME (XVIII)
and UNIT INPUT TIME (XIX)-to indicate how
quickly or how often the user inputs data to the unit
and the unit inputs data to the center, USER INPUT
QUALITY (XX) and UNIT INPUT QUALITY
(XXI)-to indicate how well or how completely these

XXXI. XXXII.
UNIT MANAGEMENT UNIT MANAGEMENT
AND USER AND CENTER

XXVIII.
UNIT AND
CENTER GENERAL

XXIX.
CENTER AND
UNIT GENERAL

XXXIII.
CENTER MANAGEMENT
AND UNIT

~ ~r-X-X-II.------+---------~'--X-XI-II.----~--X-XI-V.--~--+---------~ ·--xx-v-.----~--------~
> USER AND TASK UNIT, USER UNIT, CENTER CENTER. UNIT

AND TASK AND TASK AND TASK

r---=..-'- ---:.-- ----------- -------_=..,
It tl ~: ~:

VII.
PROCESSED
DATA

I XVI. I XVII.
I USER INPUT , UNIT INPUT

: TIME

f-X~'~. - - - -.-------~- - - - -- -'-----------ll- ~X-:- - - - - ,.---------, - - - -- -'--....;.;;.:;"-----...1

1 ~~~~~~~lIT : UNIT INPUT

• _____ -+, _______ .-=----i-! DUALITY ixx.-u:R--- I-;x~----- -------'------...1

1 INPUT : UNIT INPUT

L _ ~M!~:" _ L_~~~~ __ <---='-":':':"'--...1

, TIME

Figure 2-Structure for evaluation of data processing system effectiveness

676 Fall Joint Computer Conference, 1972

were accomplished, and USER INPUT IMPACT
(XXII) and UNIT INPUT IMPACT (XXIII)-to
indicate how responsively or how significantly these
were accomplished. In this case, the user is serving the
system and the above roles are reversed. Internal as
pects of the user are focused upon by time and ex
ternal aspects of the user are focused upon by impact,
while both internal and external aspects of the user are
focused upon by quality.

What we mean by effectiveness, as well as how we
evaluate it, will vary according to our point of view.
The task specific viewpoint of the user toward the unit
is USER AND TASK (XXIV), that of the unit toward
the user is UNIT, USER AND TASK (XXV), that
of the unit toward the center is UNIT, CENTER AND
TASK (XXVI), and that of the center toward the unit
is CENTER, UNIT AND TASK (XXVII). USER
GENERAL (XXVIII), UNIT AND USER GEN
ERAL (XXIX), UNIT AND CENTER GENERAL
(XXX), and CENTER AND UNIT GENERAL
(XXXI) represent general viewpoints of the user for
the unit, the unit for the user, the unit for the center,
and the center for the unit. Finally, the viewpoint of
user management toward the unit constitutes USER
MANAGEMENT (XXXII), that of unit management
toward the user constitutes UNIT MANAGEMENT
AND USER (XXXIII), that of unit management
toward the center constitutes UNIT MAN AG EMENT
AND CENTER (XXXIV), and that of center manage
ment toward the unit constitutes CENTER MAN
AGEMENT AND UNIT (XXXV). Internal aspects
of the system are stressed in center viewpoints and
external aspects of the system are stressed in user view
points, while both internal and external aspects of the
system are stressed in unit viewpoints. Task specific
viewpoints are the easiest to measure objectively,
general viewpoints are more difficult to measure ob
jectively than task specific viewpoints and less diffi
cult to measure objectively than management view
points, and management viewpoints are the most
difficult to measure objectively-the meaningfulness
of these depends, of course, upon point of view.

Evaluation of data processing systems

Figure 2 contains the characteristics of FLOW
(I-IV), EFFECTIVENESS (X-XXI) and VIEW
POINTS (XXII-XXXIII)-all being surrounded
by an ECONOMIC AND POLITICAL EN
VIRONMENT. Since it differs from Figure 1 only in
terms of the basic flow for data and need, a brief
description is now presented.

A USER (1) and his TASK (II) jointly generate

USER PROGRAMMING NEED (III) or USER
PROCESS IN G NEED (V). To satisfy this need, the
user contacts the SYSTE1VI PROGRAMMING UNIT
(IV) or SYSTEM PROCESSING CEN,.,ER (VI)
which is also contacted to satisfy USER AND UNIT
PROCESSING NEED (V). PROCESSED DATA
(VII) is then output to the user for performance of his
task. There may also be USER PROGRA1VIMING
INPUT (VIII) by the user to the unit, or USER AND
UNIT PROCESSING INPUT (IX) by the user and
unit to the center.

Operational characteristics of the unit and center are
grouped under UNIT OUTPUT TIME (X) and
CENTER OUTPUT TIlVIE (XI), UNIT OUTPUT
QUALITY (XII) and CENTER OUTPUT QUALITY
(XIII), and UNIT OUTPUT IMPACT (XIV) and
CENTER OUTPUT IMPACT (XV). There may also
be USER INPUT TIME (XVI) and UNIT INPUT
TIl\1E (XVII), USER INPUT QUALITY (XVIII)
and UNIT INPUT QUALITY (XIX), and USER
INPUT IMPACT (XX) and UNIT INPUT IM
PACT (XXI).

Task specific viewpoints are those of USER AND
TASK (XXII), UNIT, USER AND TASK (XXIII),
UNIT, CENTER AND TASK (XXIV), and
CENTER, UNIT AND TASK (XXV). USER GEN
ERAL (XXVI), UNIT AND USER GENERAL
(XXVII), UNIT AND CENTER GENERAL
(XXVIII), and CENTER AND UNIT GENERAL
(XXIX) represent general viewpoints. Finally, man
agement viewpoints are given by USER MANAGE
MENT (XXX), UNIT MANAGEMENT AND
USER (XXXI), UNIT MANAGEMENT AND
CENTER (XXXII), and CENTER MANAGE
MENT AND UNIT (XXXIII).

Some modification and considerable refinement may
be required to employ one of these structures on an
actual computer system. The structures do, however,
indicate important considerations for evaluating the
effectiveness of a computer system. In addition, they
are considerably more comprehensive than current
structures, and provide a guide toward their own
modification and refinement.

Activity involving evaluation

This introduction to compumetrics concludes with
an initial indication of activity involving computer
system effectiveness evaluation prior to 1970, and a
brief description of selected papers which illustrate the
activity. That indication and description provide a
context in which to consider the structures given above.

Utilizing the unpublished bibliographies of Bell, 1

Miller,2 and Robinson3 and the author, each processing
its own bias and deficiency, a preliminary characteriza
tion of effectiveness evaluation activity before 1970
was obtained. Those pioneering papers that appeared
prior to 1963 and treated the general topic were in
cluded, but those papers that emphasized mathe
matical modeling or computer simulation-the ma
jority of which were more concerned with mathematics
than with measurement-were not included.

There were 234 separate references remaining after
duplicate listings within these bibliographies were
eliminated. The number (and approximate percentage)
of documents by year were:

• 1945-1 (0%)
• 1948-1 (0%)
• 1950-1 (0%)
• 1953-1 (0%)
• 1960-7 (3%)
• 1961-6 (2%)
• 1962-9 (4%)
• 1963-7 (3%)
• 1964-14 (6%)
• 196.1:>-8 (3%)
• 1966-13 (6%)
• 1967-23 (10%)
• 1968-31 (14%)
• 1969-62 (27%)
• 1970-50 (22%)

These numbers and percentages are, of course, af
fected by all pioneering papers having been counted
at the lower end and by some recent papers having
possibly been missed at the upper end. Nevertheless,
they do exhibit a general trend in the variation of
activity over the period. A serious characterization of
such activity awaits the compilation and annotation
of a comprehensive bibliography on measurement of
computer systems-by categories in the structures for
measurement and effectiveness evaluation, as well as
by year.

An elementary structure for evaluation of command
and control system effectiveness-in its external form as
well as its internal form-is provided by Edwards.71
Both Rosin72 and Bryan73 consider time and quality
characteristics of data processing system performance
for a large variety of users, the former on a batch
processing system and the latter on a timesharing
system. Five experiments for comparing the per
formance of a timesharing system with that of a batch
processing system-Gold,74 Sackman, Erikson and
Grant,75 Schatzoff, Tsao and Wiig,76 and Smith77-

lVleasurement of Computer Systems 677

are summarized by Sackman :78

• All five employ computer time and some measure
of man time.

• All five employ some measure of program quality.
• Gold employs three additional measures of quality,

and Smith employs one additional measure of
quality.

• Gold and Schatzoff, Tsao and Wiig employ a
measure of cost.

• All five employ-in an implicit, rather than ex
plicit, manner-both system and user viewpoints.

Finally, Shemer and Heying79 include both internal
and external aspects of effectiveness in the design model
for a system, which is to perform timesharing as well
as batchprocessing-and then compare operational
system data with the design model.

ACKNOWLEDGMENTS

The critical review of this paper and constructive sug
gestions for its improvement by Thomas Bell, Barry
Boehm, Richard Hamming, Robert Patrick, Harold
Petersen and Louis Robinson are gratefullv acknowl
edged.

REFERENCES

1 T E BELL
Computer system performance bibliography
Unpublished

2 E F MILLER JR
Bibliography on techniques of computer performance analysis
Unpublished

3 L ROBINSON
Bibliography on data processing performance evaluation
Unpublished

4 E H HERBST N METROPOLIS N B WELLS
Analysis of problem codes on the MANIAC
Mathematical Tables and Other Aids to Computation
Vol 9 No 49 1945 pp 14-20

5 C E SHANNON
A mathematical theory of communication
Bell System Technical Journal Vol 27 1948 p 379

6 R WHAMMING
Error detecting and error correcting codes
Bell System Technical Journal Vol 29 1950 p 147

7 H R J GROSCH
High speed arithmetic: The digital computer as a research
tool
Journal of the Optical Society of America Vol 43 No 4
1953 pp 306-310

8 P R BAGLEY
Item 2 of two think pieces: Establishing a measure of

678 Fall Joint Computer Conference, 1972

capability of a data processing system
Communications of the ACM Vol 3 No 11960 pI

9 A J BLACK
SAVDAT: A routine to save input data in simulator tape
format
Report FN-GS-151 System Development Corporation
1960

10 E F CODD
Multiprogram scheduling: Parts I-IV
Communications of the ACM Vol 3 Nos 6 and 7 1960
pp 347-350 and 413-418

11 L FEIN
A figure of merit for evaluating a control computer system
Automatic Control 1960

12 I FLORES
Computer time for address calculation sorting
Journal of the Association for Computing Machinery
Vol 7 No 4 1960pp 389-409

13 M E MARON J L KUHNS
On relevance probabilistic indexing and information retrieval
Journal of the Association for Computing Machinery
Vol 7 No 3 1960 pp 389-409

14 H NAGLER
An estimation of the relative efficiency of two internal sorting
methods
Communications of the ACM Vol 3 No 111960 pp 618-620

15 R S BARTON
A new approach to the functional design of a digital
computer
Proceedings of 1961 Fall Joint Computer Conference
AFIPS Press 1961 pp 393-396

16 I FLORES
Analysis of internal computer sorting
Journal of the Association for Computing Machinery
Vol 8 No 11961 pp 41-80

17 G GORDON
A general purpose systems simulation program
Proceedings of 1961 Spring Joint Computer Conference
AFIPS Press 1961 pp 87-98

18 H M GURK J MINKER
The design and simulation of an information processing
system
Journal of the Association for Computing Machinery
Vol 8 No 2 1961 pp 260-271

19 W A HOSIER
Pitfalls and safeguards in real-time digital systems with
emphasis on programming
IRE Transactions on Engineering Management 1961

20 J JAFFE M I BERKOWITZ
The development and uses of a functional model in the
simulation of an information-processing system
Report SP-584 System Development Corporation 1961

21 C W ADAMS
Grosch's law repealed
Datamation Vol 8 No 7 1962 pp 38-39

22 F R BALDWIN W B GIBSON C B POLAND
A multiprocessing approach to a large computer system
IBM Systems Journal Vol 1 No 11962 pp 64-70

23 0 DOPPING
Test problems used for evaluation of computers
BIT Vol 2 No 4 1962pp 197-202

24 J A GOSDEN R C SISSON
Standardized comparisons of computer performance
Proceedings of 1962 IFIPS Congress 1962 pp 57-61

25 T N HIBBARD
Some combin.atorial properties of certain trees with
applications to searching and sorting
Journal of the Association for Computing Machinery Vol
9 No 1 1962 pp 13-28

26 R L PATRICK
Let's measure our own performance
Datamation Vol 8 No 6 1962

27 R L SAUDER
A general test data generator for COBOL
Proceedings of 1962 Spring Joint Computer Conference
AFIPS Press 1962 pp 371-324

28 R H SIMONSEN
Simulation of a computer timing device
Communications of the ACM Vol 5 No 7 1962 p 383

29 E C SMITH
A directly coupled multiprocessing system
IBM Systems Journal Vol 2 No 3 1962 pp 218-229

30 M V RATYNSKI
The Air Force computer program acquisition concept
Proceedings of 1967 Spring Joint Computer Conference
AFIPS Press 1967 pp 33-44

31 L V SEARLE G NEIL
Configuration management of computer programs by the
Air Force: Principles and documentation
Proceedings of 1967 Spring Joint Computer Conference
AFIPS Press 1967 pp 45-49

32 B H LIEBOWITZ
The technical specification-Key to management control of
computer programming
Proceedings of 1967 Spring Joint Computer Conference
AFIPS Press 1967 pp 51-59

33 M S PILIGIAN J C POKORNEY
Air Force concepts for the technical control and design
verification of computer programs
Proceedings of 1967 Spring Joint Computer Conference
AFIPS Press 1967 pp 61-66

34 H SACKMAN
Computers system science and evolving society
John Wiley & Sons Inc 1967

35 Proceedings of SHARE XXIII
Share Inc 1969

36 Proceedings of SHARE XXXV
Share Inc 1970

37 G HALL Editor
Computer measurement and evaluation: Selected papers
from the SHARE project
SHARE Inc 1972

38 S CROOKE J MINKER
KWIC index and bibliography on computer systems
simulation and evaluation
Computer Science Center University of Maryland 1969

39 H R MENCK Editor
Bibliography on measurement of computer systems
ACM Los Angeles Chapter Special Interest Committee
on Measurement of Computer Systems Unpublished

40 A F GOODMAN Editor
Computer science and statistics: Fourth annual symposium
on the interface-An interpretative summary
Western Periodicals Company 1971

41 A F GOODMAN
The interface of computer science and statistics
Naval Research Logistics Quarterly Vol 18 No 2 1971
pp 215-229

42 M E VAN V ALKENBURG et al Editors
Proceedings of fifth annual Princeton conference on
information sciences and systems
Princeton University 1971

43 U 0 GAGLIARDI Editor
Workshop on system performance evaluation
ACM Special Interest Group on Operating Systems 1971

44 Proceedings of 1971 Spring Joint Computer Conference
AFIPS Press 1971

45 M 0 LOCKS Editor
Proceedings of computer science and statistics: Fifth annual
symposium on the interface
Western Periodicals Company 1972

46 Proceedings of 1971 Fall Joint Computer Conference
AFIPS Press 1971

47 W F FREIBERGER Editor
Statistical computer performance evaluation
Academic Press 1972

48 J MADAMS J B JOHNSON R H STARKS
Editors
Proceedings of an ACM conference on proving assertions
about programs
ACM Special Interest Groups on Programming Languages
and on Automata and Computability Theory 1972

49 F GRUEN BERGER Editor
Effective versus efficient computing
Publisher to be selected

50 M E VAN V ALKENBURG et al Editors
Proceedings of sixth annual Princeton conference on
information sciences and systems
Princeton University 1972

51 Proceedings of 1972 Spring Joint Computer Conference
AFIPS Press 1972

52 W C HETZEL Editor
Program testing methods
Prentice-Hall Inc 1972

53 R G CANNING Editor
Savings from performance monitoring
EDP Analyzer Vol 10 No 9 1972

54 Proceedings of 1972 Fall Joint Computer Conference
AFIPS Press 1972

55 T E BELL B W BOEHM R A WATSON
Framework and initial phases for computer performance
improvement
Proceedings of 1972 Fall Joint Computer Conference AFIPS
Press 1972

56 A F GOODMAN
Data modeling and analysis for users-A guide to the
perplexed
Proceedings of 1972 Fall Joint Computer Conference
AFIPS Press 1972

57 E R MACLEAN
Assessing returns from the data processing investment
Effective versus Efficient Computing Publisher to be
selected (see 49)

58 J H WINBROW
A large-scale interactive administrative system
IBM Systems Journal Vol 10 No 4 1971 pp 260-282

59 Requirements for AVAILABILITY of computing
facilities
User Strategy Evaluation Committee GUIDE
International Corporation 1970

60 Libraries and information technology

l\1easurement of Computer Systems 679

Information Systems Panel Computer Science and
Engineering BoardNational Academy of Sciences 1972

61 I RHODES
The mighty man-computer team
Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 1-4

62 S RAMO
The computer and our changing society
Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 5-10

63 R W GERARD
Computers and education
Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 11-16

64 J V MALONEY JR
Computers: The physical sciences and medicine
Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 17-19

65 C R McBRIER
Impact of computers on retailing
Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 21-25

66 W I MERKIN R J LONG
The application of computers to domestic and international
trade
Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 27-31

67 C R GATES W H PICKERING
The role of computers in space exploration
Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 33-35

68 J A WARD
The impact of computers on the government
Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 37-44

69 P BARAN
Communication computers and people
Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 45-50

70 K J SCHLAGER
The impact of computers on urban transportation
Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 51-55

71 N P EDWARDS
On the evaluation of the cost-effectiveness of command and
control systems
Proceedings of 1964 Spring Joint Computer Conference
AFIPS Press 1964 pp 211-218

72 R F ROSIN
Determining a computing center environment
Communications of the ACM Vol 8 No 7 1965 pp 463-468

73 G E BRYAN
JOSS: 20,000 hours at a console-A statistical evaluation
Proceedings of 1967 Fall Joint Computer Conference
AFIPS Press 1967 pp 769-777

74 M GOLD
Time-sharing and batch-processing: An experimental
comparison of their values in a problem-solving situation
Communications of the ACM Vol 12 No 5 1969 pp
249-259

75 H SACKMAN W J ERIKSON E E GRANT
Exploratory experimental studies comparing online and
offline programming performance
Communications of the ACM Vol 11 No 11968 pp 3-11

680 Fall Joint Computer Conference, 1972

76 M SCHATZOFF R TSAO R WnG
An experimental comparison of time sharing and batch
processing
Communications of the ACM VollO No 5 1967 pp
261-265

71 L B SMITH
A comparison of batch processing and instant turnaround
Communications of the ACM VollO No 8 1967
pp 495-500

78 H SACKMAN
Time-sharing versus batch-processing: The experimental
evidence
Proceedings of 1968 Spring Joint Computer Conference
AFIPS Press 1968 pp l-lO

79 J E SHE MER D W HEYING
Performance modeling and empirical measurements in a
system designed for batch and time-sharing users
Proceedings of 1969 Fall Joint Computer Conference
AFIPS Press 1969 pp 17-26

A highly parallel computing system
for information retrieval*

by l3EHROOZ P ARHAMI

University of California
Los Angeles, California

INTRODUCTION

The tremendous expansion in the volume of recorded
knowledge and the desirability of more sophisticated
retrieval techniques have resulted in a need for auto
mated information retrieval systems. However, the high
cost, in programming and running time, implied by such
systems has prevented their widespread use. This high
cost stems from a mismatch between the problem to be
solved and the conventional architecture of digital
computers, optimized for performing serial operations on
fixed-size arrays of data.

It is evident that programming and processing costs
can be reduced substantially through the use of
special-purpose computers, with parallel-processing
capabilities, optimized for non-arithmetic computations.
This is true because the most common and time-con
suming operations encountered in information retrieval
applications (e.g., searching and sorting) can make
efficient use of parallelism.

In this paper, a special-purpose highly parallel
system is proposed for information retrieval applica
tions. The proposed system is called RAPID, Rotating
Associative Processor for Information Dissemination,
since it is similar in function to a conventional byte
serial associative processor and uses a rotating memory
device. RAPID consists of an array processor used in
conjunction with a head-per-track disk or drum memory
(or any other circulating memory). The array processor
consists of a large number of identical cells controlled by
a central unit and essentially acts as a filter between the
large circulating memory and a central computer. In
other words, the capabilities of the array processor are
used to search and mark the file. The relevant parts of
the file are then selectively processed by the central
computer.

* This research was supported by the U.S. Office of Naval
Research, Mathematical and Information Sciences Division,
Contract No. NOO014-69-A-0200-4027, NR 048-129.

681

PARALLELISM AND INFORMATION
RETRIEVAL

Information retrieval may be defined as selective
recall of stored knowledge. Here, we do not consider
informa tion retrieval systems in their full generality but
restrict ourselves to reference and document retrieval
systems. Reference (document) retrieval is defined as
the selection of a set of references (documents) from a
larger collection according to known criteria.

The processing functions required for information
retrieval are performed in three phases:

1. Translating the user query into a set of search
specifications described in machine language.

2. Searching a large data base and selecting records
that satisfy the search criteria.

3. Preparing the output; e.g., formatting the records,
extracting the required information, and so on.

Of these three phases, the second one is by far the most
difficult and time-consuming; the first one is straight
forward and the third one is done only for a small set of
records.

The search phase is time-consuming mainly because
of the large volumes of information involved since the
processing functions performed are very simple. This
suggests that the search time may be reduced by using
array processors. Array processing is particularly
attractive since the search operations can be performed
as sequences of very simple primitive operations. Hence,
the structure of each processing cell can be made very
simple which in turn makes large arrays of cells
economically feasible.

Associative memories and processors constitute a
special class of array processors, with a large number of
small processing elements, which can perform simple
pattern matching operations. Because of these desirable
characteristics, several proposals have been made for

682 Fall Joint Computer Conference, 1972

using associative devices in information retrieval
applications.

Before proceeding to review several attempts in this
direction, it is appropriate to summarize some properties
of an ideal information retrieval 'system to provide a
basis for evaluating different proposals.

PI. Storage medium: Large-capacity storage is used
which has modular growth and low cost per bit.

P2. Record format: Variable-length records are
allowed for flexibility and storage efficiency.

P3. Search speed: Fast access to a record is possible.
The whole data base can be searched in a short
time.

P4. Search types: Equal-to, greater-than, less-than,
and other common search modes are permitted.

P5. Logical search: Combination of search results is
possible; e.g., Boolean and threshold functions of
simple search results.

Some proposalsl-3 consider using conventional associ
ative memories with fixed word-lengths and, hence, do
not satisfy P2. While these proposals may be adequate
for small special-purpose systems, they provide no
acceptable solution for large information retrieval
systems. With the present technology, it is obviously not
practical to have a large enough associative memory
which can store all of the desired information1, 2 without
violating PI. Using small associative memories in
conjunction with secondary storage3 results in consider
able amounts of time spent for loading and unloading
the associative memory, violating P3.

Somewhat more flexible systems can be obtained by
using better data organizations. In the distributed-logic
memory,4,5 data is organized as a single string of symbols
divided into substrings of arbitrary lengths by de
limiters. Each symbol and its associated control bits are
stored in, and processed by, a cell which can communi
cate with its two neighbors and with a central control
unit. In the association-storing processor,6 the basic
unit of data is a triple consisting of an ordered pair of
items (each of which may be an elementary item or a
triple) and a link which specifies the association between
the items. Very complex data structures can be repre
sented conveniently with this method. Even though
these two systems provide flexible record formats, they
do not satisfy PI.

It is evident that with the present technology, an
information retrieval system which satisfies both PI and
P3 is impractical. Hence, trading speed for cost through
the use of circulating memory devices seems to provide
the only acceptable solution. Delay-line associative
devices that have been proposed7,8 are not suitable for
large information retrieval systems because of their fixed

word-lengths and small capacities. The use of head-per
track disk or drum memories as the storage medium
appears to be very promising because such devices
provide a balanced compromise between PI and P3. An
early proposal of this type is the associative file pro
cessor9 which is a highly specialized system. Siotnick10

points out, in more general terms, the usefulness of
logic-per-track devices. Parkerll specializes Slotnick's
ideas and proposes a logic-per-track system for informa
tion retrieval applications.

DESIGN PHILOSOPHY OF RAPID

The design of RAPID was motivated by the distrib
uted-logic memory of Lee4,5 and the logic-per-track
device of Slotnick.1o RAPID provides certain basic
pattern matching capabilities which can be combined to
obtain more complicated ones. Strings, which are stored
on a rotating memory, are read into the cell storage one
symbol at a time, processed, and stored back (Figure 1).
Processing strings one symbol at a time allows efficient
handling of variable-length records and reduces the
required hardware for the cells.

Figure 2 shows the organization of data on the
rotating memory. Each record is a string of symbols
from an alphabet X, which will not be specified here. It
is assumed that members of X are represented by binary
vectors of length N. Obviously, each symbol must have
some control storage associated with it to store the
search results temporarily. One control bit has proven to
be sufficient for most applications even though some

HEAD-PER-TRACK

DISK

o

CONTROL UNIT

TOANO FROM
OTHER SYSTEMS

Figure 1-0verall organization of RAPID

CELLS

Parallel Computing System for Information Retrieval 683

ROTATION

HEAD-PER-TRACK
DISK

CLOCK
TRACK

EMPTY ZONE
TO ALLOW SUFFICIENT
T11VI'E FOR PREPARING THE
NEXT INSTRUCTION
(OF THE ORDER OF 1j.ts)

STATE SYMBOL (N BITS)

1[11·····11
ONE CHARACTER

ONE
RECORD
(VARIABLE
LENGTH)

Figure 2-Storage of characters and records

operations may be performed faster with a larger control
field. Control information for a symbol will be called its
state, q E {O, I}. A symbol x and its state q constitute a
character, (q, x).

One of the members of X is a don't-care symbol, 0,
which satisfies any search criterion. As an example for
the utility of 0, consider an author whose middle name
is not known or who does not have one. Then, one can
use 0 as his middle initial in order to make the author
field uniform for all records. We will use the encoding
11 ... 1 for 0 in our implementation. In practice, it will
become necessary to have other special symbols to
delimit records, fields, and so on. The choice of such
symbols does not affect the design and is left to the
user. It should be emphasized, at this point, that
RAPID by itself is only capable of simple pattern
matching operations. Appropriate record formats are
needed in order to make it useful for a particular
information retrieval application. One such format will
be given in this paper for general-purpose information
retrieval applications.

The idea of associating a state with each symbol is
taken from Lee's distributed-logic memory.4,5 In fact,

RAPID is very similar to the distributed-logic memory
in principle but differs fronl it in the following:

1. Only one-way communication exists between
neighboring characters in RAPID. This is
necessitated because of the use of a cyclic
memory but results in little loss in power or
flexibility.

2. The use of a cheaper and slower memory makes
RAPID more economical but increases the
search cycle from microseconds to miliseconds.

3. Besides match for equality, other types of
comparisons such as less-than and greater-than
are mechanized in RAPID.

4. Basic arithmetic capability is provided in
RAPID. It allows for threshold combinations of
search functions as well as conventional Boolean
combinations.

With the above data organization, the problem of
searching for particular sets of records will reduce to
that of locating substrings which satisfy certain criteria.
Search for successive symbols of a string is performed
one symbol per disk or drum revolution. There are at
least two reasons for this design choice:

1. At any time, all the cells will be performing
identical functions (looking for the same symbol).
This reduces the hardware complexity of each
cell since the amount of local control is minimized
and fewer input and output leads are required.

2. The alternative approach of processing a few
symbols at a time fails in the case of overlapping
strings. Suppose one tries to process k symbols at
a time (k > 1) by providing local control for each
cell in the form of a counter. Then, if the i-th
symbol in the input string is matched, the cell
proceeds to match the (i + 1)-st symbol. Hence,
if one is looking for the pattern ABCA in the
string ... DCABCABCADA ... , only one of the
two patterns will be found. Also, the pattern
BCAD will not be found in the above example.

THE CONTROL UNIT

Figure 3 shows a block diagram of RAPID which is a
synchronous system operating on the disk clock tracks.
The phase signal generator sequences the operations by
generating eight phase signals. PHA, PHB, PHC, and
PHZ are generated once every disk revolution while
PHI, PH2, PH3, and PH4 are generated once every bit
time (Figure 4). During PHA, the cell control register
(CCR) , input symbol register (ISR) , and address

684 Fall Joint Computer Conference, 1972

HEAD-PER -TRACK
DISK

• OR
DRUM

I- _

II) :z: a: ...

PHASE
SIGNAL
GENERATOR
(PSG)

CONTROL UNIT

N+2
LINES
PER CELL

N+1
LINES
PER CELL

12 LINES

-I a:
Ow

.Je:~
-IZt:l
wOW uua:

a:
g

-I

~~
~~

~

~

~
!!O
«
it

CELLS

N LINES

I-
:J

I!:
:J
0

a:
!a

~
!!O ..
it

ONE LINE
PER CELL MULTIPLE

RESPONSE
RESOLVER
(MRR)

LAS PHC

ONE LINE
PER CELL

N+1
LINES

rn~a:
~§~
0-lt:l
oww «rna:

a:
~

SAZ
SELECTED
ADDRESS

.IS ZERO

Figure 3-Block diagram of RAPID

selection register (ASR) are cleared. During PHB and
PHC, these registers are loaded. Then the execution of
the instruction in CCR starts. During PH3, the output
character register is reset. It is loaded during PH4 and is
unloaded, through G4, after a certain delay.

Most parts of the control unit, namely the instruction
sequencing section and the auxiliary registers which are
used to load CCR, ISR, and ASR or unload OCR, are
not shown in Figure 3. It should be noted, however, that
these parts ·process instructions at the same time that
the cells are performing their functions such that the
next instruction and its associated data are ready before
the next PHB signal. The system can also be controlled
by a general-purpose computer which is interrupted
during PHB to load the auxiliary registers with the next
instruction and associated data.

The arrangement of records on disk is shown in
Figure 2. The N + 1 bits of a character are stored on
parallel tracks while the characters of a record are
stored serially. One or more clock tracks supply the
timing pulses for the system. The empty zone is
provided to allow sufficient time for loading the control
registers for the next search cycle.

Figure 5 shows the cell control register (CCR) which

holds the instruction to be executed for one disk
revolution. The function of various fields in this
register will now be described.

Readfield

This field consists of two bits, RST and RSY. RST
commands the cells to read the state bit into the
current state flip-flop, CSF. RSY commands the cells
to read the symbol bits into the current symbol
register, CSR.

Write field

This is similar to the read field and consists of WST
and WSY. WST commands that the condition bit, CON
(see description of condition field), replace the current
state. WSY is a command to replace the current symbol
by the contents of current symbol register, CSR,
if CON = 1.

Address selection field

This field contains two bits, LAS and RAS. If the
LAS bit of this field is set, the address selection register

PHA

PHB

PHC

ONE DISK OR
DRUM

REVOLUTION

ONE BIT
TIME

-----'nPH1 n ... Jl"-----
_-----In PH2 L ... J _____
_------'nPH3

L ... ~"'"'-
_-----'n PH4

fL ... ~
__ P----i

HZ fL
Figure 4-Timing signals

Parallel Computing System for Information Retrieval 685

(ASR) is loaded from the multiple response resolver
(MRR). MRR outputs the address of the first cell with
its ASF on. If the RAS bit is set, the accumulated state
flip-flop, ASF, in the cells will be reset. The function of
ASF will be described with the cell design. The address
selection field allows the sequential readout of the tracks
which contain information pertinent to a search request.

3: »
-I
(")
X
."

m
r
0

(")
0 z
0
~
(5
Z

:!!
m
r
0

.,,:tJ
-m m» 60

"':E
m:tJ
r-
o~

:!!~e;
mro
6 m

:tJ

~~
0(1)
Z

3:~ »»
-1-1
Qm

3:(1)
»-<
-13:
(")0:1
xO

r

(")
0 z
-I
:tJ
0
r
."
."
fI)
m
r
m
(")
-I
(5
Z

~

...

~

...

..

~

:tJ
(I) B.EAD§!ATE
-I

:tJ
(I)

-<
READ SYMBOL

:E
(I)
-I

~RITE STATE

:E
(I) ~RITE SYMBOL
-<

r
~

.!:.OAD~R

:tJ » .RESET ASF
(I)

3:
~

MATCH ~TATE TO 1

3:
(I)

MATCH~TATETO~ERO
N

G)
:tJ ru:!EATER !HAN
-I

r m LESSIHAN
-I

m
0 EQUALI.0
-I

r
0 LOGICAL .fUNCTION
."

(I)
(") .§.ELECT~F
(I)

(I)

» .§.ELECT ASF
(I)

(I)
(")

3:
§.ELECT CMF

(I)
"0
3:

§.ElECTfMF

Figure 5-The cell control register (CCR)

TABLE I-The Match Condition
for the State Part of a Character

Match field

MSl

o
o
1
1

MSZ

o
1
o
1

Match

never
if q = 0
if q = 1
always

This field consists of two subfields; the state match
subfield, and the symbol match subfield. These subfields
specify the conditions that the state and symbol of a
character must meet. If both conditions are satisfied for
a particular character, the current match flip-flop
(CMF) of the corresponding cell is set. The state match
subfield consists of MSI and MSZ. The conditions for
all combinations of these two bits are given in Table I.
The symbol match subfield consists of three bits; GRT,
LET, and EQT. All the symbols in the cells are simul
taneously compared to the l's complement of the
contents of ISR. Table II gives the conditions for all
combinations of the three signals. S is the symbol in a
cell and r is the l's complement of the contents of ISR.

Condition field

This field specifi~s how the condition bit, CON, is to
be computed from the contents of the following four
flip-flops in a cell: current state flip-flop, CSF; accumu
lated state flip-flop, ASF; current match flip-flop, CMF;
and previous match flip-flop, PMF. LOF specifies the
logical function to be performed (AND if LOF= 1, OR
if LOF=O). The other four bits in this field specify a
subset W of the set of four control flip-flops on which the
logical function is to be performed. For example, if
SCS=I, then CSF E W.

TABLE II-The Match Condition for the
Symbol Part of a Character

GRT LET EQT Match

0 0 0 never
0 0 1 if S = Y or S = a
0 1 0 if S < Y or S = a
0 1 1 if S < Y or S = a
1 0 0 if S ;: Y or S = a
1 0 1 if S > Y or S = a
1 1 0 if S ~ Y or S = a
1 1 1 always

686 Fall Joint Computer Conference, 1972

TO "TO
MULTIPLE PROCESSING
RESPONSE SECTION

CURRENT RESOLVER

STATE
FLIP-FLOP

FROM S

DISK S
CSF ASF

ADS

PH4 R 0 PHZ R 0

RAS ACCUMULATED
PHZ STATE

MS1
FLIP-FLOP Z

0
(,)

STATE
MATCH MSZ z
STM 0

i=
CURRENT PREVIOUS C z
MATCH MATCH 0

FLIP-FLOP
(,)

~
FLIP-FLOP II)

C
PH3 S S 0

I-
CMF PMF

R 0 R 0

FROM
PROCESSING
SECTION SYM

SIGNAL
TO
SYMBOL
TRACKS

Figure 6-Control section of a cell

As will be seen later, the cell design is such that by
appropriate combinations of bits in CCR, other func
tions besides simple comparison can be performed.

THE CELL DESIGN

Each cell consists of two sections; the control section,
and the processing section. Roughly speaking, the
control section processes the state part of a character
while the processing section operates on the symbol part.

The control section (Figure 6) contains four flip-flops:
current state flip-flop, CSF; accumulated state flip-flop,
ASF; current match flip-flop, CMF; and previous match
flip-flop, PMF. CSF contains the state of the character
read most recently from the disk. ASF contains the
logical OR of the states of characters read since it was
reset. This flip-flop serves two purposes: finding out
which tracks contain at least one character with a set
state (reset by ADS during PHZ) and propagating the
state information until a specified character is en
countered (reset by RAS during PHZ and by CMF
during PH4). CMF contains (after PH3) the result of
current match. It is set if both the state and symbol of
the current character meet the match specifications.

Finally, PMF contains the match result for the previous
character.

The condition signal, CON, is a logical function of the
contents of control flip-flops. The four signals SCS, SAS,
SCM, and SPM select a subset of these flip-flops and
the logical function signal, LOF, indicates whether the
contents of selected flip-flops should be ANDed
(LOF= 1) or ORed (LOF=O) together to form CON.
The value of CON will replace the state of current
character if the write state signal, WST, is activated.

The address selection signal, ADS, is activated by the
address selection decoder. This signal allows conven
tional read and write operations to be performed on
selected tracks of the disk. It is also possible, through
the multiple response resolver, to read out sequentially
the contents of tracks whose corresponding ASF's are
set.

The processing section, shown in Figure 7, contains an
N -bit adder with inputs from ISR and the current
symbol register, CSR. During PHI, a symbol is read
into CSR. During PH2, contents of CSR are added to
contents of ISR with the result stored back in CSR.
Overflow indication is stored in the overflow flip-flop,
OFF. Before the addition takes place, the don't-care

Parallel Computing System for Information Retrieval 687

flip-flop, DCF, is set if CSR contains the special don't
care symbol o. From the results of addition, it is decided
whether the symbol satisfies the search specification
(SYM = 1 if it does, SYM = 0 if it does not).

The adder in each cell allows us to add the contents of
ISR to the current symbol or to compare the symbol to
the l's complement of the contents of ISR. If we denote
the current symbol by S, the contents of ISR by Y, and
its l's complement by Y, then:

S= Yiff S+Y +1=2N

S> Y iff S + Y + 1> 2N

S<Yiff S+Y+1<2N

N is the length of the binary vector representation of
Sand Y. Hence if we denote the result of addition in
CSR by Z and the overflow by OFF, we have:

FROM {
INPUT
BUS
(lSR)

FROM

DISK •
•
•
•

S=YiffZ=O

S> Y iff Z~O and OFF = 1

S < Y iff OFF = 0

ADDER

PH2
S

PH2
R 0

PH2
S

PH2 R 0

• •
• •

PH2

.•.

Note that the carry signal into the adder is activated
if anyone of the signals GRT, LET, or EQT is active.
The above equations are used in the design of the
circuit which computes the symbol match result, SYM
(upper right corner of Figure 7). The result of symbol
match is ANDed with the result of state match (STM)
during PH3 to set the current match flip-flop.

Finally, during PH4, the contents of CSR can be
written onto the disk or put on the output bus. Since the
address selection line, ADS, is active for at most one
cell, no conflict on the output bus will arise.

EXAMPLES OF APPLICATIONS

We first give a set of 12 instructions for RAPID.
These instructions perform tasks that have been found
to be useful in information retrieval applications. Each
instruction, when executed by RAPID, will load CCR
with a sequence of patterns. These sequences of patterns
are also given. We restrict our attention to search

OVERFLOW
FLIP-FLOP

S

OFF

R 0 t---+------~

SYMBOL
MATCH

~

o
a:
I-z
zo
0-
ul-
o~
1-(1)

~
(I)

i5
0
l-

PH2
Or----------------------------------~

CURRENT \
SYMBOL CSR
REGISTER

Figure 7-Processing section of a cell

PH4

FROM
CONTROL
SECTION

688 Fall Joint Computer Conference, 1972

instructions only. Input and output instructions must
also be provided to complete the set.

1. search and set 8: Find all occurrences of the
symbol 8 and set their states.

2. search for 8182 ••• Sn: Find all the occurrences of
the string 8182 ••• 8n and set the state of the
symbols which immediately follow Sn.

3. search for m.arked 8182 •• .8n : Same as the
previous instruction except that for a string to
qualify, the state of its first symbol must be set.

4. search for m.arked 1/1 8: Search for symbols
whose states are set and have the relation 1/1 with
s. Then, set the state of the following symbol.
Possible relations are <, ::S;, >, ~, and ¢.

5. propagate to 8: If the state of a symbol is set,
reset it and set the state of the first S following it.

6. propagatei: If the state of a symbol is set,

reset it and set the state of the i-th symbol to its
right.

7. expand to 8: If the state of a symbol is set, set
the state of all symbols following it up to and
including the first occurrence of 8.

8. expand i: If the state of a symbol is set, set the
state of the first i symbols following it.

9. contract i: If the state of a symbol is reset,
reset the state of the first i symbols following it.

10. expand i or to 8: If the state of a symbol is set,
perform 7 if an 8 appears within the next i
symbols; otherwise, perform 8.

11. add 8: Add the numerical value of 8 to the
numerical value of any symbol whose state is set.

12. replace by 8: If the state of a symbol is set,
replace the symbol by 8.

The microprograms for these instructions are given

TABLE III-Microprograms for RAPID Instructions

Contents of CCR
c Match Field Condition Field 0 litO::: Read Write Address :; ~V)

c- Field Field Selection Symbol ,-ogic FF Selection - CIJ State So. ~ ~ It-
CIJ Instruction CIJ co

.t:l ~ 0 If R W W l If rtf iR· G L E l S S S S § ~ u
S S S S A A S S R E Q 0 C A C P z:
T y T Y S S 1 Z T T T F S S M M

1 search and sel. s 1 $ 1 1 0 0 1 1 0 0 1 0 0 1 0

1 $1 1 1 0 0 1 1 0 0 1 0 0 0 1
2 ~earch for sls2, •• sn

$j 1 1 1 0 0 1 0 0 0 1 0 0 0 1 j=2 to n

3 search for markeg 5152 ••• sn j=l to n $.i 1 1 1 0 0 1 0 0 0 1 0 0 0 1

< 1 $ 1 1 1 0 0 1 0 0 1 0 0 0 0 1

:S 1 5 1 1 1 0 0 1 0 0 1 1 0 0 0 1

4 search for marked 1s > 1 $ 1 1 1 0 0 1 0 1 0 0 0 0 0 1

~ 1 $ 1 1 1 0 0 1 0 1 0 1 0 0 0 1

• 1 S 1 1 1 0 0 1 0 1 1 0 0 0 0 1

5 pr~e.a2~te t,2 5 1 $ 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0

6 eroea2ate i i 1 1 0 0 1 0 1 1 1 0 0 0 1

7 exeand to s 1 S 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0

8 xl?~nd i i 1 1 0 0 1 0 1 1 1 0 1 0 0 1

9 contract i i 1 1 0 0 1 0 1 1 1 1 1 0 0 1

$ 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0
10 exeand i gr..j.Q s i

0 1 0 0 1 1 1 0 0 1 0 1 1 1

11 ~ s 1 s 1 1 1 0 1 0 0 0

12 reg1l~e ~l. s 1 s 1 0 1 0 1 0 0 0

Parallel Computing System for Information Retrieval 689

RECORD
LENGTH
FIELD

ONE INFORMATlO_N FIELD

SEPARATOR
SYMBOL

FIELD
INFORMATION

FIELD
END
SYMBOL

Figure 8-Data storage format

in Table III. A blank entry in this table constitutes a
don't-care condition. The entries in the repetition
column specify the number of times the given patterns
should be repeated. As can be seen from Table III, this
set of instructions does not exploit all the capabilities of
RAPID since some of the bits in the CCR assume only
one value (0 or 1) for all the instructions.

To illustrate the applications of RAPID, we first
choose a format for the records (Figure 8). The record
length field must have a fixed length in order to allow
symbol by symbol comparison of the record length to a
given number. The information fields can be of arbitrary
lengths. The flag field contains three characters; two for
holding the results of searches, and one which contains
a record type flag. The Greek letters used on Figure 8
are reserved symbols and should not be used except for
the purposes given in Table IV.

As mentioned earlier, a special symbol, ~, is used as a
don't-care symbol. It is also helpful to have a reserved
symbol, T, which can be used as temporary substitute
for other symbols during a search operation. Let us now
consider two simple examples to show the utility of the
given instruction set.

Example 1. Assuming that the record length is
specified by one symbol, the following program marks
all the empty records whose lengths are not less than 8.

This is useful when entering a new record of length 8 to
find which tracks contain empty records that are large
enough.

search for A
search for marked ~ 8

propagate to p

propagate 3
search for marked E

If the record length is specified by two characters, we
note that t1t2 ~ 8182 iff t1 > 81 or t1 = 81 and t2 ~ 82. Hence,
we write the following program:

search for A
search for marked > 81

propagate 1
replace by T

search for A
search for marked 81

search for marked ~ 82

replace by T

search and set T

replace by cP
propagate to p

propagate 3
search for marked E

Example 2. The following program marks all non
empty records which contain in their title field,
designated by TI, a word having "magnet" as its first
six characters and having 3 to 10 non-blank characters
after that. {3 designates the "blank" character.

search for cPTIO'
expand to cJ>

search for marked magnet
expand 10 or to {3
contract 3
propagate to p

propagate 3
search for marked v

It is important to note that the record format given
here serves only as illustration. Because of its generality
and flexibility, this format is not very efficient in terms
of storage overhead and processing speed. For any given
application, one can probably design a format which is
more efficient for the types of queries involved.

CONCLUSION

In this paper, we have described a special-purpose
highly parallel system for information retrieval applica-

TABLE IV-List of Reserved Symbols

x Indicates start of length field.
p Indicates end of a record.
0" Separates name and information subfields in a field.
cP Indicates end of a field.

Designates the end of an empty record .
." Designates the end of a non-empty record.
~ Is the don't-care symbol.
T Is used as temporary substitute for other symbols.

690 Fall Joint Computer Conference, 1972

tions. This system must be evaluated with respect to the
properties of an ideal information retrieval system
summarized earlier. It is apparent that RAPID satisfies
P2, P4 and P5. The extent to which PI and P3 are
satisfied by RAPID is difficult to estimate at the
present.

With respect to PI, the storage medium used has a low
cost per bit. However, the cost for cells must also be
considered. Because of the large number of identical
cells required, economical implementation with LSI is
possible. Figures 6 and 7 show that each cell has one
N-bit adder, N +6 flip-flops, 6N +39 gates, and 4N +23
input and output pins. For a symbol length of N = 8
bits, each cell will require nomore than 250 gates and 60
input and output pins. The number of input and output
pins can be reduced considerably at the expense of more
sophisticated gating circuits (i.e., sharing input and
output connections).

With respect to P3, the search speed depends on the
number of symbols matched. If we assume that on the
average 50 symbols are matched, the matching phase
will take about 70 disk revolutions (to allow for
overhead such as propagation of state information and
performance of logical operations on the search results).
Hence, the search time for marking the tracks which
contain relevant information is of the order of a few
seconds.

Some important considerations such as input and
output of data and fault-tolerance in RAPID have not
been explored in detail and constitute possible areas for
future research. The interested reader may consult
Reference 12 for some thoughts on these topics.

ACKNOWLEDGMENTS

The author gratefully acknowledges the guidance and
encouragement given by Dr. W. W. Chu in the course
of this study. Thanks are also due to Messrs. P. Chang,
D. Patterson, and R. Weeks for stimulating discus
SIOns.

REFERENCES

1 J GOLDBERG M W GREEN
Large files for information retrieval based on simultaneous
interrogation of all items
Large-capacity Memory Techniques for Computing Systems
New York Macmillan pp 63-67 1962

2 S S YAU C C YANG
A cryogenic associative memory system for information
retrieval
Proceedings of the National Electronics Conference pp
764-769 October 1966

3 J A DUGAN R S GREEN J MINKER
WE SHINDLE
A study of the utility of associative memory processors
Proceedings of the ACM National Conference pp 347-360
August 1966

4 C Y LEE
Intercommunicating cells, basis for a distributed-logic computer
Proceedings of the FJCC pp 130-136 1962

5 C Y LEE M C PAULL
A content-addressable distributed-logic memory with
applications to information retrieval
Proceedings of the IEEE Vol 51 pp 924-932 June 1963

6 D A SAVITT H H LOVE R E TROOP
ASP; a new concept in language and machine organization
Proceedings of the SJCC pp 87-102 1967

7 W A CROFUT M R SOTTILE
Design techniques of a delay line content-addressed memory
IEEE Transactions on Electronic Computers Vol EC-15
pp 529-534 August 1966

8 P T RUX
A glass delay line content-addressable memory system
IEEE Transactions on Computers Vol C-18 pp 512-520
June 1969

9 R H FULLER R M BIRD R M WORTHY
Study of associative processing techniques
Defense Documentation Center AD-621516 August 1965

10 D L SLOTNICK
Logic per track devices
Advances in Computers Vol 10 pp 291-296 New York
Academic Press 1970

11 J L PARKER
A logic-per-track retrieval system

'Proceedings of the IFIPS Conference pp TA-4-146 to
TA-4-150 1971

12 B PARHAMI
RAPID; a rotating associative processor for information
dissemination
Technical Report UCLA-ENG-7213 University of Cali
fornia at Los Angeles February 1972

The architecture of a context addressed
segment-sequential storage

by LEONARD D. HEALY

U.S. Naval Training Equipment Center
Orlando, Florida

and

GERALD J. LIPOVSKI and KEITH L. DOTY

University of Florida
Gainesville, Florida

INTRQDUCTION

This paper presents a new approach to the problem of
searching large data bases. It describes an architecture
in which a cellular structure is adapted to the use of
sequential-access bulk storage. This organization com
bines most of ,the advantages of a distributed processor
with that of inexpensive bulk storage.

Large data bases are required in information re
trieval, artificial intelligence, management information
systems, military and corporate logistics, medical diag
nosis, government offices and software systems for
monitoring and analyzing weather, ecological and social
problems. In fact, most nonnumerical processing re
quires the manipulation of sizable data bases. An ex
amination of memory costs indicates that at present the
best way of storing such data bases, and the one most
widely used in new computer systems, is disc storage.
However, the disc is not used anywhere near its full
potential.

Discs are presently used as random access storages.
Each word has an address which is used to select the
word. However, the association of each word with a
fixed location, required in a random access storage, is a
disadvantage. In a fixed-head disc, each word is read by
means of a read head and can be over-written by a
write head. N ow,if we discard the capability to ran
domly address, associative addressing can be used as
words are read, and automatic garbage collection can be
performed as words are rewritten.

Perhaps the most important feature of this archi-

691

tecture is its associative (or context) addressing capa
bility. Search instructions are used to mark words in
storage that match the specified criteria. Context ad
dressing is achieved by making the search criteria de
pend upon both the content of the word being searched
and the result of previous searches. For example, con
sider the search of a telephone directory in which each
entry consists of three separate, contiguously placed
words: subscriber name, subscriber address, and tele
phone number. The search for all subscribers named
John J. Smith is a content search-a search based upon
the content of a single word. The search for all sub
scribers named Smith who live on Elm Street is a con
text search-the result of the search for one word af
fects the search for another.

Associative addressing, or more correctly, content
addressing, has been attempted on discsl in which each
word in the memory is a completely separate entity in
such an addressing scheme. This paper shows how con
text addressing can be done. Words nearby a word in the
storage can be searched in context, such that a successful
search for one word can be made dependent on a history
of successful searches on the nearby words. Strings, sets,
and trees can be stored and searched in context using
such a context-addressed storage.2 More complex struc
tures such as relational graphs can also be efficiently
searched.

The context-addressed disc has the following ad
vantage over a random-accessed disc in most non
numeric data processes. Large data bases can be
searched, for instance, for a given string of characters.
Once a string is found, data stored nearby the string on

692 Fall Joint Computer Conference, 1972

the disc track can be returned to the central processor.
Only relevant data need be returned, because the ir
relevant data can be screened out by context-addressed
searching on the disc itself to select the relevant data.
In contrast, a conventional disc will return consider
able irrelevant data to the central processor to be
searched. Thus, the I/O channel requirements and pri
mary storage requirements of the computer are reduced
because less data is transferred. In fact, there is a maxi
mum number of random-accessed discs that can be
serviced by a central processor because it has to search
through all the irrelevant data returned by all the discs,
whereas an unlimited number of context-addressed
discs can be searched in parallel. Moreover, the instruc
tions used to search the disc storage can be stored in the
disc storage itself. Thus, the central processor can trans
fer a search program to the disc system, then run inde
pendently until the disc has found the data. The com
puter would be interrupted when the data was found.
This will reduce the interrupt load on the computer.

In this paper we therefore study the implementation
of a context-addressed storage using a large number of

/

RECOROS /{

§}
•
• •
•
•

..

SEGMENTS

•
•
•
•

SOFTWARE MAKEUP HARDWARE PLACEMENT

Figure I-Storage of records as segments

discs. The segment-sequential storage to be studied will
have the following characteristics (see Figure 1). The
entire storage will store a I-dimensional array of words,
called the file. From the software viewpoint, collections
of words related in a data structure format are stored
in a contiguous section of the file, called a record.
Records can be of mixed size. From the hardware view
point, the file will be broken into equal-length segments
and stored on fixed-head discs, one segment to a disc.
In the time taken to rotate one disc completely, all
discs can search simultaneously for a given word in the
context of a data structure as directed by the user's
query, marking all words satisfying the search. Words
selected by such context searches can be over-written
with new data in such a data structure, erased, read
out to the I/O channel, or selected as instructions to be
executed during the next disc rotation. Data in groups
of words can be copied and moved from one part of the
file to another part as the data structure is edited. In
the meantime, a hardware garbage collection algorithm
will collect erased words to the bottom of the file so that
large aggregates of words are available to receive large
records.

MOTIVATION

The problem that leads to the system architecture
proposed here is the efficient use of storage devices
equivalent to large disc storages. Access to files stored
on such devices is currently based upon a sequential
search of the file area by reading blocks of data into the
main storage of the central processor and searching it
there or by use of a file index which somehow relates
the file content to its physical location. Many hierarchies
of searches have been devised-all efforts to solve
the basic problem that the storage device is addressed
by location but the data is addressed by its content.

The advantage of information retrieval based upon
content is well documented.3,4,5 However, the trend has
been toward application of associative-search hardware
within the central computer. Content-search storages
have been implemented as subsystems within a com
puter system ;6,7 but even in these cases, the use of the
search subsystem has been closely associated with opera
tions in the central processor. The devices fit into the
storage hierarchy between the central processor and the
main core storage. A typical application of a content
addressed storage is as a cross-reference to information
in main storage-the cache storage. An associative
storage subsystem specifically designed for the process
ing useful in software applications has been proposed,8

but even that is limited in size by the cost of the special
storage hardware.

Systems of the type mentioned are small, high-speed

Architecture of Context Addressed Segment-Sequential Storage 693

units. They are limited to content search and are
restricted in size relative to bulk storage devices. Their
application to searching of large data bases is limited
to general improvement of central processor efficiency
or to searching the index for.a large data base. What is
needed for true context search of a large data base is an
economic subsystem which can be connected to a com
puter and can perform context search and retrieval
operations on a large data base stored within that sub
system.

The approach described in this paper provides just
such a subsystem. It is a semi-autonomous external
device which has its own storage and control logic.
The design concept is specifically oriented toward use
of a large bulk storage medium instead of high-speed
core storage. In addition, the processing capability of
the subsystem has been expanded to include not only
list processing, but also special searches such as match
ing data strings against templates and operations on bit
strings to simulate networks of linear threshold ele
ments useful in pattern recognition.

The basic building block of the proposed architecture
is a segmented sequential storage. The sequential stor
age was chosen because it provides an economically
feasible way to store a large data base. In order to
perform search operations on this data base, the storage
must be divided into segments which can be searched in
parallel. Each segment of the sequential storage must
have its own processing capability for conducting such a
search. This leads to a cellular organization in which
each cell consists of a sequential storage segment.

The segment-sequential storage has the following
property. Suppose n items are compared with each other
exhaustively. This requires n storage words. Thus, the
total size of the storage obviously grows linearly with n.
However, as the size grows, more discs are added on, but
the time for a search depends only on the size of the
largest disc and not on the number of discs. Thus, the
time to search for each item in a query is still the same.
The total time for the search grows linearly with the
number of words to be compared. As a first approxima
tion to the cost of programming, the product of storage
size and search time grows as n2

• This compares with n3

for a conventional computer. Thus, this storage is very
useful for those operations in which all the elements in
one set are exhaustively compared with each other or
with members of another set, especially when the set is
very large. Similarly, the cost of a comparison of one
element with a set of n elements grows as n2 in a con
ventional processor, and as n in this architecture. The
rate of growth of the cost of programming for this
architecture is the same as for cellular associative
memories,9 primarily because it too is a parallel cellular
system.

Some algorithms demand exhaustive comparisons.
Some of these are not used because of their extreme cost.
Other algorithms abandon exhaustive comparison to be
usable in the Von Neumann computer at some increase
in programming complexity, loss of relevance or ac
curacy, or at the expense of structuring the data base
so that other types of searches cannot be efficiently
conducted. In view of the lower cost of an exhaustive
search, this storage might· be useful for a number of
algorithms which are now used for information manage
ment in the Von Neumann computer and many others
which are not practical 011 that type of machine.

Discs appear to be slow, but their effective rate of
operation can be made very fast when they are used in
parallel. A typical disc rotates at sixty revolutions per
second. The segment-sequential storage will be able to
execute sixty instructions per second. (Faster rates
may eventually be possible with special discs, or on
processors built from magnetic bubble memories, semi
conductor shift registers, or similar sequential mem
ories.) However, if one hundred fixed-head discs storing
32k words per disc are simultaneously searched, nearly
two hundred million comparisons per second are per
formed. This is approximately the rate of the fastest
processor built. This large system of 100 discs would
cost about $5000 per disc for a total cost of $500,000.
This cost is small compared to that of a new large
computer. Thus, this architecture appears to be cost
effective.

This architecture is based on storage and retrieval
from a segmented sequential table data structure utiliz
ing associative addressing. This results in the following
characteristics.

(1) The search time is independent of the file size.
The data content of each cell is searched in
parallel; the search time depends only upon the
cycle time of the individual storage segment and
the number of instructions in the query.

(2) The search technique is based largely upon con
text. Notables or cross references are required
to locate data. However, there are cases where
cross references can be used to advantage.

(3) New data may be inserted at any place in the
file. The moving of the data that follows the
place of insertion to make room for the new in
formation is performed automatically by the
cells.

(4) Whenever information is deleted from the file,
later file entries will be moved to close the gap.
Thus, the locations in the bulk storage will al
ways be "packed" to put available storage at
the end of the file area.

(5) The system is a programmable processor. Since

694 Fall Joint Computer Conference, 1972

each instruction takes 1/60 second to be exe
cuted, as much processing should be done as
possible for each instruction. Further, because
the cell is large, the cost of the processing hard
ware will be amortized over many words in that
cell. Thus, a large variety of rather sophisticated
instructions will be used to search and edit the
data. Programming with these instructions will
be simpler than programming a conventional
computer in assembler language.

Lastly, since this architecture is basically cellular,
where one disc and asso,ciated control hardware is a
(large) cell, the following advantages can be obtained.

(1) The system is iterative. The design of one cell is
repeated. The cost of design is therefore amor
tized over many cells.

(2) The system is upward expandable. An initial
system can be built with a small number of cells.
As storage demands increase, more cells can be
added. The old system does not have to be dis.:.
carded.

(3) The system is fail soft. If a cell is found to be
faulty, it can be taken out of the system, which
can still operate with reduced capability.

(4) The system is restructurable. If several small
data bases are used, the larger system can be
electrically partitioned so that each block of
cells stores and searches one data base inde
pendently of the other blocks. Further, several
systems attached to different computers, say in a
computer network, can be tied together to make
one larger system. Since the basic instruction
rate· is only sixty instructions per second, the
time delays of data transmission through the
network are generally insignificant. Thus, the
larger system can operate as fast as any of its
cells for most operations.

Based on these general observations, the segment
sequential storage has very promising capabilities. In
the next sections, we will describe the machine organiza
tion and show some types of problems that are easily
handled by this system.

SYSTEM ORGANIZATION

The system block diagram for the segment-sequential
storage is shown in Figure 2. The system consists of a
controller plus a number of identical cells. The controller
provides the interface with an I/O channel of the central
computer necessary to perform: (1) input and output

\

~

r

CELL

I

CENTRAL PROCESSOR
INPUT/OUTPUT CHANNEL

l CONTROLLER J
~

r

BROADCAST/COLLECTOR BUS

r

CELL 14-- ••••• ---. CELL

2 N-I

Figure 2-System block diagram.

CENTRAL PROCESSOR
INPUT/OUTPUT CHANNEL

CONTROL

T- REGISTER

K- REGISTER

j

CELL

N

OPERANDS MICROPROGRAMS WORD LENGTH
t t t i ~ •

i~ _______ 8R_O_A_D_C_A_S_T_/_C_O_L_L_EC_T_O_R __ B_U_S __________ --Jf

Figure 3-Controller block diagram

Architecture of Context Addressed Segment-Sequential Storage 695

operations between the central computer's core storage
and the storage of the individual cells, and (2) search
operations commanded by the central computer. Each
individual cell communicates with the controller via the
broadcast/ collector bus and with its left and right
adj acent neighbor by a direct connection. All cells are
identical in structure.

A more detailed diagram of the controller is shown in
Figure 3. The controller appears similar to a conven
tional disc controller to the central computer. It per
forms the functions necessary to execute orders trans
mitted from the central computer via its I/O channel.
The segment-sequential storage is thus able to perform
its specialized search operations under the command of
a program in the I/O channel. Intervention of the
central computer is required only for initiation of a
search and, perhaps, for servicing an interrupt when the
search is complete.

In its role in providing the interface between the
I/O channel and the cells, the controller is quite dif
ferent from a conventional disc controller. Instead of
registers for track and head selection, this controller
provides the registers required to hold the information
needed by the cells in performing their specialized search
operations. These registers are:

(1) Instruction Register-I: This register holds the
instruction which tells what function the cells
should perform during the next cycle. The in
struction is decoded by a read-only memory that
breaks it down into microinstructions.

(2) Comparand Register-C: This register holds the
bit configuration representing the character being
searched for. It has an extension field Q which is
used when writing data into the cell storage.

(3) Mask Register-K: This register holds a mask
which specifies which bits of the C Register are
to be considered in the search.

(4) Threshold Register-T: This register holds a
threshold value which allows use of search cri
teria other than exact match or arithmetic in
equality.

(5) Bit-length Register-B: This register is used to
hold the number of bits in the data word. This
allows the word size of the storage segments to
be selected under control of the computer.

A block diagram of the cell is shown in Figure 4.
Each cell executes the commands broadcast by the
controller and indicates the results by transmission of
information to the broadcast/collector bus and also
through separate signal lines to its adjacent neighbors.
The C, K, T, and B Registers of the controller are
duplicated in each cell. These registers are used by the

BROADCAST I COL LECTOR BUS

C- REGISTER

K- REGISTER

T- REGISTER

STATUS

LOGIC

READ WRITE
HEAD HEAD

SEQUENTIAL
MEMORY
SEGMENT

Figure 4-Block diagram of cell

arithmetic unit in each cell in performing the com
manded operation upon its segment of the storage. The
status register is used to hold composite information
about the flag bits associated with individual words in
the storage segment. Control logic in the cell deter
mines what signals are passed from the cell to the
broadcast/ collector bus and to adjacent cells. Each cell
can transfer its entire storage contents to its neighbor.

DATA FORMAT

The storage structure of the segment-sequential
storage system consists of a number of cells, each of
which contains a fixed-length segment of the total se
quential storage. Figure 5 depicts the arrangement of
data words within one such segment. The storage seg
ment within the cell is a sequential storage device such
as a track on a drum or disc, a semiconductor shift
register, or a magnetic bubble storage device. Words
stored in the segment are stored sequentially, beginning
at some predefined origin point. Data read at the read
head is appropriately processed by the arithmetic unit
and written by the write head.

The information structure of the segment-sequential
storage system consists of fixed-length words arranged

696 Fall Joint Computer Conference, 1972

CIRCULATION

Figure 5-Word arrangement in a storage segment

in variable-length records. The words in a record are
stored in consecutive storage locations (where the loca
tion following the last storage location in a segment is
the first storage location in the following segment).
Thus, a record may occupy only a part of one storage
segment or occupy several adjacent segments. The start
of a record is indicated by a flag bit attached to the first
word in the record, and an end of a record is implied by
the start of the next record. Figure 6 shows how a record
may be spread over several adjacent segments.

Figure 7 shows an expanded view of one word in
storage. The b data bits in the word are arranged
serially, least significant bit first, with four flag bits
terminating the word. The functions of the flag bits are:

(1) S: The START bit is used to indicate the begin
ning of a data set (record). The search of a rec
ord begins with a word containing a START bit.

(2) P: The PERMANENT bit is used for special
designations. Interpretation of this bit depends
upon the instruction being executed by the cell.

(3) M: The MATCH bit is used to mark words
which satisfy the search criteria at each step in
the context search operations.

SEQUENTIAL
FILE

RECORD I

RECORD 2

ORIGIN
START OF RECORD

.,...--INDICATED
BY START BIT

__ START OF RECORD
--"'INDICATED

BY START BIT

Figure 6-Division of a file into fixed-length segments

(4) X: The X bit is used to mark deleted words.
Words so marked are ignored and are eventually
overlaid in an automatic storage compression
scheme.

OPERATIONAL CONCEPTS

The basic operation in context searching is a search
for records which satisfy a criterion dependent upon
both content and the result of previous searches. As an

~ • DATA BITS .. I FLAGS [

~WORD r
Figure 7-c-Word configuration

Architecture of Context Addressed Segment-Sequential Storage 697

example to illustrate how the segment-sequential
storage is able to search all cells simultaneously, con
sider the ordered search for the characters A, B, C.
That is, determine which records contain A, B, and C
in that order but not necessarily contiguous.

The three searches required to mark all records that
satisfy such a query are:

(1) Mark all words In storage which contain the
character A.

(2) Mark all words in storage which contain the
character B and follow (not necessarily im
mediately) a previously marked character in
the same record. At the same time, reset the
match indication from the previous search.

(3) Repeat the operation of step 2 for the character
C.

The result of these steps is to leave marked only those
records. which match the ordered search specified.

LS TR RS LS TR RS LS TR RS LS TR RS

10 10 10 I 10 II 10 I 10 II 10 I 10 10 10 I

Figure 8a-Flag and status bits before start of search

S

M

Figure S shows four segments of a system which will
be used to illustrate the processing of such a search. The
storage segments each contain four words (characters).
Only the START and MATCH flags are indicated.

The origin (beginning) of each segment is at the top
and the direction of search is clockwise (data bits rotate
counter-clockwise under the head). A record contain
ing the string Q,C,B,P,A,B,N,L,K,R,C,T,C begins at
the origin of the left-most segment and continues over
all four segments. The right-most segment also contains
the start of the next record which consists of the string
beginning B,A,C.

The first command causes all words containing
the character A to be marked in the MATCH bit.
Thus, after one circulation of the storage, the words are
marked as shown in Figure Sb.

In order to perform context-search operations in one
storage cycle, status bits must be provided in each cell.
These are used to propagate information about records
which are apread over more than one cell. The status

LS TR RS LS TR RS LS TR RS LS TR RS

10 10 10 I II1IIII 10 1 I 10 I 10 10 II I

Figure 8b-Flag and status bits after search for A

bits and their uses are:

(1) TR: The TRansparent status bit is set if no
word in the cell is marked with a START bit.
It is used to indicate that the status indication to
be transmitted to adjacent cells depends upon the
status of this cell and the status input from ad
jacent cells.

(2) LS: The Left Status bit is set if any word in a
cell between the origin and the first word marked
with a START bit is marked with a MATCH
bit. This bit indicates a match in a record which
begins to the left of the cell indicating the status.

(3) RS: The Right Status bit is set if any word in the
cell following the last word marked with a
START bit is marked with a MATCH bit. This
bit indicates a match condition which applies to
words stored in the cells to the right of this cell,
up to the next word marked by a START bit.

These status bits are updated at the end of each cycle
of the storage. The condition of the status bits after
each operation is performed is shown in Figure S.

The second search command causes all previous
MATCH bits to be erased, after using them in marking
those words which contain a B and follow a previously
marked word in the same record. If the previously

ORIGIN ORIGIN ORIGIN ORIGIN

LS TR RS

10 10 10 I
LS TR RS

10 II 10 I
LS TR RS

II I " I I
LS TR RS

II 1010'

Figure 8c-Flag and status bits after search for B

698 Fall Joint Computer Conference, 1972

LS TR RS LS TR RS LS TR RS LS TR RS

10 10 10 I II II II I 101 I I 0 I 10 10 10 I

Figure 8d. Flag and status bits after search for C

marked bit and the word containing the B are in the
same cell, the marking condition is completely deter
mined by the logic in the cell. However, in most cases
it is necessary to sense the status bits of previous cells
in order to determine whether the ordered search con
dition is satisfied. Notice that the status bit conditions
can be propagated down a chain of cells in the same
manner as a high-speed carry is propgated in a conven
tional parallel arithmetic unit.

Figure 8c shows the flag-bit configurations for each
word in storage and the status bits for each cell after
the completion of the search for B. Figure 8d shows the
configurations after the C search. After three cycles of
the storage, all records in storage have been searched
and those containing the ordered set of characters A, B,
C have been marked. In general, a search requires one
storage cycle per character in the search specification
and is independent of the total storage size.

BASIC OPERATIONS

In this section, the operations for performing context
searches are described in a more formal manner than in
the example above. The instructions are a subset of the
complete set which is described in a report.l0 The use
of these instructions will be illustrated in the section
following this one.

Each instruction includes a basic operation type and,
in most cases, a function code which further specifies
what the instruction is to do. Figure 9 shows the instruc
tion format and its variations. Instructions which per
form search and mark operations use the function code
to specify the type of comparison to be used. Instruc-

INST

TYPE COMPARAND

Figure 9a-Basic instruction format

FUNCTION

SEARCH a COMPARAND COMPARISON
MARK TYPE

Figure 9b-Search and mark instruction format

tions which initiate input or output operations allow
two specifications in the function field. The first desig
nates the channel to be used in the data transfer. The
second tells whether the start of each record should be
marked, in preparation for another search operation.

The symbols used in describing the instructions are
given below. The notation is that due to Iverson, modi
fied for convenience in describing some of the special
operations performed by the search logic.

B: The contents of the Bit-length Register is
denoted 11. The word length b = ..L 11.

G: The contents of the Comparand Register is
denoted Q. Individual bits are Cl (least sig
nificant bit) through Cb (most significant bit).

K: The contents of the Mask Register is denoted
K. Individual bits are represented by the
same scheme as that used for C.

W: The word of cell storage currently being con
sidered is denoted W. Individual bits are
represented by the same scheme as that used
for C.

R: R denotes the contents of a flip-flop in each
cell which is used to indicate the result of the
comparison. R~1 for a "match" and R~O
for "no match". The match performed is the
comparison between Q and W in those posi
tions where k i = 1. In the examples considered
in this paper, the comparisons are arithmetic
(=, ~, ~).

M: The MATCH bit associated with each word
(see Figure 7) is denoted M. M without super
script designates the MATCH bit in the word
being compared, W. M with a numeric super
script indicates the MATCH bit before or
after the one being compared; e.g., M -2

represents the MATCH bit two words before
the word on which the comparison is being
made. Inequality signs used as superscripts
indicate logic signals representing the union of

INPUT- CHANNEL
NOT USED • OUTPUT NUMBER

'* INDICATES THE START FUNCTION BIT

Figure 9c-Input-output instruction format

Architecture of Context Addressed Segment-Sequential Storage 699

TABLE I-Description of Instructions

SS C String Search
M~(R/\M-l)V(M/\P)
Set the MA TCR bit in any word where the masked
comparison of the word and the comparand satisfies
the comparison type specified in the function field of the
instruction and the word is immediately preceded by a
word in the same record which was left with its MATCR
bit set by the previous instruction. Also, set the MA TCR
bit in any word which was left with its MATCR bit set
by the previous instruction and has its PERMANENT
bit set. Reset all other MA TCR bits.

OS C Ordered Search
M~(R/\M<)V(M/\P)
Set the MA TCR bit in any word where the masked
comparison of the word and the comparand satisfies the
comparison types specified in the function field of the
instruction and the word is preceded (not necessarily
immediately) by a word in the same record which was
left with its MA TCR bit set by the previous instruction.
Also, set the MA TCR bit in any word which was left
with its MA TCR bit set by the previous instruction and
has its PERMANENT bit set. Reset all other MATCR
bits.

MS - Mark Start
wi~S/\(M>VM) where i=..L(Channel No.)
M~S/\(Start Function)
If the channel number i specified in the instruction is
between 1 and b, set Wi, the ith bit of the first word in
any record which contains a word with its MA TCR bit
set. If the start function bit in the instruction is a one,
set the MATCR bit in any word which has its START
bit set. Reset all other MATCR bits.

all MATCH bits in the record before (M <)
and after eM» the word being compared.

P: The PERMANENT bit associated with each
word (see Figure 7) is denoted P. The same
superscript conventions apply to P as to M.

S: The START bit associated with each word
(see Figure 7) is denoted S. The same super
script conventions apply to S as to M.

The instructions which are considered in the examples
in the next section are described in Table I.

SEARCH EXAMPLES

The following examples show the application of the
segment-sequential storage to matching strings with
templates. ll A template consists of characters separated
by parameter markers which are to be matched by
parameter strings. For example, ABCDEF is a
template which matches any string formed by the con
catenation of any arbitrary string, the string AB,
another arbitrary string, the string CD, another arbi
trary string, the string EF, and another arbitrary string.

TABLE II -Data Format for
String XY ABLMNCDPEFWZ

WORD

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

CONTENTS

I/O Flags (S)
X
Y
A
B
L
M
N
C
D
P
E
F
W
Z

(S) indicates the START bit for this
word is set.

TABLE III-Program to Find Match for ABCDEF

INSTRUCTION
NO. TYPE FUNCTION COMPARAND REMARKS

1 OS A mark all strings
which begin A
or $.

2 SS B mark all strings
which begin
AB, $, or $B.

3 OS C mark all strings
which follow the
above strings
and begin C or
$.

4 SS D mark all strings
which satisfy
the AB search
and contain a

subsequent string
which satisfies
the CD search.

5 OS E mark all strings
which follow the
above strings
and begin E or
$.

6 SS F mark all strings
which satisfy
the template.

7 MS 2,S flag channel #2
for input and
mark the start
of each record.

700 Fall Joint Computer Conference, 1972

The arbitrary strings need not be the same, and any or
all may be the null string. The string XYABLMNCD
PEFWZ is one example of a string which matches this
template.

In the following examples, it is assumed that the
first word in each record has had its MATCH bit set
by the last instruction of the previous search. The pro
grams shown perform the specified search, initiate the
in put of the selected records to the computer, and mark
the first word of each record in preparation for the next
search.

Find strings to fit a template

The case where a set of fixed strings is stored in the
segment-sequential storage is illustrated first. The data
format for a typical string is shown in Table II. The
first word is used to hold I/O flags. The characters in
the string are stored in sequential words following the
I/O word.

The program to search all strings in storage and mark
the ones that match the template ABCDEF is
shown in Table III. A template search takes one instruc
tion for each character in the template plus an instruc
tion toset the I/O flag in those records which contain
the strings matching the template.

Find templates to fit a string

The case where a set of templates is stored in the
segment-sequential storage is considered next. The data
format for stored templates is shown in Table IV. The
parameter marker, $, is replaced in storage by use of
the PERMANENT bit in those words which contain a
character which is followed by a parameter marker.

A p:rogram to find templates to match the string
XYABLMNCDPEFWZ is shown in Table V. The

TABLE IV-Data Format for Template
ABCDEF

WORD CONTENTS

1 I/O Flags (S),(P)
2 A
3 B (P)
4 C
5 D (P)
6 E
7 F (P)

(S) indicates the START bit for this word is
set.

(P) indicates the PERMANENT bit for this
word is set.

TABLE V-Program to Find Templates for
XYABLMNCDPEFWZ

INSTRUCTION
NO. TYPE FUNCTION COMPARAND REMARKS

1 SS X mark all strings
which begin X
or $.

2 SS Y mark all strings
which begin XY
or $.

3 SS A
4 SS B
5 SS L
6 SS M
7 SS N
8 SS C
9 SS D

10 SS P
11 SS E
12 SS F
13 SS W
14 SS Z
15 MS 1,S flag channel #1

for input and
mark the start
of each record.

execution of this program illustrates how the PERMA
NENT bit is used. The X and Y searches do not find a
match with the template shown in Table IV. However,
since the PERMANENT bit in the first word in the
record is set, the first word vd.ll remain marked by a
MATCH bit and therefore continue as a candidate for a
successful search.

The A and B searches cause the MATCH bit in the
word containing B to be set. Since this word also has its
PERMANENT bit set, the MATCH bit will remain set
during the searches for the remaining characters in the
input string (except for the last character). The search
continues in this fashion, with MATCH bits associated
with characters immediately followed by a parameter
marker being retained. This results in multiple string
searches within each record, corresponding to different
ways a given string may fit a template.

The search process continues in this fashion up to the
last character in the input string. There are two ways
in which a template can satisfy this search: (1) the last
character in the template may match the last character
in the input string and the next-to-Iast character in the
template have its MATCH bit set, or (2) the last char
acter in the template may have both its MATCH bit
and its PERMANENT bit already set. The last search
instruction in the program tests for both these condi
tions and at the same time resets the MATCH bits in
all characters which do not meet the conditions. The

Architecture of Context Addressed Segment-Sequential Storage 701

last instruction in the program causes the records which
satisfy the search to be marked for input to the com
puter's core storage.

The examples above show that the segment-sequential
storage reduces the finding of matching templates to a
simple search. The time required to execute such a
search depends only upon the number of characters in
the query.

Examples of other possible applications of the seg
ment-sequential storage are given in a report.10 One use
is retrieval of information necessary to display a portion
of a map. This is a typical problem encountered in
graphic displays, where a subset of the data base is to
be selected on the basis of x-y location. Another ex
ample is the use of the segment-sequential storage to
simulate networks of linear threshold devices.

CONCLUSIONS

This paper has presented a new architecture designed
to solve some of the problems in searching large data
bases. The examples given indicate its usefulness in
several practical applications. Since the system is built
around a relatively inexpensive storage medium, it is
feasible now. In the future, LSI techniques should make
its cellular organization even more attractive.

REFERENCES

1 P ARMSTRONG
Several patents

2 G J LIPOVSKI
On data structures in associative memories
Sigplan Notices Vol 6 No 2 pp 347-365 February 1971

3 G ESTRIN R H FULLER
Some applications for content-addressible memories
Proc FJCC 1963 pp 495-508

4 R G EWING P M DAVIES
A n associative processor
Proc FJCC 1964 pp 147-158

5 G J LIPOVSKI
The arch~tecture of a large associative processor
Proc SJCC 1970 pp 385-396

6 L HELLERMAN G E HOERNES
Control storage use in implementing an associative
memory for a time-shared processor
IEEE Trans on Computers Vol C-17 pp 1144-1151
December 1968

7 P T RUX
A glass delay line content-addressed memory system
IEEE Trans on Computers Vol C-18 pp 512-520
June 1969

8 I FLORES
A record lookup memory subsystem for software facilitation
Computer Design April 1969 pp 94-99

9 G J LIPOVSKI
The architecture of a large distributed logic associative memory
Coordinated Science Laboratory R-424 July 1969

10 L D HEALY G J LIPOVSKI K L DOTY
A context addressed segment-sequential storage
Center for Informatics Research University of Florida
TR 72-101 March 1972

11 P WEGNER
Programming languages, information structures, and
machine organization
McGraw-Hill 1968

A cellular processor for task assignments
in polymorphic, multiprocessor computers

by JUDITH A. ANDERSON

National Aeronautics & Space Administration
Kennedy Space Center, Florida

and

G. J. LIPOVSKI

University of Florida
Gainesville, Florida

INTRODUCTION

Polymorphic computer systems are comprised of a
large number of hardware devices such as memory
modules, processors, various input/ output devices,
etc., which can be combined or connected in a number
of ways by a controller to form one or several computers
to handle a variety of jobs or tasks.1 Task assignment
and resource allocation in computer networks and
polymorphic computer systems are currently being
handled by software. It is the intent of this paper to
present a cellular processor which can be used for
scheduling and controlling a polymorphic computer
network, freeing some of the processor time for more
important functions. (See Figure 1.)

Work has been done in the area of using associative
memories and associative processors in scheduling and
allocation in multiprocessor systems.2,3 Since the
scheduling process often involves a choice of hardware
resources which might do the job, a system able to de
tect elm out of n" conditions being met would be more
suited to the type of decision-making required. The
system to be discussed involves a threshold-associative
search; that is, all the associative searching performed
detects if at least m corresponding bits in both the as
sociative cell and the comparand are one.

Scheduling and controlling can be divided into three
distinct phases. The first is task qualification, determin
ing which tasks are possible with the available hardware.
The second phase is task assignment, deciding which of
the candidate tasks found to be qualified in the first
phase will be chosen to be performed next. The third
phase is the actual controlling or connection of the

703

switch required to restructure the computer to perform
the selected tasks.

This paper will be restricted to those Junctions per
formed by the cellular processor; in particular, the task
qualification phase and the portions of the task assign
ment phase related to the cellular processor.

SCHEDULING

The method for ordering requests consists of storing
the queue of requests in a one-dimensional array of cells.
One request requires several contiguous cells for storage.
The topmost cells store the oldest request. New requests
are added to the bottom and are packed upward as in a
first-in, first-out stack. An associative search is per
formed over all the words stored to determine which re
quests qualify for assignment. The topmost request
which qualifies will be chosen for assignment. Using a
slightly more complex cell structure, a priority level
may be associated with each request, resulting in a
priority based, rather than chronological, method for
task assignment, providing for greater flexibility. The
priority-based system will not be discussed here, but
further detail relative to it may be found in a previous
report.4

METHOD OF OPERATION

The basic system consists of a minicomputer and a
cellular processor for task ordering. (See Figure 1.) Re
quests generally take the form of which processors are
required, how much memory is required, and which

704 Fall Joint Computer Conference, 1972

SWITCH CONTROL
(MINICOMPUTER)

REQ.

CELLULAR
PROCESSOR

Figure I-Polymorphic computer network controlled by
cellular processor and minicomputer

peripheral devices and how many of each type are re
quired to perform a particular task. These requests are
made to the minicomputer via a simple, low-volume
communication link, such as a shift register, data bus,
or belt. The minicomputer then formats the requests
into a request set which is explained below.

The request set is given an identification word and is
input to the bottom of the task queue stored in the
cellular processor. This unit stores all the request sets
and determines which requests can be qualified for as
signment based on current hardware availability. The
topmost request set in the cellular processor which
qualifies is chosen for assignment.

It is necessary for the processor to know which de
vices in the polymorphic computer system are not cur
rently in use, and therefore are available for assignment.
To provide this information, each physical device in
the system has a bit associated with it in an Availability
Status Register. If a unit, such as a tape drive, is free,
its corresponding bit in the status register will be a
one. When the unit is in use, its corresponding bit will
be reset to a zero.

The requests are of the form indicating which type of
hardware devices are required, how many are required
and which, if any, particular physical units are required.
These requests can all be expressed as a Boolean AND
of threshold functions. Each request word will corre-

TABLE I -Status Register Assignment

BIT

1,2
3-6
7-12

13
14
15
16
17,18

DEVICE

Processors 1 and 2
Memory Units 1-4
Tapes Drives 1-6
Line Printer
Disc
Card Reader
Card Punch
CRT 1 and 2

spond to one threshold function, including the threshold
value. The devices chosen from to meet that threshold
value will be indicated with a one in its bit position.
Let S be the status register and (Q) (T) be the request
word where Q is the binary vector representing a re
quest and T the binary number giving the threshold
value T. The output C of the threshold function may be
expressed as

n

C~T~ L Q[IJ!\S[IJ.
1

A request set then consists of an identification word
and a word for each threshold function necessary to ex
press the entire request.

Consider, for exa.mple, a system composed of the com
ponents or peripheral devices and the status register bit

I D WORD

IITS:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 II It 20 21 22

0000000011001011011001
ID THRESHOLD

REQUEST WORDS

'I 1 I I I ,

1 0' 0 0 0 01 1 0 0 0 0 01 110 1010 I 1 0 0 1 0 0
1 1 , I I 1 I

00'10 0 0 010 1 11 1 110,10'0 10'0 00 01 0
I I I I 1

0011111100000010101010 1000010
I I (I

PROC! MEMORY 1 TAPE DRIVES I LPI D !CR I CP I CRT THRESHOLD

Figure 2-Request set example

assignments shown in Table I. The status register in
this example would be 18 bits long.

A request would be of the sort that the required de
vices for Task Number 429 are Processor 1, CRT 1,
Tape Drive 1, and any two other tape drives, the Line
Printer, and any two memory units. This request set
would consist of four words, the ID word and three
request words, shown in Figure 2.

The threshold value of the ID word is set exactly
equal to the number of "l's" in the ID field. This is
for hardware considerations in order to do an associative
search on the ID words. All the units which are abso
lutely necessary (mandatory devices) can be compactly
represented by a single threshold request that imple
ments the AND function. The first request word repre
sents all such mandatory devices, whereas the second
and third request words represent "any two other tape
drives" and "any two memory units," respectively.

This request set, along with any other requests which
were made would be input to the queue. When all three
of the request words above could be satisfied with some
or all of the available hardware, an interrupt to the
minicomputer is generated. The minicomputer can then
read out the ID word of the topmost request set that
can be satisfied and is therefore qualified. If this request
set is the highest in the queue, it will be assigned. Which
ever request set is read out will be removed from the
cellular processor and the requested resources allocated
for that task by the minicomputer.

HARDWARE DESCRIPTION

The hardware realization for this cellular processor
consists of a bilateral sequential iterative network. 5

That is, it is a one-dimensional array of cells, all cells

Figure 3-Cellular processor

A Cellular Processor for Task Assignments 705

having the same structure and containing sequential
logic. Each cell receives external inputs as well as inputs
which are outputs from its adjacent cells as shown in
Figure 3.

Each cell stores either a request word or an ID word,
or it is empty. All cells receive hardware status informa
tion which is broadcast into them continuously for
comparison with their stored requests. When one or
more request set has qualified for assignment, an inter
rupt is generated to the minicomputer. A hardware
priority circuit chooses the topmost qualified request to
be assigned. The cellular processor outputs the ID
word for this request via a data channel which is set up
through all the cells above the cell containing the quali
fied request in the queue. When a request is chosen for
assignment, its ID word is broadcast to the cellular
processor for removal from the queue. A timer is as
sociated with the uppermost cell in the array and is
used to indicate if requests are stagnating in the queue
so that action may be taken by the minicomputer.

Requests are always loaded into the bottom of the
queue. Removal is either from the top, when the timer
mentioned above exceeds some maximum value, or by
deletion after the request has been assigned. If a task
request is cancelled, it may be removed from the queue
by treating it as if it were assign~d. When requests are
removed from the middle of the queue by assignment,
the other requests move upward to pack into the emp
tied cells.

Each cell is basically made up of an n-bit register, a
threshold comparator, two cell status flip flops, a data
channel, and combinational logic as shown in Figure 4.
The n-bit register is divided into two fields. The first k
bits, Q, store the binary vector representation of the
request or ID word. The last n-k bits represent the
threshold value, T, for the threshold comparator. The
threshold comparator, which will be discussed in more
detail later, outputs a one if and only if at least T
positions in both Q and the status input, S, are one's.
That is,

C~T~ LQ[I]AS[I] or,

c~o~cE Q[I]AS[I])-CL T[I]X2I).

The two cell status flip flops, TOP f f and D f f indicate
whether a cell contains an ID word or not and whether
a cell contains data or is empty, respectively.

The data channel through each of the cells is used to
output information and for packing data to economize
on the number of pins per cell. The data flow in the
data channel is always upward, toward the top of the
queue. The data channel within a cell may be operated
in two ways. It may allow data coming into the cell on

706 Fall Joint Computer Conference, 1972

0' 01 I CT

+- - - - -- - - - -'"

DATA
CHANNEL

I

I

S

(STATUS INPUT)

Figure 4-Basic iterative cell

the channel to pass through into the data channel of
the next cell and will be referred to as the bypass mode
of operation. Also, by means of an electronic switch, it
may place the contents of its register into the data
channel. This will be referred to as the transfer mode.
Through the use of the load enable of the register (the
clock input of the register flip flop), it is also possible to
load the register with the information which is in the
data channel. Operation of the data channel is con
trolled by the cell status, the control signals from the
minicomputer, and a compare rail, CT.

When a request is loaded into the cellular processor,
it enters via the data channel and is loaded adjacent to
the lowest cell containing data. This is determined by
the D f f output from the cells. Once a cell has data
loaded, its threshold comparator continuously com
pares the register contents, Q, against the status, S.
When a threshold compare has been achieved, that is,

T~ L: S[IJI\Q[IJ

a one is ANDed into the CT rail, which is propagating
upward, toward the top of the queue. When all the re
que~t words in a set compare, the CT rail entering the
TOP cell of the request set is a logic one. This causes an
interrupt to be generated, indicating to the minicom
puter that there is a qualified set. The interrupt, INT,
is placed into an OR tree external to the cell network to
speed the interrupt signal to the minicomputer to in
crease response time of the system. Upon receipt of the
interrupt, the minicomputer can interrogate the pro
cessor to determine which request set caused the INT
to be generated. The ID word of the topmost qualified
set is broadcast via the data channel, and stored in the
output register. The minicomputer can then remove the

request set from the queue by placing the ID of that
set on the status lines and commanding a set removal
via the control lines. While a removal is being com
manded, the set whose ID matches with the ID on the
status lines resets its data flip flop, D if, and passes a
one along the R (reset) rail. This rail propagates in a
downward direction and causes all cells to reset their
D f f until a TOP cell is encountered. This removes the
request set from the queue. There now is a group of
empty cells in the middle of the stack of cells. When a
cell containing data detects an empty cell above it, it
places its data into the data channel and generates a
pulse on the DR (data ready) rail. This pulse travels
upward and enables the loading of data into the upper
most cell in the group of empty cells, that is, the first
empty cell below a non-empty cell which it encounters.
This is determined by D', the value of the D If of the
next higher cell. Each cell moves its data upward until
all the empty cells are at the bottom of the queue.

The comparison operation is not stopped by the data
being in the process of packing. The compare rail, CT,
is passed through empty cells unless the DR rail is high,
indicating data is actually in transit. An example of the
switching of the data channel during the loading and
shifting, or packing, process is shown in Figure 5.

L...--y-.L....:.I 0--,-1 0--,1 10 10 I

Figure 5-'-Example of shifting and loading

Further details of the cell operation are given in an
earlier report.4 A method for implementing priority
handling was also discussed.

THRESHOLD COMPARATOR

Current literature on threshold logic discusses inte
grated circuit realizations of threshold gates with up to
25 inputs and with variable threshold values. 6, 7 The
threshold comparator mentioned earlier consists of a
threshold gate with variable threshold which is selected
by the contents of the threshold register. The inputs to
the threshold gate are the contents of the status register,
8, ANDed bit by bit with the contents of the cell re
quest register, Q, as shown in Figure 6. All inputs are
weighted one.

C+Y $ I S[I] A a[ll

Figure 6-Threshold comparator

If the number of inputs to the threshold gate is re
stricted to the 25 inputs indicated above, the hardware
realization discussed here must be modified to overcome
this restriction. In particula~, the various types of re
sources can be divided into disjoint sets of similar or
identical devices such as memory units, processors,
I/O devices, etc. A request would not be made, for
instance, which would require either a tape drive or a
processor. Each set would then have a threshold value
associated with it and the compare outputs from all the
threshold gates would be ANDed to yield the cell com
pare output, as illustrated in Figure 7. For simplicity,
we will assume an ideal threshold element exists with an
unlimited number of gate inputs in our further dis
cussion, which can be replaced as indicated above.

For large computer networks, the number of devices
will be large. Since the processor discussed here requires

A Cellular Processor for Task Assignments 707

5

C

Figure 7-Modular threshold comparator

more than 3n interconnections (pins) for each cell,
where n is the number of devices, a method of dividing
the cell into smaller modules which are feasible with
current technologies in LSI must be considered.

First, the cell must be split into modules of lower bit
sizes. This may be done as discussed previously by di
viding the hardware devices into disjoint sets of similar
or identical devices. Each module or sub-cell will then
have a threshold associated with it and a threshold
comparator. One control sub-cell is also necessary which
will contain all the logic required for storing the cell
status, generating and propagating the rail signals, and
control the data channels in the other sub-cells in its
cell group. This is illustrated in Figure 8.

This modularity of cell design also allows the cellular
processor to be expandable. If the system requirements
demand a larger (more bit positions) cell, rather than
having to replace the entire cellular processor, an addi
tional storage module may be added for each cell. This
also reduces the fabrication cost since only two cellular
modules would have to be designed regardless of the
number of devices ina system.

------------~~~~----------~
DR R CT

ASSOCIATIVE STORAGE CONTROL

MODULES MODULE

Figure 8-Modular cell structure

708 Fall Joint Computer Conference, 1972

CONCLUSION

The threshold associative cellular processor incorporates
a very simple comparison rule, masked threshold com
parison. This rule was shown to be ideally suited to task
qualification in a polymorphic computer, or an inte
grated computer network like a polymorphic computer,
and was shown to be easily implemented in current
LSI technology.

The processor developed using this type of cell would
considerably enhance the cost effectiveness of poly
morphic computers and integrated computer networks
by performing task requests and would reduce the soft
ware support otherwise required to poll the status of
devices in the polymorphic computer or an integrated
computer network. The scheme shown here will have
application to other task qualification problems as well,
such as a program sequencing scheme to order programs
or tasks based on a requirement for previous tasks to
have been performed.4 This modular cellular processor
provides a system which can handle a wide range of
scheduling problems while retaining a flexibility for ex
pansion and at the same time increasing speed by per
forming the parallel search rather than polling.

REFERENCES

1 H W GSCHWIND
Design of digital computers
Chapter 9 Springer Verlag 1967

2 D C GUNDERSON W L HEIMERDINGER
J P FRANCIS
Associative techniques for control functions in a multiprocessor,
final report
Contract AF 30(602)-3971 Honeywell Systems and
Research Division 1966

3 D C GUNDERSON W LHEIMERDINGER
J P FRANCIS
A multiprocessor with associative control
Prospects for Simulation and Simulator of Dynamic
Systems Spartan Books New York 1967

4 J A ANDERSON
A cellular processor for task assignments in a polymorphic
computer network
MS Thesis University of Florida 1971

5 F C HENNIE
Finite state models for logical machines
John Wiley & Sons New York 1968

6 J H BEINART et al
Threshold logic for LSI
NAECON Proceedings May 1969 pp 453-459

7 R 0 WINDER
Threshold logic will cut costs especially with boost from LSI
Electronics May 27 1968 pp 94-103

A register transfer module FFT processor for speech analysis

by DAVID CASASENT and WARREN STERLING

Carnegie-MellOn University
Pittsburgh, Pennsylvania

INTRODUCTION

On-line speech analysis systems are the subject of much
intensive research. Spectral analysis of the speech
pattern is an integral part of all such systems. To
facilitate this spectral analysis and the associated
preprocessing required, a special purpose fast Fourier
transform (FFT) processor to be described is being
designed and constructed. One unique feature of this
processor which facilitates both its design and imple
mentation while providing an. easily alterable machine
is its construction from standard logic modules which
will be referred to throughout as register transfer
modules or RTM's.l This design approach results in a
machine whose operation is easily understood due to
this modular construction.

Two of the prime advantages of such a processor are:

(1) The very low design, implementation, and
debugging lead times which result from the RTM
design at the higher register transfer logic level
rather than at the conventional gate level.

(2) The RTM processor can be easily altered due to
the pin-for-pin compatability of all logic cards.
Different hardwired versions of a given al
gorithm can be easily implemented by appro
priate back plane rewiring.

Because of the stringent time constraints imposed by
such a design effort, this processor can also serve as a
feasibility model for the use of RTM's in other complex
real-time systems. This is one area in which little work
has been done.

When in operation, the processor will accept input
data in the form of an analog speech signal and output
the resultant spectral data to a PDP-II computer for
analysis.

709

FOURIER TRANSFORM APPLICATIONS TO
SPEECH PROCESSING2

Let us briefly review Fourier transform techniques as
used in speech processing.

In the discrete time domain, a segment of speech
8(~T+nT) can be represented by

8(~T+nT) =p(~T+nT)*h(nT) (1)

where * denotes discrete convolution and ~T is the
starting sample of a given segment of the speech wave
form.p(~T+nT) is a quasiperiodic impulse train
representing the pitch period and h (nT) represents the
triple discrete convolution of the vocal-tract impulse
response venT), with the glottal pulse genT) and
radiation load impulse response r(nT),

h(nT) =v(nT)*r(nT)*g(nT) (2)

The vocal tract impulse response is characterized by
parameters called formant frequencies. These param
eters vary with corresponding changes in the vocal
tract as different sounds are produced; however, for
short time spectrum analysis of speech waveforms, the
formant frequencies can be considered constant.

Given the above speech model, speech analysis
involves estimation of the pitch period and estimation
of formant frequencies. These parameters are estimated
using the cepstrum of a segment of a sampled speech
waveform. For our purposes, the cepstrum is defined
as the inverse discrete Fourier transform (IDFT) of
the log magnitude spectrum of the speech waveform
segment. The details of cepstral analysis are shown in
Figure 1. The input speech segment to Figure 1
8(~T+nT), typically about 20 msec in duration, is
weighted by a symmetric window function w (nT)

x(nT) =8(~T+nT)w(nT)

= [p(~T+nT)*h(nT) Jow(nT) 05:.n<N (3)

where N is the number of samples of the speech wave-

710 Fall Joint Computer Conference, 1972

w(nT)

s(~T+nT)

x

Figure l-Cepstral analysis for formant frequency
determination

Jt denotes log magnitude spectrum
X denotes cepstrally smoothed log magnitude spectrum

form. The window function minimizes the effect of a
nonintegral number of pitch periods in each speech
segment by de-emphasizing the samples at both ends of
the segment. A typical window used for this purpose is
the Hamming window defined by

{

0.54-0.46 cos (27fnT /NT)
wenT) =

O~nT~NT

° elsewhere
(4)

With wenT) slowly varying with respect to s(nT),

x(nT) ~h(nT)*pw(nT) (5)

where

pw(nT) =p(~T+nT)w(nT) (6)

After the first Fourier Transform (DFT-I) the speech
spectrum becomes

1 -
... ,

o

- - - -j(nTl
, --cepstrum

... ...
... ,

... , , ,
\

\
\

2 4
TIME (msecl

Figure 2-(a) The cepstrum

6

The log magnitude operation (log I X I) then yields

log I X (ei(27rkl N» I
= log I H(ei (27rkIN» I + log I Pw (ei (27rk IN») I (8)

The inverse transform (IDFT) of this log magnitude
spectrum is the cepstrum c(nT). The pitch period
corresponding to a distinct peak in the cepstrum is
removed by multiplying c(nT) by a function lenT)
of the form

lenT)

= l~{HCOS [.. (nT-TI)/Ad}

(9)

where T1 + Llr is chosen less than the minimum pitch
period expected. The final Fourier transform (DFT-2)
then yields the desired spectral envelope.

_____ cepstrally smoothed
log s peet ru m

1 2 3
FREQUENCY (kHz)

4

(b) The log magnitude spectrum and spectral envelope

Figure 2a shows the cepstrum, the pitch period
corresponding to the distinct peak at the right. The
dotted line in Figure 2a represents the lenT) function
above. Figure 2b shows the original log magnitude
spectrum (solid line) and the resultant "smoothed"
spectrum or spectral envelope (dotted line) from which
the formant frequencies can be estimated.

APPROXIMATE BINARY LOGARITHMS3

The binary logarithm can easily be obtained by the
following algorithm. A binary number N, can be

Re

1m

fs=6~
l:J. T=time between samples

Figure 3-Symmetry of the complex discrete fourier transform
for real-valued input

written as

m

N= LZi 2 i

i=j

(10)

where m and j represent the binary powers of the most
and least significant bits respectively. If the power of
the most significant nonzero bit is denoted by k, N can

c::::::::::::::------~
I I 0
: ~·w
I I

Register Transfer Module FFT Processor 711

TABLE I-Function F(x) Used to Calculate Binary
Logarithm of x

Range

o ~ x < .25

F(x)

37x
X+-+H28

128

.25 ~ x ~ .50

.50 ~ x ~ .75

x + 3x/64 + H6
7(I-x)

x+~ +H2

. 75 ~ x ~ 1

be rewritten as
k-l

N=2k+ L Zi2i
i=j

x + 29(I-x)/128

m~k~j

N=2' [1+ EZ,2'-k] =2'(1+",)

(11)

(12)

where 0 ~ x < 1 since k ~j. Log2 N can then be approxi
mated by Log2 N ~L(N) =k+F(x) where F(x) is
chosen from Table I.

(c.c.)

I

:- w- 2

c:::::: >-=< 7 C::::::~7
: L -1 I

I : W
I C.C. I

)-,----'~

Figure 4-The real-valued input FFT algorithm for N = 16 * denotes complex conjugate

712 Fall Joint Computer Conference, 1972

a + ib 1---....... a' +ib '

c + id c'+id'

wn 2mn i
21Tm

cos N+ sin --
N

at a + (c cos 21Tm +
N

d · 27Tm) Sl.n N

b l b + (d 21Tm · 27Tm) cos
N c Sl.n N

c' a - (c cos 27Tm +
N

d · 27Tm) Sl.n N

d' = - [b - (d cos 2;m - c sin 2;m)

Figure 5-The complex calculation
* denotes complex conjugate. N = number of samples

Computer calculations using this algorithm yielded a
maximum error computed at critical values and extrema
which ranges between -0.00782 and 0.0094. The
coefficients of f (x) were chosen for easy of binary
implementation.

FFT ALGORITHM FOR REAL-VALUED INPUT

Various FFT algorithms exist. One particularly
adaptable to RTM implementation will be briefly
reviewed. The complex discrete Fourier transform of a
sampled time series x(k) (k=O, ... , N -1) can be
written as

1 n-l

X(j) == - E x(k)e- i2'dk / N (13)
Nk=o

It has been shown4 that when the x (k) series is real,
Re [XC j)] is symmetric about the folding frequency
F,; and 1m [XC j)] is antisymmetric about F,. Figure
3 shows this pictorially.

An algorithmS which eliminates calculations that will
lead to redundant results in the real-valued input case
has previously been discussed. Figure 4 graphically
illustrates this algorithm for N = 16. The algorithm
can be represented by the expression

n-l

X(j) = L: Bo(k) W-jk (14)
k=O

where W =e27ri/ N ; Bo(k) is real; j=O, 1, ... ,N /2; and
N =2m where m is an integer.

The "complex calculation" shown in Figure 4 is a
slight modification of the butterfly multiply6 normally
used in FFT algorithms. Details of the calculation are
shown in Figure 5, from which the signal flow is appar
ent. Each complex calculation box, as shown, moves to
the right to operate on all operands within its group.
On the first level, this box performs eight computations,
on the second level each box performs 4 calculations,
etc.

Since the multiplications are ordered as above,
addressing for this multiplier is fairly straightforward.
For ease in accessing the complex multiplier Wm, its
complex values should be stored in the order in which
they occur. An algorithm for determining the sequence
of the exponent m has been documented, and a set of
recursive equations which specify the addresses of the
four operands for every complex calculation can be
formulated.s The address sequencing is easily imple
mented in a hardware unit for automatic generation of
the required addresses in the proper sequence.

It is apparent from Figure 4 that all complex cal
culations involving one complex multiplier Wm can be
completed before the next complex multiplier is used.7

For example, all calculations involving WO can be com
pleted on all 3 levels, then all calculations involving
W2, etc. In the conventional method all calculations on
one level are completed before dropping to the next
level. If the complex multipliers are stored in their
accessed order, there is no need to explicitly store the
sequence of exponents. Furthermore, each complex
exponent in this addressing scheme need be accessed
only once.

As in the conventional FFT implementation, the
resultant Fourier coefficients must be re-ordered. With
the accessing order of the complex multipliers specified
by a linear array A, the exponent m for the ith W is
given by m=A (i). An inverse table look-up enables the
scrambled Fourier coefficients to be accessed from
memory in the order of ascending frequency. To imple
ment this inverse table look-up, the location N of the
ith harmonic is found from the value m in the array A
and by using its position in the array as the value of N.

TABLE II-Formulas for Calculating the Number of
Operations in FFT Algorithnis

complex inputs
real inputs

Real Multiplications

(m - 3.5)N + 6
(2m - 7)N + 12

Real Additions

(1.5m - 2.5)N + 4
(3m - 3)N + 4

ANALOG
SPEECH
SIGNAL

TO
PDP-ll

o ~ ~
12. J:
~r

MULTIPLY
256 POINTS
BY HAMMING
WINDOW
VECTOR

256
POINT
FFT

r-- -- -- ---.
: 256 256 POINT I

I POINT INVERSE FFT I
FFT I

: VECTOR (FORMS CEPSTRUM) :

~------------------- _____ J
Figure 6-FFT processor data flow. Boxed area denotes future

extension of the processor

In implementation, the sequence of locations is, for
convenience, stored separately.

Table II below compares the number of operations,
and consequently, the speed, of the conventional
?ooley-Tukey radix-2 FFT algorithm for complex
mputs, and the FFT algorithm for real inputs.5 In the
formulas N = 2m , where N is the number of samples.
These formulas assume special cases such as exp (iO)
are calculated as simply as possible. About 72 the
number of operations are required for real inputs as for
complex inputs, owing to the elimination of redundant
calculations. As explained previously, the algorithm
can be streamlined further by sequencing through the
complex multipliers rather than across each level. A
software version of these techniques has been imple
mented7 and has achieved a real-time processing speed
of 10,300 samples/sec. This is the equivalent of one
256 po~nt FFT every 25 msec. The minimum speech
processmg speed required for this system is one 256
point FFT every 10 msec. It is evident that speeding
up the. algorithm requires hardwiring the complex
calculatIOn and address generation.

PROCESSOR DATA FLOW

Figure 6 shows the logical flow of data through the
processor. The "Future Extension" section will not be
implemented initially. Instead the log magnitude of the
spectrum will be transferred to a PDP-II. At this point
the s~ectral ~nvelope can be extracted by digital
recurSIve filtermg techniques rather than by cepstral
smoothing. This approach adequately demonstrates
the feasibility of a real-time RTM processor.

The analog speech signal is sampled at 10 kHz and
stored in a buffer. When 256 8-bit words have been
accumulated, they are weighted by a Hamming window.
A 256 point FFT is then performed on these weighted
samples. This results in only 129 complex values since

Register Transfer Module FFT Processor 713

TABLE III-Description of RTM Modules

Module

K.bus

T.a/d
DM.bool
DM.const
DM.gpa
DM.ii
DM.index
DM.mult
DM.oi
DM.pdp-l1
DM.tr
M.array
M.sp

Function

controls asynchronous timing of sequential
operations

analog to digital converter
boolean flags
4 word read only memory
general purpose arithmetic unit
general purpose input interface
FFT address genera tor
multiply unit
general purpose output interface
PDP-l1 interface
temporary storage register
read/write memory; ",,2 JLsec access time
read/write scratch pad memory; ",,500 nsec

access time

the FFT algorithm for real-valued inputs generates
harmonics only through the folding frequency. The
binary logarithm of the magnitude of each of these 129
complex values is then calculated and the result trans
ferred to a PDP-H.

During processing, the buffer must continually store
the input samples. After the third group of 128 samples
has been stored, samples 128 thru 383 are weighted by
the window and processed. Although a 256 point FFT
is performed, the window is shifted by only 128 words
each time thus including each sample in 2 FFT cal:
culations, each time with a different weighting factor.

SPEECH
SIGNAL

ARITHMETIC
UNIT
1 ADDER
1 MULTIPLIER

~ MEMORY

.~ BOOLEAN
FLAGS

BUS TO BUS
INTERFACE

FFT
I- INDEXING

UNIT

ARITHMETIC

I- UNIT
1 ADDER
1 MULTIPLIER

H MEMORY

1 BOOLEAl'J
FLAGS

H BUS TO BUS
INTERFACE

BUS 2

H PDP-ll
INTERFACE

ARITHMETIC

I-
UNIT
2 ADDERS

H MEMORY

H BOOLEAN
FLAGS

~
BUS 3

Figure 7-Block diagram of FFT processor
Bus 1 samples and buffers speech signal. Bus 2
performs FFT. Bus 3 calculates binary logarithm and
interfaces to a PDP-l1

714 Fall Joint Computer Conference, 1972

K.bus
r- --,
I ANALOG I
: SPEECH L
I SIGNAL I
L

f
- --I

T.a/d

+ DM.ii

DM.mult

DM.bool

DM.oi

LDM.ii

M.array
(512 words;

M.sp

BUS 1

K.bus

DM.pdp-l1

l
TO

PDP-II

DM.oi

LDM.ii

M.array
(512 words)

M.sp

BUS 2 BUS 3

DM. gpa

DM. gpa

DM.bool

M. array
(256 words)

M.sp

Figure 8-RTM structure of FFT processor. The modules are
described in Table III

The first FFT thus operates on samples 0-255, the
second FFT on samples 128-383, the third on 256-511,
etc. In the actual machine a 384 word ring buffer
memory is used to achieve the sequencing of the blocks
of 128 samples.

The time constraints on the system are easily tabu-

A-bus

B- bus

·bus

DM.mult

A <15:0>

B <15:0>

Figure 9-(a) DM.mult-multiply unit

bus =;r=
OM. index b done

bus-Al b end

bus--A2

bus--A3 Al (7:0)

bus-A4 A2 <7:0>

initialize A3 (7:0>

increment A4 (7:0'>

(b) DM.index - FFT address generator. The
DM.index control lines are described in Table IV

lated. In the 12.8 msec used to sample 128 words the
following three operations must be performed:

(1) The Hamming window must be applied,
(2) The 256 point FFT performed, and
(3) The log magnitude of each harmonic calculated.

RTM LEVEL DESIGN

A block diagram of the processor structure is shown
in Figure 7. It is a three bus system with each of the
above operations performed on a separate bus. Figure 8
shows the specific RTM modules used; Table III
describes the modules.

With the exception of DM.mult and DM.index, the
data modules shown in Figure 8 are all standard RTM's.
The functions of the two nonstandard modules are
outlined below and illustrated in Figure 9.

TABLE IV-Description of Control Lines for Indexing
Unit DM.lndex

control line function

initialize initialize indexing unit
increment calculate next 4 operand addresses for complex

calculation
bus ~ A1 load 1st address on bus
bus ~ A2 load 2nd address on bus
bus ~ A3 load 3rd address on bus
bus ~ A4 load 4th address on bus
done signals end of calculations involving one complex

multiplier
-end signals end of FFT

Uata Buffering

Windowing

Data Transfer:
bus 1 to bus 2

HT

~tagnitude

Caieul at ion

Data Transfer:
bus 2 to bus 3

Logarithm
Ca1culation

Reorder and
Data Transfer:
to PDP-ll

1.5

BUS 1
1.5

6.5

BUS 2

5.3

BUS 3
5.3

1 Processor Cycle It-i ______ ---=.:12:..:..!:.8~ _______ _<

DM.mult

2 3 4 5 6 7 8 9 10 11 12 13
MSEC

Figure 10-Processor timing diagram

This module multiplies the two 16 bit positive
numbers in registers A and B. Any 16 bits of the 32 bit
result can be placed on the bus. The multiplier was
implemented using Fairchild 9344 2 X 4 bit multipliers.

DM.index

High speed hardware indexing units for FFT operand
address generation have been presented in the literature. 8

This module generates the addresses of the four operands
of every complex calculation during the FFT. It is a
hardware implementation of the recursive equations
for the FFT algorithm for real value inputs discussed
previously. It was designed to sequence through all
calculations involving one complex multiplier. Table IV
defines the control lines shown in Figure 9 (b) .

The four 8-bit registers, AI, A2, A3 and A4 hold the
addresses of the four operands. These registers do not
physically exist since the addresses are generated
combinatorily upon command; they are defined for
logical purposes only.

Figure 10 shows the timing diagram of the processor.
All arithmetic operations, register transfers, and
memory accesses involve use of the bus, which has a
settling time of 500 nsec. Therefore, the average speed
of any operation is 500 nsec. This value was used in
calculating the processing times shown in Figure 10.
For example, approximately 13,000 operations are
required to perform each 256 point FFT on bus 2. The
processing time, therefore, is 6.5 msec. Bus 1 is con
tinually buffering data, however, only 1.5 msec of 1
processor cycle (12.8 msec) are spent windowing 256

Register Transfer l\10dule FFT Processor 715

samples and transferring them to bus 2. Bus 2 spends
1.5 msec simultaneously accepting data from bus 1,
calculating the magnitude of the harmonic components
and transferring the results to bus 3. 6.5 msec are spent
calculating the FFT. This leaves 4.8 msec (12.8-1.5-6.5)
of dead-time during each processor cycle; time when no
processing occurs on bus 2. Bus 3 spends 1.5 msec
accepting data from bus 2, and 5.3 msec simultaneously
calculating the logarithm of 129 samples and trans
ferring them to the PDP-II. This leaves 6 msec of dead
time on bus 3. It is clear that bus 2 carries the heaviest
processing load; therefore, bus 2 dead-time determines
that a speed margin of 4.8 msec exists; that is, the
processor completes processing each set of 256 samples
4.8 msec faster than needed to maintain real-time
operation.

Accuracy

The question of accuracy always arises for a processo.
operated in fixed point mode. As noted previously,5
distribution of the 1/ N normalization factor over the
entire transform constrains the magnitudes of the
operands at each level to prevent overflows. The only
overflow possibility occurs during the calculation of the
magnitude of the Fourier coefficients. When overflow
occurs (positive or negative), the largest (positive or
negative) number will be chosen.

Simulation runs to determine the effect of multiplier
size on accuracy were conducted. A 16 X 16 bit multi
plier was used in conjunction with the fixed point FFT
described to process actual speech signal samples. For
audible speech, accuracy of 1 percent relative mean
square error was achieved when compared to floating
point results. The same simulation using a 12 X 12 bit
multiplier resulted in an error of 6 percent. For signals
of small magnitude (such as the signal generated by
silence) the error for the 16 X 16 bit multiplier rose to
25 percent; however, this is acceptable for processing
the silence signal. For comparison, previous published
accuracy results for a 16 X 16 bit multiplier and similar
FFT algorithm7 showed a maximum error of ±O.OI2
percent fullscale with a standard deviation of ±0.004
percent fullscale. On the basis of these results, the
12 X 12 bit multiplier was considered too inaccurate;
therefore, the 16 X 16 bit multiplier was chosen.

RTM control

RTM control logic is designed with 2 basic modules:
1. Ke: a module which initiates arithmetic opera

tions, data transfers between registers, and
memory read/write cycles.

716 Fall Joint Computer Conference, 1972

2. Kb: a module which chooses a control branch
based on the value of a boolean flag.

With these modules the control for executing an
algorithm can be specified in a manner quite similar to
programming the algorithm in a high level programming
language. This greatly simplifies the design of the
control, thus resulting in a significant reduction in
design time.

This concept can easily be illustrated by investigating
a section of bus 2 control. This particular section con
trols the complex calculation for the degenerate case of
wo, that is, when the complex multiplier is 1 +iO. For
this case the equations shown in Figure 5 reduce to

a' =a+c
b'=b+d
c'=a-c
d'=d-b

A and B are general purpose arithmetic unit registers;
INDEX is a storage register used for sequencing the
counter through the 64 complex multipliers; ONE is a
constant generator containing a "1"; and MAl and
MB1 are memory address and buffer registers, respec
tively. The control for this series of complex calcula
tions is then:

Ke (L~l; initialize)

Ke INDEX<-Ol

Kb (done)

[1 __ 1 -----,

~. .) Ke (MA1~A1; read) (next control sectIOn
Ke (A~MB1)
Ke (MA1~A2; read)
Ke (B~MB1)
Ke (MB1~(A-B)/2; write)
Ke (MA1~A1)
Ke (MB1~(A+B)/2; write)
Ke (MA1~A3; read)
Ke (B~MB1)
Ke (MA1~A4; read)
Ke (A~MB1)
Ke (MB1~(A-B)/2; write)
Ke (MA1~A3; increment)
Ke (MB1~(A+B)/2; write)

By dividing the result~ of each complex calculation by
2, the 1/ N normalization factor can be distributed over
the entire calculation.

The control section for the remaining complex cal
culations is, of course, more complex requiring 46 Ke
and 7 Kb, but its design and implementation remain
straightforward. To accomplish control of all operations
on bus 2, including accepting data from bus 1, executing
the FFT, calculating the magnitudes of the Fourier
coefficients, and transferring data to bus 3, about 120Ke
and 20 Kb were used.

FUTURE EXTENSIONS

The speech processing application for this processor
involves an initial Fourier transform, a second Fourier
transform to obtain the cepstrum and an inverse
Fourier transform. Figure 6 shows data flow for the
proposed final form of the pipeline processor.

The present system is memory limited because 14 bus
transfers in and out of memory are required for every
complex calculation. Approximately 500 nsec are
required for a bus transfer; 250 nsec to load data on the
bus and 250 nsec to read data from the bus. Faster
memory and bus systems can decrease this portion of
the processing time. The processor fulfills both the
overall goal of a modular FFT computer to meet the
minimum processing rate of 10K data samples/sec,
and attain accuracy of 1 percent relative mean square
error necessary for speech analysis. This was done using
existing RTM's with only 2 new modules required.

It should be emphasized that while the processor
performs a specialized function (calculating the FFT) ,
the RTlVI modules themselves, with the exception of
DM.index, are general and can be used to implement
any processor. In fact, since only the back plane wiring
determines the characteristics of the processor, one set
of RTM modules can be shared among many processors,
if the processors will not be used simultaneously. This
can result in substantial savings over the purchase or
construction of several complete processors.

Along these lines, it would be advantageous to
develop more complex but still general RTM modules.
Specifically, a generalized micro-programmed LSI RTM
module could be coded to implement the entire complex
calculation, the FFT address generator, or any other.
algorithm on a single card. The complex calculation is
an area where the system's speed can be significantly
improved. At present, 46 bus transfers are required for
each complex calculation. This number could be re
duced by a factor of 3 by constructing one card to
perform the entire complex calculation. The present

system's specifications did not require such improve
ments and the RTM design concepts were used to
investigate various system designs using existing
modules rather than constructing an entire system from
the start.

SUMMARY

This paper has reviewed the basic FFT algorithms and
presented a method by which a relatively sophisticated
piece of hardware such as an FFT processor could be
designed at the register transfer level in a much shorter
time than required in a conventional gate level design.
The simplicity of this modular construction has per
mitted a fairly in-depth view of the processor. The
resultant product and its method of implementation are
rather unique in that they combine the convenience of
a control logic that is similar in structure to software
algorithms with the processing speed of a completely
hard-wired algorithm.

ACKNOWLEDGMENTS

The authors wish to acknowledge the assistance of Lee
Bitterman, and Professors Gordon Bell and Raj Reddy

Register Transfer Module FFT Processor 717

of CMU in the design and implementation of this
FFT processor.

REFERENCES

1 C G BELL et al
The description and use of register transfer modules (RTM's)
IEEE Transactions on Computers Vol C-21 1972

2 R W SCHAFER L R RABINER
System for automatic formant analysis of voiced speech
The Journal of the Acoustical Society of America Vol 47
No 21970

3 E L HALL et al
Generation of products and quotients using approximate binary
logarithms for digital filtering application
IEEE Transactions on Computers Vol C-19 1970

4 G D BERGLAND
A guided tour of the fast fourier transform
IEEE Spectrum Vol 6 1969

5 G D BERGLAND
A fast fourier transform algorithm for real valued series
Communications of the ACM Voill 1968

6 B GOLD et al
The FDP, a fast programmable signal processor
IEEE Transactions on Computers Vol C-20 No 1 1971

7 J W HARTWELL
A procedure for implementing the fast fourier transform on
small computers
IBM Journal of Research and Development Vol 15 1971

8 W W MOYER
A high-speed indexing unit for FFT algorithm implementation
Computer Design Vol 10 No 12 1971

A systematic approach to the design of digital
bussing structures *

by KENNETH J. THURBER, E. DOUGLAS JENSEN, and LARRY A. JACK

Honeywell, Inc.
St. Paul, Minnesota

and

LARRY L. KINNEY, PETER C. PATTON, and LYNN C. ANDERSON

University of Minnesota
Minneapolis, Minnesota

INTRODUCTION

Busses are vital elements of a digital system-they
interconnect registers, functional modules, subsystems,
and systems. As technological advances raise system
complexity and connectivity, busses are being recog
nized as primary architectural resources which can fre
quently be the limiting factor in performance, modu
larity, and reliability. The traditional view of bussing
as just an ad hoc way of hooking things together can no
longer be relied upon to produce even viable much less
cost-effective solutions to these increasingly sophisti
cated interconnect problems.

This paper formulates a more systematic approach
by abstracting those bus parameters which are com
mon to all levels of the system hierarchy. Every bus,
whether it connects registers or processors, can be char
acterized by such factors as type and number, control
method, communication mechanism, data transfer con
ventions, width, etc. Evaluating these parameters in
terms of the preliminary functional requirements and
specifications of the system constitutes an efficient
procedure for the design of a cost-effective bus struc
ture.

BUS STRUCTURE PARAMETERS

Each of these bus structure parameters involves a
variety of interrelated tradeoffs, the most important of
which are considered below.

* This work was supported in part by the Naval Air Development
Center, Warminster, Pa., under Navy contract number N62269-
72-C-0051.

719

Type and number of busses

Busses can be separated into two generic types: dedi
cated, and nondedicated.

Dedicated busses

A dedicated bus is permanently assigned to either
one function or one physical pair of devices. For ex
ample, the Harvard class computer characterized by
Figure 1 has two busses, each of which is dedicated ac
cording to both halves of the definition. One bus sup
plies procedure to the processor, the other provides
data. If there were multiple procedure memory modules
on the procedure bus, that bus would be functionally
but not physically dedicated. The concept of "func
tion" is hierarchical rather than atomic; in the sense
that the procedure bus of Figure 1 carries both ad
dresses and operands, it could be viewed as physically
but not functionally dedicated. This dichotomy is re
versed in Figure 2, which illustrates another form of
Harvard class machine. In this case, one bus is func
tionally dedicated to addresses and the other to oper
ands. They are undedicated from the standpoint of
data/procedure separation, and physically undedicated
as well.

The principal advantage of a dedicated bus is high
throughput, because there is little, if any, bus conten
tion (depending on the type and level of dedication).
As a result, the bus controller can be quite simple com
pared to that of a non-dedicated bus. Also, portions of
the communication mechanism which must be explicit
in undedicated busses may be integral parts of the

720 Fall Joint Computer Conference, 1972

PROCEDURE BUS - -
T 1

PROCESSOR PROCEDURE DATA
MEMORY MEMORY

1 1 - -
DATA BUS

Figure 1-Harvard class computer with dedicated procedure
and data busses

devices on a dedicated bus: addresses may be unneces
sary, and the devices may automatically be in sync.

A system may include as many undedicated busses
as its logical structure and data rates require, to the ex
treme of one or more busses between every pair of de
vices (Figure 3).

A major disadvantage of dedicated busses is the cost
of the cables, connectors, drivers, etc., and of the
multiple bus interfaces (although the interfaces are
generally less complex than those for nondedicated
busses). If reliability is a concern, the busses must be
replicated to avoid potential single-point failures.
Dedicated busses do not often support system modu
larity, because to add a device frequently involves
adding new interfaces and cables.

Non-dedicated busses

Non-dedicated busses are shared by multiple func
tions and/or devices. As pointed out earlier, busses may
be functionally dedicated and physically non-dedicated,
or vice versa. The Princeton class computer of Figure 4
illustrates a commonly encountered type of single bus

ADDRESS BUS - - -
T T T

PROCESSOR PROCEDURE DATA
MEMORY MEMORY

1 1 1 - - --
OPERAND BUS

Figure 2-Harvard class computer with dedicated address
and operand busses

Figure 3-Adding a device to a non-dedicated bus structure

structure which is not dedicated on either a functional
or a physical basis. The interesting case of multiple,
system-wide, functionally and physically non-dedicated
busses is seen in Figure 5. Here every device can com
municate with every other device using any bus, so the
failure of a bus interface to some device simply re
duces the number of busses (but not devices) remain
ing available to that device.

The crossbar matrix is a form of non-dedicated bus
structure for connecting any element of one device
class (such as memories) to any element of another
(such as processors). It can be less efficiently used to
achieve complete connectivity between all system de
vices. The crossbar can be very complex to control, and
the number of switches increases as the square of the
number of devices, as' shown in Figure 6. It also suffers
from the disability that failure of a crosspoint leaves no
alternative path between the corresponding devices.

By adding even more hardware, the crossbar switch
can be generalized .to a code-activated network (anal
ogous to the telephone system) in which devices seek
their own paths to each other.

PROCESSOR MEMORY I/O

Figure 4-Princeton class computer with a single
non-dedicated bus

Systematic Approach to Design of Digital Bussing Structures 721

PROCESSOR PROCESSOR MEMORY MEMORY I/O

Figure 5-Multiple, system;,.wide, non-dedicated busses

Another relatively unconventional non-dedicated bus
structure is the permutation or sorting network which
can connect N devices to N other devices. The sorting
n~twork may be implemented with memory or gating,
but in either case if all N! permutations are allowed, the
hardware is extensive for anything but very small N's.

Non-dedicated busses offer modularity as their main
advantage, in that devices generally may be added to
them more easily than to dedicated busses. Multiple
busses such as those in Figure 5 not only increase band
width but also enhance reliability, rendering the system
fail-soft. While non-dedicated busses avoid the pro
liferation of cables, connectors, drivers, etc., they do
exact a toll in usage conflict. Bus allocation requires
logic and time, and if this time cannot be masked by
data transfers, the bus bandwidth and/or assignment
algorithm may have to be compromised. Furthermore,

MEM MEM I
I
I

MEM

PRocr-.-------~~H~.---------~~.~.---~!----~:~r~

I
I

PROC ----~-~------..... ~IJ~t---..... ·--"'!iIl~t__ I
_____ J

Figure 6-Adding devices to a crossbar bus

the devices which desire but do not obtain the bus must
wait for another opportunity to contend for it.

The communication technique is usually more com
plex for non-dedicated busses, because devices must be
explicitly addressed and synchronized.

Bus control techniques

When a bus is shared by multiple devices, there must
be some method whereby a particular unit requests and
obtains control of the bus and is allowed· to transmit
data over it. The major problem in this area is resolution
of bus request conflicts so that only one unit obtains
the bus at a given time. The different control schemes
can be roughly classified as being either centralized or
decentralized. If the hardware used for passing bus con
trol from one device to another is largely concentrated
in one location, it is referred to as centralized control.
The location of the hardware could be within one of the
devices which is connected to the bus, or it could be a
separate hardware unit. On the other hand, if the bus
control logic is largely distributed throughout the dif
ferent devices connected to the bus, it is called de
centralized control.

The various bus control techniques will be described
here in terms of distinct control lines, but in most cases
the equivalent functions can be performed with coded
transfers on the bus data lines. The basic tradeoff is
allocation speed versus total number of bus lines.

Centralized bus control

With centralized control, a single hardware unit is
used to recognize and grant requests for the use of the
bus. At least three different schemes can be used, plus
various modifications or combinations of these:

• Daisy Chaining
• Polling
• Independent Requests.

Centralized Daisy Chaining is illustrated in Figure 7.

BUS .. DEVICE
I-

AVAILABLE
... 0

BUS
CONTROLLER

! BUS REQUEST - -
.... ,BUS BUSY ,
-

Figure 7-Centralized bus control: daisy chain

DEVICE
N

722 Fall Joint Computer Conference, 1972

I DEVICE J 0'

BUS REQUEST .-
"'I

BUS
CONTROLLER BUS BUSY ,~ ... -

POLL COUNT

Figure Sa-Centralized bus control: polling with a global counters

Each device can generate a request via the common
Bus Request line. Whenever the Bus Controller re
ceives a request on the Bus Request line, it returns a
signal on the Bus Available line. The Bus Available line
is daisy chained through each device. If a device re
ceives the Bus Available signal and does not want con
trol of the bus, it passes the Bus Available signal on to
the next device. If a device receives the Bus Available
signal and is requesting control of the bus, then the
Bus Available signal is not passed on to the next
device. The requesting device places a signal on the
Bus Busy line, drops its bus request, and begins its
data transmission. The Bus Busy line keeps the Bus
Available line up while the transmission takes place.
When the device drops the Bus Busy signal, the Bus
Available line is lowered. If the Bus Request line is
again up, the allocation procedure repeates.

The Bus Busy line can be eliminated, but this essen
tially converts the bus control to a decentralized Daisy
Chain (as discussed later).

The obvious advantage of such a scheme is its simplic
ity: very few control lines are required, and the number
of them is independent of the number of devices; hence,
additional devices can be added by simply connecting
them to the hus.

A disadvantage of the Daisy Chaining scheme is its
susceptibility to failure. If a failure occurs in the Bus
Available circuitry of a device, it could prevent suc
ceeding devices from ever getting control of the bus or
it could allow more than one device to transmit over
the bus at the same time. However, the logic involved
is quite simple and could easily be made redundant to
increase its reliability. A power failure in a single device
or the necessity to take a device off-line can also be
problems with the Daisy Chain method of control.
A~other disadvantage is the fixed priority structure

which results. The devices which are "closer" to the
Bus Controller always receive control of the bus in
preference to those which are "further away". If the

closer devices had a high demand for the bus, the further
devices could be locked out.

Since the Bus Available signal must sequentially
ripple through the devices, this bus assignment mecha
nism can also be quite slow.

Finally, it should be noted that with Daisy Chaining,
cable lengths are a function of system layout, so adding,
deleting, or moving devices is physically awkward .

Figure 8a illustrates a centralized Polling system. As
in the centralized Daisy Chaining method, each device
on the bus can place a signal on the Bus Request line.
When the Bus Controller receives a request, it begins
polling the devices to determine who is making the re
quest. The polling is done by counting on the polling
lines. When the count corresponds to a requesting
device, that device raises the Bus Busy line. The con
troller then stops the polling until the device has com
pleted its transmission and removed the busy signal.
If there is another bus request, the count may restart
from zero or may be continued from where it stopped.

Restarting from zero each time establishes the same
sort of device priority as proximity does in Daisy Chain
ing, while continuing from the stopping point is a round
robin approach which gives equal opportunity to all
devices. The priorities need not be fixed because the
polling sequence is easily altered.

The Bus Request line can be eliminated by allowing
the polling counter to continuously cycle except while
it is stopped by a device using the bus. This alternative
impacts the restart (i.e., priority) philosophy,and the
average bus assignment time.

Polling does not suffer from the reliability or physical
placement problems of Daisy Chaining, but the num
ber of devices in Figure 8a limited by the number of
polling lines. Attempting to poll bit-serially involves
synchronous communication techniques (as described
later) and the attendant complications.

Figure 8b shows that centralized Polling may be
made independent of the number of devices by placing
a counter in each device. The Bus Controller then is
reduced to distributing clock pulses which are counted

CLOCK

OSCILLATOR
... BUSY (INHIBIT)

DEVICE
0

~

,Ir

DEVICE
N

Figure Sb-Centralized bus control: polling with local counters.

Systematic Approach to Design of Digital Bussing Structures 723

by all devices. When the count reaches the code of a
device wanting the bus, the device raises the Busy line
which inhibits the clock. When the device completes
its transmission, it removes the Busy signal and the
counting continues. The devices can be serviced either
in a round-robin manner or on a priority basis. If the
counting always continues cyclically when the Busy
signal is removed, the allocation is round-robin, and if
the counters are all reset when the Busy signal is re
moved, the devices are prioritized by their codes. It is
also possible to make the priorities adaptive by altering
the codes assigned to the devices. The clock skew
problems tend to limit this technique to small slow
systems; it is also exceptionally susceptibh~ to noise and
clock failure.

Polling and Daisy Chaining can be combined into
schemes where addresses or priorities are propagated
between devices instead of a Bus Available signal. This
adds some priority flexibility to Daisy Chaining at the
expense of more lines and logic.

The third method of centralized bus control, Inde
pendent Requests, is shown in Figure 9. In this case
each device has a separate pair of Bus Request and Bus
Granted lines, which it uses for communicating with
the Bus Controller. When a device requires use of the
bus, it sends its Bus Request to the controller. The con
troller selects the next device to receive service and
sends a Bus Granted to it. The selected device lowers
its request and raises Bus Assigned, indicating to all
other devices that the bus is busy. After the transmis
sion is complete, the device lowers the Bus Assigned
line and the Bus Controller removes Bus Granted and
selects the next requesting device.

The overhead time required for allocating the bus can
he shorter than for Daisy Chaining or Polling since all
Bus Requests are presented simultaneously to the Bus
Controller. In addition, there is complete flexibility
available for selecting the next device for service. The
controller can use prespecified or adaptive priorities, a
round-robin scheme, or both. It is also possible to dis-

I DEVICE 1---1 DEVICE 1 0 N

.... BUS REQUEST 0 I j
~ ~ ~ j~

~

BUS BUS GRANTED 0
I

CONTROLLER I
I

BUS REQUEST N

BUS GRANTED N , ,
BUS ASSIGNED

Figure 9-Centralized bus control: independent requests

BUS
_------.... DEVICE 0

AVAILABLE

BUS
REQUEST

o
BUS

REQUEST
N

Figure lOa-Decentralized bus control: daisy chain 1

able requests from a particular device which, for
instance, is known or suspected to have failed.

The major disadvantage of Independent Requests is
the number of'lines and connectors required for control.
Of course, the complexity of the allocation algorithm
will be reflected in the amount of Bus Controller hard
ware.

Decentralized bus control

In a decentrally controlled system, the control logic is
(primarily) distributed throughout the devices on the
bus. As in the centralized case, there are at least three
distinct schemes, plus combinations and modifications
of these:

• Daisy Chaining
• Polling.
• Independent Requests

A decentralized. Daisy Chain can be constructed
from a centralized one by omitting the Bus Busy line
and connecting the common Bus Request to the "first"
Bus Available, as shown in Figure lOa. A device requests
service by raising its Bus Request line if the incoming
Bus Available line is low. When a Bus Available signal
is received, a device which is not requesting the bus
passes the signal on. The first device which is requesting
service does not propagate the Bus Available, and keeps
its Bus Request up until finished with the bus. Lowering
the Bus Request lowers Bus Available if no successive
devices also have Bus Request signals up, in which case
the "first" device wanting the bus gets it. On the other
hand, if some device "beyond" this one has a Bus Re
quest, control propagates down to it. Thus, allocation is
always on a round-robin basis.

A potential problem exists in that if a device in the
interior of the chain releases the bus and no other de
vice is requesting it, the fall of Bus Request is propagat
ing back toward the "first" device while the Bus Avail
able signal propagates "forward." If devices on both

724 Fall Joint Computer Conference, 1972

DEVICE
...

DEVICE
r+ 0 4 1 - DEVICE

N f-----+

BUS AVAILABLE

Figure 1Ob-Decentralized bus control: daisy chain 2

sides of the last user now raise Bus Request, the one to
the "right" will obtain the bus momentarily until its
Bus Available drops when the "left" device gets control.
This dilemma can be avoided by postponing the bus as
signment until such races have settled out, either asyn
chronously with one-shots in each device or with a
synchronizing signal from elsewhere in the system.

A topologically simpler decentralized Daisy Chain is
illustrated in Figure lOb. Here, it is not possible to un
ambiguously specify the status of the bus by using a
static level on the Bus Available line. However, it is
possible to determine the bus status from transitions on
the Bus Available line. Whenever the Bus Available
coming· into a device changes state and that device
needs to use the bus, it does not pass a signal transition
on to the next device; if the device does not need the
bus, it then changes the Bus Available signal to the next
device. When the bus is idle, the Bus Available signal
oscillates around the Daisy Chain. The first device
to request the bus and receive a Bus Available signal
change! terminates the oscillation and takes control of
the bus. When the device is finished with the bus, it
causes a transition in Bus Available to the next device.

Dependence on signal edges rather than levels renders
this approach somewhat more susceptible to noise than

DEVICE DEVICE I 0 ---------- N

~. ..~ . ,..... :::... H ~ . .:: ~

~ ""II""" POLLING CODE ""II ~

" BUS AVAILABLE

"
" BUS ACCEPT "

Figure ll-Decentralized bus control: polling

the previous one. This problem can be minimized by
passing control with a request/acknowledge type of
mechanism such as described later for communication,
although this slows bus allocation. Both of these de
centralized Daisy Chains have the same single-point
failure mode and physical layout liabilities as the
centralized version. Specific systems may prefer either
the (centralized) priority or the (decentralized) round
robin algorithm, but they are equally inflexible (albeit
simple).

Decentralized Polling can be performed as shown in
Figure 11. When a device is willing to relinquish control
of the bus, it puts a code (address or priority) on the
polling lines and raises Bus Available. If the code
matches that of another device which desires the bus,
that device responds with Bus Accept. The former
device drops the polling and Bus Available lines, and
the latter device lowers Bus Accept and begins using
the bus. If the polling device does not receive a Bus
Accept (a Bus Refused line could be added to dis-

DEVICE ---------- DEVICE
0 N

j~ .~~ 4~ ~" ~

"11> BUS REQUESTS "'II ~

,. BUS ASSIGNED ,r

Figure 12-Decentralized bus control: independent requests

tinguish between devices which do not desire the bus
and those which are failed), it changes the code ac
cording to some allocation algorithm (round-robin or
priority) and tries again. This approach requires that
exactly one device be granted bus control when the
system is initialized. Since every device must have the
same allocation hardware as a centralized polling Bus
Controller, the decentralized version utilizes substanti
ally more hardware. This buys enhanced reliability in
that failure of a single device does not necessarily
affect operation of the bus.

Figure 12 illustrates the decentralized version of
Independent Requests. Any device desiring the bus
raises its Bus Request line, which corresponds to its
priority. When the current user· releases the bus by
dropping Bus Assigned, all requesting devices examine
all active Bus Requests. The device which recognizes
itself as the highest priority requestor obtains control
of the bus by raising Bus Assigned. This causes all
other requesting devices to lower their Bus Requests

Systematic Approach to Design of Digital Bussing Structures 725

(and to store the priority of the successful device if a
round-robin algorithm is to be accomodated).

The priority logic in each device is simpler than that
in the centralized counterpart, but the number of lines
and connectors is higher. If the priorities are fixed
rather than dynamic, not all request lines go to all
devices, so the decentralized case uses fewer lines in
systems with up to about 10 devices. Again, the de
centralized method offers some reliability advantages
over the centralized one.

The clock skew problems limit this process to small
dense systems, and it is exceptionally susceptible to
noise and clock failure.

Bus communication techniques

Once a device has obtained control of a bus, it must
establish contact with the desired destination. The in
formation required to do this includes

• Source Address
• Destination Address
• Communication Class
• Action Class.

The source address is often implicit, and the destina
tion address may be also, in the case of a dedicated bus.
Communication class refers to the type of information
to be transferred: e.g., data, command, status, interrupt
etc. This too might be partially or wholly implicit, or
might be merged with the action class, which deter
mines the function to be performed, such as input,
output, etc. After this initial coordination has been
accomplished, the actual communication can proceed.
Information may be transferred between devices syn
chronously, asynchronously, or semisynchronously.

Synchronous bus cOInInunication

Synchronous transmission techniques are well under
stood and widely used in communication systems, pri
marily because they can efficiently operate over long
lengths of cable. A synchronous bus is characterized by
the existence of fixed, equal-width time slots which are
either generated or synchronized by a central timing
mechanism.

The bus timing can be generated globally or both
globally and locally. A globally timed bus contains a
central oscillator which broadcasts clock signals to all
units on the bus. Depending on the logical structure and
physical layout of the bus, clock skew may be a serious
problem. This can be somewhat alleviated by distribut
ing a globally generated frame signal which synchro-

nizes a local clock in each device. The local clocks drive
counters which are decoded to identify the time slot as
signed to each device. A sync pulse occurs every time
the count cycle (Le., frame) restarts. The device clocks
must be within the initial frequency and temperature
coefficient tolerances determined by the bus timing
characteristics. Skew can still exist if a separate frame
sync line is used, but can be avoided by putting frame
sync in the data. The sync signal then must be separable
from the data, generally through amplitude, phase, or
coding characteristics. If the identifying characteristic
is amplitude, the line drivers and receivers are much
more complex analog circuits than those for simple bi
nary data. If phase is used, the sync signal must be
longer than a time slot, which costs bus bandwidth and
again adds an analog dimension to the drivers and re
ceivers. If the sync signal is coded as a special binary
sequence, it could be confused with normal data, and
can require complex decoders.

All of the global and global/local synchronization
techniques are quite subject to noise errors.

There are two basic approaches to synchronous
busses: the time slots may be assigned to devices on
either a dedicated or non-dedicated basis. A mix of both
dedicated and undedicated slots can also be used. If
time slots are dedicated, they are permanently allocated
to a device regardless of how frequently or infrequently
that device uses them. Each device on the bus is allowed
to communicate on a rotational (time division multi
plex) basis. The only way that any priority can be es
tablished is by assigning more than one slot to a device
(sometimes call super-commutation). More than one
device may be assigned to a single time slot by sub
multiplexing (subcommutating) slower or mutually ex
clusive devices.

Generally, not all devices will wish to transmit at
once; system requirements may not even require or
permit it. If any expansion facilities for additional de
vices are provided, many of the devices may not even
be implemented on any given system. These two factors
tend to waste bus bandwidth, and lowering the band
width to an expected "average" load may risk unac
ceptable conflicts and delays in peak traffic periods.

Another difficulty that reduces throughput on a dedi
caded time slot bus is that devices frequently are not
all the same speed. This means that if a device operates
slower than the time slot rate, it cannot run at its full
speed. The time slot rate could be selected to match the
rate of the slowest device on the bus, but this slows
down all faster devices. Alternatively, the time slot
rate can be made as fast as the fastest device on the bus,
and buffers incorporated into the slower devices. De
pending on the device rate mismatches and the length
of data blocks, t?-ese buffers could grow quite large. In

726 Fall Joint Computer Conference, 1972

addition, the buffers must be capable of simultaneous
input and output (or one read and one write in a time
slot period), or else the whole transfer is delayed until
the buffer is filled. Another approach is to run the bus
slower than the fastest device and assign multiple time
slots to that device, which complicates the control and
wastes bus bandwidth if that device is not always trans
ferring data. Special logic must also be included if
burst or block transfers are to be permitted, since a
device normally does not get adjacent time slots.

For reliability, it is generally desirable that the receiv
ing device verify and acknowledge correct arrival of the
data. This is most effectively done on a word basis unless
the physical nature of the transmitting device precludes
retry on anything other than a complete block or mes
sage. If a synchronous time slot is wide enough to allow
a reply for every word, then data transmission will be
slower than with an asynchronous bus because the time
slots would have to be defined by the slowest device on
the bus. One solution is to establish a system convention
that verification is by default, and if an error does occur,
a signal will be returned to the source device N (say
two) time slots later. The destination has time to do the
validity test without slowing the transfer rate· however , ,
the source must retain all words which have been trans
mitted but not verified.

Non-dedicated time slots are provided to devices
only as needed, which improves bus utilization effi
ciency at the cost of slot allocation hardware. Block
transfers and priority assignment schemes are possible
if the bus assignment mechanism is fast enough. The
device speed and error checking limitations of the
dedicated case are also shared by· non-dedicated sys
tems.

Asynchronous bus com.m.unication

Asynchronous bus communication techniques fall
into two general categories: One-Way Command, and
Request/ Acknowledge. A third case is where clocking
information is derived from the data itself at the desti-

DATA
I I I I

DATA READY
t I
I I I I I
I t1 I t2 I t3 It4 I
I I I I I

Figure l3-Asynchronous, source-controlled, one-way
command communication

DATA

DATA I
I REQUEST I I I

I t1 t t2 :
I

I I
I I
14 t3 ·t

Figure l4-Asynchronous, destination-controlled, one-way
command communication

nation (using phase modulation, etc.) ; this is not treated
here because it is primarily suited to long-distance bit
serial communications applications and is well docu
mented elsewhere.

One-Way Command refers to the fact that the data
transfer mechanism is completely controlled by only
one of the two devices communicating-once the trans
fer is initiated, there is no interaction (except, perhaps,
for an error signal).

A One-Way Command (OWC) interface maybe con
trolled by either the source or the destination device.

With a source-controlled OWC interface, the trans
mitting device places data on the bus, and signals Data
Ready to the receiving device, as seen in Figure 13.
Timing of Data Ready is highly dependent on imple
mentation details, such as exactly how it is used by the
destination device. If Data Ready itself directly strobes
in the data, then it must be delayed . long enough (h)
for the data to have propagated down the bus and
settled at the receiving end before Data Ready arrives.
Instead of "pipelining" data and Data Ready, it is
safer to allow the data to reach the destination before
generating Data Ready, but this makes the transfer
rate a function of the physical distance between devices.
A better approach is to make Data Ready as wide as
the data (i.e., h=t3 =O), and let the receiving device
internally delay before loading. t4 is the time required
either for the source device to reload its output data
register, or for control of the bus to be reassigned.

The principal advantages of the source-controlled
OWC interface are simplicity and speed. The major dis
advantages are that there is no validity verification
from the destination, it is difficult and inefficient to
communicate between devices of different speeds, and
noise pulses on the Data Ready line might be mistaken
for valid signals. The noise problem can be minimized

Systematic Approach to Design of Digital Bussing Structures 727

by proper timing, but usually at the expense of transfer
rate.

The validity check problem can be avoided with a
destination-controlled owe interface, such as shown
in Figure 14. The receiving device raises Data Request,
which causes the source to place data on the bus. The
destination now has the problem of deciding when to
look at the data lines, which is related to the physical
distance involved. If an error is detected in the word,
the receiving device sends a Data Error signal instead
of another Data Request, so the validity check time
may limit the transfer rate. The speed is also adversely
affected by higher initial overhead, and by twice the
number of bus propagation delays as used by the
source-controlled interface.

The Request/Acknowledge method of asynchronous
communication can be separated into three cases: N on
Interlocked, Half-Interlocked, and Fully-Interlocked.

DATA

DATA READY

:~P---: __ ~ __ !~_
I I I I

DATA ACCEPT

tl I t2 I I t4 It6 I
I " I I I I ,
t+- t3 -+t I

t+- t5 -..

Figure I5-Asynchronous, non-interlocked,
request/acknowledge communication

Figure 15 illustrates the Non-Interlocked method.
The source puts data on the bus, and raises Data Ready;
the destination stores the data and responds with
Data Accept, which causes Data Ready to fall and new
data to be placed on the lines. If an error is found in the
data, the receiving device raises Data Error instead of
Data Accept. This signal interchange not only provides
error control, but also permits operation between de
vices of any speeds. The price is primarily speed, al
though some added logic is also required. As with the
One-Way Command interface, the exact timing is a
function of the implementation. There are now two
lines susceptible to noise, and twice as many bus delays
to consider. Improper ratios of bus propagation time
and communication signal pulse widths could allow
another Data Ready to come and go while Data Accept
is still high in response to a previous one, which would
hang up the entire bus.

This can be avoided by making Data Ready remain
up until Data Accept (or Data Error) is received by the

DATA--...I[I

DATA READY'-----~

DATA ACCEPT

tl t2
I I
't3t
I '.
I
I

t5

t4

Figure I6-Asynchronous, half-interlocked,
request/acknowledge communication

source, as seen in Figure 16. In this Half-Interlocked
interface, if Data Ready comes up while Data Accept
is still high, the transfer will only be delayed. Further
more, the variable width of Data Ready tends to pro
tect it from noise. There is no speed penalty and very
little hardware cost associated with these improvements
over the Non-Interlocked case.

One more potential timing error is possible if Data
Accept extends over the source buffer reload period.and
masks the leading edge of the next Data Ready. Figure
17 shows how this is avoided with a Fully-Interlocked
interface where a new Data Ready does not occur until
the trailing edge of the old Data Accept (or Data Error) .
Also, both communication signals are now compara
tively noise-immune. The device logic is again slightly
more complex, but the major disadvantage is that the
bus delays have doubled over the Half-Interlocked case,
nearly halving the transfer rate upper limit.

Semisynchronous bus cOInmunication

Semisynchronous busses may be thought of as hav
ing time slots which are not necessarily fixed equal
width. On the other hand, they might also be viewed
as essentially asynchronous busses which behave
synchronously when not in use.

DATA

DATA READY

DATA ACCEPT

Figure I7-Asynchronous, fully-interlocked,
request/acknowledge communication

728 Fall Joint Computer Conference) 1972

DATAl:j t
BUSAVAILABLE ~------..... ----

I I I I
~tll4-t I

1 I I
-+t t2 r+-- t3 ~

Figure 18-Semisynchronous, source-controlled, one-way
command communication

Semisynchronous busses were devised to retain the
basic asynchronous advantage of communication' be
tween different speed devices, while overcoming the
asynchronous disadvantage of real-time error response
and the synchronous disadvantage of clock skew. Error
control in a synchronous system does not impede the
transfer rate because the error signal can be deferred as
many time slots as the validity test requires. This is not
possible on a conventional asynchronous bus since there
is no global timing signal available to all devices. Ac
tually, this is true only when the bus is idle, because
while it is in use there are one or more communication
signals which may be observed by all devices. So an
asynchronous bus could defer the Data Error signal for
some N word-times as defined by whatever transfer
technique is employed. But when no device is using the
bus, these signals normally stop, so the one or more
pairs of devices which transferred the last N words have
no time reference for a deferred error response. The semi
synchronous bus handles this problem by generating
extra communication signals which serve as pseudoclock
pulses for this purpose when the bus is idle. Only N
pulses are actually needed, but a continuous oscillation
may facilitate the restart of normal bus operation.

The location of this pseudoclock depends on the bus
control· method. If the bus is centrally controlled, the
Bus Controller can detect the idle bus condition and
generate the pseudo clock signals. A decentrally con
trolled bus requires that this function be performed by

DATA

DATAftEADY/ ~ 1 r;~ 2 rL
BUS AVAILABLE ~ ld---.~ i .. -----.....
DATA ACCEPT I I I ~J- n'--__ _

f I I I I I
I tll 1 It41 I

1 t2 I t+- t5 --.J
I 1
t+- t3 ~

Figure 19-5emisynchronous, non-interlocked
request / acknowledge communication

(Data Ready/Bus Available)

DATA-....

W
") r: I-L

DATAREADY---...... ~ t;) _II I

DATA ACCEPTI - ~1-.. ___ ..,.._~I-
BUS AVAILABLE 1-1 I I I I

~11 It~: 151
I I I
14- t2 .,..t~

Figure 20-Semisynchronous, non-interlocked,
request/acknowledge communication

(Data Accept/Bus Available)

the last device to use the bus. The replication of logic
adds cost, and if this last device should fail while gen
erating the pseudoclocks, the entire bus will be down.

Like asynchronous busses, semisynchronous busses
may be either One-Way Command or Request/
Acknowledge.

Figure 18 illustrates how the timing of a semisyn
chronous source-controlled bus resembles that of its
asynchronous counterpart (there is no corresponding
destination-controlled case) . Instead of the source
device sending a Data Ready to signal the presence of
new data, it sends a Bus Available to define the end of
its time slot and the beginning of the next. During a
time slot, the bus assignment for the following slot is
made; Bus Available then causes the next device to
place its destination address and data on the bus. The
selected destination then waits for the data to settle,
loads it, and generates another Bus Available.

Combining the function of Data Ready with that of
Bus Available (a line generally required by an asyn
chronous bus) is a benefit which accrues to all semi
synchronous busses. The semisynchronous One-Way
Command interface does avoid the real-time error re~
sponse, but it is still highly susceptible to noise, and
incompatible with devices of differing speeds.

DATA~ ~

DATA READYI --1 \ ~:
BUS AVAILABLE ~ ~A:'i! I
DATA ACCEPT I I I I I I

I I I I. t4+1 t5 I
I ~I+I I I

I I I
~ t1~ t3 r+-

Figure 21-Semisynchronous, half-interlocked,
request/acknowledge communication

(Data Ready /Bus Available)

Systematic Approach to Design of Digital Bussing Structures 729

DATAR::::~ ~~i
BUS AVAILABLE I ~~ i -.-.., -----
DATA ACCEPT ~ i .. .---__ -;1-.--;--_ , ____ _

~ t1 --+II+- t3~ t4 t
t2-., t4- I

Figure 22-Semisynchronous, half-interlocked,
request / acknowledge communication
(toggling Data Ready/Bus Available)

For semisynchronous as well as asynchronous busses,
there are Non-Interlocked, Half-Interlocked, and Fully
Interlocked Request/Acknowledge interfaces.

The Non-Interlocked interface shown in Figure 19 is
a direct extension of the One-Way Command case. It
h.andles de,vices of different speeds, but also is suscep
tIble to nOIse and potential hangup.

However, a semisynchronous bus using Data Ready
as Bus Available for a Non-Interlocked interface picks
up one of the liabilities of synchronous busses. The
transmitting device will not generate Bus Available
until Data Accept has been received and its word-time
is finished, which wastes bus bandwidth if a slower
source is followed by a faster one in the next time slot.
This can only be alleviated with the same sort of bus
bandwidth and buffer size trade-offs that a synchronous
bus would use to match different device speeds.

Figure 20 illustrates a scheme which solves this diffi
culty by using Data Accept for Bus Available. This
optimizes bus bandwidth in the asynchronous sense
that the transfer rate is slaved to the speed of the re
ceiving device. Of course, the noise and hangup prob
lems are still present.

Since using Data Ready as Bus Available is unsuc
cessful for Non-Interlocked interfaces, it is not surpris-

DATA~I ~
DATA READY I '\d1------

; II I' DATA ACCEPTI ----!--.....:.--....;;;..,-
BUS AVAILABLE " I I I I

I I I I
-.j t1 t4-t2 I I

I 1 I
-+1,...1

1t3 I
I+- t4-.j

Figure 23-Semisynchronous, half-interlocked,
request/acknowledge communication

(Data Accept/Bus Available)

DATA

DATA READYI
BUS AVAILABLE

DATA ACCEPT
I
1 t1

I I
I I
!4- t2 ~

Figure 24-Semisynchronous, fully-interlocked,
request/acknowledge communication

(Data Ready /Bus Available)

ing that it doesn't work in the Half-Interlocked case
either. As seen in Figure 21, ts is wasted because only
the leading edge of Data Ready is used asBus Available.
Als?, one device would try to hold Bus Available up
whIle another is pulling it down. The second device
could wait for the first to release the line, but skew on
the Data Accept line from the first destination to the
first and second sources would cause the wait to be
quite lengthy. Furthermore, if Data Accept must be
used by both source devices, it may as well transfer
control instead of Bus Available.

To keep from wasting ts, it might be proposed that
Bus Available simply be toggled and both edges be
utilized as in Figure 22, but the same state conflict
exists here. Toggling a Bus Available flip-flop with
Data Accept makes no more sense than both source
devices employing Data Accept, and would add time.

Thus, Data Accept must be converted to Bus Avail
able, as shown in Figure 23. Except for a deferred error
signal, the disabilities of a conventional Half-Inter
locked asynchronous bus continue to apply.

The same reasoning causes the Fullv-Interlocked
interface of Figure 24 to be rejected for that of Figure
25, where the trailing edge of Data· Accept serves as
Bus Available.

DATA

DATA READY

DATA ACCEPT I
BUS AVAILABLE I I I

It11 t21
I I I

Figure 25-Seinisynchronous, fully-interlocked,
request / acknowledge communication

(Data Accept/Bus Available)

2

730 Fall Joint Computer Conference, 1972

Data transfer philosophies

There are five basic data transfer philosophies that
can be considered for a bus:

• Single word transfers only
• Fixed length block transfers only
• Variable length block transfers only
• Single word or fixed length block transfers
• Single word or variable length block transfers.

(It should be noted that here the term "word" is used
functionally to denote the basic information unit on the
bus· bus width factors are covered later.) , .

The data transfer philosophy is directly involved WIth
three other major aspects of the system: the access
characteristics of the devices using the bus; the control
mechanism by which the bus is allocated (if it is non
dedicated); and the bus communication techniques. Of
course, if the bus connects functional units of a com
puter such as processors and memories, the data trans
fer philosophy may severely impact programming,
memory allocation and utilization, etc.

Single words only

The choice of allowing only single words to be trans
ferred has a number of important system ramifications.
First, it precludes any effective use of purely block
oriented devices, such as disks, drums, or BORAMs.
These devices have a high latency and their principal
value lies in amortizing this time across many words in
a block. To a lesser extent, this concern also applies to
other types of devices. There can be substantial initial
overhead in obtaining access to a device: bus acquisi
tion, bus propagation, busy device delay, priority reso
lution, address mapping, intrinsic device access time,
etc. Prorating these against a block of words would re
duce the effective access time.

The second factor in a single-word-only system is the
bus control method. Since a non-dedicated bus must be
reassigned to another device for each word, the alloca
tion algorithm may have to be very fast to meet the bus
throughput specs. Even if bus assignment occurs in
parallel with data transfer, this could restrict the so
phistication of the algorithm, the bus bandwidth, or
both. Judiciously selected parameters (speed, priorities,
etc.) conceivably could enable a bus controller to handle
blocks from a slow device on a word-by-word basis.

A single-word-only bus requires that the communica
tion scheme operate at the word rate, whereas with
block transfers it might be possible for devices to effect
higher throughput 'by interchanging communication
signals only at the beginning and end of each block.

Fixed length blocks only

Bus bandwidth may be increased at the expense of
flexibility by transferring only fixed length blocks of
data. Problems arise when the bus block size does not
match that of a block-oriented device on the bus. If
the bus blocks are smaller, some improvement is
achieved over the single-word-only bus, but not as
much as would be possible. If the bus blocks are too
large, extraneous data is transferred, which ,:ast~s bus
bandwidth and buffer space, and unnecessarlly tIes up
both devices. However, there are applications such as
lookaside memories where locality of procedure and
data references make effective use of a purely fixed
length block transfer philosophy.

Since the bus is assigned for entire blocks, the control
can be slower and thus simpler. Likewise, the communi
cation validity check can be restricted to blocks because
this is the smallest unit that could be retried in case of
an error. The Data Ready aspect of communication
would have to remain on a word basis unless a self
clocked modulation scheme is used.

Variable length blocks only

The use of dynamically variable length blocks is
significantly more flexible than the two previous ap
proaches, because the block size can be matched to the
physical or logical requirements of the devices involved
in the transfer. This capability makes more efficient
use of bus bandwidth and device time when transferring
blocks. On the other hand, the overhead involved in
initiating a block transfer would also be expended for
single word transfers (blocks of length one). Thus, a
compromise between bandwidth and flexibility may
have to be arranged, based on the throughput require
ments and expected average block size. An example of
such a compromise would be a system in which the sizes
of the data blocks depended on the source devices. This
avoids explicit block length specification, reducing the
overhead and improving throughput.

The facility for one-word blocks requires that the
control scheme be able to reallocate the bus rapidly
enough to minimize wasted bandwidth. Data error
response may' also be required at the word rate.

Single words or fixed length blocks

In a system where there are high priority devices with
low data requirements, this might be a reasonable al
ternative. The single word option reduces the number
of cases where the over-size block would waste band
width, buffer space, and device availability, but it still

Systematic Approach to Design of Digital Bussing Structures 731

suffers from poor device and bus utilization efficiency
when more than one word but less than a block is
needed.

The expected mix of block and single word transfers
would be a primary influence on the selection of control
and communication mechanisms to achieve a proper
balance of cost and performance.

Single words or variable length blocks

As might be expected, the capability for both single
words and variable length blocks is the most flexible,
efficient, and expensive data transfer philosophy.
Single words can be handled without the overhead in
volved in initializing a block transfer. Data blocks can
be sized to suit the devices and applications, which
optimizes bus usage. The necessity for reassigning the
bus as often as every word time imposes a speed con
straint on the control method which must be evaluated
in light of the expected bus traffic statistics. If data
validity response is desired below a message level, the
choice of a communication scheme will be affected.

Bus width

The width of a bus impacts many aspects of the sys
tem, including cost, reliability, and throughput. Basi
cally, the objective is to achieve the smallest number of
lines consistent with the necessary types and rates of
communication.

Bus lines require drivers, receivers, cable, connectors,
and power, all of which tend to be costly compared to
logic. Connectors occupy a significant amount of physi
cal space, and are also among the least reliable com
ponents in the system. Reliability is often diminished
even further as the number of lines increases due to the
additional signal switching noise.

Line combination, serial/parallel conversions, and
multilevel encoding are some of the fundamental
techniques for reducing bus width. Combination is a
method of reducing the number of lines based on func
tion and direction of transmission. Complementary
pairs of simplex lines might be replaced with single half
duplex lines. Instead of dedicating individual lines to
separate functions, a smaller number of multiplexed
lines might be more cost effective, even if extra logic is
involved. This includes the performance of bus control
functions with coded words on the data lines.

Serial/parallel tradeoffs are frequently employed to
balance bus width against system cost and performance.
Transmitting fewer bits at a time saves lines, connectors,
drivers, and receivers, but adds conversion logic at each
end. It may also be necessary to use higher speed (and

thus more expensive) circuits to maintain effective
throughput. The serial/parallel converters at each end
of the bus can be augmented with buffers which absorb
traffic fluctuations and allow a lower bandwidth bus.
(Independent of bus width considerations, this concept
can minimize communication delays due to busy desti
nation devices.) Bit-serial transmission generally is the
slowest, requires the most buffering and the least line
hardware, produces the smallest amount of noise, and
is the most applicable approach in cases with long lines.
Parallel transmission is faster, uses more line hardware,
generates greater noise, and is more cost-effective over
shorter distances.

Multilevel encoding is an approach which converts
digital data into analog signals on the bus. It is occa
sionally used to increase bandwidth by sending parallel
data over a single line, but there are numerous disad
vantages such as complexity, line voltage drops, lack of
noise immunity, etc.

THE SYSTEMATIC APPROACH

A systematic approach to the design of digital bussing
structures is outlined in Figure 26. It assumes that pre-

....-----1~ SYSTEM REQUIREMENTS
AND SPECIFICATIONS

+
STEP 1: TYPE AND NUMBER

OF BUSSES

t
STEP 2: CONTROL METHOD

+
~TEP 3: COMMUNICATION

TECHNIQUES

!
I

STEP 4: DATA TRANSFER
PHILOSOPHIES

!
STEP 5: BUS WIDTHS

t
DETAILED DESIGN

TECHNOLOGY
CONSTRAINTS

Figure 26-0utline of the systematic approach

732 Fall Joint Computer Conference, 1972

liminary functional requirements and specifications
have been established for the system. The tradeoffs
for each b~parameter are interactive, so several itera
tions are generally necessary. Even the system require
ments and specifications may be altered by this feed
back in order to achieve an acceptable bus configuration
within the technology constraints.

Step 1: Type and number of busses

This is the first and most fundamental step, and in
volves the specification of dedicated and/or non
dedicated busses. The factors to be considered are:
throughput; cost of cables, connectors, etc.; control
complexity; communication complexity; reliability;
modularity; and bus contention (i.e., availability).

Step 2: Bus control methods

The central choice is among three centralized and
three decentralized methods. The Step 1 decision re
garding dedicated and non-dedicated busses has a major
influence here. The other considerations are: allocation
speed; cost of cables, connectors, etc.; control complex
ity (cost); reliability; modularity; bus contention; al
location flexibility; and device physical placement
restrictions.

Step 3: Communication techniques

Either synchronous, asynchronous, or semisyn
chronous communication techniques may be used, de
pending on: throughput; cost; reliability; mixed device
speeds; bus utilization efficiency; data transfer philoso
phy; and bus length.

Step 4: Data transfer philosophies

This step is strongly influenced by the need for any
block-oriented devices on the bus. In addition, the data
transfer philosophy is a function of: control speed; al
location flexibility; control cost; throughput; communi
cation speed; communication technique; device utiliza
tion efficiency; and (perhaps) programming and mem
ory allocation.

Step 5: Bus width

Bus width is almost always primarily dictated by
either bus length or throughput. Other aspects of this
problem are: cost, reliability; communication tech
nique; and communication speed.

CONCLUSION

Historically, many digital bus structures have simply
"occurred" ad hoc without adequate consideration of
the design tradeoffs and their architectural impacts.
This is no longer a viable approach, because systems
are becoming more complex and consequently less
tolerant of busses which are designed by habit or added
as an afterthought. The progress in this area has been
hindered by a lack of published literature detailing all
the bus parameters and design alternatives. Some as
pects of bussing have been touched on briefly as a
subsidiary topic in computer architecture papers, and
a few concepts have been treated at great length in
the substantially different context of communications.
In contrast with these foregoing efforts, the intent of
this paper is to serve as a step towards a more systematic
approach to the entire digital bus structure problem
per se.

ANNOTATED BIBLIOGRAPHY

Although many digital designers recognize the im
portance of bus structures, there have been no previous
papers devoted solely to this subject. When bus struc
tures have been discussed in the literat1,ll'e, it has been
as a topic subsidiary to other aspects of computer
architecture. This section attempts to collect a com
prehensive but not exhaustive selection of important
papers which deal with various considerations of bus
structure design. A guide to the bibliography is given
below so that particular facets of this I!laterial can be
explored. Additionally, each entry has been briefly an
notated to provide information on its bus-related con
tents. The bibliography is grouped into nine categories:
Computer Architecture/System Organization, I/O,
Sorting Networks, Multiprocessors, Type and Number
of Busses, Control Methods, Communication Tech
niques, Data Transfer Philosophies, and Bus Width.

Computer architecture/system organization

(A2, B2, B4, D2, D3, D4, D7, D8, D9, H3, LI, L4,
L7, M4, M5, R5, S7, T4, WI, W5)

Papers in this category basically deal with the archi
tecture of computers and systems, and with how sub
systems relate to each other. Alternative architectures
(D2, L4, WI) and specific architectures (B2, B4, D3,
D4, D7, D8, D9, W5) are discussed. Item A2 is tutorial.
The impacts of bus structures (D2, H3, LI) and LSI
(L7, M5, R5) on systems organization are described.
S7 pursues the effects of new technology on bus struc-

Systematic Approach to Design of Digital Bussing Structures 733

tures per se. Report T4 (on which this paper is based)
examines the entire bussing problem, and contains a
detailed bus design for a specific system.

I/O

(A2, Cl, K4)

Several papers deal with bus structures as a subcase
of I/O system design. K4 is a tutorial on I/O architec
ture with many implications on bus structure com
munication and control. A2 discusses the relationships
among the executive, the data bus, and the remainder
of the system. Cl considers the overall architecture of
an I/O system and its control.

Sorting networks

(Bl, L6, T2, T3)

These papers deal with sorting or permuting bus
structures. Bl and L6 utilize very simple cells and
basically construct their systems from bitonic sorters.
T2 utilizes a different, approach which is oriented
toward ease of implementation with shift registers. T3
employs group theory and a cellular array approach to
derive a unique network configuration.

Multiprocessors

(AI, C2, C8, C9, Dl, G5)

These papers deal with the design of multiprocessor
computer systems. C9 covers the bus architecture of
multiprocessors through 1963. Al describes a multi
processor with dual non-dedicated busses controlled by
a decentralized daisy chain. C2 discusses the relation
ship between channel rates and memory requirements.
C8 and Dl are about multiprocessors using data ex
changes. G5 describes a multiprocessor bus that uses
associative addressing techniques in its communication
portion.

Type and number of busses

(AI, A3, B2, B6, D6, DlO, F2, Gl, 11, Kl, K3, L2,
L3, L9, M3, S5, W8, Z2)

The papers in this group describe a computer archi
tecture and include some comments relating to the
type and number of busses. Z2 is an example of a dedi
cated bus, while Al presents a non-dedicated bus. AI,
DlO, L2, L3, and Z2 are cases of bus structures with

different numbers of busses. B2 points out the hierarch
ical nature of bus structures. F2 is an example of a store
and forward bus structure with dedicated busses and
extensive routing control.

Control methods

(AI, A2, B7, PI, P2, P3, Ql, S2, S6, S8, W2, W4, Yl)

The majority of the control techniques are some form
of either centralized independent requests (A2, or de
centralized daisy chaining (AI). PI uses polling, and
P2 deals with priority control of a system.

Communication techniques

(C6, C7, D5, Fl, G3, G4, H2, H4, Ml, R2, R3, R4,
Sl, S3, S4, 89, TI, W6, W7)

These papers tend to be concerned with communica
tion techniques directly rather than as a subsidiary
topic. R2 discusses the information lines necessary to
communicate in a system. C6, C7, and Ml cover syn
chronous systems. H4 and S3 are good presentations of
the synchronous clock skew problem. 84 deals with the
design of a frame and slotted system. Fl describes the
use of phase-locked loops for synchronism, while W7
uses bit stuffing for synchronization. The synchronous
system in H2 uses a combination of global and local
timing. R3 deals with a synchronous system with non
dedicated time slots. D5 contains a good summary of
asynchronous communication, and G3 furnishes further
examples. G4 points out the importance of communica
tion in digital systems.

Data transfer philosophies

(A4, Cl, C3, C4, C5, G2, HI, L5, L8, M2, W3)

Papers in this category are concerned with the
philosophies of data transfers. A4 is about transmission
error checking and serial-by-byte transmission. C3,
C4, and C5 cover buffering and block size from a sta
tistical point of view in simple bus structures such as
"loops." G2 studies the choice of block sizes. L5 con
siders the buffering problem.

Bus width

(B3, B5, G3, C4, C5, K2, Rl, T5, Zl)

These papers address the problem of reducing the
number of lines in the bus. B3 deals with line drivers

734 Fall Joint Computer Conference, 1972

and receivers, and contains an extensive bibliography on
transmission line papers. B5 discusses balancing the
overall system configuration. C3, C4, and C5 are inter
ested in the relationships of burst lengths, number of
lines, etc. K2 describes a transmission system utilizing
multilevel encoding. T5 is a comprehensive study of line
reduction, and includes all the tradeoffs on buffering,
multilevel codes, etc., in the design of an actual bus. A
machine with a single 200 line bus structure is the topic
of Rl.

REFERENCES

Al R L ALONSO et al
A multiprocessing structure
Proceedings IEEE Computer Conference September 1967
pp 56-59
This paper describes a multiprocessor system with non-dedi
cated instruction and data busses. The control method is a
simple decentralized daisy chain.

A2 S J ANDELMAN
Real-time I/O techniques to reduce system costs
Computer Design May 1966 pp 48-54
This article describes two real-time I/O applications and
how a computer is used in each. It also indicates the
relationships among the system executive, the CPU
computations, and the I/O data bus. It includes centralized
bus control.

A3 J P ANDERSON et al
D825-a multiple-computer system for command and control
Proceedings FJCC 1962 AFIPS Press pp 86-96
This paper functionally describes the switch interlock
system of the Burroughs D825 system. The switch is
essentially a crossbar which can handle up to 64 devices.
A priority-oriented bus allocation mechanism handles
conflicting allocation requests. Priorities are preemptive.

A4 A AVIZIENIS
Design of fault-tolerant computers
Proceedings FJCC 1967 AFIPS Press pp 733-743
This paper describes the internal structure of the JPL-STAR
computer. The bus structure consists of two busses and two
bus checkers. The busses transmit information in four-bit
bytes and the bus checkers check for transmission errors.

B1 K E BATCHER
Sorting networks and their application
Proceedings SJCC 1968 AFIPS Press pp 307-314
This paper describes various configurations of bitonic sorting
networks which can be utilized as routing networks or
permutation switches in multiprocessor systems.

B2 H R BEELITZ
System architecture for large-scale integration
Proceedings FJCC 1967 AFIPS Press pp 185-200
This paper describes the architecture of LIMAC. It notes
the hierarchical nature of bus structures, stating, "A local bus
structure interconnects the sub-partitions of a functional
module in the same sense that the machine bus interconnects
all functional modules."

B3 ROBERG et al
PEPE implementation study
Honeywell Report 12251-FR Prepared for System
Development Corporation under Subcontract SDC 71-61

This report contains an extensive bibliography of signal
transmission papers and a survey of line drivers and
receivers. It also describes the bus designs for the PEPE
multiprocessor system.

B4 N A BOEHMER et al
Advanced avionic digital computer-arithmetic and control
unit design
Hughes Aircraft Report P70-517 prepared under Navy
contract N62269-70-C-0534 December 1970
This report describes a main data bus design for the
Advanced Avionic Digital Computer, including the bus
communication and allocation mechanisms.

B5 F P BROOKS K ElVERSON
A utomatic data processing
Wiley New York 1969 Section 5.4 Parameters of computer
organization pp 250-262
This section descusses speed/cost/balance tradeoffs in
computer architecture. Of specific interest is how bus width,
speed, and degree of parallelism affect computer perfor
mance. Examples of tradeoff results are given in terms of
the System/360.

B6 W BUCHHOLZ
Planning a computer system
M~Graw-Hill New York 1962
Chapter 16 of this book describes the data exchange of the
STRETCH computer. The data exchange is a switched bus
which handles data flow among I/O and external storage
units and the primary store. It is independent of CPU
processes and able to function concurrently with the central
processor.

B7 H B BURNER et al
A programmable data concentrator for a large computing
system
IEEE Transactions on Computers November 1969 pp
1030-1038
This paper describes the internal structure of a data
concentrator to be used with an IBM 360/67. The concen
trator utilizes an Interdata Model 4 computer. The details
of the bus structure, including timing and control signals,
are given. The system was built and utilized at Washington
State University, Pullman, Washington.

C1 G N CEDARQUIST
An input/output system for a multiprogrammed computer
Report No 223 April 1967 Department of Computer
Science University of Illinois
This report describes the architecture of I/O systems, and
deals with some parameters of bus structures through
discussion of data transfers. It is primarily concerned with
the implementation of centralized control and communica
tion logic.

C2 Y C E CHEN D LEPLEY
Bounds on memory requirements of multiprocessing systems
Proceedings 6th Annual Allerton Conference on Circuit and
System Theory October 1968 pp 523-531
This paper presents a model of a multiprocessor with a
multilevel memory. Given a computation graph with
specified execution times and main memory requirements,
bounds on the required main memory and the inter-memory
channel rates are calculated. The trade-off between main
memory size and backing memory channel capacity is
discussed at some length.

C3WWCHU
A study of asynchronous time division multiplexing for time
sharing computer systems
Proceedings FJCC 1969 AFIPS Press pp 669-678

Systematic Approach to Design of Digital Bussing Structures 735

This paper describes the use of an asynchronous time
division multiplexing system. A model is given which relates
buffer size and queuing delays to traffic, number of lines, and
burst lengths.

C4WWCHU
Demultiplexing considerations for statistical multiplexers
IEEE Transactions on Computers June 1972 pp 603-609
This paper discusses tradeoffs and simulation results useful
in the design of buffers used in a computer communication
system. The tradeoffs between message lengths, buffer size,
traffic intensity, etc., are considered.

C5 W W CHU A G KONHEIM
On the analysis and modeling of a class of computer
communication systems
IEEE Transactions on Communications June 1972
pp 645-660
This paper derives models for a computer communication
enyironment, applied to star and loop bus structure
systems. The model provides a means of relating statistical
parameters for traffic intensities, message lengths, etc.

C6 N CLARK A C GANNET
Computer-to-computer communication at 2.5 megabit/sec
Proceedings of IFIP Congress 62 North Holland Publishing
Company September 1962 pp 347-353
This paper describes an experimental synchronous high
speed (2.5 megabit/second) communication system. It
indicates the relationships of all system parts necessary to
communicate in a party-line fashion among three computers.

C7 COLLINS RADIO CORPORATION
C-system overview 523-0561644-001736 Dallas Texas October 1
1969
This brochure describes the architecture of the Collins
C-System, especially the design and features of the Time
Division Exchange (TDX) loop. The TDX loop is a 32
million bit-per-second serial communication link. Communi
cation between devices is at a 2 million word-per-second
rate. The system as initially implemented contained 16
channels, with expansion to a 512 million bit-per-second
capability envisioned.

C8 ME CONWAY
A multiprocessor system design
Proceedings FJCC 1963 AFIPS Press pp 139-146
This paper describes the design of a multiprocessor system
which useds a matrix switch (called a memory exchange) to
connect processors to memories. The unique feature of the
configuration is that an associative memory is placed
between each processor and the memory exchange for
addressing purposes.

C9 A J CRITCHLOW
Generalized multiprocessing and multiprogramming systems
Proceedings FJCC 1963 AFIPS Press pp 107-126
This paper describes the state of development of multi
processor systems in 1963. There were essentially three bus
schemes in use: the crossbar switch (Burroughs D825), the
multiple bus (CDC-3600) and the time-shared bus (IBM
STRETCH). Functional descriptions of the bus concepts
are presented.

D1 R L DAVIS et al
A building block approach to multiprocessing
Proceedings FJCC 1972 AFIPS Press pp 685-703
This paper describes a bus structure (called a Switch
Interlock) for use in a multiprocessor. It discusses the
tradeoffs in choosing the structure, and looks at single bus,
multiple bus, multiport, and crossbar systems. The Switch
Interlock is a dedicated bus matrix switch which supports

both single word and block transfers. The switch is designed
to be implemented for bus widths from bit-serial to fully
word-parallel.

D2 A J DEERFIELD
Architectural study of a distributed fetch computer
NAECON 1971 Record pp 214-217
This paper describes the distributed fetch computer in
which the fetch (procedure and data) portion of the machine
is distributed to the memory modules.

D3 A J DEERFIELD et al
Distributed fetch computer concept study
Air Force Contract No F-71-C-1417 February 1972
This report describes the design of a bus structure for use in
the distributed fetch computer. This machine repartitions
the fetch and execute portions of the processor in a multi
processor system. The fetch units are associated with the
memories instead of being with the execute units, thus
decreasing bus traffic.

D4 A J DEERFIELD et al
Interim report for arithmetic and control logic design study
Navy Contract N62269-72-C-0023 May 1972
This report describes a proposed bus structure for the
Advanced Avionic Digital Computer and some of the
tradeoffs considered during the design.

D5 J B DENNIS S S PATIL
Computation structures
Chapter 4-Asynchronous Modular Systems
MIT Department of Electrical Engineering Cambridge
Massachusetts
This chapter describes the reasons for asynchronous
systems, and gives examples of asynchronous techniques
and their timing mechanisms. It is useful in understanding
asynchronous communications.

D6 E W DEVORE D H LANDER
Switching in a computer complex for I/O flexibility
1964 NEC pp 445-447
This paper describes the IBM 2816 Switching Unit, the bus
system utilized to interconnect CPU's and tape drives. It
discusses the modularity tradeoffs made in the 2816.

D7 DIGITAL EQUIPMENT CORPORATION
PDP-II handbook
Chapter 8---Description of the UNIBUS pp 59-68 Maynard
Massachusetts 1969
This chapter of the PDP-ll user's manual describes the
UNIBUS functionally as a subsystem of the PDP-ll. Data
transfer operations performed by the bus are described and
illustrated with examples, along with general concepts of bus
operation and control.

D8 DIGITAL EQUIPMENT CORPORATION
PDP-11 interface
Application Note Maynard Massachusetts
This document gives a brief description of the PDP-ll
UNIBUS, a single undedicated bus with centralized
daisy-chain control and fully-interlocked request/acknowl
edge communication.

D9 DIGITAL EQUIPMENT CORPORATION
PDP-11 unibus interface manual
DEC-ll-HIAB-D Maynard Massachusetts 1970
This manual gives a detailed description of the PDP-ll
UNIBUS, its operation in the computer, and methods for
interfacing peripheral equipment to the bus.

DlO S B DINMAN
Direct function processor concept for system control
Computer Design March 1970 pp 55-60
This article describes the (patented) GRI-909 bus structure.

736 Fall Joint Computer Conference, 1972

The machine consists of a series of functional modules strung
between two undedicated busses with a bus modifier unit
(which serves a function similar to the alpha code on the
Harvard MARK IV). The GRI-909 is quite similar to the
DEC PDP-11.

F1 K FERTIG B C DUNCAN
A new high-speed general purpose input/output mechanism
with real-time computing capability
Proceedings FJCC 1967 AFIPS Press pp 281-289
This paper describes techniques for. I/O . processing of
self-clocked data utilizing phase locked loops.

F2 H FRANK et al
Computer communication network design-experience with
theory and practice
SJCC 1972 AFIPS Press pp 255-270
This paper describes the ARPANET design from the
vantage point of two years experience with the message
switching system. ARPANET is a store and forward
message switching network in which a device interfaces into
the system by means of an interface message processor
(IMP). The IMP then routes the message through the
network topology. This paper provides insight into the
design and specification of dedicated "store.,.and-forward"
message switching systems.

G1 E C GANGL
Modular avionic computer
NAECON 1972 Record pp 248-251
This paper describes the architecture of a modular computer
including its internal bus structure. The bus consists of four
parallel segments: a data bus, a status bus, a micropro
grammed command bus, and a power distribution bus.

G2 D H GIBSON
Considerations in block oriented systems design
Proceedings SJCC 1967 AFIPS Press pp 75-80
This paper describes the rationale and techniques for block
transfers between CPU and memory. The study is to
determine the affect of block size on CPU throughput.

G3 A I GROUDAN
The SKC-2000 advanced aerospace computer
NAECON 1972 Record pp 229-235
This paper describes the SKC-2000 computer and its
internal bus structure. The bus operates in a request/
acknowledge mode of communication and can handle
devices of different speeds from 1 microsecond to larger than
a millisecond with no design changes.

G4 H W GSCHWIND
Design of digital computers
Communications in Digital Computer Systems Chapter 8
Section 5 Springer-Verlag New York 1967 pp 347-367
This section describ~s computer I/O and access paths
(busses) in terms of their communication ramifications. It
points out that "even experts failed to look at computers
seriously from a communication point of view for a
surprisingly long time." It also details the communication
that occurs in some general computer configurations.

G5 D C GUNDERSON
Multi-processor computing apparatus
U S Patent 3521238 July 13 1967
This patent describes a method of bussing in a multipro
cessor system based upon the use of an associative switch.
This bus scheme allows processors to access a centralized
system memory by either location or some property of the
data (content addressabiIity). Each processor has its own
individual access to the system memory so the bus is very
reliable.

HI M L HANSON
Input/output techniques for computer communication
Computer Design June 1969 pp 42-47
This article describes the I/O systems in several UNIVAC
machines, and considers the types of data transfers, staus
words, number of lines, method of operation, etc., of these
bus structures.

H2 R H HARDIN
Self sequencing data bus technique for space shuttle
Proceedings Space Shuttle Integrated Electronic Conference
Vol 2 1971 pp 111-139
This presentation describes the design of SLAT (Slot
Assigned TDM), a data bus for space shuttle. SLAT is a
synchronous bus with global plus local synchronization. The
requirements, length, control method, clock skew, and
synchronization tradeoffs are discussed.

H3 H HELLERMAN
Digital computer system principles
Data Flow Circuits and Magnetic-Core Storage
McGraw-Hill New York 1967 Chapter 5 pp 207-235
This chapter contains a discussion of data flow or bus
circuits, with special emphasis on the trade-offs possible
between economy and speed. The author stresses the fact
that the bus organization of a computer is a major factor
determining its performance.

H4 G P HYATT
Digital data transmission
Computer Design Vol 6 Noll November 1967 pp 26-30
This article deals primarily with the transmission of data in
a synchronous bus structure. It considers in detail the clock
skew problem, and describes propagation delay and
mechanization problems. It concludes that the clock pulse
should not be daisy-chained, but radially distributed, and
that the sum (worst case) of data propagation delays must
be less than the clock pulse period.

11 F INOSE et al
A data highway system
Instrumentation Technology January 1971 pp 63-67
This article describes a data bus designed to interface many
digital devices together. The system is essentiaJly a
nondedicated single bus with one wire for data and another
for addresses. The system is connected together in a "loop
configuration." It uses a "5-value pulse" for synchroniza
tion, etc. The system has an access time of 200 microseconds
and can handle 100 devices on a bus up to 1 kilometer in
length.

Kl J C KAISER J GIBBON
A simplified method of transmitting and controlling digital
data
Computer Design May 1970 pp 87-91
This article treats the tradeoffs between the number of
parallel lines in a bus and the complexity of gating at the bus
destinations. The authors develop a matrix switch concept
as a data exchange under program control. The programmed
instruction thus is able to dynamically interconnect system
elements by coded pulse coincidence control of the switching
matrix.

K2 H KANEKO A SAWAI
Multilevel PCM transmission over a cable using feedback
balanced codes
NEC 1967 pp 508-513
This paper describes a multilevel PCM code (Feedback
Balanced Code) suitable for transmission of data on a
coaxial transmission cable.

Systematic Approach to Design of Digital Bussing Structures 737

K3 L J KOCZELA
Distributed processor organization
Advances in Computers Vol 19 Chapter 7 Communication
Busses Academic Press New York 1968 pp 346-349
This author presents a functional description of a bussing
scheme for a distributed cellular computer. Each processor
can address its own private memory plus bulk storage.
Communication between cells takes place over the bus in
two modes: Local (between two cells) and Global (controller
call plus one or more controlled cells). The intercell bus is
used for both instructions and data; all transfers are set up
and directed by the controller cell by means of eight bus
control commands.

K4 G A KORN
Digital computer interface systems
Simulation December 1968 pp 285-298
This paper is a tutorial on digital computer interfaces. It
begins with the party line I/O bus, and covers how devices
are controlled, how interrupts are handled, and how data
channels operate. It discusses the overall subject of
interfaces (I/O and bussing system) from the systems point
of view, describing how the subsystems all relate to each
other.

Ll J R LAND
Data bus concepts for the space shuttle
Proceedings Space Shuttle Integrated Electronic Conference
Vol 3 1971 pp 710-785
This presents the space shuttle data management computer
architecture from a bus-oriented viewpoint. It discusses the
properties and design characteristics of the bus structures,
and summarizes the design and mechanization trade-offs.

L2 F J LANGLEY
A universal function unit for avionic and missile systems
NAECON Record 1971 pp 178-185
This paper discusses some trade-offs in computer architec
tures, and categorizes some architectures by their bus
structures, providing an example for each category. It
considers single time-shared bus systems, multiple bus
systems, crossbar systems, dual bus external ensemble
systems, multiple-bus integrated ensemble systems, etc.

L3 R LARKIN
A mini-computer multiprocessing system
Second Annual Computer Designers Conference Los Angeles
California February 1971 pp 231-235
The topology of communication between computer sub
systems is discussed. Six basic topologies for communication
internal to a computer are described: (1) radial, (2) tree,
(3) bus, (4) matrix, (5) iterative, and (6) symmetric. Some
topological implications of bus structures are discussed
including the need to insure positive (one device) control of
the bus during its transmission phase. All six topologies can
be expressed in terms of dedicated and non-dedicated bus
structures.

L4 S E LASS
A fourth" generation computer organization
Proceedings SJCC 1968 AFIPS Press pp 435-441
This paper functionally describes the internal organization
of a "fourth-generation" computer including its data
channels and I/O bus structure.

L5 A L LEINER
Buffering between input/output and the computer
Proceedings FJCC 1962 pp 22-31
This paper describes the tradeoffs in synchronizing devices,
and considers solutions to the problem of buffering between
devices of different speeds.

L6 K N LEVITT
A study oj data communication problems in a self-repairable
multiprocessor
Proceedings SJCC 1968 AFIPS Press pp 515-527
This paper presents a method of aerospace multiprocessor
reliability enhancement by dynamic reconfiguration using
busses which are data commutators. Two realizations of
such a bus technique are permutation switching networks
and crossbar switches.

L7 S Y LEVY
Systems utilization of large-scale integration
IEEE Transactions on Computers Vol EC-16 No 5 1967
pp 562-566
This paper describes a new approach to computer organiza
tion based on LSI technology, employing functional
partitioning of both the data path and control. Of particular
interest is the data bus structure of an RCA Laboratories
experimental machine using LSI technology.

L8 W A LEVY E W VEITCH
Design for computer communication systems
Computer Design January 1966 pp 36-41
This article relates memory size considerations to a user's
wait time for a line to the memory. It is applicable to bus
bandwidth design in the analysis of buffer sizes needed to
load up a bus structure.

L9 R C LUTZ
PC M using high speed memory system for switching
applications
Data and Communication Design May-June 1972 pp 26-28
This article details a method of replacing a crossbar switch
with a memory having an input and output commutation
system and some counting logic. Advantages of this
approach are low cost and linear growth.

Ml J S MAYO
An approach to digital system network
IEEE Transactions on Communication Technology April
1967 pp 307-310
This paper deals with synchronizing communication be
tween devices with unlocked clocks. A system with frame
sync is postulated and the number of bits necessary for
efficient pulse stuffing is derived.

M2 J D MENG
A serial input/output scheme for small computers
Computer Design March 1970 pp 71-75
This article describes the trade-offs and results of designing
an I/O data bus structure for a minicomputer.

M3 J S MILLER et al
Multiprocessor computer system study
NASA Contract No 9-9763 March 1970
This report reviews the number and type of busses used in
several computing systems such as: CDC 6000, IBM DCS,
IBM 360 ASP series, IBM 4-Pi, Burroughs D825 and 5500,
etc. It goes on to suggest the design of a multiprocessor for
a space station. In particular the system has two busses,
one for I/O and one for internal transfers. Specifically
described are: message structure, access control, error
checking and required bandwidth. A 220 MHz bandwidth
requirement is deduced.

. M4 W F MILLER R ASCHENBRENNER
The GUS multicomputer system
IEEE Transactions on Computers December 1963
pp 671-676
This paper describes an Argonne Lab experimental com
puter with several memory and processing subsystems. All
internal memory communication is handled by the Dis-

738 Fall Joint Computer Conference, 1972

tributor, which functions as a data exchange and is
expandable. No detailed description of the Distributor
operation is furnished.

M5 R C MINNICK et al
Cellular bulk transfer systems
Air Force Contract No FI9628-67-C-0293 3 AD683744
October 1968
Part C of this report describes a bulk transfer system
composed of an input array, an output array, and a mapping
device. The mapping device moves data from the input to
the output array and may contain logic. Simple bulk
transfer systems are described which perform permutation
on the data during its mapping.

PI P E PAYNE
A method of data transmission requiring maximum turnaround
time
Computer Design November 1968 p 82
This article describes a method of controlling data trans
mission between devices by polling.

P2 M PIRTLE
Intercommunication of processors and memory
Proceedings FJCC 1967 AFIPS Press pp 621-633
This paper discusses the throughput of several different bus
structures in a system configuration with the intent of
providing the appropriate amount of memory bandwidth.
It describes the allocation sequence of a typical bus, and
concludes that it can be very effective to assign " ..•
priorities to requests, rather than to processors and busses
... with memory systems which provide ample memory bus
bandwidth to the processors."

P3 W W PLUMMER
Asynchronous arbiters
Computation Structures Group Memo No 56 MIT Project
MAC February 1971
This memo describes logic for determining which of several
requesting CPU's get access and in what order to a memory.
It is potentially a portion of the control logic for a bus
structure, and describes several different algorithms for
granting access.

Ql J T QUATSE et al
The external access network of a modular computer system
Proceedings SJCC 1972 AFIPS Press pp 783-790
This paper describes the External Access Network (EAN),
a switching network designed to interface processors to
processors, processors to facilities, and memory to facilities
in a modular time sharing system (PRIME) being built at
Berkeley. The EAN acts like a crossbar switch or data
exchange, and consists of processor, device, and switch
nodes. To communicate, a processor selects an available
switch node and connects the appropriate device node to it.

Rl R RICE WR SMITH
SYM BOL-a major departure from classic software dominated
Von Neumann computing systems
Proceedings SJCC 1971 AFIPS Press pp 575-587
This paper describes a functionally designed bus-oriented
system. The system bus consists of 200 interconnection lines
which run the length of the mainframe.

R2 R RINDER
The input/output architecture of minicomputers
Datamation May 1970 pp 119-124
This article surveys the architecture of minicomputer I/O
units. It describes a typical I/O bus and the lines of
information it would carry.

R3 M P RISTENBATT D R ROTHSCHILD
Asynchronous time multiplexing

IEEE Transactions on Communication Technology June
1968 pp 349-357
This paper describes the use of "asynchronous time
multiplexing" techniques on analog data. Basically, the
paper describes a synchronous system with non-dedicated
time slots.

R4 K ROEDL R STONER
Unique synchronizing technique increases digital transmission
rate
Electronics March 15 1963 pp 75-76
This note provides a method of synchronizing two devices
having local clocks of supposedly equal frequencies.

R5 K K ROY
Cellular bulk transfer system
PhD Thesis Montana State University Bozeman Montana
March 1970
Bulk transfer systems composed of input logic, output logic,
and a mapping device are studied. The influences of
mapping device, parallelism, etc., are considered.

SI T SAITO H INOSE
Computer simulation of generalized mutually synchronized
systems
Symposium on Computer Processing in Communications
Polytechnic Institute of Brooklyn April 1969 pp 559-577
This paper describes ten ways to mutually synchronize
devices having separate clocks so that data can be accurately

. delivered in the correct time slot of a synchronous system.
The results of the simulation relate to the stability of the
synchronizing methods.

S2 J SANTOS M I OTERO
On transferences and priorities in computer networks
Symposium on Computers and Automata Vol 21 1971
pp 265-275
The structure of bus (channel) controllers is considered
using the language of automata theory. The controller is
decomposed into two units: one receives requests and
availability signals, and generates corresponding requests to
the other unit which allocates the bus on a priority basis.
Both units are further decomposed into subunits.

S3 J W SCHWARTZ
Synchronization in communication satellite systems
NEC 1967 pp 526-527
This paper describes tradeoffs and potential solutions to the
clock skew problem in a widely dispersed system.

S4 C D SMITH
Optimization of design parameters for serial TDM
Computer Design January 1972 pp 51-54
This article derives analytical tools for the analysis and
optimization of a synchronous system with global plus local
timing.

S5 D J SPENCER
Data bus design techniques
NASA TM-X-52876 Vol VI pp 95-113
This paper discusses design alternatives for a multiplexed
data bus to reduce point-to-point wiring cost and com
plexity. The author investigates coupling, coding, and
control factors for both low and high signal-to-noise ratio
lines for handling a data rate less than five million bits per
second.

S6 D C STANGA
Univac 1108 multiprocessor system
Proceedings SJCC 1971 AFIPS Press pp 67-74
This paper describes how memory accesses are made from
the multiple processors to the multiple memory banks in the
1108 multiprocessor system. It gives a block diagram of the

Systematic Approach to Design of Digital Bussing Structures 739

system interconnectivity and describes how the multiple
module access units operate to provide multiple access paths
to a memory module.

S7 D J STIGLIANI et al
Wavelength division multiplexing in light interface technology
AD-721085 March 1971
This report describes the fabrication of a five-channel
optical multiplexed communication line, and suggests some
alternatives for matching wavelength multiplexed light
transmission times to digital electrical circuits.

S8 J N STURMAN
An iteratively structured general purpose digital computer
IEEE Transactions on Computers January 1968 pp 2-9
This paper describes a bus and its use in an iterative
computer. The system is a dual dedicated bus structure with
centralized control.

S9 J N STURMAN
Asynchronous operation of an iteratively structured general
purpose digital computer
IEEE Transactions on Computers January 1968 pp 10-17
This paper describes the synchronization of an iterative
structure computer. The processing elements are connected
on a common complex symbol bus. To allow asynchronous
operation, a set of timing busses are added to the system
common complex symbol bus. The timing busses take
advantage of their transmission line properties to provide
synchronism of the processors.

T1 F W THO BURN
A transmission control unit for high speed computer-to
computer communication
IBM Journal of Research and Development November 1970
pp 614-619
This paper describes a multiplex bus system for connecting
a large number of computers together in a star organization.
Special emphasis is given to the transmission control unit,
a microprogrammed polling and interface unit which uses
synchronous two-frequency modulation and a serializer /
de-serializer unit.

T2 K J THURBER
Programmable indexing networks
Proceedings SJCC 1970 AFIPS Press pp 51-58
This paper describes data routing networks designed to
perform a generalized index on the data during the routing
process. The indexing networks map an input vector onto
an output vector. The mapping is arbitrary and program
mable. Several different solutions are presented with varying
hardware, speed, and timing requirements. The networks
are described in terms of shift register implementations.

T3 K J THURBER
Permutation switching networks
Proceedings of the 1971 Computer Designer's Conference
Industrial and Scientific Conference Management Chicago
Illinois January 1971 pp 7-24
This paper describes several permutation networks designed
to provide a programmable system capable of interconnect
ing system elements. The networks are partitioned for LSI
implementation and can be utilized in a pipeline fashion.
Algorithms are given to determine a program to produce any
of the N! possible permutations of N input lines.

T4 K J THURBER et al
Master executive control for AADC
Navy Contract N62269-72-C-0051 June 18 1972
This report describes a systematic approach to the design of
digital bus structures and applies this tool to the design of a
bus structure for the Advanced Avionic Digital Computer.

The structure is designed with three major requirements:
flexibility, modularity, and reliability.

T5 A TURCZYN
High speed data transmission scheme
Proceedings 3rd Univac DPD Research and Engineering
Symposium May 1968
The increasing complexity of multiprocessor computer
systems with a high degree of parallelism within the
computer system has created major internal communication
problems. If each processing unit should be able to com
municate with many other subsystems, the author recom
mends either a data exchange, or switching center, or
parallel point-to-point wiring. The latter has the advantage
of fast transfer and minimal data registers, but in a
multiprocessor it results in a large number of cables. This
paper discusses the state-of-the-art of internal multiplexing
and multi-level coding schemes for reducing the number of
lines in the system.

WI E G WAGNER
On connecting modules together uniformly to forma modular
computer
IEEE Transactions on Computers December 1966
pp 864-872
This paper provides mathematical group theoretic precision
to the idea of uniform bus structure in cellular computers.

W2 P W WARD
A scheme for dynamic priority control in demand actuated
multiplexing
IEEE Computer Society Conference Boston September
1971 pp 51-52
This paper describes a priority conflict resolution method
which is used in an I/O multiplexer system.

W3 R WATSON
Timesharing system design concepts
Chapter 3-Communications McGraw-Hill 1970 pp 78-110
This chapter provides a summary of "communication"
among memories, processors, lOP's, etc. The discussion is
oriented toward example configurations. Subjects discussed
are: (1) use of multiple memory modules, interleaving, and
buffering to increase memory bandwidth; (2) connection of
subsystems using direct connections, crossbar switches,
multiplexed busses, etc.; and (3) the transmission medium.
Items discussed under transmission medium are synchronous
and asynchronous transmission, line types (simplex, half
duplex, and full-duplex), modulation, etc.

W4 DR WELLER
A loop communication system for I/O to a small multi-user
computer
IEEE Computer Society Conference Boston September
1971 pp 49-50
This paper describes a single-line non-dedicated bus with
daisy-chained control for the DDP-516 computer. Message
format and speed of operation are detailed.

W5 G P WEST R J KOERNER
Communications within a polymorphic intellectronic system
Proceedings of Western Joint Computer Conference San
Francisco May 3-5 1960 pp 225-230
This paper describes a crosspoint data exchange used in the
RW-400 computer. The switch was mechanized using
transfluxor cores.

W6 L P WEST
Loop-transmission control structures
IEEE Transactions on Communications June 1972
pp 531-539
This paper considers the problem of transmitting data on a

740 Fall Joint Computer Conference, 1972

communication loop. It discusses time slots, frame pulses,
addressing techniques, and efficiency of utilization. It also
discusses a number of ways for assigning time slots for
utilization on the impact of slot size on loop utilization
efficiency.

W7 M W WILLARD L J HORKAN
Maintaining bit integrity in time division transmission
NAECON 1971 Record pp 240-247
This paper describes the tradeoffs involved in synchronizing
high speed digital subsystems which are communicating
over large distances. It considers clocking and buffering
tradeoffs.

W8 D R WULFINGHOFF
Code activated switching-a solution to multiprocessing
problems
Computer Design April 1971 pp 67-71
The author points out that multiprocessor computer
configurations have a large number of interconnections
between elements causing considerable hardware and
software complexity. He describes a technique whereby
each program to be run is assigned a code, identifier, or
signature; then when this program is activated the system
resources it requires can be "lined-up" for use. He compares
this scheme to that employed for telephone switching. Code
activated switching is illustrated by two system block
diagrams: a special purpose control computer and a general
purpose time-shared computer.

Y1 B S YOLKEN
Data bus-method for data acquisition and distribution
within vehicles

. NAECON 1971 Record pp 248-253
This paper discusses a time division multiplexed bus, and

considers bus control, bit synchronization, and technology
tradeoffs.

Z1 R E ZIMMERMAN
The structure and organization of communication processors
PhD Dissertation Electrical Engineering Department
University of Michigan September 1971
This dissertation describes a multi-bus computer used as a
terminal processor. It has a pair of instruction busses which
start and then signal completion of processes performed in
functional units or subsystems. The machine has three data
busses: a memory bus which serves as the primary system
communication bus, a flag address bus, and a flag data bus.
All busses are eight bits wide and the three data busses are
bidirectional.

Z2 R J ZINGG
Structure and organization of a pattern processor for
hand-printed character recognition
PhD Dissertation Iowa State University Ames Iowa 1968
This dissertation describes a bus-oriented special purpose
computer designed for research in character recognition.
The machine contains a control bus, a scratchpad memory
bus, and three data busses. Each register that can be
reached by a data bus has two control flip-flops associated
with it and these determine to which data bus it is to be
connected. These connections are controlled by a hardware
command. The contents of several registers can be placed on
one data bus to yield a bit-by-bit logical inclusive OR.
Also, the contents of one data bus can be transferred to
several registers and the contents of all three busses
transferred in parallel under program command. This
processor is a rather interesting example of a five bus
processor.

Improvements in the design and
performance of the ARPA network

by J. IVLIVlcQUILLAN, W. R. CROWTHER, B. P. COSELL, D. C. WALDEN, and
F. E. HEART

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

INTRODUCTION

In late 1968 the Advanced Research Projects Agency
of the Department of Defense (ARPA) embarked on
the implementation of a new type of computer network
which would interconnect, via common-carrier circuits,
a number of dissimilar computers at widely separated,
ARPA-sponsored research centers. The primary purpose
of this interconnection was resource sharing, whereby
persons and programs at one research center might
access data and interactively use programs that exist
and run in other computers of the network. The inter
connection was to be realized using wideband leased
lines and the technique of message switching, wherein a
dedicated path is not set up between computers desiring
to communicate, but instead the communication takes
place through a sequence of messages each of which
carries an address. A message generally traverses
several network nodes in going from source to destina
tion, and at each node a copy of the message is stored
until it is safely received at the following node.

The ARPA Network has been in operation for over
three years and has become a national facility. The
network has grown to over thirty sites spread across the
United States, and is steadily growing; over forty
independent computer systems of varying manufacture
are interconnected; provision has been made for terminal
access to the network from sites which do not enjoy the
ownership of an independent computer system; and
there is world-wide excitement and interest in this type
of network, with a number of derivative networks in
their formative stages. A schematic map of the ARPA
Network as of the fall of 1972 is shown in Figure 1.

As can be seen from the map, each site in the ARPA
Network consists of up to four independent computer

741

systems (called Hosts) and one communications pro
cessor called an Interface l\1essage Processor, or Il\1P.
All of the Hosts at a site are directly connected to the
Il\1P. Some Il\1Ps also provide the ability to connect'
terminals directly to the network; these are called
Terminal Interface l\1essage Processors, or TIPs. The
Il\1Ps are connected together by wideband telephone
lines and provide a subnet through which the Hosts
communicate. Each Il\1P may be connected to as many
as five other Il\I{Ps using telephone lines with band
widths from 9.6 to 230.4 kilobits per second. The typical
bandwidth is 50 kilobits.

During these three years of network growth, the
actual user traffic has been light and network per
formance under such light loads has been excellent.
However, experimental traffic, as well as simulation
studies, uncovered logical flaws in the IMP software
which degraded performance at heavy loads. The soft
ware was therefore substantially modified in the spring
of 1972. This paper is largely addressed to describing
the new approaches which were taken.

The first section of the paper considers some criteria
of good network design and. then presents our new
algorithms in the areas of source-to-destination se
quence and flow control, as well as our new IMP-to-IMP
acknowledgment strategy. The second section addresses
changes in program structure; the third section re
evaluates the IlVIP's performance in light of these
changes. The final section mentions some broader
Issues.

The initial design of the ARPA Network and the
Il\1P was described at the 1970 Spring Joint Computer
Conference, l and the TIP development was described
at the 1972 Spring Joint Computer Conference.2 These
papers are important background to a reading of the
present paper.

742 Fall Joint Computer Conference, 1972

Figure t-ARPA network, logical map, August 1972

NEW ALGORITHMS

A balanced design for a communication system should
provide quick delivery of short interactive messages
and high bandwidth for long files of data. The IMP
program was designed to perform well under these
pimodal traffic' conditions. The experience of the first
two and one half years of the ARPA Network's opera
tion indicated that the performance goal of low delay
had been achieved. The lightly-loaded network de
livered short messages over several hops in about
one-tenth of a second. Moreover, even under heavy
load, the delay was almost always less than one-half
second. The network also provided good throughput
rates for long messages at light and moderate traffic
levels. However, the throughput of the network de
gra~ed significantly under heavy loads, so that the goal
of high bandwidth had not been completely realized.

'Ye isolated a problem in the initial network design
WhICh led to degradation under heavy loads.3 •4 This
problem involves messages arriving at a destination
IMP at a rate faster than they can be delivered to the
destination Host. We call this reassembly congestion.
Reassembly congestion leads to a condition we call
reassembly lockup in which the destination IMP is
incapable of passing any traffic to its Hosts. Our al
gorithm to prevent reassembly congestion and the
related sequence control algorithm are described in
the following subsections.

We also found that the IMP and line bandwidth
requirements for handling IMP-to-IMP traffic could be
substantially reduced. Improvements in this area

translate directly into increases in the maximum
throughput rate that an IMP can maintain. Our new
algorithm in this area is also given below.

Source-to-destination flow control

. For efficiency, it is necessary to provide, somewhere
m the network, aeertain amount of buffering between
the source and destination Hosts, preferably an amount
equal to the bandwidth of the channel between the
Hosts multiplied by the round trip time over the
channel. The problem of flow control is to prevent
messages from entering the network for which network
buffering is not available and which could congest the
~etwork and lead to reassembly lockup, as illustrated
mFigure2.

In Figure 2, IMP 'I is sending multi-packet messages
to IMP 3; a lockup can occur when all the reassembly
buffers in IMP 3 are devoted to partially reassembled
messages A and B. Since IMP 3 has reserved all its
remaining space for awaited packets of these partially
reassembled messages, it can only take in those particu
lar packets from IMP 2. These outstanding packets,
however, are two hops away in IlVIP 1.· They cannot get
through because IlVIP 2 is filled with store-and-forward
packets of messages C, D, and E (destined for IMP 3)
which IMP 3 cannot yet accept. Thus, IMP 3 will never
be able to complete the reassembly of messages A
andB.

The original network design based source-to-destina
tion sequence and flow control on the link mechanism
previously reported in References 1 and 5. Only a single
message on a given link was permitted in the subnet
work at one time, and sequence numbers were used to
detect duplicate messages on a given link.

We were always aware that Hosts could defeat our
flow control mechanism by "spraying" messages over an
inordinately large number of links, but we counted on
the nonmalicious behavior of the Hosts to keep the

IMP 1

ID~ -

DID

IMP 2

III -- -
II~

IMP3 /"1 message A
reassembly

rGII"
'---- -----~

ii-OBi
~ ________J

"- message B
reassembly

Figure 2-Reassembly lockup

Improvements in Design and Performance of ARPA Network 743

number of links in use below the level at which problems
occur. However, simulations and experiments artificially
loading the network demonstrated that communication
between a pair of Hosts on even a modest number of
links could defeat our flow control mechanism; further,
it could be defeated by a number of Hosts communi
cating with a common site even though each Host used
only one link. Simulations3 ,4 showed that reassembly
lockup may eventually occur when over five links to
a particular Host are simultaneously in use. With ten
or more links in use with multipacket messages, re
assembly lockup occurs almost instantly.

If the buffering is provided in the source IMP, one
can optimize for low delay transmissions. If the buffer
ing is provided at the destination IlVIP, one can optimize
for high bandwidth transmissions. To be consistent
with our· view of a balanced communications system,
we have developed an approach to reassembly con
gestion which utilizes some buffer storage at both the
source and destination; our solution also utilizes a
request mechanism from source Il\1P to destination
IMP.*

Specifically, no multipacket message is allowed to
enter the network until storage for the message has been
allocated at the destination Il\1P. As soon as the source
Il\1P takes in the first packet of a multipacket message,
it sends a small control message to the destination IMP
requesting that reassembly storage be reserved at the
destination for this message. It does not take in further
packets from the Host until it receives an allocation
message in reply. The destination IMP queues the
request and sends the allocation message to the source
IlVIP when enough reassembly storage is free; at this
point the source Il\1P sends the message to the destina
tion.

We maximize the effective bandwidth for sequences
of long messages by permitting all but the first message
to bypass the request mechanism. When the message
itself arrives at the destination, and the destination
IlVIP is about to return the Ready-For-Next-Message
(RFNM), the destination IMP waits until it has room
for an additional multipacket message. It then piggy
backs a storage allocation on the RFNM. If the source
Host is prompt in answering the RFNlVI with its next
message, an allocation is ready and the message can be
transmitted at once. If the source Host delays too long, or
if the data transfer is complete, the source IMP returns
the unused allocation to the destination. With this
mechanism we have minimized the inter-message delay

* This mechanism is similar to that implemented at the level of
Host-to-Host protocol,6,7,8 indicative of the fact that the same
sort of problems occur at every level in a communications system.

and the Hosts can obtain the full bandwidth of the
network.

We minimize the delay for a short message by trans
mitting it to the destination immediately while keeping
a copy in the source IMP. If there is space at the
destination, it is accepted and passed on to a Host and
a RFNl\iI is returned; the source IMP discards the
message when it receives the RFNM. If not, the
message is discarded, a request for allocation is queued
and, when space becomes available, the source IMP
is notified that the message may now be retransmitted.
Thus, no setup delay is incurred when storage is avail
able at the destination.

The above mechanisms make the IMP network
much less sensitive to unresponsive Hosts, since the
source Host is effectively held to a transmission rate
equal to the reception rate of the destination Host.
Further, reassembly lockup is prevented because the
destination IMP will never have to turn away a multi
packet message destined for one of its Hosts, since
reassembly storage has been allocated for each such
message in the network.

Source-to-destination sequence control

In addition to its primary function as a flow control
mechanism, the link mechanism also originally provided
the basis for source-to-destination sequence control.
Since only one message was permitted at a time on a
link, messages on each link were kept in order; duplicates
were detected by the sequence number maintained for
each link. In addition, the IMPs marked any message
less than 80 bits long as a priority message and gave it
special handling to speed it across the network, placing
it ahead of long messages on output queues.

The tables associated with the link mechanism in
each IMP were large and costly to access. Since the
link mechanism was no longer needed for flow control,
we felt that a less costly mechanism should be employed
for sequence control. We thus decided to eliminate the
link mechanism from the IMP subnetwork. RFNl\1s are
still returned to the source Host on a link basis, but
link numbers are used only to allow Hosts to identify
messages. To replace the per-link sequence control
mechanism, we decided upon a sequence control
mechanism based on a single logical "pipe" between
each source and destination IMP. Each IMP maintains
an independent message number sequence for each
pipe. A message number is assigned to each message at
the source IMP and this message number is checked at
the destination Il\1P. All Hosts at the source and
destination Il\1Ps share this message space. Out of an

744 Fall Joint Computer Conference, 1972

eight-bit message number space (large enough to
accommodate the settling time of the network), both
the source and destination keep a small window of
currently valid message numbers, which allows several
messages to be in the pipe simultaneously. Messages
arriving at a destination IMP with out-of-range message
numbers are duplicates to be discarded. The window is
presently four numbers wide, which seems about right
considering the response time required of the network.
The message number serves two purposes: it orders the
four messages that can be in the pipe, and it allows
detection of duplicates. The message number is internal
to the IMP subnetwork and is invisible to the Hosts.

A sequence control system based on a single source/
destination pipe, however, does not permit priority
traffic to go ahead of other traffic. We solved this
problem by permitting two pipes between each source
and destination, a priority (or low delay) pipe and a
nonpriority (or high bandwidth) pipe. To avoid having
each IMP maintain two eight-bit message number
sequences for every other IMP in the network, we
coupled the low delay and high bandwidth pipe so that
duplicate detection can be done in common, thus re
quring only one eleven-bit message number sequence
for each IMP.

The eleven-bit number consists of a one-bit priority /
non-priority flag, two bits to order priority messages,
and eight bits to order all messages. For example, if we
use the letters A, B, C, and D to denote the two-bit
order numbers for priority messages and the absence of
a letter to indicate a nonpriority message, we can
describe a typical situation as follows: The source IMP
sends out nonpriority message 100, then priority
messages lOlA and 102B, and then nonpriority message
103. Suppose the destination IMP receives these
messages in the order 102B, lOlA, 103, 100. It passes
these messages to the Host in the order lOlA, 102B,
100, 103. Message number 100 could have been sent to
the destination Host first if it had arrived at the
destination first, but the priority messages are allowed
to "leapfrog" ahead of message number 100 since it
was delayed in the network. The IMP holds 102B until
lOlA arrives, as the Host must receive priority message
A before it receives priority message B. Likewise,
message 100 must be passed to the Host before message
103.

Hosts may, if they choose, have several messages
outstanding simultaneously to a given destination but,
since priority messages can "leapfrog" ahead, and the
last message in a sequence of long messages may be
short, priority can no longer be assigned strictly on the
basis of message length. Therefore, Hosts must ex
plicitly indicate whether a message has priority or not.

With message numbers and reserved storage to be
accurately accounted for, cleaning up in the event of a
lost message must be done carefully. The source Il\1P
keeps track of all messages for which a RFNl\1 has not
yet been received. When the RFNM is not received for
too long (presently about 30 seconds), the source IMP
sends a control message to the destination inquiring
about the possibility of an incomplete transmission.
The destination responds to this message by indicating
whether the message in question was previously received
or not. The source IMP continues inquiring until it
receives a response. This technique guarantees that the
source and destination IMPs keep their message
number sequences synchronized and that any allocated
space will be released in the rare case ~hat a message is
lost in the subnetwork because of a machine failure.

IMP-to-IMP transmission control

We have adopted a new technique for IMP-to-IMP
transmission control which improves efficiency by
10-20 percent over the original separate acknowl
edge/timeout/retransmission approach described in
Reference 1. In the new scheme, which is also used for
the Very Distant Host,9 and which is similar to· Refer
ence 10, each physical network circuit is broken into a
number of logical "channels," currently eight in each
direction. Acknowledgments are returned "piggy
backed" on normal network traffic in a set of acknowl
edgment bits, one bit per channel, contained in every
packet, thus requiring less bandwidth than our original
method of sending each acknowledge in its own packet.
The size of this saving is discussed later in the paper. In
addition, the period between retransmissions has been
made dependent upon the volume of new traffic. Under
light loads the network has minimal retransmission
delays, and the network automatically adjusts to
minimize the interference of retransmissions with new
traffic.

Each packet is assigned to an outgoing channel and
carries the "odd/even" bit for its channel (which is
used to detect duplicate packet transmissions), its
channel number, and eight acknowledge bits-one for
each channel in the reverse direction.

The transmitting IMP continually cycles through its
used channels (those with packets associated with
them), transmitting the packets along with the channel
number and the associated odd/even bit. At the re
ceiving IMP, if the odd/even bit of the received packet
does not match the odd/even bit associated with the
appropriate receive channel, the packet is accepted and
the receive odd/even bit is complemented, otherwise
the packet is a duplicate and is discarded.

Improvements in Design and Performance of ARPA Network 745

Every packet arriving over a line contains acknowl
edges for all eight channels. This is done by copying
the receive odd/even bits into the positions reserved for
the eight acknowledge bits in the control portion of
every packet transmitted. In the absence of other
traffic, the acknowledges are returned in "null packets"
in which only the acknowledge bits contain relevant
information (i.e., the channel number and odd/even bit
are meaningless; null packets are not acknowledged).
When an IMP receives a packet, it compares (bit by
bit) the acknowledge bits against the transmit odd/even
bits. For each match found, the corresponding channel
is marked unused, the corresponding packet is dis
carded, and the transmit odd/even bit is complemented.

In view of the large number of channels, and the
delay that is encountered on long lines, some packets
may have to wait an inordinately long time for trans
mission. We do not want a one-character packet to
wait for several thousand-bit packets to be trans
mitted, multiplying by 10 or more the effective delay
seen by the source. We have, therefore, instituted the
following transmission ordering scheme: priority packets
which have never been transmitted are sent first; next
sent are any regular packets which have never been
transmitted; finally, if there are no new packets to
send, previously transmitted packets which are un
acknowledged are sent. Of course, unacknowledged
packets are periodically retransmitted even when there
is a continuous stream of new traffic.

In implementing the new IlVIP-to-IMP acknowl
edgment system, we encountered a race problem. The
strategy of continuously retransmitting a packet in the
absence of other traffic introduced difficulties which
were not encountered in the original system, which

COMMON STORE
RELOAD I DIAGNOSTICS

INITIALIZATION ITABLES ~~;
~~ BACKGROUND
~ TASK STORE a FORWARD ~
~ TASK REASSEMBLY
0:~ TASK REPLY f0:-0
~ MODEM TO IMP ~""-""-""-""-""-""-""-""-"
-0~ IMP TO MODEM ~~
-0 HOST TO IMP
-0 HOST TO IMP -0
~~~-:-=:IM7.:P:--:T==O:-,;H~O:,=ST;-___ -t~~ 24 PAGES 
~ IMP TO HOST ~ 
SS1 TIMEOUT ~~ 

~ DEBUG ~ 

~ STATISTICS S::~ 
t-0 STATISTICS .~~ 
~ STAT. TABI.£S" -" 

~ MESSAGE TABLES, ALLOCATE TABLES ~ 
-0 ROUTING TABLES to:::~'" 
~ ___ V=E~RY~D=IS~T~AN~T~H=OS=T _____ ~, ___ 

Figure 3-Map of core storage 

I PAGE =512 WORDS 

BUFFER STORAGE 

PROTECTED PAGE 

retransmitted only after a long timeout. If an acknowl
edgment arrives for a packet which is currently being 
retransmitted, the output routine must prevent the 
input routine from freeing the packet. Without these 
precautions, the header and data in the packet could be 
changed while the packet was being retransmitted, and 
all kinds of "impossible" conditions result when this 
"composite" packet is received at the other end of the 
line. It took us a long time to find this bug 1* 

PROGRAM STRUCTURE 

Implementation of the IMPs required the develop
ment of a sophisticated computer program. This pro
gram was previously described in Reference 1. As 
stated then, the principal function of the IMP program 
is the processing of packets, including the following: 
segmentation of Host messages into packets; receiving, 
routing, and transmitting of store-and-forward packets; 
retransmitting unacknowledged packets; reassembling 
packets into messages for transmission into a Host; and 
generating RFNMs and other control messages. The 
program also monitors network status, gathers statis
tics, and performs on-line testing. The program was 
originally designed, constructed, and debugged over a 
period of about one year by three programmers. 

Recently, . after about two and one-half years of 
operation in up to twenty-five IlVIPs throughout the 
network, the operational program was significantly 
modified. The modification implemented the algorithms 
described in the previous sections, thereby eliminating 
causes of network lockup and improving the per
formance of the IMP. The modification also extended 
the capabilities of the IMP so it can now interface to 
Hosts over common carrier circuits ( a Very Distant 
Host9), efficiently manage buffers for lines with a wide 
range of speeds, and perform better network diagnostics. 
After prolonged study and preliminary design,3.4 this 
program revision was implemented and debugged in 
about nine man months. 

* Interestingly, a similar problem exists on another level, that of 
source-destination flow control. If an IMP sends a request for 
allocation, either single- or multi-packet, to a neighboring IMP, 
it will periodically retransmit it until it receives an acknowledg
ment. If it receives an allocation in return, it will immediately 
begin to transmit the first packet of the message. The implemen
tation in the IMP program sends the request from the same buffer 
as the first packet, merely marking it with a request bit. If an 
allocation arrives while the request is in the process of being 
retransmitted, the program must wait until it has been completely 
transmitted before it sends the same buffer again as the first 
packet, since the request bit, the odd/even bit, the acknowledge 
bits, and the message number (for a multipacket request) will be 
changed. This was another difficult bug. 



746 Fall Joint Computer Conference, 1972 

We shall emphasize in this section the structural 
changes the program has recently undergone. 

Data structures 

Figure 3 shows the layout of core storage. As before, 
the program is broken into functionally distinct pieces, 
each of which occupies one or two pages of core. Notice 
that code is generally centered within a page, and there 
is code on every page of core. This is in contrast to our 
previous practice of packing code toward the beginning 
of pages and pages of code toward the beginning of 
memory. Although the former method results in a large 
contiguous buffer area near the end of memory, it has 
breakage at every page boundary. On the other hand, 
"centering" code in pages such that there are an integral 
number of buffers between the last word of code on one 
page and the first word of code on the next page 
eliminates almost all breakage. 

There are currently about forty buffers in the IMP, 
and the IMP program uses the following set of rules to 
allocate the available buffers to the various tasks re
quiring buffers: 

• Each line must be able to get its share of buffers for 
input and output. In particular, one buffer is 
always allocated for output on each line, guar
anteeing that output is always possible for each 
line; and double buffering is provided for input on 
each line, which permits all input traffic to be 
examined by the program, so that acknowledgments 
can always be processed, which frees buffers. 

• An attempt is made to provide enough store-and
forward buffers so that all lines may operate at full 
capacipy. The number of buffers needed depends 
directly on line distance and line speed. We cur
rently limit each line to eight or less buffers, 
and a pool is provided for all lines. Some numerical 
results on line utilization are presented in a later 
section. Currently, a maximum of twenty buffers is 
available in the store-and-forward pool. 

• Ten buffers are always allocated to reassembly 
storage, allowing allocations for one multipacket 
message and two single-packet messages. Addi
tional buffers may be claimed for reassembly, up 
to a maximum of twenty-six. 

Figure 4 summarizes the IMP table storage. All 
IMPs have identical tables. The IMP program has 
twelve words of tables for each of the sixty-four IMPs 
now possible in the network. The program has ninety
one words of tables for each of the eight Hosts (four 

real and four fake) that can be connected; additionally, 
twelve words of code are replicated for each real Host 
that can be connected. The program has fifty-five 
words of tables for each of the five lines that can be 
connected; additionally, thirty-seven words of code are 
replicated for each line that can be connected. The 
program also has tables for initialization, statistics, 
trace, and so forth. 

The size of the initialization code and the associated 
tables· deserves mention. This was originally quite 
small. However, as the network has grown and the 
IMP's capabilities have been expanded, the amount of 
memory dedicated to initialization has steadily grown. 
This is mainly due to the fact that the IMPs are no 
longer identical. An IMP may be required to handle a 
Very Distant Host, or TIP hardware, or five lines and 
two Hosts, or four Hosts and three lines, or a very high 
speed line, or, in the near future, a satellite link. As the 
physical permutations of the IlVIP have continued to 
increase, we have clung to the idea that the program 
should be identical in all IMPs, allowing an IMP to 
reload its program from a neighboring IMP and pro
viding other considerable advantages. However, main
taining only one version of the program means that the 
program must rebuild itself during initialization to be 
the proper program to handle the particular physical 
configuration of the IlVIP. Furthermore, it must be able 
to turn itself back into its nominal form when it is 
reloaded into a neighbor. All of this takes tables and 
code. Unfortunately, we did not foresee the proliferation 

o 

HOSTS (8) 

IMPS (64) 

LINES (5) 

IN ITI ALiZATION 

STATISTICS 

TRACE 

REASSEMBLY 

ALLOCATE 

HEADER 

BACKGROUND 

TIME OUT 28 

WORDS 

500 

Figure 4-Allocation of IMP table storage 

1000 



Improvements in Design and Performance of ARPA Network 747 

HOSTS \ 

reas"!'lbIY,;<--, 
__ ----IO-Q-I-C----f--.. ,.,-,.., \ 

, \',,:' J 

"-, 
/M--{ , 

I -,... , FROM 
\ '( IMODEM 

\ 

'" 

Teletype 

;=t-
,L. TTY ""-
I DebuC) 
, Trace 
\ Parameters 

Statistics 
" Discard 

~-RFNMs 

receive 
allocate 

logic 

""- , ""- .... _-" 
""- .... 8ACKGROtJNQ L..-____ , 

single packet " 
messages ........ -

request 1 
/ 

FROM 
HOSTS 

request 8 

a II oca tes 

I ' " .. ' , , I, 

I ~ ..... " 

I 
I 
I I packets 

I 

, J./ 
\ acknowledged "- I 

\ packets~ I r\ duplicotereceiv8 I I {aCkets . Qcks...-J 
~--........ free 

C r---,; transmit 
\ raCkS 

S/F I I 
Routing/ I 

/ I 
,/ I 

I 
I 
I 
I 
I "TO 
L_~ /--M / MODEM 

..... _'" 

o QUEUE o DERIVED • CHOICE 
PACKET 

,,-
'--.. ) ROUTINE 

Figure 5-Packet flow and processing 

of IMP configurations which has taken place; therefore, 
we cannot conveniently compute the program differ
ences from a simple configuration key. Instead, we must 
explicitly table the configuration irregularities. 

The packet processing routines 

Figure 5 is a schematic drawing of packet flow and 
packet processing. * We here briefly review the functions 
of the various packet-processing routines and note 
important new features. 

* Cf. Figure 9 of Reference 1. 

Host-to-IMP (H~ I) 

This routine handles messages being transmitted 
from Hosts at the local site. These Hosts may either be 
real Hosts or fake Hosts (TTY, Debug, etc.). The 
routine acquires a message number for each message 
and passes the message through the transmi allocation 
logic which requests a reassembly allocation from the 
destination IMP. Once this allocation is received, the 
message is broken into packets which are passed to the 
Task routine via the Host Task queue. 

Task 

This routine diI:ects packets to their proper destina
tion. Packets for a local Host are passed through the 



748 Fall Joint Computer Conference, 1972 

reassembly logic. When reassembly is complete, the 
reassembled message is passed to the IMP-to-Host 
routine via the Host Out queue. Certain control 
messages for the local IMP are passed to the transmit or 
receive allocate logic. Packets to other destinations are 
placed on a modem output queue as specified by the 
routing table. 

IMP-to-Modem (I .... M) 

This routine transmits successive packets from the 
modem output queues and sends piggybacked acknowl
edgments for packets correctly received by the Modem
to-IMP routine and accepted by the Task routine. 

Modem-to-IMP (M .... I) 

This routine handles inputs from modems and passes 
correctly received packets to the Task routine via the 
Modem Task queue. This routine also processes in
coming piggybacked acknowledges and causes the 
buffers for correctly acknowledged packets to be freed. 

IMP-to-Host (I .... H) 

This routine passes messages to local Hosts and 
informs the background routine when a RFNM should 
be returned to the source Host. 

Background 

The function of this routine includes handling the 
IMP's console Teletype, a debugging program, the 
statistics programs, the trace program, and several 
routines which generate control messages. The programs 
which perform the first four functions run as fake 
Hosts (as described in Reference 1). These routines 
simulate the operation of the Host/IlVIP data channel 
hardware so the Host-to-Il\1:P and Il\1:P-to-Host routines 
are unaware they are communicating with anything 
other than a real Host. This trick saved a large amount 
of code and we have come to use it more and more. The 
programs which send incomplete transmission messages, 
send and return allocations, and send RFNl\1:s also 
reside in the background program. However, these 
programs run in a slightly different manner than the 
fake Hosts in that they do not simulate the Host/IMP 
channel hardware. In fact, they do not go through the 
Host/IMP code at all, but rather put their messages 
directly on the task queue. Nonetheless, the principle 
is the same. 

Timeout 

This routine, which is not shown in Figure 5, performs 
a number of periodic functions. One of these functions 
is garbage collection. Every table, most queues, and 
many states of the program are timed out. Thus, if an 
entry remains in a table abnormally long or if a routine 
remains in a particular state for abnormally long, this 
entry or state is garbage-collected and the table or 
routine is returned to its initial or nominal state. In 
this way, abnormal conditions are not allowed to hang 
up the system indefinitely. 

The method frequently used by the Timeout routine 
to scan a table is interesting. Suppose, for example, 
every entry in a sixty-four entry table must be looked 
at every now and then. Timeout could wait· the proper 
interval and then look at every entry in the table on 
one pass. However, this would cause a severe transient 
in the timing of the IMP program as a whole. Instead, 
one entry is looked at each time through the Tim~out 
routine. This takes a little more total time but is much 
less disturbing to the program as a whole. In particular, 
worst case timing problems (for instance, the processing 
time between the end of one modem input and the 
beginning of the next) are significantly reduced by 
this technique. A particular example of the use of this 
technique is with the transmission of routing informa
tion to the IMP's neighbors. In general, an Il\1:P can 
have five neighbors. Therefore, it sends routing in
formation to one of its neighbors every 125 msec rather 
than to all of its neighbors every 625 msec. 

In addition to timing out various states of the pro
gram, the Timeout routine is used.to awaken routines 
which have put themselves to sleep for a specified 
period. Typically these routines are waiting or some 
resource to become available, and are written as co
routines with the Timeout routine. When they are 
restarted by Timeout the test is made for the avail
ability of the resource, followed by another delay if the 
resource is not yet available. 

PERFORMANCE EVALUATION 

In view of the extensive modifications described in 
the preceding sections, it was appropriate to recalculate 
the IlVIP's performance capabilities. The following 
section presents the results of the reevaluation of the 
IMP's performance and comparisons with the per
formance reports of Reference 1. 

Throughput VS. message length 

In this section we recalculate two measures of IMP 
performance previously calculated in Reference 1, the 



Improvements in Design and Performance of ARPA Network 749 

maximum throughput and line traffic. Throughput is 
the number of Host data bits that traverse an Il\1P each 
second. Line traffic is the number of bits that an Il\1P 
transmits on its communication circuits per second and 
includes the overhead of RFNl\ls, packet headers, 
acknowledges, framing characters, and checksum 
characters. 

To calculate the Il\1P's maximum line traffic and 
throughput, we first calculate the computational load 
placed on the Il\1P by the processing of one message. 
The computational load is the sum of the machine 
instruction cycles plus the input/output cycles required 
to process all the packets of a message and their ac
knowledgments, and the message's RFNl\1 and its 
acknowledgment. For simplicity in computing the 
computational load, we ignore the processing required 
to send and receive the message from a Host since this 
is only seen by the source and destination Il\,1Ps. 

A packet has D bits of data, S bits of software 
overhead, and H bits of hardware overhead. For the 
original and modified Il\t:IP systems, the values of D, 
S, andH are: 

Original 

D 0-1008 bits 
S 64 (packet) +80 (ack) = 

144 bits 
H 72 (packet) +72Cack) = 

144 bits 

Modified 

0-1008 bits 
80 bits (packet+ack) 

72 bits (packet+ack) 

The input/output processing time for a packet is the 
time taken to transfer D+S bits from memory to the 
modem interface at one Il\1P plus the time to transfer 
D+S bits into memory at the other Il\1P. If R is the 
input/ output transfer rate in bits per second, * then the 
input/output transfer time for a packet is 2(D+S)/R. 
Therefore, the total input/output time, I m, for P packets 
in a B bit message is 2(B+PXS)/R. The input/output 
transfer time, I r, for a RFNl\1 is 2S/R. 

To each of these numbers we must add the program 
processing time, C; this is about the same for a packet 
of a message and a RFNl\1. 

* In this calculation we will be making the distinction between the 
516 IMP (used originally and reported on in Reference 1) and the 
316 IMP (used for all new IMPs). The 516 has a memory cycle 
time of 0.96 psec, and the 316 has a cycle of 1.6 psec. The 316 
provides a two-cycle data break, in comparison with the four-cycle 
data break on the 516. Thus, the input/output transfer rates are 
16 bits per 3.84 psec for the 516 and 16 bits per 3.2 psec for the 316. 

For the original Il\1P program, the program processing 
time per packet consisted of the following: 

l\1odem Output 
l\1odem Input 

Task 

l\1odem Output 

l\,1odem Input 

Task 

100 cycles Send out packet 
100 cycles Receive packet at other 

INIP 
150 cycles Process it (route onto an 

output line) 
100 cycles Send back an acknowl-

edgment 
100 cycles Receive acknowledgment 

at first Il\1P 
150 cycles Process acknowledgment 

700 cycles Program processing time 
per packet 

For the modified Il\1P program, the program pro
cessing time consists of: 

l\1odem Output 150 cycles Send out packet and 
piggyback acks 

l\1odem Input 150 cycles Receive packet and pro-
cess acks 

Task 250 cycles Process packet 

550 cycles Program processing time 
per packet 

Finally, we add a percentage, V, for overhead for 
the various periodic processes in the IJV[P (primarily 
the routing computation) which take processor band
width. V is presently about 5 percent. 

Weare now in a position to calculate the computa
tionalload (in seconds), L, ~f one P packet message: 

packets RFNM 

The maximum throughput, T, is the number of data 
bits in a single message divided by the computational 
loads of the message; that is, T = B / L. 

The maximum line traffic (in bits per second), R, 
is the throughput plus the overhead bits for the packets 
of the message and the RFNl\1 divided by the com
putationalload of the message. That is, 

R = T + (P + 1) X (S + H) =B __ +--.:..(P_+~l )_X_C-,--S_+_H_) 
L L 

The maximum throughput and line traffic are plotted 
for various message lengths in Figure 6 for the original 
and modified programs and for the 516 IMP and the 
316 IMP. 



750 Fall Joint Computer Conference, 1972 

(J) 

CI 
z 
0 
U 
lLI 
(J) 

...J 

...J 

:!: 

250~----------~~--~--?---~-' 

200 

150 

100 

2 :3 4 5 6 7 8 

250~--~--~~------~----~---' 

0 
0 

250 

200 

150 

100 

200 

150 

100 

50 

2 :3 

c. 230.4 Kb 
100 Miles 

d. 230.4 Kb 
1000 Miles 

b. 50 Kb 
1000 Miles 

4 5 6 7 

--------------------- -------- ------------------------------------ ------

8 

o~~~~--~--~--~--~~--~ 
012:3 45678 

MESSAGE LENGTH (PACKETS) 

Figure 6-Line traffic and throughput vs. message length. The 
upper curves plot maximum line traffic, the lower curves plot 

maximum throughput 

The changes to the IMP system can be summarized 
as follows: 

• The program processing time for a store-and
forward packet has been decreased by 20 percent. 

• The line throughput has been increased by 4 
percent for a 516 INIP and by 7 percent for a 316 
IMP. 

As a result, the net throughput rate has been increased 
by 17 percent for a 516 IMP and by 21 percent for a 
316 IMP. Thus, a 316 IlVIP can now process almost as 
much traffic as a 516 IMP could with the old program. 
A 516 IMP can now process approximately 850 Kbs. 

• The line overhead on a full-length packet has been 
decreased from 29 percent to 16 percent. 

As a result, the effective capacity of the telephone 
circuits has been increased from thirty-eight full packet 
messages per second on a 50 Kbs line to forty-three full 
packet messages per second. 

Round trip delay vs. message length 

In this section we compute the minimum round trip 
delay encountered by a message. We define round trip 
delay as in Reference 1; that is, the delay until the 
message's RFNM arrives back at the destination IMP. 
A message has P packets and travels over H hops. The 
first packet encounters delay due to the packet pro
cessing time, C; the transmission delay, Tp ; and the 
propagation delay, L. Each successive packet of the 
message follows C+Tp behind the previous packet. 
Since the message's RFNM is a single packet message 
with a transmission delay, TR , we can write the total 
delay as 

first packet successive RFNM 
packets 

For single packet messages, this reduces to 

The curves of Figure 7 show minimum round-trip 
delay through the network for a range of message 
lengths and hop numbers, and for two sets of line speeds 
and line lengths. These curves agree with experimental 
data.11·12 



Improvements in Design and Performance of ARPA Network 751 

lOOO----------------------------------------~ 

800 

600 

400 

2 :3 4 5 6 8 

1000~--------------------------------------, 

800 

lOOO--------------------------------------~ 

800 

600 

2 :3 4 5 6 7 8 

MESSAGE LENGTH (PACKETS) 

Figure 7-Minimum round trip delay vs. message length. 
Curves show delay for 1-6 hops 

Line utilization 

The number of buffers required to keep a communica
tions circuit fully loaded is a function not only of line 
bandwidth and distance but also of packet length, IJ\1P 
delay, and acknowledgment strategy. In order to 
compute the buffering needed to keep a line busy, we 
need to know the length of time the sending IMP must 
wait between sending out a packet and receiving an 
acknowledgment for it. If we assume no line errors, 
this time is the sum of: propagation delays for the 
packet and its acknowledgment, Pp and P A; trans
mission delays for the packet and its acknowledgment, 
Tp and T A; and the IMP processing delay before the 
acknowledgment is sent. Thus, the number of buffers 
needed to fully utilize a line is (Pp+Tp+L+P A + 
TA)/Tp. 

Since Pp = P A, the expression for the number of 
buffers can be rewritten: 

2P L+TA -+1+--Tp Tp 

That is, the number of buffers needed to keep a line 
full is proportional to the length of the line and its 
speed, and inversely proportional to the packet size, 
with the addition of a constant term. 

To compute Tp , we must take into account the mix of 
short and long packets. Thus, we write 

Tp= xTs+yTL 
x+y 

where x to y is the ratio of number of short packets to 
number of long packets and Ts and TL are the trans
mission delays incurred by short and long packets, 
respectively. The shortest packet permitted is 152 bits 
long (entirely overhead); the longest packet is 1160 
bits long. Computing Ts and TL for any given line band
width is a simple matter; they typically range from 
106 J.Lsec for Ts on a 1.4 Mbs line to 120.5 msec for TL 
on a 9.6 Kbs line. 

Assuming worst case IMP processing delay (that is, 
the acknowledge becomes ready for transmission just 
as the first bit of a maximum length packet is sent), 
L=TL • 

The acknowledge returns in the next outgoing packet 
at the other ,IMP, which we assume is of "average" 
size:* 

Propagation delay, P, is essentially just "speed of 

* Variations of this assumption have only second order effects on 
the computation of the number of buffers required. 



752 Fall Joint Computer Conference, 1972 

en 
0:: 
W 
LL 
LL 
::::> 
al 

LL 
0 
0:: 
W 
al 
::!! 
;:) 

:z 

-- lS:0L 
-- 8S:1L 
--- 2S :lL 
-----lS:1L ,/ 
-···-OS:lL ..,.......,. ----------- ,/ . .....-:;;." 

-:~--.~--.~--.~::.~.-=~~~~~ ~ .. , 

11 10 

11 

1000 

100 

/. 
/ 

.,/ ~ 
~ ,/ - -- ./,./ / ------ /:.. ...... -
~,,/ ./ 

.~~ .' -..: ==.::. =-=.::. =:::..---=---::,:-::,:.,-~ 

10 

Figure 8-Number of buffers for full line utilization. Traffic mixes 
are shown as the ratio of number of short packets (8) to number 

of long packets (L) 

light" delay, and ranges from 50 }lsec for short lines, 
through 20 msec for a cross country line, to 275 msec 
for a satellite link. 

We can now compute the number of buffers required 
to fully utilize a line for any line speed, line length, and 
traffic mix. Figure 8 gives the result for typical speeds, 
lengths, and mixes. Note that the knee of the curves 
occurs at progressively shorter d'stances with increasing 
line speeds. The constant term dominates the 9.6 Kbs 
case, and it is almost insignificant for the 1.4 Mbs case. 
Note also that the separation between members of each 
family of curves remains constant on the log scale, 
indicating greatly increased variations with distance. 

GENERAL COMMENTS 

The ARPA Network has represented a fundamental 
development in the intersection of computers and 
communications. Many derivative activities are pro
ceeding with considerable energy, and we list here some 
of the important directions: 

• The present network is expanding, adding IMP 
and TIP nodes at rates approaching two per 
month. Other government agencies are initiating 
efforts to use the network, and increasing rates of 
growth are likely. As befits the growing opera
tional character of the ARPA Network, ARPA is 
making efforts to transfer the network from under 
ARPA's research and development auspices to an 
operational agency or a specialized carrier of some 
sort. 

• Technical improvements in the existing network 
are continuing. Arrangements have now been made 
to permit Host-IMP connections at distances 
over 2000 feet by use of common-carrier circuits. 
Arrangements are being made to allow the con
nection of remote-job-entry terminals to a TIP. 
In the software area, the routing algorithms are 
still inadequate at heavy load levels, and further 
changes in these algorithms are in progress. A 
major effort is under way to develop an IMP 
which can cope with megabit/second circuits and 
higher terminal throughput. This new "high speed 
modular IMP" will be based on a minicomputer, 
multiprocessor design; a prototype will be com
pleted in 1973. 

• The network is being expanded to include satellite 
links to oversea nodes, and an entirely new ap
proach is being investigated for the "multi-access" 
use of satellite channels by message switched 
digital communication systems.13 This work could 



Improvements in Design and Performance of ARPA Network 753 

lead to major changes in world-wide digital com
munications. 

• Many similar networks are being designed by 
other groups, both in the United States and in 
other countries. These groups are reviewing the 
myriad detailed design choices that must be made 
in the design of message switched systems, and a 
wide understanding of such networks is growing. 

• The existence of the ARPA Network is encouraging 
a serious review of approaches to obtaining new 
computer resources. It is now possible to consider 
investing in major resources, because a national, or 
even international, network clientele is available 
over which to amortize the cost of such major 
resources. 

• Perhaps most important, the network has catalyzed 
important computer research into how programs 
and operating systems should communicate, with 
each other, and this research will hopefully lead 
to improved use of all computers. 

The ARPA Network has been an exciting develop
ment, and there is much yet left to learn. 

ACKNOWLEDGl\1ENTS 

Dr. Lawrence G. Roberts and others in the ARPA 
office have been a continuing source of encouragement 
and support. The entire "IMP group" at Bolt Beranek 
and Newman Inc. has participated in the development, 
installation, test, and maintenance of the Il\/[P sub
network. In addition, Dr. Robert E. Kahn of Bolt 
Beranek and Newman Inc. was deeply involved in the 
isolation of certain. network weaknesses and in the 
formative stages of the corrective algorithms. Alex 
McKenzie made many useful suggestions during the 
writing of this paper. Linda Ebersole helped with the 
production of the manuscript. 

REFERENCES 

1 F E HEART R E KAHN S M ORNSTEIN 
W R CROWTHER D C WALDEN 
The interface message processor for the ARPA computer 
network 
Proceedings of AFIPS 1970 Spring Joint Computer 
Conference Vol 36 pp 551-567 

2 S M ORNSTEIN FE HEART W R CROWTHER 
H K RISING S B RUSSELL A MICHEL 
The terminal IMP for the ARPA computer network 
Proceedings of AFIPS 1972 Spring Joint Computer 
Conference Vol 40 pp 243-254 

3 R E KAHN W R CROWTHER 
A study of the ARPA network design and performance 
Report No 2161 Bolt Beranek and Newman Inc August 
1971 

4 R E KAHN W R CROWTHER 
Flow control in a resource sharing computer network 
Proceedings of the Second ACM IEEE Symposium on 
Problems in the Optimization of Data Communications 
Systems Palo Alto California October 1971 pp 108-116 

5 F HEART S M ORNSTEIN 
Software and logic design interaction in computer networks 
Infotech Computer State of the Art Report No 6 Computer 
Networks 1971 

6 S CARR S CROCKER V CERF 
Host/host protocol in the ARPA network 
Proceedings of AFIPS 1970 Spring Joint Computer 
Conference Vol 36 pp 589-597 

7 S CROCKER J HEAFNER R METCALFE 
J POSTEL 
Function-oriented protocols for the ARPA network 
Proceedings of AFIPS 1972 Spring Joint Computer 
Conference Vol 40 pp 271-280 

8 A McKENZIE 
Host/host protocol for the ARPA network 
Available from the Network Information Center as NIC 
8246 at Stanford Research Institute Menlo Park California 
94025 

9 Specifications for the interconnection of a host and an IMP 
Bolt Beranek and Newman Inc Report No 1822 revised 
April 1972 

10 K BARTLETT R SCANTLEBURY 
P WILKINSON 
A note on reliable full-duplex transmission over half duplex 
links 
Communications of the ACM 125 May 1969 pp 260-261 

11 G D COLE 
Computer networks measurements techniques and experiments 
UCLA-ENG-7165 Computer Science Department School of 
Engineering and Applied Science University of California at 
Los Angeles October 1971 

12 G D COLE 
Performance measurements on the ARPA computer network 
Proceedings of the Second ACM IEEE Symposium on 
Problems in the Optimization of Data Communications 
Systems Palo Alto California October 1971 pp 39-45 

13 N ABRAMSON 
The ALOHA system-Another alternative for computer 
communications 
Proceedings of AFIPS 1970 Fall Joint Computer Conference 
Vol 37 pp 281-285 

SUPPLEMENTARY BIBLIOGRAPHY 

(The following describe issues related to, but not directly 
concerned with, those discussed in the text.) 

H FRANK I T FRISCH W CHOU 
Topological considerations in the design of the ARPA computer 
network 
Proceedings of AFIPS 1970 Spring Joint Computer Conference 
Vol 36 pp 581-587 
H FRANK R E KAHN L KLEINROCK 
Computer communication n6twork design-Experience with theory 
and practice 
Proceedings of AFIPS 1972 Spring Joint Computer Conference 
Vol 40 pp 255-270 



754 Fall Joint Computer Conference, 1972 

R E KAHN 
Terminal access to the ARPA computer network 
Courant Computer Symposium 3-Computer Networks 
Courant Institute New York November 1970 
L KLEIN ROCK 
Analytic and simulation methods in computer network design 
Proceedings of AFIPS 1970 Spring Joint Computer Conference 
Vol 36 pp 569-579 
A A McKENZIE B P COSELL J M McQUILLAN 
M J THROPE 
The network control center for the ARPA network 
To be presented at the International Conference on Computer 
Communications Washington D C October 1972 

L G ROBERTS 
Extension of packet communication technology to a hand-held 
personal terminal 
Proceedings of AFIPS 1972 Spring Joint Computer Conference 
Vol 40 pp 295-298 
L G ROBERTS B D WESSLER 
Computer network development to achieve resource sharing 
Proceedings of AFIPS 1970 Spring Joint Computer Conference 
Vol 36 pp 543-549 
R THOMAS D A HENDERSON 
McROSS-A multi-computer programming system 
Proceedings of AFIPS 1972 Spring Joint Computer Conference 
Vol 40 pp 281-294 



Cost effective priority assignment 
in network computers 

by E. K. BOWDON, SR. 

University of Illinois 
Urbana, Illinois 

and 

W. J. BARR 

Bell Telephone Laboratories 
Piscataway, New Jersey 

INTRODUCTION 

Previously, the study of network computers has been 
focused on the analysis of communication costs, optimal 
message routing, and the construction of a communica
tions network connecting geographically distributed 
computing centers. While these problems are far from 
being completely solved, enough progress has' been 
made to allow the construction of reasonably efficient 
network computers. One problem which has not been 
solved, however, is making such networks economically 
viable. The solution of this problem is the object of 
our analysis. 

With the technological problems virtually solved, it 
is readily becoming apparent that no matter whose 
point of view one takes, the only economically justifiable 
motivation for building a network computer is resource 
sharing. However, the businessmen, the users, the 
people with money to spend, could not care less whose 
resources they are using for their computer runs. They 
care only that they receive the best possible service at 
the lowest possible price. The computing center manager 
who cannot fill this order will soon find himself out of 
customers. 

"The best possible service ... " is, in itself, a tall 
order to fill. The computing center manager finds 
himself in a position to offer basically two kinds of 
computing services: contract services and demand 
services. Contract services are those services which the 
manager agrees to furnish, at a predetermined price, 
within specified time periods. Examples of this type of 
service include payroll runs, billings, and inventory 
updates. Each of these is run periodically and the value 
placed by the businessman on the timely completion of 

755 

the task is large. Demand services are those services 
which, though defined in advance, may be required at 
any time and at a possibly unknown price. Frequently 
the only previous agreements made refer to the type of 
service to be delivered and limits on how much will be 
demanded. Examples of tasks which are run on a 
demand basis include research, information requests, 
and program debugging runs. University computing 
centers generally find that most of the services which 
they offer are of this type. 

Every installation manager who offers either contract 
or demand services should have a solid and acceptable 
answer to the critical question "What do I do when my 
computer breaks down?" If he wishes to ensure that he 
can meet all commitments, the only answer is to 
transfer tasks to another processor. This is where 
network computers enter the picture. If the center is 
part of a network computer, tasks can easily and 
quickly be transferred to another center for processing. 
The concept of transferring tasks between centers 
through a broker has been widely discussed in the 
literature.1 •2 

Our basic assumption is that economic viability for 
network computers is predicated on efficient resource 
sharing. This was, in fact, a major reason for the con
struction of several networks-to create the capability 
of using someone else's special purpose machine or 
unique process without having to physically transport 
the work. This type of resource sharing is easily imple
mented and considerable work has been done toward 
this goal. There is, however, another aspect of resource 
sharing which has not been studied thoroughly: load
leveling. By load-leveling we mean the transfer of tasks 
between computing centers for the purpose of improving 



756 Fall Joint Computer Conference, 1972 

the throughput of the network or other criteria. We 
contend that the analysis and implementation of 
user-oriented load-leveling is the key to developing 
economically self-supporting network computers. 

A SCENARIO OF COST EFFECTIVENESS 

Until recently, efforts to measure computer efficiency 
have centered on the measurement of resource (in
cluding processor) idle time. A major problem with 
this philosophy is that it assumes that all tasks are of 
roughly equal value to the user and hence the operation 
of the system. • 

As an alternative to the methods used in the past, we 
propose a priority assignment technique designed to 
represent the worth of tasks in the· system. We present 
the hypothesis that tasks requiring equivalent use of 
resources are not necessarily of equivalent worth to the 
user with respect to time~ We would allow the option 
for the user to specify a "deadline" after which the 
value of his task would decrease, at a rate which he can 
specify, to a system determined minimum. With this in 
mind, we have proposed a measure of cost effectiveness 
with which we can evaluate the performance of a 
network with an arbitrary number of interconnected 
systems, as well as each system individually.3 

We define our measure of cost effectiveness 'Y, as 
follows: 

where 

and 

Lq is the number of tasks in the queue, 
M is the maximum queue length, 
R is the number of priority classes, 
a is a measure (system-determined) of the "ded

icatedness" of the CPU to the processing of 
tasks in the queue, 

n 

(3(i) = (R-i) :E [g( j) /f( j) ] 
j=1 

where 

and 

g (j) is the reward for completing task j (a user 
specified function of time) , 

f( j) is the cost (system determined) to complete 
taskj. 

The term (Lq/ M) a is a measure of the relevance of the 
queue to processing activities. Similarly, we can look 
at (3(i) asa measure of resource utilization. Note that 

(3 (i) indicates a ratio of reward to cost for a given 
priority class and is sensitive to the needs of the user 
and the requirements imposed on the installation. It is 
user sensitive because the user specifies the reward and 
is installation sensitive because the cost for processing 
a task. is determined by the system. The measure of 
CPU dedicatedness (a), on the other hand, is an 
entirely installation sensitive parameter. 

The first problem which becomes apparent is that 
which arises if 

R-l 

:E (3(i) =0. 
i=O 

This occurs only in the situation where there is exactly 
one priority class (i. e., the non-priority case) . We will 
finesse away this problem by defining 

j
R-l 

(M -Lq) E (3 (i) =0 

for this case. Intuitively, this is obvious, since the 
smaller this term gets, the more efficiently (in terms of 
reward) a system is using its resources. Furthermore, 
in the absence of priorities, the order in which tasks are 
executed is fixed, so this term becomes irrelevant to our 
measure of cost effectiveness. Thus, for the non
priority case, we have 

'Y= (Lq/M) a 

which is simply<: the measure of the relevance of the 
queue to processing activities. This is precisely what we 
want if we are going to consider only load-leveling in 
non-priority systems. However, we are interested in the 
more general case in which we can assign priorities. 

An estimate of the cost to complete task j, f( j) is 
readily determined from the user-supplied parameters 
requesting resources. Frequently these estimated 
parameters are used as upper limits in resource alloca
tion and the operating system will not allow the pro
gram to exceed them. As a result, the estimates tend to 
be high. On the other hand, lower priorities are usually 
assigned to tasks requiring a large amount of resources. 
So the net effect is that the user's parameters reflect his 
best estimate and we may be reasonably confident that 
they truly reflect his needs. 

At the University of Illinois computing center, for 
example, as of July 26, 1971, program charges are 
estimated by the following formula: 

cents=a(X+Y) (bZ+c)+d 

where 

X = CPU time in centiseconds, 
Y = number of I/O requests, 

(2) 



Cost Effective Priority Assignment in Network Computers 757 

g(j) 

and 

g(j) 

g2 t2 
, ft 

L..-_. -+-,,'_. -__ . -__ . --+-·--'lo,,-,in7 
3:30pm 8:00 am 3:30pm 8:00am 

time time 

tal Ideal function. (b) Approximate function. 

Figure 1-Example of user's reward function 

Z = core size in kilobytes, 
a, b, c are weighting factors currently having the 

values 0.04, 0.0045, and 0.5, respectively. 

d is an extra charge factor including $1.00 cover 
charge plus any special resources used (tape/disk 
storage, card read, cards punched, plotter, etc.). 

The main significance of the reward function g ( j) 
specified by the user is that it allows us to determine a 
deadline or deadlines for the task. Typically we might 
expect g (j) to be a polynomial in t, where t is the time 
in the system. For example, the following thoughts 
might run through the user's head: "Let's see, it's 
10:00 a.m. now and I don't really need immediate 
results since I have other things to do. However, I do 
'need the output before the 4:00 p.m. meeting. There-
fore, I will make 3: 30 p.m. a primary deadline. If it 
isn't done before the meeting, I can't use the results 
before tomorrow morning, so I will make 8:00 a.m. 
a secondary deadline. If it isn't done by then I can't 
llRP. thp. results, so after 8: 00 a.m. T don't, care." 

The function g (j) this user is thinking about would 
probably look something like Figure 1a. Now, this type 
of function poses a problem in that it is difficult for the 
user to specify accurately and would require an appre
ciable amount of overhead to remember and compute. 
Notice, however, that even if turnaround time is 
immediate, the profit oriented installation manager 
would put the completed task on a shelf (presumably 
an inexpensive storage device) and not give it to the 
user until just before the deadline-thus collecting the 
maximum reward. As a result, there is little reason for 
specifying anything more than the deadlines, the 
rewards associated with meeting the deadlines, and the 
rate of decrease of the reward between deadlines, if 
any. Applying this reasoning to Figure 1a we obtain 
Figure lb. Note that this function is completely 
specified with only six parameters ( deadlines tl, ~; 
rewards gl, g2; and rates of decrease ml, m2). 

In general, we may assume that g (j) is a monotoni
cally non-increasing, piecewise linear, reward function 
consisting of n distinct sets of deadlines, rewards, and 
rates of decrease. Thus we can simply specify g (j) with 
3n parameters where n is the number of deadlines 
specified. 

Note that, in effect, the user specifies an abort time 
when the g (j) he specifies becomes less than f( j). If 
the installation happens to provide a "lower cost" 
service, I( j) and if g ( j) > I( j), this task would be 
processed, but only when all the tasks with higher 
g (j) had been processed. 

Now, what we are really interested in, is not so much 
an absolute reward, but a ratio of reward to cost. Since 
f( j) is, at best, only an estimate of cost, we cannot 
reasonably require a user to specify an absolute reward. 
A more equitable arrangement would be to specify the 
rewards in terms of a ratio g( j) /f( j) associated with 
each deadline. This ratio is more indicative of the 
relative worth of a task, both to the system and to the 
user, since it indicates the return on an investment. 

PRIORITY ASSIGNMENT 

Let us now turn our attention to the development of 
a priority assignment scheme which utilizes the 
reward/ cost ratios described in the previous section. 
W ebegin by quantizing the continuum of reward/cost 
ratios into R distinct intervals. Each of these intervals 
is then assigned to one of R priority classes 0, 1, 2, ... , 
R -1 with priority 0 being reserved for tasks with 
highest reward/cost ratios and priority R -1 for tasks 
with reward/cost ratios of unity or less. A task entering 
the system will be assigned a priority according to 
its associated reward/cost ratio. 

We want to guarantee, if possible, that all priority 0 
tasks will meet their deadlines. Furthermore, if all 
priority 0 tasks can meet their deadlines, we want to 
guarantee, if possible, that all priority 1 tasks will meet 
their deadlines and, in general, if all priority k tasks 
can meet their deadlines, we want to guarantee that as 
many priority class k+ 1 tasks as possible will meet 
their deadlines. (Note that we are concerned with 
guaranteeing deadlines rather than rationing critical 
resources. ) 

To facilitate the priority assignment, we introduce the 
following notation: For priority k, let T i denote the 
ith task. Then we assume for each Ti that we receive 
the following information vector: 

(Ti, g/f, di , Ti, 8i) 

where 

T i is an identifier, 



758 Fall Joint Computer Conference, 1972 

and 

g I j is the rewardl cost ratio associated with meet
ing .the task's deadline, 

di is the task's deadline associated with glj, 
T i is the maximum processing time for the task, 

si=di-Ti, is the latest time at which the task may 
start processing and still be assured of meeting 
its deadline. 

N ow since each task has an associated deadline and 
maximum processing time, we can use the resulting 
latest start time as the basis for assigning positions to 
tasks within a priority class. A last come, first served 
rule will be used to break ties. Additionally, we will use 
a compacting scheme to ensure that as many tasks as 
possible start processing before their latest start times. 
More formally our algorithm may be stated as follows: 

Priority assignment algorithm 

First, we assign a new task a priority based on its 
gliratio, say priority k. Then within class k, its position 
is determined as follows: 

1. Beginning with the last priority k task (that is, 
the task with latest deadline) search forward 
until two tasks, T j- 1 and Tj, are found such that 
d j- 1 < d i ::; d j • Insert T i between the two tasks, 
assign it a start time si=di-Ti, and renumber 
the tasks behind T j accordingly (i.e., Ti becomes 
Tj, T j becomes T j+lt etc.). 

2. Now, if Sj-1+Tj-1::;Sj::;Si+l-Tj there is sufficient 
float time between T j- 1 and Ti+1 for T j to be 
processed on time and the priority assignment is 
complete. However, if either Sj-1+Tj-1>Sj or 
Sj+Tj>Si+1, a deadline might be missed; so we 
proceed with Step 3. 

3. COlllpacting schellle Let ij. denote the float 
time between any two tasks T j- 1 and Tj, where 
h is defined: 

h=sj- (Sj-l+Tj-1) 

Then, Fj, the total float time preceding Tj, is 
given by: 

j j 

F j = ~h = Sj-t + ~Tj (3) 
k=1 k=1 

where t is the current time. Now, starting with 
task Tj, if Sj+Tj>Sj+1 and Fj~Sj+Tj-Sj+l we 
assign a new starting time to Tj given by: 

and we continue with T j - 1, T j - 2, etc., until we 

encounter a task T k, k~j, such that Sk::;Sk+l-n. 

(N ote that Tj +1 and all its predecessors are 
guaranteed to meet their deadlines.) 

4. However, if Sj+Tj>Si+1 but Fj<Sj+Tj-Si+1, 

we do not assign a new start time to T j. Instead 
we leave the start time at its latest critical value, 
even though it may not start processing at that 
time. We observe that many tasks may not 
require all of the processing time specified by 
their maxima, and as a result sufficient float time 
may be created later to enable the task, T j, 
to meet its deadline. 

Examples 

Several examples will now be given to illustrate the 
efficacy of the algorithm. Suppose we have determined 
that a task, T i , should have priority k and that at time 

I I I 
0 1 2 3 4 5 6 7 8 9 0 2 3 4 
I I I I I I I I I I I I I I 

5 

I 
I Tl I T2 ) I T3 I I T4 I T51 

A) SCHEDULE OF TASKS. 

d1 = 2 
Tl '1 = 1 

51 = 1 

d2 = 4 0 
T2 '2 = 2 

52 = 2 

d3 = 10 3 
T3 '3 = 3 

53 = 7 

d4 = 14 2 
T4 '4 = 2 

54 = 12 

d5 = 15 0 
T5 '5 = 1 

55 = 14 

\.~--- ~--~)~ 

INFORMATION VECTOR FLOAT TIME, fi 

B) INFORMATION VECTORS. 

Figure 2-State of priority Class k at time t =0 



Cost Effective Priority Assignment in Network Computers 759 

I I 
0 1 2 3 4 5 6 7 8 9 0 2 3 4 5 
I I I I I I I I I I I I I I I 

I Tl I T2 I I T3 I I T4 I T51 

I Tl 

A) S.OiEDULE OF TASKS BEFORE ASSIGNMENT. 

I I I I I I 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 
1 I I I I I I I I I I I I 'I I I 

ITI I T2 I T3 I I T5 ITs/ 

T4 

B) SOiEDULE OF TASKS AFTER ASSIGNMENT. 

Tl 1 

0 
T2 

"'" 

0 
T3 

1\ 
0 

i\ 
0 

T5 

\ 
15 0 

Ts 1 
14 

c) INFORfv1ATlON VECTORS AFTER ASS I GNflENT • 

Figure 3-Results of priority assignments for Example (i) 

t=o, the state of priority class k is that shown in 
Figure 2. (Note that since all priority class k tasks have 
similar g / I, we need not show these ratios.) Notice that 
forming the float time column is analogous to forming a 
forward difference table. . In each of the following 
examples we assume that Figure 2 is the initial state of 
priority class k. 

(i) Suppose the information vector (with g/I 
omitted) for Ti is (Ti,6, 1,5). Beginning with 
T 5, we observe that lh<di~d3<d4<d5. So we 
insert Ti between T2 and T3 and renumber the 
tasks accordingly. Now S2+T2~83~84-ra since 
2 + 2 ~ 5 ~ 7 - 1, so the priority assignment is 
complete and all tasks are guaranteed to meet 
their deadlines. The resulting state of priority 
class k is shown in Figure 3. 

(ii) Suppose instead that the information vector for 

Tiis (Ti, 9, 2, 7). We find thatlh<di~d3<d4<d5, 
so we insert Ti between T2 and T3 and renumber 
the tasks accordingly. However, 83+T3>84 since 
7 + 2> 7 and a deadline could be missed. But 
F3~83+T3-84 since 4~7+2-7=2, so we assign 
a new start time to T3: 83=84-T3=7-2=5. 
Now 82~83-T2 since 2~5-2, so the priority 
assignment is complete and all tasks are guar
anteed to meet their deadlines. The resulting 
state of priority class k is shown in Figure 4. 
(N ote the effect of the last in first out rule for 
breaking ties on start times.) 

(iii) Next suppose the information vector for Ti is 
(Ti, 9, 4, 5). We find that d2<di~d3<d4<d5, so 
we insert Ti between T2 and T3 and renumber 
the tasks accordingly. However, 83+ra>84 
since 5 +4 > 7, and a deadline could be missed. 
But F3~83+T3-84 since 4~4 so we assign a new 

I 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 
I I I I I I I I I I I I I I I 

5 
I 

ITl I T2 I I T3 I I T4 (T51 

Tj 

A) SOiEDULE OF TASKS BEFORE ASSIGNf'lENT. 

I I I I I I 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 
I I I I I I I I I I I I I I I I 

ITl I T2 I T3 I T4 I I T5 ITs I 
B) SOiEDULE OF TASKS AFTER ASSIGNMENT. 

Tl 
0 

4 0 
T2 2 

1 , 9 0 
T3 4 

3 

\ 
0 

T4 

\ 
2 

T5 

~ 
15 0 

Ts 1 
14 

c) INFORMATION VECTORS AFTER ASS I GNflENT • 

Figure 4-Results of priority assignments for Example (ii) 



760 Fall Joint Computer Conference, 1972 

start time to T3: 83 = 84 - TS = 7 - 4 = 3. Next 
82+T2>8s since 2+2>3, so we assign a new start 
time to T2: S2=SS-T2=3-2=1. Now Sl+T1>S2 
since 1 + 1 > 1, so we assign a new start time to 
T1 : 81=82-T1=O. The priority assignment is 
complete and all tasks are guaranteed to meet 
their deadlines. The resulting state of priority 
class k is shown in Figure 5. 

(iv) As a final example, suppose that the information 
vector for Ti is (Ti , 9, 5, 4). As before, we find 
that th < di ~ ds < d4 < ds, so we insert T i between 
T2 and Ts and renumber the tasks accordingly. 
However, 8s+Ts>S4 since 4+5>7, and a dead-
line could be missed. Furthermore, Fs<8s+Ts-84 
since 1 <4+5-7 =2, and the compacting scheme 
will not help us. Instead we leave the start times 
at their latest critical values and hope that 
sufficient float time is created later to enable the 

I I I I 
0 1 2 3 4 5 6 7 8 9 0 2 3 4 5 
I I I I I I I I I I I I I I I 

I Ti I T2 I I T3 I I T4 IT51 

IT] 
A) SCHEDULE OF TASKS BEFORE ASS I GNt-'ENT. 

0 1 2 3 
I I I I I I 4 5 6 7 8 9 0 1 2 3 4 5 

I I I I I I I I I I I I I I I I 
lli I T2 I I T3 I T4 I I T5 ITGI 

B) SCHEDULE OF TASKS AFTER ASSIGNMENT. 

2 1 
Tl 1 

1 

4 0 
Tz 2 

2 

\ 9 1 
T3 2 

5 

~ 
10 0 

T4 3 
7 

\ 
14 2 

T5 2 
12 

\ 
15 0 

TG 1 
14 

c) INFORMATION VECTORS AFTER ASSIGWENT. 

Figure 5-Results of priority assignments for Example (iii) 

0 1 2 3 4 5 6 7 8 9 0 2 3 4 5 

I I I I I I I I I I I I I I I 

~I T2 I I T3 I I T4 I T51 

W 
A) SCHEDULE OF TASKS BEFORE ASS I GNMENT • 

I I I I I I 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

I I I I I I I I I I I I I I I I 
I Tl ] T2 I [iJ I T4 I I T5 ITGI 

B) SCHEDULE OF TASKS AFTER ASS I GNMENT • 

2 
Tl 1 

1 

1 

4 o 
T2 2 

2 

\ 
6 

T3 1 
5 

1 

\ 
10 

T4 3 
7 

\ 
14 

T5 Z 
12 

2 

\ 
15 

TG 1 
14 

o 

C) I NFORMA. T ION VECTORS AFTER ASS I GNt-'ENT • 

Figure 6-Results of priority assignments for Example (iv) 

tasks to meet their deadlines. The results of this 
assignment are shown in Figure 6. Note that T4 
is the task which is in danger of missing its 
deadline~ 

The last example brings up the problem of what to do 
with a task whose deadline is missed. We simply treat it 
as though it had just entered the system using the next 
specified deadline as the current deadline. If no further 
deadlines are specified, the task is assigned priority 
R -1 and will be processed accordingly. 

When a processor finishes executing a task the follow
ing scheduling algorithm is used to determine which 
task is to be processed next. Generally, the algorithm 
takes the highest priority task in the queue that is 
closest to its latest starting time. 



Cost Effective Priority Assignment in Network Computers 761 

Scheduling algorithm 

Beginning with k = 0 and using l as an index, 

1. We examine the float time, iI, for the first task in 
priority class k. Then for l = k+ 1 : 

2. If il of priority class k S 'Tl for the first task of 
priority class l, we set k = l and continue with 
Step 1. Otherwise we continue with Step 3. 

3. Set l = l+ 1 and continue with Step 2 until all 
priority classes have been considered. Then 
continue with Step 4. 

4. Assign the first task, T I , in priority k to the 
available processor. 

The effect of this scheduling algorithm is quite simple. 
It instructs the scheduler to schedule the important 
tasks first and then, if there is sufficient time, schedule 
those lower priority tasks in such a way that as many 
deadlines as possible are met. 

In the foregoing we have tacitly assumed that each 
task enters the system sufficiently before its deadline to 
allow processing. The two algorithms taken together 
facilitate meeting the deadlines, where possible, of the 
higher priority tasks. Those tasks which do not meet 
their deadlines will tend to be uniformly late. 

LOAD LEVELING IN A NETWORK OF 
CENTERS 

Thus far we have been concerned only with cost 
effectiveness in a single center. Next, let us consider the 
more general problem of load leveling within a network 
of centers. Each center may contain a single computer 
or a subnet of computers. The topological and physical 
properties of such networks have been illustrated4- S and 
will not be discussed here. 

We wish to determine a strategy which optimizes the 
value of work performed by the network computer. 
That is, to guarantee that every task in each center will 
be processed, if possible, before its deadline and only 
those tasks that offer the least reward to the network 
will miss their deadlines. Implicit in this discussion is 
the simplifying assumption that any task can be 
performed in any center. This assumption is not as 
restrictive as it may sound since we can, for the pur
poses of load leveling, partition a nonhomogeneous 
network into sets of homogeneous subnetworks which 
can be considered independently. Thus, in the dis
cussion which follows, we will assume that the network 
computer is homogeneous. 

We define the measure of cost effectiveness for a 

network of N centers, 'YN, as follows: 

N 

'YN = L: Wi'Y i given that (4) 
i=1 

where 

the Wi are weighting factors that reflect the relative 
contribution of the ith center to the overall com
putational capability of the network, 

and 'Yi is the measure of cost effectiveness for the ith 

center. 
Note that if a center is a subnet of computers, 

we could employ this definition to determine the mea
sure of cost effectiveness for the subnet. We also let Cii 

denote the cost of communication between centers i and 
j; and tii the transmission time between centers i and j. 

Ideally, we want the network computer to operate so 
that all tasks within the network are processed before 
their deadlines. If a task is in danger of missing its 
deadline, we want to consider it as a candidate for 
transmission to another center for processing. The 
determination of which tasks should be transferred 
follows the priority assignment (i.e., priority 0 tasks in 
danger of missing deadlines should be the first to be 
considered, priority 1 tasks next, etc.) . 

We note that this scheme may not discover all tasks 
that are in danger of missing their deadlines. In order to 
discover all tasks that might be in danger of missing 
their deadlines, we would require a look ahead scheme 
to determine the available float time and to fit lower 
priority tasks into this float time. The value of such a 
scheme is questionable, however, since we assume some 
float time is created during processing and additional 
float time may be created by sending high priority. 
tasks to other centers. Also, the overhead associated 
with executing the look ahead scheme would further 
reduce the probable gain of such a scheme. 

The determination of which center should be the 
recipient of a transmitted task can be determined from 
the measure of cost effectiveness of each center. Recall 
that the measure indicates the worth of the work to be 
processed within a center. Thus a center with a task in 
danger of missing its deadline will generally have a 
larger measure than a center with available float time. 
Thus, by examining the measures for each center, we 
can determine the likely recipient of tasks to be trans
mitted. These centers can in turn, examine their own 
queues and bid for additional work on the basis of their 
available float times. This approach has a decided 
economic advantage over broadcasting the availability 
of work throughout the network and transmitting the 
tasks to the first center to respond. The latter approach 



762 Fall Joint Computer Conference, 1972 

has been investigated by Farber9 and discarded in 
favor of bidding. 

Once a recipient center has been determined, we 
would transmit a given task only if the loss in reward 
associated with not meeting its deadline is greater than 
Cij, the cost of transmitting the task between centers 
and transmitting back the results. 

When a task is transmitted to a new center its 
deadline is diminished by tij, the time to transmit back 
the results, thus ensuring the task will reach its destina
tion before its true deadline. Similarly, the reward 
associated with meeting the task's deadline is dimin
ished by Cij, since this represents a reduction in profit. 
Then the task's g/f ratio is used to determine a new 
priority and the task is treated like one originating in 
that center. 

This heuristic algorithm provides the desired results 
that within each center all deadlines are met, if possible, 
and if any task is in danger of missing its deadline, it is 
considered for possible transmission to another center 
which can meet the deadline. 

SUMMARY 

We have introduced a priority assignment technique 
which, together with the scheduling algorithm, provides 
a new approach to resource allocation. The most 
important innovation in this approach is that it allows 
a computing installation to maximize reward for the 
use of resources while allowing the user to specify dead
lines for his results. The demand by users upon the 
resources of a computing installation is translated into 
rewards for the center. 

This approach offers advantages to the user and to 
the computing installation. The user can exercise con
trol over the processing of his task by specifying its 
reward/cost ratio which, in turn, determines the impor
tance the installation attaches to his requests. The 
increased flexibility to the user in specifying rewards 
for meeting deadlines yields increased reward to the 
center. Thus the computing installation becomes cost 
effective, since for a given interval of time, the installa
tion can process those tasks which return the maximum 
reward. A notable point here, is that this system readily 
lends itself to measurement. 

The measure of cost effectiveness is designed to reflect 
the status of a center using the priority assignment 
technique. From its definition, the value of the measure 
depends not only on the presence of tasks in the system 
but upon the priority of these tasks. Thus the measure 
reflects the worth of the tasks awaiting execution rather 
than just the number of tasks. Therefore, the measure 
can be used both, statistically, to record the operation of 

a center, and dynamically, to determine the probability 
of . available float time. This attribute enables us to 
predict the worth of the work to be performed in any 
center in the network and facilitates load-leveling 
between centers. 

We have spent a good deal of time discussing what 
this system does and the problems it attempts to solve. 
In the interest of fair play, we now consider the things 
it does not do and the problems it does not solve. 

One of the proposed benefits of a network computer is 
that it is possible to provide, well in advance, a guar
antee that, at a predetermined price, a given deadline 
will be met. This guarantee is especially important for 
scheduled production runs, such as payroll runs, which 
must be processed within specified time periods. The 
system as presented does not directly allow for such a 
long range guarantee. However, to implement such an 
option, we simply modify the reward to include the loss 
of goodwill which would be incurred should such a dead
line be missed. Perhaps the easiest way to implement 
this would be to reserve priority class zero for tasks 
whose deadlines were previously guaranteed. Under 
this system we could assure the user, with confidence, 
that the deadlines could be met at a predetermined 
(and presumably more expensive) price. 

A second problem with the system is that the al
gorithms do not optimize the mix of tasks which would 
be processed concurrently in a multiprogramming 
environment. A common strategy in obtaining a good 
mix is to choose tasks in such a way that most of the 
tasks being processed at one time are input/output 
bound (this is especially common in large systems which 
can support a large number-five or more-tasks con
currently). Generally smaller tasks are the ones selected 
to fill this bill. Under our system, the higher priority 
classes will tend to contain the smaller and less expen
sive tasks since priority is assigned on the basis of a 
cost multiplier which is user supplied. We assume a 
user would be much more reluctant to double (give a 
reward/cost ratio of 2) the cost of a $100 task than to 
double the cost of a $5 task. This reluctance will tend 
to keep a good mix present in a multiprogramming 
environment. 

The final problem we would like to consider is what 
to do with a task if (horror of horrors) all of its dead
lines are missed. There are basically two options, both 
feasible for certain situations, which will be discussed. 
The ultimate decision as to \yhich is best rests with the 
computer center managers. Therefore, we will present 
the alternatives objectively without any intent to 
influence that decision. 

The first alternative made obvious by the presenta
tion is that when. a task misses all of its deadlines the 
results it would produce are of no further use. Con-



Cost Effective Priority Assignment in Network Computers 763 

tinued attempts to process a task in this instance would 
be analogous to slamming on the brakes after your car 
hits a brick wall; simply a waste of resources. Thus, if 
the deadlines are firm, a center manager could say that 
a task which misses all of its deadlines should be con
sidered lost to the system. 

On the other hand, the results produced by a task 
could be of value even after the last deadline is missed. 
In this case the center manager could offer a "low cost" 
service under which tasks are processed at a reduced 
rate but at the system's leisure. The danger in this 
approach is that if run without outside supervision, the 
system could become saturated with low cost tasks to 
the detriment of more immediately valuable work. 
This actually happened at the University of Illinois 
during early attempts to institute a low cost option. 
The confusion and headaches which resulted from the 
saturation were more than enough to justify instituting 
protective measures. From the results of this experience, 
it is safe to say that no installation manager will let it 
happen more than once. 

Even in the presence of a few limitations, our system 
represents a definite positive step in the analysis of 
network computers. Our approach treats a network 
computer as the economic entity that it should be: a 
market place in which vendors compete for customers 
and in which users contend for scarce resources. The 
development of this approach is a first step in the long 
road to achieving economic viability in network com
puters. 

ACKNOWLEDGMENTS 

We are particularly grateful to Mr. Einar Stefferud of 
Einar Stefferud and Associates, Santa Monica, Cali
fornia for his constructive criticism and constant 

encouragement in this effort. Weare also indebted to 
Professor David J. Farber of the University of Cali
fornia at Irvine, California for many interesting 
conversations about bidding in distributed networks. 
Finally, we would like to thank the referees for their 
careful reviews and suggestions to improve this paper. 

This research was supported in part by the National 
Science Foundation under Grant No. NSF GJ 28289. 

REFERENCES 

1 E STEFFERUD 
Management's role in networking 
Datamation Vol 18 No 41972 

2 J T HOOTMAN 
The computer network as a marketplace 
Datamation Vol 18 No 4 1972 

3 E K BOWDON SR W J BARR 
Throughput optimi.zation in network computers 
Proceedings of the Fifth International Conference on 
System Sciences Honolulu 1972 

4 N ABRAMSON 
The ALOHA system 
University of Hawaii Technical Report January 1972 

5 H FRANK I T FRISCH 
Communication transmission and transportation networks 
Addison-Wesley Reading Massachusetts 1971 

6 L KLEINROCK 
Communication nets stochastic flow and delay 
McGraw-Hill New York New York 1964 

7 R SYSKI 
Introduction to congestion theory in telephone systems 
Oliver and Boyd Edinburgh 1960 

8 E BOWDON SR 
Dispatching in network computers 
Proceedings of the Symposium on Computer 
Communications Networks and Teletraffic April 1972 

9 D J. FARBER K C LARSON 
The structure of a distributed computing system-software 
Proceedings of the Symposium on Computer 
Communications Networks and Teletraffic April 1972 





C A I ··· * .mmp- mn tI-mInI-processor 

by WILLIAM A. WULF and C. G. BELL 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

INTRODUCTION AND MOTIVATION 

In the Summer of 1971 a project was initiated at eMU 
to design the hardware and software for a multi
processor computer system using minicomputer pro
cessors (i.e., PDP-II's). This paper briefly describes an 
overview ( only) of the goals, design, and status of this 
hardware/software complex, and indicates some of 
the research problems raised and analytic problems 
solved in the course of its construction. 

Earlier in 1971 a study was performed to examine 
the feasibility of a very large multiproceSsor computer 
for artificial intelligetnce research. This work, reported 
in the proceedings paper by Bell and Freeman, had an 
influence on the hardware structure. In some sense, 
this work can be thought of as a feasibility study for 
larger multiprocessor systems. Thus, the reader might 
look at the Bell and Freeman paper for general over
view and potential, while this paper has more specific 
details regarding implementation since it occurs later 
and is concerned with an active project. It is recom
mended that the two papers be read in sequence. 

The following section contains requirements and 
background information. The next section describes 
the hardware structure. This section includes the 
analysis of important problem in the hardware design: 
interference due to multiple processors accessing a 
common memory. The operating system philosophy, 
and its structure is given together with a detailed anal
ysis of one of the problems incurred in the design. One 
problem is determining the optimum number of "locks" 
which are in the scheduling primitives. The final section 
discusses a few programming problems which may 
arise because of the possibilities of parallel processing. 

* This work was supported by the Advanced Research Projects 
Agency of the Office of the Secretary of Defense (F44620-70-0107) 
and is monitored by the Air Force Office of Scientific Research. 

765 

REQUIREMENTS 

The CMU multiprocessor project is designed to 
satisfy two requirements: 

1. particular computation requirements of existing 
research projects; and 

2. research interest in computer structures. 

The design may be viewed as attempting to satsify the 
computational needs with a system that is conserva
tive enough to ensure successful construction within a 
two year period while first satisfying this constraint, 
the system is to be a research vehicle for multiprocessor 
systems with the ability to support a wide range of 
investigations in computer design and systems pro
gramming. 

The range of computer science research at eMU 
(i.e~, artificial intelligence, system programming, and 
computer structures) constrains processing power, data 
rates, and memory requirements, etc. 

(1) The artificial intelligence research at eMU 
concerned ~ith speech and vision imposes two 
kinds of requirements. The first, common to 
speech and vision, is that special high data rate, 
real time interfaces are required to acquire data 
from the external environment. The second more 
stringent requirement, is real time processing for 
the speech-understanding system. The forms of 
parallel computation and intercommunication 
in multiprocessor is a matter for intensive 
investigation, but seems to be a fruitful approach 
to achieve the necessary processing capability. 

(2) There is also a significant effort in research on 
operating systems and on understanding how 
software s Y'l3tems are to be constructed. Research 
in these a~eas has a strong empirical and ex
perimental component, requiring the design 
and construction of many sy~tems. The primary 



766 Fall Joint Computer Conference, 1972 

requirement of these systems is isolation, so 
they can be used in a completely idiosyncratic 
way and be restructured in terms of software 
from the basic machine. These systems also 
require access by multiple users and varying 
amounts of secondary memory. 

(3) There is also research interest in using Register 
Transfer Moduks (RTM's) developed here and 
at Digital Equipment Corporation (Bell, Grason, 
et al., 1972) and in production as the PDP-16 
are designed to assist in the fabrication of hard
ware/software systems. A dedicated facility is 
needed for the design and testing of experi
mental system constructed of these modules. 

TIMELINESS OF MULTIPROCESSOR 

We believe that to assemble a multiprocessor system 
today requires research on multiprocessors. Multi
processor systems (othpr than dual processor struc
tures) have not become current art. Possibly reasons 
for this state of affairs are: 

1. The absolutely high cost of processors and 
primary memories. A complex multiprocessor 
system was simply beyond the computational 
realm of all but a few extraordinary users, in
dependent of the advantage. 

2. The relatively high cost of processors in the 
total system. An additional processor did not 
improve the performance/ cost ratio. 

3. The unreliability and performance degradation of 
operating system software,-providing a still 
more complex system structure-would be 
futile. 

4. The inability of technology to permit construc
tion of the central switches required for such 
structures due to low component density and 
high cost. 

5. The loss of performance in multiprocessors due 
to memory access conflicts and switching delays. 

6. The unknown problems of dividing tasks into 
sub tasks to be executed in parallel. 

7. The problems of constructing programs for 
execution in a parallel environment. The possi
bility of parallel execution demands mechanisms 
for controlling that parallelism and for handling 
increased programming complexity. 

In summary, the expense was prohibitive, even for 
discovering what advantages of organization might 
overcome any inherent decrements of performance. 
However, we appear to have now entered a techno-

logical domain when many of the difficulties listed 
above no longer hold so strongly: 

1'. Providing we limit ourselves to multiprocessors 
of minicomputers, the total system cost of 
processors and primary memories are now within 
the price range of a research and user facility. 

2'. The processor is a smaller part of the total 
system cost. 

3'. Software reliability is now somewhat improved, 
primarily because a large number of operating 
systems have been constructed. 

4'. Current medium and large scale integrated 
circuit technology enables the construction of 
switches that do not have the large losses of the 
older distributed decentralized switches (Le., 
busses). 

5'. Memory conflict is not high for the right balance 
of processors, memories and switching system. 

6'. ThNe has been work on the problem of task 
parallelism, centered around the ILLIAC IV 
and the CDC STAR. Other work on modular 
programming [Krutar, 1971; Wulf, 1971] sug
gests how subtasks can be executed in a pipeline. 

7'. l\tIechanisms for controlling parallel execution, 
fork-join (Conway, 1963), P and V (Dijkstra, 
1968), have been extensively discussed in the 
literature. Methodologies for constructing large 
complex programs are emerging (Dijkstra, 1969, 
Parnas, 1971). 

In short, the price of experimentation appears rea
sonable, given that then' are requirements that appear 
to be satisfied in a sufficiently direct and obvious way 
by a proposed multiprocessor structure. Moreover, 
there is a reasonable research base for the use of such 
structures. 

RESEARCH AREAS 

The above state does not settle many issues about 
multiprocessors, nor make its development routine. 
The main areas of research are: 

1. The multiprocessor hardware design which we 
call the PMS structure (see Bell and Newell, 
1971). Few multiprocessors have been built, 
thus each one represents an important point in 
design space. 

2. The processor-memory interconnection (Le., 
the switch design) especially with respect to 
reliability. 



3. The configuration of computations on the multi
processor. There are many processing structures 
and little is known about when they are ap
propriate and how to exploit them, especially 
when not treated in the abstract but in the con
text of an actual processing system: 

Parallel processing: a task is broken into a 
number of subtasks and assigned to separate 
processors. 
Pipeline processing: various independent 
stages of the task are executed in parallel 
(e.g., as in a co-routine structure). 
Network processing: the computers operate 
quasi-independently with intercommunication 
(with various data rates and delay times). 
Functional specialization: the processors have 
either special capabilities or access to special 
devices; the tasks must be shunted to pro
cessors as in a job shop. 
Multiprogramming: a task is only executed 
by a single processor at a given time. 
Independent processing: a configurational 
separation is achieved for varying amounts 
of time, such that interaction is not possible 
and thus doesn't have to be processed. 

4. The decomposition of tasks for appropriate 
computation. Detailed analysis and restructuring 
of the algorithm appear to be required. The 
speech-understanding system is one major 
example which will be studied. It is interesting 
both from the multiprocessor and the speech 
recognition viewpoints. 

5. The operating system design and performance. 
The basic operating system design must be 
conservative, since it will run as a computation 
facility, however it has substantial research 
interest. 

6. The measurement and analysis of performance 
of the total system. 

7. The achievement of reliable computation by 
organizational schemes at higher levels, such as 
redundant computation. 

THE HARDWARE STRUCTURE 

This section will briefly describe the hardware design 
without explicitly relating each part to the design con
straints. The configuration is a conventional multi
processor system. The structure is given in Figure 1. 

There are two switches, Smp and Skp, each of which 
provide intercommunication among two sets of com
ponents. Smp allows each processor to communicate 
with all primary memories (in this case core). Skp 

C.mmp-A Multi-Mini-Processor 767 

~l 

k 

Smp 

(m-to-p crosspoint) 

r- -- - - - -:- 1 - --I 
1 K.configurat1On I 
I 

I K. configuration I 
'-- __________ I 

Skp 

(p-to-k; nUll/ dual duplex/ crosspoint 

where: Pc/central processor; Mp/primary memory; T/terminals; 

KS/ slow device control (e. g., for Teletype); 

Kf/fast device control (e.g., for disk); 

Kc/control for clock, timer, interprocessor c~unication 

lBoth switches have static configuration control by manual and 
program control 

Figure I-Proposed CMU multiminiprocessor 
computer /C.mmp 

allows each processor (Pc), to communicate with the 
various controllers (K), which in turn manage the 
secondary memories (Ms), and I/O devices trans
ducers (T). These switches are under both processor 
and manual control. 

Each processor system is actually a complete com
puter with its own local primary memory and con
trollers for secondary memories and devices. Each 
processor has a Data operations component, Dmap, 
for translating addresses at the processor into physical 
memory addresses. The local memory serves both to 
reduce the bandwidth requirements to the central 
memory and to allow completely independent opera
tion and off-line maintenance. Some of the specific 
components shown in Figure 1 are: 

K.clock: A central clock, K.clock, allows precise 
time to be measured. A central time base is 
broadcast to all processors for local interval 
timing. 

K.interrupt: Any processor is allowed to generate 
an interrupt to any subset of the Pc configura
tion at any of several priority levels. Any pro-



768 Fall Joint Computer Conference, 1972 

cessor may also cause any subset of the con
figuration to be stopped and/or restarted. The 
ability of a processor to interrupt, stop, or 
restart another is under both program and 
manual control. Thus, the console loading func
tion is carried out via this mechanism. 

Smp: This switch handles information transfers 
between primary memory processors and I/O 
devices. The switch has ports (i.e., connections) 
for m busses for primary memories and p busses 
for processors. Up to min(m,p) simultaneous 
conversations possible via the cross-point ar
rangement. 

Smp can be "Set under programmed control or 
via manual switches on an override basis to 
provide different configurations. The control 
of Smp can be by any of the processors, but one 
processor is assigned the control. 

Mp: The shared primary memory, Mp, consists 
of (up to) 16 modules, each of (up to) 65k, 16 bit, 
words. The initial memories being used have the 
following relevant parameters: core technology; 
each module is 8-way interleaved; access time is 
250 nanoseconds; and cycle time is 650 nano
seconds. An analysis of the performance of these 
memories within the C.map configuration is 
given in more detail below. 

Skp: Skp allows one or more of k U nibusses (the 
common bus for memory and i/o on an isolated 
PDP-l1 system) which have several slow, Ks 
(e.g., teletypes, card readers), or fast con
trollers,Kf, (e.g., disk, magnetic tape), to be 
connected to one of p central processors. The k 
Unibusses Jor the controllers are connected to 
the p processor Unibusses on a relatively long 
term basis (e.g., fraction of a second to hours). 
The main reasons for only allowing a long term, 
but switchable, connection between the k 
Unibusses and the processor is to avoid the 
problem of having to decide dynamically which 
of the p processors manage a particular control. 
Like Smp, Skp may be controlled either by 
program or manually. 

Pc: The processing elements, Pc, are slightly 
modified versions of the DEC PDP-ll. (Any of 
the PDP-11 models may be intermixed.) 

Dmap: The Dmap is a Data operations component 
which takes the addresses generated in the 
processor and converts them to addresses to use 
on the Memory and U nibusses emanating from 
the Dmap. There are four sets of eight registers 
in Dmap, enabling each of eight 4,096 word 
blocks to be relocated in the large physical 
memory. The size of the physical M p is 220 

words (221 bytes). Two bits in the processor, 
together with the address type are used to 
specify which of the four sets of mapping regis
ters is to be used. 

Dmap 

The structure of the address map, is described below 
and in Figure 2 together with its implications for two 
kinds of programs: the user and the monitor programs. 
For the user program, the conventional PDP-11 ad
dressing structure is retained-except that a program 
does not have access to the "i/o page," and hence the 
full 16-bit address space refers to the shared primary 
memory. 

A PDP-11 program generates a 16-bit address, even 
though the Unibus has 18-bit addressing capability. 
In this scheme the additional two address bits are 
obtained from two unused program status (PS) register 
bits. (N ote, this register is inaccessible to user pro-

User's l6-bit address 

I 

bank 00 

bank 01 1------I...;;..-.2.!ba~nk:...!s~el~ec:!ti~on!!.._J 

bank 10 

bank 11 

format: 

register selection 

no relocation 
(local UNIBUS) 

~j 

I ! 
2l-bit CHUibus Address 

reserved for expansion of physical page number 

(reserved) 

NXM 

Write protect 

'Written-into' 

Figure 2-Format of data in the relocation registers 



grams.) These are two additional bits, provides four 
addressing modes: 

OO-mOdej 
o I-mode 
IO-mode 
II-mode 

These addresses are always mapped, and 
always refer to the shared, large, primary 
memory. 
All but 8 kw (kilo words) of this address 
space is mapped as above. The 8 kw of this 
space which is not mapped refers to the 
private Unibus of each processor; 4 kw of 
this space is for private (local) memory and 
4 kw is used to access i/o devices attached 
to the processor. 

For mapped references, the mapping consists of using 
the most significant five bits of the 18-bit address to 
select one of 30 relocation registers, and replacing these 
by the contents of the 8 low order bits of that register 
yielding an overall 2I-bit address. Alternatively, con
sider that two bits of the PS select one of four banks 
of relocation registers and the leftmost three bits of 
the users (I6-bit) address select one of the eight regis
ters in this bank (six in bank three). A program may 
(by appropriate monitor calls) alter the contents of 
the relocation registers within that bank and thus alter 
its "instantaneous virtual memory" -that is, the set 
of directly addressable pages. The format of each of the 
30 relocation registers is as also shown in Figure 2 
where: 

1. The 'written-into' bit is set (to 1) by the hard
ware whenever a write operation is performed on 
the specified page. 

2. The 'write protect' bit, when set, will cause a 
trap on (before) an attempted write operation 
into the specified page. 

3. The NXM, 'non-existent memory', when set, 
will cause a trap on any attempted access to the 
specified page. Note: this is not adequate for, 
nor intended for, 'page fault' interruption. 

4. The 8-bit 'physical page number' is the actual 
relocation value. 

THE MEMORY INTERFERENCE PROBLEM 

One of the most crucial problems in the design of 
this multiprocessor is that of the conflict of processor 
requests for access to the shared memories. 

Strecker (1970) gives closed form solutions for the 
interference in terms of a defined quantity, the UER 
(unit execution rate). The UER is, effectively, the rate 
memory references and, for the PDP-II, is approxi
mately twice the actual instruction execution rate. 

C.mmp-A Multi-Mini-Processor 769 

(Although a single instruction may make from one to 
five memory references, about two is the average.) 
Neglecting i/o transfers*, assuming access requests to 
memories at random, and using the following mean 
parameters: 

t p the time between the completion of one 
memory request and the next request 

ta,te the access time and cycle time for the 
memories to be used 

tw = te - til. the rewrite time of the memory 

Strecker gives the following relations: 

UER = (m/te) (1 - (1 = l/m)p) 

UER = m X 1 - (1 - I/m)p 
t 1 - (1 - I/m)p 

UER = (m/te) (1 - (1 - P m/m)p) 

t p - tr 
where Pm + (m/p)(--)(l - (1 - Pm/mP)) - I = 0 

te 

Various speed processors, various types of memories, 
and various switch delays, td, can be studied by means 
of these formulas. Switch delays effects are calculated 
by adding to til. and te, i.e., ta' = td + til.; and te' = 
td + te. For example, the following cases are given in 
the attached graphs. The graphs show UER X 106 as 
a function of p for various parameters of the memories. 
The two values of td shown correspond to the ,estimated 
switch delay in two cable-length cases: 10' and 20'. 
The te, til. values correspond to six memory systems 
which were considered. The value of tp is that for the 
PDP-II model 20. 

Given data of the form in Figures 3 and 4 it is pos
sible to obtain the cost effectiveness of various proces
sor-memory configurations. An example of this 
information for a particular memory configuration 
(16 memories, te = 400) and three different processors 
(roughly corresponding to three models of the PDP-II 
family) is plotted in Figure 5. Note that a small con
figuration of five Pc.I's has a performance of 4.5 X 106 

accesses/second (UER). The cost of such a system is 
approximately $375K, yielding a cost-effectiveness of 
12. Replacing these five processors with the same 
number of Pc.3's yields a UER of 15 X 106 for about 
$625K, or a cost-effectiveness of about 24. Following 
this strategy provides a very cost-effective system 
once a reasonably large number of processors are used. 

* A simple argument indicates that i/o traffic is relatively 
insignificant, and so has not been considered in these figures. For 
example, transferring with four drums or 15 fixed head disks at 
full rate is comparable to one Pc. 



770 Fall Joint Computer Conference, 1972 

<) 
~ 

---

24 

22 

20 

18 

16 

114 

<D~ 12 

'" ~ 
10 

Legend 

Processor: t • 700 ns (PDP-ll model 20) 
p 

M_ry: p - 1,5,10, ••• ,35 

number memory modules = 8 

t ,t = (300, J), (400 ,250), (650,350), 
c a (900,350) ,(1200,500) 

td = 190,270 

Pr.ocessors 

Figure 3-Performance for various memory-processor 
configurations 

35 

In fact, in the range 15-30 processors the cost-ef
fectiveness is relatively constant while the absolute 
performance nearly doubles. 

Unfortunately these studies of memory interference 
assume a random distribution of memory references
an assumption may be invalid when true parallel 
processing is performed (notably if shared programs 
are executed, as in the operating system). Several 
approaches to predicting and preventing these con
flicts are being studied: 

Software page-placements 

Better-than-random reference patterns may be 
achieved by having the operating system page-place
ment algorithms attempt to localize process' pages 
within a single memory module. No results on this 
approach have been obtained to date. 

Switch, Smp, measurement 

Schemes for dynamically measuring the Mp-Pc 
reference pattern are being considered. The most 

accurate method under consideration is to associate 
a small memory with each crosspoint intersection. 
This can be constructed efficiently by having a memory 
array for each of the m rows, since control is on a row 
(per memory) basis. When each request for a particular 
row is acknowledged, a 1 is added to the register cor
responding to the procesor which gets the request. 
These data could then serve as input to algorithms of 
the type described under (1). Such a scheme has the 
drawback of adding hardware (cost) to the switch, and 
possibly lowering reliability. Since the performance 
measures given earlier are quite good, even for large 
numbers of processors, this approach does not seem 
justified at this time. 

A cache 

Since performance for all but shared programs may 
approximate the random references assumption of 
Strecker's analysis, special provision for these references 
might be provided. The addition of a cache memory 
between Dmap and Smp allows programs to migrate 

<) 
~ 

-..... 

24 

22 

20 

18 

i 16 

! 1 14 
~ 
~ 

Q. 12 

\O~ 

~ 10 

Processor: 

Memory: 

Legend 

t = 700 ns (PDP-ll model 20) 
p 

P = 1,5,10, ••• ,35 

number memory modu les = 16 

tc,ta = (300,0) ,(400,250) ,(650,350), 

(900,350), (1200,500) 

td = 190,270 

25 

Proce •• OTa 

30 

Figure 4-Performance for various memory-processor 
configurations 

35 



34 

32 

30 

28 

26 

f 24 

~ 22 

! 20 

18 

~ 
16 

i 14 

12 

10 

Smp(l6 processors; 16 memories); td: 190 ns; tc: 400) 

ProceSBora: 
Pc.i; tp: 700 ns 
Pc.2; tp: 450 ns 
Pc .3; tp: 200 ne 

Processors 

Pc.2,Mp(400) 

Figure 5-Cost effectiveness (UER/$) 

into the cache thereby diminishing the number of 
requests for a single memory. This also provides faster 
access since the Smp is avoided. 

By introducing such a cache, however, a potential 
problem is created regarding the validity of data since 
it might be possible to have sixteen different values 
of a single variable at a given instant of time. A scheme 
for avoiding this is to allow only information from 
"read only" pages (especially instructions) to appear 
in the cache. (In particular, the bit marked 'reserved' 
in Figure 2 is used to signal that data from the page 
may be placed into the cache.) Traces of PDP-II 
programs executions indicate that a small cache (256-
512 words) will capture 70-90 percent of the eligible 
references and 40-50 percent of all references. McCredie 
(1972) has studied the effect of such a cache on overall 
system performance both analytically and by simula
tion. The results of these studies indicate an improve
ment of 10-40 percent in overall system performance. 

THE OPERATING SYSTEM 

Although the technology of operating systems has 
made significant progress in the past decade, there are 
virtually no extant examples of systems constructed 

C.mmp-A Multi-Mini-Processor 771 

specifically for multiprocessor environments. In par
ticular, no systems have been built to support the 
variety of process relations (parallel, pipeline, etc.) 
envisioned for C.mmp. Moreover, there is a relative 
lack of experience in organizing computations for 
parallel execution. These facts have driven the operat
ing system design to the following, hopefully conserva
tive, position: 

The operating system will consist of a "kernel" 
and a "standard Extension." The kernel will 
provide a set of mechanisms (tools) for building 
an operating system, but no policies (e.g., no 
scheduler, no file structure, no ... ). The standard 
extension will implement an (easily modified or 
replaced) set of "conventional" operating system 
facilities (e.g., a scheduler, file system, . . .). The 
kernel will support the (simultaneous) execution 
of an (almost) arbitrary number of extensions. 

Under this strategy the variety of computational 
structures is not a priori limited by the structure of 
the underlying system. There are also potential hazards 
in the kernel approach. One of them is the possibility 
that extension in some (important) desired direction 
is not possible because of irrevocable decision made too 
early (though this problem is hardly unique to the 
kernel approach). Another hazard is that intolerable 
overhead might accrue by enforced multiple 'layering' 
of extensions. Both analysis and simulated use indicated 
that neither of these problems exist for the proposed 
design. 

The remainder of this section is devoted primarily 
to a description of the kernel (called HYDRA). 

In considering what set of mechanisms (tools) 
should be provided by an operating system kernel two 
commonly held views of the essential nature of an 
operating system are relevant: 

-An operating system creates a "virtual machine" 
to support (user) programs by providing resources 
and operations not present in the underlying 
hardware (e.g., "files," file "read" and "write" 
operations, etc.). 

-An operating system is a resource (virtual and 
physical) manager and allocator. 

Note the emphasis in both views on resources; their 
creation, management, and operations on them. From 
these views we infer than an appropriate set of tools 
for building an operating system must provide for: 

-the creation of new virtual resources; 
-the 'representation' of a new resource in terms of 

existing on.es; 



772 Fall Joint Computer Conference, 1972 

-the creation of operations on resources and/or 
their representation; and 

-protection (against illegal operations on a resource), 
both 

(a) uniformly over a class of resources; and 
(b) with regard to specific instances of a re

source. 

This list serves as the design goals for HYDRA against 
which the design is evaluated. 

Since the resources are central to the design, we de
fine a suitable abstraction of these called an object; 
objects are the basic entity of interest in HYDRA. An 
object has a name, a type, and usually some other 
(type dependent) information associated with it. The 
name of every object is unique and is called its global 
name. There is a supply of unique global names to .last 
over the system's total life. Thus, it is not possible for 
two (or more) objects to have the same global name. 

The set of extant objects is partitioned into equiva
lence classed by their types. There is also· an unlimited 
supply of object types-new types may be created at 
will. The initial system includes a particular object 
whose name is TYPE. New types are created by 
creating an object whose type is TYPE; thus a class of 
objects of a particular type are "represented" by an 
object of type TYPE. Suppose, for example, one 
wished to create a new kind of virtual resource. This 
would be done by creating an object (assume its name 
is X) of type TYPE. The object X now serves as a 
representative for all particular instances of resources 
of this new variety; in particular, objects of type X 
may now be created to represent the instances of the 
new resource. 

Operations are performed on objects by procedures. * 
A procedure is an object of type PROCTYPE. The 
'right' to invoke a procedure on each particular object 
is limited by both the type of object and the user's 
access to it (see below). 

During execution of a procedure there exists a local 
name space, lns, associated with it. The lns is an object 
which provides a mapping between local object names 
(integers) accessible to the procedure and the actual 
global names for objects. Each lns entry may also 
restrict the access rights (procedures that can be 
invoked to perform operations on or with the object) 
to a subset of those defined for that type of object. 
Thus the lns provides both mapping and protection 
functions. 

* Here we wish to invoke the reader's intuitive notion of a 
'procedure' and its properties, e.g., a body of code, local storage, 
a parameter mechanism, etc. 

The only primitive operations in the system which 
are not provided by procedures are CALL and RE
TURN, whose functions are, respectively, to permit 
entry to, and exit from, procedures. CALL also provides 
parameter checking and establishes the lns for the 
called procedure. 

To recap: The primitive notions in HYDRA are 
those of an object, a global name, and a type. Some 
specific types are TYPE, PROCTYPE, and LNS
TYPE. Procedure objects may be invoked by a CALL 
and are exited by a RETURN. Protection is provided 
by: (1) restricting access to objects to those named in 
the current lns, (2) restricting the operations (pro
cedures) which may be applied to an object to those 
associated with that type of object, and (3) further 
restricting the set of operations which may be applied 
to any object named in an lns to a subset of those in 
(2). 

Figure 6, gives a concrete example of this mecha
nism. Suppose that a new type of object, a "bibli
ography file," is created. Three specific operations are 
permitted on these objects: updating, printing, and 
erasing. Therefore three procedure objects UPDATE, 
PRINT, and ERASE are created to perform these 

Procedure 

'UPDATE' 

(parm) 

Procedure 

............ 

I: ',------I •. 

I Procedure ~ --- 5 , 

I_'=(p_arm"":';---J - ~ 
Biblio. 

'B2' 

Figure 6-Example of LNS mapping and protection 



operations; no other operations are permitted on this 
type of object. The situation in Figure 6 might exist 
at some instant. It shows (in the center) two pro
cedures, A and B, and their associated lns's-directed 
arcs indicate the mapping function of the lns and the 
letters along an arc indicate permitted accesses. Here, 
local name '1' of procedure A references a particular 
bibliography object, B1; UPDATE and PRINT access 
by A are permitted. The following information can be 
observed from the diagram:* 

-A.O ~ UPDATE 
-B.O ~ UPDATE 
-A.2~PRINT 

(and so on; note that A cannot name the ERASE 
procedure nor bibliography object B2) 

-A may: update and print B1; only print B2 
-B may: only print B1; update, print, or erase B2; 

update and print B3. 

THE RELIABILITY PROBLEM 

The existence in the physical system of multiple, 
redundant resources suggests the possibility of highly 
reliable operation-at least in the sense of continuing 
to provide (degraded) service when some fraction of 
the hardware is down. An explicit goal in the HYDRA 
design is to provide commensurate reliability in the 
software. Reliability may have two components: 

(1) Correctness: The major reason for unreliability 
in current software is that it is incorrect. How
ever, 
-the proposed design for the kernel is small 

enough that a "constructive programming" 
approach can be used effectively (Dijkstra) 

-the design suggests natural modular decompo-
sition along the lines suggested by Parnas 
(Parnas 1972) 

-the coding is being done in a "systems imple
mentation language" (Bliss/11) (Wulf, et 
aI., 1970, 1971) 

-the protection. mechanism itself absolutely 
guarantees that an erroneous or malicious 
program cannot destroy information to which 
it does not have legal access. 

Therefore the correctness of the kernel must 
be proven and its construction is proceeding in 
a highly stylized form design to facilitate this. 

* The notation X.n will be used to refer to the nth local name in 
procedure X; "~,, is to be read "maps onto" or "is a reference to." 

C.mmp-A Multi-Mini-Processor 773 

(2) Malfunction: Even if the software is correct it 
is possible for the system to be unreliable, for 
example, as the result of misexecution of correct 
code by (perhaps intermittently) failing hard
ware. This problem is compounded by both the 
multiprocessor character of the system and the 
kernel design. 

Although a great deal of research has been done on 
hardware reliability, (for example in connection with 
computers for extended space missions and electronic 
telephone switching systems), little has been done on 
software reliability. Undoubtedly this situation has 
resulted from the fact correctness (or lack of it) rather 
than malfunction has been the primary cause of un
reliable software. 

Possibly some of the ideas from the work on hardware 
reliability can be carried over to software; a few of 
these are discussed below. It should be remembered 
that there is a cost/effectiveness trade-off in each of 
these-an increasing degree of reliability may be 
achieved only at an increased cost. A very high degree 
of reliability appears expensive and probably un
necessary in any case. 

Redundancy 

One of the common forms of fault detection is to 
replicate a critical component and, at appropriate 
points, to verify that the components agree. This 
might appear in several forms in s'oftware: 

-Critical computations might be performed by two 
distinct methods within a single processor and 
their results compared 

-The same code for a critical computation might 
be performed by two distinct processors and their 
results compared 

-Multiple copies of critical data might be stored on 
distinct devices and their contents compared. 

Consistency 

A less demanding (and expensive) form of fault de
tection is to merely check the reasonableness of a 
computation or data item value. A simple example is 
for all lists to be stored in "circular, doubly-linked" 
form since this permits a check that the predecessor 
and successor of an item correctly point to the item. 
Another example of the same kind is for critical items 
to carry a "self-identification" which is checked before 
any updates to the item are made. 



774 Fall Joint Computer Conference, 1972 

E(N) = mean 
number in 
critical 
sections 

5.0 

4.0 

3.0 

2.0 

1.0 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

N = number of processors 

Figure 7-Mean response time for scheduling 

Diagnostics 

An even less demanding scheme is to attempt to as
certain whether the hardware is functioning properly 
before faults occur in critical places. This might be done 
on the fly just before a critical computation is per
formed, at fixed intervals, or simply whenever the 
processor is not occupied with other tasks. 

THE LOCK PROBLEM 

An interesting problem in the design of a multi
processor operating system is scheduling and coordi
nating the many, individual processors. In HYDRA 
the information necessary to make these decisions is 
represented in a shared data base and the program(s) 
which make the decision may be executed on any of 
the processors-and possibly on several processors 

simultaneously. While one processor is accessing or 
updating this shared information all other processors 
must be prevented from accessing and/or changing it. 
The act of protecting a data item is called "locking" 
and that portion of a program which accesses a locked 
item is called a "critical section." 

A basic design problem in such a scheduler is to 
determine the number of critical sections, S, that will 
maximize system performance. At one extreme a 
single lock could be used for the entire data base; at 
the other extreme each item could have a separate 
lock. Since a finite time, L, is required to perform the 
locking operations, the overhead due to this operation 
is minimized for S = 1. However, if S = 1, the possi
bility of several processors performing scheduling 
operations simultaneously is precluded. Even though 
the performance for each individual processor is de
graded, total system performance may be improved 
by choosing S > 1. 



A report by McCredie (McCredie, 1972) discusses 
two analytic models which have been used to study 
this problem; here we shall merely indicate the results. 
Figure 7 illustrates the relationship predicted by one 
of McCredie's models between the mean response time 
to a scheduling request, the number of critical sections, 
and the number of processors. 

Mean response time increases with the number of 
processors. For S constant, the increase in mean re
sponse time is approximately linear, with respect to 
N, until the system becomes congested. As N increases 
beyond this point, the slope grows with increasing N. 

The addition of one more critical section signifi
cantly improves mean response, for higher values of 
N, in both models. The additional locking overhead, L, 
associated with each critical section degrades per
formance slightly for small values of N. At these low 
values of N, the rate of requests is so low that the extra 
locking overhead is not compensated for by the po
tential parallel utilization of critical sections. 

The most interesting characteristic of these models 
is the large performance improvement achieved by 
the creation of a small number of additional critical 
sections. The slight response time degradation for low 
arrival rates indicates that an efficient design would 
be the implementation of a few (S = 2, 3 or 4) critical 
sections. This choice would create an effective safety 
valve. Whenever the load would increase, parallel 
access to the data would occur and the shared sched
uling information would not become a bottleneck. 
The overhead at low arrival rates is about 5 percent 
percent and the improvement at higher request rates 
is approximately 50 percent. 

Given the dramatic performance ratios predicted 
by these modes, the HYDRA scheduler was designed 
so that S lies in the range 2~7 (the exact value of S 
depends upon the path through the scheduler). 

PROGRAMMING ISSUES 

Thus far both highly general and highly specific 
aspects of the hardware and operating system design 
of C.mmp have been described. These alone, however, 
do not provide a complete computing environment in 
which productive research can be performed. An 
environment of files, editors, compilers, loaders, de
bugging aids, etc., must be available. To some extent 
existing PDP-11 software can and will be used to 
supply these facilities. However, the special problems 
and potentials of a multiprocessor preclude this from 
being a totally appropriate set of facilities. 

The potential of true parallel processing obviously 

C.mmp-A Multi-Mini-Processor 775 

requires the introduction of language and system 
facilities for creating and synchronizing sub-tasks. 
Various proposals for these mechanisms have existed 
for some time, such as fork-join, "P" and "V", and 
they are not especially difficult to add to most existing 
languages, given the right basic hardware. Parallelism 
has a more profound effect on the programming en
vironment, however, than the perturbations due to a 
few language constructs. The primary impact of 
parallelism is in the increase in complexity of a system 
due to the possible interactions between its compo
nents. The need is not merely for constructs to invoke 
and control parallel programs, but for conceptual tools 
dealing with the complexity of programs that can be 
fabricated with these constructs. 

In its role as a substrate for a number of rearch 
projects, C.mmp has spawned a project to investigate 
the conceptual· tools necessary to deal with complex 
programs. The premise of this research ~s that the 
approach to building large complex programs, and 
especially those involving parallelism, is essentially 
methodological in nature: the primitives, i.e., language 
features, from which a program is built are not nearly 
as important as the way in which it is built. Two par
ticular methodologies-"top-down design" or "struc
tured programming" (Dijkstra, 1969) and "modular 
decomposition" (Parnas, 1971) have been studied by 
others and form starting points for this research. 

While the solution to building large systems may 
be methodological, not linguistic, in nature, one can 
conceive of a programming environment, including a 
language, whose structure facilitates and encourages 
the use of such a methodology. Thus the context of 
the research has been to define such a system as a 
vehicle for making the methodology explicit. Although 
they are clearly not independent, the language and 
system issues can be divided for discussion. 

Language issues 

Most language development has concerned itself 
with "convenience"-providing mechanisms through 
which a programmer may more conveniently express 
computation. Language design has largely abdicated 
responsibility for the programs which are synthesized 
from the mechanisms it provides. Recently, however, 
language designers have realized that a particular 
construct, the general goto, can be (mis)used to easily 
synthesize "faulty" programs and a body of literature 
has developed around the theoretical and practical 
implications of its removing from programming lan
guages (Wulf, 1971a). 



776 Fall Joint Computer Conference, 1972 

At the present stage of this research it is easier to 
identify constructs which, in their full generality, can 
be (mis) used to create faulty programs than to identify 
forms for the essential features of these constructs 
which cannot be easily misused. Other constructs a,re: 

Algol-like scope rules 

The intent of scope rules in a language is to provide 
protection. Algol-like scope rules fail to do this in two 
ways. First, and most obviously, these rules do not 
distinguish kinds of access; for example, "read-only" 
access is not distinguished from "read-write" access. 
Second, there is no natural way to prevent access to a 
variable at block levels "inside" the one at which it is 
declared. 

Encoding 

A common programming practice is to encode in
formation, such as age, address, and place of birth, in 
the available data types of a language, e.g., integers. 
This is necessary, but leads to programs which are 
difficult to modify and debug if the manipulation of 
these encodings is distributed throughout a large pro
gram. 

Fixed representations 

Most programming languages fix both syntactic 
and run-time representations; they enforce distinc
tions between macros and procedures, data and pro
gram, etc., and they provide irrevocable representa
tions of data structures, calling sequences, and storage 
allocation. Fixed representations force programmers to 
make decisions which might better be deferred and, oc
casionally, to circumvent the fixed representation 
(e.g., with in-line code). 

SYSTEMS ISSUES 

Programming should be viewed as a process, . not a 
timeless act. A language alone is inadequate to support 
this process. Instead, a total system that supports all 
aspects of the process is sought. Specifically, some 
attributes of this system must be: 

(a) To retain the constructive path in final and 
intermediate versions of a program and to make 
this path serve as a guide to the design, con
struction, and understanding of the program. 

For example, the source (possibly in its several 
representations) corresponding to object code 
should be recoverable for debugging purposes; 
this must be true independent of the binding 
time for that code. 

(b) To support execution of incomplete programs. 
A consequence of some of the linguistic issues 
discussed above is that decisions (i.e., code to 
implement them) will be deferred as long as 
possible. This must not pre<!lude compilation 
and testing of portions of a program which do 
not depend on earlier decisions. 

(c) To integrate a file system into the constructive 
process. In particular the file maintenance of the 
system must have the responsibility of main
taining the structure of programs, the cor
respondence between different representations 
of the same program, keeping track of cross
references between files, distributing informa
tion from modules to compilers, etc. 

SUMMARY 

We have attempted to outline the need and goals for 
the multiprocessor computer system being constructed 
at CMU. The hardware and software structure were 
presented in overview form, together with detailed 
analysis of various critical parts. We believe that such 
a system is one which will become important in the 
future, simply because of the capabilities it provides 
and the way in which it utilizes technology. 

ACKNOWLEDGMENT 

A significant fraction of the faculty, students, and staff, 
of the Department of Computer Science at CMU are 
either directly or indirectly involved or have made 
significant contributions to this project. It is as diffi
cult to give them all full credit as it would be incorrect 
to assume the authors are the source of all ideas or 
work reflected in this paper. Those most directly in
volved have been: 

Professors Allen N ewell and Raj Reddy who 
provided most of the initial motivation and served 
in continuing review; Bill Broadley, the manager 
of the engineering lab, who has designed and is 
constructing the specialized hardware; Chuck 
Pierson, who has responsibility for coordinating 
the project; Ellis Cohen, Roy Levin, Bill Corwin, 
and Fred Pollack who are programming the 



operating system; Anita Jones, whose insights lead 
to much of the operating system philosophy; 
Professor Jack McCredie who has developed 
analytic models for the memory interference and 
lock problems, and Professor Mary Shaw who is 
developing the programming system described in 
the last section. 

REFERENCES 

1 C G BELL R CADY H McFARLAND 
B DELAGI J O'LAUGHLIN R NOONAN 
WWULF 
A new architecture for minicomputers-The DEC PDP-11 
SJCC 1970 pp 657-675 

2 C G BELL P FREEMAN et al 
C.ai: A computing environment for AI Research-Overview, 
PMS, and operating system considerations 
Department of Computer Science Carnegie-Mellon 
University May 1971 

3 C G BELL J GRASON S MEGA 
R VAN NAARDEN P WILLIAMS 
The design, description and use of the DEC register transfer 
modules (RT M) 
IEEE Transaction on Computers May 1972 

4 C G BELL A N HABERMANN J McCREDIE 
R RUTLEDGE W WULF 
Computer networks 
Computer Science Research Review Carnegie-Mellon 
University 1969 

5 C G BELL A NEWELL 
Computer structures 
McGraw-Hill Book Company 1971a 

6 C G BELL A NEWELL 
Possibilities for computer structures, 1971 
FJCC 1971b 

7 M CONWAY 
A multiprocessor system design 
Proceedings of the IFIP Congress Yugoslavia 1971a 

C.mmp-A Multi-Mini-Processor 777 

8 DEC PDP-11 documents 
Programmer Reference Manual and Unibus Interface 
Manual 

9 E DIJKSTRA 
Cooperating sequential processes 
In Programming Languages F Genuys (ed) Academic Press 
1968 

10 E DIJKSTRA 
Structured programming 
Software Engineering October 1969 Rome 

11 R KRUTAR 
Personal Communication 1971 

12 D McCRACKEN G ROBERTSON 
C.ai (P.L*)-a L* processor for C.ai 
Department of Computer Science Carnegie-Mellon 
University Pittsburgh 1971 

13 J McCREDIE 
Analytic models as aids in multiprocessor design 
Department of Computer Science Carnegie-Mellon 
University Pittsburgh 1972 

14 D L PARNAS 
On the criteria to be used in decomposing systems into modules 
Department of Computer Science Report Carnegie-Mellon 
University Pittsburgh 1971 

15 W D STRECKER 
An analysis of the instruction execution rate in certain 
computing structures 
PhD Dissertation Carnegie-Mellon University ARPA 
Report 1971 

16 W WULF 
Programming without the goto 
Proceedings of the IFIP Congress Yugoslavia 1971a 

17 W WULF et al 
A software laboratory: Preliminary report 
Department of Computer Science Carnegie-Mellon 
University Pittsburgh 1971 

18 W WULF et al 
Bliss reference manual 
Department of Computer Science Report Carnegie-Mellon 
University Pittsburgh 1971 

19 W WULF D RUSSELL A N HABERMANN 
Bliss: A language for systems programming 
Communications of the ACM December 1971 





C.ai-A computer architecture for AI res.earch* 

by C. GORDON BELL** 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

and 

PETER FREEMAN 

University of California 
Irvine, California 

INTRODUCTION AND MOTIVATION 

A recent article analyzes the need for and possibility 
of an ultimate computer.1 While the ultimate machine 
is still distant, much current research on system struc
tures has the goal of significantly increasing computing 
power along one or more dimensions (e.g., processing 
speed, memory size, functional capability, reliabil
ity).2,3,4,5,6 

The most obvious way of increasing power is through 
parallelism. The earliest proposal to achieve paral
lelism is the coupling of multiple processors to a shared 
primary memory-multiprocessing. Yet, the parameters 
of a design, especially the connections between pro
cessors, memories, and the outside world, can take on 
many different values. 

The architecture presented here is intended to in
crease the computing power available for a particular 
application-artificial intelligence research. It was 
formulated under the constraint that if built, it would 
have to be operational within two years. Its lifetime 
was assumed to be on the order of five years, with a 
slow rejuvenation replacement process occurring during 
use. Although it was formulated to be used via a net
work such as that of the Advanced Research Projects 
Agency (ARPA), the result has implications for the 
design of any currently feasible, very large computer. 

We present two major parts of the design-the struc-

* This work was supported by the Advanced Research Projects 
Agency of the Office of the Secretary of Defense (F44620-70-C-
0107) and is monitored by the Air Force Office of Scientific 
Research. 
** Present address: Digital Equipment Corporation, Maynard, 
Massachusetts. 

779 

ture of the hardware (and some of its details*) and the 
operating system-as originally stated** and then 
briefly discuss its implications for research on multi
processing. 

Requirements for ai computing 

A number of special function computers ranging 
from business to scientific have been described.8 The 
characteristics of machines used for ai research appear 
to span this spectrum, exhibiting the maximum of each 
characteristic attribute. The more important of these 
attributes will be examined from the standpoint of ai 
computing. 

Mem.ory size 

The primary (program) memory is larger in an ai 
environment than most other computers because of the 
local program and data base. Usually data is highly 
interrelated and linked for such programs as natural 
language processing. We have assumed an average 
program size of 250,000 74-bit words and a working-set 
size of 100,000 74-bit words. The ratio of secondary 
memory (e.g., drum) to primary memory (e.g., core or 
integrated circuit) we have proposed is quite low, based 

* The PMS notation7,8 used throughout this report is based on 
seven primitive component types: P-processor, M-memory, 
S-switch, L-link, K-controller, T-transducer, D-data operation. 
A computer composed of primitive components is represented 
by C; hence, C.ai for "ai computer." 
** The design was first presented in a technical report9 in May, 
1971. 



780 Fall Joint Computer Conference, 1972 

more on swapping operation than demand paging. This 
appears justified since the list structure of many of the 
programs may not permit small working-sets, although 
a better model of a typical program is clearly needed. 
A coupling to a larger tertiary memory is provided for 
files. 

Processor power 

The central processor power requirement for ai com
puting seems less than for the largest scientific processor 
because the typically large memory is accessed more or 
less randomly in a relatively inefficient fashion. Thus, 
the more powerful facilities of a scientific processor 
may go unused because the data-types (e.g., floating
point) are unused. In some cases ai processes are 
compute-bound, and need significant processor power 
in critical areas. 

PMS structure 

The ai computer usually requires better communica
tions facilities to external equipment and humans than 
either a scientific or a business computer. Typically, 
these characteristics are like the process control com
puter, except that higher data rates are involved for 
speech, video and mechanical transducers which oper
ate at human interaction rates. These considerations 
are particularly critical for ai research groups engaged 
in robot, hand-eye, and speech research. 

The instruction set (conventional and specialized) 

The design· permits the use of existing conventional 
processors as well as specialized processors. Conven
tional processors can be either 32 or 36 bits. In particu
lar, since the PDP-IO is widely used for ai research, 
PDP-IO processors can be used (e.g., DEC's KAIO and 
KIlO, and the Stanford Artificial Intelligence Labora
tory version). 

There is also a need for a facility which can be used 
for experimentation with new instruction-sets for ai 
processing. Specialized language processors can be 
fabricated, tested, and used within the environment. 
Typically, the instruction-set is the characteristic that 
usually comes to mind when ai computing is discussed. 
Operations for a stack, a garbage collector, hash-coding 
on linked lists, etc., are obvious candidates. On the 
other hand, a simple processor with floating point 
arithmetic is often adequate because decisions can be 
bound in software and later changed. 

FUNCTIONAL OVERVIEW OF C.ai 

Consideration of the problem of designing and build
ing an optimal computer for ai research quickly leads 
one to the realization that there may not be a feasible 
solution. The numerous constraints, wide variations in 
computing style, and the impossibility of defining the 
ai problem narrowly seem to make this a certainty. 
Thus, the major premise of this design is that if one 
wishes to provide ai researchers with better computing 
tools, one must, in fact, provide an environment in 
which many, varied tools may be developed and used. 
This design should be viewed as a specification of such 
an environment. 

The aim is to provide a collection of virtual machines, 
organized along multiprocessor lines. It is thus im
portant to understand what the system provides and· 
what the users see. 

The user sees 

• a collection of functionally specialized intercon
nected computers, each with large memories; 

• the potential for processes on separate processors 
to communicate and share resources; 

• a large secondary memory for temporary use and 
a very large tertiary memory (Le., files) for perma
nent storage of information. 

A n operating system on a processor sees 

• a mechanism for allocating and overseeing sharing 
of the three level memories (primary, secondary 
and tertiary); 

• a mechanism for the transfer of files between 
memory levels; 

• a mechanism to handle the transfer of information 
to the outside world. 

The overall operating system sees 

• processors competing for memory; 
• requests to share resources between processors; 
• logical communication channels between processors 

and the outside world; 
• files to be created and moved; 
• memories to housekeep; 
• accounting information to be logged and displayed. 

THE HARDWARE STRUCTURE OF C.ai 

Figure 1 shows a simplified diagram of C.aL It is a 
multiprocessor system with a centralized cross-point 



C.ai-A Computer Architecture for AI Research 781 

16 Public Memory modules containing 
/ about 8 X 106 , 74-bit words, MOS 
~ ~entra1 cross-point for 
~ ____ ~~ ________ ~ ______ ~~ ______ ~ __________ ~ Mp-P interconnection 

language 

operating system 
computers (C. amos and 
C.amos.spare) 

memory 

16 memory ports each 
~providing up to 296 

bits/550 ns 

multiplexed ports 

F-~pecia1ized i/o 

central trunk-switch 
for P intercommunication 

~ 
Links to external world 
(e.g., Advanced Projects 
Research Agency ARPA net
work), tertiary memory, 
console, etc. 

Figure I-PMS diagram (simplified) of C.ai 

switch which allows up to 16 processor or secondary 
memory (e.g., drum) ports to be connected to the pri
mary memory. Some ports can be multiplexed between 
several components. The characteristics of the primary 
memory (the dominant component of the system) are: 
MOS, 550 ns cycle time; 221 296-bit words accessible as 
74, 148, 222 or 296 bits in a single access. 

The 16 memory modules are interconnected to the 
16 processor ports via a central 74-bit cross-point 
switch. The main reason for a central cross-point is to 
limit the cables from pXm to p+m and shorter dis
tances. Also, by using a non-bus arrangement, processor 
and memory modules can be removed while the system 
is operating. 

Another type of switch is used to provide inter
communication among the processors. This is shown in 
the lower part of the figure and is described later in 
more detail. 

A central computer (C.amos) executes the operating 
system. It has some private memory, interconnection to 
i/o devices, terminals, and tertiary memory. Two C.-

amos computers are shown, but only one will be in use 
at any time (see below). The other processors are 
general-purpose or specialized language processors. 
Each of these might have a minicomputer which acts 
as the control for starting and stopping, maintenance, 
data gathering, context switching, etc. 

Figure 2 provides a more detailed description of the 
structure shown in Figure 1. It will be used to aid the 
description. 

~rir,nary r,ner,nory 

The characteristics of various memories are given in 
Table 1. We have used specific quotations for cost, 
performance, etc. 

The primary memory, Mp, gives an overall memory 
size of about 620X 106 bits and (because of the 16 ports) 
a bandwidth of 8,600 million bits/sec (16 portsX296 
bits/port; .550 psec cycle). The access time, as mea
sured at the processor, will be about 350 ns. The actual 



782 Fall Joint Computer Conference, 1972 

// 
Public primary memorY. 

./ 

Central, Mp-P cross-point switch2 

M~~~~ ____ +-______ ~ ____ ~ ____ ~~ __ ~ ______________________ ~ 

interprocessor messages; 
processor control 

direct memory port 
.--- (data, addresses) 

control port 
protected (user) memory 
ort (data addresses) 

~--------links to external world 

Ipublic, primary memory; 223 _ 224 words; 74, 148, 222, or 296 b/w; 550 ns/w; MOS 
2Central; cross-point switch; Mp-PclMs dialogues; 16X16; WJ'dth: 74 bits 
~Central, trunk switch; inter P dialogues; ~ 2 trunks 'd' 1 1 
4Centra1, trunk switch; P-K(Mp.port) dialogues; ~ 2 trunks 1 entlca protoco s 
bK(Mp.port) Relocation, protection, error correction, erro detection; see' 
6C(Operating-System) - with local primary and secondary memory 

'Ms(sec=Mry m_~ d:r==; {~bitST 

8X(specia1 i/o interfaces; e.g., TV) 
9 

$1 E
direct memory port (data, addresses) 

K or control port 
- S 

--protected (user) memory port (data, addresses) 

• E.g. $:_ ~/Ck(miniCOIDPuter; Ms(lOO kwords); T.scope) 

1~Trans9ucers and tertiary memory - managed by a Ck (e.g., terabit memory) 

Figure 2-PMS diagram of C.ai 

memory word will be 296 bits with a processor specify
ing which word (74 bits) or configuration of words it 
wants. The actual information bits are expected to 
number 64 with 10 bits to be used for error correction 
or detection at the processor. Alternatively, the 74 bit 

word will allow present 36-bit processors, such as the 
PDP-10, 1108, and Honeywell 645 to utilize the mem
ory. The memory will consist of 16 modules and will 
connect to the processors through a 74-bit wide cross
point switch. There are 16 processor ports each 74 bits 



C.ai-A Computer Architecture for AI Research 783 

TABLE J-C.ai Memory Characteristics 

c *** 
0 

'.-1 t.access i.rate i-width total power size module cost cost/b1t controller .... 
u (t.cyc1e) mb/s (bits) i.rate (watts) 106b (k$) ¢/b costs (k$ ) c 

Device ::l (mb/ s) .... 

photomemory t ~lX 106 

moving-head t 0",55 
disk + 3.3** lx3 3.3x3 15 kw/ 200x 20=4000 300 0.0075** 300 

20 ms unit 

drum 8 ms 3.3 8-16/drum SO/drum 1 kw/drum 70x 20=1400 900 0.048 5x40 
s 

shift reg- 131 ~s 1 296 296 200 kw 1400 1800 1. 25 5x40 
ister s 780 ~s 0.7 

cQre .7 l1S .55 296x16 163 200 kw 620 10,240 1. 65 500 
p (1.811s) 2605 

MaS p 500 nsec .83 296X 16 246 200 kw 620 5760 .93 500 
(1. 2 l1sec) 3947 

MaS p 250 ns 2.5 296x 16 740 200 kw 620 9500* 1. 52 500 
(400 ns) 8600 (.2 mw/ 

bit) 

Bipolar i 40 ns 10 296 2960 100-2000 36 6 
(80 ns) words 

Bipolar i 40 ns 
ROM (80 ns) 10 50"'296 2960 100-2000 12 1-2 

words 

*Estimate 

**These assume current densities. We can safely assume double density, hence lower cost, more storage, and higher transfer 
rates. 

***t/tertiary; s/secondary; p/primary; and i/internal processor (cache, program control, accumulators, etc.) 

wide. A transfer of more than one 74-bit word in an 
access will be done sequentially at a rate of 75 ns per 
additional 74 bit word for up to four words. 

Processor port control-K (M p. port) 

The local port control is shown in Figure 3. Each 
processor port provides access to 224 words (a 24 bit ad
dress). The upper 7 bits of the address specifies one of 
the 128 relocation (mapping) registers the address will 
use. The relocation register will supply the high order 
bits of the physical address and the processor address 
will supply the low order 17 bits. This is a concatena
tion, instead of an addition, and thus should be quite 
fast (~50 ns). The relocation (mapping) registers and 
other controls associated with the port are accessible 
only to the overall operating system. Various protec
tion-type bits might also be included in the memory 
port control box to assist the processor. The relocation 
unit serves these functions: maintenance, dynamic 
memory assignment (reconfiguration), protection and 
sharing among processors, and data parity checking. 

The relocation registers will be transparent to each 
processor and will serve the function of manual, address 
switches on the memory. Thus, no manual switching 
need be provided on the individual memory modules; 
the same effect is achieved by informing the memory 
control processor to vacate the desired module and 
consider it unusable. All relocation and protection, as 
commonly found in timesharing system processors, 
will be included as part of a processor. The only reason 
a processor might want to consider the port relocation 
registers is to effect 65k word block transfers, i.e., to 
ask the memory control processor to change addresses, 
e.g., 128k-192k to 64k-128k. 

The statistics control shoWn is passive. Although not 
detailed here, it will be connected to provide appropri
ate information on accesses, errors, and transfer rates 
to a measurement unit. Another part of the port inter
face is the capability of being exercised at low data rates 
via the controlling computer. Thus, data can be trans
ferred via each port from the control computer. Within 
each port control there is error correction and detection 
hardware. Here, since we assume that some faulty pro
cessors will be attached to the ports, the port control 



784 Fall Joint Computer Conference, 1972 

Physical Address data 

r----------"----------~ ~ " r \ control 
Memory-Swi tch ~ 

S(Mp) 
Manory-port -

control 
K(Mp.port) 

physical 
address tables 

/r;---t---... \------.1\ ~~ 
control relocated 
bits block address 

read/ 

\ 

-~ 

F-

error 
control 

error • ~ 
detect/correc~ ~~~------~----~ 

~VI 
/"/ control 

~;) / statistics 

V' 
~ 

! 
error 

detec t/ correc I

gen. port
excisor 
control 

T 
writer~------------~----~~--+------~------~----------~~~~---------------~ 
~ontrol link 1" 

to Supervisory Computer -- ._- -- .-- - ... - -- -- -
Processor .r,74 111-

address .~ 
paritys data-74 bits 

~~~--~~--~--

~
control I 7 I 17 ,

p-address

Figure 3-K(Mp.port) memory-port mapping (relocation), error-detection, error-correction and control

must supply correct data to the memory in order that
other devices (e.g., drums, disk memory) can detect
faults.

Primary memory switch

Since the switch is critically central, a dual cross
point may be preferable. This is essentially a com
pound switch consisting of two cross-point switches

and a (m+p) XS(l-input, I-output) switch as shown:

Mp m-inputs

/S(cross-point; mXp), .
SCm; 2), /S(p; 1) p-inputs P

S(cross-point; mXPJ

Current logic technology is ideally suited to the
packaging of a centralized switch. Although it is
centralized, the physical packaging can be carried out

to provide independence among the processor and mem
ory ports. Logically, the memory controls and the
processor controls are quite independent. By parti
tioning the switch into four 8 X 8 switches, even more
independence can be gained.

The memory switch can utilize current MSI (medium
scale integration) logic. The switch will utilize 16 bit
multiplexors with a typical data propagation time of
10 nsec (assuming the data select lines have been
settled for ;?: 30 nsec). Faster circuits, such as Schotky
TTL and LSI switching modules, will probably be avail
able in time for any actual construction.

Secondary memory

The secondary memory investigated includes: (1)
mechanical devices (drums, fixed head discs, etc.), (2,
shift register or other block-oriented solid-state mem
ory, (3) and random access memory (RAM). Current
characteristics for these devices are shown in Table I.
Mechanical devices will probably hold a price advantage
of an order of magnitude for several years. It does not
appear that shift register memory will become suf
ficiently cost effective over random access memory for
our purposes. On the other hand, block-oriented
random access memories may be available shortly.

A secondary memory system might consist of 20
drums, for example, with the characteristics given in
Table I. Such a system would give 1,400 megabits of
storage, an average access time of 8 msec, and a transfer
rate of 50 megabits/second.

Initially, the secondary memory controllers will
simply permit multiplexing several drums into one port.
An additional feature that could easily be included in
the secondary memory channel would be a memory-to
memory connection that could take advantage of the
4-word sequential feature of the primary memory. Since
one wishes to maximize the bandwidth between secon
dary and primary memory, as the system grows to use
many drums on several ports it will probably be neces
sary to insert a computer to control the secondary
memory, C(Ms). The secondary-tertiary memory sys
tem might then look as shown in Figure 4.

Figure 4-Eventual secondary-tertiary memory structure

C.ai-A Computer Architecture for AI Research 785

Tertiary memory

Clearly, a computer of this capacity requires some
on-site mass storage. This will permit programs to re-

, side on tertiary memory until they are brought into
either primary or secondary memory for more rapid
access. The tertiary device will be controlled by its own
processor. Aside from its size (on the order of 1012

bits), it has not been specified any further.

Console

Scopes will be used to 'display the overall allocation
of resources to tasks, and the status of each processor
and the overall system. Several scopes may also be
employed for human intervention required in the man
agement of the system.

I nterprocessor communication

Interprocessor communication will be carried out
over a data bus similar to DEC's PDP-l1 Unibus, with
the exception that it would be a dual or multiple trunk
bus to increase bandwidth, decrease response time and
increase reliability. A processor making an inter
processor transfer would place a request on the bus and
the actual transfer would take place on the trunk that
first responded. Each message will be tagged with the

. identity of the transmitting processor. A processor will
be able to communicate with itself on the bus.

H the proposed interprocessor traffic appears to war
rant it, more than two trunks can be added. However,
processors may communicate at high data rates through
shared primary memory.

A SOFTWARE STRUCTURE FOR C.ai

This section provides both an overview and first level
design of AMOS, a minimal operating system for C.ai.
The system is not specified completely, however.

In a system with multiple active units (processors, in
the case of C.ai) and shareable resources there is a
spectrum of possible systems ranging between the ex
tremes of having all control of resources vested in a
single active element to having no distinguished com
ponent with respect to resource allocation. AMOS is a
classical design in which ultimate control of all shared
resources is by a single component although all non
shared resources (e.g., processors*) control themselves.

* Processors may, of course, be shared among processes on a local
basis. Our concern here is with the global management of the
system.

786 Fall Joint Computer Conference, 1972

Likewise, there is a spectrum ranging from the highly
uniform in which the user is una ware of the existence of
multiple components working on his task to the highly
diverse in which the user of one component is unaware
of the existence of the others. AMOS tends toward the
latter extreme. The hardware architecture does not
prevent the former, however.

Design goals and guidelines

While not thoroughly defining the space of systems
we are interested in, the following provide a partial
specification:

1. Time and effort needed to construct AMOS
must be small.

2. The functions provided by AMOS must be
minimal, consistent with managing the hard
ware resources of C.ai.

3. The "users" of AMOS are the operating systems
for each processor. Thus the total operating
systemis a two-layer object: an overall operat
ing system (AMOS) plus distinct operating
systems on each processor. In most cases a human
user and/or his program sees only one of the
individual systems, not AMOS. .

4. Specification and construction of the operating
system for a processor is the responsibility of its
designer.

5. AMOS should usurp as few design prerogatives as
possible. That is, it should influence only mini
mally the design of operating systems and pro
grams on individual processors. Further, it
should not greatly influence the design of C.ai
as a whole so that in the future it will be possible
to replace AMOS 'with a completely different
operating system. *

6. It should be possible to build very simple operat
ing systems on the processors if desired. They
should not have to handle transfers to i/o de
vices and their communications with AMOS
should be simple.

Functions to be provided

It is easiest to specify what AMOS is to do by listing
the major functions it is to provide. Elaborations of

* C.ai is clearly a unique opportunity for implementingr adically
new virtual machines that exploit its parallel and functionally
specialized parts. The understanding of such a machine, how to
break up a load computationally, the characteristics of the
programs run on it, etc., is so meager that initially the only
sensible way to use it is as a collection of independent systems
that happen to share some physical resources. AMOS and its
hardware should not unduly impede research on more advanced
modes of usage, however.

these functions· will be provided· below in describing
their implementation. It is assumed that a few other
minor functions will be needed and can be added with
out greatly perturbing the design of C.ai or AMOS.

1. Allocate primary memory. Individual processors
must be given access to varying amounts of main
memory. Addressing ranges and access protec
tion must be set.

2. Allocate and control other on-site memory.
Secondary and tertiary memories must be al
located, but control must remain with AMOS
in order to enforce security of parts allocated to
different processors (and processes).

3. Handle communication between processors and
the external world. In order to keep the operating
systems on the processors simple, communica
tion must be handled by AMOS.

4. Provide system status and accounting informa
tion. An on-site console must be maintained in
addition to logging accounting information.

5. Startup of C.ai and individual processors. Oc
casional cold starts of the entire system will be
necessary. Individual processors may come up
and go down as well.

6. Movement of files between memory levels. Pro
cessors should not have to deal with physical
i/o. Further, large stores must be a shared re
source.

Structure providing the required functions of AMOS

Different structures can be chosen to provide the
functions of AMOS. Those selected below seem to be
sufficient for the task and consistent with the design
objectives. A more detailed overall design and/or
simulation may, of course, indicate the choice of alter
native structures.

Primary IneInory allocation

The opaqueness of how allocations of primary mem
ory are being used and their size (64K words) implies
using an extremely simple algorithm. A processor will
send a request to AMOS over the bus to allocate or de
allocate a page of Mp; the request will include where
in the processor's address space the page is to go.
AM OS will check whether or not the processor is en
titled to another page (a policy decision) if a new one
is being requested. It will then adjust the mapping of
the processor appropriately and signal it that the alloca
tion has been made.

In order that several processors be able to handle

large jobs at the same time, it will be necessary for the
operating system on each processor to release primary
memory on a second-by-second basis whenever it is
free. This might be handled on a gentlemen's agree
ment basis with perhaps some monitoring in AMOS to
insure that no processors use too much core. The spe
cific algorithm to use is a policy decision.

Secondary and tertiary lllelllory

As far asa processor is concerned the basic unit of
storage will be an arbitrary length file. (For efficiency,
information actually may be stored on secondary and
tertiary memory in standard block sizes.) A processor
can request AMOS (via the communications bus) to
create a file; AMOS will check if the processor can
have more space and if so, create a name for the file
and pass it back. (To facilitate storing, the names
should be from a single continuous space.) A processor
can request information to be transferred among
memorIes.

The request can be made with a priority, thus allow
ing swapping or paging information to be handled just
like any other file only with higher priority for perform
ing the transfer. Likewise, files can be transferred from
secondary or tertiary memory to primary memory.
Alternatively, external information can be transmitted
directly to or from a file (see below). Files can be erased
by request.

Note that the processors specify where they want
their files to reside. This seems essential since only
they will know the use. Pricing structure, time limits,
and allocation limits can be used to insure proper mi
gration.

It is assumed that lower level memories provide hard
ware detection of record and file ends so that transfers
of partial files may be made. On the other hand, record
transfer may impose too much additional complexity
on AMOS.

COllllllunication to the outside world

AMOS will know nothing about specific users. It
will have only logical channels that it can connect be
tween a processor and some external entity transmitting
messages to C.ai. Since C.ai is intended to be a resource
for use among a large number of users via a network
(in this case the ARPA network) this will provide the
mechanism for establishing contact between users and
their processes.

AMOS may receive messages from entities for which
it has no logical channel set up, requesting access to a
given processor. The processor may have told AMOS

C.ai-A Computer Architecture for AI Research 787

that it will take all callers, only certain ones, or that it
wants to be informed of all requests for connection so
that it can make a dynamic decision. If the requestor
cannot be attached, he will be so informed.

If a user can sign on, he is given a unique identifica
tion by AM OS and a logical channel is established to the
desired processor. Until the connection is broken by the
processor any incoming information headed by that
identification will be sent to the proper processor
(deposited in a section of his Mp or on one of his Ms
files) with a signal going from AMOS to the processor
whenever a transmission is completed.

A mode will be available for the transfer of large
blocks of data directly to a secondary or tertiary mem
ory file without interrupting the processor until the
transfer is finished (even if it takes many transmissions).
Similarly, a processor can request a file of information of
any size to be sent out over a given logical channel.

Systelll status and accounting

Al\tIOS ",ill record all system resource usage (e.g.,
memories, if 0 gear, external links) by each processor.
The information will be displayed in summary form on
a console and made available to the processors if ap
propriate. A processor can access the data of another
under the usual sharing rules (see below). It is up to
individual processors to record their own usage and to
subdivide their use of system resources among their
various users.

Each processor will supply a certain amount of status
information to AMOS upon request in order to produce
system-wide status displays. The content of this in
formation depends on more detailed specifications of
how individual processors will be used.

Any error checking or internal monitoring informa
tion available to AMOS will be displayed appropriately.
AMOS will· also be responsible for utilizing such infor
mation to warn of faulty components or potential sys
tem bottlenecks.

Ini tialization

C.amos will have an autoload· button that will load
its.local memory from a start-up disk with a program to
initialize Mp bounds registers and load its main Mp
from Ms. Its bootstrap will also be able to retrieve
from its local Ms various debug, checkout, and recovery
routines.

C.amos will be able to start up any of the other proces
sors by a signal over the bus. Once started, however,
AMOS has no control over the processor. This means
that AMOS will have available the operating system

788 Fall Joint Computer Conference, 1972

(or a bootstrap) for each processor. In some cases this
may include loading a microcode store.

File InoveInent

All file operations are logical (not physical) as de
scribed above. AMOS will have one or more mini
computers that will initiate transfers. between memory
hierarchies and perform housekeeping chores.

Resource sharing

The mechanism for sharing is basically the same for
all resources. Processor A (the owner of a resource) tells
AMOS over the bus that processor B may have a given
type of access to the resource. If later, B requests that
access, it will be granted (unless A has rescinded the
access rights).

In the case of M p this is implemented by setting
bounds registers. For files AM OS must keep lists of
processors (not processes) that can access given files.
It is then up to the processors to control the access of
their individual processes.

As an example of primary memory sharing, A may tell
AMOS that B can have read access to one of its pages,
say P. A will communicate directly to B that it has per
mitted access to P. Later, if B requests access to P,
AMOS will set one of B's bounds registers to permit
read sharing. Permission for sharing (or relinquishing
by B) can occur at any time. A and B must insure that
permission is not withdrawn precipitously.

PerforInance Inonitoring

A computer such as C.ai must have adequate per
formance monitoring capabilities integrated into its
basic design. Many initial decisions will require modifi
cation as the system matures and usage patterns evolve.
Proper design of memory systems, optimal allocation of
primary memory, and correct bandwidth to the outside
world are examples of decisions requiring extensive
measurement of usage.

Measurements should occur on a numbeI' of levels.
Common facilities such as· the interprocessor bus and
the primary memory could be monitored by passive
hardware devices connected to a separate computer,
C.pm. This independence would insulate the C.pm
from changes in AMOS and in the processors. C.amos
and C. pm could communicate directly for dynamic
control, but other information would be stored for later
analysis. Many items can be measured passively by:
(a) busy-idle bits; (b) registers to read or sample;

(c) counters. AMOS must be able to interrogate
C.pm to obtain current data for scheduling and resource
allocation and for system status requests from pro
cessors. Thus, the C.pm should have the following
features:

(a) Pc-Mp-Ms (processor-primary memory-secon
dary memory) type of structure;

(b) ability to reduce its own data and keep current
system information available for AMOS;

(c) ability to write to its own slow Ms for later dis
play and analysis.

Some examples of information of interest are: (a)
K(Mp.portj errors could be counted, and transmitted
to C.amos, (b) the number of memory references could
be counted and waiting times tabulated, (c) a central
clock may be provided which all processors may access.
A central timing facility might also be included at- the
clock. In order to keep the traffic low, a facility such
as the clock might broadcast the time so that each
processor could maintain its own timers (which would
undoubtedly be in software).

AMOS should have a number of software monitors
built into its modules. Such hooks are best when imple
mented in parallel with the operating system. Selected
information would be either written by AMOS or read
from registers by C.pm. If AMOS is to be a resource al
locator, some processor information may be required.
Information of this type would place certain constraints
on processor implementors, but the sharing of common
resources requires some standardization.

Each processor should also include its own hardware
and software measurement devices with which AMOS
can communicate. A mixture of software and inde
pendent hardware monitors integrated into the design
of C.ai will allow for future study of this new structure,
and encourage growth based on a knowledge of actual
performance and utilization.

PERFORMANCE CHARACTERISTICS AND
EVALUATION

Table II shows a comparison of C.ai performance
with some current large-scale computers. Various at
tributes of these machines are given in order to give the
reader an idea of the balance of the computer in terms
of memory size, processing capacity and cost. The
measures used by RobertslO were included to compare
the performance with these machines. In some· cases
the chart is misleading since C.ai has 20 times themem
ory of the next largest machine (STAR). However, for
ai research, memory size is probably the single most im-

C.ai-A Computer Architecture for AI Research 789

TABLE II-Comparison of C.ai With Other Computers

Mp.width Mp.size Mp.size Mp.i-rate Mp.i-rate Ms.i-rate Pc. i-rate Costi~$);Bitxmops/
(b/w) (mwords) (mbits) (mwords/sec) (mbits/sec) (mbits) (mop/ s) sec;

Bitxmops/sec/$

PDP-10 36+1 0.26 9.7 4 144 9 0.4 1; 14.4; 14.4

Stanford 144+4 4.0 1; 144; 144
AI-10 (36b/instr)

Model 91 64+8 0.52 37 21 1370 lOx (1-2) 6.0 7.7; 384; 49.9

CDC 6600 60 .26 lS.4 32 1920 12x10 (i/o) 3.0 5.5; 180; 32.7
600 (ECS)

13*;1440-4320;
21S0- (4-1Z)XlO 110-330

C.ai 74-296 8.3 620 29-120 8600 SOxS (4-12jx 20 16;2880-8640
180-S40

C.ai/4 74-296 2.3 15S 8-30 504- Sox2 !4-12)X3
2150 (4-12)X6

CDC STAR 512 .131 74 25 12,800 (50-100)x 100 10; 3200; 320
(32b/instr) (1-S)

ILLIAC IV5 64+ .131 8.2 64x4.1= 16,800 1000 256 10; 16384; 1638.4
261

-'

*Assumes $8m for memory, $2m for peripherals and $300K per processor (10 Pc's in first case, 20 in second); Stanford

AI-IO assumed. Adjusting the memory size to that of STAR, yields $7m (total); 1440-4320; 205-620 and $lOm;

2880-8640; 288-864.

portant characteristic. This has been adjusted in the
footnote to the table. The computation is based on 36
bit operations. Using a larger word would increase the
performance indicator, though probably not any real
performance for this task.

The PMS diagram of Figure 2 has sufficient detail
for deriving basic performance characteristics of the
computer. Each processor is assumed to cost approxi
mately $100,000. A 16 X 16 switch should run approxi
mately $200,000.

The critical parameter for determining the perfor
mance is the number of memory ports and the processor
operation-rate, so that the interference among the
processors can be determined. Each processor is able to
obtain up to 296 bits in 550 ns (or 540 megabits/sec).
By comparison, a PDP-10 demands roughly two words
each 3.5 }J.s at 300,000 op/sec. Thus, a word can be
used each 1.25 microseconds or its port needs only 28
megabits/sec. The above system supplies roughly 20
times this amount; eight words/access and a cycle time
of 550 ns contribute to this gain. Since the eight words
are accessed at one time, a cache next to a processor
will be necessary to make full use of the capability.

By using a cache memory the needed bandwidth into
primary memory is significantly reduced. One would
expect about 95 percent of the data in the cache.

Executing 4 million instructions/sec, at most, one word
would be required per 125 ns (i.e., 8 million words/sec).
Now since 95 percent of the data is in the cache*, the
requirements for primary memory access are only one
access each 20 memory accesses. Thus the effective
memory cycle time is only one word each 2.5 micro
seconds. The interference among ports is therefore quite
small. At the very least, if 0 devices, such as the drums,
could share a port. In Table II we have· assumed two
processors per port (for a total of 20 processors).

CONCLUSIONS

An overall argument has been given as to the feasibility
and desirability of building a computer to be used in ai
research. The design is a very conservative, simple ap
proach built on current computers and technology.
Only conventional performance processors were as
sumed (i.e., each has about the same performance as a
360 Model 85).

Given the overall results, this design provides a basis
for specification of the next level of detail. We believe
that an approach that departs from a conventional
structure (e.g., by placing specific interpretation on ad-

* Cache simulation for LISP interpreter.

790 Fall Joint Computer Conference, 1972

dressing) will both decrease the performance and also
make the memory too specialized, thereby eliminating
unspecified future use that might be made of· such a
large facility.

The real emphasis of the structure is simplicity, yet
it provides much potential power (bandwidth). Also,
the design is not presumptuous about how particular
future processors will use the facility. In particular,
additional power can be gained by developing special
purpose processors to be used on C.ai.

Although there are no plans to implement C.ai, a
project at Carnegie-Mellon University, the C.mmp
multiminiprocessor computerll has a similar architec
ture. Indeed, C.ai has already influenced the structure
and instigation of that project. C.mmp is being fabri
cated and should provide concrete operational evalua
tion of the design proposed here, particularly the central
switch, processor intercommunication, and operating
system. The C.mmp machine is being built to provide
computing power for speech processing and is thus more
than an architectural research experiment.

Multiprocessing is often taken in a rather limited
sense, but it can encompass a range of computing modes:
parallel processing, pipe lining, networking, functional
specialization, and independent but cooperating pro
cessors. The simplicity of C.ai and the fact that the ai
computing environment is so general makes this design
well-suited to support research into the various forms
of multi-processing.

Just as experimental observations of the physical
world and theorems are presented for their own merit,
we believe that system designs should be made known
and studied as a source of ideas for other designs. Hope
fully the architecture presented will serve this purpose.

ACKNOWLEDGMENTS

The design reported here was developed in a project
seminar on list-processing machines run by the authors
at Carnegie-Mellon University during the Spring of
1971 ;9,12,13 the participants worked on the design at all
levels and their contributions are acknowledged. Valu
able assistance and feedback was provided by Professors
A. Newell, R.Reddy and W. Wulf. A Kendziora and
Professor J. McCredie provided the section on per-

formance measurement. The referees' suggestions
greatly reduced the size and improved the organiza
tion and readability.

REFERENCES

1 W H WARE
The ultimate computer
IEEE Spectrum March 1972 p 84

2 C G BELL R CHEN S REGE
Effect of technology on near term computer structures
IEEE Computer Marchi April 1972 p 29

3 D J FARBER K LARSON
The structure of a distributed computing system software
Proceedings of XXII Polytechnic Institute of Brooklyn
Symposium April 1972

4 M J FLYNN A PODVIN
Shared resource multiprocessing
IEEE Computer March 1972 p 20

5 J H BARNES R M BROWN M KATO
D J KUCK D L SLOTNICK R A STOKES
The ILLIAC IV computer
IEEE Transactions on Computers C-17 Vol 8 p 746
August 1968

6 S A HOLLAND C J PURCELL
The CDC STAR-lOO: a large scale network oriented computer
system
Proceedings of the IEEE Computer Conference September
1971 p 55

7 C G BELL A NEWELL
The PMS and ISP descriptive systems for computer structures

.8JCC 1970 P 351
8 C G BELL A NEWELL

Computer structures
McGraw-Hill 1971

9 C G BELL P FREEMAN et al
C.ai: a computing environment for ai research
Computer Science Department Carnegie-Mellon University
Pittsburgh Pennsylvania May 1971

10 L ROBERTS
Data processing technology forecast
Advanced Research Projects Agency April 1969

11 W A WULF C G BELL
C.mmp: a multiminiprocessor
This volume

12 M BARBACCI H GOLDBERG M KNUDSEN
C.ai(P.LISP)-a LISP processor for C.ai
Computer Science Department Carnegie-Mellon University
Pittsburgh Pennsylvania May 1971

13 D McCRACKEN G ROBERTSON
C.ai(P.L*)-an L* processor for C.ai
Computer Science Department Carnegie-Mellon University
Pittsburgh Pennsylvania May 1971

Syntactic formatting of science infornlation

by NAOMI SAGER

N ew York University
New York, New York

INTRODUCTION

It has been increasingly recognized that science in
formation systems have need of natural language
processing. F. W. Lancaster, author of the National
Library of Medicine Study of the performance of the
MEDLARS system,! spoke of this at the 1971 annual
conference of the ACM, in the panel "Can Present
Methods for Library and Information Retrieval
Service Survive?"2 He noted that "there is a definite
trend away from large carefully controlled vocabularies
and toward natural language processing, or, at least
machine-aided indexing," and quoted Klingbiel's re
marks to the effect that "highly structured controlled
vocabularies are obsolete for indexing and retrieval"
and that "the natural language of scientific prose is
fully adequate for these purposes."

In the direction of more flexible, user-oriented
systems, the question has also been raised as to whether
computer methods can be developed for accessing the
information in scientific articles directly, without the
mediation of a librarian or systems expert between the
user and the stored information. Professor J. Belzer,
chairman of the above panel, raised this question: "Our
so-called information retrieval systems are in fact not
information retrieval systems. They are bibliography
producing systems, and we store documents and not
information " "Were the system able to supply him
(the user) with the information he wanted, it would
not be necessary for him to read the entire document."
In light of these remarks, we ask: Is it indeed possible
for a mechanical system to identify the portions of a
text which contain specific information? Can the
information in sentences of the natural language text
be organized on the basis of computer processing of the
text so that each sentence becomes a case of a regular
pattern which is both linguistic and informational, i.e.,
a format?

That the answer to this question is "yes," is suggested
by the results of a recent research into the specialized

791

use of language in scientific subfields. The discourse in
a science sub field has a more restricted grammar and
far less ambiguity than has the language as a whole.
We have found that the research papers in a given
science subfield display such regularities of occurrence
over and above those of the language as a whole that
it is possible to write a grammar of the language used
in the subfield, and that this specialized grammar
closely reflects the informational structure of discourse
in the subfield. We use the term sublanguage for that
part of the whole language which can be described by
such a specialized grammar.

The sublanguage grammar provides a method for
developing the particular word classes (the special-word
sets) and the relations among these classes which are of
special significance in a given science subfield, i. e.,
which are the linguistic carriers of the specific knowl
edge in the subfield. Yet these categories and relations
are not determined a priori for the subfield. Rather,
they are the interpretation of the formal grammatical
categories and relations of the sublanguage grammar.
Thus, in the pharmacological sublanguage which was
investigated, the two noun subclasses I (containing,
e.g., ion, K+) and G (containing, e.g., drug, digitalis,
glycosides), which in the subfield have the significance
"ions" and "pharmacological agents," respectively, and
play crucially different roles in the physiological
mechanisms being described, are obtained as separate
classes because they occur with different classes of
verbs: e.g., I as the object of such verbs as transport,
G as the subject of such verbs as inhibit. It then turns
out that the sublanguage word classes, which are
established on the grounds of what other grammatical
classes they occur with (as subject, object, etc.), are
the linguistic counterparts of the real-world objects,
events, and relations which are studied and described
in the given subfield.

A sublanguage grammar leads to a grammatical
format for sentences in the sublanguage in which the
words in each "slot" of the format are found to corre-

792 Fall Joint Computer Conference, 1972

spond to a particular kind of information in the sub
field. For the pharmacological subfield whose grammar
is summarized below, there are grammatical slots
corresponding to: biochemical or physiological events,
quantitative relations, drug actions, connections be
tween science facts, and experimental and epistemic
relations of the scientist to the objects and facts of the
science. As with the sublanguage grammar itself, the
words of a sentence are not assigned to the slots of the
sentence format on the basis of their semantic proper
ties, but on the basis of their subclass standing vis-a-vis
other grammatical word classes in the sentence. A
description of the formats for the pharmacology sub
language and examples of formatted sentences are
given following the summary of the sublanguage
grammar, below.

SUBLANGUAGE GRAMMAR

The following is a sketch of the sublanguage grammar
for the pharmacological sub field dealing specifically
with the cellular level actions of the cardiac glycosides
(digitalis). *

Location of the science vocabulary in the sentence structure

For purposes of this work, the structure of a sentence
can be represented by a string decomposition obtained
mechanically by a computer program,3,4,5 or by a
transformational decomposition,6 or a transformational
lattice.7 In the latter two types of analysis, each sentence
of the sublanguage is decomposed into one or more
elementary sentences Se with a succession of (partially
ordered) operators which operate on the Se or on the
Se with operators on them. For example, in the sentence
It is clear that toxic doses of digitalis are regularly asso
ciated with a loss of myocardial K, a simple version of
this analysis is shown by grouping the words of the
sentence into levels corresponding to Se and the succes
sive operators:

toxic doses of

I
It is (digitalis is regularly (a loss of))

clear that associated with myocardial K

When sentences from articles in the science subfield
are decomposed by anyone of the above methods, it
is found that the vocabulary which is characteristic of

* A monograph presenting the complete grammar and the
empirical methods used to obtain it is in preparation.

the subfield (called here the science-specific vocabulary)
occurs in a distinguished portion of the decomposition,
i.e., in nodes corresponding to Se and the immediate
operators on.se (the "bottom" nodes of the lattice or
string decomposition), while the more general science
vocabulary is at the intermediate nodes of the lattice
or string decomposition. The top nodes are occupied by
epistemic vocabulary presenting the scientist's relation
to the science facts. *

Form of Se

When we consider the science-specific verbs in the
bottom-most nodes of the sentence decomposition, i.e.,
the verbs in Se, we find that the subject of these verbs
is a science-specific noun, and the object (if the verb
is transitive) is also a science-specific noun, or several,
interspersed with prepositions (e.g., the cell loses potas
sium, ions flow into the cell). Letting N and V stand
respectively for the science-specific nouns and verbs in
Se, and P for a preposition selected by the given verb,
a formula for the elementary sentence is:

Se = N IVP1N2P2N s

where a given verb may have only a portion of the
P1N2P2Ns sequence as its object, or in some cases a
longer sequence.

In the sublanguage many of the science-specific
verbs have only one or two object possibilities, fewer
than in their use in English asa whole. In some cases a
prepositional phrase would be an object of a verb in
the sublanguage whereas in English as a whole it would
be considered an adjunct, e.g., exchange (across mem
brane). This fact reduces the ambiguity in the sentence
analysis, and simplifies the work of obtaining a sentence
analysis by computer.

N sets in Se

A compact description of the main types of elemen
tary sentences is obtained if we collect the science
specific nouns into (almost entirely) disjoint sets,
chief of which are:

G (pharmacological e.g., glycosides, digitalis,

* In the string parses obtained by the computer, this separation
of· vocabulary appears clearly, since in the lexicon available to the
parser, words are classed only with regard to their syntactic
properties for English as a whole (noun, verb, etc.). Yet the
science-specific vocabulary is found consistently in the lowest
string-nodes of the decomposition, and the vocabulary expressing
the scientist's conclusions, doubts, speculations, etc., is found in
the highest nodes.4

agent)

I (ion)

T (tissue)

C (cell)
M (membrane)
H (heart)

o (other organs)
F (fluid)

digoxin, ouabain, erythro
phleum alkaloids

e.g., K+, N a+, Ca+ +, potas
sium, sodium, calcium

e.g., muscle, strips of ven
tricle, vesicles, epithelium,
fibers

e.g., cell, red cell
e.g., membrane
e.g., heart, atrium, myocar

dium
e.g., kidney
e.g., fluid, medium solution,

suspension

Certain nouns in these sets are pure synonyms in the
sublanguage, completely interchangeable under what
ever verb they occur with: sodium, sodium ions, N a
(the first two are of course not synonyms in other
areas of science writing) .

Certain words are classifiers of particular sets (e.g.,
ion for K, Na, Ca, CI), with such word-sequences
as these ions being synonyms for particular ones of
these in a particular textual occurrence. There are
also verbs which are used as classifiers of certain sets of
verbs (e.g., act).

Certain nouns occur as fragment-names of other
nouns. A noun N 1 occurs as a fragment-name of N 2 if
there exists a possible sublanguage sentence "N 1 is a
part of N 2," and if in the given occurrence, N 1 occurs
as the subject/object of a verb which elsewhere has N2
as its· subject/object. For example, in The glycoside
inhibits the Michaelis component of influx, the Michaelis
component is a fragment-name of influx.

In considering the combinations of nouns and verbs
occurring in the texts, we· note that while each of the
above noun sets appears uniquely as the subject or
object of certain verbs, there are also verbs which take
their subject or object from particular unions (marked
/) of these sets. There are also verbs which take their
subject or object only from particular subsets of these
sets (e.g., only sodium and potassium in I, or only Ca).

V -sets of Be, and main Be subtypes

Verb subclasses can be set up on the basis of verb
occurrences in particular environments composed of the
above noun sets. The environments are cases of the Se
formula. Some of the main environments for classing Se
verbs are listed below, followed by a sample list of
verbs in each class. The statement of the subject and
object noun classes with which a given verb on the list
occurs is limited to the occurrences of that verb in the
sentences of the articles which were analyzed. The verb

Syntactic Formatting of Science Information 793

classes are largely disjoint, but a given verb may be in
more than one class. Verbs whose active form would
have a human subject and a science-specific noun as
object are stated in the passive form.

T/H_: contract, relax; is isolated.
T / C _: is washed, is cooled, is cold-stored, is

warmed, is incubated, is fresh.
T _: is fractionated, is prepared, shortens.
C_: rest, swell, recover.
H_: beats, fails, is quiescent, is stimulated, survives,

responds inotropic ally, functions, works, (has)
activity.

M_: is permeable, is leaky. (These could be obtained
from I_M, below).

I_I: replace, exchange with (across membrane).
I_C/T: move (in) to, enter, flow in/out, occupy

(site in), is stored in, is sequestered in, concen
trate in, accumulate in/at, distribute in, con
stitute composition of.

I/G_C/T: diffuse into, are in, leave, localizes in,
is removed from.

I_M: permeate.
G_M: penetrate.
C_I: regain, expel, is loaded with.
C/T_I: extrude, eliminate, is depleted of, leaks,

are deprived of, gain.
H/C/T_I/G: lose, take up.
O/T_I: excretes, turn over, release.
G_T: is absorbed into, is located in (region),

reaches, combines with, is injected into; poisons,
inactivates.

T_G: gets rid of, responds to, resists, is exposed to,
is treated with.

F _F: equilibrate.
T_F: is suspended in, is surrounded by, is bathed in.
X_X (for any set X): is (ouabain is a glycoside).

Grouping the main· Be subtypes

If we consider the above list we note that there are
only a few types of subject/object pairs for these verbs.
To obtain a more compact representation, we define an
inclusive tissue class T=T/C/H/M/O, and an inclusive
class I=I/G. In terms of these super classes the main
environments above can be summarized as follows,
defining the verb classes V T, V II, V IT:

TVT

lVIIl

lVITT

The additional type TV TIl can be included in the above
types by taking the verbs in the passive.

794 Fall Joint Computer Conference, 1972

While the grouping of Se subtypes into supertypes is
a convenient reduction of a large amount of data, the
individual subtypes within one supertype may behave
differently under further operators. This is the case
with Iv IT T where IV ITC (ions leave cell) occurs under
such operator sequences as digitalis inhibits (see below)
whereas GV1TC does not.

I t is found that the verb classes defined in this way
are very nearly disjoint. The noun super-classes above
are disjoint collections of the virtually disjoint noun
subclasses established above.

Furthermore, if we consider the verbs in the list,
we find that with the exception of those noted below,
most of the verbs refer to movement or the result of
movement: moving in or through (flow into, transport),
staying in place (occupy, sequester), being in a place
by virtue of having moved (concentrate, accumulate,
distribute), favor moving or staying (select, resist).
Many of these verbs are indeed synonymous in respect
to these elementary sentences, and the others could all
be replaced in these elementary sentences by synony
mous word sequences, a base verb move with particular
prepositions and quantifiers (e.g., permeate: move
through; gain: move in to a greater degree than move
out, etc.). The verbs which do not relate to movement
are mainly the intransitive and laboratory verbs at the
beginning of the list, and certain particular verbs, such
as poison, inactivate, destroy and respond to and equilib
rate in the latter part of the list. This main set of
elementary sentences of the subfield is thus composed of
a single verb move with directional and quantitative
modifiers which connect I to T, (and I to I in respect
to T, e.g. exchange).

Other Se subtypes

In addition to the main Se subtype (covering ion
transport phenomena) which is described in some detail
above, there are several further Se subtypes which are
important in the subfield:

• Se whose main nouns. are contractile proteins,. actin,
myosin and characteristic verbs are slide along,
fold along (the sliding and perhaps folding of actin
molecules) .

• Se whose main nouns are ATPase, ATP. On,e such
Se has A TPase as subject and A TP as object, with
hydrolyze as a characteristic verb. Most frequently
the Se verb occurring with ATPase is act, which is a
classifier verb for more specific Se verbs.

• Se whose characteristic verbs are carry, transport
(across membrane) with I (e.g., sodium) as char
acteristic object, and with mechanism, substance,

pump, as frequent subjects, when the subject is
given explicitly.

In addition to the above, in some articles or parts of
articles, there are elementary sentences whose vocabu
lary is drawn (in part) from noun classes not mentioned
above. Examples of these are: The curve. flattens toward
the x-axis, cardiac glycosides possess unsaturated rings,
the potential is negative. These elementary sentences are
found to be sentences of other, related, sciences and
techniques on which our particular subscience draws.

Local modifiers of N and V; and wh-connectives

Certain additional words operate on the words of the
Se sentences. The operators on the nouns may appear as
adjectives, prepositional phrases and other modifiers.
The operators on the verb may be adverbs, prepositional
phrases and other modifiers. The noun modifiers can be
reconstructed into separate sentences connected by a
relative pronoun (that, which, etc., indicated by wh)
to the given sentence, and the verb modifiers into
separate sentences connected to the given sentence by
a bisentential verb Vss. Below, in proposing a format
for the content of each sentence, we will suggest that
instead of transforming all modifiers out of the sentence,
as one does for language as a whole, we consider if
there are any word sets in modifier position which in
this sublanguage are especially dependent on their host
words, or which never have an explicit conjunctional
relation to it; these, we suggest, might best be left in
modifier slots next to their host word in the format.

Aspectuals, V v

Certain verbs V v (not science-specific verbs treated
above) operate on verbs as more or less aspectual
modifiers. In English, they occur either in pre-verb or
post-sentence position, and most can be transformed
from one to the other: He commenced speaking, His
speaking commenced. In this sublanguage, only a few
are used, and all are aspectual in meaning (including
the negative), and apparently all can occupy the pre
verb position: not, fail to, appear to, tend to, be engaged
in, undergo, persist, continue, remain, become, commence,
start. E.g., the force starts to increase, the steroids undergo
interconversion, depolarization persists (persist in de
polarizing) . Several of these are synonyms of each other
in the sublanguage.

Quantifiers, Q

Certain verbs (e.g.,jlow, transport, lose, gain, accumu
late) can have a modifying quantifier Q: in an amount,

at a rate; or when the verb is nominalized: amount of,
rate of. This holds for certain adjectives and nominalized
adj ectives (e.g., toxicity, activity) and even nouns
(force). Some can even be considered to contain a
quantifier (e.g., concentration is synonymous in this
sublanguage with amount of concentration). Quantifiers
can also be considered to be modifiers or predicates of
certain nouns: amount of digitalis, digitalis is present
in a certain amount.

There are certain other verbs (different from any
listed in preceding sections) which operate on these
Q. Of these, there is a subset V q whose members have
Q as their subject, and there is a subset V qq whose
members have Q as their subject and Q as their object.
An example of V q is decrease in the size of the overshoot
decreases; an example of V qq is equals in the amount of
alcohol in ... , equals the amount of alcohol in ... , and
the chloride ratio equals the potassium ratio. A quantifier
Q occurring with V q or V qq is often omitted (zeroed),
since its original presence can be reconstructed from
the grammatical requirements of the V q or V qq. Thus,
in addition to: raise the internal sodium concentration,
we find also: raise the internal sodium.

The chief verbs here are:

V q: decrease, reduce, fall, increase, rise, change, run
down, level off, stand still.

Vqq : equal, differ from, range from_to_, be twice,
vary with, correspond to, depend on, determine,
reach. Certain V qq appear also with a human sub
ject with the two Q's in the object: compare,
correlate (an amount with an amount) ; determine,
calculate (an amount from an amount).

There is also a VVqVq, i.e., a verb having Vq both as
subject and as object: parallel (the increase in tension
parallels the increase in uptake). That a verb should
require such a hierarchy of object-types is unique in
the sublanguage, and not common, if it exists at all,
in the language as a whole.

The V q and V qq can operate not only on Q but also
on V q: the rise (in amount) depends on ... , where
depend on is a V qq operating on rise and rise is a V q

operating on Q amount. There are also purely causative
verbs whose objects are Q or V q: double, accelerate,
minimize, depress.

We see that a complex structure of quantifiers and
quantifying verbs operates in this sublanguage. As in
the case of the verbs reducible to move, above, many of
the quantifying verbs here are synonyms, or are re
placeable by a few base verbs with modifiers on them.

Syntactic Formatting of Science Information 795

Verbs connecting two sentences, V ss

There are certain verbs, not included in any of the
preceding sets, which have nominalized sentences both
as subject and object. These verbs are the bisentential
Vss. A particular property of these verbs is that if their
first nominalized sentence is presence of X or action of
X, where X = the noun subclass G (rarely, I), the
words presence of or action of are omittable, yielding X
as the apparent subject of the Vss: glycosides inhibit
These Vss are: affect, is concerned in, bring about, cause,
produce, confer, make, generate, induce, initiate, trigger,
promote, stimulate, prolong, protect from, restore, control,
interfere with, inhibit, limit, delay, antagonize, depose,
reverse, block, arrest, abolish, obstruct, prevent, switch off.

Instead of considering glycosides inhibit sodium
efflux as reduced from action of glycosides inhibits sodium
efflux (an SVssS construction), we can consider the
G noun, when it appears as subject of Vss, to constitute
a special N -class No. Then glycosides inhibit sodium
efflux would be a case of an NoVssS construction. We use
the latter analysis in the format, below. Here, too, it is
clear that there are many synonyms with respect to the
use of these verbs in the sublanguage, so that the
vocabulary could be reduced.

There are a few other sentence-connecting verbs
which may be called conjunctional Vss. Here, G does
not occur as possible subject: involve, accompany, relate
to, lead to, depend on, be based on. Similar to these are
certain passive forms: be linked to, be coupled to, be
related to, which in the active form have a human
subject.

Subordinate conjunctions, Csubord

There are a number of subordinate conjunctions
between sentences: if S then S, S when S, etc. There
are also certain prepositions used conjunctionally
between nominalized sentences: No contracture occurs
on depolarization, Recovery does not occur in the absence
of oxygen.

Coordinate conjunctions, Ccoord

There are conjunctions between S, or between
identically classed words: and, or.

Sentence grouping (non-associativity of connectives)

All the sentence connectors, including wh, can operate
on each other, i.e., an SVssS or an SCS can serve as
subject or object of a sentence connector. When there

796 Fall Joint Computer Conference, 1972

is more than one connective, the grouping of sentences
is semantically non-associative, but sequences of SCS,
where C = Ccoord, are associative.

Epistemic operators

Finally, there are many verbs with epistemic mean
ing, whose subject is human and whose object is a
sentence: believe, publish. The human subject is often
omitted when the sentence is nominalized in the passive.

Summary

Grammar. This sublanguage had a definite gram
matical structure consisting of:

(1) a set of elementary sentences, formed out of a
few sets of subscience-specific nouns and verbs;
and occasional other elementary sentences of a
few other subscience vocabularies.

(2) aspectual operators on verbs.
(3) (omittable) quantifiers Q on certain verbs or

nouns, with quantifying verbs V q and V • qq

operatmg on the Q or on V q; and a verb V VqVq
operating on two V q's.

(4) the noun-modifying wh-connective.
(5) sets of sentence-connecting verbs Vss and con

junctions C, which can operate on each other.

V ocabulary reduction. In each word set, various
words are used synonymously or can be replaced by a
common base word with differentiating modifiers.
Hence the vocabulary in each word set can be greatly
reduced, at least for the purposes of a standardized
informational representation.

Semantic interpretation. The particular word sets
(especially after their vocabulary has been reduced)
and the way they operate on each other reflect quite
closely the structure of information in the science.
E.g., a main Se subtype is fiG move in TIC' and the . '
mam appearance of glycosides is not in the elementary
sentence, but as subject of the causative operator verb
on the Se. Also, the complexity of the quantity words
reflects the importance of quantitative relations in this
subfield.

SUBLANGUAGE SENTENCE FORMAT

A sUblanguage grammar provides a basis for struc
turing the information in each sentence and for mechani
cally processing the structured information.

A parse of a sentence, whether carried out by hand
or by a computer program, is a decomposition· of the
sentence into parts which are segmented, and related
one to the other, in terms of the grammar used. When

the grammar includes, in addition to the grammatical
requirements and transformations of the language as a
whole, also the special word subsets and restricted
combinations of the given science sublanguage, the
sentence segments and their relations are found to fit
the informational categories and relations of the sub
science. It is possible to construct a fixed format of the
grammatical operators and operands which houses all
the sentence outputs obtained using the sublanguage
grammar, so that the grammatical decomposition
(parse) of each sentence locates the sentence-segments
in particular slots of the format. Each of the slots has a
fixed informational character, and each sentence carries
the type of information of the slots which it fills in ,
their relation to neighboring slots in the format.

Aside from the sublanguage grammar, it is known
that in language in general there are certain gram
matical processes which lead to the loss of words in a
sentence or to the replacement of words by informa
tionally less explicit ones. The reverse process of supply
ing the lost or more specific words is especially impor
tant in formatting sentences. The main such processes
are:

(1) Loss of repeated words (called "zeroing") ,
'especially after a conjunction. E.g., changes in
the concentration of electrolytes and in electrolyte
fluxes can be filled out to include the zeroed word
changes after and, to yield changes in the concen
tration of electrolytes and [changes] in electrolyte
fluxes. In the formatted sentences, below, zeroed
words which have been reconstructed are en
closed in [].

(2) Replacement of a repeated word or sentence by
a pronoun, e.g., its in the inotropic action of
digitalis cannot be attributed to its effect on potas
sium metabolism, and This in This results from a
slowing of the influx. A so-called bound pronoun
occurs in words like which, which can be analyzed
as a conjunction wh followed by a pronoun ich
standing either for a preceding noun or sentence.
In the formatted sentence, material which has
been reconstructed in place of a pronoun is
enclosed in { }.

(3) Replacement of a repeated word or sentence by
a classifier of the word or sentence, usually as
part of a sequence containing the, this, these,
etc., e.g., the drug replacing a second occurrence
of digitalis in the same sentence, or these effects
replacing the repetition of a preceding sentence.
The combination of a pronominal element (e.g.,
these) with a classifier word or phrase eases the
task of identifying the antecedent of the pro
noun. In the formatted sentences, material which

has been reconstructed on the basis of classifier
sequences is enclosed in ().

(4) Grammatical constants. When a sentence occurs
as the subject or object of an operator verb, the
sentence may be nominalized, e.g., an influx of
potassium into the cell following the operator verb
results from, nominalized from potassium flows
into the cell. In reconstructing the sentence which
had been nominalized it is sometimes necessary
to supply an information ally neutral word in
order to make the nominalized form of the verb
into a grammatical verb form. E.g., intra
cellular sodium in Intracellular sodium is in
creased, can be reconstructed into a sentence
sodium (is) intracellular. In the formatted
sentences, grammatical words which are supplied
are enclosed in ().

U1 C1

U2 C2

CN- 1

UN I

Figure l-Sentence Format
U = Unary Sentence; C = Conjunction

The structure of a sentence in this grammar, after
lost and replaced material has been reconstructed as
far as possible, consists of a unary sentence U, or a
sequence of U's connected by conjunctions C, where
C = Vss, V qq, V VqVq, Csubord, Ccoord, wh, defined in the
grammar above. This sequence, UCUC ... CU, is the
resultant of each C operating on a pair of sentences,
where each of these operand sentences is itself a U or
the resultant of a C operating on a pair of sentences.
If there is more than one C in a sentence, parentheses
are needed to indicate the hierarchical (non-associative)
grouping of the operands of C's. In a formatted sen
tence, the U's and C's are arranged in columns, as in
Figure 1. Grouping is shown by barred square brackets
-E 3-. If no grouping is shown, it is understood that each
C operates on the last preceding U.

Syntactic Formatting of Science Information 797

Figure 2-Format for Unary Sentence
No: subject of Vss, generally a pharmacological agent noun
V ss: operator on V q or Be, generally causative verb
V q: verb of quantity
Se: elementary sentence of the sublanguage
Ds: adverb on the whole preceding structure to its left
The first two boxes and the last may be empty; the first and

last boxes are repeatable

Each unary sentence U is an elementary sentence
Se, or an Se with one or more unary operators on it. The
unary operators are either NoVss or Vq , as illustrated
in Figure 2. Each Se is one of the Se subtypes described
in the grammar above. The gross grammatical structure
of Se is illustrated in Figure 3. In all the above formats,
certain particular word subsets which appear in the
structure may have particular sets of local modifiers
operating on them. The grammatical form of these
modifiers on nouns, is: adjectival phrases and possibly
quantifiers Q; and on verbs: aspectual per-verbs V v,
adverbial phrases D and quantifiers Q.

Tables I-III contain the formats for the first two
paragraphs of the section Effects on cellular potassium
in a review of Digitalis.s In the textual sentence pre
ceding each format, the "scientist-level" portions are
italicized; these can be separated grammatically from
the more specifically science portions of the sentence,
and have not been included in the formats. The format
follows the pattern illustrated in Figures 1-3. The
elementary sentence Se appears between double lines,
and where the verb V occurs in the sentence in nomi
nalized form, that form has been retained in the format.
The first preposition following a verb in Se has been
written along with the verb in the V column.

With regard to the individual sentences:

Nl Q V Q P N2 P

Figure 3-Format for Elementary Sentence Se
N 1, N2, N3: Nouns from the specifically pharmacological

vocabulary
Q: Quantity word
V: Verb or word with verb root

Only Nl and V are necessarily present in each Se

N3

798 Fall Joint Computer Conference, 1972

TABLE I--Formatted Sentences I-3CONJ: conjunction; G pharmacological agent noun class; C: cell noun class; VIT: verb with subject
noun from I (ion super-class) and object noun from T (tissue super-class); other symbols are noted in Figure 1-3

1. CHANGES IN THE INTERNAL MILIEU OF CELLS PRODUCED BY DIGITALIS HAVE BEEN KNOWN FOR MANY YEARS.

N
o
G

1.) Digitalis

Q

produces

Vq D

changes

v Q

c
~------interna milieu of-----~ cells

CONJ

2. MOST PROMINENT HAVE BEEN CHANGES IN THE CONCErtTRATION OF ELECTROLYTES ~ND IN ELECTROLYTE FLUXES, THAT IS, IN THE
RATE OF MOVEMENT OF ELECTROLYTES IN AND OUT OF THE CELL

2.1 ---------------------------- --------------- -------------- ------«{l] >---- ------------ ------- -+ (has)most prom-
inent (case

G I C
2.2) [Digitalis] [produces] changes in electrolytes (have)concen- [cells] and

tration [in]

G I C
2.3) [Digitalis1 [produces] [changes] in electrolytes fluxes P [cells] ,that is,

G I C
2.4) [Digitalis] [produces 1 [changes] in electrolytes movement in the cell and

{at a) rate

G I C
2.5) [Digitalis J [produces]

I
[changes in] [electrolytes] [movement] out [the cell]

of
[(at a) rate]

3. INTEREST WAS INITIALLY FOCUSED ON CHANGES IN POTASSIUM; MORE RECENTLY, CHANGES IN CALCIUM HAVE BEEN RECOGNIZED
TO BE OF GREAT IMPORTANCE.

I
changes in potassium

I

changes in calcium

TABLE II-Formatted Sentences 4-6

Symbols as in Table 1

4. TOXIC DOSES OF DIGITALIS CONSISTENTLY REDUCE THE INTRACELLUlAR CONCENTRATION OF POTASSIUM TIT A WIDE VARIETY OF
CELLS, INCLUDING CARD~C MUSCLE CELLS.

NO Q V ss

G
4.1) Digitalis

toxic
doses

G
4.2) [Digitalis]

[toxic
doses]

Vq D

reduces
consistently

[reduces
consistently]

Nl

I
potassium

I
[potassium1

V Q

(has)concen
tration intra-

(has)[concen
tration intra-]

5. THIS RESULTS FROM THE SLOWING OF THE INFLUX OF POTASSIUM INTO THE CELL.

N2 D s

C
cellular in a wide

variety
of cells

C
[cellular] in cardiac

muscle
cells

CONJ

I
including

in)

5.1) ~---------------------------- --------------- --- ~ 4 J --------- ---------~ results from

5.2) slows
I

potassium influx into
C

the cell . Concurrently

6. CONCURRENTLY, INTRACELLUIAR SODIUM AND WATER ARE INCREASED.

I
6.1) increases sodium

I
6.2) [increases1 water

C
(is) intra- cellular

[is intra- cellular]

)1
!

I

and[concurrently]

Syntactic Formatting of Science Information 799

TABLE III-Formatted Sentence 7

Symbols as in Table 1

7. IT IS NOT CERTAIN WHETHER THESE LINKED CHANGES IN SODIUM AND POTASSIUM ARE PRODUCED BY A SINGLE EFFECT
OR ARE SEPARATELY MEDIATED.

Q v
ss D r v Q D s CONJ

7.1) single effect produces f +------------- ------------ -----<6.1>-------- --------- ---------+ and

I I +-.------------- ------------ -----<5.2>-------- + or

mediates
separately

+-------------~ ------------ -----[6.1]-------- [and]

[mediates +-------------- ------------ -----{5.2]-------- --------- ---------+ ~ wh
separately]

+-------------- ------------ -----~<6.1>]------ --------- ---------+ is linked to

7.6) +-------------- ------------ -----t<5. 2>j------ --------- ---------+ .

In (1.): While changes in cells produced by digitalis is
ambiguous in English as a whole, it is not ambiguous in
the sublanguage since nouns in the class C (cells) do
not occur as the subject of Vss verbs (produce). In the
sublanguage the word changes only operates on quantity
words Q (e.g., amount, rate) or verbs which have an
implicit Q on them. In the formats, therefore, change
occupies the V q position. In the format for sentence 1
this places internal milieu of cells in the Se position,
suggesting that it contains an implicit Q and V. This
is supported by the fact that the paraphrase changes in
the amounts of X 1, X 2, • • • in cells is an acceptable sub
stitute for internal milieu of cells in all its textual
occurrences in this sublanguage.

In (2.): The first part of sentence 2 contains lost
repeated material (zeroing) which can be reconstructed
because of the strong grammatical requirements on the
superlative form : Most prominent have been changes
in ... is filled out to Most prominent of these changes
have been changes in These changes is a classifier
sequence replacing the full repetition of sentence 1,
which is then shown in, the format as the first (zeroed)
unary sentence of 2.

In (2.3-2.5): The word which indicates that changes
(along with digitalis produces) has been zeroed is the
repeated in after and. In 2.2, the V in Se is (have)
concentration in (or: concentrate to some amount in),
which in the sublanguage requires an object noun from
the gross tissue-cell class T. Similarly in 2.3, the V
fluxes (with unspecified P) requires an object noun from
T. In the analyzed texts both of these V s occurred almost

exclusively with the noun cell as their object. The
definitional connective that is between 2.2,3 and 2.4,5
supports substituting the word cell for T.

In (3.): The sublanguage requirements on the noun
class I (potassium, sodium) as the first noun in Se1
when Se is operated on by V q (changes), are that the
verb be of the type V IT or V II and the second noun be of
class T or I. The continuity of this sentence with its
surrounding sentences suggests that the verb is V IT and
the noun T (more specifically C: cell) .

In (5.1): The pronoun this replaces the entire pre
ceding sentence.

In (7.): These linked changes in sodium and potassium
transforms into These changes in sodium and potassium
which are linked. The portion up to which are linked is
a classifier of the two preceding unary sentences, 6.1
and 5.2, pinpointed by the repetition of the words
sodium and potassium in the classifier sequence. It is
these two conjoined unary sentences which are operated
on by a single effect produces in lines 7.1, 7.2, and again
by mediates separately with unknown N subject, in
lines 7.3, 7.4. The portion which are linked applies to
both occurrences of 6.1 and 5.2 in 7.1-4. The wh in
which is the connective and the ich part is a pronoun for
the two sentences, as indicated by { }. The fact that
the sentences were reconstructed by use of a classifier
is indicated by the (> inside the { } in 7.5-6. Although
this sentence seems empty, it is common in scientific
writing for a sentence to consist of references to previous
sentences with new operators and conjunctions operating
on the pronouned sentences. The linearity of language

800 Fall Joint Computer Conference, 1972

makes it difficult to express complex interconnections
between the events (sentences) except with the aid of
such pronouned repetitions of the sentences.

The appearance of a word like effect in the column
usually filled by a pharmacological agent noun G may
herald the future occurrence of a new elementary
sentence or a new set of conjoined elementary sentences
(classified by the word effect) which will intervene
between G and the present Se. This appears to be one
of the ways that new knowledge entering the subfield
literature is reflected in the formats and the sub
language grammar.

In fact, in the work described here, the first in
vestigation, which covered digitalis articles up to about
1965, showed certain sets of words (including mecha
nism, pump and, differently, ATPase) appearing in the
No or Ds column as an operator on Se. In later articles,
which were investigated later, these nouns appeared
increasingly as subjects of new Se subtypes listed above
in the grammar, connected by conjunctions to the
previously known Se. The shift of these words from
occurring as operators to occurring in (or as classifiers
of) new Se subtypes is the sublanguage representation
of the advance of knowledge in the subfield.

ACKNOWLEDGMENTS

This work was supported by Research Grants R01 LM
00720-01, -02, from the National Library of Medicine,

National Institutes of Health, DHEW. Important
parts of the sublanguage grammar are the work of
James Munz, to whom many of the results and methods
are due.

REFERENCES

1 F W LANCASTER
Evaluation of the M edlars demand search
National Library of Medicine 1968

2 Proceedings of 1971 Annual Conference of the ACM pp
564-577

3 N SAGER
Syntactic analysis of natural language
Advances in Computers 8 F Alt and M Rubinoff eds
Academic Press New York 1967

4 N SAGER
The string parser for scientific literature
Courant Computer Symposium 8-Natural Language
Processing R Rustin Ed Prentic Hall Inc Englewood Cliffs
N J In press

5 String Program Reports Nos 1-5
Linguistic String Project New York University 1966-1969

6 D HIZ A K JOSHI
Transformational decomposition-A simple description of an
algorithm for transformational analysis of English sentences
2eme Conference sur Ie Traitement Automatique des
Langues Grenoble 1967

7 String Program Reports No 6
Linguistic String Project New York University 1970

8 A F LYON A C DEGRAFF
Reappraisal of digitalis, Part I, Digitalis action at the cellular
level
Am Heart J 72 4 pp 414-418 1961

Dimensions of text processing*

by GARY R. MARTINS

University of California
Los Angeles, California

INTRODUCTION

Numerical data processing has dominated the comput
ing industry from its earliest days, when computing
might better have been called a craft than an industry.
In those early days it was not uncommon for a mixed
group of scientists and technicians to spend an entire
day persuading a roomful of vacuum tubes and mechan
ical relays to yield up a few thousand elementary
operations on numbers. The emphasis on numerical
applications was a wholly natural consequence of the
dominant interests of the men and women who designed,
built, and operated those early computing machines.

Within a single generation, things have changed
dramatically. Computing machines are vastly more
powerful and reliable, and easier to use thanks to the
efforts of the software industry. Perhaps of equal
importance, access to computers can now be taken for
granted in the more prestigious centers of education,
commerce, and government. And we may be approach
ing the day w:hen computing services will be as widely
available as the telephone. But it is still true that
numerical data processing-"number crunching," in one
form or another-is the principal application for
computers.

That, too, is changing, however. Due principally, I
think, to the highly diversified needs and interests of the
greatly expanded community of computer users, the
processing of textual or lexicographic materials already
consumes a significant percentage of this country's
computing resources, and that share is rising steadily.
By the end of this decade, if not before, text processing
of various kinds may well become the main application
of computers in the United States.

This prediction, no doubt, carries ~he ring of authentic

* Research reported herein was conducted under Contract
F30602-70-C-0016 with the Advanced Research Projects
Agency, Department of Defense.

801

good news for those of us with strong interests in one or
another of the many kinds of textual data processing.
But we must face the fact now that there remains a
serious and large-scale educational task that must be
undertaken if the future growth of textual data pro
cessing is to fulfill the high hopes for it that we now
entertain. Text processing tasks and systems are too
often considered in isolation from one another, with the
results that (1) much design and implementation work
needlessly duplicates prior accomplishments, and (2)
potentially useful generalizations and extensions of
existing systems for new applications are overlooked.

This is a tutorial paper, then. My purpose is to take a
broad view of. the text processing field in such a way as
to emphasize the relations among different systems and
applications. The structure of these relationships will be
embedded in an informal descriptive space of two
dimensions. In the interests of focussing attention on the
unifying character of this framework, however imperfect
and incomplete it surely is, I shall avoid the discussion
of the internal details of specific systems.

TEXTUAL DATA PROCESSING

By "textual data processing" I mean a computing
process whose input consists entirely or substantially of
character strings. For the most part, it will be con
venient to assume that this textual input represents
natural language expressions, such as, for example,
sentences in English. All kinds of systems running today
fit this deliberately broad and usefully loose definition:
programs to automatically make concordances, compile
KWIC indexes, translate between languages, evaluate
personnel reports, drive linotype machines, abstract
documents, answer questions, perform content analysis,
route documents, search libraries, and edit manuscripts.
I am sure everyone here could add to this list. It will be
instructive to include programming language compilers
in our discussion, as well.

802 Fall Joint Computer Conference, 1972

TWO DIMENSIONS OF TEXT PROCESSING

An important set of relationships among these highly
diverse activities can be clarified by locating them in an
informal space of two dimensions: scope and depth of
structure. The dimension of scope has to do with the
magnitude of the task to be performed: the size of the
problem domain, and the completeness of coverage of
that domain. To illustrate, an operating production
oriented Russian-to-English machine translation system
has a potentially vast input domain, namely, all the
sentences of Russian. But an experimental model for
such a system, containing only a tiny dictionary and a
few illustrative grammar rules-something concocted
for a demonstration, perhaps-has a highly restricted
domain. The scope of the two systems differs greatly,
with important consequences which we shall consider in
a moment.

The second of our dimensions measures the richness
of structure or "vertical integration" developed for the
text. This is essentially a linguistic dimension, reflecting
the fact that the text itself is made up of natural
language expressions of one kind or another. This
dimension does not take into account simple linear
physical divisions of text, such as the "lines" and
"pages" of text editing systems like TECO.l Rather, it
measures an essentially non-linear hierarchy of abstract
levels of structure which define the basic units of
interest in a given application.

Scope

Generally, the dimension of scope as applied to the
description of text processing systems does not differ in
any systematic way from the notion of scope as applied
to other systems. It enables us to express the relative
magnitude of the problem domain in which the system
can be of effective use. There are two key factors to be
considered in estimating the scope of a particular
system. The first of these has to do with the generality
of input data acceptable to the system. If the acceptable
input is heavily restricted, the scope of the system is
relatively small. Voice-actuated input terminals have
been rather vigorously promoted during the past few
years; their scope is small indeed, being limited to the
effective recognition of a very small set of spoken words
(names of digits and perhaps a few control words), and
often demanding a mutual "tuning" of the terminal and
its operators. Programming language compilers provide
another rather different example of systems with limited
scope in terms of acceptable input; both the vocabulary
and syntax of acceptable statements are rigidly and
narrowly defined. In contrast, text editing systems in
general have wide scope in terms of acceptable input.

The other factor which plays an important role in
determining the scope of text processing (or other)
systems has to do with the convenience and flexibility
of the interface between the system and its users.
Obviously, this factor will be of lesser importance in the
evaluation of systems operated as a service in a closed
shop batch-processing environment. It will be of major
importance in relation to systems with which users
become directly involved, interactively or otherwise.
Compilers are a good example of such systems, as are
such widely-used statistical packages as SPSS2 and
BMD,3 and interactive processors like BBN-LISP,4
BASIC5 and JOSS. 6 More to our present point are
text-editing systems such as TECO, QED,7 WYLBUR,8
HYPERTEXT9 and numerous others; in terms of
acceptable data input, these latter systems impose few
restrictions, but they may be said to differ significantly
in overall scope on the basis of differences in their
suitability for use by the data processing community at
large. It takes a sophisticated programmer with exten
sive training to make use of TECO's powerful editing
and filing capabilities, for example; this restricts the
system's scope. A most ambitious assault on this aspect
of the problem of scope in text editing systems is that
of Douglas Englebart and his colleagues at Stanford
University;lO a review of their intensive and prolonged
efforts should convince anyone of the serious nature of
the difficulties involved in widening the general
accessibility of text editing systems.

I am sure we have all had experiences with text
processing systems of very restricted scope. A decade
ago, it was a practice of some research organizations to
arrange demonstrations of machine translation systems;
in some memorably embarrassing instances, the scope
of these systems was unequal to even the always quite
carefully hedged, and sometimes entirely pre-arranged,
test materials allowed as input. More commonly, we
may have written or used text processing programs of
one kind or another which were created in a deliberately
"quick and dirty" fashion to answer some special need,
highly localized in space and time. It is important to
note that the highly restricted scope of such "one-shot"
programs in no way diminishes their usefulness; given
the circumstances, it may indeed have involved an
extravagant waste of resources to needlessly expand
their scope in either of the two ways I have mentioned.

While it may be quite difficult to measure the
relative scope of different text processing systems, at
least the basic notions involved are simple: breadth of
acceptable input data and, where appropriate, the
breadth of the audience of users to which the system is
effectively addressed. Let us now review the depth of
structure dimension of text processing, where the basic
notions involved may be somewhat less familiar.

Depth of Structure

We may assume that the text to be processed first
appears in the system as a continuous stream of
characters. It will rarely be the case that our interest in
the data will be satisfied at this primitive level of
structure. We will most often be interested in words, or
phrases, or sentences, or meanings, or some other set of
constructs. Since these are not given explicitly in the
character stream, it will be necessary to operate on the
character stream to derive from it, or assign to it, the
kinds of structures that will answer our purposes. The
lowest level of structure, in this sense, consists of the
sequence of characters in the stream. The highest level
of structure might perhaps involve the derivation of the
full range of meanings contained in and implied by the
text. Between these extremes we may define a variety
of useful and attainable structures. The dimension along
which we measure these differences is that to which I
have given the somewhat clumsy name of depth of
structure.

The number of useful applications of text processing
at the lowest level of structural depth-the character
stream-is quite large. Most text editing systems
operate at this level. Other more specialized applications
include the development of character and string occur
rence frequencies, of use principally to crypt analysts
and communications engineers. But, for applications
which cannot be satisfied by simple mechanical pattern
seeking and matching operations, we must advance at
least to the next level of structure, that of the
pseudo-word.

Pseudo-words

The ordinary conventions of orthography and punctu
ation enable us to segment the character stream into
word-like objects, and also into sentences, paragraphs,
etc. The word-like objects, or pseudo-words, may be
physically defined as character strings flanked by blank
characters and themselves containing no blank char
acters. This is still a fairly primitive level of structure,
and yet it suffices for many entirely respectable
applications. Concordances have often been made by
programs operating with this level of textual structure,
for example. But there are serious limitations on the
results that can be achieved. It is not possible, for
instance, for the computer to determine that "talk" and
"talked" and "talks" are simply variants of the same
basic word, and that they should therefore be treated
similarly for some purposes. The same difficulty appears
in a more refractory form with the items "go" and
"went." Thus, if our intended application will require

Dimensions of Text Processing 803

the recognition of such lexicographic variants as mem
bers of the same word family, it will be necessary to
approach the next more or less clearly defined level of
textual structure, that of true words.

Word recognition

There are two principal tools used for the recognition
of words in text processing: morphological analysis and
dictionaries. They come in many varieties, large and
small, expensive and cheap. Either may be used without
the other. The Stanford Inquirer content-analysis
systemll employs a very crud£ kind of morphological
analysis which consists in simply cutting certain
character strings from the ends of pseudo-words, and
treating the remainder as a true word. This procedure is
probably better than nothing at all, but it can produce
some bizarre confusions; for example, the letter "d" is
cut from words ending in "ed," on the assumption that
the original is the past tense or past participle form of a
verb. "Bed" is thus truncated to "be," and so on. The
widely used and highly successful KWIC12 indexing
system operates with a crude morphological analysis of
essentially this kind.

]\l10re sophisticated morphological analysis is attain
able through the use of more flexible criteria by which
word-variants are to be recognized, at the cost of a
correspondingly more complex programming task. But
it is hard to imagine what sort of rules would be needed
to cope with the so-called strong verbs of English. The
best answer to this problem is the judicious use of a
dictionary together with the morphological analysis
procedures.13 In systems employing both devices, a
pseudo-word is typically looked up in the dictionary
before any analysis procedures are applied to it. If the
word is found, then no further analysis is required, and
the basic form of the word can be read from the
dictionary, perhaps together with other kinds of in ..
formation. Thus, "bed" would be presumably found in
the dictionary, preventing its procrustean transforma
tion to "be." Likewise, "went" would be found as a
separate dictionary entry, along with an indication that
it is a variant of "go." On the other hand, "talked"
would presumably not be found in the dictionary, and
morphological analysis rules would be applied to it,
yielding "talk"; this latter would be found in the
dictionary, terminating the analysis.

Here I have tacitly assumed that our dictionary
contains all the words of English, or enough of them to
cover a very high percentage of the items encountered
in our input text. In fact, there are very few such
dictionaries in existence in machine-usable form. The
reason is twofold: on the one hand, they are very

804 Fall Joint Computer Conference, 1972

expensive to create, and generally difficult to adapt,
requiring a level of skills and time available only to the
more heavily endowed projects; on the other hand,
while they provide an elegant and versatile solution to
the problems of word identification, most current text
processing applications simply do not require the degree
of versatility and power that large-scale dictionaries can
provide.

A number of attempts have been made in the past to
build automatic document indexing and dissemination
systems based upon the observed frequencies of words
in the texts. In these and similar systems, it was found
to be necessary to exclude a number of very frequent
"non-content-bearing" words of English from the
frequency tabulations-such words as "the," "is," "he,"
"in," which we might collectively describe as members
of closed syntactic classes: pronouns, demonstratives,
articles, prepositions, along with a few other high
frequency words of little interest for the given applica
tions. The exclusion of these words is accomplished
through the use of a "stop list," a mini-dictionary of
irrelevant forms. Such small, highly specialized diction
aries are easily and cheaply constructed, and have
proven useful in a wide variety of applications.

Automatic typesetting systems provide another good
example of a useful text processing application operating
at the level of the word on the dimension of depth of
structure. The key problem for these systems is that of
correctly hyphenating words to make possible the right
and left justification of news columns. Morphological
analysis of a quite special kind is employed to determine
the points at which English words may be broken, and
this analysis is often supplemented with small diction
aries of exceptional forms. Another more sophisticated
but closely related application of rather narrow but
compelling interest is that of automatically translating
English text into Braille. Once again, specialized word
analysis, supplemented by relatively small dictionaries
of high frequency words and phrases, have been the
tools brought to bear on the problem.

Before moving on to consider text processing applica
tions of higher rank on the scale of depth of structure,
I should like to pause for a moment to comment on
what I believe to be a wide-spread fallacy concerning
text processing in general. Somehow, a great many
people, in and out of the field of text processing, have
come to associate strong notions of prestigiousness
exclusively with systems ranking at the higher end of the
dimension of depth of structure. It is hard to know how
or why this attitude has developed, unless it is simply a
reflection of a more general fascination with the obscure
and exotic. But it would be most unfortunate if capable
and energetic people were for this reason diverted from
attending to the many still unrealized possibilities in

text processing on the levels we have been discussing.
We have only to compare the widespread usefulness of
text processing systems operating at the word level and
below with the generally meagre practical contributions
of systems located further along this dimension to dispel
the idea that there is greater intrinsic merit in the latter
systems. In now moving further along the dimension of
depth of structure, we leave behind a broad spectrum
of highly practical and useful systems that sort and edit
text, make indexes, classify and disseminate documents,
prepare concordances, set type, translate English into
Braille, perform content analysis, make elementary
psychiatric diagnoses from writing samples, assist in the
evaluation of personnel and medical records, and
routinely carry out many other valuable tasks. It may
be only moderately unjust to repeat here a colleague's
observation that, in contrast, the principal product of
the systems we are about to consider has been doctoral
dissertations.

Syntax

Syntax is, roughly speaking, the set of relations that
obtain among the words of sentences. For some
applications in the text processing field, syntactic
information is simply indispensable. The difference be
tween "man bites dog" and "dog bites man" is a
syntactic difference; it is a difference of no account in
applications based upon word frequencies, for example,
but it becomes crucial when the functions or roles of the
words, in addition to the words themselves, must be
considered.

Syntactic analysis is most neatly accomplished when
the objects of analysis have a structure which is rigidly
determined in advance. The syntactic structure of valid
ALGOL programs conforms without exception to a set
of man-made rules of structure. The same is true of
other modern programming languages, and of artificial
languages generally. This fact, together with the tightly
circumscribed vocabularies of such languages, makes
possible the development of very efficient syntactic
analyzers for them.

Natural languages are very different, even though
some artificial languages, especially query and control
languages, go to great lengths to disguise the difference.
In processing ordinary natural language text we are
confronted with expressions of immense syntactic
complexity. And, while most artificial languages are
deliberately constructed to avoid ambiguity, ordinary
text is often highly ambiguous; indeed, ambiguity is a
vital and productive device in human communication.
The syntactic analysis of arbitrary natural language text
is therefore difficult, expensive, and uncertain. It will

come as no great surprise, then, that text processing
systems that require some measure of syntactic analysis
seldom carry the analysis further than is needed.
Further, the designers of such systems have defined
their requirements for syntactic analysis in a variety of
ways. The result is that existing natural language text
processing systems embody a great variety of analysis
techniques. To some extent, this situation has been
further complicated by debates among linguists as to
what constitutes the correct analysis of a sentence,
though the influence of these polemics has been minor.
Over the past decade, and especially over the past five
years or so, techniques for the automatic syntactic
analysis of natural language text have improved rather
dramatically, and are flexible enough today to accom
modate a variety of linguistic hypotheses.

Earlier, in discussing the place of the dictionary in the
identification of words, I mentioned that such diction
aries might carry other information in addition to the
word's basic form. Often, this other information is
syntactic, an indication of the kinds of roles the word is
able to play in the formation of phrases and sentences.
These "grammar codes," as they are often called, are
analogous to the familiar "part of speech" categories we
were taught in elementary school, though in modern
computational grammars these distinct categories may
be numerous. A given word may be assigned one or more
grammar codes, depending upon whether or not it is
intrinsically ambiguous. A word like "lucrative" is
unambiguously an adjective. But "table" may be a
noun or a verb. A word like "saw" exhibits even greater
lexical ambiguity: it may be a noun or either of two
verbs in different tenses.

The process of syntactic analysis, or parsing, generally
begins by replacing the string of words-extracted from
the original character stream as described earlier-by a
corresponding string of sets of grammar codes. It then
processes these materials one sentence at a time. Parsing
in general does not cross sentence boundaries for the
simple, though dismaying, reason that we know very
little about the kinds of rule-determined connections
between sentences, if indeed there are any of substance.
On the other hand, the sentence is the smallest really
satisfactory unit of syntactic analysis since we can be
confident of our results for one part of a sentence only
to the degree that we have successfully accounted for
the rest of it, much as one is only sure of the solution to
a really difficult crossword puzzle when the whole of it
has been worked out.

If a sentence consists entirely of lexically unambig
uous words-a rarity in English-then there is only a
single string of grammar codes for the parser to consider.
More commonly, the number of initially possible
grammar code sequences is much higher; it is, in fact,

Dimensions of Text Processing 805

equal to the product of the number of distinct grammar
codes assigned to each word. Whatever the number, the
parser must consider each of the possible sequences in
turn, first assembling short sequences of codes into
phrases-such as noun phrases or prepositional phrases
-and then assembling the phrases into a unified
sentential structure. At each step of the way, the par.ser
is engaged in matching the constructs before it (i.e.,
word or phrase codes) against a set of hypotheses
regarding valid assemblies of such constructs. The set of
hypotheses is, in fact, the grammar which drives the
parsing process. When a string of sub-assemblies cor
responds to such a hypothesis (or grammar rule), it is
assembled into a unit of the specified form, and itself
becomes available for integration into a broader
structure.

To illustrate, consider just the three words "on the
table." The parser, first of all, sees not these words, but
rather the corresponding string of grammar code sets:
PREPOSITION ARTICLE NOUN/VERB.* Typi
cally, it may first check to see whether it can combine
the first two items. A table of rules tells the parser, as
common sense tells us, that it cannot, since "on the" is
not a valid English phrase. So, it considers the next pair
of items; the ambiguity of the word "table" here requires
two separate tests, one for ARTICLE + NOUN and
the other for ARTICLE + VERB. The former is a valid
combination, yielding a kind of NOUN-PHRASE ("the
table"). The ARTICLE + VERB combination is
discarded as invalid. Now the parser has before it the
following: PREPOSITION NOUN-PHRASE. Check
ing its table of rules, it discovers that just this set of
elements can be combined to form a PREPOSI
TIONAL-PHRASE, and the process ends-successfully.

This skeletal description of the parsing process is
considerably oversimplified, and it omits altogether
some important distinctive characteristics of parsing
techniques which operate by forming broader structural
hypotheses and thus playa more "aggressive" role in the
analysis. The end result, if all goes well, is the same: an
analysis of the input sentence, usually represented in the
form of a labelled tree structure, which assigns to each
word and to each phrase of the sentence a functional
role. Having this sort of information, we are able to
accurately describe the differences between "man bites
dog" and "dog bites man" in terms of the different roles
the words play in them. In this simple case, of course,
the SUBJECT and OBJECT roles are differentially
taken by the words "dog" and "man."

I remarked earlier that few production-oriented
systems incorporate large-scale dictionaries. The same

* The notation "X/Y" is used here to indicate an item that may
belong either to category X or to category Y.

806 Fall Joint Computer Conference, 1972

is true of syntactic analysis programs; large-scale
sentence analyzers are still mainly experimental. The
parsing procedures of text processing systems that are
widely used outside the laboratory, with a very few
interesting exceptions, are designed to produce useful
partial results of a kind just adequate to the overall
system's requirements. Economies of design and imple
mentation are usually advanced as the reasons for these
limited approaches to syntactic analysis.

A meritorious example of limited syntactic analysis is
provided by the latest version of the General Inquirer,
probably the best known and most widely used of
content-analysis systems. The General Inquirer-3,14 as
it is called, embodies routines which are capable of
accurately disambiguating a high percentage of mul
tiple-meaning words encountered in input text. This
process is guided by disambiguation rules incorporated
in the system's large-scale dictionary, 15,16 the Harvard
Fourth Psychosociological Dictionary. These rules direct
a limited analysis of the context in which a word
appears, using lexical, syntactic, and semantically-de
rived cues to arrive at a decision on the intended sense
of the word. In this manner, nine senses are distin
guished for the word "charge," eight for "close," seven
for "air," and so on.

There are language translating machine in daily use
by various government agencies in this country. These
machine translation systems are basically extensions of
techniques developed at Georgetown University in the
early 1960's. Their relatively primitive syntactic capa
bilities are principally aimed at the disambiguation of
individual words and phrases, a task which they
approach-in contrast with the General Inquirer-3-
with an anachronistic lack of elegance, economy, or

. speed. For most purposes, the output of these systems
passes through the hands of teams of highly-skilled
bilingual editors who have substantial competence in
the subject matter of the texts they repair. A most
valuable characteristic of the government's machine
translation systems is the set of very-large-scale
machine-readable dictionaries developed for them over
the course of the years. It is to be expected that major
portions of these will prove to be adaptable to the more
modern translation systems that will surely emerge in
the years ahead.

A working system employing full-blown syntactic
analysis is the Lunar Sciences Natural Language I n
formation System. 17 This system accepts information
requests from NASA scientists and engineers about such
matters as the chemical composition and physical
structure of the materials retrieved from the moon. The
queries are expressed in ordinary English, of which the
system handles a rich subset. Unrecognizable structures
result in the user's being asked to rephrase his query.

The requests are translated into an internal format
which controls a search of the system's extensive data
base of lunar information.

SeInantics

The next milestone along the dimension of depth of
structure is the level of semantics, which has to do with
the meanings of expressions. Although semantic informa
tion of certain kinds has sometimes been used in support
of lexical and syntactic processes (as, for example, in the
disambiguation procedures of the General Inquirer-3),
the number of working systems, experimental or
otherwise, which process text systematically on the
semantic level is close to zero. Those which do so impose
strong restrictions on the scope of the materials which
they will accept. The aforementioned lunar information
system has perhaps the widest scope of any running
system that operates consistently on the semantic level
(with natural language input), and its semantics are
closely constrained in terms of the concepts and
relations it can process.

More flexible semantic processors have been con
structed on paper, and a few of these have been
implemented in limited experimental versions/8 ,19,20,21
The more promising of these systems, such as RAND's
MIND system,22,23 are based upon the manipulation of
semantic networks in which generality is sought through
the representation of individuals, concepts, relations,
rules of inference, and constructs of these as nodes in a
great labelled, directed graph whose organization is at
bottom linguistic. It is an unsolved problem whether
such an approach can produce the needed flexibility and
power while avoiding classical logical problems of
representation.

The applications to which full-scale semantic pro
cessors might one day respond include language
translation and question-answering or fact retrieval. At
present, the often-encountered popular belief in super
intelligent machines, capable of engaging in intelligent
discourse with men, is borne out only in the world of
science fiction.

Beyond seInantics

Pushing further along the dimension of depth of
structure, beyond the rarified air of semantics, we
approach an even more exotic and sparsely populated
realm which I shall call pragmatics. There will be little
agreement about the manner in which this zone should
be delimited; I would suggest that systems operating at
this level are endowed with a measure of operational

self-awareness, taking an intelligent view of the tasks
confronting them and of their own operations.

A remarkable example of such a system is Winograd's
program24 which simulates an intelligent robot that
manipulates objects on a tabletop in response to
ordinary English commands. The tabletop, the objects
(some blocks and boxes), and the system's "hand" are
all drawn on the screen of a video console. The objects
are distinguished from one another by position, size,
shape, and color. In response to a command such as

"Put the large blue sphere in the red box at
the right."

the "hand" is seen going through the motions necessary
to accomplish this task, possibly including the pre
liminary removal of other objects from the indicated
box. What is more, the system has a limited but
impressive ability to discuss the reasons behind its
behavior:

Q: Why did you take the green cube out of the red
box?

A: So I could put the blue sphere in it.
Q: Why did you do that?
A: Because you told me to.

We should note that the scope of this system is in many
ways the most restricted of all the systems we have
mentioned, an observation which subtracts nothing
from its great ingenuity.

SOME OBSERVATIONS

Now let me share with you a number of more or less
unrelated observations concerning text processing sys
tems which have been suggested by the two-dimensional
view of the field which I have just outlined.

Information and depth of structure

We process text in order to extract in useful form
(some of) the information contained in the text. In
general, the higher a text processing system ranks on the
dimension of depth of structure, the greater is the
amount of information extracted from a given input
text. This seems an intuitively acceptable notion, but I
believe it can be given a more or less rigorous restate
ment in the terms of information theory. In sketching
one approach to this end I shall attack the problem at
its most vulnerable points, leaving its more difficult
aspects as a challenge for others.

Consider a system which processes text strictly on a
word-by-word basis, like older versions of the General

Dimensions of Text Processing 807

Inquirer, for example. Such a system will produce
identical results for all word-level permutations of the
input text. But arbitrary permutations of text in general
result in a serious degradation of information. t We
conclude that text processing systems which operate
exclusively at this level of depth of structure are
intrinsically insensitive to a significant fraction of the
total information content of the original text.

Similarly, syntactic processors whose operations are
confined to single sentences (as is generally the case) are
obviously insensitive to information which depends upon
the relative order of sentences in the original text. And
so on.

These considerations are of interest primarily because
of their potential use in the development of a uniform
metric for the dimension of depth of structure.

The dimensions are continuous*

I want to suggest the proposition that neither of our
dimensions is discrete, in the sense that it presents only
a fixed number of disjoint positions across its range.
That the scope of systems, in our terms, varies over a
dense range is surely not a surprising idea. But the
notion is fairly widespread, I believe, that the depth
of structure of text processors can be described only in
terms of a fixed number of discrete categories or
"levels." Unfortunately, the use of the terms "syntactic
level," "semantic level," etc. is difficult to avoid in
discussing this subject matter, and it is perhaps the
promiscuous use of this terminology which has con
tributed most to misunderstanding on this point. **

t It may not be easy to usefully quantify this information loss.
The number of distinct word-level permutations of a text of n
words is given by n!/(ftl 12! ... 1m!) where Ij is the number of
occurrences of the j-th most frequent word in a text with m
distinct words. For word-level permutations, this denominator
expression might be generalized on the basis of the laws of lexical
distribution (assuming a natural language text), replacing the
factorials with gamma function expressions. After that, one faces
the thorny empirical questions: how many such permutations can
be interpreted, wholly or in part, at higher levels of structure, and
how "far" are these from the original?
* The term "continuous" is not meant to support its strict
mathematical interpretation here.
** In the possibly temporary absence of a more satisfactory
solution, a linear ordering for the dimension of depth of structure
is derived informally in the following way. First, the various
"levels" are mutually ordered in the traditional way (sublexical,
lexical, syntactic, semantic, pragmatic, ...) on the empirical
grounds that substantial and systematic procedures on a given
"level" are always accompanied by (preparatory) processing on
the preceding "levels," but not vice-versa. Various theoretical
arguments why this should be so can also be offered. Then, within
a given "level" we may find various ways to rank systems with
respect to the thoroughness of the job they do there.

808 Fall Joint Computer Conference, 1972

As I have tried to indicate, there is in fact considerable
variation among existing text processing systems in the
degree to which they make use of information and
procedures appropriate to these various levels. There
are programs, for example, which tread very lightly into
the syntactic area, making only occasional use of very
narrowly circumscribed kinds of syntactic processes.
Such programs are surely not to be lumped together
with those which, like the MIND system's syntactic
component,25 carry out an exhaustive analysis of the
sentential structure, merely because they both do some
form of what we call syntax. The same is true of the
other levels along the dimension of depth of structure;
the great variety of actual implementations defies
meaningful description in terms of a small number of
utterly distinct categories. We use the terminology of
"levels" because, in passing along this dimension of
depth of structure we pass in turn a small number of
milestones with familiar names; but it is a mistake to
imagine that nothing exists between them.

Now I want to conjecture that it is precisely the
quasi-continuous nature of this dimension which has
helped to sabotage the efforts of researchers and system
designers over the years to bring into being a small
number of nicely finished text processing modules out
of which everyone might construct the working system
of his choice. The ambition to create such a set of
universal text processing building blocks is a noble one
and, like Esperanto, much can be said in its favor. But
those who have worked on the realization of this scheme
have not enjoyed success commensurate with the
loftiness of their aims.

Why this unfottunate state of affairs? I believe it can
be traced to the generally unfounded notion in the minds
of text processing system designers, and their sponsors,
that valuable economies of talent and time and money
can be achieved by creating systems which, in effect,
advance as little as possible along this dimension in order
to get by. In fact, as is evident, for example, in some
recent machine translation products, this attitude may
be productive of needlessly complex and inflexible
systems that are obsolescent upon delivery.

Of course, in many cases differences in hardware and
software have prevented system designers from making
use of existing programs. And in some cases the point
might be made that considerations of operating
efficiency dictated a "tight code" approach, ruling out
the incorporation of what appears to be the unnecessary
power and complexity of overdesigned components. But
many of the systems in this field are of an experimental
nature, where operating efficiency is relatively un
important. And it often happens in the course of
systems development, that our initial estimate of depth
of structure requirements turns out to be wrong; that is

how "kluges" get built. In such instances, the aim at
local economies results in a global extravagance.

A partial remedy is for us to become familiar with the
spectrum of requirements that systems designers face
along this dimension of depth of structure, and to learn
(1) how to build adaptable processing modules, and (2)
how to tune these to the needs of individual systems.
I invite you to join me in the belief that this can and
should be done.

Lines of comparable power

Let us consider for a moment the four "corners" of
our hypothetical two-dimensional classification space.
Since we have no interpretation of negative scope or
negative depth of structure, we will locate all systems in
the positive quadrant of the two-dimensional plane. At
the minimum of both axes, near the origin, we might
locate, say, a character-counting program written as a
week-end project by a library science student in a
mandatory PL/1 course.

High in scope, and low in depth of structure are text
editing programs in general. Let us somewhat arbitrarily
locate Englebart's editing system in this corner, on the
basis of its strong user orientation.

Low in scope, but high in depth of structure: this
practically defines Winograd's tabletop robot simulator.
The domain of discourse of this system is deliberately
severely restricted, but it surpasses any other system I
know of in its structural capabilities.

High in both scope and depth of structure: in the real
world, no plausible candidate exists. We might imagine
this corner of our space filled by a system such as HAL,
from the movie "2001"; but nothing even remotely
resembling such a system has even been seriously
proposed.

The manner in which real-world systems fit into our
descriptive space suggests that some kind of trade-off
exists between the two dimensions; perhaps it is no
accident that the system having the greatest depth-of
structure capabilities is so severely restricted in scope,
while the systems having the greatest scope operate at
a low level of structural depth. It is my contention that
this is indeed not an accident, but that it reflects some
important facts about our ability to process textual
information automatically. It would seem that, given
the current state of the art, we can, as system designers,
trade off breadth of scope against advances in structural
depth, and vice versa, but that to advance on both
fronts at once would require some kind of genuine
breakthrough.

This trading relationship between the dimensions can
be expressed in terms of lines of comparable power or

sophistication. Having the shape of hyperbolic asymp
totes to the axes of our descriptive space, such lines
would connect systems whose intrinsic power or sophis
tication differs only by virtue of a different balance
between scope and depth of structure. The state of the
art in the field of text processing might then be char
acterized by the area under the line connecting the most
advanced existing systems.

Since genuine breakthroughs are probably not more
common in this field than in others, our analysis
supports the conclusion that run-of-the-mill system
design proposals which promise to significantly extend
our automatic text processing capabilities in both scope
and depth of structure are probably ill-conceived, or
perhaps worse. Yet proposals of this kind are not
uncommon, and a number of them attract funds from
various sources every year. I feel sure that a better
understanding of the dimensions of text processing on
the part of sponsoring agencies as well as system
designers might result in a healthier and more produc
tive climate of research and development in this field.

Men and machines

Finally, I want to simply mention a set of techniques
which can be of .inestimable value in breaking through
the state-of-the-art barrier in text processing, and to
indicate their relation to our two-dimensional descrip
tive space. I have in mind the set of techniques by
which effective man-machine cooperation may be
brought to bear in a particular application. It has for
some time been known that the human cognitive
apparatus possesses a number of powerful pattern
recognition capabilities which have not even been
approached by existing computing machinery. A num
ber of projects have investigated the problems of
marrying these powers efficiently with the speed and
precision of computers to solve problems which neither
could manage alone.

In the field of textual data processing, the potential
payoff from such hybrid systems, if you will permit me
the phrase, increases greatly as we consider higher levels
along the dimension of depth of structure. We humans
take for granted in ourselves capabilities which astound
us in machinery; most 3-year-old children could easily
out-perform Winograd's robot simulator, for example.
Whereas at the lower levels of this dimension, in tasks
like sorting, counting, string replacement, and what not,
no man can begin to keep up with even simple machines.

I conclude from these elementary observations that
well-designed man-machine systems can greatly extend
the scope of systems at the higher end of the dimension
of depth of structure, or (to put it in another way) can

Dimensions of Text Processing 809

upgrade the structure-handling capacity of systems
having considerable scope. While the design of effective
hybrid systems for text processing involves many
considerable problems, this approach seems to offer a
means of bringing the unique power of computers to
bear on applications which now lie on the farther side of
the state-of-the-art barrier with respect to fully
automatic systems.

ACKNOWLEDGMENTS

The writing of this paper was generously supported by
the Center for Computer-Based Behavioral Studies at
the University of California at Los Angeles, and was
encouraged by the Center's Director, Gerald Shure. I am
indebted to Martin Kay and Ronald Kaplan of the
RAND Corporation and to J. L. Kuhns of Operating
Systems, Inc. for illuminating discussion of the subject
matter. The errors are all my own.

REFERENCES

1 Text editor and corrector reference manual (TEeO)
Interactive Sciences Corporation Braintree Mass 1969

2 N H NIE D H BENT C H HULL
SPSS: Statistical package for the social sciences
McGraw-Hill New York 1970

3 W J DIXON editor
BMD: Biomedical computer programs
University of California Publications in Automatic
Computation Number 2 University of California Press
Los Angeles 1967

4 D G BOBROW D P MURPHY W TEITELMAN
The BBN-LISP system
Bolt Beranek & Newman BBN Report 1677 Cambridge
Massachusetts April 1968

5 PDP-10 BASIC conversational language manual
Digital Equipment Corporation DEC-10-KJZE-D Maynard
Massachusetts 1971

6 PDP-10 algebraic interpretive dialogue conversational language
manual
,Digital Equipment Corporation DEC-10-AJCO-D Maynard
Massachusetts 1970. The AID language in this reference is
an adaptation of the RAND Corporation's JOSS language.

7 QED reference manual
Com-Share Reference 9004-4 Ann Arbor Michigan 1967

8 WYLBUR reference manual
Stanford Computation Center Stanford University Stanford
California revised 3rd edition 1970

9 W D ELLIOT W A POTAS A VAN DAM
Computer assisted tracing of text evolution
Proceedings of 1971 Fall Joint Computer Conference Vol 37

10 D C ENGLEBART "\V K ENGLISH
A research center for augmenting human intellect
Proceedings of 1968 Fall Joint Computer Conference Vol 33

11 0 HOLST I R A BRODY R C NORTH
Theory and measurement of interstate behavior: A research
application oj automated content analysis
Stanford University May 1964

810 Fall Joint Computer Conference, 1972

12·P L WHITE
KWIC/360
IBM Program Number 360D-06.7.(014/022) IBM
Corporation St Ann's House Parsonage Green Wilmslow
Chesire England United Kingdom

13 M KAY G R MARTINS
The MIND system: The morphological-analysis program
The RAND Corporation RM-6265/2-PR April 1970

14 P J STONE D C DUNPHY M S SMITH
D M OGILVIE et al
The general inquirer: A computer approach to content analysis
MIT Press Cambridge 1966

15 E F KELLY
A dictionary-based approach to lexical disambiguation
Unpublished doctoral dissertation Department of Social
Sciences Harvard University 1970

16 P STONE M SMITH D DUNPHY E KELLY
K CHANG T SPEER
Improved quality of content analysis categories: Computerized
disambiguation rules for high frequency English words
In G Gerbner 0 Holsti K Krippendorf W Paisley P Stone
The Analysis of Communication Content: Developments in
Scientific Theories and Computer Techniques Wiley New
York 1969

17 W A 'VOODS R M KAPLAN
The lunar sciences natural language information system
Bolt Beranek and Newman Inc Report No 2265 Cambridge
Massachusetts September 1971

18 M R QUILLIAN
Semantic memory
In M Minsky editor Semantic Information Processing
MIT Press Cambridge Massachusetts 1968

19 B RAPHAEL
SIR: A computer program for semantic information retrieval
In E A Feigenbaum and J Feldman Computers and Thought
McGraw-Hill New York 1968

20 C Ii KELLOGG
A natural language compiler for on-line data management
AFIPS Conference Proceedings of the 1968 Fall Joint
Computer Conference Vol 33 Part 1 Thompson Book
Company Washington DC 1968

21 S C SHAPIRO G H WOODMANSEE
A net-structure based question-answerer: Description and
examples
In Proceedings of the International Joint Conference on
Artificial Intelligence The MITRE Corporation Bedford
Massachusetts 1969

22 S C SHAPIRO
The MIND system: A data structure for semantic information
processing
The RAND Corporation R-837-PR August 1971

23 M KAY S SU
The MIND system: The structure of the semantic file
The RAND Corporation RM-6265/3-PR June 1970

24 T WINOGRAD
Procedures as a representation for data in a computer program
for understanding natural language
MIT Artificial Intelligence Laboratory MAC TR-84
Massachusetts Institute of Technology Cambridge
Massachusetts February 1971

25 R M KAPLAN
The MIND system: A grammar-rule language
The RAND Corporation RM-6265/1-PR March 1970

Social indicators based on communication content

by PHILIP J. STONE

Harvard University
Cambridge, Massachusetts

INTRODUCTION

Early mechanical translation projects served to inject
some realism about the complexity of ordinary lan
guage processing. While text processing aspirations
have become more tempered, today's technology makes
possible cost effective applications well beyond the in
dex or concordance. This paper outlines one new chal
lenge that is mostly within curent technology and may
be a major future consumer of computer resources.

As we are all aware, industry and government coop
erate in maintaining an extensive profile of our economy
and its changes. As proposed by Bauer! and others,
there is a need for indicators regarding the social, in
addition to the economic, fabric of our lives. Several
volumes, such as a recent one edited by Campbell and
Converse,2 review indexes that can be made on the
quality of life. Kenneth Land has documented the
growing interest in social indicators, reflected in vol
umes of reports and congressional testimony, as draw
ing on a wide basis of support. As the conflicts of the
late 1960's and early 1970's within our society made
evident the complexity of our own heterogeneous cul
ture, interest in social indicators increased.

Most social indicator discussions focus on statistics
similar to economic indicators. A classic case is Durk
heim's4 study on the analysis of suicide rates. Another
kind of social indicator, which we consider in this paper,
is based on changes in the content of mass media and
other public distributions of information, such as
speeches, sermons, pamphlets, and textbooks. Indeed,
in the same decade as Durkheim's study, Speeds com
pared New York Sunday newspapers between 1891
and 1893, showing how new publication policies (price
was reduced from three cents to two cents) were associ
ated with increased attention to gossip and scandal at
the expense of attention to literature, religion and
politics. Since then, hundreds of such studies, called
"content analyses," have been reported.

811

TYPES OF COMMUNICATION CONTENT
INDICATORS

Many different content indicators can be proposed =

Which sectors of society have voiced most caution
about increasing Federalism? How has the authori
tarianism of church sermons changed in different reli
gions? How oriented are the community newspapers to
the elites of the community? Such studies, however, can
be divided into two major groups.

One group of studies is concerned with comparing
the content of different channels through which differ
ent sectors of society communicate with each other.
Such studies often monitor the spread of concepts and
attitudes from one node to another in the communica
tion net. Writers such as Deutsch6 have discussed
feedback patterns within such nets.

Another group of studies is based on the realization
that a large segment of public media represents different
sectors of society communicating with themselves.
Social scientists have repeatedly found that people
tend to be exposed just to information congruent with
their own point of view. Thus, rather than focus on the
circulation of information between sectors of society,
these studies identify different subcultures and look at
the content of messages circulated within them.

In fact, anyone individual belongs to a set of sub
cultures. On the job, he or she may be exposed to the
views of colleagues, while off the job the exposure may
be to those with similar leisure time inter~sts, religious
preferences, or political leanings. Given the cost effec
tiveness of television for reaching the mass public, the
printed media has become used more for directed mes
sages to different subcultures. Thus, while there has
been the demise of general circulation magazines such
as the Saturday Evening Post and Look, the number of
magazines concerned with particular trades, hobbies,
consumer orientations and levels of literary sophistica
tion has greatly increased.

812 Fall Joint Computer Conference, 1972

While the printed media recognizes many different
subcultures (and one only has to watch the sprouting
of new underground newspapers or trade journals to
realize how readily a market can be identified), there
has been a more general resistance to recognizing how
many subcultures there are and how diverse their views
tend to be. Given the enormous complexity of our cul
ture, each sector tends to recognize its own diversity,
but assumes homogeneous stereotypes for other sectors.
After repeated blunders, both the press and the public
are coming to realize that there are many different sub
cultures within the black community, the student com
munity, the agricultural community, just as we all know
the're are many different subcultures in the computer
community. As sociologist Karl Mannheim7 identified
some years ago, the need to monitor our culture greatly
increases with such heterogeneity.

Gradually, awareness,of a need is turning into action.
Since the Behavioral and Social Science (Bass) reportS
released by the National Academy of Science in 1969
gave top priority to developing social indicators, gov
ernment administration has been set up to coordinate
social indicator developments and several large grants
have been issued. Within coming years, we may expect
significant sums appropriated for social indicators.

COMPARISON WITH CONTENT ANALYSIS
RESEARCH

What language processing expertise do we have today
to help produce such social indicators? The Annual Re
view prepared by the American Documentation Insti
tute or reports on such large text processing systems
as Salton's "SMART"9 offer a wide variety of possibly
relevant procedures. The discussion here focuses on
techniques developed explicitly for content analysis.

Content analysis procedures map a corpus of text
into an analytic framework supplied by the investiga
tor. Itis information reducing, in contrast to an expan
sion procedure like a concordance, in that it discards
those aspects of the text not relevant to the analytic
framework. As a social science research technique, con
tent analysis is used to count occurrences of specific
symbols or themes.

The main difference between content analysis as a
social science research technique and mass media social
indicators concerns sampling. A researcher samples text
relevant to hypotheses being tested. Only as much text
need be processed as necessary to substantiate or dis
confirm the hypothesis. Usually, this involves thou
sands or tens of thousands of words of text. A social
indicators project, on the other hand, involves moni-

toring many different text sources over what may be
long periods of time. The total text may run into mil
lions of words.

A hypothetical example illustrates how a social indi
cators project can come to be such a large size. A social
indicators project may compare a number of different
subcultural sectors in each of several different geo
graphic locations. Within each sector, the sample should
include several media, so it does not reflect the biases
of one originator. The monitoring might cover several
decades, with a new indicator made bimonthly. Imagine
then a 4 dimensional matrix representing 14 (subcul
tural sectors) X 5 (geographic regions) X 4 (originating
sources) X 150 (bimonthly periods). Each cell of this
matrix might contain a sample of 15,000 words of text.
The result is a text file of over a billion characters.

Social science content analysis, which has been com
puter aided for over a decade (see for example, Stone
et al., 10 Stone et al., 11 Gerbner et al.12), has used manual
keypunching to provide the modest volumes of machine
readable text needed. If the content analysis task were
simple (such as in our first example below), human
coders were often less expensive than the cost of getting
the text to machine readable form. Computer aided
content analysis has tended to focus on those texts, such
as anthropologists' files of folktales, where the same
material may be intensively studied to test a variety
of hypotheses.

Social indicators of public communications, on the
other hand, will require high speed optical readers capa
ble of handling text in a wide variety of printing fonts.
Optical readers for selected fonts have been around for
some time, but readers capable of adapting to many
new fonts are just coming into existence. The large
general purpose reader developed by Information Inter
national, which incorporates a PDP-10 as part of its
hardware, represents this kind of machine. It is able to
"learn" new fonts and then offer high speed reading
from microfilm with a low error rate, even of third
generation Xerox copy.

Both social science content analysis research and so
cial indicators allow for some noise, just as economic
indicators tolerate an error factor. Some of the noise
stems from sampling procedures. Other noise comes
from measurement procedures. The "quality control"
of social science research or monitoring procedures in
volves keeping the noise to a tolerable minimum. As
surances are also needed that the noise is indeed ran
dom, rather than leading to specifiable biases. With
large sampling procedures, a tolerable modest random
noise level should be considerably more than allowed in
many kinds of text processing applications. For example,
a single omission in an automated document classifica-

tion scheme might cause a very important document
to go unnoticed by the users of the information re
trieval system, thus causing great loss.

LEVELS OF COMPLEXITY

Both content analysis procedures for testing hy
potheses and procedures for creating social indicators
come at varying levels of complexity. Some pose little
difficulty for today's text processing capabilities while
others pose major challenges. If one accepts a growing
consensus among artificial intelligence experts that a
successful language translation machine must "under
stand," in a significant sense of that word, the subject
matter it is translating, then the most complicated so
cial indicator tasks begin to approach this domain of
challenge. Let us start at the simpler levels, showing
how these needs have been met in content analysis, and
work up to these more difficult challenges.

The simplest measure is to identify mentions of an
individual, place, group, or race. For example, Johnson,
Sears and McConahay13 performed a manual content
analysis of what they call "black invisibility" since the
turn of the century in the Los Angeles press. They show
that the percent of newspaper space devoted to blacks
in the major papers is much less than their percent of
the Los Angeles population warrants, and, furthermore,
the ratio has been getting worse over time. A black per
son can read the Los Angeles press and obtain the im
pression that blacks do not exist there. Thus, point out
the authors, some blacks took a "We won!" attitude
toward the large amount of destruction in the Watts
riots. Why? As reported by Martin Luther King,14 they
said "We won because we made them pay attention to
us." There is indeed a hunger to have one's existence
recognized.

"Black invisibility" can be assessed by counting the
number of references to blacks compared to whites, or
the newspaper column inches given to each. A computer
content analysis would need a dictionary of names
referring to black persons or groups. The computer
should have an ability to automatically update this dic
tionary as processing continued, for race may be only
identified with early newspaper stories about the person
or group. Thus, few stories today about Angela Davis
any more identify her race. The computer challenge,
should optical readers have had the text ready for pro
cessing, would have been minimal.

Johnson, Sears, and McConohay carried their re
search another step, classifying the stories according
to whether they dealt with anti-social activities, black
entertainers, civil rights, racial violence and several

Social Indicators Based on Communication Content 813

other categories. These additional measures make
"black invisibility" more evident, for what little cover
age blacks receive is often unfavorable and unrepre
sentative of the community. These additional topic
identifications would again hold little difficulty for a
computer analysis. It is not difficult to recognize a base
ball story, a violent crime story, or a society event.

The Johnson, Sears and McConahay "black invisi
bility" indexes were only made on two newspapers with
very limited samples in the earlier part of the time
period studied. Their techniques, however, could be
applied to obtain "black invisibility" indexes for both
elite and tabloid press in every major metropolitan area
of the country. It is an example of how a content analy
sis measure can have considerable potential as a future
social indicator.

The next level· of complexity is represented by what
we call thematic analysis. For example, we might be
interested in social indicators measuring attitudes
toward increasing Federalism in our society. Separate
indicators might be developed to tap occurrences of
themes such as the following:

(1) The Federal government as an appropriate re
cipient of complaints about ...

(2) The Federal government as initiator of pro
grams for ...

(3) The Federal government as restricting or con
trolling ...

(4) The Federal government as responsible for the
well being of . . .

Such themes are measured by first identifying syno
nyms. Rather than refer to the "Federal government,"
the text may refer to a particular agency. The verb
section may have alternative forms of expression. F i
nally separate counts might be kept for each theme
relevant to different target clusters such as agriculture,
industry, minority groups, consumer goods, etc.

Past work in content analysis has offered considerable
success in studies on a thematic level. Thus Ogilvie
(1966) found considerable accuracy in computer scor
ing of "need achievement" themes in stories made up
by subjects. The scoring involved thematic identifica
tions similar in complexity to the Federalism measures
cited above. Ogilvie found that the correlation between
the computer and a human coder was about .85, or as
high as the correlation between two human coders.

A still higher complexity is represented by the pack
aging of thematic statements into an argument, plot,
or rationale. This has recently become prominent in
psychology, with Abelson16 writing about "opinion
molecules" while Kelly17 writes of "causal schemata."

814 Fall Joint Computer Conference, 1972

The concern is with, if I may substitute computer ter
minology, various "subroutines" that we draw on to ex
plain the world about us. Many such subroutines are
shared by the community at large, so that a passing
reference to any part of the subroutine can be expected
to cause the listener to invoke the whole subroutine.
To take a very simple example, such phrases as a "Com
munist inspired plot," "subversive action," and "Marx
ist goals" can all be taken as invoking a highly shared
molecule including something as follows:

Communists create (inspire) plots involving sub
versive actions against established ways in order
to force changes in society toward their Marxist
goals.

Matters are rather simple when dealing with such
weatherbeaten old molecules, but take the end run kinds
of debates between politicians about school bussing to
try and identify the variety of molecules surrounding
that topic. The inference of underlying molecules in
volves theoretical issues that can go well beyond text
processing problems.

Again, there is a relevant history in content analysis,
although computer aided procedures have only recently
had any successes. The classic manual study was by
Propp18 who showed that Russian folktales fell into
variants of a basic plot. Recently, anthropologists such
as Colby19 and Miranda20 have pushed further the use
of the computer to study folktale plots. Investigators
such as Shneidman21 have worked on detailed manual
techniques to identify the forms of "psycho-logic" we
use in everyday explanations. Social indicators at this
level should pose considerable difficulty for some time
to come.

NEW TEXT PROCESSING RESOURCES

Content analysis research may share with social indi
cators projects in the priorities for new text processing
resources. These priorities may be quite different from
those in information retrieval or other aspects of text
processing. We here review these priorities as we see
them. '

While automated linguistic analysis has been preoc
cupied with questions of syntactic analysis, content
analysis work has given priority to semantic accuracy.
Semantic errors effect even the simplest levels of mea
surement and were known to cause considerable noise
in many measurement procedures. Even the "black in
visibility" study, for example, is going to have to be
able to distinguish between "black" the color and

"black" the race, as well as other usages of "black." A
Federalism study may expect verbs like "restrict" and
"control," but in fact the text may use such frightfully
ambiguous words as "run," "handle" or "order." A
first order of business has been to reduce such noise to
more manageable levels.

One might argue that procedures for such semantic
identifications should come after the text has received
a syntactic analysis. Certainly this would simplify the
task and increase accuracy. However, many simpler
social indicators and content analysis tasks do not
otherwise need syntactic analyses. For social indicator
projects, the large volumes of text discourage invoking
syntactic routines unless they are really needed. In
content analysis research, text is often transcripts of
conversational material having a highly degenerate
syntactical form. For these applications, a syntactically
dependent analysis of word senses might be less than
satisfactory. Thus, for both social indicators and con
tent analysis research, it makes sense to attempt iden
tification of word senses apart from syntactic analysis.

A project was undertaken some five years ago to de
velop computer routines that would be able to identify
major word senses for all words having a frequency of
over 40 per million. This criterion resulted in a list of
1815 entries covering about 90 percent of running text.
Identification of real, separate word senses is a thorny
problem we have discussed elsewhere; let it simply be
pointed out here that the number of word senses in a
dictionary tends to be directly proportional to the size
of the dictionary. Our goal was to cover the basic dis
tinctions (such as "black" the race vs "black" the color)
rather than many fine-graded distinctions (such as
those of a word like "fine").

Of the 1815 candidates, some 1200 were identified as
having multiple meanings. Two thirds of these, or about
800 words offered considerable challenge for word se~se
identifications. Rules for identifying word senses were
developed for each of these multiple meaning words.
Each rule could test the word environment (specifying
its own boundary parameters) for the presence or ab
sence of particular words or any of sixty different mark
ers. Each rule, written in a form suitable for compila
tion by a weak precedence grammar, could either as
sign senses or transfer to other rules, depending on
the outcome. The series of rules used for testing any
one word thus formed a routine.

The implementation of these rules on a computer em
phasized efficiency. Since marker assignments often de
pended on word senses being identified, deadlocks could
occur with some rules testing for markers on neighbor
ing words which could not yet be assigned until the
word. in question was resolved. Strategies include the

computer looking into dictionary entries to see if the
marker category is among the possible outcomes. De
spite such complicated options, occasionally resulting
in multiple passes, the word sense procedures are re
markably fast, to the point of being feasible for social
indicators work.

The accuracy of the word sense identification pro
cedures was tested on a 185,000 word sample drawn
both from Kucera and Frances22 and our own text files.
A variety of tests were performed. For example, for a
sample of 671 particularly difficult homographs, cover
ing 64,253 tokens in the text, correct assignment was
made 59,716 times or slightly over 92 percent of the
time. The procedures thus greatly reduce the noise in
word sense assignments.

The second priority for even some of the simplest so
cial indicator projects should be pronoun identifica
tion. The importance of the problem depends on the
kinds of tabulations that are to be made. If the ques
tion is whether any mention is made in the article, then
pronouns are not such a crucial issue. If the question
involves counting how many references were made,
then references should be identified in both noun and
pronoun form.

We believe that more work should be encouraged on
pronoun identification so as to be better prepared for
future social indicators research. Because many pro
nouns involve references outside the sentence, the prob
lem is beyond most current syntax studies. Winograd23

provides a heartening example of how well pronoun
identification can be made for local discourse on a spe
cific topic area.

The third priority is syntactic analysis for thematic
identification purposes. This is not just a general syn
tactic analysis, but an analysis to determine if the text
matches one of the thematic templates relative to a so
cial indicator. Large amounts of computer time can be
saved by only calling on the syntactic routine after it is
established that all the semantic components relevant
to the theme are indeed present. Syntactic analysis can
stop as soon as it is established that the particular word
order cannot be an example of that theme. In general,
we find that a case grammar is most akin to thematic
analysis needs.

The transition network approach of W oods24 holds
considerable promise for such syntactic capabilities.
Gary Martins, who is with us on the panel, is already
exploring the application of such transition networks to
content analysis problems. This work should be of con
siderable utility in the development of social indicators
based on themes.

Finally, we come to the need for inference systems to
handle opinion molecules and the like. Such devices as

Social Indicators Based on Communication Content 815

Hewitt's PLANNER25 may have considerable utility
for such social indicator projects. A PLANNER opera
tion includes a data base and a set of theorems. Given
a text statement, PLANNER can attempt to tie it back
through the theorems until a match is made in the data
base. For any editorial, for example, the successful
theorem paths engendered could identify which mole
cules were being invoked and their domain of applica
tion. At present, this is but conjecture; much work
needs to be done.

These priorities, then, are explicitly guided by what
Weizenbaum26 calls a "performance mode," in this case
toward creating useful social indicators. They may
well conflict with text processing priorities in computa
tional linguistics or artificial intelligence. Some social
indicators may only be produced in the distant future,
but meanwhile important results can be accomplished
using optical readers and current text processing sophis
tication.

DEVELOPING SOCIAL INDICATOR TEXT
ARCHIVES

Having considered text processing research prlOrl
ties, let us examine what concurrent steps are needed
if relevant text files are to be created and put to effec
tive use.

At present, our archiving of text material is haphaz
ard and, for social indicator purposes, subject to major
omissions. The American public (as publics in most
advanced societies) spends more than four times as
many hours watching television compared to all forms
of reading put together (Szalai, et a1.27). Yet, even with
the incredible salience of network evening newscasts or
documentary specials, the networks are not required to
place television scripts in a public archive. A content
analysis like Efron's The News Twisters28 had to be made
from homemade tape recordings of news broadcasts.

Similarly if one is to study the content of cummuni
cation channels between sectors of society, one needs
both original and intermediate sources such as press
releases and wire service transmissions. Past critics of
our news media such as Cirino29 have had to make ex
tensive efforts to obtain the necessary primary informa
tion. Better central archiving is very much needed.

As discussed by Firestone,30 considerable attention
will have to be given to coordinating the sampling of
text with sampling used for other social indicators. For
example, it makes obvious sense to target the sampling
of union newsletters to correspond to union member
ships selected for repeated survey interviews. In one of
our own studies, Stone and Brody31 compared a content

816 Fall Joint Computer Conference, 1972

analysis of news stories on the Vietnam war with the
results of Gallup survey questions ab()ut the effective
ness of the president. This study would have been
greatly aided by (a) better text files of representative
news stories from across the nation and (b) survey in
formation as to media exposure. With less adequate data,
the quality of the analysis suffers.

SAFEGUARDING THE PUBLIC

On the one hand, since the files are based on public
communications, investigators outside the government
should have access to the archives for testing different
models. In this sense, such files would be similar to the
computer economic data bases for testing econometric
models now made available by commercial organiza
tions.

On the other hand, the same technology used to pro
duce social indicators based on content can be used to
invade the content of private communications. This
author, for one, is worried about current military spon
sored research that aims to make possible a computer
monitoring of voice grade telephone communication.
Mter all that has been written about privacy, a much
closer safeguard is needed. Further work on content
analysis techniques must be coordinated with such
safeguards.

SUMMARY

This paper has outlined how computer text processing
resources may be used to produce social indicators of
communication content. A new challenge of consider
able scale is forecast. The relations of such indicators to
existing content analysis research techniques is identi
fied. Priorities based on social indicator requirements
are offered for future text processing research. Because
of the scale of the operation and its distinct require
ments, we suggest that social indicators based on com
munication . content be considered separate from other
computer text processing applications. Immediate at
tention is needed for text archiving and safeguarding
the privacy of communications.

REFERENCES

1 R BAUER
Social indicators
MIT Press 1966

2 A CAMPBELL P CONVERSE (ed)
The human meaning of social change
Russell Sage Foundation 1972

3 K LAND
Social indicators
In R Smith Social Science Methods-A New Introduction
Vol 2 In Press

4 E DURKHEIM
Suicide-A study in sociology
1897 (Trans from the French 1951 Free Press)

5 J G SPEED
Do newspapers now give the news?
The Forum 1893 Vol 15 pp 705-711

6 K DEUTSCH
Nerves of government
Free Press 1963

7 K MANNHEIM
Ideology and utopia-An introduction to the sociology of
knowledge
1931 (English translation: Harcourt)

8 NATIONAL ACADEMY OF SCIENCE
Behavioral and social sciences-Outlook and needs
Prentice Hall 1969

9 G SALTON
The SMART retrieval system
Prentice Hall 1971

10 P STONE R BALES J Z NAMENWIRTH
D OGILVIE
The general inquirer
Behavioral Science 1962 Vol 7 pp 484-498

11 D C DUNPHY M S SMITH
D M OGILVIE
The general inquirer-A computer approach to content analysis
MIT Press 1966

12 G GERBNER 0 HOLSTI K KRIPPENDORFF
W PAISLEY P J STONE
The analysis of communications content
Wiley Press 1969

13 P B JOHNSON D SEARS J McCONAHAY
Black invisibility, the press and the Los Angeles riot
Amer J Sociology 1971 Vol 76 pp 698-721

14 M L KING
Where do we go from here? Chaos or community?
Beacon Press 1967

15 D M OGILVIE
In P Stone et al op cit pp 191-206

16 R P ABLESON
Psychological implication
In R P Abelson E Aronson W McGuire T Newcomb
M Rosenberg and P Tannenbaum Theories of Cognitive
Consistency Rand McNally 1968

17 H KELLY
Causal schemata and the attribution process
General Learning Press 1972

18 V PROPP
Morphology of the folktale
1927 American Folklore Society (Trans 1958)

19 B N COLBY
Folk narrative
Current Trends in Linguistics Vol 12 1972

20 P MIRANDA
Structural strength, semantic depth, and validation procedures
in the analysis of myth
Proceedings Quatrieme Symposium sur les Structures
Narratives Konstanz Germany 1971 In Press

21 E S SHNEIDMAN
Logical content analysis: An explication of styles of "concludi
fying"

In Gerbneret al op cit
22 H KUCERA W FRANCES

Computational analysis of present-day American English
Brown University Press 1967

23 T WINOGRAD
Procedures as a representation for data in a computer program
for understanding natural language
Report MAC TR-84 MIT February 1971 (Selections
reprinted in Cognitive Psychology 1972 #1)

24 W WOODS
Transitional network grammars for natural language analysis
Comm ACM 1970 Vol 13 pp 591-602

25 C HEWITT
PLANNER-A language for proving theorems in robots
Proc of IJCAI 1969 pp 295-301

26 J WEIZENBAUM
On the impact of the computer on society
Science Vol 176 pp 609-6141972

Social Indicators Based on Communication Content 817

27 A SZALAI E SCHEUCH P CONVERSE
P STONE
The use of time
Mouton 1972

28 E EFRON
The news twisters
Nash 1971

29 R CIRINO
Don't blame the people
Diversity Press 1971

30 J M FIRESTONE
The development of social indicators from content analysis
of social documents
Policy Sciences In Press

31 P STONE R BRODY
Modeling opinion responsiveness to day news-The public
and Lyndon Johnson 1965-1968
Social Science Information Vol 9 #1 pp 95-122

The DOD COBOL compiler validation
system

by GEORGE N. BAIRD

Department of the Navy
Washington, D. C.

INTRODUCTION

The ability to benchmark or validate software to ensure
that design specifications are satisfied is an extremely
difficult task. Test data, generally designed by the
creators of said software, is generally biased toward a
specific goal and tend not to cover many of the pos
sibilities of combinations and interactions. The phi
losophy of suggesting that "a programmer will never
do . . ." or "this particular situation will never happen"
is altogether absurd. First, "never" is an extremely
long time and secondly, the Hagel theorem of pro
gramming states that "if it can be done, whether absurd
or not, one or more programmers will more than likely
try it."

Therefore, if a particular piece of software has been
thoroughly checked against all known extremes and a
majority of all syntactical forms, then the Hagel
theorem of programming will not affect the software
in question. The DOD CCVS attempts to do just that
by checking for the fringes of the specifications of
X3.23-19681 and known limits. It is assumed that a
COBOL compiler will perform satisfactorily for the
audit routines, then it is likely that the compiler sup
ports the entire language. However, if the computer
has trouble with handling the routines in the CCVS
it can be assumed that there will indeed be other
errors of a more serious nature.

The following is a brief account of the history of the
DOD CCVS, the automation of the system and the
adaptability of the system to given compilers.

BACKGROUND

The first reVISIon to the initial specification for
COBOL (designated as COBOL-196P) was approved
by the Executive Committee of the Conference on

819

Data Systems Languages* and published in May of
1961. Recognizing that the language would be subject
to additional development and change, an attempt
was made to create uniformity and predictability in
the various implementations of COBOL compilers.
The language elements were placed in one of two
categories: required and elective.

Required COBOL-1961 consisted of language ele
ments (features and options) which must be imple
mented by any implementor claiming a COBOL-1961
compiler. This established a common minimum subset
of language elements for COBOL compilers and hope
fully a high degree of transferability of source programs
between compilers if this subset was adhered to.

Elective COBOL-1961 consisted of language elements
whose implementation had been designated as op
tional. It was suggested that if an implementor chose
to include any of these features (either totally or
partially) he would be expected to implement these
in accordance with the specifications available in
COBOL-1961. This was to provide a logical growth
for the language and attempt to prevent a language
element from having contradictory meaning between
the language development specifications and im
plementor's definition.

As implementors began providing COBOL compilers
based on the 1961 specifications, unexpected problems
became somewhat obvious. The first problem was that
the specifications themselves suggested mandatory as
well as optional language elements for implementing
COBOL compilers. In addition the development docu-

* The Conference on Data Systems Languages (CODASYL) is an
informal and voluntary organization of interested individuals
supported by their institutions who contribute their efforts and
expenses toward the ends of designing and developing techniques
and languages to assist in data systems analysis, design, and
implementation. CODASYL is responsible for the development
and maintenance of COBOL.

820 Fall Joint Computer Conference, 1972

ment produced by CODASYL was likely to change
periodically thus, providing multiple specifications to
implement from. Compilers could consist of what the
implementor chose to implement which would severely
handicap any chance of transferability of programs
among the different compilers, particularly since no two
implementors necessarily think alike. Philosophies vary
both in the selection of elements for a COBOL compiler
and in the techniques of implementing the compiler
itself. (As ridiculous as it may sound, some compilers
actually scan, syntax check and issue diagnostics for
COBOL words that might appear in comments both
in the REMARKS paragraph of the Identification
Division and in NOTE sentences in the Procedure
Division.) The need for a common base from which to
implement became obvious. If the language was to
provide a high degree of compatability, then all im
plementations had to be based on the same specifica
tion.

The second problem was the reliability of the com;..
piler itself. If the manual for the compiler indicated
that it supported the DIVIDE statement, the user
assumed this was true. If the compiler then accepted
the syntax of the DIVIDE statement, the user as
sumed that the object code necessary to perform the
operation was generated. When the program executed,
he expected the results to reflect the action represented
in his source code. It appears that in some cases perhaps
no code was generated for the DIVIDE statement
and the object program executed perfectly except for
the fact that no division took place. In another case,
when the object program encountered the DIVIDE
operation, it simply went into a loop or aborted. At
this point, the programmer could become decidedly
frustrated. The source code in his program indicated
that: (1) he requested that a divide take place, (2) there
was no error loop in his program, (3) the program
should not abort. This is . the problem we are ad
dressing: A programmer should concern himself with
producing a source program that is correct logically
and the necessary operating system control statements
to invoke the COBOL compiler. In doing so, he should
be able to depend on the compiler being capable of
contributing its talent in producing a correct object
program.

If the user was assured that either: (1) each instruc
tion in the COBOL language had been implemented
correctly, or, (2) that each statement which was im
plementeddid not give extraneous results, then the
above situation could not exist.

Thus, the need· for a validation tool becomes ap
parent. Although all vendors exercise some form of
quality control on their software before it is released,

it is clear that some problems may not be detected.
(The initial release of the Navy COBOL audit routines
revealed over 50 bugs in one particular compiler which
had been released five years earlier.)

By providing the common base from which to imple
ment and a mechanism for determining the accuracy
and correctness of a compiler relative to the specifica
tion, the problem of smorgasbord compilers (that may
or may not produce expected results) should become
extinct.

The standardization of COBOL began on 15 January
1963. This was the first meeting of the American Stan
dards Association Committee, X3.4.4, * the Task Group
for Processor Documentation and COBOL. The pro
gram of work for X3.4.4 included ... "Write test
problems to test specific features and combinations of
features of COBOL. Checkout and run the test problems
on various COBOL compilers." A working group
(X3.4.4.2) was established for creating the "test
problems" to be used for determining feature availa-
bility. i;.

The concept bf a mechanism for measuring the
compliance of a COBOL compiler to the proposed
standard seemed reasonable in view of the fact that
other national standards did indeed lend themselves
to some form of verifications, i.e., 2X4's, typewriter
keyboards, screw threads.

Il\;fPLEMENTING A VALIDATION SYSTEM
FOR COBOL

In order to implement a COBOL program on a given
system, regardless of whether the program is a valida
tion routine or an application program, the following
must be accomplished:

1. The special characters used in COBOL (i.e.,
'(', ')', '*', ' +', ' <' etc.) must be converted for the
system being utilized. t

2. All references to implementor-names within each
of the source programs must be resolved.

3. Operating System Control Cards must be pro-

* The American Standards Association (ASA), a voluntary
national standards body evolved to the United States of America
Standards Institute (USASI) and finally the American National
Standards Institute (ANSI). The committee X3.4.4 eventually
became X3J4 under a reorganization of the X3 structure. X3J4 is
currently in the process of producing a revision to X3.23-1968.
t For most computers the representatives for the characters
A-Z, 0-9, and the space (blank character) are the same. However,
there is sometimes a difference in representation of the other
characters and therefore conversion of these characters from one
computer to another may be necessary.

duced which will cause each of the source programs to
be compiled and executed. Additionally, the user must
have the ability to make changes to the source pro
grams, i.e., delete statements, replace statements, and
add statements.

4. As the programs are compiled, any statements
that are not syntactically acceptable to the compiler
must be modified or "deleted" so that a clean compila
tion takes place and an executable object program is
produced.

5. The programs are then executed. All execution
time aborts must be resolved by determining what
caused the abort and after deleting or modifying that
particular test or COBOL element, repeating steps 3
and 4 until a normal end of job situation exists.

Development of audit routines

l\1arch 1963, X3.4.4.2 (the Compiler Feature Availa
bility Working Group) began its effort to create the
COBOL programs which would be used to determine
the degree of conformance of a compiler to the proposed
standard. The intent of the committee was not to fur
nish a means for debugging compilers, but rather to
determine "feature availability." Feature availability
was understood to mean that the compiler accepted the
syntax and produced object code to produce the de
sired result. All combinations of features were not to
be tested; only a carefully selected sample of features
(singly and in combination) were to be tested to insure
that they were operational. The test programs them
selves were to produce a printed report that would
reflect the test number and when possible whether the
test "Passed" or "Failed." See Figure 1.

When a failure was detected on the report, the user
could trace the failure to the source code and attempt

Source Statements

TEST-OOOl.

MOVE 001 TO TEST-NO.
MOVE ZERO TO ALPHA.
ADD 1 TO ALPHA.
IF ALPHA = 1 PERFORM PASS ELSE PERFORM FAIL.

TEST-0002.
Results

TEST
ADD

ADD

NO
1

21

P - F
P

F

Figure I-Example of X3.4.4.2 test and printed results

The DOD COBOL Compiler Validation System 821

to identify the problem. The supporting code (printing
routine, pass routine, fail routine, etc.) was to be written
using the most elementary statements in the low-level
of COBOL. The reason for this was twofold:

1. The programs would be able to perform on a
minimum COBOL compiler (Nucleus levell,
Table Handling levell, and Sequential Access
level 1).

2. The chances of the supporting code not being
acceptable to the compiler being tested were
lessened.

The programs, when ready, would be provided in
card deck form along with the necessary documenta
tion for running them. (The basic philosophies of
design set forth by X3.4.4.2 were carried through all
subsequent attempts to create compiler validation
systems for COBOL.)

Assignments were made to the members of the com
mittee and the work began. This type of effort at the
committee level, however, was not as productive as
the work of standardizing the language itself.

In April 1967, the Air Force issued a contract for a
system to be designed and implemented which could
be used in measuring a compiler against the standard.
The Air Force COBOL Compiler Validation System
was to create test programs and adapt them to a given
system automatically by means of fifty-two parameter
cards.

The Navy COBOL audit routines

In August of 1967, The Special Assistant to the
Secretary of the Navy created a task group to influence
the use of COBOL throughout the Navy. Being aware
of both the X3.4.4.2 and Air Force efforts, (as well
as the time involved for completion), a short term
project was established to determine the feasibility
of validating COBOL compilers. After examining the
information and test programs available at that time,
the first set of routines was produced. In addition to the
original X3.4.4.2 philosophy, the Navy added the
capability of providing the result created by the com
puter as well as the expected result when a test failed.
Also, instead of a test number, the actual procedure
name in the source program was reflected in the output.
See Figure 2.

The preliminary version of the Navy COBOL audit
routines was made up of 12 programs consisting of
about 5000 lines of source code. The tailoring of the
programs to a particular compiler was done by hand

822 Fall Joint Computer Conference, 1972

(by physically changing cards in the deck or by using
the vendor's software for updating COBOL programs).
As tests were deleted or modified, it was difficult to
bring the programs back to their virgin state for sub
sequent runs against different compilers or for de
termining what changes had to be made in order that
the programs would execute.

This was a crude effort, but it established the neces
sary evidence that the project was feasible to continue
and defined techniques for developing auditing systems.
Because of the favorable comments received on this
initial work done by the Navy, it appeared in the best
interest of all to continue the effort.

After steady development and testing for a year,
Version 4 of the Navy COBOL Audit Routines was
released in December 1969. The routines consisted of
55 Programs, consisting of 18,000 card images capable
of testing the full standard. The routines had also be
come one of the benchmarks for all systems procured
by the Department of the Navy in order to ensure that
the compiler delivered with the system supported the
required level of American National Standard COBOL. *

Also, Version 4 introduced the VP-Routine, a pro
gram that automated the audit routines. Based on
fifty parameter cards, all implementor-names could
be resolved and the test programs generated in a one
pass operation. See Figure 3.

In addition, by coding specific control cards in the
Working-Storage Section of the VP-Routine as con
stants, the output of the VP-Routine became a file
that very much resembled the input from a card reader,
i.e., control cards, programs, etc.

By specifying the required Department of Defense
COBOL subset of the audit routines to be used in a
validation, only the programs necessary for validating

Source Statements

ADD-TEST-l.
MOVE 1 TO ALPHA.
ADD 1 TO ALPHA.
IF ALPHA =2 PERFORM PASS ELSE PERFORM FAIL.

Results
FEATURE PARAGRAPH P/F COMPUTED EXPECTED

ADD ADD-TEST-l FAIL 1 2

ADD ADD-TEST-2 PASS

Figure 2-Example of Navy test and printed results

* In 1968, the Department of Defense, realizing that several
thousand combinations of modules/levels were possible, estab
lished four subsets of American National Standard COBOL for
procurement purposes.

V-P Routine Input:

X-O SOURCE-COMPUTER-NAME
X-I OBJECT-COMPUTER-NAME
X-3

X-8 PRINTER
X-9 CARD-READER
X-lO

X-50

Audit Routine File:

SOURCE-COMPUTER.
XXXXXO

SELECT PRINT-FILE ASSIGN TO
XXXXX8

The audit routine after processing would be:

SOURCE-COMPUTER.
SOURCE-CO MPUTER-NAME.

SELECT PRINT-FILE ASSIGN TO
PRINTER.

Figure 3-Example of input to the support routine, Population
file where audit routines are stored and resolved audit routine

after processing

that subset of elements or modules would be selected,
i.e., SUBSET-A, B, C, or D. The capability also existed
to update the programs as the "card reader" file was
being created. The use of the VP-Routine was not
mandatory at this time, but merely to assist the person
validating the compiler in setting up the programs for
compilation. Once the VP-Routine was set up for a
given system, there was little trouble running the audit
routines. The user then had only to concern himself
with the validation itself and with achieving successful
results from execution of the audit routines. When an
updated set of routines was distributed, there was no
effort involved in replacing the old input tape to the
VP-Routine with the new tape.

The Air Force COBOL audit routines

The Air Force COBOL Compiler Validation System
(AFCCVS) was not a series of COBOL programs but
rather a test program generator. The user could select

The DOD COBOL Compiler Validation System 823

Source statement in test library
T 1N078A101NUC, 2NUC 4U
400151 77 WRK-DS-18VOO
400461 77 A180NES-DS-18VOO
400471

PICTURE S9(18).
PICTURE S9(18).

VALUE 11111111111111111.
400881 77 A180NES-CS-18VOO
400891

PICTURE S9(18) COMPUTATIONAL
VALUE 111111111111111111.

802925
802930
802935
802940
802945
802950
802955

TEST-1NUC-078.

Test results

MOVE A180NES-DS-18VOO
ADD A180NES-CS-18VOO
MOVE WRK-DS-18VOO
MOVE '222222222222222222'
MOVE 'lN078'
PERFORM SUPPORT-RTN THRU SUP-TRN-C.

.lN078 .lN079 .

. 222222222222222222.09900.

TO WRK-DS-18VOO.
TO WRK-DS-18VOO
TO SUP-WK-A.
TO SUP-WK-C.
TO SUP-ID-WK-A

Figure 4-Example of Air Force test and printed results

the specific tests or modules he was interested in and
the AFCCVS would create one or more programs from
a file of specific tests which were then compiled as audit
routines. Implementor-names were resolved as the
programs were generated based on parameter cards
stored on the test file or provided by the user.

The process required several passes, including the
sorting of all of the selected tests to force the Data
Division entries into the Data Division and place
the tests themselves in the Procedure Division where
they logically belonged. An additional pass was re
quired to eliminate duplicate Data Division entries
(more than one test might use the same data-item and
therefore there would be more than one copy in the
Data Division). See Figure 4.

Still another program was used to make changes to
the source programs as the compiler was validated.
As in the Navy system, certain elements had to be
eliminated because: (1) they were not syntactically
acceptable to the compiler or, (2) they caused run time
aborts.

Department of Defense COBOL validation system

In December 1970, The Deputy Comptroller of ADP
in the Office of the Secretary of Defense asked the
Navy to create what is now the DOD Compiler Valida
tion System for COBOL taking advantage of: (1) the
better features of both the Navy COBOL Audit Rou
tines (Version 4) and the Air Force CCVS and (2) the
four years of in-house experience in designing and im
plementing audit routines on various systems as well as
the actual validation of compilers for procurement
purposes.

The Compiler Validation System (of which the sup
port program was written in COBOL) had to be readily
adaptable to any computer system which supported a
COBOL compiler and which was likely to be bid on any
RFP issued by the Department of Defense or any of
its agencies. It also had to be able to communicate with
the operating system of the computer in order to pro
vide an automated approach to validating the COBOL
compiler. The problem of interfacing with an operating
system mayor may not be readily apparent depending
on whether an individual is more familiar with IBM's
Full Operation System (OS), which is probably the
most complex operating system insofar as establishing
communication between itself and the user is con
cerned, or with the Burroughs Master Control Program
(lVICP), where the control language can be learned in a
fifteen or twenty minute discussion.

Since validating a compiler may not be necessary
very often, the amount of expertise necessary for com
municating with the CVS should be kept to a minimum.
The output of the routines should be as clear as possible
in order not to confuse the reviewer of the results or to
suggest ambiguities.

The decision was made to adopt the Navy support
system and presentation format for several reasons.
(1) It would be easier to introduce the Air Force tests
into the Navy routines as additional tests because the
Navy routines were already in COBOL program format.
It would have been difficult to recode each of the Navy
tests into the format of specific tests on the Air Force
Population File because of the greater volume of tests.
(2) The Navy support program had become rather
versatile in handling control cards, even for IBM's
as, whereas the Air Force system had only limited
control card generation capability.

824 Fall Joint Computer Conference, 1972

The merging of the A ir Force and Navy routines

The actual merging of the routines started in
February 1971 and continued until September 1971.
During the merging operation, it was noted that there
was very little overlap or redundancy in the functions
tested by the Air Force and Navy systems. In actuality,
the two sets of tests complemented each other. This
could only be attributed to the different philosophies
of the two organizations which originally created the
routines. For example in the tests for the ADD state
ment:

Air Force
signed fields

Navy
unsighed fields

most fields 18 digits long most fields 1-10 digits
long

more computational
items

more display items

After examining the Add tests for the combined DOD
routines, it was noticed that a few areas had been
totally overlooked.

1. An ADD statement that forced the "temp"
used by the compiler to hold a number greater
than 18 digits in length:

i.e., ADD -t999999999999999999
-t999999999999999999
-t999999999999999999
- 999999999999999999
- 999999999999999999
-99 TO ALPHA

. . . where the intermediate result would be
greater than 18 digits, but the final result would
be able to fit in the receiving field.

2. There were not more than eight operands in
anyone ADD test.

3. A size error test using a COl\1PUTATIONAL
field when the actual value could be greater
than the described size of the field, i.e., ALPHA
PICTURE 9(4) COl\1P ... specifies a data item
that could contain a maximum value of 9999
without an overflow condition; however, because
the field may be set up internally in binary, the
decimal value may be less than the maximum
binary value it could hold:

Maximum COBOL value = 9999
lVlaximum hardware value~16383

Therefore, from this point of view, the merging of

Source statements

ADD-TEST-l.
MOVE 1 TO ALPHA.

ADD 1 TO ALPHA.
IF ALPHA = 2

PERFORM PASS

ELSE
GO TO ADD-FAlL-I.

GO TO ADD-WRITE-I.

ADD-DELETE-l.
PERFORM DELETE.
GO TO ADD-WRITE-l.

ADD-FAIL-I.
MOVE ALPHA TO COMPUTED.
MOVE '2' TO CORRECT.
PERFORM FAIL.

Initialization if
necessary.

The Test.
Check the results of the

test and handle the
accounting of that
test.

Normal exit path to the
write paragraph.

Abnormal path to the
write statement if the
test is deleted via the
NOTE statement.

Correct and computed
results are formatted
for printing.

ADD-WRITE-I. Results are printed.
MOVE 'ADD-TEST-l' TO PARAGRAPH-NAME.
PERFORM PINT-RESULTS.

ADD-TEST -2.

Figure 5-Example of DOD test and supporting code

the routines disclosed the holes in the validation sys
tems being used prior to the current DOD routines.

The general format of each test is made up of several
paragraphs: (1) the actual "test" paragraph; (2) a
"delete" paragraph which takes advantage of the
COBOL NOTE for deleting tests which the compiler
being validated cannot handle; (3) the "fail" paragraph
for putting out the computed and correct results when
a test fails; and (4) a "\\-'rite" paragraph which places
the test name in the output line and causes it to be
written. See Figure 5 .

The magnitude of the size of the DOD Audit Routines
was approaching 100,000 lines of source coding,
making up 130 programs. The number of environ
mental changes (resolution of implementor-names) was
in the neighborhood of 1 ,000 and the number of operat
ing system control cards required to execute the
program would be from 1,300 to 5,000 depending on the
complexity of the operating system involved.

This was where the support program could save a
large amount of both work and mistakes. The Versatile
Program l\'1anagement System (VPl\1S1) was designed
to handle all of these problems with a minimum of
effort.

Versatile program management system (VPMS1)

A good portion of the merging included additional
enhancements to the VPl\1S1 (support program)

which, by this time, through an evolutionary process
had learned to manage two new languages; FORTRAN
and JOVIAL. The program had been modified based
on the additional requirements of various operating
systems for handling particular COBOL problems;
the need for making the system easy for the user to
interface with, and the need to provide all interfaces
between the user, the audit routines, and the operating
system.

The introduction of implementor names through" X-cards"

The first problem was the resolution of implementor
names within the source COBOL programs making up
the audit routines. In the COBOL language, particularly
in the Environment Division, there are constructs which
must contain an implementor-defined word in order for
the statement to be syntactically complete. Figure 6
shows where the implementor-names must be provided.

THE NOTE placed as the first word in the para
graph causes the entire paragraph to be treated as
comments. Instead of the "GO TO ADD-WRITE-l"
statement being executed, the logic of the program falls
into the delete paragraph which causes the output re
sults to reflect the fact that the test was deleted.

If the syntax error is in the Data Division, then the
coding itself must be modified. VPl\1S1 shows, in its
own printed output, the old card image as well as the
new card image so that what has been altered is readily
apparent, i.e.,

012900 02APICZZ9Value'I'. NCI085.2 OLD

012900 02 A PIC ZZ9 Value 1. NCI08*RE NEW

ENVIRONMENT DIVISION.
SOURCE-COMPUTER.

implementor-name-l.
OBJECT-COMPUTER.

implementor-name-2.
SPECIAL-NAMES.

implementor-name-3 is MNEMONIC-NAME

FILE-CONTROL
SELECT FILE-NAME ASSIGN TO implementor-name-4.

data division.

FD FILE-NAME
VALUE OF implementor-name-5 IS implementor-defined.

Figure 6-Implementor defined names that would appear
in a COBOL program

The DOD COBOL Compiler Validation System 825

If, while executing the object program of an audit
routine, an abnormal termination occurs, then a change
is required. The cause might be, for example, a data
exception or a program loop due to the incorrect im
plementation of a COBOL statement. In any case, the
test in question would have to be deleted. The NOTE
would be used as specified above.

In addition, VPMSI provides a universal method
of updating source programs so that the individual who
validates more than one compiler is not constantly re
quired to learn new implementor techniques for up
dating source programs.

Example of update cards through VPMSl:

012900 02 A PIC ZZ9
VALUE 1.

013210 l\10VE 1 TO A.
014310 NOTE

(If the sequence number is
equal the card is replaced;
if there is no match the
card is inserted in the ap-
propriate place in the
program.)

014900*
029300*099000

(Deletes card 014900)
(Deletes the series from 029300

through 099000).

To carry the problem a step further. Some of the
names used by different implementors for the high
speed printer in the SELECT statement have
been PRINTER, SYSTEl\1-PRINTER, FORM
PRINTER, SYSOUT, SYSOUl, PI FOR LIST
ING, ETC. It is obvious to a programmer what the
implementor has in mind, but the compiler that expects
SYSTEl\1-PRINTER, will certainly reject any of
the other names. Therefore, each occurrence of an
implementor-name must be converted to the correct
name. The approach taken is that each implementor
name is defined to VPlVlS1. For example, the printer
is known as XXXX36 and the audit routines using
the printer would be set up in the following way:

SELECT PRINT-FILE ASSIGN TO
XXXXX36

And the user would provide the name to be used by the
computer being tested through an "X-CARD."

X-36 SYSTEl\;f-PRINTER
VPl\1S1 would then replace all references of XXXXX36
with SYSTEl\1-PRINTER.

SELECT PRINT-FILE ASSIGN TO
SYSTEM-PRINTER.

A bility to update programs

The next problem was to provide the user with a
method for making changes to the audit routines in

826 Fall Joint Computer Conference, 1972

ADD-TEST-l.
NOTE (Inserted by the user as an update to the program.)
MOVE 1 TO ALPHA.

TO TO ADD-WRITE-I.
ADD-DELETE-l.

PERFORM DELETE.

Figure 7-Example of deleting a test in the DOD CCVS

an orderly fashion and at the same time provide a maxi
mum amount of documentation for each change made.
There are two reasons for the user to need to make
modifications to the actual audit routines:

a. If the compiler will not accept a form of syntax
it must be eliminated in order to create a syn
tactically correct program. There are two ways
to accomplish this. In the Procedure Division
the NOTE statement is used to force the "in
valid" statements to become comments. The
results of this action would cause the test to be
deleted and this would be reflected in the out
put. See Figure 7.

OPERATING SYSTEM CONTROL CARD
GENERATION

The third problem was the generation of operating
system control cards in the appropriate position relative
to the source programs in order for the programs to be
compiled, loaded and executed. This was the biggest
challenge for VPMS1; a COBOL program which had
to be structurally compatible with all COBOL com
pilers and which also had to be able to interface with
all operating systems with a negligible amount of
modification for each system.

The philosophy of the output of VPMS1 is a file
acceptable to a particular operating system as input.
For the most part this file closely resembles what would
normally be introduced to the operating system through
the system's input device or card reader, i.e., control
cards, source program, data, etc.

The generation of operating system control cards is
based on the specific placement of the statement and
the requirement or need for specific statements to ac
complish additional functions. These control cards are
presented to VPMS1 in a form that will not be inter
cepted by the operating system and are annotated as

to their appropriate characteristics. The body of the
actual control card starts in position 8 of the input
record. Position one is reserved for a code that specifies
the type of control card. The following is allowed in
specifying control cards: Initial control cards are
generated once at the beginning of the file. Beginning
control cards are generated before each source program
with a provision for specifying control cards which
are generated at specific times, i.e., JOB type cards,
subroutine type cards, library control cards, etc. End
ing control cards are generated after each source pro
gram with the same provision as beginning control
cards. Terminal control cards are generated prior to
the file being closed. Additional control cards are
generated for ~ssigning hardware devices to the object
program, bracketing data and for assigning work areas
to be used by the COBOL Sort.

There are approx:mately 25 files used by the entire
set of validation routines for which control cards may
need to be prepared. In addition to the control cards
and information for the Environment Division, the
total number of control statements printed for VPMS1
could be in the neighborhood of 200 card images and
the possible number of generated control cards on the
output file could be as large as 5000. The saving in time
and JCL errors that could be prevented should be
obvious at this point.

This Environmental information need not be pro
vided by the user because once a set of VPMS1 control
cards has been satisfactorily debugged on the system
in question, they can be placed in the library file that
contains the same program so that a single request
could extract the VPMS1 control cards for a given
system.

CONCLUSION

It has been demonstrated that the validation of COBOL
compilers is possible and that the end result is bene
ficial to both compiler writers and the users of these
compilers. The ease with which the DOD CCVS can
be automatically adapted to a given computer system
has eliminated approximately 85 to 90 percent of the
work involved in validating a COBOL compiler.

Although most compilers are written from the same
basic specifications (i.e., the American National Stan
dard COBOL, X3.23-1968, or the CODASYL COBOL
Journal of Development) the results are not always
the same. The DOD CCVS has exposed numerous
compiler bugs as well as misinterpretations of the
language. Due to this and similar efforts in the area of

compiler validation, the compatibility of today's
compilers has grown to a high degree.

Weare now awaiting the next version of the American
National Standard COBOL. The new specifications
will provide an increased level of compatibility between
compilers because the specifications are more definitive
and contain fewer "implementor defined" areas. In
addition, numerous enhancements and several clari
fications have been included in the new specification-

The DOD COBOL Compiler Validation System 827

all contributing to better software, both at the compiler
and the application level.

REF'ERENCES

1 American National Standard COBOL X3.23-1968
American National Standards Institute Inc. New York 1968

2 COBOL-61 Conference on Data System Languages
U. S. Government Printing Office Washington D. C. 1961

A prototype automatic program testing tool

by LEON G. STUCKI

McDonnell Douglas Astronautics Company
Huntington Beach, California

" ... as a stow-witted human being I have a very
small head and had better learn to live with it
and to respect my limitations and give them full
credit, rather than try to ignore them, for the
latter vain effort will be punished by failure."

-Edsger W. Dijkstra

SOFTWARE SYSTE1VIS l\1EASUREl\1ENT
TECHNIQUES

The measurement process plays a vital role in the
quality assurance and testing of new hardware systems.
To insure the reliability of the final hardware system,
each stage of development incorporates performance
standards and testing procedures. The establishment of
software performance criteria has been very nebulous.
At first the desire to "just get it working" prevailed in
most software development efforts. With the increasing
complexity of new and evolving software systems,
improved measurement techniques are needed to
facilitate disciplined program testing beyond merely
debugging. The Program Testing Translator is an
automatic tool designed to aid in the measurement and
testing of software systems.

A great need exists for new methods of gaining in
sight into the structure and behavior of programs being
tested. Dijkstra alludes to this in a hardware analogy.
He points out that the number of different multiplica
tions possible with a 27-bit fixed-point multiplier is
approximately 254. With a speed in the order of tens of
microseconds, what at first might seem reasonable to
verify, would require 10,000 years of computation. 1

With these possibilities for such a simple operation as
the multiplication of two data items, can it be expected
that a programmer anticipate completely the actions
of a large program?

829

Dijkstra, in relation to both hardware and software
"mechanisms," continues by stating:

"The straightforward conclusion is the following:
a convincing demonstration of correctness being
impossible as long as the mechanism is regarded
as a black box, our only hope lies in not regarding
the mechanism as a black box. I shall call this
'taking the structure of the mechanism into
account.' "1

As suggested by R. W. Bemer and A. L. Ellison in
their 1968 IFIP report, the examination of hardware
and software structures might incorporate similar test
procedures:

"Instrumentation should be applied to software
with the same frequency and unconscious habit
with which oscilloscopes are used by the hardware
engineer.' '2

Early attempts at the application of measurement
techniques to software dealt mainly with efforts to
measure the hardware utilization characteristics. In an
attempt to further improve hardware utilization,
several aids have been developed ranging from optimized
compilers to automated execution monitoring systems.3 •

4

The Program Testing Translator, designed to aid in
the testing of programs, goes further. In addition to
providing execution time statistics on the frequency of
execution for various program statements, the Program
Testing Translator performs a "standards" check to
insure programmers' compliance to an established
coding standard, gathers data on the extent to which
various branches of a program are executed, and
provides data range values on assignment statements
and DO-loop control variables.

830 Fall Joint Computer Conference, 1972

As was pointed out by Heisenberg, in reference to the
measurement of physical systems, a degree of un
certainty is introduced into any system under observa
tion. With Heisenberg's Uncertainty Principle in mind,
the Program Testing Translator is presented as a
"tool" to be used in the software measurement process.
Just as using a microscope to determine the position of
a free particle introduces a degree of uncertainty into
observations,5 so must it be concluded that no program
measurement tool can guarantee the complete absence
of all possible side effects. In particular, potential
problems involving changes in time and space must be
considered. For example, the behavior of some real-time
applications may be affected by increased execution
times. To avoid the use and development of more
powerful program testing tools because of possible un
certainties, however, would be as great a folly as to
rej ect the use of the microscope.

DATA ANALYZED BY THE PROGRAM
TESTING TRANSLATOR

In a paper by Knuth a large sample of FORTRAN
programs was quantitatively analyzed in an attempt to
come up with a program profile. This profile was ex
pressed in the form of a table of frequency counts
showing how often each type of source statement occurs
in a "typical" program. Knuth builds a strong case for
designing profile-keeping mechanisms into major com
puter systems.6 Internal organization of the Program
Testing Translator was designed with Knuth's table
of frequency counts in mind.

The Program Testing Translator gathers and analyzes
data in two general areas: (1) the syntactic profile of
the source program showing the number of executable,
nonexecutable, * and comment statements, the number
of CALL statements and total program branches, ** and
the number of coding standard's violations, and (2)
actual program performance statistics corresponding
to various test data sets.

With all options enabled, the actual program per
formance statistics produced by the Program Testing
Translator include:

(1) The number and percentage of those executable
source statements actually executed.

* Executable statements include assignment, control, and input!
output statements. Nonexecutable statements include specifica
tion and subprogram statements.
** A branch will denote each possible path of program flow in all
conditional and transfer statements (i.e., all IF and GOTO
statements in FORTRAN).

(2) The number and percentage of those branches
and CALLs actually taken or executed.

(3) The following specific data associated with each
executable source statement.
(a) detailed execution counts
(b) detailed branch counts on all IF and GOTO

statements
(c) min/max data range values on assignment

statements and DO-loop control variables.

Several previous programs7 ,8,9 have provided interesting
source statement execution data. The additional data
range information provided by the Program Testing
Translator, however, proves useful in further analyzing
program behavior. Extended research investigating
possible techniques for automatic test data generation
will make use of these data range values. The long term
goal of this research is directed toward designing a
procedure for obtaining a minimal yet adequate set of
test cases for "testing" a program.

STANDARDS' CHECKING

Although general in design, the initial implementation
of the Program Testing Translator was restricted to
the CDC 6500. Scanning the input source code, the
Program Testing Translator flags as warnings all
dialect peculiar statements which pose possible machine
conversion problems. The standard is basically the
ASA FORTRAN IV Standard10 with some additional
restrictions local to McDonnell Douglas. The standard
can easily be altered to reflect the needs of a particular
installation, in contrast to previous compilers which
have incorporated a fixed standard's check (e.g.,
WATFOR).

DEVELOPMENT OF THE PROGRAM TESTING
TRANSLATOR

The Program Testing Translator serves as a prototype
automatic testing aid suggesting future development of
much more powerful software testing systems. The
basic components of the system are the FORTRAN-to
FOR TRAN preprocessor and postprocessor module.
(See the section on Use of the Program Testing
Translator.) -

A machine independent Meta Translatorll was used
to generate the Program Testing Translator. Con
ventionally, moving major software processors between
machines posed serious problems requiring either com
pletely new coded versions, or the use of new meta
compiler systems.12 This lVleta Translator produces an

ASA Standard FORTRAN translator which represents
an easily movable translation package.

In general, for implementation on another machine,
FORTRAN-to-FORTRAN processors such as the
Program Testing Translator require only that the
syntactic definition input to the Meta Translator be
changed to reflect the syntax of the new machine's
FO RTRAN dialect.

INSTRUMENTATION TECHNIQUES

The instrumentation technique used by the Program
Testing Translator is to insert appropriate high-level
language statements within the original source code
making as few changes as possible. 13 Three memory
areas are added to each main program and subroutine.
One is used for various execution counts while the other
two are used for the storage of minimum and maximum
data range values for specified assignment statements
and DO-loop control variables. The size of these
respective memory areas depends upon the size of the
program being tested and the options chosen.

Simple counters of the form:

QINT(i) =QINT(i) +1
are inserted at all points prefixed by statement numbers,
at entry points, after CALL statements, after logical IF
statements, after DO statements, and after the last
statement in a DO-Ioop.8.14 Additional counters are
used to maintain branch counts on all IF and GOTO
statements.

l\,finimum and maximum data range values are
calculated following each non-trivial assignment state
ment. These values of differing types are packed into
the two memory areas allocated for this purpose.
Minimum and maximum values may also be kept on all
variables used as DO-loop control parameters. These
values are calculated before entry into the DO-loop.

USE OF THE PROGRAM TESTING
TRANSLATOR

Overall program flow of the Program Testing Trans
lator is diagrammed in Figure 1. Basically, the user's
FORTRAN source cards are input to the preprocessor .

. This preprocessor module outputs: (1) an instru
mented source file to be compiled by the standard
FORTRAN compiler and (2) an intermediate data file
for postprocessing. This intermediate file contains a
copy of the original source code with a linkage field for
extracting the profile and execution-time data for the
program.

Prototype Automatic Program Testing Tool 831

Figure 1-Program testing translation job flow

The object code produced by the FORTRAN com
piler is linked with the postprocessor from an object
library. The resulting object module can now be saved
along with the intermediate Program Testing Translator
data file. Together they can then be executed with any
number of user test cases. Using the intermediate file
built by the preprocessor and data gathered while
duplicating the original program results, the post
processor generates reports showing program behavior
for each specific test case. Analysis of these reports will
help eliminate redundant test cases and point to sections
of the user's program which have not yet been "tested."
Examination of these particular areas may lead to
either their elimination or the inclusion of modified
test cases to check out these program sections.

Preliminary measurements indicate that the execu
tion time of the instrumented object module, with all
options enabled, is approximately one and one half to
two times the normal CPU time. Increases in IIO time
are negligible in most cases.

ACTUAL TEST EXPERIENCE

Although the Program Testing Translator has only
been available for a short time, several interesting
results have come to light.

One of the first major subroutines, processed at
l\,fcDonnell Douglas, was an eigenvalue-eigenvector
subroutine believed to be the most efficient algorithm
currently available for symmetric matrices. I5 •16 Of the

832 Fall Joint Computer Conference, 1972

613 source statements in the subroutine, it was imme
diately noted that the nested DO-loop shown here was
accounting for one quarter of all the execution counts for
the entire subroutine (see Appendix).

DO 640 1=1, N

DO 640J=1, N
640 B(I) =B(I) +A(I, J)*V(J, IVEC)

Several immediate observations are worthy of men
tion. First, note that the complexity of the above
statement with its double subscripting and multiplica
tion makes it a costly statement to execute. Second, it
can be seen that the subscripting of the variable B(I)
could be promoted out of the inner loop. A good
optimizing compiler should promote the subscripting
of the B (I) 's and produce good code for the double
subscripting and muItiplication17 but it cannot logically
redesign the nested loop. A redesigned machine lan
guage subroutine replacing the original loop has now
cut total subroutine execution time by one third.
Further analysis of the same program, in an attempt to
determine why several sections . of code were not

executed, revealed a logic error making it impossible to
ever reach one particular section of code. This error,
which was subsequently corrected, can be seen on the
first page of the original run contained in the Appendix.
This was a subroutine experiencing a great deal of use
and thought to be thoroughly checked out.

Running the Program Testing Translator through
itself has resulted in savings of over 37 percent in CPU
execution times. The standard's checking performed by
the Program Testing Translator has verified the ma
chine independence of the Meta Translator.

Table I contains a summary of the actual program
statistics observed on the first eight major programs
run through the Program· Testing Translator. It is
interesting to note that only 45.9 percent of the possible
executable statements were actually executed. Of more
importance, however, is the fact that only 32.5 percent
of all possible branches were actually taken.

Table II compares the class profile data gathered at
lVlcDonnell Douglas by the Program Testing Translator
with the Lockheed and Stanford findings cited by
Knuth.6 The syntactic profile of the l\1cDonnell Douglas
and Lockheed samples were remarkably similar.
Stanford's "student" job profile shows much less

TABLE I-Actual Program Statistics with the Program Testing Translator

Program AB33 AD77 F999 JOYCE META MI01 PTT UT03 TOTALS

Total Number of Statements 1,578 11,111 2,833 3,033 1,125 775 772 1,445 22,672

No. of Comment Statements 355 3,847 644 176 86 189 44 54 5,395
Percentage of Total 22.5 34.6 22.7 5.8 7.6 24.4 5.7 3.7 23.8

No. Other Nonexecutable
Statements 177 905 257 372 534 40 249 254 2,788

Percentage of Total 11.2 8.1 9.1 12.3 47.5 5.2 32.3 17.6 12.3

No. Standard's Violations 9 33 28 65 1 1 23 44 204
Percentage of Total 0.6 0.3 1.0 2.1 0.1 0.1 3.0 3.0 1.0

No. Executable Statements 1,046 6,359 1,932 2,485 505 546 479 1,137 14,489
Percentage of Total 66.3 57.2 68.2 81.9 44.9 70.5 62.0 78.7 63.9

No. Actually Executed 678 2,213 1,155 846 419 392 364 584 6,651
Percentage Executed 64.8 34.8 59.8 34.0 83.0 71.8 76.0 51.4 45.9

No. of Branches 357 2,635 859 1,718 355 189 333 510 6,956
Avg./Exec. Statements 0.34 0.41 0.44 0.69 0.70 0.35 0.70 0.45 0.48

No. Actually Executed 195 571 376 454 203 112 175 175 2,261
Percentage Executed 54.6 21.7 43.8 26.4 57.2 59.3 52.6 34.3 32.5

No. of CALL Statements 20 369 86 278 32 9 19 99 912
A vg.jExec. Statements 0.02 0.06 0.04 0.11 0.06 0.02 0.04 0.09 0.06

No. Actually Executed 18 119 26 67 21 3 5 76 335
Percentage Executed 90.0 32.2 30.2 24.1 65.6 33.3 26.3 76.8 36.7

Total Statement Exec.
Counts (in thousands) 26,772 2,929 112 1,129 5,284 1,133 1,087 71 38,517

TABLE II-A Comparison of Syntatic Class Profiles

McDonne~1

Douglas Lockheed* Stanford*

Total No. State- 22,672 245,000 10,700
ments

Percentage 23.8 2l.6 10.2
Comments

Percentage Other 12.3 10.6** 12.3**
Nonexecutable

Percentage 63.9 67.8 77.5
Executable

Avg. No. 0.48 0.54 0.32
Branches/
Executable
Statement

Avg. No. CALLs/ 0.06 0.09 0.04
Executable
Statement

* Note: These figures represent this author's best attempt at
extrapolating comparable measurements from Knuth's paper.6
Knuth's percentage figures had to be corrected by adding the
comment statements into the total number of statements. Calcu
lations of the average number of branches per executable state
ment require two assumptions: (1) 30 percent of the IF statements
had 3 possible branches· while 70 percent had 2 branches, (2)
96 percent of the GOTO .statements were unconditional (i.e.,
1 branch), while 4 percent were switched (i.e., 2 branches were
assumed).
** Includes the following: FORMAT, DATA, DIMENSION,
COMMON, END, SUBROUTINE, EQUIVALENCE,
INTEGER, ENTRY, LOGICAL, REAL, DOUBLE, OVER
LAY, EXTERNAL, IMPLICIT, COMPLEX, NAMELIST,
BLOCKDATA.

emphasis on internal documentation (i.e., fewer com
ment statements) and also exemplifies a more straight
forward approach to flow of control (as seen in Stan
ford's 0.32 branches per executable statement compared
to 0,48 and 0.54 branches per executable statement for
the two aerospace companies) .

EXTENSIONS OF THE PROGRAl\1 TESTING
TRANSLATOR

As alluded to in earlier sections, much more powerful
testing systems can and should be built in the future.
Relatively simple changes to the postprocessor module
could enable the execution time data from multiple test
runs to be combined automatically into composite
test reports.

Changes to the translator module might provide the
options of first and last values on assignment statements
as well as range values.

Prototype Automatic Program Testing Tool 833

l\1odeled after development of the FORTRAN-to
FORTRAN system, instrumentation systems for other
languages of heavy use such as COBOL or PL/l might
well be developed.

The most important area now being investigated,
however, is the possible design of extensible automatic
testing aids to provide for the automatic generation of
test data. Evolvement of future testing tools along these
lines would greatly aid the quality assurance aspects of
large software systems.

ACKNOWLEDGMENT

The research described in this report was carried out by
the author under the direction of T. W. l\1iller, Jr. and
R. G. Koppang in the Advance Computer Systems
Department at the l\1cDonnell Douglas Astronautics
Company in Huntington Beach, California.

REFERENCES

1 E W DIJKSTRA
Notes on structured programming
Technological University Eindhaven The Netherlands
Department of Mathematics April 1970 TH
Report 70-WSK-03

2 R W BEMER A L ELLISON
Software instrumentation systems for optimum performance
IFIP Congress 1968 Proceedings Software
Session 2 Booklet C p 39-42

3 System measurement software SMS/360 problem program
efficiency
Boole and Babbage Inc. Product Description Palo Alto
California May 1969 Document No. S-32 Rev-l

4 D N KELLY
Spy a computer program execution monitoring package
McDonnell Douglas Automation Company Huntington
Beach California MDC G2659 December 1971

5 W HEISENBERG
The uncertainty principle
Zeitschrift fuer Physic Vol 43 1927

6 D E KNUTH
An empirical study of FORTRAN programs
Stanford Artificial Intelligence Project Memo AIM-137
Computer Science Dept Report No. CS-186

7 1ST LT G W JOSEPH
The fortran frequency analyzer as a data gathering- aid for
computer system simulation.
Electronics Systems Division United States Air Force
L G Hanscom Field Bedford Massachusetts March 1972

8 D H H IGNALLS
FETE A FORTRAN execution time estimator
Computer Science Department Stanford University
STAN-CS-71-204 February 1971

9 CDC 6500 FWW user's manual
TRW Systems Group Redondo Beach California

10 Proposed American standard X3-1,..3-FORTRAN
Inquiries addressed to X3 Secretary BEMA
235 E 42nd Street N ew York NY March 1965

834 Fall Joint Computer Conference, 1972

11 Meta translator
Advanced Computer Sciences Department McDonnell
Douglas Astronautics Company Huntington Beach
California currently in preparation

12 A R TYRILL
The meta 7 translator writing system
Master's Thesis School of Engineering and Applied Science
University of California Los Angeles California
Report 71-22 September 1971

13 E C RUSSELL
A utomatic program analysis
PhD Dissertation in Engineering School of Engineering and
Applied Science University of California Los Angeles
California 1969

14 V G CERF
Measurement of recursive programs
Master's Thesis School of Engineering and Applied Science

APPENDIX

'ItOGIt"K loUTING CloUDING 't INDICATES CONVE"1l0N WUNINOS)

.," .n. NUl'll' GO TO .sao
I'CABSCS) .Ii'. USce» GO TO 350
It-. IIC
DCI*1) • -SeECI) * ceDCI.l' , , on.u • K
o • ceeCS.u
~~SnN,~~O TO RI!TURN

;J~fC It • hNO"M
En-u • Q
GO. TO no

3'0 , , cuec n • seDCZ.U
Q , SeeCl*U
DUtU • C-,/5 • I(

i-(.-.1) 11 C-fU.U
"SlUN 360 TO RETUR'"
GO TO tOO

ItO It It ti NO""
180 CO~TlNU&

TI"' • ceiONMIl * S-DCNU'
IHIW) ..httHUIt1' - CaD C NU)
& , HUMU !! TEMP

University of California Los Angeles California
70-43 May 1970

15 S J CLARK
Computation of eigenvalues and eigenvectors of a real
symmetric matrix using SYMQRl
Advanced Mathematics Department McDonnell Douglas
Astronautics Company Huntington Beach California
Internal Memorandum A3-830-BEGO-71-07 November
1971

16 S J CLARK
Further improvement of subroutine SYMQRl
Advanced Mathematics Department McDonnell Douglas
Astronautics Company Hungtington Beach California
Internal Memorandum A3-830-BEGO-SJC-094 March 1972

17 F E ALLEN
Program optimization
Ann Rev in Automatic Programming 5(1969)
pp 237-307

COUNT "EcrrlC ElIEeU,.rON DATA

37'0 TRue 111 FAI.SE 3613
3613 TRUE 1066 FALSE 2607
2601 MIN .. 9,""'14'E-01 MU·9."U60n-u
2601 M I N~.l. 2023366!-01 MAX. 1.2SI6663e.01
2601 M I "" .. 2. 41J7164'E.01 MU. 2.4810,'4hOl
2607 1'111'4 ... 1.244'6611 01 flU. 1.115I685E 01
2607
2607 BRANCH 1 2607
2607 MIN"'1.01000"1-01 MU· lilOO1"GE-tat
2607 H IN •• l. 2443661E-01 MAX. 1. 17'26"Eoo01
2607 BRANCH 1 2601
lOU 1'1 I'h.l. 2O~8'61!.0l MUw 1.U4Z4UEa01
1066 HI N •• 6 • 12e4361E .. 02 MAX. 4.0277033Ea01
1066 M I N"'1.156'33'E-Ol HAX. 1.238302,8E·n
11)66 fltl rt-d.l O~.4flE"02 MU. o1io12""~
1066
1066 S~ANCH 1 1066

fUX- 4. ZlS0652hDl 11)66 MIN. '.U'10"!.U
3790

117 HI "" •• 1. '6D24UE.n MAXu 3.1436U2E.Q3
117 Ht"~·1.~n~1 itl~-1-.-nh6~»-
117 .., IN"-l. 5602425e.03 MAX. 3.14;56612E,,03

C
~ INfERNAL P!lOCIDII"! n CAI;Ctll;ATi 'iole ASTATIeN eSRAI!!SpONDINIt-fl----------------------------
Q THI VECTORCIfI,Q"
C

GO f& '" '00 '1' .A81(1I)
0; "'8tU) 00 MUST >ZERO

NORM !I' PII!SQRT U • 0 • C QO/pp, •• 2)
GO TO no

fU "eM ,fl. 0-.01 ~ TO ,u-HENCE, NEVER TRUE
NORM. OO-SORT(1.0 - Cp'/QU'*Z)

'20 C • '/NORM
I , blllOR11
GO TO !I!TURN. C310,34D.~U)

,It C • i.~
S I 1).0
NORM. 0.0

IMPOSSIBLE TO REACH AS IS

C 'IND REMAHIING IIGE~VECTO"S (I' ANY! BY INVERSE ITERATION.
C
~
C I' AI.I. illlNVALUES WERE OIlUIN&D (F411. • 0), THEN AI.I. UGENV!CTORI
C WERE E !TIoIIR COH'UTED AI.READY BY ROTA TI ON OM THE REM A I N I NG E lG!NYECTORS
G H II IBUINiB IV IN'fER~["[RATIO''" C 1"'''11' • 11, IF AI;;l;; EI8EN'IAI;;I;IES
V ~ERII NOT OITAINED C'All. .NE. 0), STORE ERROR FLAG IN
Ii Rotell, .tt,IIOTC"II.I, jlHICH INDICATES !HEA!: WILl, 9E NO EIGEt>iYECTOIIS
e F-oft .Tio/t ttHNV-kL-vES", 'OUftD. ALSO, IIRO OUT REMAINING 1.0enioNt i OF ROT A"RAY. lEE COMMENT .0I.LOWING STATEMENT NUMBER 621.

.-

11' eAAffOH- 1 11'
~790 1'1 I N. 1.21571631-0' MAX. '.0125388;Jbos.
3190 1'41 ",. 1. UD2833E-U MAX, 01. 2UO"2~.01
5790 T~Ij! U1t ~AI;Se 2Yl'
Z11' M I "". ". ".53"!-O4 MAX. '. 4Z'38Ub01
2119 SRANelol 1 2'1'
10-11 TItIti 0- FiLff tOff-
107s. HI N, 1.6846126E .. 03 "AX. ". 2130,,2E"01
31'0 MIN, .. i.OODOOOOe-oo MAXu i.OOOOOOOE-OO
5"'0 MIN .. '. "'''tOedl flAX- " '''UUE 01
3190 BRANCH 1 11' BUNCH 2 2601

IRANCf04 3 1066

Prototype Automatic Program Testing Tool 835

P~OO'UH !.ISTING C!.UDINQ v I~DIClTES CONV6RStON WARNINGS)

GO TO 612
62' 1'(1'1 .,Q. NI 00 TO 627

,J " M • 1
DO 626 J • J,N

-C------
626 VC I, tVEC) ~ 0.0

C
C IF' !TEll .G'. 6, COM"UTE RESIDUAl. USING THE TRIDJAIiONAI. HATRIX AND
c THE EIGENVECTOR VCJdVEC) OF' THE TRIDIAGO~AL HATRIX. IF' THE RESIDUAL
C VECTOJI HAS ALL ELEME~TS LESS THAN l,OE"8 I ~ ABSOLUTE VAlour;, V Cl,r VEC)

COUNT SPtCIF'tC ElCECUTIOIII DAU

" BIIANC'" '9 TRue
o
o

-C-t~-u----'N'I!"~ !I QENV!CTOR --.-mHtM-ttvff1I----11Ij+lt:1LLr-tC~O~"''f_T IHIllr'lZ~Ett''O~.;------------------------------
C IF NOT, ROTnVEC) cONTAINS TH-E I.ARGEST EL.EMENT OF' THI: RESIDUAl.
C GREATER T"'.N ~ .. OE-8,
C

627 H'C nEP .LE. 6) GO TO 630
DO 628 (- l,N - en 8CII • DtCI""---~----------------------
SUI'I1 • AiS<iJ(1).VC1r!VECI • E1Cl).VC2,JVEC»
SUM2 • ABS(BCN).V(N,IVEC) • E1CN.1l.VCN-1, IVEC»
81G • AMA)(UStJM1.SUM2)
DO 629 (• s.,NM2
SUM. ABSIE1fI)·VC I, IVEC).I!!O-11·VC 1-1, IVEC)-E1C l.l).V(1-2, Ivec»

" TJlUE 59 FALSi
o

6"ff~-tt--.-~xtt~-- -- -- ---------- --- - - ---------------------1t------,,--------------------
C
C IF' ORIGI~AL M"RIX WAS NOT TRIDlAGOAL., MUL!IPLY v (THE MATRIX OF'
C EIGENVECTORS OF THE TRIDlAGOIUI. MATRIX) BY THE TlUNSFQRHUION MHRIX
C A F'ROM HOUSEHOLOERS ~eDUCTlON.
C

c

----~q.lT. 1.8E 81-$-ltt-Yfl-t---etii------ -------- -----
630 IF'CTRD ,EQ, 1) GO TO 660

DO 640 I • 1,N ,,}

~~I!.~ ~.~ 1,'1 SEE SECTION ON ACTUAL TEST EXPERIENCE
640 BCIl • 8(1) • ACI,J) • VIJdvIiC)

DO "0 I • ~-m------------ ---------
"0 VCI,IVEC) • SCII

C NO~MALIZ! TME EIGENVECTORS
C

660 COI\jT I NUE
"0 1'(,NOT. ,!C) ae TO 1115

DO 100 J • F'AJ\,.Pl,N

velG • 0.0
DO 680 I • ",I\j
IF'CAElSCVCI.J» ,QT, ABS(V!!IGII VBIG • vCl .. n

680 eON' I NtJE
IF'CVBIG ,EQ. 0.0) GO TO 100
DO 690 I • 1, N

690 VCI,,J) " VCI,J)/VElIG

0
'9
'9

3"0 • ~ "'.0

,.
1
1

611
60

3600
at II II

60
60

3600

TIIUE 0 r'L.se ,.
I1IN1- 60 MU1. 60

MINi' 60 MAX1- 60
M I N"1, U~"IGi. 00 MU- 1 •• "oU1e.00
MINt· 611 nut· .0
M I N •• 1, U1622.E.00 'U)(a l,.l65.85E*OO

'I'RtI! 0 FAI;SE ~
MIN1· S. HUl- l
MIN2. 60 MAX2" 60

M11\j1· 60 MAX1· 60
TRUE 2111 r'I.SE 3330

TRUE F'ALSE to
MIN1· 60 MU1' 60
MIN"'.98'.'1.E-01 MA)(a l,Oooooooe*oo

.. ,
PRO~RAM TIST ING TRANSLATOR REPORT

'OR SUBROUT I NE SVMQRl .. "-.--

-------- -- ------- ------

TO! AI. NUMBER OF SOU"CE ST AlEMENTS, ,.4
NO. EXEcuue\,.E SOURCE STATEMENT!!, 4122 PERCEI\jT OF' TOTAL ' •• 1 --..... - .. ------------ ---- -"- ---_ .. _--.
NO. NONEXECUT ABI.E SOURce iTATEMENTS, a PERCENT or TOTAl. 1.1.

NO. COMMENT liUTEMENTS IN SOURCIf, 31. fJEReE"" OF' TO"I. .2.1

NO. "ATEMENTS WITH MDAC V I OIoA Tt ONS PERCENT or TOTAL, 0,0 ---._- -_ .. " _ .. --- -----.------- -_.--- _.-

NO. BRANCHES 16'

NO. CAL.L ST"'!S

SUM TQTAL OF' ALI. EXECUT I ON COUNTS F'01ll TH IS RUN

NO, EXEC. SOURCE STATEMENT, EXECUTED, 336 fJERCENT or EXEC. ITA TEMENTS EXECUTED 79.6

~~n---1111 PEReEI/T SF TSUIo "RANGHES EIIEell'l'ED U.I

NO, C4L.LS ACTUAL.LV EXECUTED, fJERCENT OF' TOTAl. CALLS ExeCUTED 100.0

836 Fall Joint Computer Conference, 1972

... ~ ~ ~
PROGRAM TESTING TRANSLATOR REP~RT

'OA PROGRAM MI01

...

TOTAL NUMBeR 0' SOURCE STATEMENTS, 91'

NO, EX&CU'ABLE SOURCE STATEMENTS,

40 PERCENT OF TOTAL 4, • NO. NONEXECUTABLE S~URCE iTATEMENTS,

-----------. -.. -.-NQ r-f9MM£N-T--"'A-~~-· tH·&OV~0I1 . ~H-. . ·-·p~-l'·-ef'--l'GTA-t;----·-----Krl-----·-----··-

NO. 'TAlEHEN!S WITH MOAC VIOLATIONS 1 PERCENT 0' TOTAL .i

NO. BRANCM~S

---------------NO.· -C-A\'L- ITf04TS-

189

.--9

,UM TOTAL Oi ALL EXECUTION COUNTS 'OR TMIS RUN 1132821

NO. EXEC. SOURCE STATeMENTJ EXECUTED,

Na. iAANG~E' Ae'WA~~Y iMiGWT&D,

NO, CALL' ACTUALLY eXECUTED.

~92 'ERCENT or Exec. STATEMENTS EXECUTED

iii Pi~eENT 9' TgTA~ BRANCHES EMEGYTES

3 PERCENT or TOTAL CAL~S EXECUTED

11.8

".!

An approach to software reliability
prediction and quality control*

by NORMAN F. SCHNEIDEWIND

Naval Postgraduate School
Monterey, California

INTRODUCTION

The increase in importance of software in command
and control and other complex systems has not been
accompanied by commensurate progress in the develop
ment of analytical techniques for the measurement
of software quality and the prediction of software
reliability. This paper presents a rationale for imple
menting software reliability programs; defines software
reliability; and describes some of the problems of
performing software reliability analysis. A software
reliability program is outlined and a methodology for
reliability prediction and quality control is presentBd.
The results of initial efforts to develop a software
reliability 'methodology at the Naval Electronics
Laboratory Center are reported.

RATIONALE OF SOFTWARE RELIABILITY

The purpose of a software reliability and quality
control program is to provide a means for establishing
quantitative criteria for the acceptance or rejection
of software and to provide a method for predicting
the reliability of software under operating conditions.
A computer system consists of hardware, software
and human operators. Within the software sub-system,
there may exist a number of modules or programs. A
total reliability analysis would address the reliability
requirements of each major sub-system: hardware,
software and operators and for each component within
a sub-system. Within the hardware sub-system, re-

* This work was supported by the Computer Sciences Depart
ment of the Naval Electronics Laboratory Center under Project
P509001. The opinions and assertions contained herein are the
private ones of the writer and are not to be construed as official,
or as reflecting the views of the Department of the Navy or the
Naval service at large.

837

liability estimates should be provided for the central
processing unit, discs, magnetic tapes, and other pe
ripheral units. Within the software sub-system, reli
ability estimates should be provided for each module
or program.

Relatively little work has been done in the areas of
software and human operator reliabilities, despite the
fact that these sub-systems are as important as hard
ware in determining total system reliability. This
research effort is directed toward the goals of develop
ing methodologies and programs for software reliability
prediction and quality control.

SOFTWARE RELIABILITY PROGRAM

A description of the elements of a software reliability
program follows.

Reliability specification

Reliability specifications are established in advance
of software production in order to provide quantita
tive criteria for the acceptance or rejection of software
products. Without such a specification there is no
objective criteria on which to judge the quality of a
program. Software reliability specifications would be
determined from an analysis of total computer system
reliability requirements. Individual program or module
specifications would be determined by allocating to a
program the reliability necessary to achieve the desired
total computer system reliability, when all hardware,
software and operator reliabilities are considered. Pre
vailing practice is to consider only hardware when
establishing reliability specifications. The matter of
establishing software reliability specifications has been
largely ignored. The reliability program described here
would make explicit provision for software reliability.

838 Fall Joint Computer Conference, 1972

RELIABILITY

SPECIFICATION

TEST PLAN

PROGRAM
TEST

TEST RESULTS

RELIABILITY
PREDICTION

REJECT

ADDITIONAL TEST
REQUIREMENTS

Figure I-Reliability sequence

Reliability specifications are also used to establish
initial test performance requirements in terms of test
time and number of troubles. These requirements
pertain to the formal test period which starts after
the program has been released by the. programmer
and submitted for independent test. This period also
constitutes the reliability demonstration period. During
the formal test period, a program must operate for a
period of. time with less than a specified number of
troubles. Satisfying this requirement constitutes meet
ing the reliability specification. Testing and computa
tion of test requirements proceeds in stages. A stage
is a test period during which an attempt is made to
qualify a program. The number of stages is governed

by the number of test periods which are required to
demonstrate reliability.

Reliability prediction

The main purpose of reliability prediction is to pro
vide an estimate of future probability of successful
program operation. As in any reliability program, this
estimate is based on historical and current test results.
The reliability prediction is updated with new test
data at the end of each stage of testing. In addition
to prediction, reliability is used for quality control.
Predicted reliability is compared with specified reli
ability. If a program does not qualify at a given stage,
test requirements are computed for the next stage
which, if satisfied, will result in the program satisfying
the reliability specification. For example, assume on
the basis of the reliability specification, that a program
must operate for 100 hours during the first stage with
no more than one trouble of a specified severity level
in order to qualify. Assume that three troubles occur
during the first stage; the program fails the first test.
The test requirements for stage two which are neces
sary in order for the predicted reliability to equal or
exceed the specified reliability would be determined.
In this case, the additional requirement might be to
operate another 200 hours without trouble. This pro
cess is repeated until the required reliability has been
demonstrated. When a program does qualify, the final
estimate of predicted reliability (applicable to actual
operation) is computed. The process is summarized in
Figure 1.

PROBLEMS IN SOFTWARE RELIABILITY
ANALYSIS

There are many conceptual and definitional problems
associated with software reliability. Some of these
problems are described below.

Classification of troubles

Frequently the source of an error-whether it be
hardware or software-cannot be definitely established.
For example, a memory-to-memory transfer may
produce incorrect data at the destination locations.
Was this error due to a marginal memory unit or to a
defective program? It may require days or weeks
before t~e cause of the error can be positively identi
fied. Another difficulty is that software errors can

Approach to Software Reliability Prediction and Quality Control 839

result from either an operating system or applications
programs. It may be difficult to establish whether:

1. The error was actually an error in the applica
tion program, or

2. was a violation of operating system protocol
(Job Control Language), or

3. was the result of an error in the operating sys
tem itself.

Severity and type of trouble

Software troubles must be defined and classified in
terms of severity and type. Software troubles differ
as to their impact on system operation. A few incorrect
characters in textual information which can still be
deciphered is much less serious than a transfer outside
the memory bounds of a program. Reliability predic
tions should specify the severity of troubles that are
included in the prediction. A reliability predictor may
involve one, more than one, or all severity levels. It
may be appropriate to have a reliability predictor for
each severity level and one which includes all severity
levels.

Difference between test and operating environments

It may be difficult to completely duplicate the actual
software operating environment during a test. The
operating environment may comprise certain inputs,
system load or operator actions which cannot be simu
lated during test. The inability under test conditions
to fully duplicate the influence of inputs and stresses
placed on the system by uncontrollable external inputs,
operator performance, equipment reliability and equip
ment maintenance practice means that a reliability
prediction is only an estimate of the actual reliability
which will be obtained in operation. The accuracy of
the reliability prediction will improve as the test
environment approaches conditions of actual operation.

Adequacy of detail in trouble reporting

It is reasonable to assume that lower levels of pro
gram structure will provide greater accuracy of pre
diction than higher levels. For example, a subroutine
may be critical with respect to· the operation of a
program. Trouble report data at the subroutine level
may be more useful than data at the program level.
However, in practice, software troubles may not be
documented at the level which is most desirable for
analysis purposes. Assuming an adequate sample size,

EI
t

E2
t

E3
t

TS2 TFI TS3 TE2
.-.,a ___ --' +a ... _"....,,'

TS4 TE3
L....., --'

TSI TEl
'-w-'

"TIME TO ERROR" DATA

E: ERROR (DESCRIPTION a SEVE RITY)

TS: START RUN TIME

TE: ERROR TIME

TF: FINISH RUN OK TIME

Figure 2-Data collection requirements

the smaller the unit of programming for which error
information is obtained, the more accurate the reli
ability prediction, since many detailed reliability
analyses can be combined for the purpose of system
reliability estimation. However, a counterbalancing
effect is that sample size, in terms of number of trou
bles, decreases as the unit of programming is decreased.
Also, if the unit is too small, the number of program
units which must be analyzed in order to compute total
system reliability becomes excessive. In practice, the
analyst seldom has a choice of levels of program error
documentation. The problem is more one of uncovering
any usable data!

Another problem is the absence of data which
records the start time of each program test and the
times at which trouble occurs, in order that the dis
tribution of time between troubles can be determined.
What is required is a time trace of program testing
and trouble reporting such as that depicted in Figure 2.

Selection of test sample

Another problem is the possible nonrepresentative
ness of trouble report data. The selection of program
functions for testing should be proportional to the
criticality of a function to mission success and also to
the frequency of occurrence of the function during
program operation. Frequency of program function
testing based on the product of criticality and frequency
of use in operation appears to be a reasonable basis
for selecting functions for test. To the extent that
testing does not occur in accordance with criterion, it
will be nonrepresentative of the importance and fre
quency of use of functions in actual operation, thus
. causing a bias in reliability prediction. The problem
posed by a nonrepresentative sample is difficult to
counteract due to the following reasons:

• The selection of the sample is under the control
of the test group-not the reliability analyst.

840 Fall Joint Computer Conference, 1972

• It may be difficult to obtain information regarding
the criticality and frequency of occurrence of
program functions .

• Attempts at selecting a representative sample
from the available test report data may be in
feasible due to existing small samples.

A partial solution to these problems can be obtained
by proper design of test procedures or by changes to
existing procedures. Software troubles can be classified
in detail, test environments can be made realistic to
the limit of economic feasibility and representative
program functions can be selected for test. The most
important and least expensive improvement would be
to make test reporting responsive to the needs of reli
ability analysis. This involves reporting software trou
bles at least down to the level of the program entity
used for reliability prediction and of providing time
histories of program troubles. However, even if ad
ministrative procedures· are changed, the problem of
identifying the source of a trouble as to hardware,
software or human action will remain. This situation
illustrates the need for extensive documentation of
program troubles at the time of their occurrence.

DEFINITIONS

Software trouble

In order to provide a method for predicting software
reliability, it is first necessary to define software errors
or troubles. The following definition will be utilized:

A software trouble is any logical or clerical error
made by a programmer in creating or coding an
algorithm which causes the algorithm to produce
an incorrect result when the algorithm is pre
sented with a correct input.

The above definition excludes errors due to hard
ware, input or operator action. In addition, it will be
understood to exclude compilation errors and errors
caused by the operating system. In short, the errors
considered in this study are application program errors.

Software reliability

Software reliability R(t) is the probability that a
program will operate without a single occurrence of a
specified severity of trouble, or worse, for a specified
length of time t, and with a specified input load. This
is equivalent to the probability that a program will
operate successfully for at least time t.

Software probability density function

A probability law f(t) which governs the occurrence
of troubles in the operating time domain (distribution
of time between troubles). f(t)dt is the probability of
trouble in the interval dt. It is the time rate of change
of probability of trouble.

Hazard rate

The instantaneous trouble rate z(t). z(t) is the time
rate of change of probability of trouble, given that
there has been no trouble in the time interval 0 to t.
Thus, this conditional time rate of change of trouble
is given by z(t)=f(t)/R(t).

RELIABILITY PREDICTION AND QUALITY
CONTROL

Background

Much of reliability theory is based on probability
concepts which are independent of the physical form
or characteristics of systems or devices. Since hardware
has a long history relative to software, it is natural
that almost all reliability literature and experience is
based on the application of theory to hardware. Al
though certain modifications are necessary, ·it appears
that important elements of reliability theory can
validly be applied to software.

The classical model of reliability as applied to hard
ware involves three distinct periods in the life of equip
ment. During the burn-in period, when major bugs in
equipment are identified and corrected or marginal
components are forced to fail, equipment experiences
a decreasing hazard rate. During this period the hazard
rate is a function of the equipment operating time. In
this period, the occurrence of failures is dependent on
the failure history. If failures occur and are corrected
prior to time t, this will have the effect of reducing the
hazard rate at time t.

According. to the classical model, following the
burn-in period, failures are assumed to occur at a
constant rate. This- means that the occurrence of fail
ures is independent of the age or operating time of the
equipment. The expected number of failures during a
given time interval is the same regardless of when
the time interval starts, provided the equipment is
operating within the constant hazard rate region.
Failures within this region are said to occur suddenly
or by chance, for example, when operating require
ments or environmental requirements exceed the
capabilities of the equipment. Another way of viewing

Approach to Software Reliability Prediction and Quality Control 841

the constant hazard rate region is that there is no
preferred time of failure or time about which failures
cluster.

The third region occurs when equipment is subject
to rapid deterioration and wearout. This is the region
of increasing hazard rate. During this period, the
hazard rate is a function of operating time; hazard rate
increases with time.

It has been found that certain probability density
functions are appropriate for representing the distri
bution of time between failures or time to failure
during the three regions of equipment life. For exam
ple, the two parameter (amplitude and shape) Weibull
probability density function J(t) = a{3t{j-le-at{j has a de
creasing hazard rate function z(t) = a{3t{j-t, when {3 < 1,
where t is the time to failure or time between failures,
a is an amplitude parameter and {3 is a shape parame
ter. The probability density and hazard rate functions
can, in certain situations, be employed to represent
the distribution of time between failures and the
hazard rate, respectively, during the burn-in period.

During the operational, or constant hazard rate
period, the time between failures is exponentially
distributed. The exponential distribution corresponds
to a Weibull distribution with (3 = 1. Then, the prob
ability density function and hazard rate are given by
J(t) = ae-at and z = a, where a is the constant hazard
rate and 1/a is the mean time between failures.

Finally, during the wearout stage, when the hazard
rate is increasing, a Weibull distribution with {3 > 1
may be the appropriate distribution for representing
time between failures. The log-normal and gamma
(with appropriate choice of parameters) are other
functions with an increasing hazard rate which may
also be appropriate for this phase.

A pplication oj Reliability Theory to SoJtware

When applied to software reliability, many of the
basic concepts and definitions of reliability theory
remain intact. Among these are the following:

• Definition of reliability R(t) as the probability
of successful program operation for at least t hours

• Probability density function J(t) of time between
software troubles, or, equivalently, the time rate
of change of the probability of trouble

• Hazard rate z(t) as the instantaneous trouble rate,
or, equivalently, the time rate of change of the
conditional probability of trouble (time rate of
change of probability of trouble, given that no
trouble has occurred prior to time t)

There are also major differences between hardware
and software reliability. These are listed below:

• Stresses and wear do not accumulate in software
from one operating period to another as in the
case of certain equipment; however, program
quality may be different at the start of each run,
for the reason given below.

• In the case of hardware, it is usually assumed
that between the burn-in and wearout stages an
exponential distribution (which means a constant
hazard rate) applies and that the probability of
failure in a time interval t is independent of
equipment age. However, for software, there may
be a difference in the initial "state of quality"
between operating periods due to the correction
of errors in a previous run or the introduction of
new errors as the result of correcting other errors.
Thus it is appropriate to employ a reliability
growth model which would provide a reliability
prediction at several points in the cumulative
operating time domain of a program.

• For equipment, age is used as the variable for
reliability prediction when the equipment has
reached the wearout stage. Since with software,
the concern is with running a program repeatedly
for short operating times, the time variable which
is used for reliability purposes is the time between
troubles. However, cumulative operating time is a
variable of importance for predicting the timing
and magnitude of shifts in the reliability function
as a result of the continuing elimination of bugs
or program modification.

Over long periods of calendar or test time, there will

1.0

OPERATING TIME -t

CUMULATIVE TEST TIME

Figure 3-Reliability growth

842 Fall Joint Computer Conference, 1972

POINT AND {
CONFIDENCE
LIMIT
ESTIMATES

RELIABILITY
AND

CONFIDENCE
LIMIT

TEST DATAl

ASSEMBLE
DATA

IDENTIFY
STATISTICAL
DISTRIBUTION

ESTIMATE
RELIABILITY

PARAMETERS

ESTIMATE
RELIABILITY
FUNCTION

It

MAKE RELIABILITY

PREDICTION

Figure 4-Steps in reliability prediction

be shifts in the error occurrence process such that
different hazard rate and probability density functions
are applicable to different periods of time; or, the same
hazard and probability density functions may apply
but the parameter values of these functions have
changed. This shift is depicted in Figure 3, where the
reliability function, which is a decreasing function of
operating time is . shown shifted upward at various
points in cumulative test time, reflecting long-term
reductions in the trouble rate and an increase in the
time between troubles.

Approach

The steps which are involved .. in one approach to
software reliability prediction are shown in Figure 4.

Step 1. Assemble Data

Data must first be assembled in the form of a time
between troubles distribution as was indicated in
Figure 2. At this point, troubles are also classified by
type and severity.

Step 2. Identify Statistical Distribution

In order to identify the type of reliability function
which may be appropriate, both the empirical relative
frequency function of time between troubles (see
example in Figure 5) and the empirical hazard function
are examined. The shapes of these functions provide
qualitative clues as to the type of reliability function
which may be appropriate. For ~xample:

• A monotonically decreasing jet) and a constant
z(t) suggest an exponential function.

• An f(t) which has a maximum at other than t = 0
and a z(t) which monotonically increases suggests:

-Normal function or
-Gamma function or
- Weibull function with (3 > 1.

• A monotonically decreasing j(t) and a mono
tonically decreasing z(t) suggest a Weibull
function with (3 < 1.

After some idea is obtained concerning the possible
distributions which may apply, point estimates of the
parameters of these distributions are obtained from
the sample data. This step is necessary in order to
perform goodness of fit· tests and to provide parameter

Time Between Troubles Distributions

Ship I Program I

.4

.3

.2

.1

O~--L-~--------------~--~--~ ______ _
0-.9 2.0-2.9 4.0-4.9 6.0-6.9

1.0-1.9 3.0-3.9 S.9-!5.9 7.0-7.9

Time Between Troubles (Hours)

Figure 5-Probability density functions

Approach to Software Reliability Prediction and Quality Control 843

Kolmogorov - Smirnov Exponential Test
Program I Many Ships*

1.0- Program Run Time Distribution Function ---I 1.0 " Q

.9 4l " "

.8 '" ~ ~,

.7 ~,,~

.6 ,," "'"

.5 \, ~~

I I 1
J I I *

d = ± .139 Confidence Band
a =.05 Level of Significance
N = 93 Data Points

.4 \ ~" "~
.3 \ ~ '~

\ ~ • ~~
.2~--~--~~--~~-.~~--~~~_~~--~-~--~--~

x ~ Upper Confidence Limit

. I ,~

.09~----~----~----+\-----+----~,-----+-----+----~----~

.08~--~----~----~\~--~----~~~~--~--*--~----~--~

.01 /"\ / , From Table of lid II -

.06 / \ / "r\. Distribution Values -

.05 t-------+'---/---+--"7"'~+___r_~ --+--V~x --+----_x ~~-t----f--------I

.04 .- Lower Confidence Limit I / "
03 ~ / I\..
. Theorectical Exponential V "

Distribution Function

.02 ,... e-·
487T I / x """

Empirical Data ---- "

*Ships I, 2, 3, 4, 5, 6, 7.

.01 I I 1

2 4 5 6 7 8
Program Run Time (Hours)

Figure 6-Goodness of fit test

844 Fall Joint Computer Conference, 1972

estimates for the reliability function. In order to make
a goodness of fit test, it is necessary to provide an
estimate of the theoretical function to be used in the
test. This is obtained by making point estimates of
the applicable parameters. In the case of the one
parameter exponential distribution, the point estimate
would simply involve computing the mean time be
tween troubles = total cumulative test time/number
of troubles, which is the maximum likelihood esti
mator of the parameter T in the exponential prob
ability density functionf(t) = liTe-tIl.

In the case of a multiple parameter distribution,
the process is more involved. For the Weibull distribu
tion, the following steps are required to obtain pa
rameter point estimates:

- A logarithmic transformation of the hazard
function is performed in order to obtain a linear
function from which initial parameter values can
be obtained.

- The initial values are used in the maximum
likelihood estimating equations in order to ob
tain parameter point estimates.

- The probability density, reliability and hazard
functions are computed using the estimated
parameter values.

At this point, a goodness of fitness test can be per
formed between the theoretical probability density
and the empirical relative frequency function or be
tween the theoretical and empirical reliability func
tions. The Kolmogorov-Smirnov (K-S) or Chi Square
tests can be employed for this purpose. An example
of using the K -S test is shown graphically in Figure 6.
This curve shows a test with respect to an exponential
reliability function. Shown are the upper and lower
confidence limits, the theoretical function and the
empirical data points. Since the empirical points fall
within the confidence band, it is concluded that the
exponential is not an unreasonable function to employ
in this case.

Step 3. Estimate Reliability Parameters Confidence
Limits

The point estimate of a reliability parameter pro
vides the best single estimate of the true population
parameter value. However, since this estimate will, in
general, differ from the population parameter value
due to sampling and observational errors, it is appro
priate to provide an interval estimate within which
the population parameter will be presumed to lie. Since
only the lower confidence limit of the reliability func-

tion is of interest, one-sided confidence limits of the
parameters are computed. In Figure 7 is shown an
example of the results of the foregoing procedure,
wherein, for an exponential distribution, the point
estimate of mean time between troubles (MTBT) is
2.94 hours (hazard rate of .34 troubles per hour) and
the lower confidence limit estimate of MTBT is 2.27
hours (hazard rate of .44 troubles per hour). The lower
confidence limit of MTBT for an exponential distribu
tion is computed from the expression Ti = 2nl/x~n.l-a
where· T: is the lower confidence limit of MTBT, n is
number of troubles, l is the MTBT (estimated from
sample data), x2 is a Chi-Square value and a is the
level of significance.

Step 4. Extimate Reliability Function

With point and confidence limit estimates of pa
rameters available, the corresponding reliability func
tions can be estimated. The point and lower limit
parameter estimates provide the estimated reliability
functions R = e-·34t and R = e-·44t , respectively, in
Figure 7. In this example, the predicted reliabilities
pertain to the occurrence of all categories of software
trouble, i.e., the probability of no software troubles
of any type occurring within the operating time of t
hours.

Step 5. Make Reliability Prediction

With estimates of the reliability function available,
the reliability for various operating time intervals can
be predicted. The predicted reliability is then com
pared with the specified reliability. In Figure 7, the
predicted reliability is less than the specified reliability
(reliability objective) throughout the operating time
range of the program. In this situation, testing must
be continued until a point estimate of MTBT of 5.88
hours (.017 troubles per hour hazard rate) and a
lower confidence limit estimate of MTBT of 4.55
hours (.022 troubles per hour hazard rate) are obtained.
This result would shift the lower confidence limit of
the predicted reliability function above the reliability
objective.

Estimating test requirements

For the purpose of estimating test requirements in
terms of test time and allowable number of troubles,
curves such as those shown in Figure 8 are useful. This
set of curves, applicable only to the exponential reli
ability function, would be used to obtain pairs of (test

1.0

. 9

.8

.7

.6

.5

~ .4 +-

:c
c

.3
Q)

a::

.2

. I

*

Approach to Software Reliability Prediction and Quality Control 845

Reliability Function and Its Confidence Limit
for Program It Ship I Using Exponential
Reliabi I ity Function.

a = .05 Level of Significance

Reliability Required to Satisfy Reliability Objectives*
R=e -.017 t'

s
Lower Confidence Limit
R = e-·022 T

Reliability Objective (Assumed)

r. Exponential Reliability (Existing)
R = e -.341:'

2 3 4

Lower Confidence Limit (Existing)
R = e -.44 t'

5 6 7
Operating Time (Hours) t'

Assumino Zero Troubles During Remaining Tests.

R = e-·020
T For 10 Troubles During Remaining Tests.

Figure 7-Reliability prediction

846 Fall Joint Computer Conference, 1972

800

700

Amount of Test Time Required to Achieve
Indicated Lower Limit of Reliability

Exponential Reliability Function
R, •. ge 1 hr.

T, =19.5 hr •.

- 600

1 500

1400

: 300
. 1

R, =.90 , hr.

Tl =9.48 hro .

R ·.8!S ... ·Ihr.
T,.a.l!ShrL ~ 200 ,.

100

2 4 6 8 10 12 14 16 18 .20 22 24 26 28 30
Number of Trouble. During Te.t

Figure 8-Test requirements

time, number of troubles) values. The satisfaction
during testing of one pair of values is equivalent to
satisfying the specified lower limit of reliability Rz for
t hours of operation. For example, if a program reli
ability specification calls for a lower reliability confi
dence limit of .95 after 1 hour of operating time, this
requirement would be satisfied by a cumulative test
time of 100 hours and no more than 2 troubles; a
cumulative test time of 200 hours and no more than 6
troubles; a cumulative test time of 300 hours and no
more than 10 troubles, etc. The required test time is
estimated from the relationship T [tX~n,l-aj
2Ln(1jRz)], where T is required test time, t is required
operating time, x2 is a Chi Square value, n is number
of troubles, Rz is the required lower limit of reliability
and a is level of significance.

PRELIMINARY RESULTS AND CONCLUSIONS

A Naval Electronics Laboratory Center (NELC)
sponsored study* was performed, employing the con
cepts and techniques described in this report, on
Naval Tactical Data System (NTDS) data. The data
utilized involved 19 programs, 12 ships and 325 soft
ware trouble reports. The maj or preliminary results
and conclusions follow:

1. On the basis of Analysis of Variance tests, it
was found that NTDS programs are hetero
geneous with respect to reliability characteris
tics. There was greater variation of reliability
between programs than within programs. This
result suggests that program and programmer
characteristics (source of between program

*N. F. Schneidewind, "A Methodology for Software Reliability
Prediction and Quality Control," Naval Postgraduate School,
Report No. NPS55SS72032B, March 1972.

variation) is more important in determining
program reliability than is the stage of program

. checkout or cumulative test time utilized (source
of within program variation). This result indi
cates a potential for obtaining a better under
standing of the determinants of software reli
ability by statistically correlating program and
programmer characteristics with measures of
program reliability.

2. Goodness of fit tests indicated much variation
among programs in the type of reliability func
tion which would be applicable for predicting
reliability. This result and the Analysis of
Variance results suggest that program reliability
should be predicted on· an individual program
basis and that it is not appropriate to merge sets
of trouble report data from different programs
in order to increase sample size for reliability
prediction purposes.

3. Based on its application to NTDS data, the
approach for reliability prediction and quality
control which has been described appears
feasible. However, the methodology must be
validated against other test and operational
data. Several interactive programs, written in
the BASIC language, which utilize this ap
proach, have been programmed at NELC*.

Another model by Jelenski and Moranda* has been
developed and validated against NTDS and NASA
data. Other approaches, such as reliability growth
models, multiple correlation and regression studies
and utilization of data smoothing techniques will be
undertaken as part of a continuing research program.

BIBLIOGRAPHY

1 R M BALZER
EXDAMS-extendable debugging and monitoring system
AFIPS Conference Proceedings Vol 34 Spring 1969
pp 567-580

2 W J CODY
Performance testing of function subroutines
AFIPS Conference Proceedings Vol 34 Spring 1969
pp 759-763

3 J C DICKSON et al
Quantitative analysis of software reliability
Proceedings-Annual Reliability and Maintainability
Symposium San Francisco California 25-27 January 1972
pp 148-157

* Programmed by Mr. Craig Becker of the Naval Electronics
Laboratory Center.
* Jelenski, Z. and Moranda, P. B., "Software Reliability Re
search," McDonnell Douglas Astronautics Company Paper
WD1808, Navember 1971.

Approach to Software Reliability Prediction and Quality Control 847

4 BERNARD ELSPOS et al
Software reliability
Computer January-February 1971 pp 21-27

5 ARNOLD F GOODMAN
The interface of computer science and statistics
Naval Research Logistics Quarterly Vol 18 No 2 1971
pp 215-229

6 K U HANFORD
A utomatic generation of test cases
IBM Systems Journal Vol 9 No 4 1970 pp 242-256

7 Z JELINSKI P B MORANDA
Software reliability research
McDonnell Douglas Astronautics Company Paper
WD 1808 November 1971

8 JAMES C KING
Proving programs to be correct
IEEE Transactions on Computers Vol C-20 Noll
November 1971 pp 1331-1336

9 HENRY CLUCAS
Performance evaluation and monitoring
Computing Surveys Vol 3 No 3 September 1971
pp 79-91

10 R B MULOCK
Software reliability engineering
Proceedings-Annual Reliability and Maintainability Sym
posium San Francisco California 25-27 January 1972
pp 586-593

11 R J RUBEY R F HARTWICK
Quantitative measurement of program quality
Proceedings-1968 ACM National Conference pp 672-677

12 N F SCHNEIDEWIND
A methodology for software reliability prediction and quality
control
Naval Postgraduate School Report No NPS55SS72032B
March 1972

The impact of prohlem statement
languages on evaluating and
improving software performance

by ALAN MERTEN and DANIEL TEICHROEW

The University oj Michigan
Ann Arbor, Michigan

INTRODUCTION

The need to improve the methods by which large
software systems are constructed is becoming widely
recognized. For example, in a recent study (Office of
Management and Budget!) to improve the effective
ness of systems analysts and programmers, a project
team stated that: "The most important way to improve
the effectiveness of the government systems analysts
and programmers is by reducing the TIME now spent
on systems analysis, design, implementations, and main
tenance while maintaining or improving the present
level of ADP system quality."

As another example, a study group (U.S. Air Force2)

concluded that to achieve the full potential of command
and control systems in the 1980's would require research
and development in the following aspects of system
building: requirements analysis and design, software
system certification, software timeliness and flexibility.

Software evaluation is one part, but only a part of
the total process of building information systems. The
best way to make improvements is to examine the total
process. This has been pointed out elsewhere (Teichroew
and Sayani3) and by many others; Lehman,4 for example,
states:

"When first introduced, computers did not make a
significant impact on the commercial world. The real
breakthrough came only in the 1950's when institutions
stopped asking, 'Where can we use computers?' and
started asking, 'How shall we conduct our business now
that computers are available?'

In seeking to automate the programming process, the
same error has been committed. The approach has been
to seek possible applications of computers within the
process as now practiced.. . . Thus the problem of in
creasing programming effectiveness, through mecha
nization and tooling, is closely associated with the

849

overall problem of methodology. Its solution calls for a
review of the process itself, so that maximum benefit
can be had from the use of computers."

This paper is concerned with one technique-problem
statement languages-which are in accordance with the
above philosophy as regards the system building system.
They are an answer to the question: "How shall we
conduct systems building now that computers are
available'?"

Problem statement languages are a class of languages
designed to permit statement of requirements for in
formation systems without stating the processing pro
cedures that will eventually be used to achieve the
desired results. Problem statement languages are used
to formalize the definition of requirements, and problem
statement analyzers can be used to aid in the verifica
tion of the requirement definition. These languages and
analyzers have a potential for improving the total
process of system building; this paper, however, will be
limited to their role in software evaluation.

Software systems can be evaluated in three distinct
ways. User organizations are primarily interested in
whether the software produced performs the tasks for
which it was intended. This first evaluation measure is
referred to as the validity of the software. "Invalid"
software is usually the result of inadequate communica
tion between the user and the information system de
signers. Even in the presence of perfect communica
tion, the software system often does not initially meet
the specifications of the user. The second evaluation
measure of software systems is their correctness. Soft
ware is correct if for a given input it produces the output
implied by the user specifications. "Incorrect" software
is usually the result of programming or coding errors.

A software system might be both valid and correct
but still might be evaluated as being inefficient either
by the user or the organization responsible for the com-

850 Fall Joint Computer Conference, 1972

puting facility. This characteristic is termed' performance
and is measured in terms of the amount of resources
required by a software package to produce a result. The
processing procedures and programs and files might be
poorly designed such that the system costs too much
to run and/or makes inefficient use of the computing
resources. Poor performance of software is usually the
result of inadequate attention to design or incorrect in
formation on parameters that affect the amount of re
sources used.

Before discussing the value of problem statement
languages in software evaluation, the concept is de
scribed briefly. The impact on software validity is also
discussed. Once requirements in a problem statement
language are available, it becomes possible to provide
computer aids to the analysis and programming process
which reduce the possibility of introducing errors. This
impact of problem statement languages on software
correctness is discussed later in the paper. In general, a
given set of requirements can be implemented on a given
complement of hardware in more than one way and each
way may use a different amount of resources. The poten
tial of problem statement languages to improve soft
ware performance is examined. Some preliminary con
clusions from work to date on problem statement lan
guages and analyzers related to software evaluation, and
the impact of software evaluation on the design and use
of problem statement languages and analyzers are dis
cussed.

PROBLEM STATEMENT LANGUAGES AND
PROBLEM STATEMENT ANALYZERS

Problem statement languages were developed to per
mit the problem definer (i.e., the analyst or the user)
to express the requirements in a formal syntax. Ex
amples of such languages are: a language developed by
Young and Kent;5 Information Algebra;6 TAG;7
ADS;8 and PSL. 9 All of these languages are designed to
allow the problem definer to document his needs at a
level above that appropriate to the programmer; i.e.,
the problem definer can concentrate on what he wants
without saying how these needs should be met.

A problem statement language is not a general
purpose programming language, nor, for that matter, is
it a programming language. A programming language is
one that can be used by a programmer to communicate
with a machine through an assembler or a compiler. A
problem statement language, on the other hand, is used
to communicate the need of the user to the analyst.
The problem statement language consequently must
be designed to express what is of interest to the user;
what outputs he wishes from the system, what data
elements they contain, and what formulas define their

values and what inputs are available. The user may
describe the computational procedures and/or decision
rules that must be used in determining the values of
certain intermediate or output values. In addition, the
user must be able to specify the parameters which de
termine the volume of inputs and outputs and the con
ditions (particularly those related to time) which
govern the production of output and the acceptance of
input.

These languages are designed to prevent the user
from specifying processing procedures; for example, the
user cannot use statements such as SORT (though he
is allowed to indicate the order in which outputs ap
pear), and he cannot refer to physical files. In some
cases the languages are forms oriented. In these cases,
the analyst using the problem statement language com
municates the requirements by filling out specific col
umns of the forms used for problem definition. Other
problem statement languages are free-form.

The difficulty of stating functional specifications in
many organizational systems has been well recognized.
(Vaughan10): "When a scientific problem is presented
to an analyst, the mathematical statement of the rela
tionships that exist between the data elements of the
system is part and parcel of the problem statement.
This statement of element relationships is frequently
absent in the statement of a business problem. The
seeming lack of mathematical rigor has led us to assume
that the job of the business system designer is less com
plex than that of the scientific designer. Quite the con
trary-the job of the business system designer is often
rendered impossible because the heart of the problem
statement is missing!

The fact that the relationships between some of the
data elements of a business problem cannot be stated
in conventional mathematical notation does not imply
that the relationships are any less important or rigorous
than the more familiar mathematical ones. These rela
tionships form a cornerstone of any system analysis,
and the development of a problem statement notation
for business problems, similar to mathematical nota
tion, could be of tremendous value."

Sometimes the lack of adequate functional specifica
tions is taken fatalistically as a fact of life: An example
is the following taken from a recent IBM report:11

"In practice, however, the functional specifications
for a large proj ect are seldom completely and consis
tently defined. Except for nicely posed mathematical re
quirements, the work of completely defining a functional
specification usually approximates the work of coding
the functions themselves. Therefore, such specifications
are often defined within a specific problem context, or
left for later detailed description. The detailed defini
tion of functional specifications is usually unknown at

the outset of the project. Much of the final detail is to
be filled in by the coding process itself, based on agen
eral idea of intentions. Hopefully, but not certainly,
the programmers will satisfy these intentions with the
code. Even so, a certain amount of rework can be ex
pected through misunderstandings.

As a result of these logical deficiencies, a :large pro
gramming project represents a significant management
problem, with many of the typical symptoms of having
to operate under conditions of incomplete and imperfect
information. The main content of a programming
project is logical, to be sure. But disaster awaits an ap
proach that does not recognize illogical requirements
that are bound to arise." ,

Problem statement languages can reduce the exis
tence of illogical requirements due to poor specification.
Despite the well-recognized need for formal methods of
stating requirements and the fact that a problem state
ment language was published by Young and Kent in
1958, such languages are not in wide use today. One
reason is that, until recently, there did not exist any
efficient means to analyze a problem definition given in
a problem statement language. Therefore, these lan
guages were only used for the documentation of each
user's requirements. Under these conditions, it was diffi
cult to justify the expense of stating the requirements
in this formal manner.

A problem statement language, therefore, is insuffi
cient by itself. There must also be a formal procedure,
preferably a software package, that will manipulate a
problem statement for human use. Mathematics is a
language for humans--: humans can, after some study,
learn to comprehend it and to use it. It is not at all
clear that the equivalent requirements language for
business will be manipulatable by humans, though ob
viously it must be understandable to them. Computer
manipulation is necessary. because the problem is so
large, and a person can only look at one part at a time.
The number of parameters is too large and their inter
relationship is too complex.

A problem statement language must have sufficient
structure to permit a problem statement to be analyzed
by a computer program, i.e., a problem statement
analyzer. The inputs and outputs of this program and
the data base that it maintains are intended to serve as
a central resource for all the various groups and indi
viduals involved in the system building process.

Since usually more than one problem definer is re
quired to develop requirements in an acceptable time
frame, there must be provision for someone who over
sees the problem definition process to be able to identify
individual problem definitions and coordinate them;
this is done by the problem definition management.
One desirable feature of a system building process is to

Impact of Problem Statement Languages 851

identify system-wide requirements so as to eliminate
duplication of effort; this task is the responsibility of
the system definer. Also, si:~lCe the problem defines
should use common data names there has to be some
standardization of their names and characteristics and
their definition (referred to here as "functions"). One
duty of the data administrator is to control this stan
dardization. If statements made by the problem definer
are not in agreement as seen by· the system definer or
data administrator, he must receive feedback on his

. '~errors" and be asked to correct these.
All of these capabilities must be incorporated in the

problem statement analyzer which accepts inputs in the
problem statement language and analyzes them for cor
rect syntax and produces, among other reports, a com
prehensive data dictionary and a function dictionary
which are helpful to the problem definer and the 'data
administrator. It performs static network analysis to
ensure the completeness of the derived relationships,
dynamic analysis to indicate the time-dependent rela
tionships of the data, and an analysis of volume specifi
cations. It provides the system definer with a structure
of the problem statement as a whole. All these analyses
are performed without regard to any computer imple
mentation of the target information processing system.
When these analyses indicate a complete and error-free
statement of the problem, it is then available in two
forms for use in the succeeding phases. One, the prob
lem statement itself becomes a permanent, machine
readable documentation of the requirements of the
target system as seen by the problem definer (not as seen
by the programmer). The second form is a coded state
ment for use in the physical systems design process to
produce the description of the target system as seen
by the programmer. . .

A survey of problem statement languages is given in
Teichroew.12 A description of the Problem Statement
Languages (PSL) being developed at The University of
Michigan is given in Teichroew and Sibley.9 In this
paper the terms problem statement language and prob
lem statement analyzer will refer to the general class
while PSL and PSA will be used to mean the specific
items being developed in the ISDOS Project at The
University of Michigan.

ROLE OF PROBLEM STATEMENT
LANGUAGES IN SOFTWARE VALIDITY

Definition of software validity

Often when software systems are completed, they do
not satisfy the requirement for which they were in
tended. There may be several reasons for this. The user

852 Fall Joint Computer Conference, 1972

may claim that his requirements have not been satis
fied. The systems analysts and programmers may
claim that the requirements were never stated precisely
or were changing throughout the development of the
system. If the requirements were not precisely and cor
rectly stated, the analysts and programmer may produce
software which does not function correctly.

Software will be said to be valid if a correct, complete
and precise statement of requirements was communi
cated to the analysts and programmers. Software which
does not produce the correct result is said to be invalid
if the reason is an error or incompleteness in the speci
fication.

Problem statement languages can increase software
validity by facilitating the elimination and detection
of logical errors by the user, by permitting the use of
the computer to detect logical errors of the clerical
type and by using the computer to carry out more
complex analysis than would be possible by manual
methods.

Elimination or detection of logical errors by the user

Problem statement languages and analyzers appear
to be one way to increase the communication between
the user organizations and the analysts and program
mers. Usually organizations find it very difficult to dis
tinguish between their requirements and various pro
cedures for accomplishing those requirements. This diffi
culty is often the result of the fact that the user has had
some exposure to existing information processing pro
cedures and attempts to use this knowledge of tech
niques to ((aid" the analyst and in the development
of the new or modified information system.

The major purpose of problem statement languages
is to force the user to state only his requirements in a
manner which does not force a particular processing
procedure. Experience has shown that this requirement
of problem statement languages is initially often diffi
cult to impose upon the user. Often, he is accustomed
to thinking of his data as stored in files and his process
ing requirements as defined in various programs written
in standard programming languages. He has begun to
think that his requirements are for programs and files
and not for outputs of the system.

There is an interesting parallel between the use of
problem statement languages and the use of data base
management systems. Many organizations have found
it difficult for users to no longer think in terms of
physical stored data, but to concentrate on the logical
structure of data and leave the physical storage to the
data base management system. In. the use of problem

statement languages the user must think only of the
logical data and the processing activities.

Initial attempts to encourage the use of problem
statement languages have indicated some reluctance on
the part of users to state only requirements, particu
larly if the "user" is accustomed to a programming
language. However, once the functional analysts (prob
lem definers) become familiar with the problem state
ment technique and learn to use the output from the
problem statement analyzers, they find that they are
able· to concentrate on the specification of input and
output requirements without having to be concerned
about the design and implementation aspects of the
physical systems. Similarly, output of problem state
ment analyzers can be used to aid the physical systems
designers in the selection of better processing procedures
and file organizations. The physical systems designer
has the opportunity to look at the processing require
ments and data requirements of all the users of the
system and can select something that approaches global
optimality as opposed to a design which is good for only
one user.

One of the Ihajor problems in the design of software
systems is the inability of users to segment the problem
into small units to be attacked by different groups of
individuals. Even when the problem can be segmented,
the direct use of programming languages and/or data
management facilities requires a great amount of inter
action between the user groups and the designers
throughout problem definition and design. Problem
statement languages allow the individual users to state
their requirements on a certain portion of the informa
tion system without having to be concerned with the
requirement's definition of any other portion of the
information systems. .

This requirement is slightly modified in organiza
tions where there exists a data directory (i.e., a listing
of standard data names and their definition.) In this
case each of the users must define his requirements in
terms of standard names given in the data directory.
In this case it is the purpose of the problem statement
analyzer to check each problem statement to determine
if it is using the previously approved data names.
Besides the requirement to use standard data names,
the individual problem definers can proceed with their
problem definition in terms of their inputs, outputs, and
processing procedures without knowledge of related
data and processing activities. It is the purpose of the
problem statement analyzer to determine the logical
consistency of the various processing activities. It has
been found that the individual problem definer might
modify his statement of requirements upon receipt of
the output of the problem statement analyzer. At this

time he has an opportunity to see the relationship be
tween his requirements and those of others.

Use of that problem statement analyzer to detect logical
errors of the clerical type

Given that requirements are stated precisely in a
problem statement language, it is possible to detect
many logical errors during the definition stage of system
development. Traditionally, these errors are not de
tected until much later, i.e., until actual programs and
files have been built and the first stages of testing have
been completed. Problem statement analyzers such as
the analyzers built for ADS and for PSL at The Uni
versity of Michigan can detect errors such as computa
tion and storage of a data item that is not required by
anyone, and the inputting of the same piece of data
from multiple sources. Extensions of these analyzers
will be able to detect more sophisticated errors. For
example, they might detect a requirement for an out
put requiring a particular item prior to the time at
which the item is input or can be computed from avail
able input.

The problem analyzer can be used to check for prob
lem definition errors by presenting information to a
problem definer in a different order than it was initially
collected. A data directory enumerates all the places in
which a user-defined name appears. Another report
brings together all the places where a system param
eter has been used to specify a volume. An analyst can,
by glancing through such lists, more readily detect a
suspicious usage.

Complex analysis of requirements

The use of the computer as described above is for
relatively routine clerical operations which could, in
theory, be done manually if sufficient time and patience
were available. The computer can also be used to carry
out analysis of more complicated types or at least pro
vide an implementation of heuristic rules. Examples are
the ability to detect duplicate data names or to identify
synonyms. These capabilities require an analysis of
use and production of the various basic data items.

ROLE OF PROBLEM STATEMENT
LANGUAGES IN SOFTWARE
CORRECTNESS

Definition of software correctness

Software is said to be incorrect if it produced the
wrong results even though the specification for which

Impact of Problem Statement Languages 853

it was produced is valid and when the hardware is work
ing correctly. The process of producing correct pro
grams can be divided into five major parts:

-designing an algorithm that will accomplish the re
quirements

-translating the algorithm into source language
-testing the resulting program to determine whether

it produces correct results
-debugging, i.e., locating the source of the errors
-making the necessary changes.

Current attempts to improve software correctness

Software incorrectness is a major cause of low pro
grammer productivity. For example, Millsll states:

"There is a myth today that programming consists of
a little strategic thinking at the top (program design),
and a lot of coding at the bottom. But one small sta
tistic is sufficient to explode that myth-the number of
debugged instructions coded per man-day in a pro
gramming project ranges from 5 to at most 25. The
coding time for these instructions cannot exceed more
than a few minutes of an eight-hour day. Then what
do programmers do with their remaining time? They
mostly debug. Programmers usually spend more time
debugging code than they do writing it. They· are also
apt to spend even more time reworking code (and then
debugging that code) due to faulty logic or faulty com
munication with other programmers. In short, it is the
thinking errors, even more than the coding errors
which hold the productivity of programming to such
low levels."

It is therefore not surprising that considerable effort
has been expended to date to improve software correct
ness. Among the techniques being used or receiving at
tention are the following:

(1) Debugging aids. These include relatively simple
packages such as cross-reference listers and snap
shot and trace routines described in EDP
AnalyzerI3 and more extensive systems such as
HELPER.17

(2) Testing aids. This category of aids includes
module testers (e.g., TESTMASTER) and test
data generators. For examples see EDP Ana
lyzerI3 and the survey by Modern Data. IS

(3) Structured and modular programming. This
category consists of methodology· standards and
software packages that will hopefully result in

854 Fall Joint Computer Conference, 1972

fewer programming errors in the first two
phases-designing the algorithm and translating
it to the . source language code:-and that they
will be easier to find if they are made. (Arm
strong,t9 Baker,20 and Cheatham and Wegbreit.2l)

(4) Automated programming. This category includes
methods for reducing the amount of program
ming that must be done manually by producing
software packages that automatically produce
source or object code. Examples are decision:::;
table processors and file maintenance sys
tems.13 ,lS

Role of problem statement languages and analyzers ~n
software correctness

While the need for the aids mentioned above has been
recognized, there has been considerable resistance by
programmers to their use.13 Problem statement lan
guages and problem statement analyzers can be of
considerable help in getting programmer acceptance of
such aids and in improving software correctness directly.

With the use of problem statement languages and
analyzers, the programmer gets specifications in a more
readable and understandable form and is, therefore, less
likely to misinterpret them. In addition, extensions to
existing analyzers could automatically produce source
language statements. These extensions would take
automatic programming methods to a natural limit
since a problem statement is at least theoretically all
the specification necessary to produce code. When the
specifications are expressed in a problem statement
language, the logical design of the system has effectively
been decoupled from the physical design. Consequently,
there is a much better opportunity to identify the
physical processing modules. Once identified, they have
to be programmed only once.

ROLE OF PROBLEM STATEMENT
LANGUAGES IN SOFTWARE
PERFORMANCE

Definition of software performance

Software which produces correct results in accordance
with valid specification may still be rejected by the
user(s) because it is too expensive or because it is not
competitive with other ~oftware or with non-computer
ized methods. The "performance" of software, however,
is a difficult concept to define.

One can give examples of performance measures in
particular cases. For example, compilers are often

evaluated in terms of the lines of source statements
that can be compiled per minute on a particular ma
chine. File organizations and access software (e.g., in
dexed sequential and direct access) are evaluated with
respect to the rate at which data items can be retrieved.
Sometimes software is compared on the basis of how
computing time varies as a function of certain param
eters. For example, matrix inversion routines are evalu
ated with respect to the relationship between process
time and size of the array. Similarly, SORT packages
are evaluated with respect to the time required to sort a
given number of records.

Current methods to improve software performance

Software performance is important because any given
piece of software is always in competition with the use
of some other method, whether computerized or not.
Considerable effort has been expended to develop
methods to improve performance.

Software packages have been developed to improve
the performance of programs stated in a general purpose
language, either by separate programs, e.g., STAGED
(OST) and CAPEX optimizer,I3 or incorporated directly
into the compiler. Similar techniques are used in de
cision table processors.

A number of software packages developed can be
used to aid in the improvement of performance of exist
ing or proposed software systems. The software pack
ages include software simulators and software monitors.
Computer systems such as SCERT, SAM and
CASE14, 15, 16 can be used to measure the performance of
a software/hardware system on a set of user programs
and files. Another approach to improving performance
of software systems is to measure the performance of
the different components of an existing system either
through a software monitor or by inserting statements
in the program. The components which account for the
largest amount of time can then be reworked to im
prove performance.

Each of these software aids attempts to improve the
efficiency of a software system by modifying certain
local code or specific file organizations. What would be
more desirable is the ability to select the program and
file organizations that best support the processing re
quirements of the entire information system.

Role of problem statement languages in software per
formance

Problem statement languages and analyzers can be
used to improve the performance of software systems

even beyond that feasible with the aids outlined above.
Decisions involving the organization of files and the
design of the processing procedures can be made based
on the precise statement, and analysis, of the factors
which influence the performance of the computing sys
tem because the problem statement requires explicit
statement of time and volume information. The time
information specifies the time at which input is received
by the system or the time at which the specified output
is required from the system. For a scheduled or periodic
input, the time information specifies the time of the
day, month, or year, or relative to some other calendar.
For unscheduled or random input, the expected rate for
a fixed time interval is specified. The volume informa
tion consists of specification of the "size" of the input
or the output. For example, the number of time cards
or the number of paychecks. Volume information is
specified so that it is possible to determine the number
of characters of data that will be stored or processed
and moved between storage devices.

In order to design an efficient information system, the
analyst must consider the processing needs of the indi
vidual users in arriving at a structure for the data base.
Each of the data elements of the data base must be
considered, and an indication made of the processing
activities to be supported by the specific data. From this,
the system designers must determine the file organiza
tion, i.e., the physical mapping of the data onto second
ary storage. Methods for maintaining that data must be
determined through the use of the time and volume in
formation specified in the information system require
ments.

Problem statement analyzers summarize, format and
display the time and volume information which is rele
vnnt to the file designers. Our experience with problem
statement languages seems to indicate that efficient
systems are designed in which a file organization is ini
tially- determined and then the program design is
undertaken. Problem statement languages are used to
state the processing procedures required to produce the
different output products or to process the various input
data. Problem statement analyzers must have the abil
ity to aid the systems analyst to group various data and
also to group procedures in such a way as to minimize
the amount of transfer of data between primary mem
ory and secondary memory. One of the outputs from
the problem statement analyzer such as the one for
PSL is an analysis of the processing procedures which
access the same or overlapping sets of data. These
processes can, in many cas~, be grouped together to
form programs.

Currently software systems are often defined in
which a file organization is initially selected based on

Impact of Problem Statement Languages 855

some subset of the processing requirements. Following
this selection, additional processing requirements are
designed to "fit into" this initial file organization. As
problem statement analyzers become more powerful, it
will be possible to delay this decision concerning selec
tion of a file organization until all the major processing
requirements have been specified.

REMARKS

To our knowledge there does not exist any definitive
study with a controlled experiment and collection of
data to answer questions such as "why does software
not produce the desired result; why does it not produce
the correct result; .and why does it not use resources ef
ficiently?" However, it is generally agreed that the
major causes include the following:

1. Errors in communication or misunderstandings
from those who determine whether final results
are valid, correct and produced efficiently to
those who design and build the system.

2. Difficulties in defining interfaces in the program
ming process. The serious errors are not in indi
vidual programs, but in ensuring that the output
of one program is consistent with the input to
another.

3. Inability to test for all conceivable errors.

Considerable effort has gone into developing methods
and packages to improve software--~ome of these have
been mentioned in this paper. The ISDOS Project at
The University of Michigan has been engaged in devel
oping and testing several problem statement languages
and problem statement analyzers. This paper has been
concerned with the ways in which this use of problem
statement languages and problem statement analyzers
will lead to better software. Problem statement ana
lyzers have been developed for ADS and for PSL at
The University of Michigan. The analyzers have been
used in conjunction with the development of certain
operational software systems as well as a teaching and
research tool in the University.

The ADS analyzer has been tested on both large and
small problems to determine its use in software evalua
tion and development. The analyzer is currently being
modified and extended to be used extensively by a
government organization. Initial research concerning
the installation of this analyzer within the organization
indicates that analyzers must be slightly modified to
interface with the procedures of the functional user.

856 Fall Joint Computer Conference, 1972

Other portions of the analyzer appear to be able to be
used as they currently exist. Generally, it appears as if
analyzers will have a certain set of organizationally in
dependent features and will have to be extended to
include a specific set of organizationally dependent
features for each organization in which they are used.

CONCLUSION

Many of the techniques being used or proposed to im
prove software performance are based on the current
methods of developing software. The problem state
ment language represents an attempt to change the
method of software development significantly by
specifying software requirements. This paper has at
tempted to demonstrate that the use of problem state
ment languages and analyzers could improve software
in terms of validity, correctness and performance.

The design of problem statement languages and the
design and construction of problem statement analyzers
are formidable research and development tasks. In some
sense the design task is similar to the design of standard
programming languages and the design and construc
tion of compilers and other language processors. How
ever, the task appears more formidable when one con
siders that these languages will be used by non-com
puter personnel and are producing output which must
be analyzed by these people.

The procedure by which these techniques are tested
and refined will probably be similar to the development
and acceptance of the "experimental" compilers and
operating systems of the 1950's and 1960's. These
techniques are directed at the specification of require
ments for application software. This phase of the life
cycle of information systems has received the least
amount of attention to date. The development and use
of problem statement languages and analyzers can aid
this phase. As the languages are improved and extended,
their value as an aid to the entire process of software
development should be realized.

ACKNOWLEDGMENTS

This research was supported by U.S. Army contract
#010589 and U.S. Navy Contract # N00123-70-C-
2055.

REFERENCES

1 OFFICE OF MANAGEMENT AND BUDGET
Project to improve the ADP systems analysis and computer

programming capability of the federal government
December 17 1971 69 pp and Appendices

2 U.S. AIR FORCE
Information processing data automation implications of air
force command and control requirements in the 1980's
Executive Summary February 1972 (SAMSO/XRS-71-1)

3 D TEICHROEW H SAYANI
A utomation of system building
DATAMATION August 15 1972

4 M M LEHMAN L A BELADY
Programming systems dynamics or the metadynamics of
systems in maintenance and growth
IBM Report RC 3546 September 17 1971

5 J W YOUNG H KENT
Abstract formulation of data processing problems
Journal of Industrial Engineering November-December
1958. See Also Ideas for Management International
Systems-Procedures Assoc

6 CODASYL DEVELOPMENT COMMITTEE
An information algebra phase I report
Communications ACM 5 4 April 1962

7 IBM
The time automated grid system (TAG): sales and systems
guide
Reprinted in J F Kelly Computerized Management
Information System Macmillan New York 1970

8 H J LYNCH
ADS: A technique in system documentation
ACM Special Interest Group in Business Data Processing
Vol 1 No 1

9 D TEICHROEW E SIBLEY
PSL, a problem statement language for information processing
systems design
The University of Michigan ISDOS Working Paper June
1972

10 P H VAUGHAN
Can COBOL cope
DATAMATION September 11970

11 H D MILLS
Chief programmer teams: principles and procedures
IBM Federal Systems Division FSC 71-5108

12 D TEICHROEW
Problem statement languages in MIS
E Grochla (ed) Management-Information-Systeme Vol 14
Schriftenreiche Betriebswirteschaftliche Beitrage zur
Organisation und Automation Betriebswirtschaftlicher
Verlag Weisbaden 1971

13 EDP ANALYZER
COBOL aid packages
Canning Publications Vol 10 No 8 May 1972

14 J W SUTHERLAND
The configuration: today and tomorrow
Computer Decisions N J Hayden Publishing Company
Rochelle Park February 1971

15 J W SUTHERLAND
Tackle system selection systematically
Computer Decisions NJ Hayden Publishing Company
Rochelle Park February 1971

16 J N BAIRSTOW
A review of systems evaluation packages
Computer Decisions N H Hayden Publishing Company
Rochelle Park June 1970

17 R R RUSTIN (ed)

Debugging techniques in large systems
Prentice-Hall 1971

18 SOFTWARE FORUM
Survey of program package-programming aids
Modern Data March 1970

19 R ARMSTRONG
Modular programming for business applications
To be published

Impact of Problem Statement Languages 857

20 F T BAKER
Chief programmer team management of production
programming
IBM Systems Journal No 1 1972

21 T E CHEATHAM JR B WEGBREIT
A laboratory for the study of automated programming

SJCC 1972

The solution of the minimum cost flow and maximum· flow
network problems using associative processing

by VINCENT A. ORLANDO and P. BRUCE BERRA*

Syracuse University
Syracuse, N ew York

INTRODUCTION

The minimum cost flow problem exists in many areas
of industry. The problem is defined as: given a network
composed of nodes and directed arcs with the arcs
having an upper capacity, lower capacity, and a cost
per unit of commodity transferred, find the maximum
flow at minimum cost between two specified nodes while
satisfying all relevant capacity constraints. The classical
maximum flow problem is a special case of the general
minimum cost flow problem in which all arc costs are
identical and the lower capacities of all arcs are zero.
The objective in this problem is also to find the maxi
mum flow between two specific nodes. Algorithms exist
for the solution of these problems and are coded for
running on sequential computers. However, many parts
of both of these problems exhibit characteristics that
indicate it would be worthwhile to consider their solu
tion by associative processors.

As used in this paper, an associative processor has
the minimum level capabilities of content addressability
and parallel arithmetic. The cont~nt addressability
property implies that all memory words are searched
in parallel and that retrieval is performed by content.
The parallel arithmetic property implies that arithmetic
operations are performed on all memory words
simultaneously.

In this paper, some background in associative
memories/processors and network flows, is first pro
vided. We then present our methodology for comparison
of sequential and associative algorithms through the
performance measures of storage requirements and
memory accesses. Finally we compare minimum cost
flow and maximum flow problems as they would be
solved on sequential computers and associative pro
cessors; and present our results.

* This research partially supported by RADC contract
AF 30602-70-C-0190 Large Scale Information Systems.

859

ASSOCIATIVE MEMORIES/PROCESSORSI-5

The power of the associative memory lies in the
highly parallel manner in which it operates. Data are
stored in fixed length words as in conventional sequen
tial processors, but are retrieved by content rather than
by hardware storage address. Content addressing can
take place by field within the storage word so, in effect,
each word represents an n-tuple or cluster of data and
the fields within each word are the elements, as illus
trated in Figure 1. One of the ways in which accessing
can take place is in a word parallel, bit serial manner
in which all words in memory are read and simul
taneously compared to the search criteria. This allows
the possibility of retrieving all words in which a specified
field satisfies a specified search criterion. These search
criteria include equality, inequality, maximum, mini
mum, greater than, greater than or equal to, less than,
less than or equal to, between limits, next higher and
next lower. Further, complex queries can be formed by
logically combining the above criteria. Boolean con
nectives include AND, inclusive OR, exclusive OR and
complement. Finally, any number of fields within the
word can be defined with no conceptual or practical
increase in complexity. That is, within the limitation of
the word length, any number of elements may be
defined within a cluster.

In addition to the capabilities already mentioned,
associative memories can be constructed to have the
ability of performing arithmetic operations simul
taneously on a multiplicity of stored data words.
Devices of this type are generally called associative
processors. Basic operations that can be performed on
all words that satisfy some specified search criteria as
previously described include: add, subtract, multiply
or divide a constant relative to a given field; and add,
subtract, multiply or divide two fields and place the
result in a third field. This additional capability
extends the use of the associative processor to a large

860 Fall Joint Computer Conference, 1972

class of scientific problems in which similar operations
are repeated for a multiplicity of operands.

While various architectures exist for these devices
and they are often referred to by other names (parallel
processors, associative array processors), in this paper
we have adopted the term associative processor and
further assume that the minimum level capabilities of
the device include content addressing, parallel searching
and parallel arithmetic as described above.

NETWORK DATA STRUCTURE

An example network is given in Figure 2, in which the
typical arc shown has associated with it a number of
attributes. The type and number of these attributes
depends upon the specific network problem being
solved but typically include the start node, end node,
length, capacity and cost per unit of commodity trans
ferred. In solving problems, considerably more than
just the network definition attributes are required due
to additional arc related elements needed in the execu
tion of the network algorithms. Included are items such
as node tags, dual variables, flow, bookkeeping bits,
etc. Thus, each arc represents an associative cluster of

WORDS

BIT FIELDS
F4

DATA CLUSTER: (FI' F2, ... , Fn)

Figure 1-Associative memory layout

NETWORK

TYPICAL ARC

(A,B,C,D,E)

o---~~o
DATA CLUSTER

A - START NODE
B - END NODE
C - LENGTH
D - CAPACITY
E - COST

Figure 2-Data structure for network problems

data and hence can be stored within the associative
memory with a minimum of compatibility problems.

The above discussion applies to network problems in
general and served as the basis for research by the
authors6•7 into the use of associative processing in the
solution of the minimum path, assignment, transporta
tion, minimum cost flow and maximum flow problems.
Results for all problems indicated that a significant
improvement in execution time can be achieved through
the use of the associative processor. The purpose of this
paper is to describe the details of the methodology used
and present the results obtained for the minimum cost
flow and maximum flow problems.

METHODOLOGY AND MEASURES OF
PERFORMANCE

The general methodology followed in this research
was to first solve small problems on sequential com
puters in order to develop mathematical relationships
that could be used to extrapolate to large problems;
then to solve small problems on an associative processor
emulator to again generate data that could be used in
extrapolating to large problems and finally, to compare
the results. This methodology had the distinct ad
vantage of obtaining meaningful data without having to

Solution of Minimum Cost Flow and Maximum Flow Network Problems 861

expend vast amounts of computer time in solving large
problems. Further, since we did not have a hardware
associative processor at our disposal, through the use
of the emulator, we were able to solve real problems in
the same way as ,vith the hardware.

In order to compare the compiler level sequential
program to the emulated associative program, it was
first necessary to define some meaningful measures of
performance. It was considered desirable for these
measures to be implementation independent and yet
yield information on relative storage requirements and
execution times since these are the characteristics most
often considered in program evaluation. Measures
satisfying the above requirements which were used in
the performance comparisons of this research are storage
requirements and accesses.

The storage requirements measure is defined as the
number of storage words required to contain the
network problem data and any intermediate results. It
should be noted that the number of bits per storage
word would typically be greater for an associative
processor since word lengths of 200 to 300 bits are
typical of the hardware in existence or under con
sideration. However, word comparisons have the
advantage of being implementation independent while
providing a measure that is readily converted to the bit
level for-specific comparisons in which the word lengths
of each machine are known. A determination of storage
requirements for the competing programs was accom
plished by counting the size of the arrays for the
sequential programs and the number of emulator storage
words for the associative programs. In both cases we
assumed that enough memory was available to hold
the entire problem.

The storage accesses measure is defined as the number
of times that the problem data are accessed during
algorithm execution. Defined in this manner this
quantity is also implementation independent. However,
it should be noted that the ratio of sequential to
associative processor accesses is approximately equal to
the ratio of execution times that would be expected if
both algorithms were implemented on current examples
of their respective hardware processors. This is true
since the longer cycle time of the associative processor
is more than offset by the large number of machine
instructions represented by each of the sequential
accesses. Collection of data for this me~sure was
accomplished in the sequential programs by the addi
tion of statements to count the number of times that
the array problem data were accessed. Only accesses to
original copies of the array data were included in this
count. That is, accessing of non-array constants that
temporarily contained problem data was not counted.
Data collection for the associative programs was

accomplished by a counter that incremented each time
the emulator was called.

SEQUENTIAL ALGORITHM ANALYSIS

It was recognized that it would be highly desirable to
obtain the sequential algorithms from an impartial,
authoritative source, since this would tend to eliminate
the danger of inadvertently using poor algorithms and
thus obtaining results biased in favor of the associative
processor. A search of the literature indicated that these
requirements were perhaps best met by algorithms
published in the Collected Algorithms from the Associa
tionfor Computing Machinery (CACM)8.

While these algorithms may not be the "best" in
certain senses, they have the desirable property of being
readily available to members of the computer field.

Algorithm 3369 is the only algorithm published in the
CACM that solves the general minimum cost flow
problem stated above. This algorithm is based on the
Fulkerson out-of-kilter methodlO which is the only
approach available for a single phase solution to this
problem. That is, this method permits conversion of an
initial solution to a feasible solution (or indicates if
none exists) at the same time that optimization is
taking place. Other algorithms accomplish these tasks
in separate and distinct phases.

The single algorithm published by the CACM for
the maximum flow problem is number 32411 which is
based on the Ford and Fulkerson method.12 This
method appears to be recognized as a reasonable
approach since it is consistently chosen for this problem
in textbooks on operations research.13 ,14

These sequential algorithms were implemented in
FORTRAN IV and exeeuted on the Syracuse Uni
versity Computing Center IBM 360/50 to verify
correctness of the' implementations and to collect
performance data.

A detailed analysis of the logic for Algorithm 336
indicates that the access expressions for this program
are as follows

NB

NACsEQ =11 NARCS+ L: NAIsEQ(BR)i
i=l

NN

+ L: NAIsEQ(NON)j (1)
j=l

where

NAIsEQ(BR)i=N +21 NLABi+4 NONL1 i

+13 NONL2i+9 NAUGi-30 (2)

NAIsEQ (NONL-=4 N +19 NLABj+4 NONL1 j

+13 NONL2j+4 NARCS+9 NPLAB j -12 (3)

862 Fall Joint Computer Conference, 1972

and was developed for Algorithm 324 and is given as follows

NAC = number of storage accesses required for
problem solution

N AI (BR) = number of accesses in a flow augmenting
iteration, called a breakthrough con
dition

NAI(NON) = number of accesses in an improved dual
solution iteration, called a non-break

NB

NN

N

NARCS

NLAB

NONL1

NONL2

NPLAB

NAUG

through condition
= number of breakthrough iterations in

a problem

=. number of non-breakthrough iterations
in a problem

= number of network nodes

= number of network arcs

= number of nodes labeled during an
iteration

= number of arcs examined during an
iteration that have both nodes un
labeled

= number of other arcs examined in an
iteration that do not result in a labeled
node

= number of arcs with exactly one node
labeled

= number of nodes on a flow augmenting
path.

Note that the above expressions represent a non
typical best case for the sequential labeling process
since it is assumed that only one pass through the list
of nodes is required for the entire labeling process.

To simplify the above expressions, assume that all
arcs processed which do not result in a labeled node are
of type NONLl. This then makes NONL1 =NARCS
NLAB. Further assume that NPLAB takes on its
average lower bound of NARCS/N. Both of these
assumptions introduce further bias in favor of the
sequential program. After making these substitutions,
equations (2) and (3) become

NAIsEQ(BR)i=N +17 NLABi+4 NARCS

+9 NAUGi-30 (4)

+9 NARCS/N -12 (5)

In a similar manner, a best case access expression

NAIsEQ:=3 N +8 (NARCS/N) (NAUG i -1)

+10 NAUGi+4 NLAB i -16 (6)

where N AI = the number of accesses in an iteration.
The above access expressions were verified by com

paring the predicted values with those obtained experi
mentally through actual execution of the· programs.

ASSOCIATE ALGORITHM ANALYSIS

The out-of-kilter method described above was also
used as the basis for the associative processor algorithm
since it represents the only minimum cost flow method
available that is developed from a network rather than
a matrix orientation. The node tags which are used to
define the unsaturated path from source to sink are
patterned after the labeling method of Edmonds and
Karp as described in HU. I3 This selection was made to
exploit the associative processor minimum search
capability by finding the minimum excess capacity after
the sink was reached, rather than performing a running
comparison at each labeled node as in the original
labeling method. For a discussion of the details of this
development see Orlando.6

Asjndicated earlier, hardware implementation of the
developed algorithm was not possible since very few
associative processors are in existence and in particular
none was available for this research. To circumvent
this problem, as previously stated, a software inter
pretive associative processor emulator was developed
after extensive investigation of the programming
instruction format and search capabilities available on
the Rome Air Development Center (RADC) Asso
ciative Memory.Is

Additional arithmetic capabilities expected to be
available on any associative processor were included in
the emulator. Thus, it had the basic properties of
content addressability, parallel search and parallel
arithmetic.

In operation, the associative network programs, com
posed primarily of calls to the emulator, are decoded and
executed one line at a time. Each execution, although
composed of many sequential operations, performs the
function of one associative processor statement written
at the assembly language level. The program for the
emulator was implemented in FORTRAN IV and
executed on the IBM 360/50. Complete details ·of the
capabilities and operation of the emulator and listings
of the associative emulator programs are contained
in Orlando.6

The access expressions for the associative processor
program derived through a step by step analysis of the

Solution of Minimum Cost Flow and Maximum Flow Network Problems 863

logic are presented below. The terminology used is the
same as defined previously.

NB

NACAP=3+ I: NAIAP(BR)i
i=l

NN

+ I: NAIAP(NON)j (7)
j=l

where

NAIAP (BR)i=13 NLAB i +3 NAUGi+20 (8)

NAIAP(NON)j= 13 NLABj+29. (9)

The above access expressions represent a worst case
for the algorithm logic since each step includes the
maximum amount of processing possible. That is, it
was assumed that the out-of-kilter arc detected always
belonged to the last case to be tested and that each
node used as a base point for labeling only resulted in
the labeling of one additional node.

The associative processor algorithm for the maximum
flow problem is based on the Ford & Fulkerson method12

with the modification of node labeling as described
above. A comparable worst case access expression for
this algorithm is

NAIAPi = 11 NLAB i +3 NAUG i (10)

The above access expressions were also verified using
experimental data obtained from execution of the
emulated programs.

PERFORMANCE COMPARISON

The list orientation of the sequential program for the
minimum cost flow problem imposes a requirement of
7 NARCS + N words for the storage of problem data.
This is approximately seven times the NARCS+l
storage words required by the associative processor
program. However, since both programs store network
data in the form of arc information, the above com
parison is the same for all networks.

Access comparisons between the sequential and
associative processor programs are made on an average
per iteration basis. This eliminates the need to assume
values for the number of breakthrough and non
breakthrough iterations needed for problem solution.
This approach is valid in terms of total problem access
requirements since both algorithms are based on the
same method and would therefore require the same
number of each type of iteration in the solution of the
same problem. The main effect of this approach is to
eliminate from the comparison the number of accesses
required for problem initialization. From equation (1)

it is seen that 11 NARCS accesses are required by the
sequential program for this purpose while equation (7)
shows that the associative processor program requires
3 accesses for problem initialization regardless of net
work size. Thus, the comparison on an iteration basis
introduces an additional bias in favor of the sequential
program.

In order to avoid handling the breakthrough and non
breakthrough cases separately, the comparison will be
made on the basis of an average of breakthrough and
non-breakthrough access requirements. That is, change
to mean values and define

NAI = NAI(BR) + NAI(NON) (11)
2 .

Experience with the algorithm indicates that in
general the majority of the problem iterations result
in non-breakthrough and therefore the average as
defined in equation (11) gives this case a smaller than
realistic weighting. A comparison of the iteration access
expressions, equations (4), (5), (8) and (9) indicate a
greater relative performance gain for the associative
processor in the breakthrough case. Therefore, the equal
weighting of the iteration types introduces additional
bias in favor of the sequential program.

Substitution of the access expressions in equation
(11) yields

NAIsEQ=%(5 N+32 NLAB+12 NARCS+9NAUG

+9 NARCSjN -42) (12)

NAIAP= %(26 NLAB+3 NAUG+49). (13)

Now, let NLAB=aN and NAUG=bN which by

TABLE I-Minimum Cost Flow Access Performance Data

N NARCS

100 100
1,000
6,000

10,000
500 500

1,000
10,000

100,000
150,000
250,000

1,000 1,000
10,000

100,000
600,000

1,000,000

ASSO
CIA

TIVE

NAI

1,475

7,275

14,525

SE
QUEN
TIAL

NAI

2,864
8,304

38,529
62,706
14,464
17,468
71,549

612,359
912,809

1,513,709
28,964
83,004

623,409
3,625,659
6,027,459

R D

2:0 .01
5.6 .10

26.1 .61
42.5 1.00
2.0 .002
2.4 .004
9.8 .04

84.2 .40
125.5 .60
208.1 1.00

2.0 .001
5.7 .01

42.9 .10
249.7 .60
415.0 1.00

864 Fall Joint Computer Conference, 1972

Z 107

0 N= 1000
t=
<[
0::
l&J ...
- 10'
0::
l&J
Q..

en
l&J
en
en
~ 105

u
«
lIJ
C) N=IOOO «
~ 104

> N=50 «
I

I~
3

10
102 103 104 105

NARCS - NUMBER OF NETWORK ARCS

Figure 3-Minimum cost flow access requirements

400

L&J

:: 350
et
u
~300
(J)

et

" ~ 250
....
z
LIJ
::> 200
o
LIJ
(J)

o
....
et
a:
(J)
(J)

LIJ
U
U
et
I

a:
50

o 0.2 0.4 0.6 0.8
D - NETWORK DENSITY

Figure 4-Minimum cost flow access ratio

SEQ

AP

10'

1.0

107

z N=IOOO
0
t= 10'
<[
0::
lIJ

!::
SEQ

0::
L&J
0- 105

en
L&J
en
en
L&J
u
u
<[104

N=IOOO L&J
C!)
«
0:: N=500 L&J AP >
<[
I

I~ N=IOO

102 103 104 105 106

NARCS - NUMBER OF NETWORK ARCS

Figure 5-Maximum flow access requirements

350~----~~----~--------~--------~--------_

LIJ
>

~ 300
u
o
CI)

~ 250

" ..J
et
t= 200
z
LIJ
::>
o
L&J 150
CI)

o
....
et
0::
CI)
(J)

~ 50
u
et
I

a:
o

N =1000

0.2 0.4 0.6 0.8 1.0
D-NETWORK DENSITY

Figure 6-Maximum flow access ratio

Solution of Minimum Cost Flow and Maxim~m Flow Network Problems 865

definition imposes the constraint a, b ~ 1. Making this
substitution and forming the ratio of sequential to
associative accesses yields

R= NARCS(12+9/N) +N(5+32a+9b) -42 ()
N(26a+3b) +49 . 14

Since, a, b ~ lesselecting a = b = 1 gives the most con
servative assessment of the impact of the associative
processor as applied to this problem. Recall that this
implies that NLAB=NAUG=N. Substituting these
values into equations (12), (13) and (14) yields

NAISEQ=NARCS(6+4.5/N) +23 N-2l (15)

NAIAP = ~ (29 N +49) (16)

R= NARCS(12+9/N) +46 N -42 (17)
29N+49 .

The solution of these equations over a representative
range of node and arc values results in the data of
Table 1 which are presented graphically in Figures 3
and 4. The associative processor access requirements are
seen to remain constant with changes in the number of
network arcs, reflecting the parallel manner in which
the arc data are processed. As shown in Figure 4, the
access ratio data of Table I are plotted against network
density which is defined as

D= NARCS
. N(N-l) .

(18)

Analysis of the preceding data indicates that the

TABLE II-Maximum Flow Access Performance Data

N NARCS

100 100
1,000
6,000

10,000
500 500

1,000
10,000

100,000
150,000
250,000

1,000 1,000
10,000

100,000
600,000

1,000,000

ASSO
CIA
TIVE

NAI

625

3,125

6,250

SE
QUEN
TIAL

NAI

926
1,654

12,254
19,934
4,726
5,718

23,574
202,134
301,334
499,734

9,476
27,404

206,684
1,202,684
1,999,484

R D

1.5 .01
4.2 .10

19.6 .61
31.9 1.00
1.5 .002
1.8 .004
7.5 .04

64.7 .40
96.4 .60

159.9 1.00
1.5 .001
4.4 .01

33.1 .10
192.4 .60
319.9 1.00

access ratio R lies in the range

2.0~R~0.4 N for N~100

depending upon the density of the network. Because of
the approach used, this is an indication of a lower
bound on the performance improvement afforded by
the associative processor and values of R considerably
greater than this bound would typically be expected.

An equivalent analysis6 for the maximum flow problem
yields a sequential program storage requirement of
5(NARCS+l) words against an associative require
ment of (NARCS+l) storage words.

Access expressions for this problem were determined
to be

NAIsEQ = NARCS (2-8/N) +7.5 N -16 (19)

NAIAP=6.25 N (20)

Performance data resulting from these expressions,
presented in Table II and Figures 5 & 6, indicate that

1.5~R~0.3 N for N~100.

SUMMARY

A comparison was made of the relative performance of
the associative processor to present sequential com
puters on the basis of storage requirements for problem
data and the number of times that these data were
accessed in the course of solving the minimum cost flow
and maximum flow problems. It was indicated that the
ratio of sequential to associative storage accesses gives
an approximate indication of the ratio of execution
times to be expected assuming typical hardware speeds
for each processor.

Sequential comparison data were obtained through
FORTRAN implementation of algorithms published
by the ACM as representing typical examples of
sequential solutions to these problems. Storage word
requirements were obtained directly from the program
declarations while access data were obtained by in
serting counters to accumulate the number of times that
the problem data were accessed in the execution of the
sequential programs.

Flow diagrams for the associative processor solution
of these problems were developed based upon the
capabilities inherent in an associative processor. By
analyzing these diagrams it was possible to calculate
the number of memory words required for problem
data as well as the number of storage accesses required
in the execution of the algorithms. To test the correct
ness of the derived algorithms and verify the accuracy
of the access calculations, the algorithms were pro
grammed in associative statements at the assembly

866 Fall Joint Computer Conference, 1972

language level and executed on an interpretive emulator
program written in FORTRAN and run on the Syracuse
University Computing Center IBM 360/50. Emulation
was required since large scale examples of the associative
hardware are not yet available.

It was shown that the storage requirements for the
minimum cost flow and maximum flow problems were
7 NARCS+N' and 5(NARCS+1) words respectively,
where NARCS is the number of arcs and N is the
number of nodes in the network. The number of asso
ciative processor words was determined to be
N ARCS+ 1 in both cases. Considering the differences
in word lengths, both systems require approximately
the same amount of storage.

The access expressions for each of the competing
programs were simplified assuming a best case for the
sequential and a worst case for the associative pro
cessor. Under the stated assumption, the resulting
ratio ranges of

2.0~R~0.4 N}
for N~100

1.5~R~0.3 N

represent a lower bound on the performance improve
ment to be expected through the application of the
associative processor to the solution of the minimum
cost flow and maximum flow problems respectively.

REFERENCES

1 A G HANLON
Content addressable and associative memory systems; a survey
IEEE Transactions on Electronic Computers August 1966
p509

2 J A RUDOLPH L C FULMER W C MEILANDER
The coming of age of the associative processor
Electronics February 1971

3 A WOLINSKY
Principals and applications of associative memories
Presented to the Third Annual Symposium on the Interface
of Computer Science and Statistics Los Angeles California
January 30 1969

4 J MINKER
Bibliography 25: An overview of associative or content
addressable memory systems and a KWIC index to the litera
ture: 1956-1970
ACM Computing Reviews October 1971 p 453

5 W L MIRANKER
A survey of parallelism in numerical analysis
SIAM Review Vol 13 No 4 October 1971 p 524

6 V A ORLANDO
Associative processing in the solution of network problems
Unpublished doctoral dissertation Syracuse University
January 1972

7 V A ORLANDO P B BERRA
AssQciative processors in the solution of network problems
39th National ORSA Meeting May 1971

8 CACM
Collected algorithms from the communications of the associa
tion for computing machinery
ACM Looseleaf Service

9 T C BRAY C WITZGALL
Algorithm 336 net flow
Communications of the ACM September 1968 p 631

10 D R FULKERSON
An out-of-kilter method for the minimal cost flow problem
Journal of the SIAM March 1961 p 18

11 G BAYER
Algorithm 324 maxflow
Communications of the ACM February 1968 p 117

12 L R FORD D R FULKERSON
Flows in networks
Princeton University Press 1962

13 T C HU
Integer programming and network flows
Addison-Wesley 1969

14 H M WAGNER
Principals of operations research
Prentice-Hall Inc 1969

15 Manual GER 13738
Goodyear Aerospace Corporation

Minicomputer models for non-linear dynamic systems

by J. RAAMOT

Western Electric Company, Inc.
Princeton, New Jersey

INTRODUCTION

The computational methods of integer arithmetic have
been extended to a variety of applications since the
first publication. 1 ,2 The most noteworthy application of
integer arithmetic is the calculation of numerical
solutions to initial value problems. This method is
introduced here with the example of the differential
equation:

dx
-+x=O
dt

(1)

By substituting the variable y in place of the derivative,
the equation becomes

y+x=O (2)

which represents a trajectory in the phase-plane. Given
an initial solution point (xo, Yo, to), other solution
points (x, y, t) are readily found by first solving the
phase-plane equation and then computing the values of
the variable t from rewriting the above equation as

t=- fd; (3)
This example of finding solution points to an initial

value problem demonstrates the procedure which is used
in integer arithmetic solutions. Other solution schemes
avoid this procedure because in the general case the
phase-plane trajectory cannot be expressed in the form
f(x, y) =0, and an incremental calculation of solution
points (x, y) builds up errors.

The major contribution here is that with integer
arithmetic techniques, the points (x, y) along the
phase-plane trajectory can be calculated with no
accumulation of error in incremental calculations, even
though the trajectory cannot be expressed in a closed
form. As a result, this method handles with equal ease
all initial-value problems without making distinctions
as to non-linearity, order of differential equation, and
homogeneity.

867

I t is necessary to have some understanding of basic
integer arithmetic operations before the solution scheme
can be discussed. Therefore, the following sections
introduce the concepts of F-space and difference terms
which are used in integer arithmetic.

F-SPACE SURFACES

A common problem in mathematics is to find the
roots of an expression: Given some f(x) the task is to
find the values of x which satisfy the equationf(x) =0.
These roots can be obtained by a method of trial and
error where successive values of x are chosen until the
equation is satisfied. A simpler method is to introduce
the additional variable y, and to find the points on
y=f(x) where the contour crosses the x-axis.

This technique of introducing one additional variable
is central to operations of integer arithmetic. In the
two-dimensional case, a contour f(x, y) =0 is the inter
section of the surface F=f(x, y) with the xy;..plane.
Here F is the additional variable and is denoted by a
capital letter in order to develop a simple notation for
subsequent operations. This three-space is called
F -space. It can be created for any dimensionality as is
indicated in the table in Figure l.

Integer arithmetic is not concerned with an analytic
characterization of F -space surfaces, but with a set of
solution points (F, x, y) at integer points (x, y). The
integer points are established by scaling the variables
so that unity represents their smallest significant incre-'
ment over a finite range.

In mathematical calculations the use of integer cal~
culations is avoided because each multiplication may
double the number of digits which have to be retained,
and the resultant numbers tend to become impractically
large. This does not happen in integer arithmetic be
cause the values of F are evaluated at adj acent integer
points (x, y) and are expressed as differences. Thereby
multiplication is avoided and addition of the differences
is the only mathematical operation that is used.

868 Fall Joint Computer Conference, 1972

INTEGER ARITHMETIC

DIMENSION SOLUTION TO F-SPACE
EQUATION EQUATION

f(x)=O y=f(x)
ROOTS CONTOUR

2 f(x,y) =0 F=f(x,y)

CONTOUR SURFACE

flx,y)=O Fl =f(x,y)
y=O F2=y

ROOTS CONTOUR

3 f(x,y,z)=O F=f(x,y,z)

SURFACE SURFACE

Figure I-Table of solutions to equations which are obtained by
operations in F -space

The F -space solutions are exact for polynomials
f(x, y) =0 at all integer points (x, y). Also the F-space
surface F = f(x, y) is single-valued in F. Therefore, there
is no error in calculating successive solution points
based on differences, and the solution at anyone point
does not depend on the path chosen to get there. These
properties do not hold for non-polynomial functions
(e.g., exponentials) , but there the F -space surface
points can be guaranteed to be accurate to within one
unit in x and y over a finite range.!

DIFFERENCE TERMS

Let the value of the variable F at a point (x, y, ...)
be F and be F Ix-tl at (x+l, y, ...). Then the first
difference term in x is defined by the identity

(4)

I t is the change in the F -variable on x-incrementation.
This identity can be rewritten for the F -space surface

F=f(x, y) (5)
as

F =f(x±l) -f() = ~ (±l)n 8n]'(x, y)
x , y x, Y L..J , 8 n

n=! n. x
(6)

The notation F x is chosen for difference terms in

order to distinguish it from finite differences in differ
ence equations, from slack variables in linear pro
gramming, and from partial derivative notation,
because F x has a relationship to all of these but differs
in its interpretation and use.

The notation for indicating the direction of incre
mentation is to have F x or F -x, In addition, the differ
ence between successive difference terms is the second
difference term in x and is defined by the identity:

(7)

In an initial-value problem, the problem is to follow
the phase-plane trajectory from an initial starting point.
There are various integer arithmetic contour-following
algorithms which are based on the sign, magnitude, or a
bound on the F -value. To use anyone of these algorithms
it is necessary to specify the start point (F, x, y), the
direction, and the difference terms. To apply these
contour-following algorithms to a phase-plane trajec
tory, the difference terms have to be established. This
forms the major portion of the computation.

There are two methods for finding the difference
terms and both are illustrated here for the equation of
the circle

x2+y2=r2

I t forms the F -space surface

F =r2- (X2+y2)

(8)

(9)

which is a paraboloid of revolution and is illustrated in

F

15

10

5

o -~---x

Figure 2-The F-space surface of the circle, F = 25 - (X2+y2) is
a paraboloid of revolution

Minicomputer Models for Non-Linear Dynamic Systems 869

Figure 2. The intersection of this surface with the
xy-plane forms the circle of radius r.

Case 1: Given F=f(x,y)

In this case the difference terms are established from
the identity:

F±z=F IZ±l-F

=f(x±l, y) -f(x, y)

= =t= (2x±l) (10)

Likewise, it can be demonstrated that the first y differ
ence term is

(11)

Both difference terms for the circle are illustrated in
Figure 3.

Case 2: Given dy/dx

Based on the definition of the derivative, it can be
shown that the derivative at a point (x, y) is bounded

Figure 3-Integer arithmetic difference terms are the changes in
the F variable between adjacent integer points in the

xy-plane. Successive points are selected to be along
the circle but not necessarily on the circle

by the ratio of difference terms at adjacent integer
points. Thus, at a point (x, y) the derivative is a good
approximation of the ratio of difference terms, and vice
versa:

dy -Fz
_/'"Oov __

dx- F'JI
(12)

The exact difference terms are found from this
approximation by requiring the F -space surface to be
single-valued In F. This requirement results in the
identities

Fz= -F_(z+!) (13)

and

F1I = - F -('11+1) (14)

which state that the difference in F -values between two
adjacent integer points does not depend on the direction.

In the example of the circle, the derivative is

dy =_ ~
dx y

(15)

For this given derivative equations (13) and (14) are
satisfied only by the introduction of additional terms,
here constants c, such that

x+c= (x+l)-c

and

2c=-1

The resultant ratio of the difference terms is

Fz 2x+l

F'JI 2y+l

and can be written as

F ±z _ =t= (2x±l)
F ±'J1 - =t= (2y±l)

This result is identical to the one in case 1.

(16)

(17)

(18)

(19)

To summarize, in case 2 the function f(x, y) =0 was
not given but its derivative was. This is sufficient to
calculate the correct difference terms. It is easy enough
to verify that incremental calculation of solutions
(F, x, y) based on the difference terms F ±z and F ±'J1 is
exact, accumulates no errors, and represents integer
solution points on a single-valued surface in F-space.
The reader can also easily verify that the intersection
of the F -space surface with the xy-plane is the given
circle.

870 Fall Joint Computer Conference, 1972

SECOND ORDER DIFFERENTIAL EQUATIONS

A general second order non-linear differential equa-
tion is represented by the equations

dx
- =y
dt

(20)

dy
dt +g(x, y) =0 (21)

The first step in finding numerical solutions to the
equations is to calculate the difference terms F x and F y.

Their ratio is approximately

Fx -dy -dy dt g(x, y)
-~-- = --. - = ---
Fy dx dt dx Y

(22)

which can be written immediately from the above
equations.

The exact values of the difference terms must satisfy
the identities of equations (13) and (14). These identi
ties are formed by adding appropriate additional terms,
g' (x, y) to both sides. The resultant difference term
then is

Fx=g(x, y) +g'(x, y) (23)

In a similar fashion, the difference terms

Fy=y+c

and

-F -(H1) = (y+1)-c

(24)

(25)

are identical if c = ~. It is not practical to reduce further
the ratio of exact difference terms in the general case.
Later, specific examples will illustrate this technique.

Given the exact difference terms and the initial
values, then anyone of the integer arithmetic contour
following algorithms can be applied to find adjacent
integer points (x, y) along the phase-plane trajectory
without accumulating errors, and the points (x, y) are
guaranteed to be accurate to within unity (which is
scaled as the least significant increment in the cal
cUlations) .

Successive solution points are calculated by incre
menting one variable in the phase-plane and adding the
corresponding difference term to F. In general, the
solution points (F, x, y) are on the F-space surface but
are not contained in the phase-plane. The important
result is that there is no accumulation of errors in the
incremental calculation of solution points on the F -space
surface.

Errors are introduced in relating the F -space surface
points to the phase-plane trajectory, but the contour
following algorithms can always guarantee that these
errors are less than unity.

One example of a contour-following algorithm based
on the sign is the following: Given an initial direction
vector, then the choice of the next increment in the
phase-plane is the one which has the difference term
sign opposite that from the F-value. If both difference
terms and F have the same sign, then the direction is
changed to an adjacent quadrant and an increment is
taken along the direction axis traversed. Subsequently,
the choice of either a positive or negative t-increment
determines whether the new direction is acceptable or
another change of direction has to be made.

Values of the variable t are obtained by anyone of the
two following integration steps. Either,

t=fdX~~~
y x Fy

(26)

or

f dy 1
t=- g(x, y) ~ ~ Fx (27)

will result in the same value of the variable t. Here the
integration is approximated by an incremental sum
mation over either x or y increments.

The error in t-increments becomes large whenever
the difference term in the denominator of the sum
mation becomes small. This problem is avoided by
choosing the summation which contains the largest
difference term.

In order for t to increase in the positive sense, the
direction of incrementation in the phase-plane is chosen
to make the product of the x-direction vector and
y-value be positive. Otherwise, t increases in the
negative sense. This result is derived from equations
(20) through (22). Thereby, the solution method is
complete.

EXAMPLE 1

The integer arithmetic method of finding numerical
solutions to differential equations is illustrated here by
the example of a second order linear differential equa
tion. It has easily derivable parametric solutions in t
but its phase-plane trajectory cannot be expressed as
f(x, y) =0. This initial value problem is stated as

with initial values of

dx
-=y
dt

(xo, Yo, Yo) = (0, 20, 0)

(28)

(29)

(30)

Minicomputer Models for Non-Linear Dynamic Systems 871

I ts parametric solution depends on the values chosen
for the constants k and w2• The values chosen here are
k= .08 and w2= .04 which result in' the parametric
solution

X= 104.ge-·o4t sin 0.196t

and

(31)

y= -4.1ge-·o4t sin 0.196t+20.0e-·o4t cos 0.196t (32)

These calculations apply only for the analytic solu
tion and not in the integer arithmetic solution scheme.
There, the first step is to establish the difference terms
from the given equations (28) and (29).

According to equation (12) the approximate ratio
of the difference terms is

Fx ky+w2x-yo - ~ -"-------''-
F

1I
- y

(33)

The requirement that the F -space surface is a single
valued surface, as stated in equations (13) and (14),
is applied to obtain the exact difference terms

(34)
and

(35)

Then the ratio of the terms is multiplied by 2n/2n
where n is an appropriate integer to eliminate the
fractions. The choice of direction in the phase-plane for
positive t establishes that the x, y-direction vector is

.., ,., .,

••• •

Figure 4-The phase-plane trajectory of the linear differential
equation discussed in example 1, for the initial values
(x, y, t) = (0, 20, 0). The integer arithmetic solutions

are displayed on a CRT

Figure 5-Top: The integer arithmetic solutions (x, t) as dis
played on a CRT for the trajectory of Figure 4

Bottom: A CRT display of the integer arithmetic
solutions x as calculated in real time. The

time axis is 5msec/cm

(1, -1), and the'difference terms are:

F ±x= ±n[2ky+w2(2x±1)] (36)

F ±11= ±n(2y±1) (37)

The resultant phase-plane trajectory is illustrated in
Figure 4 and the numerical results (x, t) are compared
with the calculation of values of x in real time in Figure
5. The peak to peak values of x are equal to 114 in
crements which corresponds to a 1 percent accuracy. As
can be seen, the first cycle is calculated in 25 milli
seconds. A comparison of the numerical with the
analytic solution confirms that all points (x, y) are
unit distant from the true trajectory.

872 Fall Joint Computer Conference, 1972

The above example illustrates how the incremental
calculations are set up for the second order differential
equation. The numerical solutions (x, y, t) are obtained
by application of: the integer arithmetic calculation,
even though there is no closed expressionj(x, y) =0 for
the trajectory.

SCALING

In many problems it is necessary to scale the variables
to obtain either an improved or a coarser resolution.
Such scaling is best illustrated by the example of the
circle given in equation (9).

First, an improved resolution in x only is obtained by
taking increments of lin units where n is an integer
and integer calculations are retained. Then,

Fnx= -[(x+1/n)2- x2]

= - [n-2(nx+1)2- x2]

= - [n-2(2nx+l)] (38)

On multiplying F by n2, the difference terms are

Fnx= - (2nx+1) (39)
and

(40)

The other scaling example takes n increments inx
at a time. Then,

Fx/n= -[(x+n)2- x2]

= -[n2(xln+1)2- x2]

= -n2(2xln+1) (41)

and the y difference remains

(42)

The last step in scaling is to substitute a new variable
for nx or xln respectively in the above examples, and
to proceed with integer calculations.

EXAMPLE 2

The earlier example of the integer arithmetic solution
scheme represented a linear differential equation with
parametric solutions. For this example is chosen the
van der Pol equation

d2x dx
dt2 +e(x2-1) dt +x=O (43)

The phase-plane trajectory of this equation has a
stable limit cycle with a radius of 2 for the constant
e>O. Near the limit cycle, it is necessary to scale the

problem to obtain an improved resolution of integer
solution points. This is done by rewriting the van der
Pol equation with the new variables x' and y'

x=x'

dx I
-=y
dt

(44)

(45)

and by taking increments of lin units in x', 11m units
in y', and replacing e by elk. Then the difference terms
are computed, and the variable nx' is replaced byx and
my' is replaced by y. The resultant difference terms are:

F ±x=m[±e(6x2±6x+2-6n2)y+nmk(±6x+3)]

(46)
and

(47)

For m=n= 10 and e=k= 1, the point (x, y, F) =
(0,21, -83840) is located in F-space on the limit cycle
F-space surface. Based on the difference terms, an
incremental calculation of solution points along the
limit cycle returns to the same start point. This con
firms that there is no accumulation of errors in the
incremental calculations.

Likewise, for start points chosen both inside and
outside the limit cycle, results agree with the expected
trajectories in that all resultant trajectories terminate
with the limit cycle. These results are in complete
agreement with published data3 for values of the
constant e=O.l, 1.0, and 10.

The variable t is calculated from either summation:

(48)

or

t= L: K

'J/ Fx
(49)

It should be remembered that x, y, and F have been
rescaled and correspondingly also the numerator in
these summations is scaled to K. It is given by the
equation

(50)

for both the x and y incrementation sum.
If the forcing function, 5 sin 2.5t is applied to the

van der Pol equation, then the difference term in x
becomes

F ±x=m[±e(6x2±6x+2-6n2)y+mnk(±6x+3)

=F6mn2k(5 sin 2.5t)] (51)

and the y difference term remains unchanged. In this
instance, again the results are in complete agreement
with published data. 4

Minicomputer Models for Non-Linear Dynamic Systems 873

HIGH-ORDER SYSTEMS

An initial value problem can be written as:

dxl dt = fl (xl, x2, ... , xn, t)

dx2 dt =f2(xl, x2, ... , xn, t)

dxn dt =fn(xI, x2, ... ,xn, t)

The numerical solutions (xl, x2, ... , xn, t)
found by taking the set of equations in the ratios:

(52)

are

dx2 dx3
(53) dxl 'dx2' ...

Each ratio represents a phase-plane trajectory for which
the difference terms can be established.

An increment in x2 in the first phase-plane trajectory
also corresponds to an increment in x2 in the second
phase-plane trajectory, which in turn may result in x3
being incremented. Whether or not x3 is incremented
depends on the particular integer arithmetic contour
following algorithm which is used. For example, the
algorithm based on the sign forces an x3 increment

xl xl

128 128

-x2 o

x3 x3

-x2 ~2~2
I - x4 1

-64 0 -16 0

Figure 6-Coupled phase-plane trajectories for the equation,

d4x 1
- - -x = 0
dt4 8

The variable t is obtained from the first trajectory and is
scaled to T = 128 at x1 = 1 unit from termination

SUBROUTINE Ai calculates Fxi and F x(i+l)'

SUBROUTINE Bi chooses next increment or operation.

SUBROUTINE C i updates all variables for an Xi increment.

Figure 7-Flow chart of an integer arithmetic algorithm for
tracking coupled trajectories, showing the calculations

for the i-th variable

when the value of the difference term for that variable
has the opposite sign of the current F -value.

These coupled trajectories are illustrated in Figure 6
for the simple equation

d4x 1
-- -x=O
dt4 8

(54)

given the initial values (xl, x2, x3, x4, t) = (128, -64,
32, -16,0). A general algorithm for coupled trajectories
is shown in the block diagram of Figure 7. As can be
seen, an increment in the first variable may immediately
ripple through to an incrementation in the n-th variable,
after which, starting from the end of the chain, each
traj ectory achieves a stable solution as determined by
the contour following algorithm.

The variable t can be calculated from anyone phase
plane trajectory each resulting in the same value but
being consistent with the resolution of computation.

CONCLUSIONS

The integer arithmetic solution method has been applied
to a variety of initial-value problems, of which repre
sentative examples are illustrated above. Associated

874 Fall Joint Computer Conference, 1972

with this method are a number of theorems. These
prove that the F -space surface is single-valued in F,
that the direction field is bounded by the ratio of
difference terms, that some trajectories have integer
F-space solutions at all integer points in the phase
plane, and that for other trajectories the F-space
surface is approximated, but the accuracy of results is
guaranteed over a finite domain. However, additional
theorems remain to be developed to insure that the
method is applicable to all initial-value problems, and
to determine the necessary conditions for stability.

The solution method is summarized as follows:
Successive solution points along a phase-plane trajec
tory are calculated by adding a difference term to the
F-value and incrementing the associated phase-plane
variable. These simple operations are offset by the more
complex contour-following algorithms which track the
trajectory by examining the state of calculations and
then selecting the next increment. Here the underlying
concept is that the trajectory is the contour formed by
the intersection of the F-space surface with the phase
plane.

There exists a duality between the integer arithmetic
technique and the standard Runge-Kutta or predictor
corrector solution methods. In integer arithmetic, the
phase-plane variables are the independent variables and
t is a dependent variable obtained as a result of in
tegration. Just the reverse is true in the standard
methods; t is an independent variable and the phase
plane variables are obtained as a result of integration.
The integer arithmetic technique finds solution points
on the phase-plane trajectory even though there may
not exist an analytical expression of that trajectory.
Likewise, the standard method finds solution points of
integrals which cannot be expressed in analytic form.
An additional duality is that after initial scaling, the
integer arithmetic solutions have a guaranteed accuracy
whereas the standard methods require a subsequent
accuracy calculation.

The computations involved in the integer ~rithmetic

method are simpler than the ones in other methods:
The examples illustrated in this paper were programmed
in assembly language for the Digital Equipment
Corporation PDP-15 computer. It has only 4096 words
of store and does not have a hardware multiplier. The
entire program is contained in 300 words of store and is
executed in 50 microseconds per increment in x or y,
including the time calculation. It is difficult to execute
any other solution scheme within such limited facilities
or comparable speed.

Other examples have been programmed in FORTRAN
on a large PDP-I0 computer. There the execution time
is 10 times slower, and is comparable to the standard
numerical integration methods. In these examples,
floating point calculations were used for the integer
arithmetic calculations.

ACKNOWLEDGMENTS

The development of this method resulted from the
application of integer arithmetic techniques at the
Western Electric Engineering Research Center in
Princeton. Also, there are substantial contributions by
J. E. Gorman in formulating the integer arithmetic
techniques.

REFERENCES

1 J E GORMAN J RAAMOT
Integer arithmetic technique for digita,l control computers
Computer Design Vol 9 No7 pp 51-57 July 1970

2 A G GROSS et al
Computer systems for pattern generator control
The Bell System Technical Journal Vol 49 No 9
pp 2011-2029 November 1970

3 L BRAND
Differential and difference equations
Wiley 1966 New York

4 L LAPIDUS R LUUS
Optimal control of engineering processes
Blaisdell Waltham 1967

Fault insertion techniques and models
for digital logic simulation

by STEPHEN A. SZYGENDA and EDWARD W. THOMPSON

Southern Methodist University
Dallas, Texas

INTRODUCTION

During the past few years it has become increasingly
apparent that in order to design and develop highly
reliable and maintainable digital logic systems it is
necessary to be able to accurately simulate those
systems. Not only is it necessary to be able to simulate
a logic net as it was intended to behave, but it is also
necessary to be able to model or simulate the behavior
of the logic net when it contains a physical defect.
(The representation of a physical defect is known as
a fault.) The behavioral simulation of a digital logic
net which contains· a physical defect, or fault, is known
as digital fault simulation.1- 6

In the past, two methods have been used to deter
mine the behavior of a faulty logic net. The first ap
proach was manual fault simulation.7 (For logic nets
of even moderate size, this method is slow and often
inaccurate.) The second method used is physical fault
insertion.7 In this method faults are physically placed
in the fabricated logic, input stimuli are applied and
the behavior of the logic net observed. Although
physical fault insertion is more accurate than manual
fault simulation, it is still a lengthy process and re
quires hardware fabrication. The most serious limita
tion, however, is that physical fault insertion is depend
ent on a fabrication technology which permits access
to the input and output pins of logic elements such as
AND gates and OR gates. With discrete logic this is
possible, however, the use of MSI and LSI precludes
the process of physical fault insertion. Since MSI and
LSI will be used in the future for the majority of large
digital systems, the importance of digital fault simula-

. tion can be readily observed.
The major objective of digital fault simulation is to

provide a user tool by which the behavior of a given
digital logic design can be observed when a set of
stimuli is applied to the fabricated design and a physical
defect exists in the circuit. This tool can then be used

875

to validate fault detection or diagnostic tests, to create
a fault dictionary, to aid in the automatic generation
of diagnostic tests, or to help in the design of diagnosable
logic.

The activities of a digital fault simulation system
can be divided into two major areas. The first is the
basic simulator, which simulates the fault free logic
net. The activities of the second part are grouped under
the heading of program fault insertion. (For digital
fault simulation as opposed to physical fault insertion.)

The merit of the fault insertion activities can be
judged on five points. These are:

(1) Accuracy with which faults can be simulated.
(2) Different fault models that can be accommo

dated.
(3) Methods for enumerating faults to be inserted.
(4) Extraction of information to be used for fault

detection or isolation.
(5) Efficiency and capability of handling large

numbers of faults.

ACCURACY OF FAULT SIMULATION

In order to accurately predict the behavior of a logic
net which contains a fault, the basic simulation used
must be capable of race and hazard analysis. A simple
example of this is shown in Figure 1. In this example
an AND gate has three inputs, a minimum delay of 3,
and a maximum delay of 4. At time T2 signal A starts
changing from 1 to 0 and at the same time signal B
starts changing from 0 to 1. The period of ambiguity
for the signals is 3. For the fault free case, signal C
remains constant at o. Therefore, the output of the
gate remains constant regardless of the activity on
signals A and B. If signal C has a stuck-at-Iogical 1
fault, there is potential for a hazard on the output of
the gate between time T 5 and T 9. This hazard will not

876 Fall Joint Computer Conference, 1972

A
o

B
o

A~"'O B 0+1 o D
C

DELAY
MIN 3
MAX 4

T2 T5 Tg

I ! I

tw#J1hl !
I I 1
I I I I

wj'/#d i
I I

D 0 -------tl-----+-I--- NO FAULT
I I

D o ______ --I~:lalltAAl.lA.6..6....L.I...Ll5L1 ___ FAULT PRESENT

Figure I-Fault induced potential error

be seen unless the fault insertion is done in conjunction
with simulation that is capable of detecting such a
hazard.

The fault insertion to be discussed here is done in
conjunction with the TEGAS28,9 system. TEGAS2 is
a table driven assignable delay simulator which has
eight basic modes of operation of which three are con
cerned with faults. For the first mode, each element
type is assigned an average or nominal propagation
delay time. This is the fastest mode of operation, but
it performs no race or hazard analysis. Mode 2 is the
same as mode 1, except it carries a third value which
indicates if a signal is indeterminate. The third mode
has a minimum and maximum propagation delay time
associated with each element type and performs race
and hazard analysis. All three modes can use differing
signal rise and fall times.

Fault insertion and parallel fault simulation are per
formed in all three of these modes. When fault insertion
is done in mode 3, races or hazards that are induced
because of a fault, will be detected. If fault insertion
is done in mode 2, no fault will be declared detected
unless the signal values which are involved in the de
tection are in a determinate state. Also it can be de
termined if a fault prevents a gate from being driven
to a known state.

By using TEGAS2 as the basic simulator, faults can
be simulated to whatever degree of accuracy desired
by the user.

FAULT MODELS

In order for a fault simulation system to be as
flexible and as useful as possible, it should. be able to

model or insert various kinds of faults. Most fault
simulation systems are capable of modeling only the
class of single occurring stuck-at-Iogical 1 and stuck
at-logical 0 pin faults. Although it has been found that
this .class of faults covers a high percentage of all
physICal defects which occur, (considering present
technology), it is certainly not inclusive.

In an effort to remain as flexible and as efficient as
possible and to be able to model different classes of
faults, TEGAS2 has developed three different fault
insertion techniques. The first technique is used to
insert. signal faults or output pin faults. This type of
fault IS where an entire signal is stuck-at a logical 1
or a logical O. The distinguishing factor is that the
fault affects an entire signal and not just an input pin
o~ an element. Figure 2 illustrates a signal or output
pIn fault as opposed to an input pin fault.

At the beginning of a fault simulation pass, the
OUTFLT table (Figure 3), which contains all of the
signal faults to be inserted, is constructed. There is one
row in the table for every signal that is to be faulted.
The information in each row is the signal number,
~ASK1, and MASK2. The signal number is a pointer
Into an array CV where the signal values are stored.
MASK 1 has a 1 in each bit position that is to be
faulted. The right most bit of a word containing a
signal value is never faulted since that bit represents
the good machine value. MASK2 contains a 1 in any
bit position that is to have a SAl inserted and a 0
where there is either a SAO or no fault to be inserted.
Parallel fault simulation is accomplished by having
each bit position, in a computer a word containing a
signal value, represent a fault.

At the end of each time period during simulation,
for which any activity takes place, the signal faults
are inserted. This method is very simple and requires
little extra code. For example, let CV be the array con
taining the signal values and OUTFLT be the two
dimensional table discussed above. Then, to insert one

A~I-------------~

B ,...:.0 __ ----1

C:.0 __ ---1
E

FAULT 2
"INPUT PIN"

D~I-------------~

OUTPUT VALUES

~
o 0
I I
I 0

NO FAULT
FAULT I
FAULT 2

I------F

1------ G

Figure 2-Example of a signal fault and a pin fault

FAULT RECORD (FAULTS TO BE INSERTED)

COT

INDEX
I

1
N

MFNT (FAULT MACHINE

~
~g~~~~PONDENCE \

FAULT TABLE)
NO.

I MASK 1- POSITION OF FAULT
MASK 2-TYPE OF FAULT

y
FAULT TABLES

Figure 3-TEGAS2-Table structure for fault simulation

or more faults on a signal, the following statement
would be executed.

CV(OUTFLT(i,l» (CV(OUTFLT(i,l» .AND.
(. NOT. OUTFLT(i,2».
OR. OUTFLT(i,3). [1]

i represents the row index in the signal fault table
OUTFLT. It is not necessary to insert signal faults
after a time period that has no activity, since none of
the signals will have changed value. By inserting signal
faults in this manner it is not necessary to check a flag
every time an element is evaluated to see if its output
must be faulted.

The second method of fault insertion is used for input
pin faults. An input pin fault only affects an input
connection on an element. This is demonstrated in
Figure 2. In the table structure for the simulator, each
element has pointers to each of its fan-ins. The pointer
to any fan-in that is to be faulted is set negative prior
to a simulation pass. During simulation the input
signals for an element are accessed through a special
function. That is, the evaluation routines for thedif
ferent element types are the same as when fault inser
tion is not performed except that the input values for
the element are acquired through the special function.
This function determines if a particular fan-in pointer
is negative. If a pointer is negative, the element being
evaluated and the signal being accessed are looked up
in a table containing all input pin faults to be inserted
for a simulation pass. The appropriate fault can then
be inserted on the input pin before the evaluation
routine uses it.

The input pin faulting procedure can be more clearly
illustrated by first examining the major tables used in
simulation. These are given in Figure 4. Each row in

Fault Insertion TechniquBs and Models 877

the circuit description table (CDT) characterizes a
signal or a single element. The first Bntry in the CDT
table is a row index into the function description table
(FDT). The second entry CDT (i, 2), points to the
first of the contiguous set of fan-in pointers (in the FI
array) for element i. CDT (i ,3) points to the first of a
contiguous set of fan-out pointers (in the FO array)
for element i, and CDT (i,4) specifies how many
fan-outs exist. The signal value (CV) table contains
signal values. The ith entry in the CV array contains
the value of the ith signal or element in the CDT table.

Each row in the FDT table contains information
which is common to. all elements of a given logical type.
FDT (i, 1) contains the number of the evaluation
routine to be used for this element type, FDT (i, 2),
FDT (i,5), and FDT (i,6) contain the nominal, maxi
mum, and minimum delay times respectively. FDT
(i ,3) specifies the number of fan-ins for this element
type. FDT (i, 7) contains the number of outputs for
the given element type. (This is used in the case of
multiple output devices.) FDT (i ,4) is used for busses.

The simplest evaluation-routine for a variable input
AND gate V\rill now be given. This is the routine used
when no race and hazard analysis is performed, nor is
an indeterminate value used.

N = (FDT(CDT(I, 1), 3)
IFIPT = CDT(I,2)

ITEMP = ALLONE
DO 10NN = 1,N

K = FI(IFIPT + NN - 1)
ITEMP = ITEMP.AND. CV(K)

10 CONTINUE

The integer variable ALLONE has all bits set to one.

ELEMENT NUMBER (INDEX)
MODE 3

(HAZARDS)

CV * CV2* CV3 -

~
TABLES USED

FOR SIMULATION

COT
(POINTERS)

FI*
(INTERCONNECTIONS)

*TABLES THAT ARE
DYNAMICALLY ALLOCATED

FDT AND
FI ELEMENT CHARACTERISTICS

COT } INTERCONNECTION DATA

FDT FO (MODEL DEFINITION)
(ELEMENT TYPES)

rn
FINES CHARACTERISTICS ~

OF ELEMENTS - NO. OF INPUTS, TIME DELAY,
AMBIGUITY REGION, ETC.

Figure 4-TEGAS2-Simulation table structure

878 Fall Joint Computer Conference, 1972

All that is required to change this routine so that input
pin faults can be inserted is to replace CV(K) with
FLTCV (K). FLTCV is a function call. It determines
if the fan-in pointer K is negative and if so it uses the
INFT tal>le to insert the appropriate fault. The INFL T
is the same as the OUTFLT table except that the
relative input pin position, to be faulted, is given. The
combination of the element number and the input pin
position on that element identify a particular pin to be
faulted.

The third method of fault insertion is used for
complex faults. A complex or functional fault is a
fault used to model a physical defect which does not
correspond to a single or multiple occurring stuck-at
logical 1 or stuck-at-Iogical 0 fault. An example of this
is a NAND gate that becomes an AND in the presence
of some physical defect. For this approach an element
is first evaluated by its normal evaluation routine.
Then, if a complex fault is to be inserted on that
element, it is evaluated again using a routine which
models the complex fault. An example would be an
inverter gate which no longer inverts. In this case,
the normal inverter routine would be used first, then
an evaluation routine, which merely passes the input
signal along, would be used.

As with the other insertion techniques, a table
(FUNFLT, Figure 3) is constructed at the beginning
of a simulation pass and it contains all elements that
are to have complex faults for that pass. This table
also contains' the routine number that will evaluate a
prospective complex fault and again which bit position
will represent the fault. Each entry in the Fl[NFL T
table has one extra space, used for input pin position
when modeling input shorted diodes. It is the responsi
bility of the complex fault evaluation routines to merge
their results with the results of the normal evaluation
routine so that the proper bit represents the fault. This
is accomplished by using MASKI in the FUNFL T
table. Assume that variable SP temporarily contains
the non-fault. element evaluation results and the
variable SPFT contains the results from the element
representing the complex fault. As was stated before,
MASKI contains a 1 in the bit position that is to
represent the fault, then the statement

SP = (SP.AND. (.NOT.MASKI)) .OR.
(MASK1.AND.SPFT)

will insert the fault in SP.
Other faults that can be modeled with the complex

fault insertion technique are shorted signals, shorted
diodes, NAND gates that operate as AND gates, edge
triggered D type flip-flops which are no longer edge
triggered, etc. Two signals which are shorted together
would be modeled as in Figure 5. A dummy gate is

A ... A*
0
U
M

a ... a* ...
P' -".

Figure 5-Shorted signals

placed over signals A and B. In the faulted case, the
dummy gate takes on the function of an AND gate or
an OR gate, depending on technology. In this case,
the input signals are ANDed or ORed together and the
result passes on to both A * and B*.

Another class of faults that .can be modeled, to some
extent, with. the complex method, is transient or inter
mittent faults. This is possible only because TEGAS2
is a time based simulator. As an example, let us model
the condition of a particular signal periodically going
to 0 independent of what its value is supposed to be.
Again we pass the signal through a dummy gate as in
Figure 6. The dummy gate also produces the fictitious
signal (F) which is ANDed with the normal signal. The
fictitious signal is normally 1, however the dummy
gate can use a random number generator to periodically
schedule the fictitious signal to go to O. It can also use
the random number generator or a given parameter
to determine how long the signal remains at O. From
this discussion, the flexibility and power of the complex
fault insertion method can be seen.

In addition to modeling the faults described· above,
any combination of faults can be modeled as if they
existed simultaneously. A group of faults that exist
at the same time is considered to be a multiple fault.
With this capability multiple occurring logical stuck
at 1 and logical stuck at 0 faults can be modeled. Also
multiple complex faults can be inserted, or any com
bination of the above.

Modeling a group of multiple faults is accomplished
simply by letting a single bit position in the signal
values represent each of the faults that are to exist
together. That is, MASKI in the fault tables would
have the same bit position set to one for each of the
faults in a group of multiple occurring faults.

This approach to the handling of multiple faults
has permitted us to develop a new technique for

simulating any number of faults, from one fault to all
faults, in one simulation pass. The added running time
for this approach is slightly more than that needed to
do a parallel simulation pass which consideres a number
of faults equal to the host machine word length minus
one. Hence, the approach has the potential of being
less time consuming than the one pass simulatorslO
and more flexible and efficient than the traditional
parallel simulators. The technique is called 111 ultiple
Number of Faults/Pass (MNFP) and partitions the
faults into classes that will be simulated as multiple
faults. Therefore, each bit position represents a group
of faults. If the groups are structured such that block
ing faults (such as a stuck at 1 and a stuck at 0 simul
taneously on the same signal) are not included in the
same group, fault detection can be achieved. If fault
isolation is required, the fault groups which contain
detected faults will be repartitioned and the process
continued. For example, if we are simulating 35 groups
of faults and five groups indicate faults being detected,
the five groups will be repartitioned and simulated for
isolation. The efficiency of this approach is derived
from the fact that the other 30 groups need not be
simulated any further for these inputs. Assume that
these 30 groups each contained 70 faults. For parallel
simulation, this would require 59 additional simulation
passes, over the (MNFP) approach.

Another feature of this approach is that all faults
need not, and indeed, sometimes should not, be simu
lated in one pass. For example, assume the following
partition of 2,168 faults.

N umber of groups

10
5

20
15
10
9

69 (Total Groups)

Number of faults/group

19
27
35
71
.6
2

2,168 (Total Number
of Faults)

For this case, two passes of the simulator would be
required, assuming a 36 bit host machine word.

MNFP is also being used in conjunction with diag
nostic test generation. For example, assume the exis
tence of 3500 faults, and that our diagnostic test
generation heuristics have generated three potential
tests (T 1, T 2 and T 3). If the faults are partitioned into
groups of 100 each, all faults could be simulated in one
pass. Hence, if each test is applied to the fault groups
using MNFP, it would require three passes to determine

Fault Insertion Techniques and Models 879

A .. A*
0
U
M

F .. ,..

Figure 6-Intermittent fault

(to some degree) the relative effectiveness of the tests.
If Tl and T2 detected faults in only one group, and T3
detected faults in 5 groups (with fault detection being
the objective), the most likely candidate for further
analysis would be Ta. Even if all of the faults in these
5 groups were then considered individually, (the worst
case) the entire process would require 18 simulation
passes, as opposed to 100 passes using conventional
parallel simulation. Further studies to determine the
most efficient utilization of the MNFP technique are
presently under way.

ENUMERATION OF FAULTS

If every fault that is to be inserted must be specified
manually, it could be a very laborious process. It is
certainly necessary to be able to specify faults manually
if desired, but it is also necessary to be able to generate
certain classes of faults automatically. TEGAS2 is set
up in a modular fashion such that control cards can
be used to invoke independent subroutines which will
generate different classes of faults. Additional faults
can be specified manually. New subroutines can be
easily added to generate new classes of faults as the
user desires. One class of faults that the system pres
ently generates automatically, is a collapsed set of
single occurring stuck-at-Iogical 1 and stuck-at-Iogical
o pin faults. This is the class of faults most often used.

A collapsed set of faults refers to the fact that many
faults are indistinguishable. For instance, a stuck at
o on any of the input pins of an AND gate and a stuck
at 0 on the output of the AND gate cannot be dis
tinguished. If this group of faults is collapsed into one
representative fault, it is considered to be a simple
gate collapse. This is easy to perform and many existing
systems utilize this feature.

880 Fall Joint Computer Conference, 1972

A 12

B.-..;:;3.£..4~
E

L..-__

13,14

15,16

C ~5!..:, 6~-f'" __ ""'"

F

ODD NUMBERS = S-A-I FAULTS
EVEN NUMBERS=S-A-O FAULTS

8 COLLAPSED FAULT SETS:
(1),(3), (2,4,IO,14) t (9,13,17,15,11),
(5),(7) ,(6,8, 12 ,16), (18)

Figure 7-Fault collapse

G
17,'8

A simple gate collapse is not, however, a complete
collapse. Figure 7 gives an example of a completely
collapsed set of faults. There are a total of 18 possible
single occurring S-A-l, S-A-O .faults. A simple gate
collapse will result in 12 sets of faults. However, an
extended collapse results in only 8 sets of distinguishable
faults. This amounts to a reduction of 33 percent over
the simple collapse. In large examples, the extended co-l
lapse has consistently shown a reduction of approxi
mately 35 percent over the simple collapse.

The information gained in collapsing a set of faults
has additional value. This information can be used
in determining optimal packaging of elements in MSI
or LSI arrays so as to gain fault resolution to a replace
able module. As in Figure 7, it can be readily seen that
these three elements might best be placed on the same
replaceable module. This is true because all three ele
ments are involved in an indistinguishable set of faults.

FAULT DETECTION

The activity associated with determining when a
fault has caused an observable malfunction can be
termed fault detection. As with many other functions,
TEGAS2 uses a dummy gate designated as the detec
tion gate, for this purpose. A detection gate is specified
for signals that are declared observable for the purpose
of fault detection. These signals are many times re
ferred to as primary outputs or test points. An ordered
set of such signals is called the output vector. If any
fault causes the value of one or more points on the

output vector to be different from when the fault is
not present, the fault is declared detected.

Whenever one of the signals, which is part of the
output vector, changes value, its corresponding detec
tion gate determines if a fault is observable at that
point. This is easily accomplished since the fault free
value for any signal is always stored in the low order
bit of the host machine word. The values for that
signal, corresponding to each of the faults being simu
lated at that time, are represented by the other bits
in the word. Hence, all that is necessary is to compare
each succeeding bit in the word to the low order bit.
If the comparison is unequal, a fault has been detected.

For each simulation pass the machine fault number
table (MFNT) (Figure 3) which cross-references each
bit position in the host machine word with the fault
to which it corresponds, is maintained. Once a compari
son is unequal, the table can be entered directly by bit
position and the represented fault can be determined.

When a fault is detected, the detection gate records
the identification number of the fault detected, the
good output vector, the output vector for the fault
just detected and the time at which the detection oc
curred. The input vector, at the time of detection, may
be optionally recorded. The important thing to note
is that since TEGAS2 simulates on the basis of very
accurate propagation delay times, the time of detec
tion has significance. By using this additional informa
tion, it is possible to gain increased fault resolution.
An example of this is when two faults A and B result
in identical output vectors for all input vectors applied.
Without any additional information, these two faults
cannot be distinguished. However, if the malfunction
caused by fault A appears before the malfunction
caused by B, then they can be distinguished based on
time of detection.

The detection gate performs several other duties.
For example, in mode 2 a signal may be flagged inde
terminate. In this case, the detection gate checks to
see that both the fault induced value and the fault
free value are determinate before a fault is declared
detected. In all modes of operation, a detection gate
may have a clock line as one of its inputs. This clock
line or strobe line, may be used to synchronize the
process of determining if a fault is detected. In this
manner, systems of testers which can examine for
faults only at certain time intervals can be accurately
simulated.

FAULT CONTROL

When dealing with logic nets of any size at all, such
as 500 elements and up, there are thousands of faults

to be considered. If such a magnitude of faults is to be
simulated efficiently, a good deal of attention must be
paid to the overall fault control. The overall control
should be such that it will handle an almost unlimited
number of faults and be as efficient as possible.

The first step in the process of fault simulation is the
specification of the faults to be inserted. As was stated
earlier, certain classes of faults may be generated
automatically and others specified manually. In either
case, the faults are placed sequentially on an external
storage device. After all faults have been enumerated,
an end-of-file mark is placed on the file and it is re
wound. This is accomplished with a control card. The
number of faults that can be specified is limited only
by the external storage space available.

The maximum number of faults that can be simulated
during a single simulation pass is dependent on the
number of bits in the host machine word, unless MNFP
is used. As mentioned earlier, one bit is always used for
the good machine and the others are used to represent
fault values. Through the use of a control card, the
user may specifiy the number of bits to be used, up to
the maximum allowable.

Let N be the number of faults to be simulated in
parallel. The basic steps in fault simulation would then
be as follows:

(1) Enumerate all faults to be simulated.
(2) Store on an external device all data necessary

to initialize a simulation pass.
(3) Read sequentially N faults from the external

fault file and set up the appropriate fault
tables.

(4) Negate the appropriate pointers based on the
faults tables.

(5) Pass control to the appropriate mode of simu
lation as determined by the user.

(6) If all faults have been simulated-stop.
(7) If there are more faults to be simulated, re

store data necessary to initialize simulation
and go to 3.

What has not been explicitly stated, up to this point,
is that all input vectors or input stimuli are applied to
a group of faults before going to the next group of
faults. This will be called the column method. With
zero delay or sometimes unit-delay simulation, fault
control is not usually done in this manner. In these
cases, a single input vector is applied to all groups of
faults before going to the next input vector. This will
be referred to as the row method. Between applying
input vectors in the row method, all faults are examined
to determine which ones have been detected and these
are discarded. The faults remaining can then r pe re-

Fault Insertion Techniques and Models 881

grouped so that fewer faults need be simulated
with the next input vector.

On the surface, the row method control seems more
efficient than the column method. However, there are
several things to be considered. First of all, when the
row method is used with sequential logic, the state
information for every fault must be saved at the end
of applying each input vector. This requires a great
deal of bit manipulation and storage space. The
amount of state information that must be stored is
dependent on the type of simulation used. If, as with
most zero delay simulators, the circuit is leveled and
feedback loops are isolated and broken, only the
values of feedback loops and flip-flop states need to
be stored. With a simulator such as TEGAS2, the
circuit is dynamically leveled and feedback loops are
never detected and broken, therefore, every signal
must be stored. This is one of the reasons that the
row method is not considered to be as practical with
a time based simulator such as TEGAS2.

A second consideration is the fact that with TEGAS2,
all input stimuli can be placed at appropriate places
in a time queue before simulation begins. Once simu
lation begins, it is one continuous process until all
stimuli have been applied. Because of this, a large
number of input stimuli can be processed very rapidly
and efficiently.

The abiljty to place all input stimuli in a time queue
would not be possible if a time based simulator were
not used. With a zero delay, or even a unit delay simu
lator, input stimuli cannot be specified to occur at a
particular time in reference to the activity of the rest
of the circuit. Therefore, one input vector is applied
and the entire circuit must be simulated until it has
been determined to be stable. Then the next input
vector can be applied, etc. In this manner, there is a
certain amount of activity partitioning between input
vectors, which lends itself to the row method.

The third factor to consider is that if a fault is no
longer simulated after it is once detected, a certain
amount of fault isolation information is lost. If the
column method is used, the cost of retaining a fault
until the desired fault isolation is obtained is consider
ably less than with the row method.

EXAMPLES

To demonstrate the fault simulation capabilities of
TEGAS2, as presented in this paper, consider the
network in Figure 8. This network is a particular gate
level representation of a J-K master slave flip-flop.
The nominal propagational delay time of each of the
NAND gates is four (4) time units and the delay of

882 Fall Joint Computer Conference, 1972

CLEAR

CLOCK PRESET

Figure 8-JK master slave flip-flop example

the NOT gate is two (2) time units. The minimum
delay of the NAND gates is three (3) time units and
the maximum is five (5) time units. For the NOT gate,
the minimum and maximum is one (1) and three (3)
units, respectively.

The two valued assignable nominal delay mode of
simulation is the fastest mode, but it performs no race
and hazard analysis. In this mode of simulation, all
signals are initially set to zero. Suppose that for the
network in Figure 8; the signals J, K, CLEAR, and
PRESET are set to 1. Now let the signal CLOCK
continuously go up and down with an up time of five
and a down time of fifteen. The outputs, Q and Q will
oscillate because they are never driven to a known
state. If the same input conditions are used in the
three valued mode of simulation, the outputs will
remain constant at X (unknown).

To demonstrate the power of the race and hazard
mode of simulation,assume that the inputs J and K
change values while the GLOCK is high and that the
clock goes to zero two time units after the inputs
change. Under these conditions, internal races will be
created and a potential error flag will be set for both
of the outputs Q and Q.

Performing the extended fault collapse on the net
work in Figure 8 resulted in a total of forty faults
(Table I) that must be inserted .. (A simple gate collapse
would result in fifty-two faults to be inserted.)

. Table II gives a set of inputs that were applied to
the network in all three modes of fault simulation. The
table gives all primary input signal changes. In the
following analysis of fault detection, the signals Q and
Q are the only test points for the purpose of observing
faults. In the first mode of simulation, two valued
assignable nominal delay, thirty-three of jthe faults
were detected.· The seven faults not detected were 15,
16, 25, 27, 29, 31, and 33. In the three valued mode of

simulation, there were thirty faults declared to be
detected. Seven of the faults not detected were the
same as in the first mode of simulation. The three other
faults not detected were 1, 20, an.d 23. The reason
these faults were not detected, in the three valued
mode of simulation, is that they prevented the network
from being driven to a known state. In the race and
hazard analysis mode of simulation, twenty-six faults
were declared to be detected. Out of the fourteen
faults not detected, ten are the same as those not de-
tected in the three valued mode. The other four faults
are 5, 7, 8 and 11. Faults 7 and 8 were never detected
because they never reached a stable state different
from a stable state of the good machine's value. Many

TABLE I-Collapsed Set of Faults for Network in Figure 8

Fault Fault
No. Gate Signal Type

1 CLEAR SAl
2 CLEAR SAO
3 CLOCK SAl
4 CLOCK SAO
5 PRESET SAl
6 PRESET SAO
7 Q QB SAl
8 Q PRESET SAl
9 Q SAO

10 F3 F4 SAl
11 F3 PRESET SAl
12 F3 SAO
13 F7 SAl
14 F7 SAO
15 F2 Q SAl
16 F2 PRESET SAl
17 F2 CLOCK SAl
18 F2 SAO
19 QB Q SAl
20 QB CLEAR SAl
21 QB SAO
22 F4 F3 SAl
23 F4 CLEAR SAl
24 F4 SAO
25 F1 QB SAl
26 F1 CLOCK SAl
27 F1 CLEAR SAl
28 F1 SAO
29 K SAl
30 K SAO
31 J SAl
32 J SAO
33 F6 F7 SAl
34 F6 F4 SAl
35 F6 SAl
36 F6 SAO
37 F5 F7 SAl
38 F5 F3 SAl
39 F5 SAl
40 F5 SAO

CLEAR

DUMI C: =:J INTERMITTENT
(I)

CLOCK PRESET

Figure 9-Complex faults

times faults 7 and 8 caused the output signals Q and Q
to be in a state of transition while the good machine
value was stable. However, this is not sufficient for
detection. Faults 5 and 11 caused potential errors and
were therefore never declared to be absolutely de
tected.

Table III gives time vs. faults detected for each of
the three modes of simulation. Note that some of the
faults are detected at different times between the two
valued and three valued modes of simulation. This is
due to the fact that some signals were not driven to
known states in the three valued mode of simulation
until a later time. Faults were also detected at dif
ferent times in the race and hazard analysis mode
since minimum and maximum delay times were used.

N ow the insertion of complex faults will be demon
strated. The flip-flop network is marked in Figure 9
with five complex faults. Three of the complex faults
require dummy elements. The first fault is an inter
mittent SAO on the PRESET signal. The dummy

TABLE II-Input Signal Changes

Value
Changed Time of

Signal to Change
J 1 0
K 0 0

CLOCK 0 0
CLEAR 0 0
PRESET 1 0
CLEAR 1 30
CLOCK 1 70
CLOCK 0 110

J 0 131
K 1 131

CLOCK 1 131
CLOCK 0 134
PRESET 0 160

Fault Insertion Techniques and Models 883

TABLE III-Time vs. Fault Detection

FAULTS

Time Mode-1 Mode-2 Mode-3

4 9,21 21
5 21
8 39

10 1,6,20,38,40
12 3, 12, 14
16 24, 28 6,24,28,38,40
18
20 23 6,24,28,38,40
46 22,26 22,26
50 22,26
80 19 19
83 19
86 13,37 13,37
90 13,37

120 2,4,32 2, 3, 4, 9, 12, 14
32,39

123 2, 3, 4, 9, 12, 14
39,32

124 18, 34, 36 18,34,36
126 10 10
128 18, 34, 36
130 10
141 7 7
147 30, 35 30,35
150 17 17
151 17, 30, 37
167 5,8 5, 8
179 11 11

element DUMI is used to insert this fault~ The second
fault is an input diode shorted on the connection of
signal F4 to gate F6. To insert this fault, the signals
F4 and F7 are passed through the dummy element
DUM2. The element DUM3 is used to model a signal
short between signals F5 and F6. A fourth complex
fault is the case where element F3 operates an AND
gate instead of a NAND gate. The fifth complex
fault is a multiple fault. This multiple fault consists
of a SAO on the input connection of signal CLEAR
to gate Q, a SAlon signal Fl, and gate F2 operating
as an AND gate instead of a NAND gate.

The same input signal changes as given in Table II
up through time 110 were applied to the network with
these faults present. The times of detection for these
faults in mode 1 are:

Time
10
12
16

120
120

Fault No.
1
4
3
2
5

884 Fall Joint Computer Conference, 1972

Hence, these faults were simulated simultaneously and
detected by the given input sequence for this mode of
simulation.

SUMMARY

The TEGAS2 system is capable of simulating faults at
three levels. The most accurate level performs race and
hazard analysis with minimum and maximum delay
times. The fault insertion methods developed for
TEGAS2 are capable of modelling not only the tradi
tional set of single occurring stuck-at logical one and
stuck-at logical zero faults, but, also a wide range of
complex faults such as intermittents, shorted signals,
and shorted diodes. In addition, any multiple occur
rence of the above faults can be modeled. The specifica
tions of these faults can be done by the user or an ex
tended collapsed set of single occurring stuck-at
faults can be generated automatically. Due to accurate
time based simulation for faults, it is possible to extract
accurate time based fault diagnosis information. Finally,
with the introduction of the MNFP technique, a new
dimension has been added to digital fault simulation.

REFERFNCES

1 E G ULRICH
Time-sequenced logical simulation based on circuit delay and
selective tracing of active network paths
Proceedings ACM 20th National Conference 1965

2 S A SZYGENDA D ROUSE E THOMPSON
A model and implementation of a universal time delay simu
lator for large digital nets
AFIPS Proceedings SJCC May 1970

3 M A BREUER
Functional partitioning and simulation of digital circuits
IEEE Transactions on Computers Vol C-19 pp 1038-1046
Nov 1970

4 S G CHAPPELL S S YAU
Simulation of large asynchronous logic circuits using an
ambiguous gate model
AFIPSProceedings F JCC November 1971

5 R B WALFORD
The LAMP system
Proceedings of the Lehigh Workshop on Fault Detection
and Diagnostics in Digital Circuits and Systems
December 1971

6 R M McCLURE
Fault simulation of digital logic utilizing a small host machine
Proceedings of the 9th ACM-IEEE Design Automation
Workshop June 1972

7 E G MANNING H Y CHANG
A comparison of fault simulation methods for digital systems
Digest of the First Annual IEEE Computer Conference
1967

8 S A SZYGENDA
A simulator for digital design verification and diagnosis
Proceedings of the 1971 Lehigh Workshop on Reliability
and Maintainability December 1971

9 S A SZYGENDA
TEGAS2-Anatomy of a general purpose test generation and
simulation system for digital logic
Proceedings of the 9th ACM-IEEE Deisgn Automation
Workshop June 1972

10 D B ARMSTRONG
A deductive method for simulating faults in logic circuits
IEEE Transactions on Computers May 1972

A program for the analysis and design of
general dynamic mechanical systems

by D. A. CALAHAN and N. ORLANDEA

The University of Michigan
Ann Arbor, Michigan

INTRODUCTION

The physical laws that govern motion of individual
components of mechanical assemblages are well-known.
Thus, on the face of it, the concept of a general com
puter-aided-design program for mechanical system
design appears straightforward. However, both the
equation formulation and the numerial solution of these
equations pose challenging problems for dynamic
systems: the former when three-dimensional effects are
important, and the latter when the equations become
"stiff"! or when different types of analyses are to be
performed.

In this paper, a three-dimensional mechanical
dynamic analysis and design program is described.
This program will perform dynamic analysis of non
linear systems; it will also perform linearized vibrational
and modal analysis and automatic iterative design
around any solution point in the nonlinear dynamic
analysis.

FORMULATION

The equations of motion of a three-dimensional
mechanical system can be written in the following form.
Free body equations:

(1)

(2)

j=4, 5, 6

(3)

j=1,2, ... 6 (4)

885

Constraint (connection) equations:

i=l, 2, ... m (5)
where

E is the kinetic energy of the system
qj are generalized coordinates (three rotational and

three translational) ,
Uj are the coordinate velocities,
Ai are Lagrange multipliers, representing reaction

forces in joints,
pj are generalized angular momentums,
Qj are generalized forces,
€/Ji are constraint functions representing different

types of connections at joints (see Figure 2).

Representing all subscripted variables in vector form
(e.g., !f.= [UI U2 ••• u6JI) , these equations become

l(y., ~, fj, p,~; t) =0

cJ!(~) =Q

(6)

(7)

By referencing the free body equations of (1-3) to the
joints, we can view the above as a "nodal" type of
formulation.

NUMERICAL SOLUTION

Static and transient analysis

To avoid the numerical instability associated with
widely separated time constants, most general-purpose
dynamic analysis programs employ implicit integration
techniques. The corrector equation corresponding to
(6) has the form

(Ko o~ + of) A~+ (oF) Aq
T duo OU ~-

(KoOF OF) (OF) +--+- Ap+ - AA=-F
T oJ!. oJ! - o~ - -

(iJ€/J/og) A2=-€/J

(8)

(9)

886 Fall Joint Computer Conference, 1972

where

GENERATION OF THREE SPARSE MATRIX CODES
FOR STATIC. TRANSIENT, AND

VI.BRATIONAL (MODAL) ANALYSIS

Figure 1-0utline of program capabilities

T is the integration step size,
Ko is a constant of integration.

The matrix of partial derivatives in (7-8) is solved
repetitively using explicit machine code. The Gear
formula is used for integration. 2

Vibrational and modal analysis

Substitution of s for Ko/T in (8) can be viewed as
resulting in the linearized system equations

[(aF)n (aF)n] (aF)n
s a,?& + ay' OU+ a~ o~

(aF aF) (aF)n
+ s ap + ap op+ a1 o~=I(s) (10)

(acfJ/ ag) ofj = Q (11)
where

) n represents evaluation at the nth time step;
this includes the static equilibrium case (n=O),

0_ represents a small variation around the nth
time step,

1(s) is a force or torque source vector.

The evaluation of the vibrational response now proceeds
by setting s = jw = j27rJ, and sweeping J over the fre
quency range of interest. This repeated evaluation is
similar in spirit to the repeated solution of (8-9) at
every corrector iteration. However, now an interpreter4

is used for solution of the complex-valued simultaneous
equations.

Modal analysis (i.e., determination of the natural
frequencies) is relatively expensive if all modes must be
found. However, the dominant mode can usually be
found (from a "good" initial guess) in 5-7 evaluations

of the system determinant using Muller's method.5

This determinant is readily found from the interpreter,
which performs an L U factorization to find the vibra
tional response.

Solution efficiency

For each corrector iteration involved in (8-9), the
minimum set of variables that must be determined are
those required to update the Jacobian and right hand
side vector-E.. The constraint equations represented by
9!. = Q can in general relate any qj variables in a nonlinear
manner; also, from (1) and (2), the A's appear in the
aEla~ term of the Jacobian. Therefore, it seems con
venient to solve for all the arguments of E. of (6). We
do not, then, attempt to reduce the number of equations

. to a "minimum set" (such as the number of degrees of
freedom) ; since most variables must be updated anyway,
we find no purpose in identifying such a minimum set
for the purpose of transient analysis.

In contrast, for vibrational and modal analysis, a
significant savings could be achieved by reducing the
equations to the number of degrees of freedom of the
system. We do not exploit this at present, since a single
transient analysis easily dominates other types of
analysis in cost.

AUTOMATIC DESIGN

Unlike electrical circuit design, it is not common to
design mechanical systems to precisely match a fre
quency specification. It is far more common to adjust
only the dominant mode to achieve an acceptable
dynamic response.

One of the most direct approaches to automatic
iterative adjustment of the natural modes is to apply
Newton iteration to the problem of solving ~ (s) = 0

TYPE OF NO. OF EQUATIONS EXAMPLE OF SYMBOL
JOINTS OF CONSTRAINTS APPLICATION

SPHERICAL ~ 3 SUSPENSION OF CARS

UNIVERSAL ~ 4 TRANSMISSION FOR CARS

CYLINDRICAL ~ 4 MACHINE TOOLS

TRANSLATIONAL ~ 5 MACHINE TOOLS

REVOLUTE

~ 5 BEARINGS

SCREW A 5 SCREWS

Figure 2-Constraint library

Program for Analysis and Design of General Dynamic Mechanical Systems 887

x y

Figure 3-Example mechanism

where A is the system determinant associated with
(4). In particular, if 8i is a desired natural mode, and
~j is a parameter, then we solve iteratively

or

Here, the term in brackets can be identified as a transfer
function of the linearized system.

IS

-
~ 10 en

"'" ~ o
'--.~ S

o O.S 1.0
[sec]

loS

Figure 4-Transient response

.I

~-'-I-__ --- 6.4
I
I
I
I
I

.18

Figure 5-Vibrational response

PROGRAM DESCRIPTION

log f

The general features of the program are outlined in
Figure 1. In general, the program is intended to permit
analysis of assemblages of links described by their
masses and three inertial moments compatibly con
nected by any of the joints of Figure 2. Other types of
mechanical elements (gears, cams, springs, dashpots)
will be added shortly. IVlost of these fit neatly into the
nodal formulation, effecting only the constraint equa
tions given in (2).

EXAl\1PLE

The system shown in Figure 3 was simulated over a
duration of 42.5 seconds of physical time. It was as-'

(-.45,1.7S)
t=.S j(al

--x---.------~~~--.. ----x--------~-
-1.28 -.28 .707
t=O t=O t=.28

Figure 6-Locus of natural modes

888 Fall Joint Computer Conference, 1972

sumed that a motor with a linear torque vs. speed
characteristic, 72 vs. W2, drove the system against a
constant load torque, 74. Figure 4 shows the transient
response; a vibrational response is shown in Figure 5
around the static equilibrium point. Figure 6 shows the
motion of the natural frequencies as the transient
response develops; it may be noted that as the natural
modes develop a larger imaginary component, an
oscillation of increasing frequency appears in the tran
sient response.

SUIVnVIARY

The nodal formulation of (1-5) offers a number of
programming and numerical solution features.

(1) No topological preprocessing is necessary to
establish a set of independent variables; equa
tions can be developed directly from the con
nection data, component-by~component.

(2) Having a large number of solution variables
assists in modeling common physical phenomena;
for example, frictional effects in joints are
routinely modeled and impact is easily handled.

(3) Sensitivity necessary for man-machine and
iterative design are easily determined due to the
explicit appearance of common parameters (e.g.,
masses, inertial terms, link dimensions) in the
nodal formulation.

(4) The use of force and torque equations permits
easy capability with current methods of con
tinuum mechanics for internal stress analysis.

It must be mentioned that the transient solution of
three-dimensional mechanical systems poses some
interesting numerical problems not present in the
related fields of circuit and structural analysis. First,
the equations are highly nonlinear requiring evaluations
of tensor products at each corrector iteration; also,
associated matrices are of irregular block structure.
Second, the natural modes are not infrequently in the
right half plane, representing a falling or a locking
motion (see Figure 3). The integration of such (locally)
unstable equations is not a well-understood process and

can be expected to yield some numerical difficulties.
Among these appear to be a high degree of oscillation
in the reaction forces (X/s), preventing any effective
error control to be exerted on these variables.

ACKNOWLEDGMENTS

The. authors gratefully acknowledge the interest and
support of the U. S. Air Force Office of Scientific
Research (Grant No. AFOSR-71-2027), and the
National Science Foundation (NSF Grant No.
GK-31800).

REFERENCES

1 C W GEAR
DIFSU B for solution of ordinary differential equations
CACM
Vol 14 No 3 pp 185-190 March 1971

2 N ORLANDEA M A CHACE D A CALAHAN
Sparsity-oriented methods for simulation of mechanical
dynamic systems
Proc 1972 Princeton Conf on Information Sciences and
Systems March 1972

3 F G GUSTAVSON W M LINIGER
R A WILLOUGHBY
Symbolic generation of an optimal count algorithm for sparse
systems of linear equations
Sparse Matrix Proceedings (1969) IBM Thomas J Watson
Research Center Yorktown Heights New York Sept 1971

4 H LEE
An implementation of gaussian elimination for sparse systems
of linear equations
Sparse Matrix Proceedings (1969) IBM Thomas J Watson
Research Center Yorktown Heights New York Sept 1971

5 D E MULLER
A method for solving algebraic equations using an automatic
computer
Math Tables Aids Computer Vol 10 pp 208-215 1956

6 M A CHACE D A CALAHAN N ORLANDEA
D SMITH
Formulation and numerical methods in the computer evaluation
of mechanical dynamic systems
Proc Third World Congress for the Theory of Machines and
Mechanisms Kupari Yugoslavia pp 61-99 Sept 13-20 1971

7 R C DIX T J LEHMAN
Simulation of dynamic machinery
ASME Paper 71-Vibr-l11 Proc Toronto ASME Meeting
Sept 1971

A wholesale retail concept for
computer network management

by DAVID L. GROBSTEIN

Picatinny Arsenal
Dover, New Jersey

and

RONALD P. UHLIG

US Army Materiel Command
Washington, D.C.

THE MANAGEMENT PROBLEM

In the past few years the technical feasibility of com
puter networks has been demonstrated. An examination
of the existing networks, however, indicates that they
are generally composed of homogeneous machines or are
located essentially in one geographical area. The most
notable exception to this is the ARPA Network which is
widely distributed geographically and which has a
variety of computers. The state-of-the-art now appears
to be sufficiently far along to allow serious consideration
of computer networks which are not experimental in
origin and are not university based.

When a large governmental or industrial organization
contemplates the establishment of a computer network,
initial excitement· focuses on technical sophistication
and capabilities which may be achieved. As the problem
is examined more deeply it becomes progressively clearer
that the management aspects represent the greater
challenge. There a.re a number of sound reasons for an
organization to establish a computer network, but
fundamental to these is the intent to reduce over-all
computer resources required, by sharing them. The im
plications of this commitment to share are more far
reaching than is immediately obvious when the idea is
first put forth.

In both government and industry it is common to
find computing facilities established to service the needs
of a particular profit center or activity. That is, the
computer resources necessary to support a mission
organization are placed under its own control, as in
Divisions 1, 2, and 4 in Figure 1.

889

The commitment to share computer resources in a
network implies substantial changes in the resource
control topology of that organization. This is particu
larly true for organizations that have existing computing
facilities which will be pooled to form the base of the
network's resources. The crux of the matter is that
sharing implies not only that you will let someone else
utilize the unused capacity of your computer; it also im
plies that you may be told to forgo installing your own
machine because there is unused capacity elsewhere in
the resource pool. If your mission depends on the avail
ability and suitability of computer services from some
one else's machine you suddenly become very interested
in the management structure which governs the rela
tionship between your organization and the Qne that has
the computer.

The purpose of this paper is to examine some of the
objectives and problems of an organization having exist
ing independent computing centers, when it contem
plates moving into a network environment.

COMPUTER NETWORK ADVANTAGES

Computer network advantages can be divided into
two categories, operational and management. The fol
lowing advantages are classified· as operational in that
they affect the day to day use of facilities in the net
work:

1. Provide access to large scale computers by users
who do not have on-site machines.

890 Fall Joint Computer Conference, 1972

CORPORATE
HEADQUARTERS

Figure 1-:Qec~ntralized computing facilities

2. Provide access to different kinds of computers
that are available in the network.

3. Provide access to specialized programs or tech
nology available at particular computing centers.

4. Reduce costs by sharing of proprietary programs
without paying for them at multiple sites.

5. Load level among computing centers.
6. Provide back-up capability in case of over-load,

temporary, or extended outage.

A very fundamental advantage is the provision of a
full range of computing power to users, without having
to install a high capacity machine at each site. To
achieve this, it is necessary to provide access to the net
work through time sharing, batch processing and inter
active graphics terminals. For each of these to be ap
plied ~o that portion of a project for which it is best
suited, all must have access to a common data base.

Computer users frequently find programs that will
be valuable to them but which have been developed for
some other machine. Conversion to their own machine
can be time consuming· and costly even if the programs
are written in FORTRAN. Computer networks can
offer access to different kinds of machines so that bor- .
rowed programs may be run without conversion. If the
program will serve without modification it need not be
borrowed at all but can be used through the network at
whichever installation has developed it. Thus a network
environment can be used to encourage specialized tech
nology at each computing center so that implementation
and maintenance costs need not be repeated at every
user's site.

Computer networks can provide better service to
users by allowing load leveling among the centers in the
network so that no single machine becomes so over
loaded that response and turn-around time degrade to
unacceptable levels. Furthermore, the availability of like
machines provides back up facilities to insure relatively
uninterrupted service, at least for high priority work.

From the standpoint of managing computer resources,
networks offer several advantages in helping to achieve
the goal of the best possible service for the least cost.
Among these advantages are:

1. Greater ease and precision in identifying ag
gregated computing workload requirements, by
providing a larger and more stable base from
which to make workload projections.

2. Ability to add capacity to the network as a
whole, rather than at each individual installation
by developing specifications for new main frames
based on total network requirements, with less
regard for specific geographic location.

3. Computing power can be added in· increments
which more closely match requirements.

Experience at a number of installations indicates that
it is extremely difficult to project computer use on a
project by project basis with sufficient accuracy to use
the aggregated data as a basis for installation or aug
mentation of computer facilities. Project estimations
vary widely, particularly in scientific and engineering
areas. The need for computer support is strongly driven
by the week to week exigencies of the project. Because
of this variability, larger computing centers can often
project their future requirements better from past his
tory and current use trends, than by adding up the re
quirements of each individual project. In a computing
network these trends can be more easily identified, and,
since the network as a whole serves a larger customer
base than any single installation, the projections can be
made more accurately. Simply stated, the law of large
numbers applies to the aggregate.

The second and third management advantages listed
above are interrelated but not really the same. In a
network, adding capacity to any node makes that capac
ity available to everyone else in the network. It is im
portant to recognize that this applies to specialized
kinds of capacity as well as to general purpose com
puter cycles. Thus when specifications for new hardware
are developed, they can include requirements derived
from the total network. Finally computer capacity
tends to come in fixed size pieces. In the case of com
puters which can service relatively large and relatively
long running computer programs, the pieces are not only
large, they are very expensive. When these have to be
provided at each installation requiring computer serv
ices, there is frequently expensive unused capacity
when the equipment is first installed. In a network,
added computing power can be more easily matched to
overall requirements because the network capacity
increments are distributed over a larger base.

Wholesale Retail Concept for Computer Network l\1anagement 891

WHOLESALE VS RETAIL FUNCTIONS

Now let's examine the services obtained from a com
puting network.

At most large computing centers, personnel, financial,
and facilities resources are devoted to a combination of
functions which include acquisition and operation of
computing hardware, installation and maintenance of
operating systems, language processors, and other gen
eral purpose "systems" software, and design and de
velopment of applications programs. These functions
are integrated by the computing center manager to try
to provide the best overall service to his customers.
The Director of Computing Services at a location with
its own computer center, provides an organizational
interface with his local customers which may include
the Director of Laboratories, the Director of Research
and Engineering, Director of Product Assurance, and
other similar functions which require scientific and
engineering computer support.

But what structure is required if there is no computing
center at a particular location? How does the use of
computer network services, instead of organizationally
local hardware, affect the computer supported ac
tivities? Conversely, in a computer network environ
ment, what is the effect of having no customers at the
actual local site of the computing center? What func
tional structure is required at such a lonely center and
what services should it offer?

In considering the answer to these and other ques
tions involved in the establishment of a computer net
work it is useful to distinguish wholesale from retail
computing services. At its most fundamental level the
wholesale computing function might be defined as the
production of usable computer cycles. In order to
achieve this it is necessary to have not only computer
hardware, but also the operating systems software,
language processors, etc., which are needed to make the
hardware cycles accessible and usable. The wholesaler
produces his services in bulk. The production of whole
sale computer cycles may be likened to the production
of coal, oil, or natural gas. Each of these products can
be used in support of a wide variety of applications from
the production of electricity to heating homes to broil
ing steaks on the back yard grill. The specific applica
tion is not the primary concern of the wholesaler. His
concern is to produce bulk quantities of his product at
the lowest possible cost. The Wholesale Computing
Facility (WCF) like the oil producer, has to offer a well
defined, stable product, in a sufficient number of grades
(classes of service) to satisfy his end users. To achieve
this he also must have a marketing function which
interacts with his retailers in order to maximize the

TABLE I-Resources and Services Offered by A Typical
Wholesale Computing Facility (WCF) ;

RESOURCES

Computers
System Software
General Purpose Application

Software
Systems Programmers
Operators
Communications Equipment

SERVICES

Batch processing access
Interactive terminal access
Real time access
Data File storage
Data Base Management
Contract programming
Consulting Services

Systems Software
Hardware Interfaces
Communications

Documentation & Manuals
Marketing/Marketing
Support

value of the products he offers. The marketing function
includes technical representatives in the form of soft
ware and hardware consultants which can explain to
the retailer how to derive the maximum value from the
services offered and how to solve technical problems
which arise.

Table I is a non-exhaustive list of the resources needed
and services offered by a typical WCF.

Unlike the Wholesale Computing Facility which
strives for efficient and effective production of general
purpose computing power, the Retail Computing Facil
ity (RCF) has the function of efficiently and effectively
delivering service directly to the user. The user's con
cern is with mission accomplishment. He has a project
to complete, and the computer provides an analytical
tool. He is not directly concerned with efficiency of
computer operation; he is concerned with maximizing
the value of computer services to his project. In this
respect fast turn-around time and specialized applica
tions programs which ease his burden of communicating
with the computer may be more important than obtain
ing the largest number of computer cycles per dollar.
The retailer's function is to. provide an interface be
tween the WCF and the user. His primary concern is
to cater to the special needs, the taste and style of his
customers. He must provide a wide variety of services
which tailor the available computing power to each
specialized need.

To do this it is vital that the retailer understand
and relate to his user's needs and capabilities. For the
sophisticated user he may 'have to provide interactive
terminal access and a variety of high level languages
with which the user can develop his own ,specialized
applications programs. For others he must offer
analyst and programmer services to develop computer

892 Fall Joint Computer Conference, 1972

TABLE II-Resources Needed By and Services Offered By a
Typical Retail Computing Facility (ReF)

RESOURCES

Wholesale /Retail
Agreements

Access to computers
(terminals)

Personnel
General Purpose Applications

Programs
Marketing Support

SERVICES

Usable Computer Time
Special Purpose Applications

Programming
General Purpose Applications

Programming
Software Consultant

Services
Applications and Debugging

Consultation
User Training
Administrative Services

Arrangement for Terminals
Users Guides, Manuals,
Key Punching, Password
Assignments
Marketing /

applications to the customer's specifications. His pri
mary orientation must be toward supporting his user's
missions.

The Retail Computing Facility also represents its
users to the Wholesale Computing Facilities. In doing
so, it helps the wholesaler to determine the kind of
products which must be offered. The retailer may need
to buy batch processing, interactive time sharing, and
computer graphics services. He may need access to
several different brands of computers, in order to pro
cess applications programs which his users have devel
oped or acquired from others. He acquires commitments
for these services from wholesalers through wholesale/
retail agreements. Table II indicates resources needed
and services provided by ReFs.

UTILITY OF THE WHOLESALE RETAIL
DISTINCTION

The notion of separate wholesale andretail computing
facilities is useful for several reasons, particularly when
a large company or government agency is attempting
to integrate independent decentralized computing
centers into a network. In the pre-network environ
ment both the wholesale and retail facilities tend to be
contained in the same organization and have responsi
bility for servicing only that organization. In a network
environment it is important to identify the Wholesale
Computing Facility in order to understand that it will
be serving other organizations as well, and therefore
must take a non-parochial point of view. The importance
of this viewpoint is indicated by the fact that whole-

sale/retail agreements are regarded by the retailer as a
resource. For the retailer to depend on them, the agree
ments must be binding, and the retailer must be as
sured that he will receive the same treatment when he
is accessing a· computer remotely through the network
as he would if he were geographically and organiza
tionally a part of the wholesaler's installation. After
all, to achieve the benefits of sharing computer re
sources which a network offers, it is necessary to tell
some organizations that they cannot have their own
computers. Thus it is clear that binding agreements, as
surrogates for local computer centers, are fundamental
to successful network implementation.

Anothe'r reason to distinguish between wholesale and
retail facilities is to make it clear that you cannot serve
users merely by placing bare terminals where they can
be reached. Examination of the retail functions indicate
that they include a large number of the user oriented
services offered by existing computing centers. It is im
portant to recognize that the decision to use only termi
nal access to the network at some locations, does not
result in saving all the resources that would be required
to set up an independent computing center at those loca
tions. Quite the contrary, if computing services are
needed, it is a management obligation to provide the
required resources for a successful Retail Computing
Facility.

A third reason for identifying the two functions is
that in discussing organization and funding, lines of
responsibility and control are clearer to portray. This
third reason implies that the wholesale/retail distinction
is useful in understanding and planning for network
organization, whether or not the distinction becomes
visible in the implemented organization as separate

DIRECTOR
OF

COMPUTING SERVICES

.......................... I i···································

I ADMINISTRATIVE 1
SERVICES

I : I : I

COMPUTER SYSTEMS SCIENTIFIC

OPERATIONS SOFTWARE APPLICATIONS
DEVELOPMENT

WHOLESALE COMPUTING :
FACILITY !

.. :

RETAIL COMPUTING
FACILITY

"

Figure 2-Wholesale and retail computing facilities identified
within a "typical" computing center

Wholesale Retail Concept for Computer Network Management 893

segments. The wholesale and retail portions of a "typi
cal" computing center are indicated in Figure 2.

APPLICATION OF THE WHOLESALE/RETAIL
MANAGEMENT CONCEPT

The concepts discussed to this point were developed
in a search for answers to some very real problems cur
rently facing the authors' organization. We want to
make it clear that these theories and ideas are not
official policy of our organization; rather they are pos
sible. solutions to some of these problems. In discussing
the approach described above with colleagues thr.ough
out our organization, we discovered that it is useful to
consider possible applications of these ideas in concrete
rather than abstract terms. Our colleagues needed to
know where they fit into the plan in order to understand
it. Furthermore, mapping a general plan onto the struc
ture of a specific organization is a prerequisite to ac
ceptance.

THE AUTHORS' ORGANIZATION

The authors are in scientific and engineering data
processing management positions with the US Army
Materiel Command (AMC) , a major command of the
US Army employing approximately 130,000 civilians,
and 13,000 military at the time this paper was written.
AMC has the mission of carrying out research, develop
ment, testing, procurement, supply and maintenance
of the hardware in the Army's inventory. The scope
of this mission is staggering. Some of the major or
ganizational elements comprising the Army Materiel
Command include "Commodity Commands" with
responsibility for research, development, procurement
and supply for specific groups of commodities (hard
ware), depots for maintenance and supply, and inde
pendent laboratories for exploratory research.

Because of the nature of its mission, AMC might be
likened to a large corporation with many divisions. For
example, one of the "Commodity Commands"-Tank
Automotive Command in Detroit, Michigan-c-carries
out work similar to that carried out by a major auto
mobile manufacturer in the United States. Another
"Commodity Command"-Electronics Comm,and
carries out work similar to that carried out by a major
electronics corporation. In a sense each of these "Com
modity Commands" operates as a small corporation
within the larger parent corporation. Each Commodity
Command has laboratory facilities for carrying out
research in its areas of commodity responsibility. In
addition, independent laboratories carry out basic and

exploratory research. It may be helpful in the discussion
which follows to draw a comparison between industrial
situations and the Army Materiel Command. The
Commanding General of AM C occupies a position simi
lar to that of the President of a large diversified cor
poration. The Commanding Generals of each of the
Commodity Commands and independent laboratories
might be compared to Senior Group Vice Presidents in
this large corporation, while the Commanding Officers
of various research activities within Commodity Com
mands carry out functions similar to those carried out
by Vice Presidents responsible for particular mission
areas within a corporation.

As in many large corporations, AM C has a number of
different types of computers in geographically dispersed
locations to provide computer support under many
different Commanding Officers.

Locations having major computing resources which
are candidates for sharing, and locations requiring
scientific and engineering computer support are shown
in Figure 3. The resources which are candidates for
sharing include 8 IBM 360 series computers (1 model 30,
1 model 40, 2 model 44s, 1 model 50, 3 model 65s),
three Control Data Corporation 6000 series computers
(1 CDC 6500, and 2 CDC 6600s), seven Univac 1100
series computers (6 Univac 1108s, 1 Univac 1106), one
Burroughs 5500 computer, two EMR 6135 computers,
and two additional major computers not yet selected.
These 21 computers are located and operated at 17 dif
ferent locations among those shown in Figure 3. It is
not clear that everyone of the locations requiring

ALASKA-\

Figure 3-AMC locations which have scientific computers or
require scientific computing services

894 Fall Joint Computer Conference, 1972

services should ultimately receive them through a
computing network. The main purpose of this illustra

, tion is to show the magnitude of the problem.
In exploring the existing situation it came as some

what of a surprise to discover that we already have most
of the management problems of computer networks,
despite the fact that not all of the seventeen computer
sites and thirty-one users sites are interconnected.
Computer support agreements now exist between many
different activities within Army Materiel Command, al
though not all of these provide for service via terminals.

DECENTRALIZED MANAGEMENT OF THE
NETWORK NODES

The wholesale/retail organizing rationale discussed
previously was developed as a vehicle for better under
standing our present management structure, and as an
aid in identifying a viable structure for pooling com
puter resources across major organizational boundaries.

A number of proposals to centralize operational man
agement of all of these computers were considered
and discarded. The computing centers which would
form the network exist today, and most have been
operational for a number of years. They are well man
aged and running smoothly and we would like to keep
it that way. Furthermore, the association of these
centers with the activities which they serve has been
mutually beneficial. ("Activity" is used here to refer to
an organizational entity having a defined mission and
distinct geographic location.) The centers receive re
source support from the, activities and in turn provide
for the specialized needs of the research and develop
ment functions which they serve. Sharing of these
specialized technologies and services is a desirable ob
jective of forming the network. For these reasons, the
authors believe decentralized computer management
would be necessary for a successful network.

To make our commitment to decentralized computer
management viable, we needed to face squarely the is
sue that each existing computer is used and controlled
by a local Commanding Officer to accomplish the as
signed research and development mission of his ac
tivity. But network pooling of computer resources im
plies that some activities use the network in lieu of in
stalling their own computer. For this approach to suc
ceed, availability of time in the computer pool has to be
guaranteed to approximately the same degree as would
derive from local hardware. The offered guarantee in a
network environment would be an agreement between
the activity with the computer and the activity re
quiring computer support. To make the network suc-

ceed, corporate (or AMC) headquarters would have to
set policies insuring that agreements have sufficient force
to guarantee the using organization the resources speci
fied.

In the following paragraphs we will discuss how these
agreements might be used in the Army Materiel Com
mand type of environment. If we replace the words
"Commanding Officer" with the words "Vice Presi
dent" it seems clear that the same concepts apply to
industry as well as to the military situation.

If agreements are to become sufficiently binding so
that they can be considered a resource it would be
necessary to expand the basic mission of the Command
ing Officer who "owns" the' computer. The only way to
make the computer into a command-wide (or corporate)
resource would be to assign the Commanding Officer
and his Director of Computing Services the additional
mission of providing computer support to all organiza
tions authorized to make agreements with him, and to
identify the resources under his control which would be
given the task of providing computer services to "out
side" users. These resources would now become a Whole
sale Computing Facility serving both local and outside
organizations.

FUNCTIONS OF THE RETAILER

In a large corporation with many divisions each
division would require a "retailer" of computer services
to perform the applications oriented data processing.
Those divisions which operate computers would operate
them as wholesale functions to provide computer
service to all divisions within the corporation. Substitut
ing the words "Commodity Command, Major Sub
ordinate Command, or Laboratory" for the word
"Division" the same principle could apply to the Army
Materiel Command. Although a local commander would
give up some cOIitrol over "his" computer, in that he
would guarantee s6me capacity to ou'tside users, he
would gain access to capacity on every other computer
within the command, to support him in accomplishing
his primary mission.

Retail Computing Facility (RCF) describes that part
of the organization responsible for assuring that com
puter services are available to the customers and users
to accomplish the primary mission of the local activity.
Every scientist and engineer within an activity, e.g.,
laboratory, would look to his local RCF to provide the
type of service required. The RCF would turn to whole
salers throughout the entire corporation. This would
give the retailer the flexibility to fit to the job an avail
able computer rather than having to force fit the job on

Wholesale Retail Concept for Computer Network IVranagement 895

WHOLESALE
COMPUTING
FACILITY 1

WHOLESALE
COMPUTING
FACILITY 2

f~\

iiitl\\\
1 2 3 n-1 n

CUSTOMERS/USERS

Figure 4-RCF uses wholesale service agreements with several
WCFs to provide retail services to customers

to the local computer. These relationships are shown in
Figure 4.

In order to obtain the resources and provide the
services listed in Table II a considerable amount of
homework would have to be done by the retailer. The
retailer would estimate the types and amounts of
services required by his various users and arrange agree
ments with wholesalers to obtain these services. It
must be recognized that this is a difficult job and in
many instances cannot be done with great accuracy.
The retailer would act as a middleman between
customer/users and Wholesale Computer Facilities
within the network.

The retailer would be responsible for negotiating two
different types of agreements. He would have to negoti
ate long term commitments with various wholesalers
by guaranteeing to these wholesalers a certain minimum
dollar amount; in return the wholesalers would guaran
tee to the retailers a certain minimum amount of com
puter time.

The other type of agreement which retailers could
negotiate with wholesalers would be for time as re
quired. This would take the form of a commitment to
spend dollars at a particular wholesale facility when the
demand occurred and if time were available from that
wholesaler. The retailer could then run jobs at that
WCF on a "first come, first served" basis, or according
to whatever queue discipline was agreed upon in ad
vance. The range of agreements would be from "hard
scheduled computer runs" to "time as available."

I t is imperative that a user not have to go through
lengthy negotiation each time he requests computer
service from a retailer. SUbmitting a job through the
local retailer to any computer in the corporate network
should be at least as simple as the current procedures

for submitting a job to a local computer at a user's
home installation.

FUNCTIONS OF THE WHOLESALER

Figure 5 graphically depictes the Wholesale Computer
Facility relationship to retailers. The WCF at installa
tion m would provide resources and services listed in
Table 1 through the network to retailers at various
activities throughout the corporation. Normally, the
WCF at installation m would still provide most of the
service to the retailer at installation m; however, that
retailer would not have any formally privileged posi
tion over other retailers located elsewhere in the net
work. The primary functions of the wholesaler would be
to operate the computers and to provide the associated
services which have been negotiated by various re
tailers. The wholesaler might well have services which
were duplicated elsewhere in the network; however, he
might also have some which were unique to his facility.
It would be essential that every retailer in the network
be made aware of the services offered by each WCF,
and it would be the responsibility of the wholesaler to
ensure that all of his capabilities were made known.

In addition to operating the computer or computers at
his home installation, the WCS might also be responsible
for providing services to retailers through contracts
placed with facilities external to the corporation. For
example, a propriety software package not available
from any computer in the corporate pool, but required
by one or more retailers, might be available from some
other computer which could be accessed by the cor
porate net. A contract to access those services could
then be placed through one of the wholesalers.

HEADQUARTERS FUNCTIONS IN
MANAGING THE CORPORATE NETWORK

Corporate Headquarters interaction with decentral
ized wholesale and retail computing facilities can be

RETAIL
COMPUTING
FACILITY 1

•.
WHOLiLE/RET Ai\AGR"E~~NTS

RETAIL
COMPUTING
FACILITY 2

RETAIL
COMPUTING
FACILITY n

Figure 5-WCFs provide service to multiple RCFs

896 Fall Joint Computer Conference, 1972

COMPUTER
NETWORK
STEERING

COMMITTEE

CORPORATE HEADQUARTERS

CORPORATE DIRECTOR
OF

COMPUTING SERVICES

COMPUTER
NETWORK

MANAGEMENT

Figure 6-Corporate headquarters organization with
decentralized WCFs and RCFs

provided through the establishment of two groups,
Computer Network Management (CNM), and the
Computer Network Steering Committee (CNSC).
Both CNM and CNSC should report to the Corporate
Director of Computing Services as shown in Figure 6.

Overall, the headquarters is responsible for insuring
that computer support requirements of scientists and
engineers throughout the corporation are effectively
met, and that they are provided in an efficient manner.
The first responsibility is to insure that proper com
puter support is available. The second responsibility is
to insure that the minimum amount of dollars are ex
pended in providing that support.

Computer Network Management (CNM) has basic
headquarters staff responsibility to insure that the net
work is well coordinated and well run. It should:

1. Recommend policy and procedures for regulation
and operation of the network.

2. Resolve network problems not covered by cor
porate procedures.

3. Negotiate facilities management agreements
with the appropriate corporation divisions to
operate Wholesale Computing Facilities (see
Figure 6).

4. Work with WCFs, RCFs and the Computer

Network Steering Committee to develop long
range plans concerning network facilities.

5. Serve as a network-wide information center on
facilities, services, rates, and procedures.

CNM need not be directly involved in the day to day
operations of the network. Wholesale/retail agreements
should be negotiated betweenWCFs and RCFs with
out requiring headquarters approval, so long as these
agreements are consistent with overall corporate policy.
Obviously, agreements not meeting this requirement
would· require CNM involvement. However, head
quarters should function, insofar as possible, on a man
agement by exception basis.

A Computer Network Steering Committee (CNSC)
should be established to suggest policy for consideration
by the corporation. Members of the CNSC should be
drawn from the corporation's operating divisions which
have responsibility for decentralized management of the
wholesale and retail computing facilities. The Computer
Network Steering Committee can promote input to the
Corporate Headquarters {)f useful comments and ideas
on network policy and operation.

Under the general structure some specific functions in
whi~h Computer Network Management would be in
volved can be discussed further.

Policies set by Computer Network Management
should govern the content of agreements between
wholesalers and retailers. The following is a list of
some of the items which would have to be covered in
such agreements:

1. The length of time for which an agreement
should run would have to be spelled out in each
case.

2. The wholesaler would have to guarantee a spec
ific amount of service to the retailer in return
for a guarantee of a minimum number of dollars
from the retailer.

3. The kinds and levels of service to be provided
would have to be spelled out in detail.

Another major area in which Computer Network
Management could be involved is in setting rates and in
rationing services during periods of congestion. Policies
should be established which would promote as effective
and efficient support as possible during congested pe
riods, without starving any single customer. Also, the
total amount of computer time which each wholesaler
can commit should be regulated to prevent over com
mitment of the network.

Computer Network Management should set up some

Wholesale Retail Concept for Computer Network Management 897

form of "currency" to be used when resources become
congested. The amount of "currency" in the network
would be regulated by Computer Network Management
with advi_ce from the Computer Network Steering Com
mittee. This "currency" based rationing scheme should
be put into effect ahead of time, rather than waiting
until resources become so congested that it has to be
created under emergency conditions. It is probable that
separate rations should be established for different
classes of service, such as interactive terminal service,
fast turn around batch processing, overnight turn
around, etc.

Under this organizational concept the corporate
headquarters would have to assume a greater responsi
bility for projecting requirements and procuring new
hardware and software to meet those requirements
throughout the corporation. Some requirements would
arise which would have to be met immediately. There
would not always be sufficient time to purchase new
hardware or software. In such cases computer network
management could arrange for external service contracts
to be let through one or more wholesalers. CNM would
have the responsibility for identifying peak workloads
anticipated for the entire network on the basis of feed
back information received from wholesalers and re
tailers. When overall network services become con
gested, an open ended external service contract might be
placed to handle the· excess. This provides time for a
corporate decision to be made as to whether or not ad
ditional computing capacity should be added to the
network.

The last major responsibility of Computer Network
Management would be to aggregate requirements being
received from wholesalers and retailers and to use these
to project when new hardware and software should be
procured for the S&E network community. The primary
responsibility for justifying this new hardware would
rest with CNM, drawing on all corporate resources for
support and coordination. Computer Network Manage
ment with guidance from the Computer Network Steer
ing Committee, would also be responsible for determin
ing where new hardware should be placed in order to
run the network in the most effective and efficient
manner.

Computer Network Management would fulfill its
mission of insuring computer support to corporate
scientists and engineers by negotiating facility manage
ment agreements with specific divisions of the corpora
tion to establish and operate Wholesale Computer
Facilities. These WCFs would offer the specified kinds
and levels of service to Retail Computer Facilities via
the network. ReFs would tailor and add to the services
to meet requirements of local customers.

SUMMARY

The notions of wholesale and retail computer facilities
are particularly useful in examining the problems which
must be faced when entering a computer network en
vironment. The concept helps to clarify the functions
which must be performed within a network of shared
computer resources, and the management commitment
which must be made if the objectives and advantages of
such sharing are to be realized~; Mapping of the whole
sale/retail functions onto the corporate organization
which is forming the network can be valuable in identify
ing to members of that organization what their roles
would be in the network environment. Such clarification
is a prerequisite to securing the commitment necessary
to make a network successful.

Decisions as to whether or not operational manage
ment of the computer centers should be decentralized
will vary with circumstances, but if efficient, well man
aged decentralized computing facilities exist, they
should be retained. In any case, a central computer net
work mamigement function is needed to set policy and
to take ad overall corporate viewpoint. It should· be
remembered, however, that the primary purpose of a
scientific and engineering computing network is to
provide services to research and development projects
at field activities. As such, the goal should be to con
tribute to the optimization of the costs and time in
volved in the research and development cycle, rather
than to optimize the production of computer cycles.
The establishment of a network steering committee
which includes representatives from field activities can
help to insure the achievement of this goal aItd to in
crease confidence in the network among the field per
sonnel which it is to serve.

Finally it is important to realize that a corporation
begins to enter the network environment, from the
management standpoint, as soon as some of its major
activities begin to share computer resources, whether or
not it involves any computer to computer communica
tions facilities. Recognition of this point and a careful
examination of corporate objectives and goals in com
puter sharing should lead to the establishment of a
computer network management function, so that the
corporation can manage itself into an orderly network
environment rather than drifting into a chaotic one.

ACKNOWLEDGl\1:ENT

The authors would like to gratefully acknowledge ex
tensive discussions and interaction with a group of
people whose ideas and hard work contributed sub-

898 Fall Joint Computer Conference, 1972

stantially to the content of this paper: Mr. Einar
Stefferud, Einar Stefferud & Associates; and the follow
ing members of organizations within the US Army
Materiel Command: Richard Butler, Harry Diamond
Labs; John Cianfione, US Army Materiel Command
Headquarters ; James Collins, Missile Command;
Tom Dames, Electronics Command; Edward Gold
stein, Test and Evaluation Command; Dr. James Hurt,
Weapons Command; Paul Lascala, Aviation Systems
Command; Sam P. McCutchen, Mobility Equipment
R&D Center; James Pascale, Watervliet Arsenal;
Michael Romanelli, Aberdeen Research & Development
Center; George Sumrall, Electronics Command.

REFERENCES

1 E STEFFERUD
A wholesale/retail structure for the AMC computer network
Unpublished Discussion Paper Number ES&A/ AMC/CNC
DP-1 February 3 1972

2 J J PETERSON S A VEIT
Survey of computer networks
Mitre Corporation
MTP-357 September 1971

3 F P BROOKS J K FERRELL T M GALL IE
Organizational, financial, and political aspects of a three
university computing center
Proceedings of the IFIP Congress 1968 E49-52

4 M S DAVIS
Economics-point of view of designer and operator
Proceedings of Interdisciplinary Conference on Multiple
Access Computer Networks
University of Texas and Mitre Corporation 1970

5 J J HOOTMAN
The computer network as a marketplace
Datamation Vol 18 No 4 April 1972

6 C MOSMANN E STEFFERUD
Campus computing management
Datamation Vol 17 No 5 March 1971

7 E STEFFERUD
Computer management
College and University Business September 1970

8 L G ROBERTS B D WESSLER
Computer network development to achieve resource sharing
AFIPS Conference Proceedings May 1970

9 F E HEART et al
The interface message processor for the ARP A computer
network
AFIPS Conference Proceedings May 1970

10 C S CARR S D CROCKER V G CERF
HOST-HOST communication protocol in the ARPA network
AFIPS ConfevenO.e Proc.eedings May 1970

11 E STEFFERUD
Management's role in networking
Datamation Vol 18 No 4 April 1972

12 E STEFFERUD
The environment of computer operating system scheduling:
Toward an understanding
Journal of the Association for Education Data Systems
March 1968

13 BLUE RIBBON DEFENSE PANEL
Report to the President and the Secretary of Defense on the
Department of Defense Appendix I: Staff report on automatic
data processing
July 1970

14 S D CROCKER et al
Function-oriented protocols for the ARP A computer network
AFIPS Conference Proceedings
May 1970

A functioning computer network
for higher education in North Carolina

by LELAND H. WILLIAMS

Triangle Universities Computation Center
Research Triangle Park, North Carolina

INTRODUCTION

Currently there is a great deal of talk concerning com
puter networks. There is so much such talk that the
solid achievements in the area sometimes tend to be
overlooked. It should be clearly understood then, that
this paper deals primarily with achievements. Only the
last section, which is clearly labeled, deals with plans for
the future.

Adopting terminology from Peterson and V eit, 1

TUCC is essentially a centralized, homogeneous net
work comprising a central service node (IBM 370/165),
three primary job source nodes (IB1VI 360/75, IBM: 360/
40, IBM: 360/40) and 23 secondary job source nodes
(leased line Data 100s, UCC 1200s, IBJVI 1130s, IBM
2780s, and leased and dial line IBl\1: 2770s) and about
125 tertiary job source nodes (64 dial or leased lines for
Teletype 33 ASRs, IBM 1050s, IBM 2741s, UCC 1035s,
etc.) See Figures 1 and 2. All source node computers in
the network are homogeneous with the central service
node and, although they provide local computational
service in addition to teleprocessing service, none cur
rently provides (non-local) network computational
service. However, the technology for providing network
computational service at the primary source nodes is
immediately available and some cautious plans for
using this technology are indicated in the last section
of this paper.

BACKGROUND

The Triangle Universities Computation Center was
established in 1965 as a non-profit corporation by three
major universities in North Carolina-Duke University
at Durham, The University of North Carolina at
Chapel Hill, and North Carolina State University at
Raleigh. Duke is a privately endowed institution and
the other two are state supported. Among them are two

899

medical schools, two engineering schools, 30,000 under
graduate students, 10,000 graduate students, and 3,300
teaching faculty members.

The primary. motivation was economic-to give each
of the institutions access to more computing power at
lower cost than they could provide individually. Initial
grants were received from NSF and from the North
Carolina Board of Science and Technology, in whose
Research Triangle Park building TUCC was located.
This location represents an important decision, both

DUKE/DURHAM

360/40

UNC/CHAPEL HILL

360/75

PRIMARY TERMINAL

50 educational institutions
universities, colleges,

community colleges, tech
nical institutions, and

secondary schools (var
ious medium and low
speed terminals)

NCSU/RALEIGH

360/40

PRIMARY TERMINAL

NOTE: IN ADDITION TO THE PRIMARY TERMINAL INSTALLATION AT DUKE, UNC,

AND NCSU, EACH CAMPUS HAS AN ARRAY OF MEDIUM AND LOW-SPEED

TERMINALS DIRECTLY CONNECTED TO TUCC.

Figure l-The TUCC network

900 Fall Joint Computer Conference, 1972

• One institution
() More than one institution in

one location

Asheville
Charlotte

2
2 (higher education)

10 (secondary school system)
3
2
4
3
3

Durham
Elizabeth City
Greensboro
Raleigh
Winston"'-Salem
Wilmington 2 TOTAL NETWORK INSTITUTIONS: 53

3067
POWER &
COLLANT
DIST.

2540 CARD
READ PUNCH

• • •
TOTAL OF:
20 }'1ED-SPEED AT 2400 BAUD
8 MED-SPEED AT 4800 BAUD

Figure 2-Network of institutions served by TUCC/NCECS

3165 CPU

2 MILLION BYTES

SELECTOR
SUB-CHANNEL

REMOTE FIELD
ENGINEERING
ASSISTANCE

DUKE M/40

2880
BLOCK
MULTI-

t~h

2803
TAPE

CONTROL

2701
DATA

ADAPTER

(40.8K BAUD)

64 PORTS FOR LOW
SPEED TYPEWRITER
TERHINALS (110 BAUD)

ADAPTER

Figure 3-TUCC hardware· configuration

(40.8K BAUD)

UNC M/75 (40.8K BAUD)

2314
DISK

FACILITY
DR VES

2314
DISK

FACILITY
9 DRIVES

3330
DISK

FACILITY
8 DRIVES

Functioning Computer Network for Higher Education 901

because of its geographic and political neturality with
respect to all three campuses and because of the value
of the Research Triangle Park environment.

The Research Triangle Park is one of the nation's
most successful research parks. In a wooded tract of
5,200 acres located in the small geographic triangle
formed by the three universities, the Park in 1972 has
8,500 employees, a payroll of $100 million and an invest
ment in buildings of $140 million. The Park contains 40
buildings that house the research and development
facilities of 19 separate national and international
corporations and government agencies and other
institutions.

TUCC pioneered massively shared computing; hence
there were many technological, political, and protocol
problems to overcome. Successive stages toward solu
tion of these problems have been reported by Brooks,
Ferrell, and Gallie;2 by Freeman and Pearson;3 and by
Davis. 4 This paper will focus on present success.

PRESENT STATUS

TUCC supports educational, research) and (to a
lesser, but growing extent) administrative computing
requirements at the three universities, and also at 50
smaller institutions in the state and several research
laboratories by means of multi-speed communications
and computer terminal facilities. TUCC operates a
2-megabyte, telecommunications-oriented IBM 370/
165 using OS/360-MVT/HASP and supporting a wide
variety of terminals (see Figure 3). For high speed
communications, there is a 360/75 at Chapel Hill and
there are 360/ 40s at North Carolina State and Duke.
The three campus computer centers are truly and
completely autonomous. They view TUCC simply as
a pipeline through which they get massive additional
computing power to service their users.

The present budget of the center is about $1.5 million.
The Model 165 became operational on September 1,

120

110

100 TOTAL JOBS PER IIONTH RUN AT TUCC

90

80

70

JOBS 60
PER
IIONTH 50
(x 1000)

40

30

20

10

1967 1968 1969

1971, replacing a saturated 360/75 which was running
a peak load of 4200 jobs/day. The life of the Model 75
could have been extended somewhat by the replacement
of 2 megabytes of IBM slow core with an equal amount
of Ampex slow core. This would have increased the
throughput by about 25 percent for a net cost increase
of about 8 percent.

TUCC's minimum version of the Model 165 costs
only about 8 percent more than the Model 75 and it is
expected to do twice as much computing. So far it has
processed 6100 jobs/ day without saturation. This
included about 3100 autobatch jobs, 2550 other batch
jobs, and 450 interactive sessions. Of the autobatch
jobs, 94 percent were processed with less than 30
minutes delay (probably 90 percent with less than 15
minutes delay), and 100 percent with less than 3 hours
delay. Of all jobs, 77 percent were processed with less
than 30 minutes delay, and 99 percent with less than 5
hours delay. At the present time about 8000 different
individual users are being served directly. The growth
of TUCC capability and user needs to this point is
illustrated in Figure 4.

Services to the TUCC user community include both
remote job entry (RJE) and interactive processing.
Included in the interactive services are programming
systems employing the BASIC, PL/1, and APL Jan
guages. Also TSO is running in experimental mode.
Available through RJE is a large array of compilers
including FORTRAN IV, PL/l, COBOL, ALGOL,
P~/C, WATFIV and WATBOL. These language
facilities coupled with an extensive library of applica
tion programs provide the TUCC user community with
a dynamic information processing system supporting a
wide variety of academic computing activities.

ADVANTAGES

The financial advantage deserves further comment.
As a part of the planning process leading to installation

1970 1971 1972

Figure 4-TUCC jobs per month, 1967-1972

902 Fall Joint Computer Conference, 1972

of the Model 165, one of the universities concluded that
it would cost them about $19,000 per month more in
hardware and personnel costs to provide all their com
puting services on campus than it would cost to con
tinue participation in TUCC. This would represent a
40 percent increase over their present expense for termi
nal machine, communications, and their share of TUCC
expense.

There are other significant advantages. First, there
is the sharing of a wide varietrof application programs.
Once a program is developed at one institution, it can be
used anywhere in the network with no difficulty. For
proprietary programs, usually only one fee need be paid.
A sophisticated TUCC documentation system sustains
this activity. Second, there has been a significant impact
on the ability of the universities to attract faculty
members who need large scale computing for tlleir
research and teaching and several TUCC staff members
including the author have adjunct appointments with
the university computer science departments.

A third advantage has been the ability to provide
very highly competent systems programmers (and
management) for the center. In general, these personnel
could not have been attracted to work in the environ
ment of the individual institutions because of salary
requirements and because of system sophistication
considerations.

NORTH CAROLINA EDUCATIONAL
COMPUTING SERVICE

The North Carolina Board of Higher Education has
established an organization known as the North
Carolina Educational Computing Service (NCECS).
This is the successor of the North Carolina Computer
Orientation Project5 which began in 1966. NCECS
participates in TUCC and provides computer services
to public and private educational institutions in North
Carolina other than the three founding universities.
Presently 40 public and private universities, junior
colleges, and technical institutes plus one high school
system are served in this way. NCECS is located with
TUCC in the North Carolina Board of Science and
Technology building in the Research Triangle Park.
This, of course, facilitates communication between
TUCC and NCECS whose statewide users depend upon
the TUCC telecommunication system.

NCECS serves as a statewide campus computation
center for their users, providing technical assistance,
information services, etc. In addition, grant support
from NSF has made possible a number of curriculum
development activities. NCECS publishes a catalog of
available instructional materials; they provide curricu-

lum development services; they offer workshops to
promote effective computer use; they visit campuses,
stimulating faculty to introduce computing into courses
in a variety of disciplines. Many of these programs have
stimulated interest in computing from institutions and
departments where there was no interest at all. One
major university chemistry department, for example,
ordered its first terminal in order to use an NCECS
infrared spectral information program in its courses.

The software for NCECS systems is derived from a
number of sources in addition to sharing in the com
munity wide program development described above.
Some of it is developed by NCECS staff to meet a
specific and known need; some is developed by individ
ual institutions and contributed to the common cause;
some of it is found elsewhere, and adapted to the sys
tem. NCECS is interested in sharing curriculum
oriented software in as broad a way as possible.

Serving small schools in this way is both a proper
service for TUCC to perform and is also to its own
political advantage. The state-supported founding
universities, UNC and NCSU, can show the legislature
how they are serving much broader educational goals
with their computing dollars.

ORGANIZATION

TUCC is successful not only because of its technical
capabilities, but also because of the careful attention
given to administrative protection of the interests of
the three founding universities and of the N CECS
schools; The mechanism for this protection can, per
haps, best be seen in terms of the wholesaler-retailer
concept. 6 TUCC is a wholesaler of computing service;
this service consists essentially of computing cycles,an
effective operating system, programming languages,
some application packages, a documentation service,
and management. The TUCC wholesale service specif
ically does not include typical user services-debugging,
contract programming, etc. Nor does it include user
level billing nor curriculum development. Rather these
services are provided for their constituents by the
Campus Computation Centers and NCECS, which are
the retailers for the TUCC network. See Figure 5.

The wholesaler-retailer concept can also be seen in
the financial and service relationships. Each biennium,
the founding universities negotiate with each other and
with TUCC to establish a minimum financial commit
ment from each, to the net budgeted TUCC costs. Then,
on an annual basis the founding universities and TUCC
negotiate to establish the TUCC machine configuration,
each university's computing resource share, and the
cost to each university. This negotiation, of course,

Functioning Computer Network for Higher Education 903

Figure 5-TUee wholesaler-retailer structure

includes adoption of an operating budget. Computing
resource shares are stated as percentages of the total
resource each day. These have always been equal for
the three founding universities, but this is not necessary.
Presently each founding university is allocated 25 per
cent, the remaining 25 percent being available for
NCECS, TUCC systems development, and other users.
This resource allocation is administered by a scheduling
algorithm which insures that each group of users has
access to its daily share of TUCC computing resources.
The algorithm provides an effective trade-off for each
category between computing time and turn-around
time; that is, at any given time the group with the least
use that day will have job selection preference.

The scheduling algorithm also allows each founding
university and NCECS to define and administer quite
flexible, independent priority schemes. Thus the
algorithm effectively defines independent sub-machines
for the retailers, providing them with the same kind of
assurance that they can take care of their users' needs
as would be the case with totally independent facilities.
In addition, the founding university retailers have a
bonus because the algorithm defaults unused resources
from other categories, including themselves, to one or
more of them according to demand. This is particularly
advantageous when their peak demands do not coincide.
This flexibility of resource use is a major advantage
which accrues to the retailers in a network like TUCC.

The recent installation of the old TUCC Model 75 at
UNC deserves some comment at this point because it
represents a good example of the TUCC organization in
action. UNC has renewed a biennial agreement, with
its partners, calling essentially for continued equal
sharing in the use of and payment for TUCC computing
resources. Such· equality is possible in our network
precisely because each campus is free to supplement as
required at home. Further more, the UNC Model 75 is
a very modest version of the prior TUCC 1\1odel 75. It
has 256K of fast core and one megabyte of slow core

where TUCC had one and two megabtyes respectively.
Rental accruals and state government purchase plans
combined to make the stripped Model 75 cost UNC less
than their previous Model 50. It provides only a 20
percent throughput improvement over the displaced
Model 50. The UNC Model 75 has become the biggest
computer terminal in the world!

There are several structural devices· which serve to
protect the interests of both the wholesaler and the
retailers. At the policy making level this protection is
afforded by a Board of Directors appointed by the
Chancellors of the three founding universities. Typically
each university allocates its representatives to include
(1) its business interests, (2) its computer science
instructional interests, and (3) its other computer
user interests. The University Computation Center
Directors sit with the Board whether or not they are
members as do the Director of NCECS and the Presi
dent of TUCC. A good example of the policy level
function of this Board is their determination, based on
TUCC management recommendations, of computing
service rates for NCECS and other TUCC users.

At the operational level there are two important
groups, both normally meeting each month. The Cam
pus Computation Center Directors' meeting includes
the indicated people plus the Director of NCECS and
the President, the Systems Manager, and the Assistant
to the Director of TUCC. The Systems Programmers'
meeting includes representatives of the three univer
sities, NCECS and TUCC. In addition, of course, each
of the universities has the usual campus computing
committees.

PROSPECTS

TUCC continues to provide cost:-effective general
computing service for its users. Some improvements
which can be foreseen include:

1. A wider variety of interactive services to be made
available through TSO.

2. An increased service both for instructional and
administrative computing for the other institu
tions of higher education in North Carolina.

3. Additional economies for some of the three
founding universities through increasing TUCC
support of their administrative data precessing
requirements.

4. Development of the network into a multiple
service node network by means of the symmetric
HASP-to-HASP software developed- at TUCC.

5. Provision (using HASP) for medium speed ter
minals to function as message concentrators for

904 Fall Joint Computer Conference, 1972

low speed terminals, thus minimizing communi
cation costs.

6. Use of line multiplexors to reduce communica
tion costs.

7. Extension of' terminal service to a wider variety
'of data rates.

Administrative data processing

Some further comment can be made on item 3. TUCC
has for some time been' handling the full range of
administrative data processing for two NCECS
universities and is beginning to do so for other NCECS
schools~ The primary reason that this application lags
behind instructional applications in the NCECS schools
is simply that grant support, which stimulated develop
ment of the instructional applications, has been absent
for administrative applications. However, the success
of the two pioneers has already began to spread among
the others.

With the three larger universities there is a greater
reluctance to shift their administrative data processing
to TUCC, although Duke has already accomplished
this for their student record processing. One problem
which must be overcome to complete this evolution and
allow these unive,rsities to spend administrative com
puting dollars on the more economic TUCC machine is
the administrator's reluctance to give up a machine on
which he can exercise direct priority pressure. The
present thinking is that this will be accomplished by
extending the sub-machine concept (job scheduling
algorithm) described in the previous section so that
each founding university may have both a research
instructional sub-machine and an administrative sub
machine with unused resources defaulting from either
one to the other before defaulting to another category.
Of course, the TUCC computing resource will probably
have to be increased to accommodate this; the annual

negotiation among the founders and TUCC provides a
natural way to define any such necessary increase.

SUMMARY

Successful massively shared computing has been
demonstrated by the Triangle Universities Computa
tion Center and its participating educational institu
tions in North Carolina. Some insight has been given
into the economic, technological, and political factors
involved in the success as well as some measures of the
size of the operation. The TUCC organizational
structure has been interpreted in terms of a wholesale
retail analogy. The importance of this structure and
the software division of the central machine into
essentially separate sub-machines for each retailer can
not be over-emphasized.

REFERENCES

1 J J PETERSON S A VEIT
Survey of computer networks
MITRE Corporation Report MTP-359 1971

2 F P BROOKS J K FERRELL T M GALLIE
Organizational, financial, and political aspects of a three
university computing center
Proceedings of the IFIP Congress 1968 E49-52

3 D N FREEMAN R R PEARSON
Efficiency vs responsiveness in a multiple-service computer
facility
Proceedings of the 1968 ACM Annual Conference

4 M S DAVIS
Economics-point of view of designer and operator
Proceedings of Interdisciplinary Conference on Multiple
Access Computer Networks
University of Texas and MITRE Corporation 1970

5 L T PARKER T M GALLIE F P BROOKS
J K FERRELL
Introducing computing to smaller colleges and universities-a
progress report
Comm ACM Vol 12 1969319-323

6 D L GROBSTEIN R P UHLIG
A wholesale retail conCept for computer network management
AFIPS Conference Proceedings Vol 41 1972 FJCC

Multiple evaluators in an extensible
programming system*

by BEN WEGBREIT

Harvard University
Cambridge, Massachusetts

INTRODUCTION

As advanced computer applications become more com
plex, the need for good programming tools becomes more
acute. The most difficult programming projects require
the best tools. It is our contention that an effective tool
for programming should have the following character
istics:

(1) Be a complete programming system-a language,
plus a comfortable environment for the pro
grammer (including an editor, documentation
aids, and the like).

(2) Be extensible, in its data, operations, control, and
interfaces with the programmer.

(3) Include an interpreter for debugging and several
compilers for various levels of compilation....:.-all
fully compatible and freely mixable during exe
cution.

(4) Include a program verifier that validates stated
input/output relations or finds counter-examples

(5) Include facilities for program opfimization and
tuning-aids for program measurement and a
subsystem for automatic high-level optimization
by means of source program transformation.

We will assume, not defend, the validity of these
contentions here. Defenses of these positions by us and
others have appeared in the literature.l.2.3.4.5 The pur
pose of this paper is to discUss how these characteristics
are to be simultaneously realized and, in particular, how

* This work was supported in part by the U.S. Air Force,
Electronics Systems Division, under ContractF19628-71-C-0173
and by the Advanced Research Projects Agency under Contract
F19628-71-C-0174.

905

the evaluators, verifier, and optimizer are to fit to
gether. Compiling an extensible language where com
piled code is to be freely mixed with interpreted code
presents several novel problems and therefore a few
unique opportunities for optimization. Similarly, ex
tensibility and multiple evaluators make program auto
mation by means of source level transformation more
complex, yet provide additional handles on the auto
mation process.

This paper is divided into five sections. The second
section deals with communication between compiled
and interpreted code, i.e., the runtime information
structures and interfaces. The third section discusses
one critical optimization issue in extensible languages
the compilation of unit operations. The fourth section
examines the relation between debugging problems, '
proving the correGtness of programs, and use of program
properties in compilation. Finally, the fifth section dis
cusses the use of transformation sets as an adjunct to
extension sets for application-oriented optimization.

Before treating the substantive issues, a remark on
the implementation of the proposed solutions may be in
order. Our acquaintance with these problems has arisen
from our experience in the design, implementation, and
use of the ECL programming system. ECL is an ex
tensible programming system utilizing multiple evalua
tors; it has been operational on an experimental basis,
running on a DEC PDPI0, since August 1971. Some of
the techniques discussed in this paper are functional,
others are being implemented, still others are being de
signed. As the status of various points is continually
changing, explicit discussion of their implementation
state in ECL will be omitted.

For concreteness, however, we will use the ECL sys
tem and ECL's base language, ELI, as the foundation
for discussion. An appendix treats' those. aspects of
ELI syntax needed for reading the examples in this
paper.

906 Fall Joint Computer Conference, 1972

MIXING INTERPRETED AND COMPILED
CODE

The immediate problem in a multiple evaluator sys
tem is mixing code. A program is a set of procedures

/ which call each other; some are interpreted, others
compiled by various compilers which optimize to vari
ous levels. Calls and non-local gotos are allowed where
either side may be either compiled or interpreted. Ad
ditionally, it is useful to allow control flow by means
of RETFROM-that is the forced return from a speci
fied procedure call (designated by name), with a speci
fied value as if that procedure call had returned nor
mally with the given value (cf. Reference 6).

Within each procedure, normal techniques apply.
Interpreted code carries the data type of each entity
for autonomous temporary results as well as param
eters and locals. Since the set of data types is open
ended and augmentable during execution, data types
are implemented as pointers to (or indices in) the data
type table. Compiled code can usually dispense with
data types so that temporary results need not, in gen
eral, carry type information. In either interpreted or
compiled procedures, where data types are carried, the
type is associated not with the object but rather with a
descriptor consisting of a type code and a pointer to the
object. This results in significant economies whenever
objects are generated in the free storage region.

Significant issues arise in communication between
procedures. The interfaces must:

(1) Allow identification of free variables in one pro
cedure with those of a lower access environment
and supply data type information where re-
quired. _

(2) Handle a special, but important, subcase of # 1-
non-local gotos out of one procedure into a lower
access environment.

(3) Check that the arguments passed to compiled
procedure are compatible ",ith the formal
parameter types.

(4) Check that the result passed back to a compiled
procedure (from a normal return of a called func
tion or via a RETFROM) is compatible with
the expected data type.

These communication issues are somewhat complicated
by the need to keep the overhead of procedure inter
face as low as possible for common cases of two com
piled procedures linking in desirable (i.e., well-pro
grammed) ways.

The basic technique is to include in the binding (i.e.,
parameter block) for any new variable its name and its

mode (i.e., its data type) in addition to its value. Names
are implemented as pointers to (or indices in) the sym
bol table. (With reasonable restrictions on the number of
names and modes, both name and mode can be packed
into a 32-bit word.) Within a compiled procedure, all
variables are referenced as a pair (block level number,
variable number within that block). Translation from
name to such a reference pair is carried out for each
bound appearance of a variable during compilation; at
run time, access is made using a display (cf. Reference
7). However, a free appearance of a variable is repre
sented and identified by symbolic name. Connection
between the free variable and some bound variable in
an enclosing access environment is made during execu
tion, implemented using either shallow or deep bindings
(cf. Reference 8 for an explanation of the issues and a
discussion of the trade-offs for LISP). Once identifica
tion is made, the mode associated with the bound vari
able is checked against the expected mode of the free
variable, if the expected mode is known.

To illustrate the last point, we suppose that in some
procedure, P, it is useful to use the free variable BETA
with the knowledge that in all correctly functioning
programs the relevant bound BETA will always be a
character string. To permit partial type checking dur
ing compilation, a declaration may be made at the head
of the first BEGIN-END block of P.

DECL BETA:STRING SHARED BETA;

This creates a local variable BETA of mode STRING
which shares storage (i.e., binding by reference in
FORTRAN or PL/I9) with the free variable BETA.
All subsequent appearances of BETA in P are bound,
i.e., identified with the local variable named BETA.
Since the data type of the local BETA is known, nor
mal compilation can be done for all internal appearances
of BETA. The real identity of BETA is fixed during
execution by identification with the free BETA of the
access environment at the point P is entered. When the
identification of bound and free BETA is made, mode
checking (e.g., half-word comparison of two type codes)
ensures that mode assumptions have not been violated.

In the worst case, parameter bindings entail the same
sort of type checking. The arguments passed to a pro
cedure come with associated modes. When a procedure
is entered, the actual argument modes can be checked
against the expected parameter modes and, where ap
propriate, conversion performed. Then the names of the
formal parameters are added to the argument block,
forming a complete variable binding. Notice that this
works in all four cases of caller / callee pairs: compiled/

Multiple Evaluators in an Extensible Programming System 907

compiled, compiled/interpreted, interpreted/compiled
and interpreted/interpreted. Since type checking is
implemented by a simple (usually half-word) compari
son, the overhead is small.

However, for the most common cases of compiled/
compiled pairs, mode checking is handled by a less
flexible but more efficient technique. The mode of the
called procedure may be declared in the caller. For ex
ample:

DECL G:PROC(INT,STRING;COMPLEX);

specifies that G is a procedure-valued variable which
takes two arguments, an integer and a character string,
and returns a complex number. For each call on G in
the range of this declaration, mode checking and inser
ti?n of conversion code can be done during compilation,
wIth the knowledge that G is constrained to take on
only certain procedure values. To guarantee this con
straint, all assignments to (or bindings of) G are type
checked. Type checking is made relatively inexpensive
by giving G the mode PROC(INT,STRING;COM
PLEX)-i.e., there is an entry in the data type table
for it-and comparing this with the mode of the pro
cedure value being assigned. The single comparison
simultaneously verifies the validity of the result mode
and both argument modes.

Result types are treated similarly. For each pro
cedure call, a uniform call block is constructed* which
includes the name of the procedure being called and the
expected mode?f the result (e.g., for the above example,
the name field IS G and the expected-result-mode field is
COMPLEX). This is ignored when compile-time check
ing of result type is possible and normal return occurs.
However, if interpreted code returns to compiled code
or if RETFROM causes a return to a procedure by ~
non-direct callee, then the expected-result-mode field is
checked against the mode of the value returned.

Transfer of control to non-local labels falls out
naturally if labels are treated as named entities having
constant value. On entry to a BEGIN-END block (in
either interpreted or compiled code), a binding is made
f~r e.ach label in that block. The label value is a triple
(IndIcator of whether the block is interpreted or com
piled, program address, stack position). A non-local
goto label L is executed by identifying the label value
referenced by the free use of L, restoring the stack posi
tion from the third component of the triple and either . . '
Jumpmg to the program address in compiled code or to
the statement executor of the interpreter.

* This can be included in the LINK information.7

UNIT COMPILATION

In most. programs the bulk of the execution time is
spent performing the unit operations of the problem
domain. In some cases (e.g., scalar calculations on
reals), the hardware realizes the unit operations directly.
Suppose, however, that this is not the case. Optimizing
such programs requires recognizing instances of the
unit operations and special treatment-unit compila
tion-to optimize these units properly.

An extensible language makes recognition a tractable
problem, since the most natural style of programming
is to define data types for the unit entities, and pro
cedures for the unit operations in each problem area.
(Operator extension and syntax extension allow the
invocation of these procedures by prefix and infix ex
pressions and special statement types.) Hence, the unit
operations are reasonably well-modularized. Detecting
which procedures in the program are the critical unit
operations entails static analysis of the call and loop
structure, coupled with counts of call frequency during
execution of the program over benchmark data sets.

The critical unit operations generally have one or
more of the following characteristics:

(1) They have relatively short execution time; their
importance is due to the frequency of call, not
the time spent on each call.

(2) Their size is relatively small.
(3) They are terminal nodes of the call structure, or

nearly terminal nodes.
(4) They entail a repetition, performing the same

action over the lower-level elements which col
lectively comprise the unit object of the problem
level.

Unit compilation is a set of special heuristics for exploit
ing these characteristics.

Since execution time is relatively small, call/return
overhead is a significant fraction. Where the unit
operations are terminal, the overhead can be substan
tially reduced. The arguments are passed from compiled
code to a terminal unit operation with no associated
modes. (Caller and callee know what is being trans
mitted.) The arguments can usually be passed directly
in the registers. No bindings are made for the formal
parameters. (A terminal node of the call structure calls
no other; hence, there can be no free uses of these vari
abIes.) The result can usually be returned in a register
again, with no associated mode information.

Since the unit operations are important far out of
proportion to their size, they are subject to optimizing
techniques too expensive for normal application. Opti-

908 Fall Joint Computer Conference, 1972

mal ordering of a computation sequence (e.g., to mini
mize memory references or the number of temporary
locations) can, in general,* be assured only by a search
over a large number of possible orderings. Further, the
use of identities (e.g., a*b+a*c~a*(b+c)) to minimize
the computational cost causes significant increase in the
space of possibilities to be considered. The use of arbi
trary identities, of course, makes the problem of pro
gram equivalence (and, hence, of cost minimization)
undecidable. However, an effective procedure for ob
taining equivalent computations can be had either by
restricting the sort of transformations admittedll or by
putting a bound on the degree of program expansion
acceptable. Either approach results in an effective pro
cedure delivering a very large set of equivalent compu
tations. While computationally intractable if employed
over the whole program, a semi-exhaustive search of this
set for the one with minimal cost is entirely reasonable
to carry out on a small unit operator. Similarly, to take
full advantage of multiple hardware function units, it
is sometimes necessary to unwind a loop and rewind it
with a modified structure-e.g., to perform, on the ith
iteration of the new loop, certain computation which
was formerly performed on the (i-1)st, ith, and (i+ l)st
iteration. Again, a search is required to find the optimal
rewinding.

In general, code generation which tries various com
binations of code sequences and chooses among them
(by analysis or simulation) can be used in a reasonable
time scale if consideration is restricted to the few unit
operations where the pay-off is significant. Consider,
for example, a procedure which searches through an ar
ray of packed k-bit elements counting the number of
times a certain (parameter-specified) k-bit configuration
occurs. The table can either be searched in array order
all elements in the first word, then all elements in the
next, etc.-or in position order-all elements in the first
position of a word, all elements in the next position, etc.
Which search strategy is optimal depends on k, the
hardware for accessing k-bit bytes from memory, the
speed of shifting vs. memory access, and the sort of
mask and comparison instructions for k-bit ~ytes. In
many situations, the easiest way of choosing the· better
strategy is to generate code for each and· compute. the
relative -execution times as a function of array length.

A separate issue arises from non-obvious unit opera
tions. Suppose analysis shows that procedures F and G
are each key operations (i.e., are executed very fre
quently). It may wellbe that the appropriate candidates
for unit compilation are F, G, and some particular

* The only significant exception is for arithmetic expressions with
no common subexpressions.10

combination of them, e.g., "F;G" or "G(... F(...)
...)". That is, if a substantial number of calls on G are
preceded by calls of F (in sequence or in an argument
position), the new function defined by that composition
should be unit compiled. For example, in dealing with
complex arithmetic, +, -, *, /, and CONJ are surely
unit operations. However, it may be that for some pro
gram, "u/v+v*CONJ(v)" is critical. Subjecting this
combination to unit compilation saves four of the ten
multiplications as well as a number of memory fre
quencies.

ASSUMPTIONS AND ASSERTIONS

If an optimizing compiler is to generate really good
code, it must be supplied the same sort of additional
information that would be given to or deduced by a
careful human coder. Pragmatic remarks (e.g., sugges
tions that certain global optimizations are possible) as
well as explicit consent (e.g., the REORDER attribute
of PL/I) are required. Similarly) if programs are to be
validated by a· program verifier, ~sistance from the
programmer in f{)rming inductive assertions is needed.
Communication between the programmer and the
optimizer/verifier is by means of ASSUME and AS
SERT forms.

An assumption is stated by the programmer and is
(by and large) believed true by the evaluator. A local
assumption

ASSUME(X~O);

is taken as true at the point it appears. A global assump
tion may be extended over some range by means of the
infix operator IN, e.g.,

ASSUME(X~O) IN BEGIN ... END;

where the assumption is to hold over the BEGIN-END
block and over all ranges called by that block. The func
tion of an assumption is to convey information which
the programmer knows is true but which cannot be
deduced from the program. Specifications of the well
formedness of input data are assumptions as are state
ments about the behavior of external procedures
analyzed separately.

Assertions, on the other hand, are verifiable. From the
program text and the validity of the program's assump
tions, it is possible-at least in principle-to validate
each assertion. For example,

ASSERT(FOR I FROM 1 TO N DO TRUEP(A[I]~
B[ID) IN BEGIN ... END

Multiple Evaluators in an Extensible Programming System 909

should be provably true over the entire BEGIN-END
block, given that all program assumptions are correct.
T~e interpreter, optimizer, and verifier each treat as

sumptions and assertions in different ways. Since the
interpreter is used primarily for debugging, it takes the
position that the programmer is not to be trusted.
Hence, it checks everything, treating assumptions and
assertions identically-as extended Boolean expressions
to be evaluated and checked for true (false causing an
ERROR and, in general, suspension of the program).
Local assertions and assumptions are evaluated in
analogy with the conditional expression

NOT (expression)==} ERROR (...)

(This is similar to the use of ASSERT in ALGOL W.12)
Assumptions and assertions over some range are checked
over the entire range. This can be done by checking the
validity at the start of the domain and setting up a
condition monitor (e.g., cf. Reference 13) which will
cause a software interrupt if the condition is ever vio
lated during the range.

Hence, in interpreted execution, assumptions and as
sertions act as comments whose correctness is checked
by the evaluator, providing a rather nice debugging
tool. Not only are errors explicitly detected by a false
assertion, but when errors of other sorts occur (e.g.,
overflow, data type mismatch, etc.), the programmer
scanning through the program is guaranteed that certain
assertions were valid for that execution. Since debug
ging is often a matter of searching the execution path
for the least source of an error, certainty that portions
of the program are correct is as valuable as knowledge
of the contrary.

The compiler simply believes assertions and assump
tions and uses their validity in code optimization. Con
sider, for example, the assignment

X~B[I-J]-60

Normally, the code for this would include subscript
bounds checking. However, in

X~(ASSERT(1~I-J I\I-J ~LENGTH(B)))

IN B[I-J]-60

the assertion guarantees that the subscript is in range
and no run-time check is necessary.

While assertkms and assumptions are handled by the
compiler in rather the same way, there are a fewdif
ferences. Assumptions are the more powerful in that
they can be used to express knowledge of program be
havior which could not be deduced by the compiler,
either because necessary information is not available
(e.g., facts about a procedure which will be input during

program execution) or because the effort of deduction is
prohibitive (e.g., the use of deep results of number
theory in a program acting on integers). Separate com
pilation makes the statement of such assumptions es
sential, e.g~,

ASSUME(SAFE(P)) IN BEGIN ... END

insures that the procedure P is free of side effects and
hence can be subj ect to common subexpression elimina
tion.

Unlike assumptions, assertions can be generated by
the compiler as logical consequences of assumptions,
other assertions, and the program text. Consider, for
example, the following conditional block (cf. Appendix
for syntax), where L is a pointerto a list structure.

BEGIN L=NIL==} ... ; ... CDR(L) ... END

Normally, the CDR operation would require a check
for the empty list as an argument. However, provided
that there are no intervening assignments to L, the
compiler may rewrite this as

BEGIN L=NIL==} ... ; ASSERT(L~NIL)

IN BEGIN ... CDR(L) ... END END

in which case no checks are necessary. Assertions added
by the compiler and included in an augmented source
listing provide a means for the compiler to record its
deductions and explicitly transmit these to the pro
grammer.

The program verifier treats assumptions and asser
tions entirely differently. Assumptions are believed. *
Assertions are to be proved or disprovedl4,15 on the
basis of the stated assumptions, the program text, the
semantics of the programming language, and specialized
knowledge about the subject data types. In the case of
integers, there has been demonstrable success-the· as
sertion verifier of King has been applied successfully to
some definitely non-trivial algorithms. Specialized
theorem provers for other domains may be constructed.
Fortunately, the number of domains is small. In ALGOL
60, for example) knowledge of the reals, the integers,
and Boolean expressions together with an understand
ing of arrays and. array subscripting will handle most
program assertions.

In an extensible language, the situation is more com
plex, but not drastically so. The base language data
types are typically those of ALGOL 60 plus a few others,
e.g., characters; the set of formation rules for data ag
gregates consists of arrays, plus structures and pointers.

* One might, conceivably, check the internal consistency of a set
Df assumptions, Le., test for possible contradictions.

910 Fall Joint Computer Conference, 1972

Only the treatment of pointers presents any new is
sues-these because pointers allow data sharing and
hence· access to a single entity under a multiplicity of
names (Le., access paths). This is analogous to the prob
lem of subscript identification, but is compounded
since the access paths may be of arbitrary length.
However, recent work16 shows promise of providing
proof techniques for pointers and structures built of
linked nodes. Since all extension sets ultimately derive
their semantics from the base language, it suffices to
give a formal treatment to the primitive modes and the
built-in set of formation rules-assertions on all other
modes can be mapped into· and verified on the base. **

One variation on the program verifier is the notifier.
Whereas the verifier uses formal proof techniques to
certify correctness, the notifier uses relatively un
sophisticated means to provide counterexamples. One
can safely assume that most programs will not be ini
tially correct; hence, substantial debugging assistance
can be provided by simply pointing out errors.· This can
be done somewhat by trial and error-generating values
which satisfy the assumptions and running the program
to check the assertions. Since. programming errors
typically occur at the extremes in the space of data
values, a few simple heuristics may serve to produce
critical counterexamples. If, as appears likely, the com
putation time for program verification is considerable,
the use of a simple, quicker means to find the majority
of bugs will be of assistance on online program produc
tion. While the notifier can never validate programs, it
may be helpful in creating them.

OPTIMIZATION, EXTENSION SETS, AND
TRANSFORMATION SETS

One of the advantages of an extensible language over
a special purpose language developed to handle a new
application arises from the economics of optimization.
In an extensible language system, each extended lan
guage Li is defined by an extension set Ei in terms of the
base language. Since there is only a single base, one can
afford to spend considerable effort in developing optimi
zation techniques for it. Algorithms for register alloca
tion, common sub expression detection, eliinination of

** This gives only a formal technique for verification, i.e., specifies
what. must be axiomatized and gives a valid reduction technique.
It may well turn out that such reduction is not a practical solution
if the resulting computation costs are excessive. In such cases,
one can use the underlying axiomatization as a basis for deriving
rules of inference on an extension set. These may be introduced in
a fashion similar to the specialized transformation sets discussed
in the next section.

variables, removal of computation from loops, loop
fusion, and the like need be developed and programmed
only once. All extensions will take advantage of these.
In contrast, the compiler for each special purpose
language must have these optimizations explicitly in
cluded. This is already a reasonably large programming
project, so large that many special purpose languages go
essentially unoptimized. As the set of known optimiza
tion techniques grows, the economic advantage of ex
tensible language optimization will increase.

There is one flaw in the above argument, which we
now repair. There is the tacit assumption that all
optimization properties of an extended language Li can
'be obtained from the semantics and pragmatics of the
base. While the logical dependency is strictly valid,
taking this as a complete technique is rather impractical.
While certain optimization properties-those con
cerned solely with control and data flow-can be well
optimized in terms of the base language, other prop
erties depending on long chains of reasoning would tax
any optimizer that sought to derive them every time
they were required.

The point, and our solution, may best be exhibited
with an example. Consider

FOO(SUBSTRING(I, J, X CONCAT Y»

which calls procedure FOO with the substring consist
ing of the Ith to (I +J -1)th characters of the string ob
tained by concatenating the contents of string variable
X with string variable Y. In an extensible language,
SUBSTRING and CONCAT are defined procedures
which operate on STRINGs (defined to be ARRAYs of
CHARacters) .

SUBSTRING~

EXPR(I,J:INT, S:STRING; STRING)
BEGIN

DECL SS:STRING SIZE J;
FOR K TO J DO SS[K]~S[I+K-1];
SS

END

CONCAT~

EXPR(A,B:STRING; STRING)
BEGIN

DECL R:STRING SIZE LENGTH(A)+
LENGTH(B);

FOR M TO LENGTH(A) DO R[M]~A[M];
FOR M TO LENGTH(B) DO R[M+LENGTH(A)]
~B[M];

R
END

One could compile code for the above c~ll on Faa
by compiling three successive calls-on CONCAT,

Multiple Evaluators in an Extensible Programming System 911

SUBSTRIN G ,and FOO. However, by taking advan
tage of the properties of CONCAT and SUBSTRING,
one can do far better. Substituting the definition of
CONCAT in SUBSTRING procedures

SUBSTRING(I, J, A CON CAT B)=
BEGIN

DECL SS :STRING SIZE J;
DECL S:STRING BYVAL

BEGIN
DECL R:STRING SIZE LENGTH(A)

+LENGTH(B);
FOR M TO LENGTH(A) DO R[M]~A[M];
FOR M TO LENGTH(B) DO
R[M+LENGTH(A)]~B[M];

R
END;

FOR K TO J DO SS{K]~S[I+K-1];
SS

END

The block which computes R may be opened up so
that its declarations and computation occur in the sur
rounding block. Then, since S is identical to R, S may
be systematically replaced by R and the declaration for
S deleted. '

BEGIN
DECL SS:STRING SiZE J;
DECL R:STRING SIZE LENGTH(A)+

LENGTH(B);
FOR M TO LENGTH(A) DO R[M]~A[l\tI];
FOR lVI TO LENGTH(B) DO

R[l\1 + LENG TH(A)]~ B[lVI];
FOR K TO J DO SS[K]~R[I+K-1];
SS

END

This implies that R[M] is defined by the conditional
block

BEGIN
M ~ LEN GTH(A)=} A[M];
B[M - LENGTH(A»)

END

Replacing M by I +K -1 and substituting, the assign
ment loop becomes

FOR K TO J DO SS[K]~BEGIN
K~LENGTH(A)-I

+1=>A[I+K-l];
B[I+K-LENGTH

(A)-I]
END

Distributing the assignment to inside the block, this

has the form

FOR x TO VO DO BEGIN
x~vl=}fl(X);
f2(x)

END

where Vi are loop-independent values and fi are func
tions in x. A basic optimization on the base language
transforms this into the equivalent form which avoids
the test

FOR x TO MIN(vo,vl) DO flex);
FOR x FROM MIN(vo, vl)+1 TO VO DO f2(x);

Hence, SUBSTRING (I, J, A CONCAT B) may be
computed by a call on the procedure*

EXPR(I,J:INT, A,B:STRING; STRING)
BEGIN

DECL SS:STRING SIZE J;
FOR K TO MIN(J, LENGTH(A)-I+l) DO
SS[K]~A[I + K -1];

FOR K FROM MIN(J, LENGTH(A)-I+l)+1
TO J DO SS[K]~B[I+K-LENGTH(A)-I];

SS
END

This could, in principle, be deduced by a compiler
from the definitions of SUBSTRING and CONCAT.
However, there is no way for the compiler to know a
priori that the substitution has substantial payoff. If
the expression SUBSTRING(I,J,A CONCAT B) were
a critical unit operation, the heuristic "try all possible
compilation techniques on key expressions" would dis
cover it. However, the compiler cannot afford to try all
function pairs appearing in the program in the hope
that some will simplify-the computational cost is too
great. Instead,'the programmer specifies to the compiler
the set of transformations (cf. Reference 17 for related
techniques) he knows will have payoff.

TRANSFORM(I,J:INT, X,Y:STRING;

TO

SUBSTITUTE)
SUBSTRING(I, J, X CONCAT Y)

SUBSTITUTE(Z:X CONCAT Y,
SUBSTRING(I,J,Z» (I, J, X, Y)

In general, a transformation rule has the format

TRANSFORM«pattern variables); (action variables»

(pattern)
TO

(replacemeJ;lt)

* Normal common subexpression elimination will recognize that
LENGTH (A), I-I, and MIN(J, LENGTH(A)-I+l) need be
calculated only once.

912 Fall Joint Computer Conference, 1972

All lexemes in the pattern and replacement are taken
literally except for the (pattern variables) and (action
variables). The former are dummy arguments, state
ment-matching variables, etc.; the latter denote values
used to derive the actual transformation from the input
transformation schemata. In the above case, the pro
cedure SUBSTITUTE is called to expand CONCAT
within SUBSTRING as the third argument. The sim
plified result, CP, is- applied to the dummy arguments.
Hence, calls such as SUBSTRING (3,2*N +C, AA
CON CAT B7) are transformed into calls on CP(3,2*N +
C, AA, B7).

When defining an extension set, the programmer de ..
fines the unit data types, unit operations, and addi
tionally the significant transformations on the problem
domain. These domain-dependent transformations are
adjoined to the set of base transformations to produce
the total transformation set. The program, as written,
specifies the function to be computed; the· transforma
tion set provides an orthogonal statement of how the
computation is to be optimized.

For example, in adding a string. manipUlation ex
tension, one would first define the data type STRING
(fixed length array of characters). Next, one defines the'
unit operations: LENGTH, CONCATenate, SUB
STRING, SEARCH (fora string x as part of a string
y starting at position i and return the initial index or
zero if not present). Finally, one defines the transforma~
tions on program units involving these operations.

TRANSFORM(X,Y:STRING) LENGTH(X
CONCAT Y)

TO LENGTH(X)+LENGTH(Y)

TRANSFORM(A,X,Y,Z:STRING; SUBSTITUTE)
X CONCAT Y CONCAT Z

TO SUBSTITUTE(A: Y CONCAT Z;
X CONCAT A) (X,Y,Z)

So long as the transformations are entirely local, they
act only as macro replacements. The significant trans
formations in an extension set are those which make
global, far reaching changes to program or data. Clearly,
these changes will require knowledge, assumed or as
serted, about that portion of the program affected by
these changes ..

Consider, for example, the issue of string variables
in the proposed extension set. If a string variable is to
have a fixed capacity, the type STRING is satisfactory.
If varial;>le capacity is desired but an' upper bound can
be established for each string variable, the type V AR
STRING could be defined like string VARYING in
PLjI. If completely variable capacity is required, a

string variable would be implemented as a pointer to a
simple STRING (i.e., PTR(STRING» with the under
standing that assignment of a string value to such a
string variable causes a copy of the string to be made
and the pointer set to address the copy. * With these
three possible representations available, one would de
fine the data type string variable to be

ONEOF(STRING, VARSTRING, PTR(STRING»

Each string variable is one of these three data types.
To provide for the worst case, the programmer could
specify each formal parameter string variable to be
ONEOF(STRING, VARSTRING, PTR(STRING»
and specify each local string variable to be a PTR
(STRING). A program so written would be correct, but
its performance would, in general, suffer from unused
generality. Each string variable whose length is fixed
can be redeclared

TRANSFORM(Dl,D2:DECLIST, S:STATLIST,
F:FORM, X; WHEN)

TO

WHEN (CONSTANT(LENGTH(X») IN
BEGIN D1; DECL X:PTR(STRING)
BYVAL F; D2; SEND

BEGIN Dl; DECLX:STRING BYVAL F;
D2; SEND

The predicate WHEN appearing in a pattern is
handled in somewhat the same fashion as are AS
SERTions during program verification. It is proved as
part of the pattern matching; the transformation is ap
plicable only if the predicate is provably TRUE and
the literal part of the pattern matches. Here, it must be
proved that LENGTH(X) is a constant over the block
B and all ranges called by B. If so, the variable can be
of type STRING. Similarly, if there is a computable

* This does not exhaust the list of possible representations for
strings. To avoid copying in concatenation, insertion, and
deletion, one could represent strings by linked lists of characters
nodes: each node consisting of a character and a pointer to the
next node. A string variable could then be a pointer to such node
lists. To. minimize storage, one could employ hashing to insure
that each distinct sequence of characters is represented by a
unique string-table-entry; a string variable could then be a pointer
to such string-table-entries. Hashing and implementing strings by
linked lists could be combined to yield still another representation
of strings. In the interest of brevity, we consider only three rather
simple representations; however, the point we make is all the
stronger when additional representations are considered.

Multiple Evaluators in an Extensible Programming. System 913

maximum length less than a reasonable upper limit
LIM, then the data type VARSTRING can be used.

TRANSFORM(D1,D2:DECLIST, B:BLOCK,

TO

F:FORM, K:INT, X; WHEN)
BEGIN D1; DECL X:PTR(STRING)

BYVAL F; D2; WHEN(LENGTH(X)~
KI\K~LIM) IN B

END

BEGIN D1; DECL X:VARSTRING SIZE
K BYVAL F; D2; BEND

To prove an assertion for a variable X over some
range, it suffices to prove the assertion true of all ex
pressions that are assignable to X in that range. An
assertion about LENGTH(X) is reasonable to validate
since it entails only theorem proving over the in
tegers18-once the string manipulation routines are
reinterpreted as operations on string lengths. Fortu
nately, most of the interesting predicates are of this
order of difficulty. Typical WHEN conditions are: (1) a
variable (or certain fields of a data structure) is not
changed; (2) an object in the heap is referenced only
from a given pointer; (3) whenever control reaches a
given program point, a variable always has (or never
has) a given value (or set of values); (4) certain opera
tions are never performed on certain elements of a
data structure. Such conditions are usually easier to
check than those concerned with correct program be
havior, since only part of the action carried out by the
algorithm is relevant.

That is, the technique suggested above for simplify
ing proofs about string manipulation operators by con
sidering only string lengths generalizes too many re
lated cases. To verify a predicate concerned with certain
properties, one takes a valuation of the program on a
model chosen to abstract those properties.19 The pro
gram is run by a special interpreter which performs the
computation on the simpler data space tailored to the
property. To correct for the loss of information (e.g.,
the values of most program tests are not available),
the computation is conservative (e.g., the valuation of
a conditional takes the union of the valuations of the
possible arms). If the valuation in the model demon
strates the proposition, it is valid for the actual data
space. While this is a sufficient condition, not a neces
sary one, an appropriate model should seldom fail to
prove a true proposition.

CONCLUSION

An interpreter, a compiler, a source-level optimizer em
ploying domain-specific transformations, and a program

verifier each compute a valuation over some model.
Fitting these valuators together so as to exploit the
complementarity of their models is a central task in
constructing a powerful programming tool.

ACKNOWLEDGMENT

The author would like to thank Glenn Holloway and
Richard Stallman for discussions concerning various
aspects of this paper.

REFERENCES

1 B WEGBREIT
The ECL programming system
Proc AFIPS 1971 FJCC Vol 39 AFIPS Press Montvale
New Jersey pp 253-262

2 A J PERLIS
The synthesis of algorithmic systems
JACM Vol 17 No 1 January 1967 pp 1-9

3 T E CHEATHAM et al
On the basis for ELF-an extensible language facility
Proc AFIPS FJCC 1968 Vol 33 pp 937-948

4 D G BOBROW
Requirements for advanced programming systems for list
processing
CACM Vol 15 No 7 July 1972

5 T E CHEATHAM B WEGBREIT
A laboratory for the study of automating programming
Proc AFIPS 1972 SJCC Vol 40

6 W TEITELMAN et al
BBN-LISP
Bolt Beranek and Newman Inc Cambridge Massachusetts
July 1971

7 E W DIJKSTRA
Recursive programming
Numerische Mathematik 2 (1960) pp 312-318. Also in
Programming Systems and Languages S Rosen (Ed)
McGraw-Hill New York 1967

8 J MOSES
The function of FUNCTION in LISP

, SIGSAM Bulletin July 1970 pp 13-27
9 IBM SYSTEM/360

PL/I language reference manual
Form C28-8201-2 IBM 1969

10 R SETHI J D ULLMAN
The generation of optimal code for arithmetic expressions
JACM Vol 17 No 4 October 1970 pp 715-728

11 A V AHO J D ULLMAN
TransformatilJns on straight line programs
Conf Rec Second Annual ACM Symposium on Theory of
Computing SIGACT May 1970 pp 136-148

12 R L SITES
Algol W reference manual
Technical Report CS-71-230 Computer Science Department
Stanford University August 1971

13 D G BOBROW B WEGBREIT
A model and stack implementation of multiple environments
Report No 2334 Bolt Beranek and Newman Cambridge
Massachusetts March 1972 submitted for publication

914 Fall Joint Computer Conference, 1972

14 R FFLOYD
Assigning meanings to programs
Proc Symp Appl Math Vol 19 1967 pp 19-32

15 R F FLOYD
Toward interactive design of correct programs
Proc IFIP Congress 1971 Ljubljana pp 1-5

16 J POUPON B WEGBREIT
Verification techniques for data structures including pointers
Center for Research in Computing Technology Harvard
University in preparation

17 B A GALLER A J PERLIS
A proposal for definitions in Algol
CACM Vol 10 No 4 April 1967 pp 204-219

18 J C KING
A program verifier
PhD Thesis Department of Computer Science
Carnegie-Mellon University September 1969

19 M SINTZOFF
Calculating properties of programs by valuations on specific
models
SIGPLAN Notices Vol 7 No 1 and SIGACT News No 14
January 1972 pp 203-207

20 B WEGBREIT et al
ECL programmer's manual
Center for Research in Computing Technology Harvard
University Cambridge Massachusetts January 1972

APPENDIX: A BRIEF DESCRIPTION OF
ELl SYNTAX

To a first approximation, the syntax of ELl is like
that of ALGOL 60 or PL/I. Variables, subscripted
variables, labels, arithmetic and Boolean expressions,
assignments, gotos and procedure calls can all be written
as in ALGOL 60 or PL/I. Further, ELI is-like ALGOL
60 or PL/I-a block structured language. Executable
statements in ELl can be grouped together and de
limited by BEGIN END brackets to form blocks. New
variables can he created within a block by declaration;
the scope of such variable names is the block in which
they are declared.

The syntax of ELl differs from that of ALGOL 60
or PL/I most notably in the form of conditionals,
declarations, and data type specifiers. For the purposes
of this paper, it will suffice to explain only these points
of difference. (A more complete description can be found
in Reference 20.)

A.1 Conditionals

Conditionals in ELl are a special case of BEGIN
END blocks. In general, each ELl block has a value
the value of the last statement executed. Normally,
this is the last statement in the block. Instead, a block
can be conditionally exited with some other value CO by

a statement of the form

If ill is TRUE then the block is exited with the value
of CO; otherwise, the next statement of the. block IS

executed. For example, the ALGOL 60 conditional

if ill! then COl else if ill2 then CO2 else C03

is written in ELl as

(Unconditional statements of an ELl block are simply
executed sequentially-unless a goto transfers control
to a different labeled statement.)

A.2 Declarations

The initial statements of a block may be declarations
having the format

DECL £: ~S;

where £ is a list of identifiers, ~ is the data type, and
S specifies the initialization. For example,

DECL X, Y: REAL BYVAL A[I];

This creates two REAL variables named X and Yand
initializes them to separate copies of the current value
of A[I]. The specification S may assume one of three
forms:

(1) empty-in which case a default initialization de
termined by the data type is used.

(2) BYV AL CO-in which case the variables are
initialized to copies of the value of CO.

(3) SHARED CO-in which case the variables are
declared to be synonymous with the value of co.

A.3 Data types

Built-in data types of the language include: BOOL,
CHAR, INT, and REAL. These may be used as data
type specifiers to create scalar variables.

Array variables may be declared by using the built-in
procedure ARRAY. For example,

DECL C: ARRAY(CHAR) BYVAL CO;

creates a variable named C which is an ARRA Y of

Multiple Evaluators in an Extensible Programming System 915

CHARacters. The LENGTH (i.e., number of compo
nents) and initial value of C is determined by the value
of U.

Procedure-valued variables may be defined by the
builtin procedure PROC. For example,

DECL G:PROC(BOOL,ARRAY(INT); REAL);

declares G to be variable which can be assigned only
those procedures which take a BOOL argument and an
ARRAY(INT) argument and deliver a REAL result.

AA Procedures

A procedure may be defined by assigning a procedure
value to a procedure-valued variable. For example,

IPOWER~

EXPR(X:REAL,N:INT; REAL)
BEGIN DECL R:REAL BYVAL 1; FOR I TO N

DO R~R*X; REND

assigns to IPOWER a procedure which takes two argu
ments, a REAL and an INT (assumed positive), and
computes the exponential.

Automated programmering-The programmer's assistant

by WARREN TEITELMAN*

Bolt, Beranek, & Newman
Cambridge, Massachusetts

INTRODUCTION

This paper describes a research effort and programming
system designed to facilitate the production of pro
grams. Unlike automated programming, which focuses
on developing systems that write programs, automated
programmering involves developing systems which
automate (or at least greatly facilitate) those tasks that
a programmer performs other than writing programs:
e.g., repairing syntactical errors to get programs to run
in the first place, generating test cases, making tentative
changes, retesting, undoing changes, reconfiguring,
massive edits, et al., plus repairing and recovering from
mistakes made during the above. When the system in
which the programmer is operating is cooperative and
helpful with respect to these activities~ the programmer
can devote more time and energy to the task of pro
gramming itself, i.e., to conceptualizing, designing and
implementing. Consequently, he can be more ambi
tious, and more productive.

BBN-LISP

The system we will describe here is embedded in
BBN-LISP. BBN-LISP, as a programming language,
is an implementation of LISP, a language designed for
list processing and symbolic manipulation.! BBN-LISP
as a programming system, is the product of, and vehicle
for, a research effort supported by ARPA for improving
the programmer's environment. ** The term "environ
ment" is used to suggest such elusive and subjective
considerations as ease and level of interaction, forgiving
ness of errors, human engineering, etc.

Much of BBN-LISP was designed specifically to
enable construction of the type of system described in
this paper. For example, BBN-LISP includes such

* The author is currently at Xerox Palo Alto Research Center
3180 Porter Drive, Palo Alto, California 94304.
** Earlier work in this area is reported in Reference 2.

917

features as complete compatibility of compiled and
interpreted code, "visible" variable bindings and control
information, programmable error recovery procedures,
etc. Indeed, at this point the two systems, BBN-LISP
and the programmer's assistant, have become so inter
twined (and interdependent), that it is difficult, and
somewhat artificial, to distinguish between them. We
shall not attempt to do so in this paper, preferring
instead to present them as one integrated system.

BBN-LISP contains many facilities for assisting the
programmer in his non-programming activities. These
include a sophisticated structure editor which can either
be used interactively or as a subroutine; a debugging
package for inserting conditional programmed inter
rupts around or inside of specified procedures; a
"prettyprint" facility for producing structured sym
bolic output; a program analysis package which pro
duces a tree structured representation of the flow of
control between procedures, as well as a concordance
listing indicating for each procedure the procedures that
call -it, the procedures that it calls, and the variables it
references, sets, and binds; etc.

Most on-line programming systems contain similar
features. However, the essential difference between the
BBN-LISP system and other systems is embodied in
the philosophy that the user addresses the system
through an (active) intermediary agent, whose task it
is to collect and save information about what the user
and his programs are doing, and to utilize this informa
tion to assist the user and his programs. This inter
mediary is called the programmer's assistant (or p.a.).

THE PROGRAMMER'S ASSISTANT

For most interactions with the BBN LISP system,
the programmer's assistant is an invisible interface
between the user and LISP: the user types a request,
for example, specifying a function to be applied to a set
of arguments. The indicated operation is then per-

918 Fall Joint Computer Conference, 1972

formed, and a resulting value is printed. The system is
then ready for the next request. However, in addition,
in BBN-LISP, each input typed by the user, and the
value of the corresponding operation, are automatically
stored by the p.a. on a global data structure called the
history list.

The history list contains information associated with
each of the individual "events" that have occurred in
the system, where an event corresponds to an individual
type-in operation. Associated with each event is the
input that initiated it, the value it yielded, plus other
information such as side effects, messages printed by the
system or by user programs, information about any
errors that may have occurred during the execution of
the event, etc. As each new event occurs, the existing
events on the history list are aged, with the oldest event
"forgotten". *

The user can reference an event on the history list by
a pattern which is used for searching the history list,
e.g., FLAG:~$ refers to the last event in which the
variable FLAG was changed by the user; by its relative
event number, e.g. -1 refers to the most recent event,
-2 the event before that, etc., or by an absolute event
number. For example, the user can retrieve an event in
order to REDO a test case after making some program
changes. Or, having typed a request that contains a
slight error, the user may elect to FIX it, rather than
retyping the request in its entirety. The USE command
provides a convenient way of specifying simultaneous
substitutions for lexical units and/or character strings,
e.g., USE X FOR Y AND + FOR *. This permits
after-the-fact parameterization of previous events.

The p.a. recognizes such requests as REDO, FIX,
and USE as being directed to it, not the LISP inter
preter, and executes them directly. For example, when
given a REDO command, the p.a. retrieves the indi
cated event, obtains the input from that event, and
treats it exactly as though the user had typed it in
directly. Similarly, the USE command directs the p.a.
to perform the indicated substitutions and process the
result exactly as though it had been typed in.

The p.a. currently recognizes about 15 different
commands (and includes a facility enabling the user to
define additional ones). The p.a. also enables the user
to treat several events as a single unit, (e.g. REDO 47
THRU 51), and to name an event or group of events,
e.g. , NAME TEST -1 AND -2. All of these capabilities
allow, and in fact encourage, the user to construct
complex console operations out of simpler ones in much
the same fashion as programs are constructed, i.e.,
simpler operations are checked out first, and then
combined and rearranged into large ones. The important

* The storage used in its representation is then reusable.

point to note is that the user does not have to prepare in
advance for possible future (re-) usage of an event. He
can operate straightforwardly as in other systems, yet
the information saved by the p.a. enables him to
implement his "after-thoughts."

UNDOING

Perhaps the most important after-thought operation
made possible by the p.a. is that of undoing the side
effects of a particular event or events. In most systems,
if the user suspects that a disaster might result from a
particular operation, e.g., an untested program running
wild and chewing up a complex data structure, he would
prepare for this contingency by saving the state part of
or all of his environment before attempting the opera
tion. If anything went wrong, he would then back up
and start over. However, saving/dumping operations
are usually expensive and time-consuming, especially
compared to a short computation, and are therefore not
performed that frequently. In addition, there is always
the case where disaster strikes as a result of a supposedly
debugged or innocuous operation. For example, suppose
the user types

FOR X IN ELTS REMOVE PROPERTY
'MORPH FROM X

which removes the property MORPH from every mem
ber of the list ELTS, and then realizes that he meant to
remove this property from the members of the list
ELEMENTS instead, and has thus destroyed some
valuable information.

Such "accidents" happen all too often in typical
console sessions, and result in the user's either having
to spend a great deal of effort in reconstructing the
inadvertently destroyed information, or alternatively
in returning to the point of his last back-up, and then
repeating all useful work performed in the interim.
(Instead, using the p.a., the user can recover by simply
typing UNDO, and then perform the correct operation
by typing USE ELEMENTS FOR ELTS.)

The existence of UNDO frees the user from worrying
about such oversights. He can be relaxed and confident
in his console operations, yet still work rapidly. He can
even experiment with various program and data con-,
figurations, without necessarily thinking through all
the implications in advance. One might argue that this
would promote sloppy working habits. However, the
same argument can be, and has been, leveled against
interactive systems in general. In fact, freeing the user
from such details as having to anticipate all of the
consequences of an (experimental) change usually re-

sults in his being able to pay more attention to the
conceptual difficulties of the problem he is trying to
solve.

Another advantage of undoing as it is implemented
in the programmer's assistant is that it enables events
to be undone selectively. Thus, in the above example, if
the user had performed a number of useful modifica
tions to his programs and data structures before noticing
his mistake, he would not have to return to the environ
ment extant when he originally typed FOR X IN ELTS
REMOVE PROPERTY 'MORPH FROM X, in order
to UNDO that event, i.e., he could UNDO this event
without UNDOing the intervening events. * This means
that even if we eliminated efficiency considerations and
assumed the existence of a system where saving the
entire state of the user's environment required insig
nificant resources and was automatically performed
before every event, there would still be an advantage to
having an undo capability such as the one described
here.

Finally, since the operation of undoing an event itself
produces side effects, it too is undoable. The user can
often take advantage of this fact, and employ strategies
that use UNDO for desired operation reversals, not
simply as a means of recovery in case of trouble. For
example, suppose the user wishes to interrogate a
complex data structure in each of two states while
successively modifying his programs. He can interrogate
the data structure, change it, interrogate it again, then
undo the changes, modify his programs, and then repeat
the process using successive UNDOs to flip back and
forth between the two states of the data structure.

IMPLEMENTATION OF UNDO**

The UNDO capability of the programmer's assistant
is implemented by making each function that is to be
undo able save on the history list enough information to
enable reversal of its side effects. For example, when a
list node is about to be changed, it and its original
contents are saved; when a variable is reset, its binding
(i.e., position on the stack) and its current value are
saved. For ~ch primitive operation that involves side
effects, there are two separate functions, one which
always saves this information, i.e., is always undoable,
and one which does not.

Although the overhead for saving undo information
is small, the user may elect to make a particular opera
tion not be undo able if the cumulative effect of saving

* Of course, he could UNDO all of the intervening events as
well, e.g., by typing UNDO THRU ELTS.
** See Reference 1, pp. 22.39--43, for a more complete description
of undoing.

Automated Programmering 919

the undo information seriously degrades the overall
performance of a program because the operation in
question is repeated so often. The user, by his choice of
function, specifies which operations are undoable. In
some sense, the user's choice of function acts as a
declaration about frequency of use versus need for
undoing. For those cases where the user does not want
certain functions undo able once his program becomes
operational, but does wish to be able to undo while
debugging, the p.a. provides a facility called TEST
MODE. When in TESTMODE, the undoable version
of each function is executed, regardless of whether the
user's program specifically called that version or not.

Finally, all operations involving side effects that are
typed-in by the user are automatically made undo able
by the p.a. by substituting the corresponding undo able
function name(s) in the expression before execution.
This procedure is feasible because operations that are
typed-in rarely involve iterations or lengthy computa
tions directly, nor is efficiency usually important. How
ever, as a precaution, if an event occurs during which
more than a user-specified number of pieces of undo
information are saved, the p.a. interrupts the operation
to ask the user if he wants to continue having undo
information saved.

AUTOMA'rIC ERROR CORRECTION-THE
DWIM FACILITY

The previous discussion has described ways in which
the programmer's assistant is explicitly invoked by the
user. The programmer's assistant is also automatically
invoked by the system when certain error conditions
are encountered. A surprisingly large percentage of
these errors, especially those occurring in type-in, are of
the type that can be corrected without any knowledge
about the purpose of the program or operation in
question, e.g., misspellings, certain kinds of syntax
errors, etc. The p.a. attempts to correct these errors,
using as a guide both the context at the time of the
error, and information gathered from monitoring the
user's requests. This form of implicit :;i.ssistance provided
by the programmer's assistant is called the DWIM
(Do-What-I-Mean) capability.

For example, suppose the user defines a function for
computing N factoral by typing

DEFIN[((FACT (N) IF N = 0 THEN 1 ELSE
NN*(FACT N -1)*].

When this input is executed, an error occurs because
DEFIN is not the name of a function. However, DWIM

* In BBN-LISP] automatically supplies enough right paren
theses to match back to the last [.

920 Fall Joint Computer Conference, 1972

notes that DEFIN is very close to DEFINE, which is
a likely candidate in this context. Since the error oc
curred in type-in, DWIM proceeds on this assumption,
types = DEFINE to inform the user of its action, makes
the correction and carries out the request. Similarly if
the user then types FATC (3) to test out his function,
DWIM would correct FATC to FACT.

When the function FACT is called, the evaluation of
NN inNN*(FACT N -1) eauses an error. Here,
DWIM is able to guess that NN probably means N by
using the contextual information that N is the name of
the argument to the function FACT in which the error
occurred. Since this correction involves a user program,
DWIM proceeds more cautiously than for corrections
to user type-in: it informs the user of the correction it is
about to make by typing NN(IN FACT)~N? and then
waits for approval. If the user types Y (for YES), or
simply does not respond within a (user) specified time
interval (for example, if the user has started the com
putation and left the room), DWIM makes the correc
tion and continues the computation, exactly as though
the function had originally been correct, i.e., no informa
tion is lost as a result of the error.

If the user types N (for NO), the situation is the same
as when DWIM is not able to make a correction (that
it is reasonably confident of). In this case, an error
occurs, following which the system goes into a sus
pended state called a "break" from which the user can
repair the problem himself and continue the computa
tion. Note that in neither case is any information or
partial results lost.

DWIM also fixes other mistakes besides misspellings,
e.g., typing eight for "C" or nine for ")" (because of
failure to hit the shift key). For example, if the user had
defined FACT as

(IF N=O THEN 1 ELSE NN*8FACT N-l),

DWIM would have been able to infer the correct
definition.

DWIM is also used to correct other types of condi
tions not considered errors, but nevertheless obviously
not what the user meant. For example, if the user calls
the editor on a function that is not defined, rather than
generating an error, the editor invokes the spelling
corrector to try to find what function the user meant,
giving DWIM as possible candidates a list of user
defined functions. Similarly, the spelling corrector is
called to correct misspelled edit commands, p.a. com
mands, names of files, etc. The spelling corrector can
also be called by user programs.

As mentioned above, DWIM also uses information
gathered by monitoring user requests. This is accom-

TABLE I-Statistics on Usage

edit p.a. spelling
exec com- undo com- correc-

Sessions inputs mands saves mands tions

1. 1422 1089 3418 87 17
2. 454 791 782 44 28
3. 360 650 680 33 28
4. 1233 3149 2430 184 64
5. 302 24 558 8 0
6. 109 55 677 6 1
7. 1371 2178 2138 95 32
8. 400 311 1441 19 57
9. 294 604 653 7 30

10. 102 44 1044 1 4
11. 378 52 1818 2 2

plished by having the p.a., for each user request,
"notice" the functions and variables being used, and
add them to appropriate spelling lists, which are then
used for comparison with (potentially) misspelled units.
This is how DWIl\t{ "knew" that FACT was the name
of a function, and was therefore able to correct F ATC
to FACT.

As a result of knowing the names of user functions
and variables (as well as the names of the most fre
quently used system functions and variables), DWIM
seldom fails to correct a spelling error the user feels it
should have. And, since DWIM knows about common
typing errors, e.g., transpositions, doubled characters,
shift mistakes, etc.,* DWIM almost never mistakenly
corrects an error. However, if DWIM did make a mis
take, the user could simply interrupt or abort the
computation, UNDO the correction (all DWIM correc
tions are undo able) , and repair the problem himself.
Since an error had occurred, the user would have had to
intervene anyway, so that DWIM's unsuccessful
attempt at correction did not result in extra work for
him.

STATISTICS OF USE

While monitoring user requests, the programmer's
assistant keeps statistics about utilization of its various
capabilities. Table I contains 5 statistics from 11
different sessions, where each corresponds to several

* The spelling corrector also can be instructed as to specific user
misspelling habits. For example, a fast typist is more apt to make
transposition errors than a hunt-and-peck typist, so that DWIM
is more conservative about transposition errors with the latter.
See Reference 1, pp. 17.20-22 for complete description of spelling
corrections.

exec inputs
undo saves
changes undone
calls to editor
edit commands
edit undo saves

TABLE II -Further Statistics

edit changes undone
p.a. commands
spelling corrections
calls to spelling corrector
of words compared
time in spelling corrector (in seconds)
CPU time (hr: min: sec)
console time
time in editor

3445
10394

468
387

3027
1669

178
360
74

1108*
5636**

80.2
1:49:59

21:36:48
5:23:53

* An "error" may result in several calls to the spelling corrector,
e.g., the word might be a misspelling of a break command, of a
p.a. command, or of a function name, each of which entails a
separate call.
** This number is the actual number of words considered as
possible respellings. Note that for each call to the spelling cor
rector, on the average only five words were considered, although
the spelling lists are typically 20 to 50 words long. This number
is so low because frequently misspelled words are moved to the
front of the spelling list, and because words are not considered
that are "obviously" too long or too short, e.g., neither AND
nor PRETTYPRINT would be considered as possible respellings
of DE FIN.

individual sessions at the console, following each of
which the user saved the state of his environment, and
then resumed at the next console session. These ses
sions are from eight different users at several ARP A
sites. It is important to note that with one exception
(the author) the users did not know that statistics on
their session would be seen by anyone, or, in most cases,
that the p.a. -gathered such statistics at all.

The five statistics reported here are the number of:

1. requests to executive, i.e., in LISP terms, inputs
to evalquote or to a break;

2. requests to editor, i.e., number of editing com
mands typed in by user;

3. units of undo information saved by the p.a., e.g.,
changing a list node (in LISP terms, a single
rplaca or rplacd) corresponds to one unit of undo
information;

4. p.a. commands, e.g., REDO, USE, UNDO, etc.;
5. spelling corrections.

Mter these statistics were gathered, more extensive
measurements were added to the p.a. These are shown
for an extended session with one user (the author) in
Table II below.

Automated Programmering 921

CONCLUSION

We see the current form of the programmer's assistant
as a first step in a sequence of progressively more
intelligent, and therefore more helpful, intermediary
agents. By attacking the problem of' representing the
intent behind a user request, and incorporating such
information in the p.a., we hope to enable the user to be
less specific, and the p.a. to draw inferences and take
more initiative.

However, even in its present relatively simplistic
form, in addition to making life a lot more pleasant for
users, the p.a. has had a sup rising synergistic effect on
user productivity that seems to be related to the over
head that is involved when people have to switch tasks or
levels. For example, when a user types a request which
contains a misspelling, having to retype it is a minor
annoyance (depending, of course, on the amount of
typing required and the user's typing skill). However,
if the user has mentally already performed that task, and
is thinking ahead several steps to what he wants to do
next, then having to go back and retype the operation
represents a disruption of his thought processes, in
addition to being a clerical annoyance. The disruption
is even more severe when the user must also repair the
damage caused by a faulty operation (instead of being
able to simply UNDO it).

The p.a. acts to minimize these distractions and
diversions, and thereby, as Bobrow puts it, Cl • •• greatly
facilitates construction of complex programs because it
allows the user to remain thinking about his program
operation at a relatively high level without having to
descend into manipulation of details. "3 We feel that
similar capabilities should be built into low level
debugging packages such as DDT, the executive lan
guage of time sharing systems, etc., as well as other
"high-level" programming languages, for they provide
the user with a significant mental mechanical advantage
in attacking problems.

REFERENCES

1 W TEITELMAN D G BOBROW A K HARTLEY
D L MURPHY
BRN-LISP TENEX reference manual
BBN Report July 1971

2 W TEITELMAN
Toward a programming laboratory
Proceedings of First International Joint Conference on
Artificial Intelligence
Washington May 1969

3 D G BOBROW
Requirements for advanced programming systems for list
processing (to be published July 1972 CACM)

A programming language for real-time systems

by A. KOSSIAKOFF and T. P. SLEIGHT

The Johns Hopkins University
Silver-8pring, Maryland

SUMMARY

This paper describes a different approach to facilitating
the design of efficient and reliable large scale computer
programs. The direction taken is toward less rather
than more abstraction, and toward using the computer
most efficiently as a data processing machine. This is
done by expressing the program in the form of a two
dimensional network with maximum visibility to the
designer, and then converting the network auto
matically into efficient code. The interactive graphics
terminal is a most powerful aid in accomplishing this
process. The principal objectives are as follows:

1. Provide a computer-independent representation
of a process to be accomplished by a specified
(target) computer, and automatically transform
ing this representation into a complete program,
in the assembly language of the specified com
puter.

2. Design the representation so as to make highly
visible the processing and flow of individual
data, as well as that of control logic, in the form
of a two-dimensional network, and make it
understandable to engineers, scientists and com
puter programmers.

3. Design the representation so that it can be con
figured readily on an interactive computer
driven graphics terminaL

4. Design a simple but powerful set of computer
independent building blocks, called Data Circuit
Elements, for representing the process to be ac
complished by a computer using distinct forms
to represent each class of function.

5. Enable the user to simulate the execution of the
Data Flow Circuits by inputting realistic data
and observing the resultant logic and data flow.

6. Facilitate the design of an efficient complex
data processing system by making visible the
core usage and running time of each section of

923

the process, thus avoiding the construction -of a
program which exceeds the capacity of the target
computer, or which uses undue core capacity
and time for low-priority operations.

7. Provide a representation of a computer program
which is self-documenting, in a manner clearly
understandable by either an engineer or pro
grammer, making clearly visible the interfaces
among subunits, the branch points and the suc
cessive steps of handling each information input.

INTRODUCTION

The development, "debugging," and maintenance of
computer programs for complex data-processing sys
tems is a difficult and increasingly expensive part of
modern systems design, especially for those systems
which involve high speed real-time processing. The
problem is aggravated by the absence of a lucid repre
sentation of the operations performed by the program
or of its internal and external interfaces. Thus, the suc
cessful use of modern digital computers in automating
such systems has been severely impeded by the large
expenditure of time and money in the design of complex
computer programs. The development of software is in
creasingly regarded as the limiting factor in system de
velopment.

The individual operations of the central processing
unit of a general purpose digital computer are veryele
mentary, with the result that a relatively long sequence
of instructions is required to accomplish most data
processing tasks. For this reason, programming lan
guages have been developed which enable the program
mer to write concise higher level instructions. A com
piler then translates these high-level instructions into
the machine code for a given computer. The program
mer's task is greatly facilitated, since much of the de
tailed housekeeping is done by the compiler.

High level languages are very helpful in designing

924 Fall Joint Computer Conference, 1972

programs for mathematical analysis and business ap
plications. In contrast, they do not lend themselves to
the design of real-time programs for complex automated
systems. The high-level languages obscure the relation
between instructions and the time required for their
execution, and thus can produce a program which later
proves to require unacceptably long processing· times ..
Further, automated systems must often accommodate
large variations in data volume and "noise" content.
The use of existing high-level programming languages
inherently obscures the core requirements for storing
the code and data. This results in inefficient use of
memory and time, by a factor as high as three, and is
therefore a limiting factor in data handling capacity.
In such systems assembly language is often used to in
sure that the program meets all system requirements,
despite the increased labor involved in the detailed
coding. For these reasons the design of computer pro
grams for real-time systems is much more difficult than
the preparation of programs for batch-type computa
tional tasks.

An even more basic difficulty is a serious communica
tion gap between the engineers and the programmers.
Engineers prepare the design specifications for the pro
gram to fit the characteristics of the data inputs and
the rate and accuracy requirements of the processed
outputs. In so doing they cannot estimate reliably the
complexity of the program that will result. The pro
grammers have little discretion in altering the specifica
tions to accommodate the limitations on computer
capacity and processing times. Consequently, the de
velopment of a computer for an automated system con
sequently often results in an oversized and unbalanced
product after an inordinate expenditure of effort and
time.

PRINCIPAL FEATURES

The principal features of the technique developed to
solve these problems and the objectives listed in the
Summary, are as follows:

Data flow circuit language*

The basis of the technique is the representation of a
computer program in" a "language" resembling circuit
networks, referred to as Data Flow Circuits. These

* The term "D.ata Flow" has been employed earlier but with quite
different objectives than those described. in. this work. (W. O.
Sutherland, "On-Line. Graphical Specification of Computer
Procedures," PhD thesis, Massachusetts Institute of Technology,
January 10, 1966).

represent the processing to be done in a form directly
analogous to diagrams used by engineers to layout
electronic circuits. Data Flow circuits correspond to a
"universal language" having a form familiar to engi
neers and at the same time translatable directly into
computer code. This representation. focuses attention
on the flow of identifiable data inputs through alterna
tive paths or "branches" making up a data processing
network. The switching of data flow at the branch points
of the network is done by signals generated in accor
dance with required logic. These control signals usually
generate "jump" instructions in the computer program.

Data Flow circuits are constructed of building blocks,
which will be called Data Circuit Elements, each of
which represents an operation equivalent to the execu
tion of a set of instructions in a general-purpose com
puter. These Data Circuit elements are configured by
the designer into a two-dimensional network, or Data
Flow circuit, which represents the desired data process
ing, as if he were laying out an electronic circuit using
equivalent hardware functional elements. Special cir
cuit elements can also be assembled and defined by the
designer for his own use.

The direct correspondence. between individual Data
Circuit elements and actual computer instructions
makes it possible to assess the approximate time for
executing each circuit path and the required core. This
permits the designer to balance during the initial design
of the circuit, the requirements for accuracy and capac
ity against the program "costs" in terms of core and
running time. This capability can be of utmost im
portance in high-data-rate real-time systems, using
limited memory.

The Data Flow circuit representation also serves as a
particularly lucid form of documenting the final derived
computer program. It can be configured into a form
especially suited for showing the order in which the pro
gram executes each function.

A pplication of computer graphics

The form of the Data Flow circuits and circuit ele
ments is designed to be conveniently represented in a
computer-driven graphics terminal, so as to take ad
vantage of its powerful interactive design capability.
In this instance, the Data Flow Circuit is designed on the
display by selecting, arranging and connecting elements
using a light pen, joystick, keyboard or other graphic
aid, in a manner similar to that used in computer design
of electronic circuits.

As the circuit isbeing designed, the computer display
program stores the circuit description in an "element
interconnection matrix" and a data "dictionary".

This description is checked by the program and any
inconsistencies in structure are immediately drawn to
the designer's attention.

Transformation into logical form

After the elements and interconnections have been
entered into the interactive computer by means of either
a graphic or alphanumeric terminal, the computer con
verts the Data Flow circuit automatically into an Opera
tional Sequence by means of a Transformation pro
gram. This orders the operations performed by the
circuit elements in the same sequence as they would be
serially processed by the computer.

Code generation and simulation

In this step the computer converts the operational
sequence into instructions for the interactive computer.
The program logic is then checked out by using sample
inputs and examining the outputs. Errors or omissions
are immediately called to the attention of the designer
so that he can modify the faulty connections or input
conditions in: the circuit on-line. The assembly language
instructions for the target computer are then generated.

Integration and testing

The derived program is assembled by the interactive
computer with other blocks of the total program and the
result is again checked for proper operation. Subsequent
modifications to the program are made by calling up
the circuit to be altered,and making the changes at the
display terminal.

The above steps provide the Graphical Automatic
Programming method for designing, documenting and
managing an entire complex computer program through
the use of Data Circuit language. The result is highly
efficient system software which is expected to be pro
duced at a fraction of the time and cost achievable by
present methods.

Data circuit elelllents

In selecting the "building blocks" to be used as the
functional elements of Data Flow circuits, each Data
Circuit Element was designed to meet the following
criteria:

1. It must be sufficiently basic to have wide appli
cation in data processing systems.

2. It must be sufficiently powerful to save the de-

Programming Language for Real-Time Systems 925

signer from excessive detailing of secondary
processes.

3. It must have a symbolic form which is simple to
represent and meaningful in terms of its charac
teristic function, but which will not be confused
with existing component notation.

The choice and definition of the basic GAP (Graphi
cal Automatic Programming) Data Circuit Elements
has evolved as a result of applications to practical
problems. Seven classes of circuit elements have been
defined, as follows:

SENSE elements test a particular characteristic of a
data input and produce one of two outputs according
to whether the result of the test was true or false.

OPERATOR elements perform arithmetic or logical
operations on a pair of data inputs and produce a data
output.

COMPARISON elements test the relative magnitude
of two or three data inputs and produce two or three
outputs according to the result of the test.

TRANSFER elements bring data in and out of the
circuit from files in memory and from external devices.

INTEGRATIN G elements, which are in effect com
plex operator elements, collect the sum or product of
repeated operations on two variables.

SWITCHING elements set and read flags, index a
series of data words, branch a succession of data signals
to a series of alternate branches, and perform other
branching functions.

ROUTIN G elements combine, split, and gate the
flow of data and control signals, and provide the linkage
between the program block represented by a given
Data Flow Circuit and other program blocks (circuits)
constituting the overall program. Some routing ele
ments do not themselves produce program instructions,
but rather modify those produced by the functional ele
ments to which they are connected.

Table I lists the elements presently defined for initial
use in the Graphical Automatic Programming language
(GAP). These include four· SENSE elements, eleven

. OPERATOR elements, six COMPARISON elements,
six TRANSFER elements, fourteen ROUTIN G ele
ments, three SWITCHING elements, and six INTE
GRATIN G elements. Others found to meet the basic
criteria and be widely applicable will be added to the
basic vocabulary. Each designer also may define for
his own use special-purpose functions as auxiliary ele
ments, so long as they maintain the basic characteris
tics, i.e., they accurately show data flow and are directly
convertible to machine instructions to permit precise
time and core equivalency. Most of these can be built
up from combinations of the basic elements.

926 Fall Joint Computer Conference, 1972

Figure 1 illustrates the symbolic representation of a
typical circuit element of each of the seven classes.
Solid lines are used for data signals and dashed lines for
control sign-als. Data inputs are denoted by an X, data
outputs by a Y, control inputs by a C and control out-

puts by a J. When the input or output may be either
control or data the letters I or 0 are used. A U simply
means unconnected.

In Figure 1 the sample elements are seen to have the
following types and numbers of connections:

Data Control Data Control
Element Type Name Inputs Inputs Output.s Outputs

ROUTING DATA SPLIT 1 0 2 0
SENSE BRANCH ON ZERO 1-2 1-0 0-2 2-0
OPERATOR ADD 2 1-0 1 0-1
COMPARISON BRANCH ON COMPARE 2-3 1-0 0-3 3-0
TRANSFER READ FILE 2 2 1 1
SWITCHING SET BRANCH 0 3 1 0
INTEGRATING SUM MULTIPLY 2 0 1 0-1

Figure I-Data flow circuit elements graphical representation

Data preparation OPERATOR and COMPARISON elements are pro
vided with an optional control input which serves to
delay the functioning of the element until the receipt of
the control signal from elsewhere in the circuit. The
READ FILE and other loop elements have a control
input which serves a different purpose, namely to initi
ate the next cycle of the loop.

At present, the maximum number of connections for
any element is eight and for SENSE and OPERATOR
elements it is four. Connections, or terminals, are num
bered clockwise with 1 at 12 o'clock.

All of the elements described above have either more
than one input or more than one output. There are a
number of elementary operations which simply alter a
data word, thus having a single input and a single out
put. These operations include masking, shifting, comple
menting, incrementing and other simple unit processes
ordinarily involved in housekeeping manipulations, as
for example packing several variables into a single data
word or the reverse.

SENSE

Branch on Zero
Branch on Plus
Branch on Minus
Branch on Constant

OPERATOR

Add
Average
Multiply
Subtract
Divide
Exponentiate
And
Inclus i ve or
Exclusive or
Minimum
Maximum

TABLE I-Data Flow Circuit Elements

COMPARISON

Branch on Compare
Branch on Greater
Branch on Unequal
Correlate
Threshold
Range Gate

TRANSFER

Read Word
Write Word
Read File
Write File
Function Table
Input Data
Output Data

INTEGRA TING

Sum Add
Sum Multiply
Sum Divide
Sum Exponentiate
Product Add
Product Exponentiate

SWITCHING

Set Branch
Read Branch
Index Data

ROUTING

Linkage Data
Passive Split
Data Split
Control Split
Linkage Exit
Passive Junction
Da ta Junction
Control Junction
Linkage Store
Data Gate
Data Pack
Linkage Entry
Data Loop
Control Loop

ROUTING SENSE OPERATOR

,~ + -~ V/J z· lJ/X
- +

VfJ I v

DATA SPLIT BRANCH ON ZERO ADD

TRANSFER SWITCHING INTEGRATING

.:.?X z-l U/Jtx
RF ;- - SM

Z -:;- v

v v

READ FILE SET BRANCH SUM MULTIPLY

COMPARISON

I J/V

BRANCH ON COMPARE

SPECIAL

NONE DEFINED

Figure 1-Data flow circuit elements graphical representation

In the Data Flow Circuit notation, such manipulation
is specified by a "prepare" operation preliminary to the
operation performed by each element. The manipula
tions involved in data preparation, which represents a
major portion of the "housekeeping" labor in program
ming, are thereafter accomplished f}.utomatically along
with the translation of the functional operations of the
elements in the Data Circuit. This type of operation is
designed graphically by closed arrowheads at input
terminals.

SAMPLE DATA FLOW CIRCUIT

Description of a sample flow data circuit

The particular system from which the following ex
ample has been drawn concerns real-time processing of
radar signals or "hits." This function is normally as
sociated with track-while-scan radar systems.

The logic of the example "Hit Sorting Program" il
lustrated in Figure 2 operates by indexing through a
number of hits in ~he HIT file. Each hit whose ampli
tude is greater than or equal to a specific threshold
(T) is placed in the track (TRK) file. When the HIT
file is empty or the TRK file is full the program is ex
ited.

Three functional and seven nonfunctional elements
accomplish this task:

1. Read File (RF), to extract each hit from the
HIT file.

2. Branch on Compare (BC), to select hits whose
amplitude equals or exceeds the threshold.

Programming Language for Real-Time Systems 927

3. Write File (WF) 1 to enter the selected hits into
the TRK file for retention.

4. A Data Split (DS), a Data Gate (DG), and
two Control Junctions (CJ) , distribute the
data and cpntrol to the correct element termi
nals. Data inputs to the circuit are provided by
a Linkage Data element, (LD), the control input
by a Linkage Entry element (LE) , and two
control exits by a Linkage Exit element (LX).

In the Data Flow circuit in Figure 2, the numbers in
parentheses are unique reference numbers for each ele
ment and are prefixed with an "R" in the following text.
The reference numbers, R, and element labels in paren
theses do not actually appear at the graphic terminals
but are used in the explanations of the circuit that fol
lows:

The circuit is activated by a control signal at Read
File, element R3.

This element reads out a hit word containing
range and amplitude (A). The input at terminal
1 is the base address of the file (HIT) and at
terminal 2 is the index (N) for the negative
number of hits.

The Data Split (R6) distributes the hit word
to the Branch on Compare (R4) and to the

Data Gate ,(R 7).
At the Branch on Compare element the ampli

tude (A) is extracted and used to compare with
a threshold (T).

If the amplitude is greater than or equal to

(LEI HIT

(1) .

ENT 1>---- (01 (LOI
N

,----------------- ----1> EXH
(LXI (21 I

I
I
I
I
r (LOI

~~, i ___ ~t-~-_-,-----~ (~il
I -Y I

I I I
I I I
I L---L7------I (CJI (91

I
I L ________________ _

(51
WF

TRK
(01

(Lot

Figure 2-Hit sorting program

m
IDGI

(01 (Lot
J

----£> EXT
(LXI (21

928 Fall Joint Computer Conference, 1972

the threshold, control is passed to the Data
Gate (R7). The original hit word fi'omthe Read
File enters the Write File element (R5). The
index at terminal 2 (J) is incremented. If the
index indicates that the file is full the output to
the circuit exit is selected. But normally the hit
is placed in the file by using the base at terminal
4 (TRK) and the index (J). Control is then
passed through the Control Junction (R8) to
the looping input (terminal 5) of the Read File.

If the amplitude is less than the· threshold,
control is immediately passed to the looping in
put to the Read File.

The looping input to Read File (R3) causes
the index (N) to be incremented. If the index
indicates that no more entries or hits are present
the output to the circuit exit (Linkage Exit) is
selected. Otherwise, the next hit is read out and
processed through another cycle of the loop.

The quantities HIT, N, T, TRK, and J are
outputs from the Linkage Data element (RO).
This element does not appear explicitly in the
graphical representation, as in the case of the
other linkage elements.

The Hit Sorting Program is a simple example for the
purpose of explaining the techniques employed in
GAP. A circuit more representative in size is the Target
Coordinate Computation Circuit, shown in Figure Al
and is developed in an analogous way in the Appendix.

Sample processing of a data flow circuit

Once the particular function has been defined in the
form of a GAP circuit on a scratch pad several steps
are taken to generate code for the target computer
(Figure 3). The circuit is input and checked inter
actively through a graphics or alphanumeric terminal.
The transformation process then converts the two
dimensional Gircuit representation into a sequential
representation. of the order in which code for the ele
ments is to be written.

The first step in the transformation is a detailed trace
through the circuit. This trace produces a tabulation,
called the Operational Sequence. By removing all non
functional steps and other information not necessary for
final coding, this is reduced to an ordered list of ele
ments and connections called the Execution Sequence.
Each entry in the Execution Sequence corresponds to a
dynamic macro statement.

The writing of instructions, Translation, now takes
place. The user can select actual target computer code
or a simulation of the target computer code. Normally
the simulation step is first selected, and later when the

rRANSFORMATION

TRANSLATION

GENERATE
OPERATIONAL

SEQUENCE

GENERATE
EXECUTION
SEQUENCE

ELEMENT
DIRECTORY
AND INDEX

PREPARE LIST
DATAPACKtJST

GLOSSARY

Figure 3-Processing of a GAP circuit

circuit· has been found to function properly assembly
code of the target computer is generated.

The computer configuration used in this example is
an IBM 360/91 operating under MVT. The software is
written in the Conversational Programming System
(CPS) and is operational under any terminal in the
system. The simulation step generates CPS code and
the target computer is a Honeywell DDP-516 whose
assembly language is called DAP.

Input

The first step in the process of Graphical Automatic
Programming is the input of a Data Flow Circuit
into an interactive computer terminal. Unless the
circuit is very simple, it is usually first laid out roughly
on a scratch pad in order to save terminal time dur
ing the initial conceptual stages of circuit design. When
an alphanumeric terminal is employed, as in the ex
ample descr·bed in the succeeding sections, the circuit
input consists of entering the element labels (e.g.,
RF for Read File), number of terminals, and Intercon
nection Matrix. The latter requires the operator to
specify only output connections for each element. An
interactive program completes the matrix. The output
connections are given in terms of the element reference
and terminal numbers and type of connection.

Table II gives the Interconnection Matrix of the Hit
Sorting Program illustrated in Figure 2. Each row of the
matrix lists connections to each of 'the terminals of the
given element. The order of the rows is in accordance
with an arbitrary but unique reference number assigned

Programming Language for Real-Time Systems 929

TABLE II-Interconnection Matrix

Terminal Number

1 2 3 4 5 6 7
0 C 3Yl 3Y2 4Y2 5Y2 SY4 IJl
1 0 C7 306
2 3 13 5 13
3 0 X2 0 X3 2Jl <llD 8 C3 1 C2
4 U U 0 X4 9Jl 9J2 .8J2 6 X3
5 7X3 0 XS 2J2 0 X6 U U 8Jl,
6 c:r:&l> 7Yl 4Y6
7 6. X2 ~ r.3 SYl
8

I
5 C6 4 ~S 3J5

9 4 C3 4 C4 7.J2

to each element. Itshould be noted again that the link
age elements do n{)t have a graphical representation,
but the element terminals to ",'hich they are connected
are suitably marked and labeled by diamonds or arrow-

Each entry in the Interconnection Matrix (Table II)
consists of the reference number and terminal number
separatedb-y the type of conIlection. Thus, the Read
File at terminal 4, fourth row,~fourth column, is con
nected to element 6 (Data Split) at terminal 1. The h,eads. .

TABLE III--Interconnection Matrix with Element Labels

R NAME 1 2 3 4 5 6 7

0
..

LD C RFYl RFY2 BCY2 WFY2 WFY4 LEJl

1 LE LDC7 RF06

2 LX RFI3 WFI3

3 RF LDX2 LDX3 LXJl DSYl CJC3 LEC2
..

4 BC UU LDX4 *CJJI *CJJ2 CJJ2 DSX3
I

5 WF DGX3 LDX5 LXJ2, LDX6 UU CJJI ' I
I
~

6 DS RFX4 DGYl BCY6

I
7 DG DSX2 *CJC3 WFYI I

I
I

8 CJ WFC6 BCC5 RFJ5 t
L

9 *CJ BCC3 BCC4 DGJ2

I
* CJ withR9.

930 Fall Joint Computer Conference, 1972

entry for Data Split (R6) terminal 1 is seen to point
directly back to the Read File. The letters specifying
the type of connections are as defined earlier.

For the purpose of illustration, Table III is the same
Interconnection Matrix with element labels replacing
reference numbers.

The Input program checks the forms of terminal con
nections for a given element by consulting a table
called the Element Directory, a sample of which is
shown in Table IV. On the left hand side of this table
are given the number of terminals and the configuration
of the allowed element forms. For example, the con
figuration of the terminals of the Linkage Data element
taken as of the first row of the Interconnection Matrix,
CYYYYYJ, is form number 5 of LD in the Element
Directory. Mirror image configurations of all forms of
most elements are allowed. The Element Directory is
accessed via another table, the Element Index, a sample
of which is shown in Table V.

In addition to the above inputs, three other files are
constructed during the Input process.

1. When elements requiring new data inputs are
entered the program requests entry of variable
names and formats, which are listed in a Glos
sary.

2. When Data Pack elements are entered, packing
format data are requested by the program and
are assembled in the Data Pack List.

3. When a Prepare operation is indicated on an ele
ment input its definition is requested and com
piled into a Data Prepare list. Multiple prepares
at a given input are allowed.

TranstorlDation

The Data Flow Circuit is a two dimensional repre
sentation of the flow of data and control. A general
purpose digital computer functions with a one-dimen
sional sequence of instructions**. Thus, the circuit
must be "transformed" into a linear sequence of oper
ations. The first step involves tracing the circuit and
determining the proper order of operation of each ele
ment. The output of this tracing is the Operational
Sequence, which is a detailed tabulation of the trace.
As stated previously, in the second step a set of dy
namic macro statements, the Execution Sequence, is
generated from the Operational Sequence. The Transla
tion described in the next section then converts these
macro statements into computer instructions.

The algorithm by which the Transformation pro-

** A parallel processor could use a two dimensional input but
cannot at this time be considered of general utility.

gram carries out a complete trace of the circuit is de
rived from certain basic transformation rules. These
rules are listed in simplified form in Table VI. They
differ according to the four basic classes of elements
listed in the first column, and 2,lso depend on whether
or not the connection being traced to an element with
two or more inputs is the final input. An element trans
mits an output, or "executes", only after the final input
arrives. In the case of elements with more than one
output, such as branching and splitting elements, all
but the "direct" output are put in a deferred file. When
a non-final input is made to a joining element, a special
flag is generated, and the trace continues by taking the
latest deferred branching output. When a non-final in
put is made to a branching or operating element, this
fact is flagged and the trace continues at the latest de
ferred split. In the case of looping elements a special
transformation is used.

Operational sequence-For the purpose of illustra
tion, the most important information of the Opera
tional Sequence has been placed in Table VII. The
transformation being performed is identified by a Step
Number (S) at the extreme left. The Branch Number
(BN) separates the circuit into sections or branches
having the same logical content. The Link column
contains the element reference (R) and terminal (T)
of the connection being transformed. The Reference
Number (R) specifies which element is currently being
transformed and is seen to be the "To" element refer
ence number of the Link in the previous column. The
Name identifies the label of the element being trans
formed. The Transformation Type identifies the trans
formation procedure to be followed in transforming the
element, as described in Table VI. The Input Index (Q),
gives the number of additional inputs needed for the ele
ment to function. The Direct Output (OT) is the output
terminal number through which transformation will
normally proceed when the Input Index is zero and the
element functi-ons or "executes" (see Table IV). The
Deferred Output terminal numbers (DT) specify which
outputs of elements are to be deferred when the element
functions. The above characteristics of each element are
derived from the Element Directory for the specific
form of the element used in the circuit.

The first Deferred Link column gives the types of
deferred output with S or B referring to splitting or
branching elements respectively, and a sequential
number to. identify each entry for later removal. The
"From" portion of the Deferred Link is constructed
from the. current Reference Number (R) and the De
ferred Output terminal number (DT). The "To" por
tion is found in the Interconnection Matrix. The num
ber of Remaining Deferred Splits (NS) indicates the
number of splits currently in the Deferred Link.

Programming Language for Real-Time Systems 931

TABLE IV-Routing Section of Element Directory

ELEKEN'.r DIRECTORI
ROUTING

NO. LABEL FORM .N'.r 01 II NO OT DT
0 LD 1 3 CYJ 1- 00 2 2 3 1/ 7/71
0 tD 2 4 CYYJ 1- o 3 2 3,4 1/ 7/71-
0 LD 3 5 CYYYJ 1 o " 2 3-5 1/ 7/71-
O· LD 4 6 CYYYYJ 1 o 5 2 3-6 11 7/71
0 LD 5 7 CYYYYYJ 1 o 6 2 3-7 1/ 7/71
0 LD 6 8 CIYYYYYJ 1- o 7 2 3-8 1/ 7/11
1 P5 1 3 XYY 1 1 2 3 2 1/ 7/71
2 D5 1 3 XYY 1 2 2 3 2 11 7/71
3 C5 1 3 XJY 1 3 2 3 2 1/ 7/71
3 C5 2 3 CJJ 1 3 2 3 2 11 7/71
4 LX 1 1 I 1 " 0 0 0 11 7/71

" LX 2 2 II 2 4 0 0 0 1/ 7/71

" LX 3 3 III 3 4 0 0 0 1/ 7/71
4 LX 4 4 1111 4 4 0 0 0 1/ 7/71

" LI 5 5 11111 5 " 0 0 0 1/ 1171
4 LX 6 6 111111 ~ 4 0 0 0 11 7/71
4 LX 7 7 IIIIIIl 7

" 0
0 O· 1/ 7/71

4 LX 8 8 11111111 8 4 0 0 0 1/ 7/71
5 PJ 1 3 XXI 2 5 1 3 0 1/28/71
5 PJ 2 3 CCJ 2 5 f 3 0 11 7/71
6 DJ 1 3 XXI 2 6 1 3 0 1/ 7/71
7 CJ 1 3 CCJ 2 7 1 3 0 11 7/71
8 t5 1 1 X 1 8 0 0 0 1/ 7/71
8 L5 2 2 XX 2 8 e 0 0 1/ 7/71
8 L5 3 3 XXX 3 8 0 0 -0 1/ 7/71
8 L5 " .. XXXX " 8 0 0 0 1/ 7/7'
8 L5 5 5 XXXXI 5 8 0 0 0 1/ 7/71
8 t5 6 6 XXXIXI 6 8 0 0 0 11 7/71
8 L5 7 1 XXXXXII 7 8 0 0 0 1/ 7/11
8 L5 8 8 IXXXXIXX 8 8 0 0 0 1/ 7/71
10 DG , 3 ICY 2 10 1 3 0 1/ 7/11
11- DP 1- 3 XIY 2 11 1 3 0 1/' 7/7'
11- DP 2 " IXXI 3 11 1 4 0 1/ 7/7'
11 DP 3 5 XXXXI " 11 1 5 0 1/ 7/71
12 LE 1 2 CO 1 12 1 2 0 1/ 7/71
12 LE 2 3 COO 1 12 2 2 3 1/,7111
12 LE 3 " COOO 1 12 3 2 3-4 1/ 7/71
12 LE 4 5 COOOO 1- 12 " 3 3-5 11 7/71
12 LE 5 6 COOOOO , 12 5 4 3-6 11 7/71-
12 LE 6 7 COOOOOO' 1 12 6 5 3-7 1/ 7/7'
12 LE 7 8 C 0000 000 1 12 7 2 3-8 1/ 7/71
14 DL 1 4 IIYO 1- 17 1 3 0 1/19/71
14 DL 2 " XXYC 1- 18 1 3' 0 1/19/11
15 CL 1 4 CCJU 1- 19 1 3 0 1/19/71

The final column in Table VII, Next Link, indicates OT columns of· the table. The "From" portion of the
the source of the link to be transformed next and thus, Link in the next step is seen to correspond to the R
the order in which the links in the circuit are subse- and OT of the previous step; the "To" portion is de-
quently translated into code. It is derived from trans- rived from the Interconnection Matrix.
formation rules shown in Table VI. The entries S # The following paragraphs illustrate the construction
and B # specify the Next Link to be obtained as a split of the Compressed Operational Sequence of Table VII
or branch from the Deferred Link entries. The entry in by describing the initialization procedure followed by
the Link column in the next step of the Operational examples applying each of the transformation rules sum-
Sequence is seen to come from the indicated entry in the marized in Table VI.
Deferred Link column. The legend OT specifies that Initialization-The sequence is initialized by trans-
the Next Link is to originate at the Direct Output of forming the Linkage Data element, LD, which by con-
the element being transformed, as given in the Rand vention is assigned R = O. LD is a special type of spIit-

932 Fall Joint Computer Conference, 1972

TABLE V-Element Index

ELE!ENT
TYPE

ROUTING

ELEIIEIIT ELEIIEIIT BO. ELEBEIIT
NUIIBER LABEL FORftS IIAftE

0 LD 6 LINKAGE DATA
1 PS 1 PASI'!! SPLI:T
2 DS 1 DATA SPLIT
3 CS 2 CONTROL S~LIT
4 LX 8 LIIiKAGE EXIT
5 PJ 2 PASSIVE JUNCTIOII
6 DJ 1 I)ATA JUNCTION
7' CJ 1 CONTROL JUIICTION
8 LS 8 LIBKAGE STORE
10 DG 1 DATA GATE
11 DP 3 DATA PACK
12 LE 7 LINKAGE ENTRY
14 DL 2 DATA LOOP
1S CL 1 CONTROL LOOP

ELE!EtfT
TYPE

SEBSE

ELE!ENT ELE!ENT 110, -ELEftENT
NU!BER LABEL

17 ZE
18 liZ
1'9 PL

- 20 NP
2_1 III
22 Nfl
23 BK
24 BK

ting element, deferring all of its outputs as splits 81 to
86, in the Deferred Link column. .

Branching (BR)-:"'"Thefirst or non~final input (Input
Index¢O) to a branching element· is. received in steps
2,3,4,5 and 6. In every case the Next Link is taken as
the oldest split (81-85) of the Deferred Link entries.

The arrival of the final input (Input Index=O) is
illustrated in steps'8, 10, 16 and 18. The deferred branch
outputs are placed in the Deferred Link columns and
the Direct Output is normally taken for the Next Link
as in steps 8 and 16. The branching alters the logical

POR!S NAftE
11 BRANCH ZERO
11 BRAIICH NOT ZEBO
11 BRAIICH PLUS
11 BRAIICH IIOTPLUS
11 BRANCH IlINUS
11 BRAIICH NOT IIINUS
11 BRANCH CONSTA!f~
11 BRAIICH NO~CONST1.T

content of the sequence and begins a new bran~h as
indicated by the Branch Number. If the end of a branch
is encountered before all deferred splits have been pro
cessed_ (i.e., N8~0), then an exception to the normal
traIisformationexists. In this case, 8tep 10, the Direct
Output is placed in the Deferred Link as Ii branch, and
a deferred split, 87, is taken as the Next Link. The
looping input of a branching element is another special
case in that the element has already functi{)ned pre
viously; therefore, in step 18 the latest deferred branch,
B5, is taken as the Next Link.

TABLE VI-Element Transformation Rules

Transformation Element Function Transformation Procedure
First Input Final Input

Branch signal path
Store data input(s) Defer jump outputs Branching according to input

condition(s) _ Link next split Link to immediate output

Jump forward to
Label address of output JOining J ointwo 'branches address of output

Link next branch Link to output

Operate on two or
Store data input(s) Operating more inputs to form Link to output

an output Link next split

Splitting Distribute signal
(Only one input) Defer one output

to two elements Link to other output

Programming Language for Real-Time Systems 933

TABLE VII-Compressed Operational Sequence

Element
Step Branch Link Ref. Input
No., No., From - To No., ; Trans. Index,

S BN R, T R Name Type Q

1 0 - 0,1 0 LD SP ~

2 0 0,2 - 3,1 0 RF BR 2
3 0 0,3 - 3,2 3 RF BR 1
4 0 0,4 - 4,2 4 BC BR 1
5 0 0,5 - 5,2 5 WF BR 2
6 0 0,6 - 5,4 .i WF BR 1

7 0 0,7 - I, 1 1 LE OP 0
8 1 1,2 - 3,6 3 RF BR '0

9 2 3,4 - 6,1 6 D5 "SP ~

10 2 3,4 - 4,6 4 BC BR, ~

11 2 3,4 - 7,1 7 DG OP 1
12 3 4,5 - 8,2 8 CJ IN 1
13 4 4,4 - 9,2 9 CJ IN 1

14 5 4,3 - 9,1 9 CJ IN 0
15 6 9,3 - 7,2 7 DG OP '0
16 6 7,3 - 5,1 5 WF BR '0

17 7 5,6 - 8,1 8 CJ IN 0
18 8 8,3 - 3,5 3 RF BR* 4*
19 9 5,3 - 2,2 2 LX IN 1
20 10 3,3 - 2, i 2 LX IN 0

"

* Looping input

'Joining (IN)-These elements end the current branch
regardless of which input arrives, but the Next Link
does depend upon the arriving input. In steps 12,13 and
19 where a non-final input arrives, the latest deferred
branch becomes the Next Link.

:. With the final input arriving, asin steps 14, 17 and 20,
the Direct Output becomes the Next Link.

Operating (OP)-Operating elements do not inthem
selves affect the branch status. The Next Link following
the arrival of a non-final input is" normally taken as a
split from the Deferred Link column, but when there is
no deferred split as in step 11, the Next Link is taken
as a branch from the Deferred Link column.

The final input simply propagates via -the Direct
Output as in steps 7 and 15.

Splitting (SP)-These elements place the Deferred
Output in the Deferred Link file (as in step 9) and pro
ceed to the Direct Output as the Next Link. It will be
noted that the, "From" connection in both the Deferred
Link (S7) and the Next Link (step 11) is not the output
of the Data Split element, 6, 2, but rather the 'Output of
the previous functional element, 3, 4. This in effect
eliminates reference to the DS element in the Opera
tional Sequence since its only function is to provide
multiple output connections to a functional element.

Deferred Link, Remaining
Direct Deferred Type Deferred
Output, Output(s), and From - To Splits. Next

OT DT No. R, T NS Link

(2) 3-7 0

I
51

51 0,2 - 3,1 1
S2 0,3 - 3,2 2
53 0,4 - 4,2 3
54 0,5 - 5,2 4
55 ! 0,6 - 5,4 5
56 1

0,7 - I, 1 6
5 52
4 53
3 54
2 55
1 56

2 0 OT
4 3 0 OT

Bi 3,3 - 2,,1
3 2 0 OT

57 3,4 - 7,1 1
5 3-4 1 57

B2 4,3 - 9,,1 1
B3 4,4 - 9,2 1
B4 4,5 - 8,2 1

0 B4
0 B3
0 B2

3 0 OT
3 0 OT
6 3 0 OT

B5 5,3 - 2,2 0
3 0 OT
4 0 B5

0 BI
0 Finis

A listing of the computer generated Operational Se
quence is given in Table VIII. This listing contains
much more detail than is necessary to understand the
transformation process. All of the information in the
Compressed Operational Sequence,; Table VII, is found
in Table VIILThe items which have specific columns in
each table are shown in parentheses in the compressed
table. The HTo" portion of the Link of Table VII is
labeled LIRT in Table VIII (I for Input). The "From"
portion is labeled either LORT (0 for Output) or
LSRT (S for Store), or both, depending on whether the
output has or has not been stored. The Transformation
Type is a simplification of the Transformation Number,
X, in Table VIII. The Deferred Link is constructed
from - IRT, - ORT and - SRT iIi a manner analogous
to the Link. The Type of Deferred Link is a simplifica
tion of the F entry, Splits being classed as Control (C)
or Data (D) and Branches as normal Branches (B) or
Next branches (N) in Table VIII. The Next Link· does
not appear in the computer generated Operational Se
quence but has been added to the compressed form for
illustration;
, Columns" appearing in Table VIII not referred to" in
Table VII are:XEN- element identification number;
NB-nllmber "of deferred branches; LN-and LSN-

934 Fall Joint Computer Conference, 1972

TABLE VIII-Operational Sequence

S 'R lEN Q X OT DT F -SRT -ORT -!RT
1 0 0 {' 0 2 3

D 0 2
D 0 3
D 0 4
D 0 5
D 0 6
C o 7

2 3 67 2 21 4 3
3 3 67 1 21 4 3
4 4 49 1 15 5 3
5 5 69 2 15 6 3
6 5 69 1 15 6 3
7 1 12 C 12 2 0
8 3 67 0 21 4 3

B 33
9 6 2 0 2 3 2

D 34
10 4 49 0 15 5 3

B 43
B 44
N 00l) 45

11 7 10 1 10 3 (I

12 8 7 1 7 3 0
13 9 7 1 7 3 C
14 9 7 (' i 3 0
15 7 10 C 10 3 C
16 5 69 0 15 6 3

B 53
17 8 7 0 ; 3 0
18 3 67 4 21 4 3
19 2 L1 ., L1 0 0
20 2 4 (\ 4 0 0

number of links in a branch; and LB-Jaoel useQ in
generating the Execution Sequence.

Execution sequence-The Operational Sequence con
tainsmuch more information than is necessary to gen
erate computer instructions but serves well as docu
mentation and conformation of correct transformation.
A set of dynamic macro instructions, called the Execu
tion Sequence, is created to reduce the processing load
in the subsequent Translation operations. The Execu
tion Sequence for the Hit Sorting Program is given in
Table VIII. A macro is generated when the Input Index
(Q) is zero or the value of LB is either 1 or 2 in the
Operational Sequence. The macro consists of the ele
ment label, LORT, LSRT, LIRT and the specific num
ber of any "prepare." For example the Branch on

31
32
42
52
54
11

21

71

91
92
82

22

LORT LSRT LIRr IS HB BH LI L5B LB
000 000 001 0 0 0 0 0 0

oeo {' 2 31 5 0 0 0 0 4
000 0 3 32 4 0 0 C 0 4
000 0 4 42 3 0 0 0 0 4
OCO 0 I:; 52 2 0 0 0 0 4 ~

oeo o 6 54 1 0 0 0 0 4
o 7 000 11 0 0 0 0 0 0

12 000 36 0 0 1 0 0 0

34 ooe 61 0 1 2 0 0 (\

34 34 46 1 1 2 1 0 0

000 34 71 0 3 2 1 0 5
4.5 000 82 0 3 3 0 0 1
44 0('0 92 0 2 4 0 6 1
43 000 91 0 1 5 0 0 0
93 000 72 0 1 6 0 0 0
73 71 51 0 1 6 1 1 0

S6 000 81 0 2 7 0 0 0
83 oeo 35 0 2 8 0 t) 1
53 00e- 22 0 1 9 0 0 2
33 000 21 0 0 10 0 0 2

Compare produces the macro in line 4, whose symbols
BC03403404601 stand for:

element label = BC,

LORT=034,

LSRT=034,

LIRT=046,

and the number of the prepare operation =01.

Translation

a. Simulation-For the purpose of checking out the
circuit on an interactive terminal each dynamic macro

RFA5:
(10 TO RFA6;
lOA3=LnA3+1;

Programming Language for Real-Time Systems 935

1005.
1010.
1015.
1020. RFA6:

IF LOA3=O THEN GO TO RFA3;
nR=COf?F: (LnA 2 + l OA3J ;

} READ FILE

PUT lIST(t'); 1021.
1022. PUT LIST(B(GR),'HIT FROM RF'); } .1 NSERTED PRINTOUT

STATEMENTS

1n25. RFA4=GR; DATA SPLIT

~R=P(I.(r,R,4),9); PREPARE 1030.

1031.

1035.
1040.
1045.

PUT LIST(S(GR),'MASKEO AMPLITUDE');

IF lOA4(t1R THEN GO TO BCA3;

INSERTED PRINTOUT

} BRANCH ON COMPARE IF t.nA4=(.ip THEN GO TO BCA4;

1n50.
1055.

1060.

BCA4:
SCA3:

CdS:

no TO C .. JA;

no TO C\JR;
GO TO CIJS;

GR=RfA4;

} CONTROL JUNCTION (R9)

DATA GATE

1065.
1070.
1075.

LOAS=LDAS+1; }
IF lOA5=O THEN GO TO UFA3; WRITE FILE
cnRF(LnA6+l0AS)=GR;

1076.

1080.

1085.

1090.
1095.
1100.

PUT LIST{R(t1R), 'TRK ENTERED IN WF'); INSERTEDPRfNTOUT

GO TO CJA; CONTROL JUNCTION (·RS)

WFA3:
RFA3:
LXA:

GO TO RFA5;

GO TO lXJ\;
00 TO lXA;
STOP ;

LB OF 1 (NO. 1)

} LINKAGE EXIT

Figure 4-CPS code

was expanded to Conversational Programming System
statements whi~h are a subset of PL/I statements. The
CPS statements for the Hit Sorting Program generated
by macro expansion techniques are given in Figure 4.
These statements are numbered in fives; all other state
ments have been added to provide simulation output. A
description of the origin of each set of statements is
added at the right. The referenc-e numbers (R) have
been replaced during the expansion by element.labels
(plus a unique letter) to help make the mnemonics
more meaningful. An array called CORE is used as the
file accessed by the Read File and Write File elements.
The Linkage Data (LD) inputs to the circuit must be
initialized or else they will be undefined.

Th-e actual simulation output in Figure 5 illustrates

a typical ' run. CORE and Lin}cage Data inputs are as
sumed to be previously entered. The binary representa
tion of CORE and the decimal·or binary values 0.£ the
LD inputs are. at the top of the figure (Le., Y BC(30)
and Y LDA2, LDA3 etc.). The same type of si~ulation
printout is at the botton of the figure and represents the
results of executing the simulation.

When XEQ is entered at the terminal the CPS code
is executed as in the center section of Figure 5. The re
sulting information is generated by the PUT LIST
statements inserted in the CPS code. The STOP repre
sents exiting the circuit. via the Linkage Exit element.

The actual data used in the simulation are four hits
(i.e., LDA2=N = -4) with the amplitudes of 7, 1,2,
and· 4, respectively. The threshold (T = LDA4) has

936 FallJ.oint.Computer C.onference, 1972

?BC(25)
1 0000000000000000
5 OOOOOOOOOOO~OOOO
9 1000100000111111

13 OOOOOOOOOOOO~OOO
11 .. 0000000000000011
21· 000'0000000000000
25 0000000000000000

0000000000000000
1111111111111111
1000111000000111
ooooonoooooonooo
0000000000000100
0000000000000000
0000000000000000

llDA2,lDA3,BClDA4),lDA5,LDA6
10 -4 0000010000000000 -5 20

XEQ

1111111111111111 HIT FROM RF
0000111000(}00000 MASKED AMPLITUDE
1111111111111111 TRK ENTERE~ INWF

0000001000000111 HIT FROM RF
0000001000000000 MASKED AMPLITUDE

1111010000111111 ~fT FRO~ RF
0000010000000000 MASKED AMPLITUDE
1111010000111111 TRK F.:NTERED IN WF

1000100000i11111 HIT FROM RF
0000100000000000 MASKED AMPLITUDE
1000100000111111 TRK ENTERED IN Wf
** 1100. XEO "STOP".

?BC"C2.5)
1 0000000000000000
5 OOOOOOQOOOOOOOOO
9 . 1000100000111111

13 0000000000000000
17 111-1010000111111
21 0000000000000000
25 0000000000000000

000000(\00000 f'0 00
1111111111111111
1000111000000111
0000000000000000
1000100000111111
0000-0000000000000
0000000000000000

lLDA2,lDA3,B(LDA4},LDA5,LDA6
10 0 0000010000000000 -2 20

0000000000000000
0000001000000111
000-0 nooo 00 00 0000
0000000000000001
00000000.00000101
0000000000000000
OOOOOO~OOOOOOOOO

0000000000000000
0000001000000111
0000000000000000
0000000000000001
00-000000 no 0001 01
000000000-0000000
0000000000000000

. 0000000000000000 .
1111010000111111
OOOOOO~OOOOOOOOO
0000000000000010 .
0000000000000110
0000000000000000
00000000-000000 on

0000000000000000
1111010000111111
0000 oooono 0.00000
1111111111111111
0000 00 00 00 no nIl ('I
OOoooooonOOOCOOC
OOoooooonot"ooono

Figure 5-CPS simulation output

been set to2 in the appropriate bit field. Thus, the first,
third, and f.ourth hits are greater than .or equal t.o the
thresh.old "amplitude. Those' hits have been entered as
tracks in the TRK file and are seen in CORE as the
16th, 17th, and'18th tLe., LDA6~LDA5=16, 17, 18)
entries. Up.on c.ompleti.on., the HIT index (LDA3) has
been decremented t.o zer.o which caused an exit from
the Read File.

b. 'DAP C.ode Generati.on-The H.oneywell DDP-
516 is the target c.omputer.on which the example circuit
must execute. The DAP assembly language f.or this
c.omputer is easily understo.od fr.om the instructi.on
mnem.onics .once it is recognized that the c.omputer has
a single accumulat.or and a single index register. The

DAP c.ode in Figure 6 was pr.oduced in the same manner
as was the C'PS code." Again, c.omments have been placed
beside each set .of assembly language instructi.ons which
represent one element. The circuit was c()Ilstructed ·asa
subr.outine to retain m.odularity and c.ompatibility with
.other system c.omp.onents.

INTEGRATION"AND TESTING OF COMPLEX
PROGRAMS

A large-scale data processing pr.ogram" can be br.oken
down int.o a number .of Data Fl.ow Circuits. These can
then be assembled into a bl.ock diagram in which .e~ch'

block is an individual Data Flow Circuit. Each repre
sentation block can be considered as a spedal "l\1acro"
element, connected to other blocks by data and. control
signal inputs and outputs,. just. as are elements in a
Data Flow Circuit. The integration of Data Flow
Circuits can be accomplished by the use of an interac
tive terminal and a special Integration Program in a
manner similar to that used in constructing Data Flow
Circuits. This process is facilitated by linkage routing
elements described earlier. The Integration program
therefore serves the purpose of a "Linkage Editor 11.

An example oisuch a Data Flow diagram is shown in
Figure 7. This diagram represents the Track Prediction
module of the Automatic Tracking Program for a sur
veillance radar. The blocks are represented· by rec
tangles and the data files by squares. The Track Co
ordinate Computation Circuit is seen to be near the
center of the diagram.

In like .manner the Track Prediction module itself
can be considered a block in .. a higher level diagram
representing the entire data processing program. In
this wayan orderly and flexible format for the total
program can be obtained.

Program Dictionary-The efficient design of a com
plex program requires careful definition, organization,
and maintenance of all terms used in the program. The

ORG '2000 Entered as Origin

DAC *~,c Linkage Entry

JMP RFA6

IRS
LDA3 ! SKP Read File (HIT)

JMP* HSP
LDX LDA3

and one terminal of.

LDA LDA2,1
Linkage Exit

STA RFA4 Data Split

ANA = ·'7000 Prepare on Branch on Compare

CAS LDA4 } JMP RFA5 Branch on Compare
JMP BCA4

LDA RFA4 Data Gate

IRS LDA5

! . SKP Write File (TRK)
JMP* HSP and other terminal of
LDX LDA5 Linkage Exit
STA LDA6,1
JMP RFA5

EQU '500 Index to Hit File = LOC 500
DAC '7000 Base to Hit File 7000
BSZ 1 Temp. Store for DS
OCT '2.000 Thresh~ld Amplitude of 2
EQU '400 Index to TRK File ~ LOC 400
DAC '6000 Base to Hit File 6000
END

Figure 6-D AP code

Programming Language for Real-Time Systems 937

I
I
I
I
I
I
I
I
~
I
I
I
I
I

RADAR
TRIGGERS

I

I
~
I
I
I
I
I
I
I
I
I
I

I

L ___ _

L _____ _

Figure 7-Track prediction module

list of these characteristics has· to be assembled during
the design process of circuit design. When· complete· it·
provides a basis for complete documentation of the
program and facilitates future changes.

The data required for this list include the code names;
definition, format, constituent parts, and cross-reference
of all variables, constants, data files, circuit blocks· and
program modules.

Once. the above terms have been defined, their sub
sequent manipulation requires only reference by code
name. This is expected to save a great deal of house
keeping, and to eliminate a major source of error.

Program checkout-The most laborious and time
consuming part of programming is the "debugging"
phase. Graphic Automatic Programming facilitates the
production of a correct program in the following ways:

1. The pattern of data and logic flow is made
highly visible and hence minimizes errors at the
source.

2. Any inconsistencies in the circuit are detected
by the Transformation program by checking. the
Element Interconnection lVlatrix and through
rules regarding allowed element linkages.

3. The graphics terminal enables the designer to
correct errors on-line and to verify that they have
been eliminated.

4. The designer can test a circuit on the terminal
by entering sample inputs and reading out the

938 Fall Joint Computer Conference, 1972

resulting outputs. He can also design another
Data Circuit which would test the first by simu~
Iating the program input and automatically
comparing the output with requirements.

5. Since the functioning of each element corre
sponds to a definite execution time in the com~
puter to be employed, it is readily possible to
have the test program simulate the execution
time and· determine its compatibility with real
time operation.

ACKNOWLEDGMENT

The authors wish to thank Lee Hoevel of The Johns
Hopkins University, Applied Physics Laboratory for
his early contributions to the Graphical AutomSltic
Programming concept, to James Austin for his en
couragement of our activities, and to the Department
of the Navy for support under Contract NOO017-72-C-
4401.

The initial concept of Graphical Automatic Program
ming was described in the September-October 1969 is
sue of the APL Technical Digest (The Johns Hopkins
University, Applied Physics Laboratory).

APPENDIX

The ttTarget Coordinate Computation Circuit" in
Figure Al is a more sophisticated example of the type
of process intended for GAP. The interconnection
Matrix is given as Table AI and the Execution Sequence
in Table All. The CPS expanded statements and simu
lation printout are in Figures A2 and A3. The DAP
code is given in Figure A4.

The logic of the "Target Coordinate Computation
Circuit" operates as follo,ws:

1. If no prior hit exists in the target data file
(TD4), set the number of hits to 1 and store
coordinates' of new hit in the target data files
(TD4, TD5).

2. If a previous hit exists, but does not coincide in
range with the new hit from the gated hit file
(G H), exit to multiple target routine.

3. If the previous hit correlates in range, increment
number .of hits and store the target coordinates
of strongest hit.

The circuit is activated by a control signal at Read
File, element R4.

GH ftG2 T04 T05

T04 T05

Figure AI-Target coordination computation circuit

The RF element reads out a word (i.e., a gated hit)
consisting of the Gate number (G), Range (R), and
Amplitude (A).

The Gate number is extracted and used to address
the Read Word element R23, which extracts the track
number from the Range Gate 2 file (RG2).

The track number is used to address the Read Word
element R25, which extracts the data contained in the
Track Data 4 file (TD4).

If the TD4 file is empty,. a control signal is sent to the
Data Gate element R6.

The output of element R6 is incn~mented by 1 in the
Add element R7 and stored in TD4 by the Write Word
element R20.

If the TD4 file is not empty, the word (Range, Am
plitude, Number of hits) is extracted and sent to the
Correlate element R27. .

If the range of the gated hit does not correlate with
the range stored previously, a control signal is emitted
to activate another program dealing with multiple
tracks.

If the ranges correlate, the amplitudes are compared
in the Branch on Compare element R14.

Also the number of hits is incremented by element
R30.

If the amplitude of the gated hit is greater than that
of the old hit from TD4, its range and amplitude are
combined with the incremented number of hits, N, and
stored in TD4.

':'0.
50.

1005.
1(1('.

1015.
1020.
1021.
10?5.
1030.
In: .
1035.
10 .. 0.
1045.
1050.
1051.
1055.
1060.
IOb5.
1066.
1070.
107e; •
1076.
1080.
1081).
1090.
1095.
1096':
1100.
1105.
1106.
1110.
III 5.
1120.
1125.
1130 _
1131).
1140.
1145.
1146.
1150.
1155.
1160.
1165.
1170.
117S~
1180.
11B5.
11<)0.
1195.
11'Jb.
1200.
1205.
1210.
1215.
1220.
1225.
lUbe
1230.

123'i.
1240.
1241.
1245.
1250.
1251.
1255.
1256.
1260.
1265.
1266.
1270.
1275.
121'>.
1280.
1281.
1285.
1290.
1291.
1291).
1300.
1305.
1306.
1115.
1320.
B2'.i.
1330.

RFA5:

RFA6:

BeA3:
CJA:

CRA3:
~WB3:

OJA:

ItBA5:
OJ8:

R8A .. :
RFA3:
LXI<:

Programming Language for Real-Time Systems 939

LET ~I'V,'.p2 •• M.TRUNC('V*2**-'.;
lET L(MV,NJ=TRJNCC4V-RC.V,WSIlE-' ••• 1);
GO f(} jl1=A6;
LDA1=LOA1*1 ;
t F lDA3=0 TiiEN GO TO Rfk3 =
G.R=CORF. C LnA2*LDA3 I;
PUT lI5rC8(~~.,'~EAD FROM GH AT',LOA3);
RFA4=GR;
GR=R(LCGR,131,0):
PUT LISTI'GATE ",GRI;
GR=r.ORcILOA~*GR1;
IF G~=O. TiEN ~O TO RWA3;
RIIA4=GR;
GR=CORE C LDAHGR);
PUT LJsrC'TA~GET OATA',8CGR))t
IF GR=O THEN GO TO RW83;
RWB4=~~ ;
GR=R(UGR, n,"H;
PUT LlSTC'TARGET OATA RANGP,8IGRp;
C~A6=G~;
GR=R{L(RFA~,7.,3);

pur LlSTC'HIT RANGE',BCGR)';
IF ABS(G~-C~A6»lD82 THEN GO TO CRA3;
GR=~W84*LDBJ; .
A083=GR:
GR=RCLlG~,4J,9t;
PUT LIST"TA~GET D4TA AMP',8(G~.);
SCA2=G.R;
GR=R(t(RFA4,4t,9);
PUT ~IST"HIT 4~P',R'GR).;
IF BCA2<GR THEN GO TO SCA3;
IF BCAZ=G~ T~EN ~O TO BCA4;
56A2=5.
GR=O;
GR=GR*R'l(AOS3~1),12);
GR=GR*~'U RFA4, 7).3);
GR=G~*~(L'RFA4,4J,q~;

GR=G~*~IL(~FA~,O.,15';
pur lISTI'OP R,A,N,M RESULT',8CGRll;
GO TO D.tA;
SBA2=3;
GO TJ CJA;
SBA2=4:
GR=AUSH
GO TO DJ4;
GO TO lU;
SBA2=5;
GR=RF A4+L DAft;
COREtLD~5+RWA4'=GR;
PUT LFSH'H~u,'SAIIED IN TD4 Aft,RNA4);
IF S6A2=3 liEN ~O TO RBA3;
IF 5642=. THEN GO TO RBA4;
IF S842=5 THEN GO TO RAl5;
IF S~A2=6 THEN ~O TO RBA6;
IF SBA2=7 THEN GO TO kBA7;
GR=COREtl~B4*RWA4);
pur LISTIRCGR),'~EAO FROM T05 AT',RNA41;
IF GR=O THEN Gn TO RWC3;
RWC4=GR;
GR=RCLC:;~,Ol,bl ;
PUT LIST('OLO REARING',B(GR');
AVAl=GR;
G~=~(LtL086,O),bJ;
PUT llsrl'NE~ BEARING',BCGRt';
GR=t4VAl+:iRJl2:
PUT lIST('AVE SEA\ING',BlGR');
AVA3=GR;
GR=RtLC ~WC4,lOI ,0);
PUT lIST('Ol~ ELV',8tCP));
AII81=G~ ;
GR=RCL(LOB6,lO),OI;
PUT LlSff'IIIEIf ELV',BtGR});
GR=(AVB1*GRI/2;
PUT LlSrc'J\IIE ELV',aCGRn;
GR=RlLI:iR,lot,OI;
GRzGR*RC l (AV A'3, OJ, 6) ;
PUT lISTl'Op· RtE RESULT' ,BCGRtI;
GO TO OJS;
GR=LOB6:
CORE(L085+RIIA4.=G~:
pur lrST(B(GR1.'SAIIE IN T05 AT',RWA41;
GO TO RFA5;
GO r:> ~FA5:
GO Tn LXA.;
STOP;

Figure A2-CPS code

I
I
}

J

I

I

}

I
!

}

}

RF

DS

RW

DS

RW

DS

CR

AD
DS

BC

#7

DP

11
#7
II
#7
DC
11
#2
SB
AD

ww

RB

RW

DS

AV

#8

AV

DP

#1
. DC

ww
#1
#1

LX

940 Fall Joint· Computer Conference, 1972

lBC (30) •
1 0000001000001000 0001010000010001 0010011000100010
S 0000000000000010 0000000000000100 OOOOOOOQ00000110
9 0000000000000000. 0000000000000000 0000000000000000

13 0010001000011000 0000000000000000 001100~OOO~10000
17 01001000001-00000 0000000000000000 0000000000000000
21 00000000000;00000 0000000000000000' 000-0001000000100
2S OOOOooooooaooooo 0000000000000000 1111111111111111
29 0000000000000000 0000000·000000000 00'00000000000000

lLOA21'LDI3,B (LOI4) ,LOA5,LOA6, LOl?;
S -4 0001000000000000 11 S 11
lB(~OB2),B(LOB3.,LDB4,LDBS,B{LOB6);
000-0000000010000 0001000000000000 21
lEO;

21 0000000111000011

00000010'00001000 REAO FRO! GB AT -4
GATE • 0
TARGET DATA 0010001000011000
TARGE'r DATA RANGE 00000000000110'00
BIT RANGE 0000000000001000
TARGET OATAAlIP 000000100-0000000
BIT AlIP 000000,1000000000
0011001000011000 SAVED IB TD4 AT 2
000000100000010~ READ FRO! TDS AT 2
nLO BEARING 0000001000000000
SEV BEARING 0000000111000000
AVE BEARING 0000000111100000
OLD ELY 0000000000000100
lEV ELV 0000000000000011
AVE BLV 0000000'000000011
DP B,E RESULT ~000000111000011
0000000111000011 SlY! IN TDS AT 2
0001010000010001 BEAD FR~ft'GB AT -3
GATE. 1
TARGET DATA 0011001000010000
TARGET ~ATA RANGE 0000000000010000
HIT RANGE 0000000000010000
TARGET DATA ASP 0000001000000000
HIT AftP ~000010000000000 .
0100001000010000 SAVED IN TD4 AT 4
0010011000100010 READ FROft GH AT -2
GATE. 2 ._
TARGET DATA 010010000010000~
TARGET DATA RASGE 0000000000100000
HIT RANGE 0000000000100000
TARGET DATA AlIP 0000100000000000
HIT AftP'0000011000000000
~P R~A.M.ft RESULT 01~1~11000~OOOOO
01010110j0100000 SlVED II TD4 AT 6
0000000111000011 SAVE IN TDS IT 6
OQ11100001000011 READ FROft GH AT -1
GATE • 3
TAB3ET DATA 0000000000000000
01!l0100001000011 SAVED II TD4 AT 8
0000000111000011 SAYE 1M TDSAT8
** 1330. IEQ 'STOP'.
lBC (30) ;

1 0000001000001UOO
5 0000000000000010
9 0000000000000000

11 0011001000011000
17 0101011000100000
21 0000000000000000
2S 0000000000000000
29 0000000111000011

0001010000010001
OOOOOOOOOOOl0100
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

?L012 ,LD13. B (LD14) , LDIS,L &A6 ,LDA7:
S 0 0001000000000000 11 5 11
?~(LDB2),B(LOB3),LDB4,LDB5,B(LDB6) :

0010011000100010
000000Q000000110
dOOOOOOOOOOOOOOO
010-0001000010000
0100100001000011
0000000111000011
0000000111000011
·0000000000000000

0000000000010000 0001000000000000 21 21 000.0000111000011

Figure A3----CPS simulation output

001.1100001000011
0030000000001000
0'000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

0011100001000011
0000000600001000
0000000000000000
0000000000000000
0000000000000000
OOOOOOODOGOOOOOO
0000000000000000
0000000000000000

Programming Language for Real-Time Systems 941

ORG '1000 OJA LOX RWA4 WW
:-lJOR OAC ** LE STl l OA5, 1

JMf) RfAb LOX SBA2 RB
RFA5 IRS LOA3 J/IIIP* R843.1

SKP ReA3L-OX ~WA4 RW RF LOA L OBft.l JMP RFA3
~FA6 LOX LOA3 STA RWC4 DS

LOA LOA2.1 ANA -'177700

} STA qFA4 DS STA AVAl
ANA :'7

I
LOA LOB6 laV

STA RWA2 RW
ANA ·'177700

LOX RWA2 ADO AVAl
LOA LOAb,l ARS -1
STA RWA4 DS STA AVA3 18
STA RWA2

I
LOA AWC4

I
LOX RW82 ANA :'77
LOA LOA7,l RW STA AVBl
SNZ LOA L086

AV
JMP RWB3 DS

ANA ·'77
STA RWt\4 ADO AVBl
ANA ='710 ARS al
STA CRA" ANA "'77

I LOA RFA4 STA 01'80
l~A "'770 LOA AVA3 DP

SUB CRAb ANA ·'177700
SPL CR ADO OP80
TCA JP'lP OJe 11
CAS L082 R8A5 LOA L08b DC
JMP *+3 OJ8 LOX RWAit> } WW
JMP CRAJ STA 1.085.1
JMP ClU3 JMP RFA5 #1

LO~ RW84 I AD
R8Aft JMP RrA5 #1

AOO LOR3 HA3 JMP* cooa LX
STA An8'3 DS R843 OAC ...
LOA RW84

!
OAe R8Al

ANA ='1000 OAe RBA4
STA BCA2 OAC ~8A5

LOA RFA4 LOA3 EQU '155 NU"IB€R OF GATED HITS
ANA ='7000 BC LOA2 EQU '200 GATED HIT FILE BASE
CAS BCl2 RFA4 8SS 1 TEMP STORE FOR OS
JfoIP *+3 QWA2 ass 1 TEI4.P ST.ORE
J!4P 8CA4 LoAb IEQU ' 300 ~G2 FIL~ BASE
JMP 8CA3 RWA4 ass 1 TEMP SfllRE FOR OS
LOA =3

l #7 RWB2 ass 1 TE'4P STORE
STA S3A2 LOU eQU '400 TOft. FILE SASE
LOA A083 It"B4 I3SS 1 Te'4P STORE FnROS
ANA =110000 CRAb ass 1 . TEMP STO~E FOR PREPARE
STA OPAO Lo82 OCT '10 IU'IGE "tNOOW
LOA RFA4 j DP loB3 OCT '10000 FlR l~CRe~ENTIN& • OF HITS
ANA ='107170 A083 ASS 1 TE!4PSTORE
ADO D?AO ~CA2 8SS 1 TE"'P STORE FOR PREPARE
.IMP OJA Itl SQA2 8SS 1 SET BRANCH POINTER

HCA!, LOA =1 #7 OPAO B SS 1 TEMP STORE FOR OP
SH S8A2 lOAIt F.QU L083 FJ~ INCREMENTING , OF HITS
J~P CJA #1 LOA5 EQU LOA7 TD~ F tLE BASE

8CA3 If'lA =2 #1 L081t EQU '500 TDS FILE SASE
STA SBA2 RWO. 8SS 1 TE"IP STORE FOR OS

CJA LOA AOS3 DG AVAl ass 1 TE"'P STORE FOR PREPARE
JMP OJA #1 L08b EQU ' 154 HIT BEARING & ELEVATION BE

CRA3 JM9* COOR #2 AVA3 8SS· 1 TEMP STORE FOR OP
"w83 LOA =3 SB

AV8l 8SS 1 TE"P STO~E FOR PREPARE
STA S8A2 OPJlO 8SS 1 T~"~ STORE FOR oP
LOA RFA4

AD
L085 EQU Lo84 Ti>SFILE 'lASE

ADO LOA4 END

• Figure A4-DAP code

If the amplitude previously stored is greater than or
equal to that of the gated hit, the previous values with
N incremented are replaced in TD4.

After the WW element R20 functions, the resulting
control signal actuates the Read Branch element
R43, which emits a control signal from whichever
terminal corresponds to the control input stored in the
Set Branch element R33. The SB element was activated
as a result of the operation of the Be element.

If the gated hit amplitude had been greater, the bear
ing and elevation (BE) of the new hit are stored in
Track Data 5 file {TD5) upon exiting SB at its upper

connection.
If the amplitudes had- been equal, the bearing and

elevation previously stored in the TD5filB are ex
tracted, averaged with those of the new hit by elements
R36 and R37, packed into a single word by R38, and
replaced in RD5.

If the amplitude of the previously stored hit had
been greater or after Band E had been stored in RD5,
a control signal reactivates RF element R4 to read out
the next gated hit.

When all gated hits in the G H file have been processed
a control signal exits the circuit to the next program.

Programming Language for Real-Time Systems 942a

L0008000011
PS000016421
LE017000021
RF022000046
OS044000051
RWO o (to 4 4 2 3 209
OS234000241
RW000234252
OS254000261
CR0002542760304
OG274000282
A0283281301
OS303000311
BC0002811JJ20102
CS145000151
17145000335
OG145000122

. OP123121132
11133000191
CS144000161
17144000333
11144000171
CS143000211
1714300033JJ
CJ143000172
OG173000182
11183181192
12273000032
CS253000321
S8253000335
18332332432
OG253000062
AD063061071
DJ073000191
WW193000201
RB206000431
RW433000346
OS344000351 .
AV3443443610506
18363363382
AV0003443710708
OP373000381
11383000401
OG435000442
OJ4434411t02
WW403000411
11416000045
11434000045
tX04300003~

TABLE A2-Execution Sequence

942 Fall Joint Computer Conference, 1972

R 2 3 4 5 6 7 8

0 C 4YI -.Y2 7Y2 20Y4 23YI 25YI IJ1
1 0 C8 27Y5 30Y2 34Y1 41Y4 42Y1 2J1
2 I C7 406
3 4 .3 2713
4 0 X2 o X3 3J1 5Y1 4SC3 2 C2
5 4 X4 6Y1 9Y1
6 5 X2 32C2 7Y1
7 6 X3 o X4 8Yl U U
8 7 X3 13X3 19Y1
9 5 X3 23Y2 IOYl
10 9 X3 27Y2 11Y1
11 IOX3 14Y6 12Yl
12 X X 15C2 13Y2
13 3lX2 12X3 8Y2 .
14 U U 29X2 21J1 16J1 lSJ1 1lX2
15 14C5 12J2 22J1
16 14C4 33J3 17J1
17 16C3 21C2 18J2
18 31X3 17C3 19-Y2
19 8 X3 18X3 20Y1
20 19X3 46X3 U U- o XS U U 43J1
21 14C3 17J2 33J4
22 15C3 32C3 33J5
23 0 X6 9 X2 U U 24Y1 U U U U
24 23X4 2SY2 46Y1
25 0 X7 24X2 32J1 26Y1 U U U U
26 25X4 27Y6 28Y1
27 U U 10X2 3J2 28J2 1 X2 26X2
28 26X3 27C4 29Y1
29 28X3 14Y2 30Y1
30 29X3 1 X3 31Y1 U U
31 30X3 13Y1 18Y1
32 2SC3 6J2 22J2
33 U U 43Y2 16C2 21C3 22C3
34 IX4 47X2 UU 3SY1 U U 43C3
35 34X4 37V1 36Y1
36 35X3 42X2 38Y2 U U
37 35X2 39X2 38Y1 U U
3a 37X3 36X3 40Y1
39 ft2X3 37Y2 4 .. Y1
40 3aX3 44X3 41V1
.. 1 ItOX3 47X3 U,U 1 X5 U U .. SJl
42 I X.6 36Y2 39Y1
.. 3 20C6 33X2 3 .. J6 45J2 4 .. J2
.... 39X3 ~3C5 ItOY2
1&5 "lt6 4lCit ItJ5
.. 6 2ltX3 47YI 20Y2
47 46X2 34Y2 41Y2

TABLE AI-Interconnection Matrix

Systems for systems implementors-Some experiences from
Bliss*

by WILLIAM A. WULF

C arnegie-Mellon University
Pittsburgh, Pennsylvania

INTRODUCTION

The programming language Bliss was developed at
Carnegie-Mellon University expressly for the purpose
of writing software systems* and has been in use for
over three years. A considerable number of systems -have
been written using it: compilers, interpreters, if 0

systems, simulators, operating systems, etc. The
language was designed and implemented in the con
ventional sense of an isolated language system, and
relies on the file system, editors, debuggers, etc., pro
vided by the manufacturer and/or other users. In this
paper we shall not describe Bliss, that has been done
elsewhere;l,2 nor shall we attempt to justify the lan
guage design, that has also been done.3,4 Rather, we
shall attempt to analyze and evaluate the particular
decision** to implement Bliss as an isolated language
rather than as a piece of a more comprehensive system.
Some comments are made on the implications of this
analysis/evaluation on the shape that such a system
might have.

A CHARACTERIZATION OF THE PROBLEM
AREA

We shall restrict our discussion to the field of
"systems programming." While there is no universally
accepted definition of this term, it is useful to have some
characterization of it against which to frame the dis-

* This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (F44620-70-C
OlO7) and is monitored by the Air Force Office for Scientific
Research.
* Primarily for the PDP-lO although Bliss has now been imple
mented for several other machines.
** At the time, of course, the decision was made by default; the
more ambitious alternative was not considered.

943

cussion. In particular we can discern four properties of
systems programs relevant to this discussion. They:

1. must be efficient on a particular machine;
2. are large, probably requiring several imple

mentors;
3. are "real"· in the sense that they are widely

distributed and used frequently (perhaps con
tinuously) ;

4. are rarely "finished," but rather are elements
in a design/implementation feedback cycle.

These properties may be factored into two sets
technical issues (item 1), and program management
issues, i.e., those that arise exclusively because the
systems are large, real, and volatile (items 2, 3, and 4).

The technical issues relate primarily to efficiency of
two types: local and global. In most cases software
systems can at most tolerate moderate inefficiencies in
their object code; in a few critical situations anything
other than the most efficient possible machine code is
unacceptable. Although the issue of efficiency is largely
language/ compiler related, it must be recognized that
a more general statement applies: given the logical
machine which a software implementation system (SIS)
defines, and any discrepancy between that model and
the hardware itself, that discrepancy may become
critical in one of two ways: either the cumulative
inefficiency due to the distributed effects of the dis
crepancy is significant, or the use of the construct
which invokes the discrepancy produces intolerable
inefficiencies in some local context. Although we cannot
hope to design an SIS which eliminates the effect
entirely, we must take some care with the conventions
we adopt, both in the SIS itself and in the management
tools given the-user.

The managerial issues which arise in the construction
of large, complex systems can be separated into two

944 Fall Joint Computer Conference, 1972

classes:

1. those which we presently believe to be solvable
within the framework of a static, compilable
language; and

2. those whose solution, at present, seems to require
the construction of a "total" programming
environment which, in addition to the language,
includes editing, monitoring, etc.

Within these classes, the tools for program manage
ment come in three Jorms: those which help specify a
global structure to a task (top down modularization),
those which specify common elements of a fine structure
(predictive bottom up modularization), and finally
those related to the relatively mechanical aspects of
file manipulation, editing, debugging, etc.

A VIEW OF THE PROBLEM

Most of the recent effort devoted to the design of
languages and systems has been expended to improve
the convenience with which a program may be written.
While convenience is an important criterion, it should
not be the only, or even the central, issue in the design
of a system for implementing other systems. The notion
that convenience in writing programs should be the
central issue results from the naive view that software
is simply designed and written. That view is fallacious
in terms of the four properties listed above.

In particular, programming systems are never
finished but are in a constant state of evolution. New
features are added and old errors repaired. The more
heavily a system is used, the more rapid the rate of
evolution and repair. This situation seems inevitable so
long as new application areas, all with slightly different
requirements, continue to emerge. Thus, the central
problem of devising a system for systems programming
would appear to be that of providing mechanisms for
enabling the programmer to cope with this evolution
while satisfying technical constraints imposed by
systems implementation in general.

The mechanisms by which programmers may cope
with the evolution of a system are those which we have
termed 'managerial' above. It is these mechanisms
which are most prominently lacking in our current
system implementation tools; the consequence of this
lack is the introduction of peripheral modifications
which subvert and distort the original structure of a
system and lead to inefficient, "dirty" systems.

WHAT IS A "GOOD" MANAGEMENT TOOL?

If the central problem of systems programming is
that of coping with the evolutionary nature of systems,

then a good tool is' one which creates an environment
in which this is relatively easier to do. Moreover, given
an existing system and the desire to modify it in some
way, the difficulty of making that modification is
directly related to the extent of its interaction with
what already exists. Modifications whose effects are
localized are easy to make. Modifications whose effects
are global-whether due to a large number of textual
or conceptual interactions-are difficult to make.

In general the "goodness" of a tool appears, then, to
be directly related to the degree to which its use permits
and encourages decoupling, isolating, decisions and
hence localizing their effect. Thus, to pick two trite
examples, subroutines and macros are good tools
precisely because they permit isolation of a computa
tional representation (a particular encoding) from the
intended effect of that computation.

MANAGEMENT FUNCTIONS PROVIDED BY
LANGUAGE

One view of the recent history of the development of
programming systems holds that it has been a search
for panaceas. According to this view the development
of large 'shell' languages (e.g., PLjI) , extensible lan
guages, time-sharing, etc., have each in turn been
sponsored, in part, because they promised to be the
solution to providing more convenient, accessible, and
cost/ effective computing. Whether this view has com
plete validity or not, we do not want to fall into the
trap of looking to the mystic word 'system' to remedy
the ills of past software development projects. There
fore we will first discuss some of the management
facilities which can and should be provided at the
language level.

The decision to use any higher-level language repre
sents a good program management decision to the
extent that the structuring facilities of the language are
used in the implementation. It represents a sound
technical decision to the extent that they are usable.
For example, Bliss chose to include Algol block
structure, scope and extent of variables, functions,
boolean and arithmetic infix operators (with precedence
rules), and many of the elements of the Algol control
structure (with goto specifically excluded). These were
chosen as representatives of good management tools
from the realm of general purpose languages. The
PDP-10 hardware model accepts these constructs with
very little overhead which makes them sound technical
tools as well. The remainder of Bliss is composed of
operators, control structures, data structures, etc.,
which although not entirely unique, are somewhat
different from those in other languages because: (1) of
the structure of the PDP-10, (2) of the efficiency

problems imposed by implementation languages in
general (that is, a concerted effort was made to mini
mize the discrepancy between the logical Bliss machine
and the physical PDP-I0), and (3) no suitable models
for certain management tools could be found in existing
languages.

As stated in the introduction this paper is not in
tended to be a definitive description of Bliss. However,
two aspects of Bliss related to management issues are
discussed below to illustrate how these may manifest
themselves in a language design:

(1) Control Structures: Other than subroutines and
co-routines, the control structures of Bliss are a
consequence of the decision to eliminate the golo
(see References 4, 5, 6 for a discussion of the
reasons behind this decision). In Reference 4 the
author analyzes the forms of control flow which
are not easily realized in a simple goto-Iess
language and uses this analysis to motivate the
facilities in Bliss. Here we shall merely list some
of the results of that analysis as they manifest
themselves in Bliss.
(a) A collection of 'conventional' control struc

tures: Many of the inconveniences of a
simple goto-Iess language are eliminated by
simply providing a fairly large collection of
more-or-Iess 'conventional' control struc
tures. In particular, for example, Bliss
includes: conditionals (both· if-lhen-else and
case forms) , several" looping constructs
(including while-do, do-while, and stepping
forms), potentially recursive procedures,
and co-routines. While anything in addition
to the golo and a conditional branch may be
considered "syntactic sugar" in most lan
guages, these additional forms are essential
to convenient programming in Bliss
(although they ~e not all theoretically
needed for completeness, see Reference 6).

(b) Expression Language: Every construct in
Bliss, including those which manifest ex
plicit control, are expressions and have
defined values. There are no 'statements' in
the sense of Algol or PLjI. It may be shown 6

that one mechanism for expressing al
gorithms in goto-Iess form is through the
introduction of at least one additional
variable. The value of this variable serves to
encode the state of the computation and
direct subsequent flow. This is a common
programming practice used even in lan
guages in which the goto is present (e.g., the
FORTRAN 'computed golo'). The expres-

Systems for Systems Implementors 945

sion character of Bliss is relevant in that the
value of an expression is a convenient
implicit carrier of this state information.

(c) Escape Mechanism: Analysis of real pro
grams strongly suggests that one of the most
common 'good' uses of a goto is to pre
maturely terminate execution of a control
environment-for example, to exit from the
middle of a loop before the usual termination
condition is satisfied. To accommodate this
form of control, Bliss allows any expression
(control environment) to be labeled; an
expression of the form "leave (label) with
(expression)" may be executed within the
scope of this labeled environment. When a
leave expression is . executed two things
happen: (1) control immediately passes to
the end of the control environment (expres
sion) named in the leave, and (2) the value
of the named environment is set to that of
the (expression) following the with.

(2) Functional Decomposition: An effective program
management technique is to insist on functional
decomposition and isolation of tasks. Technical
issues suggest several alternatives for constructs
all of which can be considered "function like":
full-blown Algol functions (with display mecha
nism), Bliss "routine" (without display mecha
nism), co-routines, macros and the (Bliss) data
structure mechanism.
(a) Functions and routines are defined and

called in Bliss in a manner similar to that in
Algol, except that there are no specifications
and all parameters are implicitly call-by
value. Functions and routines are exam
ples of choosing well-known and admired
managerial tools and adapting them to
satisfy the technical requirements of a
system implementation language.

(b) Co-routines are often used (unwittingly)
by programmers in any language; their
essential nature is that they preserve some
sort of "status" information upon exit and

,continue execution upon recall based on that
status. If the status becomes arbitrarily
complex, the only way to retain it is to
remember essentially everything which per
tains to the Bliss model in the machine for a
running program, i.e., the stack, declarable
registers, and program counter. Such in
formation is best dealt with by the compiler
(i.e., a minor implementation change might
have drastic effects if everyone using co
routines of this complexity were saving

946 Fall Joint Computer Conference, 1972

status information differently); thus the
construct was included in the language.

(c) The Bliss structure mechanism allows the
user to define an accessing algorithm-that
is, the algorithm to be used to obtain the
address of an item in the structure. In fact,
there are no "built-in" data structures; the
user must define the representation of every
data structure by supplying an accessing
algorithm for it. Once an accessing algorithm
has been defined, it may be associated with a
variable name and will be automatically
invoked when that name is referenced.
Thus, the user may choose the most appro
priate (efficient) representation and may
change the representation as the' use of the
data structure evolves.

With 20/20 hindsight it is obvious that it is the
managerial issues, and not the technical ones which are
the most costly, provide the most compelling reasons
for adopting an implementation system, and hence are
the primary ones to which such a system must respond.
Moreover, a language can only make technical responses
to these issues, and cannot respond to the entire
spectrum of managerial issues. Conversely there are a
set of issues to which the most appropriate response is
at the language level.

The technical responses made in Bliss, such as the
structure mechanism and removing the goto, are, for
example, both good and made at the appropriate level.
We consider the Bliss structure mechanism, for ex
ample, to be a "good" management tool because it
decouples those decisions concerning the representation
of a data structure from those decisions concerning the
manipulation of the information contained in the
structure. (In this context we consider the data struc
turing mechanisms of most languages to be "bad"
management tools in that the representation decisions
are made at a totally inappropriate time-namely,
when the language is implemented.)

MANAGEMENT FUNCTIONS PROVIDED BY
A 'TOTAL' SYSTEM

We wish to distinguish between two notions which the
term 'system' might connote; for want of better
terminology we shall refer to them as internal and
external. By internal we mean those facilities which
must be provided by a system coextant with that
written by the programmer. Conversely, by external we
mean those facilities which are never coextant with the
user's program. Dynamic storage management and

virtual memory systems are examples of the internal
variety; editors, loaders, and linkage editors are
generally of the external variety. Of course, there are
numerous examples...,-the TSS dynamic loader, for
instance-which cross this boundary.

External facilities

In some ways these appeal' to be the most mundane of
those facilities which might be provided by a 'total'
system. Editors, file systems, loaders, etc., are familiar
to us all and that familiarity is indeed likely to breed
a certain level of contempt-or at least a strong tempta
tion to "make do" with the facilities that happen to
be available.

IIowever, measured against the definition of a 'good'
management tool given above, most of the editors, etc.,
with which we are familiar are inadequate. Moreover,
they are unlikely to become adequate unless invested
with more specific knowledge of the structure of the
items with which they deal. In particular, the notion of
decoupling decisions carries the collateral notion of
distributed definition and use (related definitions are
grouped rather than related uses). Present editors, for
example, simply do not cope with such structures
particularly if definition and use are in separate files.
Fortunately, there is an excellent extant example of a
system with many of these properties designed by
Englebart, et al.7

Internal facilities

The class of facilities we have called 'internal'
those which require coextant support-are certainly
more glamorous than the external ones. Our experience
using Bliss strongly suggests that some of these mecha
nisms would be very valuable, in particular: incremental
compilation, debugging at the source level (as with
conversational languages), execution of incomplete
prbgralllS, virtual memory, etc.

All these mechanisms represent 'good' management
tools, when described at this level, in that they permit
certain classes of decisions to be decoupled. The ability
to . execute incomplete programs, for example, is an
attractive facility for permitting parallel construction
of systems by several implementors.

Unfortunately there are no extant examples of
systems which provide wholly 'good' tools from either
the technical or managerial standpoint; the existing
systems fail for two reasons:

1. They are inefficient in specific cases. To date
these' systems have generally been interpretive;

while a technical solution to this exists,S it is
not clear that the residual distributed effect of
this flexibility can be totally eliminated.

2. They imply binding certain decisions at a very
early stage, namely, when the supportive
system is written. This is by far the more serious
problem. Internal facilities are efficacious to the
extent to which they can presume a particular
structure in the system they support. (While
this is also true of external facilities, in the latter
case the assumptions are purely formal.) These
presumptions are inviolate and their presence
clashes with our definition of a good management
tool.

The position taken by Bliss with respect to internal
system facilities is the extreme one, and the original
rationale for it is probably fallacious: the code produced
by the Bliss compiler requires no run time support.
The rationale for this position was that some systems
would be written in Bliss could not presume such
support-notably the lowest levels of an operating
system. While this is indeed true, the fallacy is that the
majority of programs written in Bliss have not been
operating systems, nor will they be.

It is possible, of course, to write one's own support in
Bliss, and a fair variety of these packages have been
written-one of which is worth special mention.

The "timing package"9 is a set of Bliss routines which
may be loaded with any Bliss program. Using its
knowledge of the run-time structure of Bliss programs
the package can intercept control at "interesting"
points, notably routine entry / exit, and record various
information. In particular, the usual information
gathered is the frequency and duration of routine
executions and the memory reference pattern.

The timing package is a "good" management tool in
the sense of the definition above in that it permits
postponing (a programmer's) concern over specific local
efficiency until there is evidence that local efficiency
has global significance. Moreover, the timing package
is a good technical tool in that its presence is not
presumed and there is no distributed (or local) in
efficiency implied by its potential use. Most of the
systems written in Bliss have been "tuned" using this
facility and the results are much as one would expect:
a very small portion (less than 5 percent) of a program
usually accounts for most of its execution time, the
programmer is usually surprised by which portion of the
program is taking the most time, and improvements
by a factor of two in execution speed by relatively simple
modifications are common.

The example of the timing package points out both
an important distinction and a language requirement

Systems for Systems Implementors 947

not discussed previously. The distinction is between
those supportative facilities whose presence and form is
requisite and presumed, and those facilities which, if
available, may be exploited. The language requirement
is that the link to these (optional) facilities should be
'natural.' Thus, for example, we consider dynamic
storage management to be an inappropriate presumed
facility, at least in the context of a SIS, because:

1. it undoubtedly implies a distributed overhead
which is intolerable in specific cases,

2. it implies binding a decision, namely a particular
storage discipline, which will be inappropriate in
specific cases.

Yet, the ability to define and use a dynamic storage
management system, and to do so 'naturally' in the
language, is totally appropriate.

SUMMARY

The results of our experiences in using Bliss for over
three years for a number of large software projects
reinforces our view that the major problems of software
development are what we have termed 'managerial'
in nature, and not technical. The use of any higher-level
language can alleviate certain of these problems, a
careful language design can alleviate more and there
are certain features which must be provided at the
language level, but there are limitations to what can
be done in any statically compilable language.

Many, if not all, of the issues which cannot be ad
dressed by a compilable language may be addressed by
a comprehensive system of which a language is only one
part. Some of the facilities of such a system would deal
primarily with various external representations of a
program. Although these facilities need to be carefully
integrated, they would presumably be related to
familiar facilities. Moreover, such facilities are rela
tively 'safe' in that they deal primarily with the formal
(syntactic) aspects of a program. We regret not having
paid more attention to these facilities at an earlier
stage of the Bliss effort.

Another class of facilities which might be provided
by such a system relate primarily to internal representa
tions of the program and must coexist with this repre
sentation. This class is at once more glamorous,
potentially more useful, and more dangerous. The
utility of such facilities is directly related to their
specific knowledge of the internal structure of a pro
gram. To the extent to which the presence of such
facilities forces a specific set of representations, whether
of data or computation, they can magnify the problems
they were meant to solve.

948 Fall Joint Computer Conference, 1972

REFERENCES

1 W WULF et al
Bliss reference manual
Computer Science Department Report Carnegie-Mellon
University Pittsburgh Pennsylvania 1970

2 W WULF D RUSSELL A HABERMANN
Bliss; A language for systems programming
Communications of the ACM 14 12 December 1971

3 W WULFetal
Reflectims on a systems programming language
SIGPLAN Symposium on System Implementation
Languages Purdue University October 1971

4 W WULF
Programming without the Goto
Proceedings of the IFIP Congress 1971

5 E DIJKSTRA
GOTO statement considered harmful
Communications of the ACM (letter to the editor) 11 3
March 1968

6 W WULF
A case against the Goto
Proceedings of the ACM National Conference 1972

7 D ENGLEBART W ENGLISH
A research center for augmenting human intellect
FJCC 1968

8 J MITCHELL
The design and construction of flexible and efficient interactive
programming systems
PhD Thesis Carnegie-Mellon University 1970

9 J NEWCOMER
Private communication

The CPM-X-A systems approach to
performance measurement

by RICHARD J. RUUD

Allied Computer Technology, Inc.
Santa Monica, California

INTRODUCTION

Hardware monitors of one kind or another have been
employed in the instrumentation of general purpose
data processing equipment since the- early 1960's.
Until 1969, however, the production of hardware
monitors was, in the main, confined to computer manu
facturers and research projects. In 1969, the perfor
mance measurement industry was created through the
introduction of relatively standard commercially avail
able hardware measurement products.

With the advance of the state of the art of measure
ment and the increase in sophistication and skill of
the user from 1969 to the present, it became necessary
to design and build a new generation hardware monitor.
This monitor is known as the CPM-X.

This paper is divided into two parts. The first sec
tion will discuss the goals and rationale involved in
specifying the CP1VI-X. The second part will discuss
the architecture and implementation of the CPM-X in
light of the goals previously discussed.

SYSTEM DESIGN GOALS

The basic monitor

The CPM-X's minimum design goal was to provide
the user all of the standard features normally expected
on a commercially available performance monitor.
Such a system is illustrated in Figure 1.

The basic features provided with this typical system
consist of a number of probes and probe receivers to
transmit the data from the host computer to the moni
tor. The data are then routed through a plugboard con
taining a complement of combinatorial logic and then
routed to a set of counters for event counting and
timing. Periodically, the data contained in the counters,

949

together with a real time clock and other optional data
for message stamping, would be written to an output
media which is almost universally magnetic tape.
Display capability is provided through a luminescent
binary or digital readout to allow the operator limited
real time monitoring of measurement experiments.
The display is also useful for checking out plugboard
wiring and in diagnosing monitor failures. The last
essential part of this typical system is a data reduction
program which takes the magnetic tape output and
condenses and formats it, customarily on the data
processing system which is being measured, for the
user's analysis. These functions constitute the mini
mum acceptable capability in hardware monitor imple
mentation.

Parallel input

A majority of monitors in use today have an addi
tional input source to the serial inputs first described
above. This is a parallel input source accepting from
18 to 36 bits of data, customarily from a host computer
register such as the instruction counter. In some moni
tors, this data is presented to a comparator for com
parison against preset, user-entered values. The results
of the comparisons are then presented to standard
time/event counters.

The other common use of the parallel input feature
is as input to a distribution unit .. The distribution unit
consists of an arithmetic and logical unit and a set of
storage registers. These registers are normally main
tained in a core storage unit with an average size of
1,024 16-bit words. The distribution unit is capable of
operating in two modes. In distribute mode, the high
order 9 bits of the parallel input stream are used as an
index value to address the storage unit. When a word
is selected by this index value, jt is incremented by 1,
thus providing a count of the number of incidences of

950 Fall Joint Computer Conference, 1972

HOST
SYSTEM

H
Z
'"d
c::
t-3

RANDOl-1
ACCESS
MEMORY

Figure I-Representative commercial hardware monitor

each 9-bit number recorded by the monitor. In store
mode, on the other hand, 16 bits of the parallel input
are treated as data and stored directly into ascending
word locations in the storage unit. In both modes, con
tents· of the storage unit are periodically written to
magnetic tape for off-line data reduction and report
preparation. In the implementation described, 512
words are receiving data while the other 512 words are
written to tape.

A dditional junctions

It was felt that in addition to the minimum capa
bilities first specified, and the parallel input capability,
certain other features were desirable and necessary in
the design of the CPl\1:-X. These features had been
implemented on certain experimental monitor systems,
but had not been provided to the commercial monitor
user.

First, the user must have the opportunity to reduce
the monitor data stream to delineate points of interest
and display them in real time from the CPl\1:-X. This
is not to say that there is no longer a necessity for
logging of detailed data on magnetic tape for off-line
report preparation. However, the user must be given an
opportunity to react to his measurements in real time
and to interact with· the measurement system, thereby
modifying his experiments as the environment changes.

Second, the user must have the ability to control,
either directly or indirectly, through the results of the
measurement, the logic of the monitor system. The
semi-hard-wired approach of using only a plugboard to
control the logic is no longer an acceptable answer.

Third, the monitor must have the· ability to capture
from the host computer data concerning programs in
operation· on the host computer in real time. The
problem of matching software data to hardware data
is a difficult one; yet, it must be accomplished. It is
not enough to know merely how a system is performing,
one must also know why it is performing the way it is.
It is extremely difficult to make these judgments based
solely on hardware data; just as it is extremely difficult
to make them solely on software data. The CPM-X,
therefore, was to be given the ability to interact with
the host computer software.

Finally, the interrelated design goals of modularity
and flexibility were extremely important to the design.
If the wide variety of features. specified above were to
be made available, it would be necessary to design the
CPl\1:-X both for ease of. configuration and potential
growth without necessitating either major modifica
tions to the system or that it be traded in. The flexi
bility requirement is mandated by the same set of
facts as modularity, not to mention the need for at
taching the CPl\1:-X to a wide variety of host computer
systems. It has been our experience, as suppliers. of
measurement equipment, that users discover new ap
plications for hardware monitors every day. Therefore,
to make "it an effective tool, it was necessary to avoid
being locked in, but rather to provide open-ended hard
ware and software solutions to measurement.

SYSTEl\1: ARCHITECTURE

Overview

The basic system data flow of the CPl\1:-X is depicted
in Figure 2. The building blocks of the CPM-X are
four basicmodules: instrumentation, control, memory,
and computation. The instrumentation module contains
the probe receivers, plugboard, counters and parallel
input interfaces. The core memory may range from 8K
to 65K 8-bit bytes depending upon the configuration
and needs of the user. The memory has three ports and
therefore may be accessed by the control module, the
computation module, or the direct memory access
channel (Dl\1:A). The control module contains registers
and an arithmetic and logical unit which are used to
control the data flow between the instrumentation
module and core memory and also to control the mag-

netic tape drives in the -system. Similarly, the compu
tation module has an arithmetic and logical unit and a
set of registers which can be used for operator inter
action in the on-line data reduction and display func
tion. This module is also used to control all I/O devices
other than the tapes, such as display terminals, tele
types, and remote terminals. It can also read and write
certain registers contained in the instrumentation
module to modify the set-up of the measurement.
Although the DMA channel communicates directly
with memory, the channel is under the control of the
computation module. Interrupt lines are maintained
between the computation module and the control
module to synchronize their operation.

CPM-X is configured in three basic models. Model
A consists of an instrumentation module, a control
module, 4K of memory, and one magnetic tape unit.
This configuration will provide the basic functions
enumerated in the earlier discussion of the typical
commercial hardware monitor. This excludes the
parallel input function: The Model B consists of the
same modules but the memory is expanded to provide
for parallel input as described above. In addition,
certain field modifications are made to the control
module to enable it to perform the distributive control
function. A lVlodel C, which is the largest configuration
available, adds the computation module to the above.
The---number of tape drives may then be increased from
one to four, if desired. At least one operator's console
is required which may be a l\10del 33 Teletype or a

I/O BUS A

Figure 2-System data flow-CPM-X

The CPM-X 951

CRT display with a teletype compatible interface.
Provision is also made for remote hard copy and CRT
terminals in addition to sophisticated local CRT
terminals with graphic capability.

The micro-processor

It became readily apparent that the control and
computational functions of the CPl\{-X could most
readily be implemented, and at the lowest cost, through
the use of minicomputers, since both required arith
metic and logical capability and high speed register
storage. It was also necessary to find a mini-computer
which employed a three-ported memory because of the
design considerations of the CPl\1-X.

The mini-computer selected was the 1\iicro 1600-D
dual processor system manufactured by Microdata
Corporation which incorporated all of the required
features. The 1600-D system consists of dual processors
sharing a core memory which can vary in size from 4K
to 65K 8-bit bytes. The system also had provisions for
attaching a D1\1A channel to its memory bus. Each
processor had a separate party-line, byte I/O bus
communicating directly with its data flow.

An extremely important, perhaps over-riding, con
sideration in the selection of the Micro 1600-D was the
ability for the implementers of the monitor to easily
micro-program the processors, rather than depending
on the manufacturer of the mini to perform that task.
Between 250 and 4,096 l6-bit words of ROM: may be
attached to each processor. Although cost considera
tions dictated that permanently written read only
memory be utilized in field versions of the CPl\1-X, a
writeable control store, exhibiting the same timing
characteristics as the read-only store used in the field
version, was available on the engineering model and
used extensively for debugging the firmware; i.e.,
microprogrammed algorithms. This writeable control
store together with a micro-assembler and micro
simulator greatly aided in the development of the
CPM-X.

The basic firmware development strategy was as
follows. Processor A, as identified in Figure 3, served
the function of the control module. Various algorithms
such as counter update, counter concatenate, and
distribute, were developed in firmware. Additionally,
a comprehensive set of microdiagnostics was developed
to test the control module, the instrumentation module,
and the tape units.

Processor B, the computation module, on the other
hand, was primarily implemented to use the manu
facturer's standard, general purpose instructions. How-

952 Fall Joint Computer Conference, 1972

I/O BUS A

CONTROL MODULE

COMPUTATION MODULE

_----.::;;CH.::::.ANN:::::;EL::...;B=US'-----+r---,- - - - - - - - i
I
I

'-----, I

r -------,
I
I
I

I
,024 x I

16 I
I ,
L ______ J

INTER-PROCESSOR
INTERRUPTS I

I
I
I

I
I

1,280 I
16 I

I I
I I '- _________ ...1

Figure 3-Application of the Microdata 1600-D multi-processor
to the CPM-X

ever, this instruction set was modified to provide ad
ditional instructions, such as 32-bit multiply divide, an
interrupt scheme more responsive to the environment
in which the CPl\1-X would be used, and the various
firmware routines for controlling the DlVIA channel
interface with various manufacturers' host computers.

C Gunter hardware

A CPl\1-X may contain from 16 to 64 counters. lVlost
counters have but a single function which is to accumu
late time or event data from serial probe inputs. Cer
tain counters, however, can perform other functions
in addition to that -of time/event measurement. The
additional functions that these multi-function counters
can perform are: Parallel data input to the CPl\1-X,
distributions, and comparisons. The packing of the
CPl\1-X counter groups- is such that a standard group
contains eight single-function counters. A multi
function counter group, on the other hand, contains
four counters, one of which is a standard, single-func
tion counter; one may be used as a 24-bit parallel input
and shift register; while two may function as 24-bit
comparators.

Figure 4 illustrated the data flow of a multi-function
counter group. Since Counter A, in the diagram, func
tions in exactly the same manner as any other single
function counter, a description of the multi-function
counter group, with references to the counters shown
in Figure 4, will suffice to describe all possible counter
combinations in the CPl\1-X.

All counters can receive data from the time or count

serial input hubs on the plugboard. The count hub
merely causes the input signal to be sent directly to the
low order bit input of the counter; thereby accumu
lating a value in the counter equivalent to the number
of times the signal has changed state from a logical 0
to a logicall. The time hub takes the same input signal
and uses it to gate the output of an internal or external
clock. Therefore, these clock pulses will accumulate
in the counter so long as the input signal is in the logical
1 state; effectively turning the counter into a timer.

An additional set of inputs is available for Counters
B, C, and D, the multi-function counters shown in
Figure 4. This is a 24-bit parallel input bus driven by
24 probes. Counters Band C may also obtain input
parallel by bit, serial by byte from the 8-bit I/O output
bus of the control processor.

The buffer outputs are available to the control
processor parallel by bit, serial by byte on its I/O in
put bus. In addition, the results of comparisons,when
multi-function counters are used in the compare mode,
are available at their respective high-low-equal hubs
on the plugboard.

In addition to the logic shown in Figure 4, there is
control logic which is not illustrated. The control
output logic is conditioned by the decoding of the
control processor's I/O control register. This logic
differentiates between address and data cycles and
sets read or write status for subsequent data cycles.
When a counter needs service, either because there
has been an overflow from the high order bit position
or a strobe pulse has been encountered in the case of
the parallel input counter, the address of that counter
is generated by hardware logic; and an interrupt line
is raised to the control processor. This enables the
control processor to either perform a counter update

PARALLEL PROBE

INPUTS

SERIAL PROBE

INPUTS $
COUNTER A

~
> = <

> = <
COMPARATOR OUTPUTS

TO PLUGBOARD

I/O BUS OUT

I I
J. ,

"
J,- ~ ,

, COUNTER B I , COUNTER C I L COUNTER D I

1 j
SHIFT I COMPARATOR C , 'COMPARATOR D I
COUNTER:

1 1 r-- J

I
.l,

'SHIFT REGISTER I BUFFER C BUFFER 0 I , .j, .J.
I/O BUS IN

Figure 4-Multi-function counter group

sequence, a distribute sequence, or transfer the in
formation contained in the parallel counter to storage.

Standard counter operation

Standard counters, or multi-function counters oper
ating in the standard mode, accumulate serial input
data at a maximum rate of 20 million counts per
second. Operating at this maximum rate, the counter
will overflow in approximately 3.3 milliseconds. When
an overflow occurs, the address generation logic presents
an interrupt to the control processor together with the
address of the overflowed counter. The processor firm
ware then utilizes this information to update a 16-bit
counter extension contained in core memory; thus, a
32-bit counter is fashioned with the low order 16 bits
being implemented in external hardware, and the high
order 16 bits being implemented in core storage. The
buffer follows the counter and always reflects the exact
contents of the counter, except during a dump opera
tion.

When a snapshot of counter contents is to be taken
for manipulation, display or recording purposes, the
dump sequence is entered. First, the connection from
all counters to their associated buffers is broken at the
same time by the control processor. This has the effect
of stopping the input to all buffers while allowing the
counters to continue to accumulate data. The buffers
can now be unloaded without effecting data integrity
and any problem of time skew is eliminated, since the
buffers were all stopped at the same time. The control
processor then unloads the two bytes of each buffer,
concatenates these two bytes with the high order two
bytes of the counter contained in core and stores these
four bytes in another area of memory reserved for the
purpose. When this update process is completed, the
connection between the counters and the buffers is
re-established allowing the buffer to be updated to the
current counter value. The control processor then
presents a microprogrammed interrupt to the compu
tation processor in a l\1:odel C. This results in software
interrupt being initiated in that processor. In the case
of a l\1:odel A or B, the completion of a dump sequence
initiates a firmware tape-write sequence, thereby re
cording the accumulated counter data on magnetic
tape.

Comparator operations

·Counters C and D shown in Figure 4 can also be used
as comparators. In this mode, the width of the counter

The CPM-X 953

is expanded from 16 to 24 bits. The counter is first
loaded by the control processor with a 24-bit com
parand. The write sequence automatically causes this
information to be transferred from the counter to the
buffer where it is held. When the comparator receives
a compare strobe signal from the plugboard, the in
formation contained in the parallel probe inputs is

. gated to the counter; and the contents of the counter
are then compared to the contents of the buffer. The
high-low-equal result is then latched at the output of
the comparator and sent to the plugboard. The result
of the last compare is available until a new compare
cycle is initiated. Comparators are extremely useful
as filters in distribution and save and store mode, as
well as being used solely as comparators.

Parallel input operations

Counter B, also 24 bits in width, may be used as a
parallel input register to the CPM -X. As in the case of
the comparators, 24 bits of data will be gated into the
parallel input register upon receipt of a strobe signal
from the plug-board. Two events then take place. The
interrupt line is raised to the control processor and the
address of the parallel input register is presented when
the interrupt is acknowledged, allowing the processor
to locate the register for unloading. At the same time
the processor is being interrupted, the information con
tained in the counter portion is transferred to the buffer
and concurrently shifted right under control of the
shift counter. The shift counter is loaded from the
processor's I/O output bus, and the count remains
constant unless specifically changed. The truncated
results are then read from the shift register portion of
the counter into the control processor's data flow. The
shift function is used to provide an appropriate window
in distribution and data storage functions.

The channel interface

In order to close the loop between the host system
software and the hardware monitor, the CPM-X,.
l\1:odel C, employs a data channel interface. The inter
face is unique to the host computer system to which it
is attached and therefore requires changes to read-only
memory and the hardware when moving from computer
to computer.

The channel interface, quite simply, makes the
CPM-X look like a standard peripheral device to the
host system being monitored. As an example, the at-

954 Fall Joint Computer Conference, 1972

tachment of a CPM-X to an IBM System/360 or
System/370 may be considered. The CPM-X is assigned
a control unit and device address by the installation
and is attached to a system data channel through the
standard I/O interface connector cables. The monitor's
priority is dependent upon the physical position in
which it is attached to the channel relative to other
control units on that channel, and may be varied to
suit the installation's--requirements.

Data transfer operations are commenced when the
host system issues a start I/O instruction. The CPl\1-X
is selected and the command code is decoded by firm
ware routines contained in the read-only memory of
the computation module. The Dl\1A channel controls,
indicating read or write status, beginning memory
address, and length, are then set up. Once this is ac
complished, the host processor is connected to the
Dl\1A channel for the data transfer operation. Since
the data is transferred directly to the CPl\1-X's mem
ory, the rate of transfer can be adjusted and data
overruns will not occur.

At the end of the data transfer phase of the opera
tion, signalled either by the expiration of the count in
the host computer or an end-of-buffer condition in the
CPM-X, the appropriate status indications are gen
erated by the firmware and presented to the host
processor so that the I/O operation may be terminated.

In order to prevent the host processor from sending
more data than the CPM -X can handle because of
software or performance limitations within the compu
tation module, the channel-end and dev!ce-end bits
are not presented at the same time. When an opera
tion is completed, the channel-end bit is routinely re
turned with ending status by the firmware. However,
the software program must issue a specific instruction
to present device-end to the host computer. This has
the effect of making the CPl\II-X appear busy to the
host computer should it wish to initiate additional
data transfers before the CPl\1-X software is ready to
accept them.

Should conditions occur asynchronously in the moni
tor which require that the host processor be alerted,
CPl\1-X software can issue an attention interrupt.
Upon recognition of this interrupt, the CPU can
initiate a read operation to the CPM-X to determine
its cause.

The channel interface provides a complete two-way
communication path between the host processor and
the CPM-X. Although the IBM 360/370 interface
has been described, the principles enumerated are ap
plicable to other manufacturers' hardware and channel
interfaces are currently offered for both Univac and
RCA computers.

Plugboard control

In order to provide communication between the
hardware of the instrumentation module and the soft
ware of the computation module, the plugboard control
interface was developed for the CPM-X. This gives
the computation module the ability to modify hard
ware setups and also to recognize the occurrence of
significant hardware events. There are two sources for
output data and two sources for input data.

The command register is used as a source of pulse
information from the computation module. Its 8 bits
are set by command byte and remain set for a period
of 200 nanoseconds. The outputs are used where momen
tary signals are required for such purposes as setting
or resetting latches and resetting counters to zero.

The program register, on the other hand, while also
8 bits wide remains set to the bit configuration with
which it was last loaded until reloaded by the compu
tation module. Primary use of the program register
is to modify the hardware setup by conditioning and
deconditioning AND gates which in turn will alter the
manner in which data or control signals are routed
through the plugboard.

One source of input to the computation module is
the multi-function register. This register is 16 bits
wide and is read into the computational processor on
demand. Inputs to the register may be probes for
statistical sampling operations or any other signal
available at the plugboard.

Finally, a variable number of interrupt hubs are
provided which, when impulsed, cause the computa
tional software to interrupt to a fixed location. These
interrupts are used by the software to recognize ex
ceptional hardware events occurring in the host pro
cessor for recording or monitor action.

Software 8upport

The CPl\1-X, l\10dels A and B, do not require internal
software support. All algorithms required for opera
tion of the control processor are contained in its 'ROM
and core is only used for data storage. The l\10del C,
however, will have a complete monitor operating
system. All models of the CPl\1-X are supplied with
versions of the l\1easurement Summary Report program
to enable the user to perform data reduction and report
writing functions on the host CPU.

The basic software design is that of an interactive
interpreter. Through it, and some of the hardware
features described above, the user will be able to
exercise control over all aspects of the measurement

system. The software interface will either be through a
teletypewriter or teletypewriter compatible CRT
terminal.

The system is written in assembly language and
occupies 3,000 bytes of storage. It is expandable and
routines can be added by the user as required; however,
full user capability for on-line data reduction and dis
play is provided by this basic system.

The software support provided for the host computer
to utilize the channel interface is limited. In the case of
IBM as support, the channel interface must be pro
~ammed at the EXCP level. Error routines for the
OPM-X will be provided for inclusion in the operating
,ystem. The level of implementation for other manu
facturers' host processors will be similar to that pro
vided for IBM.

Parallel input applications

This family of applications will be described in some
detail since they best illustrate the interaction of all
elements of the CPM-X. These applications can be
performed with a Model B or a l\10del C; however,
limits and buffer size must be set manually in the
Model B configuration. The applications described will
therefore cover the l\10del C to illustrate the use of the
computation module.

The basic strobe signal used to gate data into either
the comparators or the parallel input register is usually
obtained from a host computer signal which indicates
that the register being inspected by the monitor has
just been changed and that the new data is valid.
Generally, comparators use this raw strobe signal so
that every time a register is changing, a new compari
,on is being made; and the output latches are set ac
wrdingly. These latches may be used as direct inputs to
~ounters to indicate the frequency with which certain
iata are occurring or their time duration. The outputs
)f multiple comparators can be wired together through
plugboard logic to provide high and low limits and to
lndicate when data fall between these limits. This
wiring scheme is usually used when comparators con
iition the strobe input to the parallel data register.
rhus, limits are set by the computation module's
mftware and the only time that data is accepted by
Gh,e parallel input register is when that data falls within
~he range defined by those comparators.

Store Illode

An area of main storage is allocated by the software
is a data buffer. This storage area is divided in half to

The CPM-X 955

provide for double buffering. The word size of the
buffers may be either one, two, or three bytes, de
pending upon the needs of the experiment. In a store
mode operation, where a three byte word size is indi
cated, the total contents of the 24-bit parallel data
register are transferred to the shift register and then
to main storage. Each register transfer initiates a
storage cycle whereby the data element is stored
sequentially in the main storage buffer until that
buffer is filled. Then an automatic buffer switch takes
place and the software is alerted that a buffer has been
filled. Store mode allows any sequence of data ele
ments to be recorded for future analysis by the CPM-X.
These elements may consist of instruction addresses
for detailed trace operations, instructions themselves,
data elements, or any other data stream the user might
wish to specify.

In order to economize in both storage and speed,
the user may wish to specify a basic data element of
less than 24 bits. In this case, either the low order two
bytes or the low order one byte of data is transferred
to main storage. To enable any 8 or 16 bits out of the
24 to be recorded, a value is loaded into the shift
register causing the specified number of bits on the
right-hand side of the data element to be truncated;
thus, any contiguous portion of the parallel input
register can be recorded.

It is often desirable to record data only when it
falls within defined limits. For this type of filtering,
the comparators are employed. Two comparators are
set with the upper and lower bounds, and the compara
tors' outputs are so wired as to only allow the parallel
input register to be strobed when data falls between
them.

A more complex variation of the store mode is that
of sequencing, in which the experimenter is interested
in retaining a previous event; but he only wishes to
record it if one or more predefinedr subsequent events
take place. The common usage of this mode of operation
would be in determining the location from which a
sub-routine is being called. When a sub-routine of
interest is loaded into core, the address of its entry
point can be transmitted over the channel interface
to the CPM-X; it is then loaded into a comparator.
The plugboard is wired so that every address is recorded
by both the parallel input register and the comparator.
The address contained in the parallel input register is
transmitted to the shift register and held there. When
the next address in the stream arrives, it is compared
to the contents of the comparator. If a match exists,
the parallel input logic is allowed to interrupt the
control processor and, thereby, transfer the contents
of the shift register to main storage. This has the

956 Fall Joint Computer Conference, 1972

effect of transferring the calling address to main
storage, if that particular subroutine is entered.
l\1ultiple sequencing can be effected by using mul
tiple comparators. and cascading· their output through
latches.

Distribution

The second mode of use for the parallel input register
is that of distribution. In this mode, a portion of the
data ingated to the parallel register is used as a dis
placement in addressing main core. In this case, the
buffer area in main core is divided into a number of
logical accumulators. The accumulators may be 8, 16
or 32 bits in width. A buffer area is then defined by
the user which must consist of a number of logical
accumulators which is an integral power of two. Two
such buffers are required to provide for on-line data
reduction or transfer to tape without loss of data.

Distribution data are normally storage addresses
although other data, such as operation codes may be
used. Considering the case of storage addresses, it is
often of greater interest to evaluate in detail the dis
tribution of references to one or more sub-divisions of
main storage than to make a gross evaluation of all
of the storage available on the system. When it is
desirable to sub-divide storage in this manner, the
comparators are employed, as in the case of store mode,
to define the boundaries of the storage area to be
inspected. In the following discussion, L1 will indicate
one boundary and L2 the other boundary of such a
sub-division.

In many cases, it is impossible to allocate logical
accumulators to individual data elements on a one-to
one basis because of the mis-match between the si2;e
of the memory area to be inspected and the amount of
CPl\1-X core memory available for accumulators.
. When the number of discrete storage addresses exceeds
the number of logical accumulators available, the
occurrence of two, or more, adjoining data addresses
must be summed in a single accumulator. A parameter
known as the Resolution Factor has been defined as the
number of data element occurrences which are summed
in a single logical accumulator. A Resolution Factor
of unity is ideal and the resolution of an experiment
is inversely proportional to the Resolution Factor.

The boundaries of the storage area to be inspected
are often dictated by factors beyond the experimenter's
control, such as the size of a given user program or the
executive. The experimenter is then generally interested
in examining this area with the highest possible degree
of resolution. The shift counter of the Parallel Input
Register is employed to accomplish this. The value of
C to be placed in the shift counter is calculated by the

computation module based on the parameters of the
experiment and is defined as the whole number less than
or equal to:

(
I L1-L21)

C=1+LOG2 NU1VIBER OF ACCUl\1ULATORS

Once the shift count is computed, the Resolution Factor
can be defined as: RESOLUTION FACTOR=2c•

In a typical application of distribution, the CP1VI-X
might be used as follows: The experimenter would first
enter the name of the job to be analyzed at the CPl\1-X
console; this information would then be transferred to
the executive of the host CPU via the channel interface.
When the selected job is loaded into the host computer's
memory, the boundaries of its core region would be
returned to the CPlVI-X over the channel interface,
together with an imperative to start address distribu
tion. The computation module would then compute
the shift count and load it, together with the boundary
conditions into the shift counter and comparators of a
multi-function counter group. The computation module
would then order distribution to commence. At the
termination of the job, the computation module would
again be alerted by the host computer via the channel
interface. The distribution would be wrapped up and
required housekeeping performed.

CONCLUSIONS

The CPM-X design was based on three things: a
survey of what was currently available commercially;
techniques developed in experimental monitor systems;
and the needs of the experimenter.

The key to the architecture of the CPl\1-X was the
total integration of a duplex mini-computer into the
hardware monitor. The l\1icrodata 1600-D was selected
primarily because of the ease with which it could be
micro-programmed by the implementers. This decision
has, in fact, materially reduced both time and cost in
the development of the CPl\1-X. Furthermore, the
utilization of interchangeable read-only memory mod
ules, together with interchangeable hardware has
greatly alleviated the problem of model changes and
of interfacing the CPl\1-X to a variety of host com
puters.

Some of the more complex measurement applications
have been described to illustrate the interaction be
tween various elements of the CPl\1-X system.

ACKNOWLEDGMENTS

The author would like at this time to acknowledge the
substantial contributions made by several individuals

in the design of the CPM-X. l\1essrs. Paul E. Chanel
and Mark J. l\1cGrew, of Allied Computer Technology,
Inc. ; both made numerous contributions to the original
specifications of the CPl\1-X. N[r. Louis Gallenson,
formerly of Allied Computer Technology, Inc., and
currently- a member of the Information Science Insti
tute of the University of Southern California; con
tributed much to the early engineering design of the
CPJ\;f-X, especially in the multi-function counter area.
The overall design was carried out by Mr. Thomas O.
Ellis, formerly of the Rand Corporation, and currently
a member of the Information Science Institute of the
University of Southern California. Finally, N[r. Frank
l\1. Stepczyk, of Allied Computer Technology, Inc., was
responsible for the definition and creation of the soft
ware routines for both the l\1icrodata 1600-D and
various host computer channel interfaces.

One of the experimental monitor systems analyzed
on the CPl\1-X development is ADAl\1 designed by
l\1r. James Hughes and his staff at Xerox Data Systems.
l\1arina def Rey, California. Since no documentation
has been published outside of XDS, the author can
only thank l\1r. Hughes for his discussions of ADAl\1
without quoting a reference source for the reader.

The CPM-X 957

REFERENCES

1 ALLIED COMPUTER TECHNOLOGY INC
Computer performance monitor II: systems summary
manual
1969

2 R A ASCHENBRENNER et al
The neurotron monitor system
AFIPS Fall Joint Computer Conference 1971

3 G ESTRIN et al
SNUPER computer
AFIPS Spring Joint Computer Conference 1967

4 INTERNATIONAL BUSINESS MACHINES
CORPORATION
IBM System/360 and System/370 I/O interface channel to
control unit
Original Equipment Manufacturer's Information Form
Number 6A22-6974-0 1971

5 MICRODATA CORPORATION
Micro 1600/21 Micro 821
Computer Reference Manual Form Number 71-1-821-001
1971

6 MICRODATA CORPORATION
Micro 1600
Computer Reference Manual Form Number 71-1-1600-001
1971

7 MICRODATA CORPORATION
Micro 1600-D dual processor system
Internal Document Number PS20002400 1972

System performance and evaluation
Past, present, and future

by C. DUDLEY WARNER

Computer Synektics, Incorporated
Santa Clara, California

INTRODUCTION

Data processing-Profit or loss

With the billions of dollars in installed computer
equipment deployed worldwide and with vast sums
needed to operate; program, and maintain this hard
ware, computer users are increasingly aware of the
need to improve the efficiency of data processing opera
tions.

Corporations use computers to handle many tasks.
The range of tasks and size of the computers increase
constantly. But corporations do not know how to
evaluate the efficiency of their data processing opera
tions. Inability to make an accurate assessment has
kept management fearful of the entire data processing
experience and has resulted, generally, in a hands-off
attitude. This tail-wags-the-dog situation places a
particularly heavy burden on that portion of manage
ment directly responsible for the data processing opera
tion. They have to make recommendations on new and/
or added equipment, but they lack objective techniques
for evaluating the DP operation and projecting needs.

Such a situation would be unacceptable in the man
agement of human or mechanical resources. People are
evaluated--:-machines are evaluated-where appropri
ate, their interactive performances are evaluated. But
the electronic data processing arena remains a mystery,
unresponsive to the profit and efficiency standards inte
gral to any business. Strangely enough, a data process
ing manager may find himself in the unique position of
gaining more prestige because he requests increases in
computer sizes (and costs, therefore) than because he
effects sizable reductions in costs through more efficient
management of current equipment.

959

Time-and-motion studies for computing

Data processing must be brought into perspective;
it can and must be made a 'profit center' like other
company operations. The DP function is similar to
manufacturing in that raw material (data) goes in, and
a finished product (reports) is created. In manufactur
ing, we find lathes, drill presses, mills. In data process
ing, we use tape and disk drives, readers, printers,
punches, and, of course, the CPU.

What manufacturing operation has not been scruti
nized in time-and-motion studies? These evaluations de
termine the productivity of each piece of equipment,
deliver recommendations. on present and planned re
sources, specify how particular operations should be
performed to achieve maximum throughput at minimum
cost (i.e., productivity).

A hardware monitor is essentially a specialized stop
watch to perform time-and-motion studies on com
puters. It supplies a scientific approach to data pro
cessing control. A modest investment in monitoring
that can increase the effectiveness of existing computer
hardware and software seems preferable to buying more
hardware and hiring more people.

Versatility or efficiency?

In trying to make computer systems versatile, manu
facturers and users have forgotten the need foref
ficiency. Most of today's systems are poorly coordinated
and wasteful, with much idle time and little overlap be
tween various system resources.

This kind of inefficiency is costly, especially in job
turnaround time and system throughput. Recent sta
tistics show that the average CPU is active less than

960 Fall Joint Computer Conference, 1972

30 percent of the time, with many clocked at 10 per
cent and lower. Stated another way, some CPU's are
idle 90 percent of the time! No manufacturing opera
tion would be permitted to continue at these levels of
inefficiency. Percent-of-capacity averages in U.S. manu
facturing are nearer 80 percent to 85 percent in well-run
operations!

THE NEED FOR MEASUREMENT

Wanted: Controls to match our systems

Today, with technical development reaching a point
of diminishing returns, coordinating our system opera
tions has become crucial. Our hardware is sleek and
fast, but our efficient use of that hardware is a failure.
Improving current systems control is unquestionably
more important to profit than fourth generation hard
ware, particularly in larger installations.

Organizing a job stream to use available computing
resources better is a logistics problem. Hardware re
sources include the CPU, memory, tapes, disks, card
readers, other perinherals; software resources include
assemblers, compile~s, operating systems, sorts, RPG's,
subroutine libraries. All these resources functioning
together comprise a system. Logistical reorganization
might . mean improving the balance between resident
and non-resident routines, obtaining more interaction
between peripherals, increasing the overlap of CPU
and I/O, or redistributing peak loads and other bottle
necks that degrade overall system performance.

The start: Basic operating facts

An evaluation based on facts, not speculation, is vital
before system elements can be rearranged effectively.
Before monitoring, intuitive methods had to be used.
Even sophisticated simulations were based on theo
retical models or assumed hypothetical situations.

, The two basic approaches to system measurement are
hardware and software. A hardware monitor is prefer.;.
able because it does not interfere with or create overhead
in the system it is monitoring. A software monitor is a
program, and an artificial situation is created when the
monitor is part of the job stream, because the monitored
routines must often wait for the monitor.

THE PAST: A BRIEF HISTORY OF
MONITORING

The hardware measurement devices that led to the
evolution of today's sophisticated monitoring concepts
are summarized in Table I.

TABLE I-Hardware Monitor Development

Year Equipment Source

1961 Channel Analyzer IBM
I/O channel & CPU wait time

1962 Program Monitor IBM
Full program trace on tape

1964 Program Event Counter (PEC) IBM
Channel & CPU overlap

1967 System Analysis Measuring Instru- IBM
ment (SAMI)-Measures all sys-
tem resources, 4 tons (!), 64
counters, 32 comparators

1968 Basic Counting Unit (BCU) Trans- IBM
portable, limited system resource
measurement, punched card out-
put

1969 System Utilization Monitor (SUM) Computer
Portable, tape output, optional Synectics,
comparators, measures all system Inc.
resources

Early developments by IBM have been completely
overshadowed by the rapidly evolving hardware and
software monitor efforts of several smaller companies
in the U.S. since the first non-IBM hardware monitor
was marketed in 1969. Hardware monitors are already
on a second generation iteration. IBM hardware moni
tor use is available only to IBM customers upon re
quest.

THE PRESENT: MONITORING TECHNIQUES

How hardware monitoring works

Monitoring devices are sensors attached to particular
signal lines to measure the presence or absence of elec
trical impulses. For example, a sensor could monitor a
signal that is present only when the CPU is in wait
state; signal absence would indicate CPU active state.
Monitoring does not affect the signal or the system but,
like an oscilloscope, "looks" without interference or
degradation. Signals are routed into a Boolean plug
board where wired logic can produce data on combined
functions such as total I/O time or I/O and CPU over
lap. To illustrate, in a three chanIl;el system (i.e., two
selector channels and a multiplexer channel), signals for
each channel would normally be routed through an OR
function and into a counter to provide a channel-busy
indication.

When this composite signal is routed to an AND
block and mixed with CPU -active signals, CPU and

Selector channel 1
r----busy)

Selector channel 2
bus~) OR Any channel busy "-

S
Y (To counter)

S Multiplexer busl) T
E

'----
M

S
I
G r----

N
A
L "-
S Pu~D CPU and any channel active

CPU active > (To counter)

'----

Figure I-Routing signals

I/O overlap is indicated in another counter. Figure 1
shows a sample of signal routing.

Sensed information is summarized and recorded, and
the data is then processed by a program to print mea
surement results. From this output, problem areas can
be identified and remedial action initiated.

Useful measurement information

What kinds of data are measured: An example would
be the amount of CPU active versus wait time. A CPU
that waits 75 percent of the time and processes 25
percent might appear to be too large; one that processes
75 percent of the time and waits 25 percent might be
too small. More operational details would be needed
for meaningful conclusions.

Other relevant information would include time spent
on problem programs or in the operation system. In a
mUltiprogramming environment, regions or partitions
can be monitored for task switching frequency. Instruc
tions executed in a given time span may be measured;
individual programs and routines can be timed. I/O
utilization by. channel, controller, device, or device
component reveals CPU and I/O overlap. When there
are multipaths into a system, is there high utilization in
one path, none in another?

A system profile

Figure 2 illustrates a typical system profile covering
times for CPU active and wait, channel utilization/

System Performance and Evaluation 961

wait, total and individual channel use, channel overlap,
compute-only, and wait only. Just one profile item, com
pute-only, would be clearly affected by using a larger
processor; compute-only time would decrease. Different
factors determine impact on other items: channell
CPU overlap depends on job mix; wait-only time can
reflect operator activity such as mounting tapes, re
placing disk packs, etc.

To return to the 75/25 percent contrast, the CPU
that waits 75 percent of the time may well be too large
for the work load. On the other hand, it may be waiting
because of poor resource utilization and overlap; the
work load could, in fact, be so large and so poorly
handled that management is contemplating an even
larger CPU.

Real-world problem solving-Two examples

Monitoring advantages are most obvious when
evaluating the potential of a larger Drocessor for in-

Total time

compute (CPU)

Wait (CPU)

CPU wait and
channel busy

Channel busy

Channel 1 busy

Channel 2 busy

Wait only

Figure 2-Measured system profile

962 Fall Joint Computer Conference, 1972

creasing throughput. However, monitoring and analysis
can also indicate whether a problem can be solved by
fine tuning, and if so, how. Sometimes, identifying the
problem itself is the real difficulty.

The airline

An early instance of measurement to uncover a prob
lem occurred when an airline was trying to put a nation
wide reservation system on-line. Using exeellent simula
tion techniques to detect overload, system developers
brought all regions on-line up to the busiest-New York
City. It was estimated that New York accounted for
40 percent of the work load and the other regions,
45 percent. Thus, adding New York would bring the
system to 85 percent of capacity. But when the switch
was thrown, the system was immediately overloaded!

A monitor was installed to get the facts. It revealed
that before New York was brought in, the load was
really 90 percent, not 45 percent. The reservations
operators didn't trust the computer. After entering
reservation data, they inquired to see if the system
really had that data-a double I/O load. The solution
was anticlimactic-to signal the operator that the data
was in, the typewriter ball was set up to 'wiggle'.

The bank

Sometimes problems themselves are elusive. An IBM
customer, a bank, replaced its 7074 computers with a
360/50, got no higher throughput, and went to a
360/65-still without throughput increase. The cus
tomer, by watching the CPU wait light, determined
that his seven most important jobs consumed all
available CPU time.

Monitoring was undertaken for several days to pro
file the whole system. The seven 'capacity' jobs were
indeed CPU-bound, but took only 3 percent of
CPU active time. Since the CPU was active 15 percent
of the total system time, these seven jobs took less than
~. percent of total system time. The problem was sys
tem operational logistics. Many short jobs required
new I/O setup; the physical arrangement was crowded
and disorganized. And the bank still used the 80-
character record, so disks and tapes contained these
short, unblocked records with gaps that induced ex
treme rotational and seek time delays. The bank didn't
need a 360/65, or even a 360/50. When the physical
problems were solved, the work could have gone on a
Model 40, with plenty of system capacity to spare.

THE FUTURE: COMPUTER SYSTEMS
OVERHEAD OF PROFIT CENTER

Past efforts to monitor, measure, and manipulate the
system resources and system burden (the work load)
have lacked the real-time control that managers believe
is vital to today's complex systems. To meet this need,
monitor development is evolving toward a monitor that
will act as a real time controller of resources and can
thereby enable a DP operation to convert itself from
creeping overhead to profit center.

Manufacturers tentative steps

Current IBM 370/165 and 370/185 models in
corporate a meter/recorder that can be plugged into the
Wait light to provide a continuous indication of wait
time. Here is the first direct manufacturer recognition
that users should expect maximum efficiency and pro
ductivity from their machines as a standard feature.
But such a feature is totally inadequate for measure
ment needs. It furnishes a small amount of historical
information-it provides no potential for real time
remediation of system inefficiencies. It is not only in
adequate but highly questionable. We can challenge its
design and inclusion on the standpoint that the manu
facturer's best interest may not be served by providing
the means to self-regulate equipment or operations.

Work-scheduling possible with real-time monitors

Properly designed monitors now starting to appear
in the marketplace will make possible an increasing
measure of real-time monitoring and control over the
system resources and work load. Such work-scheduling
control is starting to take two basic forms:

1. Matching Work Load to Resources
In this form of work-scheduling, the opera

tions staff will be able to monitor-in real time,
through a suitable console display-the actual
current levels of usage of the various resources
of the system. The usage levels are averaged over
a range of time periods most useful to the type
of work being processed. In this dynamic situa
tion, an operations manager can call from the
job stream the kinds of jobs he knows will use
the resources he can see are available. This con
trol ability presupposes his knowledge of basic
job functions and their essential use of resources
and his ability to manipulate the work load ef
fectively in dynamic mode. Both these prerequi-

sites are becoming increasingly common in
modern installations.

2. Scheduling to Deadline
Another form of work-scheduling being intro

duced, associated with control software as well
as with real-time monitoring, incorporates the
necessary or arbitrary placement of a deadline
against the work load backlog. Once invoked, the
system can then organize its own work load up to
the deadline in the most efficient manner, or it
can indicate that completion of the job stream,
although optimized, is not possible. Reset to a
later time, the rescheduled job stream is adjusted
until an acceptable compromise is reached. This
approach to work-scheduling takes the opposite
view to that made famous by Parkinson, that
"Work (in the computer system) expands to fill
the time available for completion." The new
control method says, in effect, "Can you (the
system) complete this work load by time 'x'
using all your resources as efficiently as pos
sible?"

Measuring and accounting for resource use

As systems have become more and more complex in
hardware and software, the problems of accounting have
become increasingly complex. Accounting is a particu
larly difficult problem for communications-oriented
systems. In systems operating solely in overhead mode,
such accounting has often been arbitrary, based usually
on a DP manager's need to assign costs without benefit
of realistic input on cost allocation in terms of system
usage. Monitors that can sample and record all essential
resource utilization can, however, greatly improve the
quality and accuracy of costing, accounting, and
billing-a factor that is already recognized by many of
the major time-sharing services and is acquiring new
stature in profit-center-oriented computer users. In
such applications, each individual resource must be
analyzed ahead of time as to actual cost, including as
signment of the internal overhead of the computer
operation itself (operators, floor space, library func
tions, etc.). Thus established and measured, the
'computer system' as a profit center will be in a far
better position to use and sell its resources against the
goals of efficiency and productivity.

Hardware predicted for these goals

What form of hardware will be available to serve
these new goals of system monitoring, measuring and

System Performance and Evaluation 963

accounting, and work-scheduling? Although it is too
early to be specific, so1ne trends are emerging. The first
type of equipment, for use with smaller third-genera
tion systems (down to 360/30 sizes), will be a compact,
console-mounted monitor that will give basic resource
utilization indexes as proportions, or percent~ges, over
various time periods. Shift personnel can use this in
formation dynamically ('eyeball' mode) to control
available resources and maximize system use. Once
operators become accustomed to on-line process op
timization as an essential professional task, it is esti
mated that such a monitor should be able to increase
system throughput of the average small- or medium
sized system by as much as 35 percent. These kinds of
productivity gains can eliminate a complete shift in
many installations.

For larger systems operating in multiprocessing or
multiprogramming mode, the problem of system re
source control becomes much more complex. "Eyeball"
evaluation would far exceed the capabilities of the most
competent and experienced operator. In such cases, a
process controller is applicable. It is a hardware monitor
under the continuous, real-time control of a mini
computer that will have in its own memory the com
plete job stream with the resources it needs. The user
will have to analyze and plan the normal work load
being handled by his system, so that the required system
resources can be mapped and recorded in detail. Detail
down to scientific core mapping is feasible. Once ef
fected, the process controller will be able to function in
essentially the same way as the process controller used
in industry to handle complex manufacturing processes
(e.g., petrochemical reactions involving a multitude of
sensed values in temperature, pressure chemistry, flow,
etc.). On-line process control of systems may seem ini
tially to abridge the decision-making authority of com
puter operators. It seemed so to experienced operators
of petrochemical plants in the mid-1950's. But it has
already been shown experimentally that this feedback
coupled process control of a complex computer system
provides huge increases in productivity and through
put.

Potential for savings

Until the computer system can be viewed as a cost-or
profit center, it will remain a major source of needless
expenditure and low performance--which is its current
status in far too many installations worldwide. To
date, monitoring has often been misinterpreted by
operations staffs as personally and professionally
threatening. It could be of tremendous professional
value in assisting a staff to develop a cost-effective com-

964 Fall Joint Computer Conference, ~972

puting system. Monitoring will continue to be resisted
by manufacturers who have something to hide. But
the history of competitiveness that has characterized the
computer industry will inevitably result in the accep
tance of monitoring, measurement, and control of the
computer system as a first step. Use of this costly com
puter resource as a profit-making tool will be the im-

mediate and desirable derivative. In the process,
management will acquire again the understanding and
responsibility that it abdicated ten years ago with the
introduction of third-generation equipment. These are
healthy advances. Uncontrolled machines consuming
huge costs and personnel have no place in the modern
corporation.

A philosophy to system measuremellt

by HENRY O. CURETON*

Hewlett-Packard Company
Cupertino, California

A PHILOSOPHY TO SYSTEM: lVIEASUREl\1ENT

Although a great deal of emphasis has been placed
on system measurement during the past few years,
each of us has his own opinion and ideas as to what it
means. From a practical and immediate point of view,
System l\1easurement is the process of obtaining useful
information on the performance of software and soft
ware-controlled computer hardware. From the same
viewpoint, System l\1easurement is the key· to system
efficiency. The measurement tools currently available
commercially are normally artificially classed as either
hardware or software, based on whether they are con
structed with electronics or software elements. This
particular distinction is rather meaningless to the user
since what is being measured and how useful the
measurements are, is of far more importance.

Efforts were directed toward the pioneering of
measurement tools which would help determine the
effectiveness and the efficiency of computer systems,
whether they be software-controlled hardware systems
or application programs. In determining whether to
develop hardware or software measurement products,
it was decided to develop products in the software line
for the following reasons:

• Greater jlexibility-Software allows many users. to
simultaneously measure their systems and it can
be "easily" tailored to the specific needs of the
user.

• Cost-Due to the complexity and cost of hardware
components, software can be developed and dis
tributed at a much lower cost.

• Greater number of measures-Hardware devices
usually have a limited number of counters (32 on
some commercially-available monitors) whereas
software can handle as many as is practical. As an

* Formerly of Boole & Babbage, Inc. Cupertino, California

965

example, the Configuration Utilization Evaluator,
CUETM, can concurrently monitor up to 500
different devices as well as system software charac
teristics such as average queue depths, number of
loads of transient modules, behavior of job initia
tors, etc.

While recognizing the advantages of software mea
surement, one must also be aware of the degradation
which is ever-present with software probes. Hardware
monitors are external to the system and consequently,
do not require any of its resources during the monitoring
phase, whereas software requires CPU cycles, I/O
activity and primary storage during its extraction
process. Consequently, in order for software measure
ment to be successful, an extraction technique must be
used which will not significantly alter the running
characteristics of the system.

The required CPU cycles and I/O activity can be
significantly reduced by using sampling techniques
instead of employing event-oriented monitoring tech
niques. Using sampling, the CPU overhead, I/O
activity, and secondary storage requirements are kept
to a minimum as a result of the small volume of data
collected. The accuracy of the sampling technique is
based on the central limit theorem. The central limit
theorem states that the accuracy achieved improves
as the number of random samples increases. Figure 1
illustrates the confidence curves from which the ac
curacy of such data can be obtained, and illustrates
that there is no substantial improvement in accuracy
after approximately 26,000 samples.

The system interference caused by primary storage
(core) requirements can be minimized .by separatin.g
the extraction process from the analYSIS phase. ThIS
technique, along with reducing the core requirements,
provides the ability to reanalyze the data collected
since it must be placed in an intermediate storage
area.

96{} Fall Joint Computer Conference, 1972

CONFIDENCE CURVES FOR THE
99.99%, 99.9%,99%, 95% AND
90% CONFIDENCE LEVELS

CONFIDENCE INTERVAL (PERCENT)

If 8,000 samples are taken, the probability
that we will be within 2% of the actual
value is 99.99%

SAMPLE SIZE (IN THOUSANDS)

I~
\ \ ~

\ '\,l
\ \ '\. 'I}I}~I}I}~
~ I}I}J%-"6~

r- ~.9.'--"6
I}o~'%

r- --%::"'"'-

- -
:-..... --l- t:: f::: -I--

r---- r--I--
-~

10 12 14 16 18 20 22 24

Figure 1

These techniques and considerations resulted in the
introduction of the first commercially-available com
puter performance measurement products. * The pro
gram evaluator (PPETM) provides insight into the
distribution of activity within a program by isolating
areas of high usage through a histogram report (Figure
2), which breaks down activity within overlay seg
ments and individual program CSECTS, and pin
points wait time caused by I/O. These data are pro
vided by sampling the program under study in its
normal operational mode by using a special extraction
module.

The configuration evaluator (CUETM) provides the
user with insight into the uses of his software-con
trolled hardware system. This is provided by supplying
the user with resource utilization and queueing statis
tics, head movement data, transient SVC usage, and
initiator/terminator activity.

In developing these products, it was recognized that
regardless of the power provided by a commercially
available systems measurement tool, whether it be
hardware or software, there are six essential considera
tions which a user must carefully consider before
purchasing (or leasing) such a tool. These considera
tions are:

• maintenance provided
• life cycle
• documentation/training provided

* U.S. Patent Number 3,644,936

• logical extensions to the tool
• ease of use of measures provided
• interrelationship with other tools

It is these considerations that molded the customer
vendor relationship that was adopted.

Since software measurement tools are dependent
on the ability to extract from memory the necessary
descriptive and quantitative data, the maintenance
provided with a measurement tool is of the utmost
importance. Since changes to an operating system can
drastically affect such tools, the user must be assured
that these tools will function properly as the operating
system changes. At the same time he must be confident
that the content of the data provided stays consistent
with the evolutions of the operating system. In order
to accomplish this five different extraction programs
are maintained for the PPE product alone; three for
the IBlvr 360/370 series, one for the SPECTRA line,
and another for CDC customers running under master.

At the same time, products have been extended under
standard maintenance agreements with the customer
to reflect changes in both user and system philosophy.
For example, the latest version of CUE provides
existing customers with (1) graphic display of CPU
and physical channel actiVity (Figure 3) where none
was available before, (2) physical channel activity by
logical channel where only physical channel activity
was available before, (3) the ability to request the
usage of any Boolean combination of these resources
at analysis time instead of getting a fixed set of com
binations, (4) direct access volume activity in sum-

A Philosophy to System Measurement 967

CODE EXECUTION FREQUENCY FOR EACH INTERVA:'" .. (EXCLUDING DSOW WAIT.

STARTING ENDING INTERVAL CUMULATIVE HISTOGRAM - " OF TIME (EACH * =0.5 %)
LOCATION LOCATION PERCENT PERCENT .0 4.0 8.0 12.0 20.0

.0('1)000 00061F 0.00 0.00
000620 00068F 7.39 1.39 -**************
000690 0006FF 0.0 7.39
000700 00076F 1.56 8.95 -***
000770 0007DF 15.59 24.54 -*******************************
0007EO 00084F 13.94 38.48 -***************************
000850 0008BF 12.58 51.06 -*************************
0008CO 00092F 2.39 53.45 -****
000930 00099F .41 53.86

.0009AO 000B5F 0.0 53.86
OOOB60 OOOBCF 1.28 55.14 -**
OOOBDO 000C3F 1.84 56.98 -***
000C40 OOOCAF 3.45 60.43 -******
(,OOCBO 00OD1F .30 60.73
000020 OOOD8F .04 60.77
000090 OOODFF .13 60.90

Figure 2

CPU I PHY~ICAl rHA~Nfl ACTIVITY CHART

fPU Pl SY
CPU 101\ IT
CHANNFl 1 PuSY
CHMmfl 3 PUSY
CHANNEL 2 P.USY
rHANNFl 5 PUSy
CHANNEL 4 PUSY
CH!\NNi=1 6 PUSY

PERCE~l OF GRAFHIC CISPlAV OF TCTAl TIME
TOTlIl fI"1F r. lC 2) 3') 41} ~C 6': 7C ac 90 ICC

o;S.17
41.83
15.1"1
44.~3

20.33
16.67

3.33
0.00

+---------+---------+---------i---------+---------+---------+---------+---------+---------+---------+
• B~BB8B 888 888 BBBB BB8B 8 BBBBS 88 88 B8 B8 B8BB8B BII BBBB BS BB BBBB BBBB • ••

WWWWWkWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
111111 111111111111111111111111 111

3?13~3333~~'33333?3333>~3 33333333333~3333333
zn . 2222222 • 222222222 22

~"555" .555 .S "555S~

+---------.---------.---------+---------+~--------+---------+---------.---------.---------.--------~+

.. * :t

Figure 3

INITIATOR / TERMINATOR TASK ACTIVITY

TASK JOB TIME TXME -----------------------------PERCENTAGE OF TOTAL TIME--------------------------------------
10. CLASSES FIRST LAST WAITING JOB WAITXNG JOB WAITING ---------ALLOCATION--------- JOB STEP ---TERMINATION-

OBSERVED OBSERVED FOR NEXT FOR FOR CORE WAITING IN WAITING IN WAITING IN
JOB DATA SET FOR PROCESS FOR DEVICE PROCESS FOR PROCESS

01 A 09.50.35 12.37.15 12.83 5.25 3.50 13.25 3.68 8.16 52.25 0.74 0.34
02 ABC 09.50.35 12.37.15 12.08 15.01 43.91 0.44 1. 90 16.66 8.12 1. 33 0.55
03 SAC 09.50.35 12.37.15 15.67 44.08 11. 92 1. 50 8.43 0.57 15.75 1'.67 0.41
04 CD 09.50.35 12.37.15 0.00 0.00 1. 66 5.34 3.37 0.00 89.63 0.00 0.00
05 DE 09.50.35 12.37.15 6.58 8.08 61. 4"2 3.67 2.76 1.24 16.04 0.21 0.00
06 E 09.50.35 12.37.15 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure 4

968 Fall Joint Computer Conference, 1972

mary as well as detailed form instead of only detailed
headrnovement by device, etc.

Once the user has established the serviceability of a
measurement tool, he must evaluate its expected life.
Is the operating system on which it is running
expected to remain in the installation for a reasonable
length of time? Does the supplier provide "trade-in"
services for converting to a new operating system?
Both of these questions should be carefully evaluated
and the conclusions considered when calculating the
true cost of the product.

There are many data processing tools which lack the
proper documentation and user training necessary to
reap their true potential. One of the biggest problems
facing installations using measurement tools is to
properly train and condition their data processing
staff in the use and understanding of system measure
ment. Without proper documentation and training by
the supplier, this understanding can never be achieved.
The vendor should provide his customers with manuals
describing the products and their use, personally install
the product and work with the customer representa
tives until they become familiar with its use and, last,
conduct a training course for all the installations'
interested personnel.

Regardless of the type of package being used by an
installation, a user always needs and/or desires some
variation of the information provided in order to satisfy
his needs. Consequently, he should be able to influence
the expansion of a product line to fit his and other
customers' needs instead of the vendor sitting in a
well-insulated ivory tower dictating the measurement
needs of the computing community. The problem which
arises from this is how customers can formulate their
ideas and communicate them to the measurement tool
supplier. Two methods of customer-vendor communi
cation which have been used by system measurement
suppliers are to (1) help their customers establish users
groups where customers can discuss their problems,
expound on their su,ccesses and formulate their desires,
and (2) constantly stay in touch with customers in
order to get their feelings and establish their needs.
These techniques have brought about several additions
to the basic products, such as the addition of Initiator/
Terminator usage reporting in CUE (Figure 4) and
the PL/1 statement number option inPPE.

l\,fany claims are constantly being made by vendors
as to the power of their products, but it is extremely
important for the user to determine the usefulness of
the measures provided by these tools. Unless this
usefulness can be established, the tool has relatively
little value to the user. Consequently, it is desirable,
from a user's point of view, that the reports be readable
and not cluttered with useless information, and that

each measure be carefully identified as to how it can
be used in improving system performance.

A final consideration in choosing measurement tools
is how the various tools, and even measures within a
tool, relate to one another. If the results of the various
measures can direct the user through his analysis phase,
a much more comprehensive study can be performed.
As a result, it is important that the various performance
measures and products be inter-related to one another.
It has been the goal to structure products such that
all the tools in the System Measurement Systems
(SMS) product line operate as a closely-knit group,
Figure 5, (i.e., each product can direct the user to a
further level of analysis that is provided in one or more
of the other three products) and that each of their
products be so arranged that there is a hierarchic
structure (i.e., a logical flow of analysis) associated
with E'ach of them. .

The establishment of a system measurement philoso
phy, such as outlined above, is one thing, but where is
measurement going from here? .lVlany people in the
measurement field feel there is going to be an ever
greater emphasis on vendor-supplied software measure
ment products while the significance of hardware
monitoring in the measurement field will decline. Hard
ware monitoring will probably be provided by the
manufacturers in their equipment as diagnostic aids
and will be used for first-level measurement (CPU and
channel busy data, effects of cache memory, bulk core

SMS Product Line

Figure 5

vs. main core, etc.). Software, on the other hand, will
provide the second- and third-level measurements.

With the ever-increasing speed of CPUs and in
creased technology in channels (such as the block multi
plexer), the emphasis is going to be directed away from
these areas and toward I/O. This attention will be
directed toward inter- and intra-data set contention.

What access methods are being used?
Was the proper data set organization used?
What effect did data set Y have on the device

queueing?

A Philosophy to System Measurement 969

Associated with I/O contention areas, effort will be
directed toward the actual sources of system contention
areas. What program caused the bottleneck and why?
What system buffer area or table is too small or too
large, etc.? This area in turn is going to direct emphasis
toward program architecture. The organization of
internal, as well as external, data areas and program
flow will be stressed in an effort to increase total system
performance. As a result of all these areas, program
ming and system design standards will develop and
systems measurement will finally become the SCIence
it has been trying to achieve.

Historical perspectives-Computer Architecture

by MAURICE V. WILKES

University of Cambridge
Cambridge, England

INTRODUCTION

I shall attempt in this paper to record my own personal
impressions of the way in which computer architecture
and designers' objectives have changed during the pe
riod that has elapsed since the first stored program com:...
puters were being designed 25 years ago. I shall be
concerned with the generally accepted "state of the
art" at any time, rather than with the new ideas that
were emerging in the more advanced centers. I shall not
attempt to track innovations to their source nor to as
sign dates to them. For convenience of presentation,
but for no other reason, I shall divide the period into
three phases of very roughly equal duration. I shall
end with some remarks about the· way thinking has
developed on the subject of memory hierarchies, this
being one that can be traced through all three phases.

The very first automatic computers were not elec
tronic nor did they have a stored program. The idea of
a purely electronic large· scale computer was first con
ceived and developed by J. Presper Eckert and John W.
Mauchly at the Moore School of Electrical Engineer
ing in Philadelphia. Their first computer, the ENIAC,
showed very clearly the influence of mechanical ways
of thinking. The accumulators, for example, contained
rings of flip-flops, ten to each ring. At a given time one
flip-flop was set and the others unset according to the
digit being stored. The rings could be stepped from one
condition to the next in much the same way that a
mechanical counter wheel is stepped. Eckert and
Mauchley came to realize that there were more efficient
ways of approaching the design of an electronic com
puter than this and their work received a great stimulus
when Von Neumann associated himself with their
group. The ideas evolved were summarized by Von
Neumann in a document entitled "Draft report on the
EDV AC" which received some circulation· during the
early part of 1946. The material in this report· and much
else besides was presented to a small group of which I
had the good fortune to be a member at· the Moore

971

School in the late summer of 1946. It may be said that
the principles of the modern computer were then clear
and that the events of the last 25 years have been their
logical working out. However, not everyone recognized
that this was the case and much energy had to be spent
in countering the arguments of those who did not accept
the stored-program principle or who had not sufficient
faith that electronic technology would prove equal to
the demands that would be made on it.

THE FIRST PHASE

The early stored program computers were designed to
be operated by the programmer himself who could book
the machine for a specified period, or stand in line wait
ing his turn with other programmers. By watching the
machine as it was running he could learn a great deal
about his program, particularly if it were not fully de
bugged, and one of the designer's objectives was to
provide facilities for this purpose. Early memories, un
like the core memories introduced later, were dynamic in
operation and lent themselves to the provision of means
whereby the programmer could see what was going on
in the memory while the machine was running. In· the
case of the ultrasonic memory, for example, it was easy
to provide a cathode ray tube monitor that would show
on a raster the pulses circulating in one of the tanks. By
switching from tank to tank it was possible to examine
any word in the memory. While the program was run
ning some words would of course change too rapidly to
be followed, but others would change more slowly, and
it was interesting and instructive to sit in front of the
computer and watch what was going on. Similarly, with
the Williams tube memory, it was easy to provide a
slave tube that could be switched in patallel with any
one of the memory tubes.

By making use of the single shot button the progam
mer could follow what happened as each instruction was
executed. Many computers had elaborate operating
consoles by means of which the programmer could

972 Fall Joint Computer Conference, 1972

change words in memory as he debugged his program.
Not everyone was happy about methods of debugging
that depended heavily on the use of the single shot
button, it being recognized that while they might be
efficient for the human being they were inefficient for
the machine. Even in this early period there was pres
sure toward having the machine run by professional
operators and training programmers to use software
although that term was not then current-aids to de
bugging, such as traces, selective dumps of memory,
post mortem routines that would print out words in
memory that had been changed during the running of
the program, and so on. However, the other method of
working continued to have its advocates and in the case
of some of the larger machines a whole group would
move in and take over the machine when their turn
came with an impressive display of bustle.

During this period designers of computers-one did
not yet talk of computer systems-were struggling to
liberate themselves from their own prejudices. There
were also customers' prejudices to be considered to a
much greater extent than· is the case today. This was
partly because of the general novelty of the ideas and
the interest that they aroused among people at large,
and partly because there was little experience to quote;
often computers were sold off the drawing board before
any working example was available for inspection and
the first. customer was at the same time the sponsor for
the development work involved. Many of the prejudices
related to the supposed differences between computers
designed for business purposes and those designed for
scientific purposes, and to the vexed question of binary
versus decimal. If one believed that the distinction
between business and scientific computers would cease
to exist and that binary computers could be used quite
successfully for business data processing, then it was as
well that one should keep one's opinions to oneself, since
to many people it seemed obvious that the contrary was
true. Even the one distinction between business and
scientific computers that appeared fairly clear proved to
be a myth; this. was that business computers would re
quire faster and more efficient card readers and printers
than would scientific computers. The truth was that in
the early years all computers were crippled by their in
put and output devices and that when more efficient
devices became available it was seen that they were
wanted on the scientific side quite as much as on the
business side.

Whenever computer designers got together there was
much discussion about the logical design of the pro
cessor and the exact composition of the instruction set.
Computer users were also concerned in these argu
ments, partly for the reasons mentioned above and
partly because this was before the days of high level

programming languages. One controversy concerned
the number of addresses in an instruction. Three ad
dress codes had many advocates who claimed that com
pared with single address codes they led to more natural
programming. With a three address code one could in
one instruction cause two numbers from memory to be
added together and the result returned to memory. In a
three address computer in pure form nothing would sur
vive in the arithmetic unit when the execution of an
instruction had been completed. It always seemed to
me that the argument for three address codes was emo
tional rather than scientific and I was not surprised
when eventually they disappeared.

All the early computers had multipliers but some
dispensed with dividers in order to reduce the amount
of logic required; it must be remembered that we had
only vacuum tubes and not yet much practice in using
them in digital circuits. The high cost, large physical
bulk, and poor reliability of vacuum tube logic lay be
hind every argument, whether it concerned the mode of
operation-serial or parallel-the provision of checking
circuits, or the complexity of the instruction set. Always
the argument for simplicity was a strong one. An exam
ple is floating point arithmetic. Although floating point
arithmetic had been provided in early relay computers,
we fought shy of it in electronic computers for a long
time because of the complex logic involved. We used to
whistle to keep up our courage and would assert loudly
that floating point instructions were unnecessary since
one could use a subroutine. In spite of this, the later
vacuum tuhe computers had floating point units. Oddly
enough, some numerical analysts opposed the intro
duction of floating point arithmetic on the grounds that
floating point operation was treacherous to the unwary
and that programmers would get themselves into
trouble by misusing it. Although dividers became com
mon, very few stored program computers had hardware
units for extracting a square root, in spite of the fact
that this had seemed to the designers of the ENIAC a
necessary feature. Von Neumann told me in the summer
of 1949 that he thought it possible that the hardware
extraction of square roots would come back on account
of the importance of the square root in Euclidean
geometry.

Fundamental matters that were much discussed were
the number of bits in a word and the number of instruc
tions per word. These have, of course, remained impor
tant considerations. The need to be able to handle
groups of bits, or even individual bits, in a word was
recognized, and indeed some quite early instruction sets
had provided means for selecting groups of digits and
shifting them into the required position in one opera
tion. This need led eventually to the development of
byte organized machines. This move was by no means

solely a response to the needs of business data process
ing. The area remains one in which there is a good deal
of diversity in the solutions that individual designers
adopt. In view of the fundamental nature of the con
siderations involved I believe that this situation will
continue. In the early years there was not yet any heavy
investment in computers and the need for compatability
had not begun to rear its ugly head. Designers were,
therefore, more free to adopt what appeared to them to
be optimum solutions. While the need for preserving
compatability will remain a major consideration in the
short term, I believe that its long-term influence will be
less than some people think.

Early computers consisted of a number of units, all
different; it took a few years before rational' ways of
packaging a computer were discovered that would in
crease the proportion of repeated units. I gave a talk at
a conference at Manchester University held in 1951 with
the title "The best way to design an automatic calcu
lating machine". This paper has been frequently refer
enced because it introduced the idea of microprogram
ming and attempted thereby to bring some order into
the design of the control section of a computer. The
paper was, however, also concerned with the problem of
introducing as much repetition as possible into the con
struction of the registers and adders, both control and
arithmetic. I was thinking then in terms of fairly large
replicated units. A year or two later people began to
develop small plug-in units, each containing a small
number of logical elements. These could be used in
many combinations, it being accepted that some would
contain wasted components. This step was not as easy
as may appear since the packages had to be designed to
rigorous standards so that they would be interchange
able. In the very early days we could not have done this.
The advance may be compared with that made in me
chanical engineering when interchangeable components
were introduced. The coming of integrated circuits has,
of course, reopened the whole question of how a com
puter should be packaged.

THE SECOND PHASE

As computers got bigger we saw the introduction of
batch processing. A computer was fed with a magnetic
tape on which was written a batch of jobs in a certain
order. Eventually the computer produced an output
tape containing the results in the same order. A separate
auxiliary computer was used for the initial batching of
the jobs on to the input tape and for printing the results
from the output tape. This computer with its tape decks
was usually quite separate from the main computer. An
essential feature of batch processing was that jobs went

Historical Perspectives-Computer Architecture 973

through their various stages of compiling, assembling,
and running as a batch, intermediate tapes being writ
ten as required. There was no possibility of a short job
overtaking a long one, nor was there any possibility of a
programmer being able to watch his job being run.

From the system point of view the importance of
batch processing was that it went far toward solving a
problem that had troubled computer designers from the
beginning, namely how to secure efficient cooperation
between a processor and its peripherals. In early com
puters the processor was mostly idle when either the
printer or the card reader was in action. It is true that
the design of the hardware usually allowed the program
to continue after an output order had set the printer in
action or an input order had caused the feeding of a new
card. In practice, however, this facility was of little
value since, during the operation of an input or an out
put subroutine, the only computation available to be
done between consecutive input and output orders was
conversion to or from the binary scale. Even in cases
where useful overlapping of operation of the processor
and of the peripherals was possible, the programmer had
to go to quite a lot of trouble in order to achieve it. It
had early been realized that the use of magnetic tape for
input and output would be one way of tackling this
problem. However, off-line equipment had then to be
provided for writing the input tapes and printing the re
sults from the output tapes. Attempts to meet this need
met with only partial success until the adoption for the
purpose of the auxiliary' computer;

It is interesting to note that the term "batch process
ing" has survived the systems to which it was aptly ap
plied. The term is now used in contradistinction to the
interactive mode of operation. Jobs commonly flow
through the system continuously rather than in batches,
and very often there is provision for jobs of high pri
ority to overtake jobs of lower priority.

Batch processing required a supervisor or monitor,
part of which was permanently resident in core. It also
required sufficient magnetic tape decks for the input
and output tapes to be permanently loaded along with
a system tape, while at the same time leaving enough
tape decks available for loading, preferably in advance
of their actually being required, the magnetic tapes
required by individual problems.

Batch processing was made possible by the fact that
computers were getting larger and better endowed with
peripherals such as magnetic tape decks. It was the in
crease in size of core memories, however, that was deci
sive. This was a time when a memory as large as
8k words was unusual, and 16k, to say nothing of 32k,
seemed a lot. The availability of large core memories
also made compilers possible and one remarkable fea
ture of the period was the way in which users appreci-

974 Fall Joint Computer Conference, 1972

ated very rapidly the advantages of programming in
high level languages-automatic programming, as it
was called-and were willing to pay for the large core
memories required.

Computers had now become large and powerful
enough, and their reliability was sufficiently high, for
large-scale computer applications to be attempted. The
importance of software began to be appreciated and the
foundations were laid for the modern development of
that subject. There was less public discussion of the
details of computer design, but much was going on be
hind the scenes. It was a truly traumatic period for the
circuit engineer who was having to come to grips with
the use of transistors instead of vacuum tubes~ This
meant learning his trade all over again. This was all the
more difficult since in the early days transistors were
slow and unreliable devices and were by no means ideal
elements from which to build digital circuits. Within a
few years they had been developed to a point at which
they enabled better standards of performance to be
achieved than would ever have been possible with
vacuum tubes.

A number of large-scale projects were established in
this period and several of these, in particular STRETCH
and LARK, contained the germs of much later devel
opment in computer system design. It was about
this time, in fact, that people first began to talk about
computer systems. In the early days the processor had
been the most prominent part of the computer and it
came provided with a fixed amount of memory and a
more-or-Iess standard set of peripherals. Nowadays, we
regard processors, memory units, tape decks, drums, disc
files, printers, and card readers as blocks from which to
build a configuration suited to a particular user's needs.
We may have more than one processor and we may
have computers, perhaps on remote sites, connected
together to form an integrated system. We still tend,
however, to think of the processor as being a major item
and a range of computers as being defined by a range
of processors. It remains to be seen whether we shall
always do this.

THE THIRD PHASE

The development of the concept of an operating sys
tem was a great advance but it was really an advance
on the software front. The operating system took over
some of the duties of the operators, but otherwise the
operation of the computer was very much as it had al
ways been. The next advance came when it began to be
taken for granted that a computer should have an inter
rupt system.

In most early computers a break in the flow of control
could only occur as the result of the execution of a jump
instruction. An unscheduled event, such as an accumu
lator overflow, if detected at all, would most likely cause
the computer to stop. Such unscheduled events are now
often described as traps and lead to a jump in control.
Interrupts are essentially traps coming from outside,
usually from a peripheral device that requires attention.
In a small computer, a very simple interrupt system may
be all that is required, but in larger systems the hard
ware must detect and store interrupts coming from a
number of sources, and it must service them according
to a priority partly wired into the hardware and partly
determined by software. There must be the ability to
postpone the servicing of interrupts at critical mo
ments, for example, while earlier interrupts are being
serviced. Altogether, the need to provide an effective
interrupt system has added substantially to the hard
ware designer's cares.

The provision of a system of interrupts enabled a
processor to interact efficiently with mechanical devices
which now included disc files as well as tape decks and
ordinary input or output devices. It became possible to
use buffered input and output so that card readers and
line printers could run independently of the main com
putation. Multiprogramming became possible; this im
plied that there should be resident in core programs for
two or more independent jobs so that when one was
held up, hopefully, another would be free to run. These
developments would not have been possible unless suf
ficiently large core memories had become available at
the right time.

Interrupts, as I have said, made it possible for the
processor to interact efficiently with its slow peripherals.
It was in due course realized that the peripherals need
not be ordinary computer peripherals but could be, for
example, control valves or other devices in an industrial
plant. There was some excitement when the possibilities
thus opened up in control engineering and related fields
were fully realized. The term "time-sharing" was first
used in this connection. Later, when the same tech
niques were applied to enable a group of users sitting at
consoles to make independent use of a computer, the
word was preempted and has now come to mean that
alone.

Another need for which the computer designer was
now expected to make provision was that of memory
protection. This need had been felt-although not at
once satisfied-as soon as batch processing systems with
a permanently resi~ent monitor came into use. Without
memory protection a user's program that contained, by
inadvertence or otherwise, an instruction that corrupted
the monitor could cause a system to break down. The

development of time-sharing made the need for memory
protection imperative.

At first, systems in which protection was all-on or
all-off were thought to be sufficient. It was then possible
to write the supervisor in such a way that it could not be
interfered with by a user program, and so that one user
program could not interfere with another user program.
This is quite satisfactory if the supervisor is completely
debugged and if no changes-with the inevitable hazard
of bugs-are made to it. It suffers, however, from the
disadvantage that use of the facilities for protection is
the sole prerogative of the writer of the supervisor and
it is not possible for a user to construct a sub-system
whose parts are· protected from one another. Sub
systems requiring such protection must be incorporated
wholly or partly into the supervisor with the hazards
just referred to. The desire to have operating systems
that are robust against hardware and software failure
is leading to a demand for systems of protection where
by all routines, whether they belong to the supervisor,
to a sub-system, or to the program of an ordinary user,
can be surrounded by protecting barriers. Under normal
circumstances, these barriers are redundant, but when
accidents occur they act like fire walls and prevent the
damage from spreading. Hierarchic protection systems
based on rings or levels of protection are now beginning
to appear and advanced .research is being done on non
hierarchic systems.

The effect of these developments has been materially
to broaden our view of what comprises a computer
system. No longer is it a simple computer with periph
erals connected to it. In addition to the main computer
there will probably be auxiliary computers used for a
variety of purposes such as communications, for provid
ing user support services, for controlling graphic display
devices or plotters, and so on. Some of these will be
adjacent to the main computer and some may be
situated remotely. These computers are to be regarded
as satellites to the main computer and as being
hierarchically dependent on it. The main computer
may, in addition, have core to core links to other com
puters with which it communicates on equal terms for
the purposes of load-sharing or exchange of data. The
whole system may be connected to a context free net
work of the ARPA net type through which communica
tion with other systems small and large can be effected.

Along with the interest in computer systems has gone
a welcome revival of public discussion of the processor
and what it can do. This is shown very clearly in the
interest in microprogramming that has grown up during
the last ten years. A microprogrammable processor,
"on a chip", may well come to be one of the basic
elements from which computer systems are constructed.

Historical Perspectives-Computer Architecture 975

MEMORY HIERARCHIES

The early years of computer development were taken
up with the quest for a sa,tisfactory form of high speed
memory that would be reliable and would hold out the
hope of large memories becoming possible. Many things
were suggested and many were tried; the {mly forms of
memory that had any success in practice were those
based on the use of mercury tanks or cathode ray tubes.
The coming of the core memory changed all this. IVlag
netic drums and tapes were spoken about from the
beginning; oddly enough, so was magnetic wire in spite
of the practical difficulties involved and of the fact that
it could only accommodate one track. Disc files first
appeared in the second phase mentioned above, but
it was some years before they came into general
use.

At first designers took it for granted that it was the
responsibility of the programmer to move material
between the auxiliary and the high speed memory. It
was not until the second phase that the possibility was
entertained that automatic transfer might be possible,
so that the two levels of memory would appear as one
to the programmer. It is, however, only in recent years
that paging has been taken up on a wide scale and the
design problems that it poses, particularly those of a
software nature, are only just beginning to be under
stood. Meanwhile another idea had been introduced,
namely the insertion of a super speed memory-known
as a buffer or a cache-between the main high speed
memory and the processor. This accumulates to itself
the most recently read words from the high speed
memory and delivers them up when they are next
required with greater speed than would be possible if
they had to be fetched again from the high speed
memory. Philosophically, the idea is very similar to
that of paging, but the practical designer finds little in
common between them since the parameters are very
different. The efficiency of a buffer in increasing the
apparent speed of the high speed memory has made
designers, even of very powerful computers, look to
ward core memory of economic speed rather than of
the fastest speed obtainable. It will be interesting to
see how the coming of semi-conductor memories affects
these calculations. A further question of interest is
whether the mapping of the high speed memory on to
the buffer should be done in physical memory space or
in virtual memory space. If the latter course is adopted,
the time taken to add the content of a relocation regis
ter to an address is effectively reduced by the action of
the buffer in the same proportion as the high speed
memory access time,. The use of the technique known
as pipe-lining has been widely adopted for very fast

976 Fall Joint Computer Conference, 1972

processors and it will be interesting also to see how this
is affected by the introduction of buffers.

ENVOI

Time-sharing has not had the impact that it· should
, have had. This, I think, is partly because the emphasis
was put on· the high degree of interaction required for
artificial intelligence, computer aided learning, and such
subjects, and not sufficiently on the provision of facili
ties, such as convenient editing and running of pro
grams, that are needed by the ordinary user. I feel,
however, that the major portion of the blame must go
to the industry, which was so busy designing systems
intended to meet the requirements of the past that it
failed to see what the requirements of the future would
be. Although computer hardware has steadily pro
gressed, operating systems are by and large anything up
to 5 years behind the best experimental practice. Fifteen
years ago it was apparent that the hardware designer
and production engineer occupied dominating positions
in a computer company. The result was failure to react
to the needs of the programmer. One would have
thought that, with the recognition of the commercial
importance of software, this situation would have
changed, but I do not think that it has. Computer
companies now spend a great deal of money on software,
it is true, but they treat it like another sort of hardware.

When I first heard the term Hsoftware engineering" it
seemed to me to be an excellent one, stressing as it did
the need for a businesslike approach to the construction
of software. I am afraid, however, that it was coined by
people who thought that they could apply the methods
of design and construction used in hardware engineering
to software. The results have not been very good and it
is easy to see why. The hierarchic structure of organi
zation in hardware works because as the young engineer
becomes more experienced and senior he can use his
skill and experience in supervising others. He can do
this because he can see what they are doing, and it is
not too complicated for him to evaluate. It is not possi
ble to supervise a team of software writers in the way
that it is possible to supervise a team of engineers.
Attempts to do so cause a lot of money to be spent and
an article full of overheads to be produced. What some
times saves the situation is that the young men at the
bottom get together and go their own way.

There must be a hardware/software interface that is
almost hardware and must be maintained by the same
team that maintains the hardware. But this should be
very small and certainly should not be a whole operat
ing system. Operating systems are best developed in a
user environment and not in the ivory tower inhabited
by a computer manufacturer. I feel that what we badly
need is a period of more open development of operating
systems in which the benefits of competition can make
themselves felt.

Historical perspectives on computers-Components

by.J. H. POMERENE

IBM Corporation
Armonk, New York

INTRODUCTION

The technological base for computers was laid just prior
to and during World War II. Military requirements led
to a general upgrading of components. Television and
radar pushed the development of high performance
vacuum tubes, particularly the twin triode. Radar
shifted the attention· of engineers from frequency to
time and timing. The microsecond became familiar.

Against this background a singular project began in
1943: An electronic calculator called ENIAC, planned
to use almost 20,000 vacuum tubes. This was an
unprecendented number, three orders of magnitude
greater than state-of-the-art electronic products and ten
times the size of anything else being considered. There
was no assurance from past experience that the machine
could ever work. Some observers predicted a tube failure
every few seconds.

As it turned out there were only two or three tube
failures per week and ENIAC was very productive.
Actual experience was five orders of magnitude better
than the worst predictions. The difference was due to
design rules which minimized the probable causes of
failure and to a less rigorous principle which says that
reliability is often better than careful calculations show.
Whatever-EN lAC established that large vacuum tube
systems would work.

The ENIAC was primarily intended to compute
ballistic tables. It was designed by analogy to electro
mechanical calculators and like them used decimal
arithmetic and handled the digits of a number in
parallel. Operations were timed by a 100 KHZ clock;
addition time was 200 microseconds and multiplication
required 2.8 milliseconds. Internal memory was very
limited and consisted of 20 numbers of ten decimal digits
held in vacuum tube accumulators. Instructions were
not stored in memory; the machine was set up for each
problem by means of pluggable wiring. .

The speed of ENIAC attracted interest in solving
problems outside of ballistics-hydrodynamics calcula-

977

tions, for example. Some of this was done but the
limited memory and the manual labor of re-program
ming were severe limitations. It was recognized that a
considerably larger memory ought to be provided for the
basic data of the computation and that the same
memory could also store the program to be followed.
A useful capacity was estimated to be 4,000 words
(i.e., either numbers or instructions). From this point
forward memory technology was to dominate system
design. 1, 2

EARLY MEMORIES

The choices for a 4,000-word memory in 1945 were not
many. A word size on the order of 40 bits was required
so that 160,000 total bits would be needed. Although a
memory could in principle be made from the logic
technology (i.e., vacuum tubes) this would require
perhaps four tubes per bit or a total of 640,000-rather
too many. It made better engineering sense to look for
bulk memory effects, ways to store a large number of bits
in one physical device.

One possibility was to launch pulses representing bits
along a path having a large propagation delay, receive
the pulses at the far end then re-amplify them and
re-Iaunch them. The memory would be the number of
pulses in transit through the delay. Acoustic delay lines
had been developed for radar with delays on the order
of a millisecond and capable of transmitting one
microsecond pulses, with consequent memory capacities
on the order of 1000 bits per line. This kind of memory
was used in one immediate successor to the ENIAC
which was called the EDVAC. Since the memory was
inherently serial EDVAC was organized on a serial
b~sis, that is the bits of a number were handled in time
succession rather than all at the same time.

Another possibility was very obvious.in principle: the
iconoscope which could store and retrieve a television
picture with over 200,000 resolvable elements. For

978 Fall Joint Computer Conference, 1972

rigorous digital storage this capacity would 'have to be
much derated, though by how much was not known.
The basic attraction of the approach was that an
electron beam could be used to lay down a pattern of
bits on a suitable surface at very high densities and that
any of these bits could be selected for retrieval by the
same beam. This random, rather than s~rial, accessi
bility to bits permitted (though did not require) parallel
handling of a number. A second immediate successor to
the EN lAC was built, using this parallel approach, at
the Institute for Advanced Study.

Although suggesting the approach the iconoscope
itself was not used for electrostatic memory. Several
alternates were suggested or tried but the most widely
used system was based on a development by F. C.
Williams using ordinary cathode ray tubes. This scheme
was based on small area differences in secondary electron
redistribution and may be one of the few utilizations of a
third-order effect.

It was possible to store 1024 bits per tube without
getting unacceptable coupling between adjacent charge
distributions. The worst case of this coupling, pic.,.
turesquely called spill, occurred when one bit was read
many times more than its immediate neighbors. All
electrostatic memories required some explicit or implicit
measures to control spill.

Delay line and electrostatic memories provided
capacities from 512 to 2048 words, short of the estimated
4000 but enough to get computing well started. 3, 4

EARLY LOGIC AND PACKAGING

Basic considerations

It was clear that at least the following points had to
be considered in designing a digital computer:

(a) Large numbers of tubes and other components
would be used, all of which would have to work
very reliably.

(b) Electrical signals representing the numbers would
have to be kept within operable limits throughout
the machine and over long periods of time.

(c) Since all possible bit patterns could occur within
the machine the DC component of signals would
have to be taken into account.

These overall considerations entered into many of the
more specific decisions.

Derating and tolerances

The major components to be used were vacuum tubes,
composition resistors, and in some machines pulse

transformers and crystal diodes also. Tubes could fail
catastrophically by heater failure or internal shorts and
gradually through loss of cathode emission. Resistors
could drift away from initial values. Diodes probably
did not wear out but could be destroyed by overload of
very short duration.

Heater failures were controlled in the ENIAC by
never turning the heater off, so that thermal cycling did
not occur. lAS designers felt that most heater damage
came from the shock of rapid heating or cooling and
provided for gradual turn on and off. Both techniques
worked very well. Internal shorts were minimized by
rigid pretesting including vibration, chOIce of tube types,
and careful control of heater-cathode potentials.
Emission loss was allowed for by designing circuits
which would still work at half the nominal operating
current. Power dissipation was derated usually to 50
percent and sometimes more.

Resistor deterioration was known to be accelerated by
high power dissipation so all were derated to half power.
Initial values were held to a 5 percent tolerance, or
better in critical circuits, but all circuits were designed
to be operable with all resistors off nominal by 10
percent in the worst direction.

Diodes were protected by designing circuits in which
overload conditions could not occur or at least required
unlikely failures in other components.

Vacuum tube choices

The basic logical "AND" operation was provided in
two ways. With a multigrid tube the control grid and
the suppressor grid were used. With triodes two or more
were used together either with common plates or
common cathodes. The triode circuit was easily ex
tended to more than two inputs and was widely used.
It was common to employ the "long tailed pair" in
which the cathodes were connected together and
returned to a negative voltage large compared to the
grid-cathode voltage, typically-150 or-300 volts. In
this arrangement the tube current was largely deter
mined by the cathode resistor and the return voltage;
an important technique to minimize effects of tube
deterioration.

Unfortunately the signal out of a vacuum tube
circuit· is always at an appreciably more positive level
than its input and must be translated back down to be
used as an input to the next circuit. The capacitor
coupling common in communication circuits could not
in general be used because it blocked the DC component
of the signal. DC translation required a resistor divider
returned to a large enough negative voltage to minimize
signal attenuation.

This translation network was a major limitation on
speed. In order to have an adequate output signal under
worst case tolerance it was necessary to have a large
nominal signal swing at the plate. Since tube current
was limited by derating, the network impedance had to
be pushed up and circuit delay along with it. As crystal
diodes became available with ratings compatible with
tube signal swings (e.g., 30 volts) this problem led most
designers to use tubes mainly for re-amplification and
powering and to do the logical operations with diodes.

Pulses VS. DC coupling

One way to handle the DC component of signals was
to use direct coupling, as described above. This allows
the system to run at any speed up to its maximum which
need not be known in advance of design. Another way
was to represent information bits by pulses and restore
the DC component when necessary by clamping diodes.
Adequate DC restoration required some advance deci
sions affecting final speed, such as a standard pulse
width. This difference afforded some interesting debate
but final speeds turned out about the same.

Pulse logic systems were timed with explicit clock
signals. Though most direct coupled systems were also
clocked the timing latitude available permitted an
asynchronous mode of operation. This mode had the
advantage, in principle, of being insensitive to timing
changes-as tubes degraded the machine would still run
albeit more slowly. One form of asynchronism was used
in the lAS machine. Timing was determined by circuits
analogous to those being controlled, and affected in the
same way by supply voltages and control wave forms.
This compensated for several kinds of deterioration
which could occur but not all.

A more complete concept of asynchronism was
self-timing logic. In one version a signal would be
propagated separately in both true and complement
form, the arrival of one or another at the end of the
cha:in would signal completion. The Philco S-2000
embodied logic of this kind.

Wiring and connections

Wiring presented no problems unique to computers.
Layout tended to be generally planar but all three
dimensions were used for wire routing. Wiring im
pedance was largely uncontrolled, except for being kept
as high as possible (Le., a thin wire in free space) in some
direct coupled machines. Even so, circuit impedances
were higher yet and capacitive loading was a problem.
Pulse logic machines repres~nted a low enough source
impedance to largely avoid capacitance problems.

Historical Perspectives on Computers-Components 979

The tubes and circuitry associated with a logical
grouping, such as a register position, were generally
packaged together as a plug-in unit. Layout within the
unit was three-dimensional and followed signal flow
where possible to minimize connection lengths. Signals
going outside the unit were driven by cathode followers.

Two non-commercial machines, the SEAC and the
lAS, probably represented the packaging extremes.
Signals in the SEAC were driven at low impedance from
pulse transformers and wiring could be any reasonable
length along any route. As a result a convenient rack
and panel construction was used, logic and crystal diodes
on the outside for accessibility and hot tubes and
resistors on the inside. Wiring going any length ran in
longitudinal trays.

The lAS machine was direct coupled and hence high
impedance. To minimize capacitance loading the physi
cal layout followed the logic flow very closely so that all
signal wires were very short. Chassis were curved so that
all intra-chassis wiring could be point-to-point away
from the chassis (like chords of a circle).

Power and cooling

The heater of a computer tube required between 0.45
and 0.9 amperes, or 450 to 900"amperes per 1000 tubes.
Supplying and distributing such large currents presented
no basic difficulty but heaters were always a nuisance
and certainly not less so in large numbers. DC power
was more of a problem. Loads aggregating to 30 amperes
at 300 volts were common and similarly for other
voltages. Commercial supplies of this size were not
initially available, so early groups had to plan their own.
In some cases large storage battery banks were floated
across a DC generator. This had some advantage during
construction, when voltage levels and loads were subject
to change, but it was not operationally convenient.
Subsequently, very satisfactory commercial supplies
were produced. These used thyratrons in a 3-phase full
wave circuit and had filtering capacitance of nearly a
farad. Regulation was easily held to a few percent.

Cooling was done with forced chilled air. The only
real difficulty, at least for the earlier machines, was
learning how to operate air conditioning in the winter.

FERRITE CORE MEMORIES

Origin

As computers became operational and were put into
use attention turned to increasing the memory capacity.
For the serial delay line machines an auxiliary magnetic
drum memory could offer considerably increased capac-

980 Fall Joint Computer Conference, 1972

ity at nearly the speed of the delay line memory. For the
faster parallel electrostatic machines the same kind of
drum was too slow to be other than a secondary
memory.

At about this time (1951) the ferrite core memory was
developed at MIT and at RCA. The MIT memory
. replaced the electrostatic system on Whirlwind and
provided 2048 words; the RCA memory was a 10,000-bit
plane. At the outset the ferrite memory offered speeds·
equal to or better than electrostatic and capacities
appreciably greater. Further, it seemed likely that speed
and capacity could be increased by an order of magni
tude with further development.

General characteristics

By earlier standards the ferrite memory was unlikely.
Instead of storing 1000 bits in one delay line or 1024 bits
in one cathode ray tube it required a ferrite core
laboriously threaded with 3 or 4 wires for each and
every bit. The assembly labor for one early core plane
was 240 hours. Probably only a firm conviction that
production could be automated gave courage to proceed.

Apart from the labor of core-stringing the prognosis
for ferrite looked very good. The magnetic properties
were a bulk effect susceptible to tight control and having
no likely time deterioration. Although the drive circuits
were fairly expensive it was expected that much larger
arrays could be handled. Since the drive cost for a
n X n array was proportional to n and the capacity was
n2 the drive cost per bit would be proportional to lin.
This is a strong economy of scale.

Manufacturing improvements

The investment in manufacturing automation de
pends on the expected volume of production. The great
success of the ferrite memory came from the expectation
by manufacturers that the volume would be very large.
The first impetus came at MIT shortly after the
development of the ferrite memory. In planning for the
SAGE air defense system MIT worked out some basic
techniques for core plane fabrication. IBM continued
the work, both for SAGE and its own commercial
production. IBM made a large and continuing invest
ment in automated fabrication and also in automated
pretesting of cores. The story of this has been well told
elsewhere. The outcome was that memory changed from
something rather special and difficult to something that
was commonplace, easy to use, and could be as large as
need and purse allowed. 5

Speed improvements

The first ferrite memories used cores. of a size that
could be easily seen and through which wires could
obviously be pushed. The resulting speeds were equal to
or better than electrostatic memories and quite com
patible with vacuum tube computers. For example, the
IBM 701 with a 12 microsecond electrostatic memory
was replaced by an improved IBM 704 with a 12
microsecond core memory, both matching the cycle of
the arithmetic logic. However, the switch from vacuum
tubes to transistors made arithmetic logic cycles of 0.3
microseconds seem possible: an improvement of 40 to 1.
Note that this came from a change of kind in logic
technology, not just degree. (Ferrite memories could
never produce a change of degree to match this change
of kind.)

Increasing the speed of a ferrite memory involves a
number of factors but in any case the core size must go
down. From early cores about the size of an aspirin pill
the size went down toward the almost invisible.
Problems of handling, threading and testing were solved
on the way -down but a barrier of sorts was reached at a
cycle time of 0.5-1.0 microseconds. These were produced
in quantity but the next step, seen as 250 nanoseconds,
would involve a massive tooling effort to be practical.
Semiconductor memory technology had meanwhile
moved to where it could predictably offer higher speed
and lower cost. The next ferrite step was not
implemented.

THE ROLE OF PROGRAMMING

It took special skill, motivation, and patience to
program the early machines and it was not obvious that
use of computers would ever spread beyond a limited
number of places where such expertise could beassem
bled. Attempts were soon made to use the computer
itself to handle some of the labor of programming but
the small capacity of the early memories limited what
could be done. The larger ferrite memories removed this
limitation and effective programming aids began to
appear. Among these were programming languages
which in effect re-defined the hardware computer into a
new computing system. This new system could be
programmed by a user in terms familiar to his discipline,
he did not have to learn or deal with the intricacies of
the hardware system.

One of the first languages was FORTRAN, which
provided a computing system particularly easy for
scientists and engineers to learn and use. As a result the
entire technical community became actual or potential
programmers and usage of computers skyrocketed.

This expansion of computing services to ever-"widening
circles of users became the driving force for the growth
of the industry.

DISCRETE TRANSISTORS

The invention of the transistor attracted the
immediate attention of computer designers. They were
smaller and effectively faster than tubes and required no
heater power. Work on transistor computers began as
soon as enough transistors could be obtained and with
the explosive growth of computing already apparent
there was an urgency which produced rapid improve
ment. In short order it became possible to design
machines which would be ten times faster than existing
vacuum tube systems. The pace of improvement was
still continuing, however, and even higher speeds
seemed possible.

The STRETCH project of IBM is a well-documented
example of this point in computer history. STRETCH
designers set a goal to be one hundred times faster than
the IBM 704, a goal to be reached by pushing hard on
both component technology and logical machine organ
ization. Though STRETCH did not meet the goal in all
respects, the effort did result in a significant upgrading
in all areas of computer technology. 6

Circuits and logic

Not only did transistors have no heaters, they were
also available in two complementary forms working on
opposite voltages. The problem of signal voltage
translation which had been such a significant limitation
in direct coupled vacuum tube circuits could be handled
very nicely by alternating the two kinds of transistors.
The DC signal shift of one kind was compensated by an
opposite shift in the other. All transistor machines used
direct coupling.

The problem of saturation in transistors was avoided
by the development of a circuit in which the saturation
condition would not occur. This was called a current
mode circuit and it was the transistor analog of the
"long-tailed pair." This circuit was used in STRETCH
and it is still widely used today where speed is im
portant. Used with drift transistors it provided a circuit
family with an average delay less than 20 nanoseconds.

The transistors, resistors, and diodes comprising a
basic logic circuit were mounted on a small card with
printed wiring interconnections. In many cases larger
cards were also used to provide larger functional
groupings having recurrent use. These larger cards
carried on the order of 20 transistors. As with vacuum

Historical Perspectives on Computers-Components 981

tubes these circuits were designed on a "worst-case"
basis.

M emory limitations

Early core memories were driven with vacuum tube
circuits. As part of the work on transistor machines
development of a fast core memory with all transistor
drive circuits was begun. This was a bold effort because
it sought a threefold increase in speed over the best
memory then available while accepting the handicap
(at that time) of not using tube drivers. The goal was
2.0 microseconds and in fact a cycle of 2.18 microseconds
was achieved. This was probably the last memory
specified on a rigorous worst-case basis. In a way
reminiscent of the spill problem in electrostatic mem
ories it was observed that repeated accessing of the
same location at maximum memory rate would result in
heating the affected cores beyond the Curie point and
result in loss of information. For this reason the array
was cooled in oil. Somewhat later, on the realization
that the worst case was exceedingly improbable, air
cooling was substituted.7

Ambitious though it was, the two microsecond cycle
fell far short of matching transistor speeds. In
STRETCH, for example, the logic cycle was 300
nanoseconds, making the memory cycle seven times
greater. In order to offset the speed imbalance the
concept of lookahead was introduced. The memory
would be kept as busy as possible supplying the next few
instructions and operands in anticipation of their use.
Unfortunately the critical importance of the branch
instruction was not fully recognized. At a branch the
program may take one of two paths and if the lookahead
had gone down the wrong path considerable unwinding
was necessary. This problem proved to be quite
fundamental and had a strong effect on high perfor
mance machine organization.

Wiring and connections

The first level of wiring was how handled by printed
wiring on the circuit cards. These cards then plugged
into sockets on the back panel. Wire wrap was used
rather than soldering, a choice which facilitated the
widespread use of automated back panel wiring. Coaxial
cable was used for critical leads and ordinary wire for
the rest. This wire, though not really controlled in
impedance, tended to be about 150 ohms in the back
panel environment.

Although transistors took much less space than tubes
they were also used more lavishly. As a result most
computers were still too large to fit in one conveniently

982 Fall Joint Computer Conference, 1972

sized frame. Cabling between frames was conventional
but on large machines like STRETCH it could also be
described as monumental. Again, despite the much
lower power consumption of transistors, their large
numbers resulted in power and cooling requirements not
much different from vacuum tube machines.

LARGER MEMORIES

Computers had grown along two diverging lines,
scientific and commercial, and it was becoming apparent
that this divergence was serving neither area well.
Almost every installation really needed to do both kinds
of work. A unification was needed but it could not be
achieved without fundamental machine instruction and
instruction format changes which could invalidate a
majority Df existing programs. Allowing the divergence
to continue, however, would only let the problem grow
larger. In announcing System/360 IBM opted for
unification and set about to do what was technically
possible to .ease the transition.

Actually a more pedestrian force than the logical
necessity of unification would probably have forced the
same outcome. The 704-709-7090 had an address field
of 15 bits, enough to address some 32,000 words of

'memory. Though apparently an ample allowance when
the 704 was designed it had become evident that much
more memory was needed to support the kind of
programming service then in demand. However, the
simple change of the address field to provide more bits
would have caused most of the disruptive effects of the
more comprehensive changes of System/360.

From our component-oriented standpoint the net
effect was that much larger memory could be addressed
(up to 16 million bytes or approximately 4 million
words.) Once again this had a direct effect on system
software, making possible a comprehensive operating
system which in turn increased the utility of computers
and stimulated further growth of the field.

Computer designers from the outset thought of the
speed of light as a mere 1000 feet per microsecond. This
was not a limitation in early machines but designers felt
that it would become one. When the nanosecond speeds
became possible the speed of light was then regarded as
one foot per nanosecond and the limitation was more
tangible. That which everyone knew was coming was
suddenly at hand. The situation with integrated circuits
is quite similar and also relevant to the speed question.
As one looked at the physics underlying the semicon
ductor art one realized that there was no near-term limit
to how small transistors, and their interconnections,
could be made. The piece of silicon which once provided
a single transistor could be made to hold a complete

circuit of many transistors-an integrated circuit. The
scale of this integration could be projected as quite
large, and large scale integration (LSI) became the same
sort of round-the-corner thing as speed of light
limitations.

When it is precisely known what to make LSI seems
promising indeed. But when there is less certainty and
changes may have to be made after fabrication LSI
becomes a problem. It is what it is and if even one detail
is wrong it must either be accepted or thrown away.

The problem of changeability is increased when many
different products might be brought out at about the
same time. Partly for this reason IBM chose a hybrid
approach to integration for System/360 production.
Though the silicon chips were not initially integrated
the entire manufacturing process was highly automated,
affording many cost advantages. Integration of the
chips was subsequently increased, moving nearer to
LSI.

The IBM approach was transitional but it elaborated
LSI technology. Circuit modules were mounted on
boards with multiple layers of printed wiring. The
characteristic impedance of this wiring was controlled at
two levels: distributed transmission line runs and
transmission lines lumped with successive circuit loads.
Wiring between boards was conventional.

Control memory appeared as a new component in
some systems, implementing the earlier idea of micro
programming. In this concept the regular machine
instructions are themselves programmed from very
elementary hardware operations. This eliminated the
need for quite a lot of wired-in logic and illustrated one
way of trading memory bits for logic circuits.

The first control memories were physically but not
electrically changeable so that their contents would not
be lost when power was shut off. The physical change
required preparation of a new pattern corresponding to
the new information content but this was still much
easier than changing hard-wired logic. These memories
made it feasible to alter the whole nature of a machine's
instruction set after it was built. In particular, one
machine could imitate another at good efficiency, a
property which was used by IBM to "emulate" earlier
machines on its 360 models.

Considerable experience with production of the first
generation of transistor machines had also made it
possible to modify the previous insistence on worst-case
design. With knowledge of actual variances and
distributions of component parameters it became feasi
ble to use statistical design rules in which the, con
catenation of unfavorable tolerances could be made very
unlikely. The higher was the degree of integration the
more this kind of knowledge could be exploited in
specifying the design unit.

SEMICONDUCTOR MEMORY

The advent of semiconductor memory closes a circle.
ENIAC had used the same technology, vacuum tubes,
for both memory and logic and now semiconductor
technology provides the same commonality. In between
has been the electrostatic memory and the ferrite core
memory, both were important.

Semiconductor memory is now leading LSI. The
regularity and simplicity of memory arrays and their
interwiring allows the density of memory bits per chip
to exceed logic circuits per chip by a considerable
margin. In a curious inversion memory, which had been
the difficult thing at the outset, has become the easy
thing. Even more interesting is that semiconductor
memory can be considered a fusion of its two immediate
predecessors. The basic idea with electrostatic memories
was to use the high resolution of an electron beam to put
many bits on a small surface; and the basic idea with
ferrite memories was to fabricate a structure for each
and every bit but to seek maximum automation of that
fabrication. With semiconductor memories the high
resolution of the electron beam will be used to fabricate
on a small silicon surface the bit-by-bit structure of a
very large memory-and with the full automation
inherent in the LSI process.

Semiconductor memory will replace ferrite memory
on both cost and capacity grounds. I t has already
provided a less obvious but fundamental change in
computer design. The old dream of infinite memory with
infinite speed, fostered no doubt by the incredibly
limited memory of early systems, gave way to the more

Historical Perspectives on Computers-Components 983

realistic appreciation that a combination of a small fast
memory with a large slower memory could be auto
matically managed to act, statistically, as a fast large
memory. This change-of-kind in memory organization
finally matched the logic change in going from tubes to
transistors. The memory-logic speed gap which had
prevailed with ferrite memories and had caused so much
difficulty with high performance systems is now
significantly improved.

REFERENCES

1 R SERRELL et al
The evolution of computing machines and systems
Proceedings IRE Vol 50 No 5 1962

2 N NISENOFF
Hardware for information processing systems: today and in
the future
Proceedings IEEE Vol 4 No 12 1966

3 J P ECKERT JR
A survey of digital computer memory systems
Proceedings IRE Vol 41 No 10 1953

4 J A RACHMAN
Computer memories: A survey of the state-of-the-art
Proceedings IRE Vol 49 No 1 1961

5 L V AULETTA et al
Ferrite core planes and arrays: IBM's manufacturing
evolution
IEEE Transactions on MagneticsVol MAG 5 No 4 1969

6 W BUCHHOLZ editor
Planning a computer system: Project stretch
McGraw-Hill 1962

7 C A ALLEN et al
A 2.18 microsecond megabit core storage unit
IRE Transactions on Electronic Computers Vol EC 10
June 1961

Mass storage-Past, present and future*

by ALBERT S. HOAGLAND

IBM
Boulder, Colorado

INTRODUCTION

Mass storage as a functional need in computer systems
is continually increasing in importance with the growing
trend to interactive terminal-oriented systems, serving
to store a systems data base and resident programming
systems. The associated capacity, plus the ever expand
ing magnitude of such information, far exceeds the
range where "electronic" memory is economically com
petitive. Included in the product category defined as
mass storage are disk, tape, and card-like recording
structures. We see in the future the perspective that at
a growing number of installations all data will be
available on-line under systems control.

Extending the range of information processing in
volves new applications that generally call for manipu
lating large masses of data. Thus, the need for mass
storage capabilities with reasonable access time tends to
be open ended with the supply-at an economic price
lagging the demand.

I believe that magnetic recording will remain the tech
nological base for mass storage for the foreseeable
future and that continued progress commensurate with
that realized in the past will be realized during the
seventies. This position will be articulated later on in
this paper as well as an analysis of alternate technologies
that have been proposed.

Fifteen years ago the highest storage density in a
commercial disk file was 2,000 bits per square inch,
while today (early 1972) this figure is approximately
800,000 bits per square inch-(greater than two orders
of magnitude improvement). However, I feel eventually
magnetic recording storage densities far in excess of
106 bits per square inch will be realized-a point of view
reinforced by the progress previously projected and now
already achieved.1

Further, magnetic recording enjoys a broad world-

* Slightly revised version of paper presented at the U.S.A./Japan
Computer Conference, October 1972, Tokyo, Japan.

985

wide base of technical expertise and associated manu
facturing facilities and derives intense stimulation from
both computer storage needs and the audio/video
recording marketplace.

The success of the disk file has been remarkable and
placed this device in such a predominant position that
it has essentially become synonymous with direct access
storage (See Table I).

In the last decade significant advances have also been
made in the performance of conventional (1/2 inch
seven and nine track) tape drives as well as in the
elegance of their design for reliability and serviceability.
However, we are concerned here with the future nature
of mass storage subsystems and these design advances
do not essentially change the perspective of standard
tape drives in an overall sense. The large expansion of
tape libraries has already stimulated the development
C?f specialized mechanical hardware for the automated
handling of standard tape reels even though this step,
not being conceived of in the original design of tape
drives, results in unsatisfying implementations. How
ever, we are beginning to see the emergence of flexible
media storage devices, departing from the compatibility
constraints of 1/2 inch tape, where the emphasis is on
low cost per bit on-line-achieved by high areal density.
Examples are the TBM of Ampex using rotary heads
and the Masstape of Grumman, the latter also intro
ducing the cartridge or cassette concept for accessing
reels mechanically under system control.

Overall, technology appears to have advanced as fast
as projected while the systems organization and use of
mass storage hierarchies still retains much fertile ground
for sophisticated design and application.

FUNCTIONAL CONSIDERATIONS

Computers that manipulate data are primarily
limited by the number and size of files that can be made
readily accessible for processing. Further, mass storage

986 Fall Joint Computer Conference, 1972

TABLE I-Direct Access Storage-Disk

Year

1956
57
58
59

1960
1961

62
1963
1964
1965

66
67
68
69

1970

Model
(IBM)

350

1405
1301

1311
2311
2314

3330
in 15 years x 400 bits/in2

Storage
density
bits/in2

2,000

8,000
25,000

50,000
100,000
220,000

800,000

Linear
density

bpi

100

200
500

1000
1000
2200

4000

x 40 bpi x 10 tpi
(precursor: magnetic drums @ 100 bpi and 10 tpi)

Track
density

tpi

20

40
50

50
100
100

200

devices are now called on to fulfill important systems
functions. Direct access units are used in compiling and
assembling programs where their ability to reach large
directories and subroutines rapidly is necessary for
responsive program-preparation and execution. For
time sharing, programs and data of many users must be
stored on-line, to be run as requested in accord with
some "optimum" allocation of facilities.

Capacity, access time, data transfer rate, and cost
per bit are the basic performance characteristics of mass
storage devices. Each mass storage unit has its own
particular attributes, and many applications require
that a hierarchy or mix of devices be connected in the
same computer system. The short access times and high
data rates of fixed head drums or disks save on main
memory size. However, the higher cost per bit of these
devices generally makes them too expensive for file
storage, and moveable head disk structures of higher
capacity (and lower cost per bit) but longer access time
are used. Generally, the lower level in a hierarchy
includes tape for the archive and data whose processing
can be well scheduled in advance since further eco
nomies in cost of storage are possible at the expense of
even slower access times.

Systems-derived performance factors such as
through-put depend not only on the mass storage
specifications but also on indexing procedures, memory
allocation and record chaining provisions, file activity,
provisions for access queuing, error checking techniques,
etc. Thus, the associated control logic is an integral
facet of any storage subsystem.

TECHNOLOGICAL CONSIDERATIONS

The continuing need for economical high capacity
storage has required the intensive exploitation of
magnetic recording technology for implementation.
Thus, storage units involve the physical integration of
recording media, transducers, precision mechanics,
servo systems, and electronic encoding and decoding
techniques to achieve a meaningful set of capacity /
access time tradeoffs.

Access to any data location is provided by relative
motion between the storage surface and; an associated
transducer able to record signals on and sense the state
of the storage medium. A single transducer may service
many data "tracks". The recording density (bits per
square inch) is principally a function of the positional
tolerances (spacing, tracking, and clocking) that can be
maintained between the storage medium and the
coupling transducer. The access time variability to
memory locations arising from the requisite motion
necessary to scan large areas, makes the data organ
ization of a mass store a key factor to effective systems
utilization.

Magnetic recording is predominantly a surface area
phenomenom. A magnetic head magnetizes a thin layer
of magnetic material traversing the small region ad
jacent to the head gap in accord with an applied write
current and provides an induced voltage, reflecting the
rate of change of recorded magnetization when scanning
on readback. A track is defined by the head width in
the direction normal to the direction of relative motion.

Extremely large capacities will dictate a thin flexible
substrate that can be tightly packed (or rolled). Note
that for 1012 bits of data at 106 bits/in2 we require a
million square inches of media. Weare intere~ted in
capacities greater than this number. Thus, even at much
higher storage densities we still must mechanically
access thousands of square feet of storage material.

The average random-access time will range from
milliseconds to seconds because mechanical motion is
required. Multiple access paths (read/write assemblies)
is a method to improve the overall access rate. The
greater the bit storage density (and the number of bits
associated with a given read/write transducer) the
lower the cost/bit and, correspondingly, the shorter the
average access time for any given capacity. Areal density
thus can be viewed as the figure of merit for recording
storage when similar configuration designs are con
sidered.

Although it is only in recent years that magnetic
recording has come into wide general use, its invention
by the Danish engineer, Valdemar Poulsen, dates back
to 1898. The paramount functional advantage of
magnetic recording is the reusability of the recording

medium. This property permits the modification or
updating of stored information. Additional advantages
of magnetic recording for mass storage are: the sim
plicity of recording transducer (read and write); flexi
bility in configuration (and hence, choice of performance
specifications) due to the ability to place a magnetic
layer on almost any supporting surface in conj unction
with the ease of mounting a magnetic head or heads;
the high bit storage densities and read-write transfer
rates obtainable from the magnetic recording process;
and relative ruggedness with respect to handling and
environmental conditions. The further featurel? of
replaceability and library shelf storage of the medium
(e.g., tape reels and disk packs) make this mass storage
technology extremely attractive and very economical.

Magnetic recording represents the integration of
several basic engineering fields and has been generally
characterized by rapid progress achieved by evolution
ary advances rather than dramatic innovations. The
one "breakthrough" that can be identified with the
computer field is the "air-floated" head. Otherwise,
advances in the magnetic recording art have largely
emanated from increasingly higher precision and quality
in components and sophistication in recording elec
tronics.

HISTORICAL GROWTH AND PRESENT
STATUS

The original work which ushered in mass data storage
was firmly under way by 1947. This activity was associ
ated and concurrent with the explosive "take-off" of
the digital computer field at that time. Early work was
oriented to the needs of scientific computing. The
storage device was a magnetic tape drive, to provide
both an auxiliary "back-up" storage for main memory
and for terminal buffering (data rate "matching"
between input/output equipment and the central
processor) in large-scale scientific systems. The later
emergence of commercial data processing brought with
it a wider variety of functional needs and mass storage
hardware. Magnetic drum memory development for
small and medium speed computers in these early years
served to significantly add to the technological base of
digital magnetic recording.

Commercial or business data processing, as it was
evolving as a main facet of activity in the electronic
computer field in the early 1950's, gave a tremendous
impetus to mass storage development and had a major
impact on its direction. File storage for records main
tenance became the central requirement.

Magnetic tape was exploited early for business data
processing. In updating a file, for example, the master

Mass Storage-Past, Present and Future 987

and transaction tape reels are serially read (information
is arranged and maintained in ordered sequence) and an
updated master tape is created, on another transport,
with the unmodified and updated records being trans
ferred and recorded. This procedure was dictated by
the fact that a tape reel could not be selectively re
written. A tape reel is relatively cheap and therefore its
use for low-cost, off-line, archival storage became
attractive.

The character of much commerical data processing
indicated the need for an entirely different type of file
storage. The desirability of storing large volumes of
information with any requested record available rapidly
gave stimulus to the development of a mass direct
access store.

Direct access storage involves addressing by physical
location to a single record or a particular block of
records (one track), which is then scanned. Any record
can be read, written, or modified without affecting any
other record. The "set of keys" (record identifiers) of a
file will, in general, bear no direct relation to the closed
set of machine addresses. Various randomizing tech
niques (key transformations) are used to convert
scattered keys covering an extensive range to a dense
and relatively uniform distribution of numbers to obtain
automatic addressing capabilities.

The air bearing supported head (using an air cushion
to control head-to-surface spacing) was the innovation
which, associated with the above concept, brought
about this entirely new type of device. An air-bearing
head can follow considerable surface fluctuation-up
up to 100 times the spacing. Since the readback ampli
tude wavelength dependence on separation is given by
e-27rd /X (where d = separation and X = wavelength),
high recording densities would be impractical without
such a method for establishing and maintaining a close
head-to-surface spacing. By this air-bearing spacing
technique, it was possible to develop a high-capacity
rotating disk array since a magnetic head could then
closely follow the appreciable run out of large disks.

The first version (the RAMAC, announced in 1956)
could store five million characters with an access time
to any record of less than a second, having one head
mechanism servicing the entire disk array. Secondary
technical features of note were the use of self-clocking
and a wide-erase narrow read-write head unit. These
design approaches, combined with the use of the air
supported head, provided techniques to achieve ade
quate head-to-track registration in such a mechanical
structure, permitting the high track density and high
bit density necessary to realize a large capacity.

Initially pressurized air was fed into the head-surface
interface to maintain separation. Around 1960 a signifi
cant advance was achieved as self-lubricating air

988 Fall Joint Computer Conference, 1972

bearings came into general use on both disks and drums,
bringing great simplicity and cost advantages.

Many approaches to card-like direct access mass
storage devices have been undertaken over the past
decade. However, the engineering simplicity of rota
tional motion coupled with linear actuators has favored
disks.

The next major innovation in mass storage (1962-63)
was the replaceable disk pack concept, which emerged
as a practical alternative due to the rapid progress
achieved in increasing storage density-from 2,000 bits
per square inch (1956) to 50,000 bits per square inch
(1962), permitting adequate capacity to be stored on a
few small disks.

Discernible themes that have emerged in the field of
mass storage:

1. The disk pack file is clearly the principal mass
storage structure characterizing modern genera
tion computer systems. However, the use of
disk packs as a method of loading and unloading
user jobs can be expected to diminish since
increasingly systems will view peripheral hard
ware as a resource which is allocated and sched
uled without operator intervention. Further, for
efficient system usage a single users data sets are
frequently spread among several packs (or
volumes) interspersed with data associated with
other user jobs.

2. Multi-access assemblies. By overlapping acces
ses, the mean access time can go down with
increasing capacity at a relatively fixed cost per
bit. The performance region of several hundred
million bytes of data with access in milliseconds
is a key to many on-line "data-bank" type
information systems and the appeal of such
applications has spurred the rapid trend to such
file "facilities".

The "state of the art" magnetic recording density for
production disk files has now moved to the region of
106 bits per square inch, a factor of 500 greater than
the storage density of the first commercial disk file.
Major further advances in density and thereby in lower
cost per bit are clearly indicated based on reported
laboratory investigations. Techniques that could make
equivalent strides in reducing "hardware" access time
are unrecognized.

Among specialized mass storage systems recently de
veloped are the Photo-Digital Cypress (IBM); a
trillion bit storage system for the Livermore AEC
Laboratory based on electron beam recording on
photographic film-with a flying spot scanner for

reading; and U nicon, a recording scheme which stores
information in a plastic film with alaser by "drilling"
holes (whose presence or absence can be optically
sensed). These beam addressable storage systems do
not allow update in place. Their introduction in spite of
this limitation reflects the low cost per bit (for immense
capacities) from a high areal density-derived from
simplicities in implementing high track density inherent
in beam recording. However, continuing advances in
areal density have led magnetic recording technology to
move into this domain as evidenced by the TBM, an
Ampex trillion bit store based on video magnetic
recording techniques exploiting a rotating head configur
ation.

FUTURE TRENDS

Each user wants all data immediately available to
him. The appetite for more storage capacity with high
speed access appears as Insatiable" as the demand has
been for more computer power.

While a storage hierarchy arises as a compromise be
tween accessibility of data and cost of storage, the user
in the future will not want to even be aware of its
existence since his focus is on problem solving.

Further, shared data and security provisions must be
systems managed. Thus, much sophisticated systems
development work is still necessary if we are to fully
exploit our growing technological capability.

A major storage subsystem problem is determining
the proper balance between storage devices. We need to
better understand the flow of data and develop design
guidelines, recognizing that the access "gap" from
electronic memory to electromechanical storage devices
will cover a relative access speed "differential" of 103 to
105• Storage control logic is now beginning to extend to
the functional ability to automatically stage records
within the hierarchy of memory/storage. Much empiri
cal data is now being analyzed and simulation studies
carried out on such measures as "miss" ratios (i.e., the
relative probability that a given request by the CPU
may not be found in the first level of a hierarchy, etc.)
to better understand the way a hierarchy influences
performance and affects data organization.

A major advance in hardware reliability is urgently
needed if the full potential of mass storage devices is to
be realized. Capacity-access time improvements cannot
be at the expense of reliability because we are now
asking users to place and 'maintain all their vital records
on-line under computer control.

The storage hierarchy of the future now appears to
include a relatively vast semi-conductor memory with

an access time of a fraction of a microsecond; disk files
at the next level with a much larger capacity and the
order of 10 milliseconds access time; and finally a low
cost on-line tape-like (flexible media) library; the latter
also serving an archival role and whose capacity will
essentially be the capacity of the storage subsystem.

Advances in semi-conductor or magnetic bubble
technology will displace fixed head files in time since
this cost/performance range (as well as that of low
capacity mechanical storage devices) is exposed. The
capacity of a recording type store must allow the cost
of the basic mechanics to be apportioned over a bit
volume sizable enough to yield a cost per bit signifi
cantly below those achievable by electronic memory if
the technology is to be viable.

ALTERNATE STORAGE TECHNOLOGIES

No technology can be improved by significant stages
indefinitely-eventually some limits will be encountered
where the investment to make further advances exceeds
the return that can be realized. However, technological
potential is assessed by a fundamental understanding of
the physics of storage phenomena and the associated
design parameters and not by whether it's "new" or
"old." Here we find that many alternate technologies
are discussed and projected on the basis of their ulti
mate capabilities (in terms of optical wave-length, etc.)
while digital magnetic recording tends to be identified
performance-wise only by what we have achieved.
However, theoretical and experimental studies of
magnetic recording show the potential for major further
advances in areal density. Work on alternate tech
nologies must better recognize this "moving target"
situation than has been evident from the literature if
the resource expenditures are to offer a realistic hope of
payoff.

An alternate technology can be viewed strictly as a
replacement or by its unique characteristics also invoke
changes that will impact systems architecture. Any new
technology in effect must bear an entrance fee to set in
place its technological base and possibly in addition a
systems base essential for its exploitation.

In spite of dramatic cost reductions projected for
LSI semi-conductor arrays and magnetic bubbles, their
costs will still be significantly above recording storage
when capacities reach the range of 108 bytes so that
they cannot be co'nsidered competitive for the mass
storage area. The sharing by mechanical motion of the
transducers and electronics over many bits yields the
low costs in recording. storage, recognizing the access
time penalty implied. With semi-conductor approaches

Mass Storage-Past, Present and Future 989

one must provide electrical connections to each bit
location. Magnetic bubbles save in this regard but still
require the fabrication of a pattern at each cell location
for its definition and access interaction. (Magnetic
bubbles exploit a shift register type of organization. Thus,
access time involves on the average one half the re
circulation time of a storage loop, which can be hun
dreds of microseconds.)

Some beam addressable recording techniques have
the unique potential for microsecond access to densely
recorded digital information within the field of view of
the beam, defined by electronic deflection methods.
However, the field of view tends to be inversely related
to bit resolution and therefore for mass storage one
cannot avoid media handling. Thus beam addressable
technologies still require mechanical accessing (or access
times from milliseconds on up). Areal densities are
comparable to those projected for magnetic recording
and no really suitable medium has been developed. The
medium appears the limiting factor in recording-type
storage and magnetic. recording offers the greatest
flexibility in material selection.

Electron beam spot sizes less than one micron in
diameter have permitted writing (in a vacuum) at a
density of several million bits per square inch (approxi
mately 2000 bits/in. by 2000 tracks/in.) on silver film.
Read-back must be done optically at a separate station
after film processing. A significant capacity / cost
advantage must be achieved in such a read-only type
store to justify the acceptance of the systems perform
ance limitations on updating, posting, and immediate
write-checking.

Optical techniques offer possibilities for simple paral
lel data flow to a block of information as well as the
prospect of "distributed" bit storage (e.g., by holog
raphy) where the effects of media defec"ts and registra
tion misalignment at high densities may be minimized.
A hologram is created from the bit pattern and recorded.
The original image is reconstructed for read out by
photodetectors.

In magneto-optic schemes writing is done by' applica
tion of a focused laser beam to the selected spot with the
simultaneous application of a magnetic field. The laser
beam heats the surface locally, reducing the coercive
force. The magnetic field then is able to switch the
magnetization. Subsequent cooling raises the coercive
force and renders this change stable. Reading is based
on sensing the Faraday rotation of the polarization
angle of a laser beam. The optical rotation is a function
of the direction of magnetization. Since the constant
magnetic field covers a "large" region, to alter the
state of magnetization the data must first be reset to
"0" and then on another scan the "1" bits can be
selectively inserted.

990 Fall Joint Computer Conference, 1972

Certain unique applications have led to the develop
ment and use of a very limited number of specialized
mass store systems exploiting an alternate technology.
While it is sometimes possible to tailor a particular
technology toward a specialized application this
provides a narrow cost/performance range of applica
bility.

Thus, it is very unlikely beam addressable recording
will displace conventional digital magnetic recording
technology and is itself threatened as the prime con
tender in the search for an improved storage technology
by the rapid advances in semi-conductor and magnetic
bubble memory work.

For the storage and retrieval of strictly human
readable information there will continue to be develop
ments of microfilm as well as in techniques to digitize
and compress such images for both storage and the
eventual attractiveness of possible automatic processing
applications.

MAGNETIC RECORDING TECHNOLOGY

In measuring a storage technology, areal density is
the key figure of merit to consider. Lower cost/bit is a
direct consequence of storage density increases. While
hardware "ove~head" limits the ability to extend
mechanical storage configurations into small capacity
versions-an area threatened by large scale integration
with semi-conductor memory or possibly magnetic
bubbles-continuing cost per bit reductions are possible
with increasing capacity.

Magnetic head design skills have advanced to a point
where the principal concerns are to evolve batch fab
rication techniques that will provide precision assem
blies on a continually reduced dimensional scale. This
has stimulated thin film head technology which is emerg
ing as a promising new avenue for head array design
and fabrication. This approach lends itself to precision
batch fabrication through photolithography and ma
terials process technology akin to the methods pioneered
by the semi-conductor industry with the consequent
possibilities for cost reductions.

Magnetic heads now have the capability to resolve in
excess of 50,000 cycles per inch with frequency band
widths extending considerably beyond ten megacycles.
Head gaps are now approaching 10 microinches as
manufacturing techniques improve (the first head gap
null moving out to approximately 100,000 cycles per
inch) and the introduction of thin film structures will
greatly extend the usable bandwidths. It does not
appear that the head will be the limiting factor in
performance but rather the storage medium.

The mainstream effort in high density magnetic

surface work is to achieve higher quality (uniformity,
smoothness, etc.) recording surfaces. To date, the most
common medium is a particle dispersion in a binder so
that magnetic and mechanical properties can be
tailored. (Magnetic films in use today are oxide coatings
formed from a dispersion of either Fea04 or 'Y-Fe20a in an
organic binder, and Co-Ni plating). Media magnetics
are secondary compared to mechanical properties and
quality. Higher areal densities require lower noise and
smaller particles in improved dispersions or new ap
proaches to a "continuous" film medium must be
pursued.

Thinner magnetic recording films are indispensable
for higher density whenever pre-erasure is not feasible.
High bit density is synonymous with close spacings
and smooth surfaces are essential, both for air film
lubrication and to minimize the generation of any
wear debris. Medium defects are a further source of
noise that must be reduced, recognizing that at 106

bits/in.2 a bit is allotted only a millionth of a square
inch.

To date, linear density has been increased by scaling
down three geometrical parameters; head gap, head-to
surface spacing, and medium thickness (where pre
erasure is not possible), and this theme will corrtinue to
be the name of the game. The "swinger" is the spacing.

Reduced head-to-surface spacings will bring about a
further large increase in linear bit density. The resolu
tion of flux transitions on the surface scales with head
to-surface spacing; the head gap and recorded depth of
penetration being proportionally reduced. 50,000 bpi
now appears within our grasp at spacings of 5 to 10
microinches. (The mean free path of air is approxi
mately 3 p, in at atmospheric pressure and with micro
inch surface finishes this spacing capability appears
feasible with acceptable bearing and/or wear charac
teristics.)

Track seeking and following servo access techniques,
which can circumvent the track density limitations
imposed by the build-up of cascaded mechanical
tolerances, will be applied to effect significant increases
in track density. We can project an adequate signal to
noise ratio with much narrower tracks than we can live
with today. Thus, mechanics still offer considerable
room for further advances in storage density. To con
tinually improve track registration tolerances will
require servo techniques that depend upon interspersing
or superimposing data and servo control information
and more sophisticated head structures.

The calculated density limit based on a typical pulse
response with standard recording techniques under ideal
conditions is extremely high. However, (even theoret
ically) a large reduction in this figure results from a
simple consideration of variability between magnetic

heads, tolerance on magnetic coating thickness, vari
ations in spacing and speed, head-to-track registration
stability, etc. Track mis-registration tolerances require
the introduction of a guard band which reduces the
available read signal. In addition we must deal with
"noise" sources, such as surface imperfections, etc.

Recording methodology is as yet an inadequately
explored means to further upgrade storage density.
Since the advent of digital magnetic recording for mass
data storage, the primary avenue taken to increase
density and thus performance has been through im
proved recording mechanics. This work emphasizes
improving the "resolution" of a recording system.

The application of advanced communications tech
niques to the magnetic recording "channel" may yield
significant gains in bit density relative to pulse resolu
tion. Much more sophisticated error detection and cor
rection codes are indicated (the choice of such codes also
involves timing tolerances on clocking) with the move
to higher and higher areal densities.

Signal-to-noise calculations indicate much higher
storage densities are realizable. Eventually density
limits should be bounded by intrinsic media and
amplifier noise. Increasing data rate per channel (or
relative velocity) is equivalent to increasing bandwidth
and since electronics noise increases with bandwidth
this design direction will place some limits on density.

During the seventies we see a potential advance in
areal density of almost two orders of magnitude.

SUMMARY

At the present time there is no approach to mass data
storage that could obviate the use of physical motion,
using continuous recording media and transducers.
While a completely electronic mass data store is an
obvious goal, such memories seem possible only on the
low capacity, high-speed side of mass storage (now

l\1ass Storage-Past, Present and Future 991

filled by drums and disks with fixed heads). The storage
hierarchy of the future will include disk and high areal
density flexible media with all storage on-line and under
systems control in a growing number of installations.
There are substantial reasons to believe magnetic re
cording will undergo another decade of progress com
parable to the past one, although there is something in
man that rebels against the necessity for mechanics in
purely information storage and processing systems, our
attitude apparently formed early from bitter experi
ences of breakdown and poor reliability (peripheral
wise, automobile-wise, etc.).

For the foreseeable future, however, it is clear that
mass storage based on digital magnetic recording has a
vital and increasingly important role in information
processing. Further, we see the potential of increases in
storage density of two orders of magnitude during the
next decade.

GENERAL REFERENCES

1 A S HOAGLAND
}tf ass storage revisited
Proc FJCC 1967

2 .J M HARKER HSU CHANG
Magnetic disks for bulk storage: Past and future
Proc SJCC 1972

3 W A GROSS
Ultra-large storage systems using flexible media, past, present
and future
Proc SJCC 1972

4 T H BONN
Mass storage: A broad review
Proc IEEE 54 1861 1966

5 L C HOBBS
Review and survey of mass memories
Proc FJCC Spartan Books Washington D C p 195 1963

6 R E MATICK
Review of current proposed technologies for mass storage
systems
Proc IEEE 60 266 1972

Software-Historical perspectives and current trends

by WALTER F. BAUER and ARTHUR M. ROSENBERG

Informatics Inc.
Canoga Park, California

SUMMARY

The importance of the study of history is to understand
the forces which produce the events. Thus possibilities
and prospects for the future may be better understood
and evaluated. The development of historical perspec
tives as opposed to a historical record seems to have
advantages in achieving that goal. This is especially
true of programming where the award of historical
"firsts" seems to be difficult at best.

This paper traces the historical evolution of software
in the context of the developing computer hardware
technology. It has been roughly only twenty years in
which concepts of software have evolved from very
crude beginnings into a sophisticated element of the
expanding computer industry. It is time to take stock
of the past and start to focus on the practical directions
that software, as a technology and as an industry, will
take.

The genealogy of software is developed, starting
from the early 1950's when the most elemental concepts
were subroutines, simple assemblers and simple diag
nostic programs. From tliese simple concepts, through a
process of successive additions of complex structures,
came compilers, complex operating systems, and on
line systems programming. A newer concept, the "soft
ware product," is discussed including its business im
plications. A related subject, the development of
machine aids to programming, is also a topic of dis
CUSSIOn.

Advanced compilers and software language ap
parently come from the lineage of subroutines and
simple assemblers. Advanced operating systems seem
to have more in common with early interpretive pro
grams than with any other possible antecedent. It seems
clear that modern time-sharing systems were affected
greatly by early on-line systems accomplished as part
of the first military systems and, before that, from early
diagnostic programs for finding programming and ma
chine errors.

993

The future will probably not see any more prolifera
tion of universal languages. For example, in the rapidly
growing business data processing world, COBOL will
continue to be used with COBOL shorthand and
COBOL generators increasing in importance. A
language-compatible set of tools for debugging, main
tenance and documentation will be emphasized. Ap
plications-oriented tools will receive much more at
tention. The trend starting with early report generator
techniques and continuing with the powerful file
management system approach will flourish. Machine
emulation and software transferability will become of
paramount importance with the relative increase of
software over hardware costs.

Although important progress has been made, it is a
general indictment of the programming profession work
ing in industry that there is such a great time gap be
tween concept and practical reality of a new idea.

INTRODUCTION

Computer programming is a unique and modern pro
fessional activity. The end product of programming is
software. Programming is the process of developing
procedures for a computer. The procedure itself is a
piece of software. *

The computer is unique. It is an instrument of great
versatility and universality. In the history of technology
it is difficult, even impossible, to cite a preceding devel
opment so universally applied. Programming, which
makes the computer useful, is equally unique. The com
puter, programmed appropriately, is a universal and
powerful device for handling information.

There is little in man's history that can be cited as a
direct antecedent of programming. Computational pro-

* The term, software, is sometimes taken to mean all activities,
processes, and procedures surrounding the modern computer;
in this definition, it includes everything related to the computer
except hardware.

994 Fall Joint Computer Conference, 1972

and more versatile. The development of programs on
PROGRAMMING AIDS behalf of programming itself-to make programming

OPERATIONS AND DIAGNOSTICS

MACHINE AIDS

1950 1960

Figure I-Early system geneology

cedures of all kinds, including those for desk calculators,
offer some precedent, as do office procedures for business
data. Further precedent is found in formalized rules
for musical composition, first stated in modern terms
by Bach in "The Well-Tempered Klavier," and in the
setup procedures for such machines as the Jacquard
loom. Precedent may also be sought in the rules of cer
tain games which require playing by a procedure to
win, such as tic-tac-toe, mill, and o-wah-ree. Such
games extend back into human prehistory.

A good deal of the power and versatility of the stored
program electronic computer is found in its ability to
alter its future procedures on the basis of results of past
procedures. This ability of the computer gives it that
automatic character which permits it to carry out ex
ceedingly involved and complex tasks, guided by inter
related program structures. l

The writing of a machine language program for the
computer of typical design is a straightforward, but
monumentally detailed and onerous task, especially if
done with no aids. Programmers of the earliest elec
tronic computers soon tired of such work and chafed
under its limitations. They were led, quite naturally,
to use the computer itself to make programming easier

1970

less burdensome and expensive-got under way. These
activities were called "automatic programming" in the
middle of the 1950's.2

In the early 1950's, the process was referred to as the
preparation of utility and service programs; the "auto
matic programming" label came later. Nowadays the
practice is usually referred to as "systems program
ming." Whatever the name, the process is one of de
veloping languages and procedures, and computer pro
grams to operate in conjunction with these languages
and procedures so that the computer itself can be the
principal instrument to make programming easier.

EARLIEST CONCEPTS AND OBJECTIVES

The overall objective of systems programming is
twofold: to make programming easier and to make the
machine run more efficiently. Most of the programming
sophistication of the early 1950's was aimed at pro
gramming efficiencies, although the great shortage of
machine time, and its great cost, put heavy pressures
on systems which used large amounts of machine time.*

Four areas of the programming task were targets for
development of programming efficiencies. These were:
the conceptual phase, consisting of architecture, design
and specification; the programming or coding phase;
the checkout phase; and finally, the modification and
program maintenance phase. The earliest system soft
ware was aimed at making the coding job more efficient.
A simple example is found in the replacement of the
machine language operation code with an operation
mnemonic.

In later years the targets for improved efficiencies
turned to other ares such as design, program checkout
and program modification. Thus, the Holy Grail of the
programmer has been the development of systems to
make programming efficient; but, the statement of the
problem is more complex than that. For a given set of
data processing functions and for a given degree of com-

* The question of objectives of system programming is an in
teresting philosophical point. In modern systems is the objective
to make the computer run faster and keep programming
tractable? Or is the objective the other way around-make
programming easier and keep machine efficiencies reasonable?
It would appear that a strong case can be made for the following:
The 1960's, with increasingly complex applications and machines,
systems programmers, mostly as a defensive measure, emphasized
machine efficiencies to insure that programming became more
efficient in complex environments. That notwithstanding, the
authors believe unqualifiedly that in view of high labor costs
and decreasing machine costs, the objective clearly should be
the increasing of programming efficiencies.

Software-Historical Perspectives and Current Trends 995

pl.exity of the data processing problem, the programmer
wIshes to make his programming easier and to make the
machine run faster. Success is elusive since new solu
tion,s must be found in an ever-increasingly complex
enVIronment and an ever-increasing set of data process
ing functions to be performed. *

SOFTWARE GENEALOGY

A hist~rical perspective of how programming developed
may gIVe us better understanding of present and future
developments in the list of the past. While citations of
early milestones are given, no attempt is made here to
record history per se, as others have done.3 The concern
is with the major events of programming development
over the years, not with attributing invention or giving
credit for milestones achieved. Typically, no matter
what the programming technique and the alleged de
velopment time, it is possible to find someone who claims
the same accomplishment at an earlier date.

There is often little unanimity of credit for earliest
development. The time of conception of an idea is un
certain, and it is at least debatable whether the mile
stone is achieved upon conception or upon execution. To
a considerable extent, programming structures are un
clear, relations among programming methods cloudy
and programming elements themselves not always char~
acterizable. Notwithstanding these difficulties of being
able to distinguish, it is instructive to consider the main
directions of programming development. One looks for
the essence of what was developed, why it was de
veloped, and, ultimately, what the future may bring.

The earliest of system programming activities seem to
be divided among subroutines, interpretive routines, as
semblers and loaders. To these may be added early at
tempts at diagnostics, both hardware and software.
Machine aids to programming, that is, hardware design
changes to make programming easier have also come

. ' wIth some frequency beginning early in computer his-
tory. While this latter topic is not, strictly speaking, a
programming development, it is related enough to be
considered. It is as true today as it was twenty years
ago: programming and machine design and charac
t~ris~~cs are inextricably related; even today's "applica
tIOns programmer must know hardware characteristics.
Thus, the three main channels of development can be
characterized as the search for language power the
search for diagnostic power, and the search for ma~hine
aids to programming.

* "The problems of programming at this point appear as yet
mostly unsolved " Report of the Discussion Group on Uni
versal Codes. Proceedings of the First Joint AlEE-IRE Computer
Conference, Philadelphia, 1951.

Figure 1 is a chart showing the genealogy of major
software developments, emphasizing the earliest periods
and how the earliest developments gave rise to later
ones. While there is no claim made here for compre
hensiveness or precision, the figure can serve in the
purpose of discussing the structure and evolution of
programming.

The beginnings of the development of programming
structures and systems can be traced back to the em
phasis of subroutines-their structure and use. The sub
routine idea came about, naturally and quite obviously,
by the programmer's observance that certain segments
of the code were used or could be used repeatedly. From
then on, ideas grew in proliferation. Macro instructions
and pseudo instructions were developed as a conve
nience for calling subroutines and to specify the param
eters to be used by the subroutine. One of the earliest
technical writings on the subject of subroutine use and
structures was that of Wilkes, Wheeler and Gill.4

Needless to say, the development of the subroutine
idea gave rise to the compilation of many subroutines
into a running program and therefore to a major en
hancement of simple assembly language programming,
as well as to the compiler concept.

There seems little doubt that early programmers were
led to interpretive programming as a simple extension
of the subroutine idea. If, instead of occasional transfer
of control to a subroutine and the interpretation of a
macro or pseudo instruction, one considered that the
entire running program consisted of macro instructions
which are to be "interpreted" by the subroutines, a wide
range of possibilities and a language of considerable
power could be developed. Among the first interpretive
programs were the ones for floating point arithmetic.

It is interesting to digress for a moment to discuss
the similarities between the earliest subroutine struc
tures and today's complex operating systems. In the
earliest square root subroutine, for example, one
parameter was supplied; namely, the number from
which the square root was to be extracted. Today's
operating systems are complex structures consisting of
many subroutines. During the course of using the
operating system, many parameters are supplied to
the operating system for correct action: the programmer
supplies the file from which information is to be ex
tracted; he supplies the part of the program to be acti
vated in the case of an interrupt on a certain channel;
and, he supplies the output device as well as the form
of the output desired.

This then characterizes programming and the de
velopment of programming systems: simple structures
are used in multiplicity to create complex structures;
in the building of these structures there is a layering of
simple functions, each interfacing with others and using

996 Fall Joint Computer Conference, 1972

the capabilities of the layer previously supplied. In
terestingly, the overall structure has proceeded to the
point where the typical applications programmer knows
little about the internals of the operating system he
uses. To anyone trained in science or technology, this
comes as no surprise; all of science and technology is the
building of complex structures and theories from earlier
simpler theories and structures. This is the Scientific
Method.

Beyond the subroutine idea, the idea of the compiler
quite naturally evolved. Since a larger number of sub
routines were in existence, instead of the compilation of
these subroutines manually into the program prior to
running, it seemed natural to make the machine as
semble all subroutines needed and at the same time
create all necessary connective tissue to insure a co
ordinated, concerted data processing effort. Emphasis
then shifted to the language-its use and its power. At
tention also shifted to the development of assembly
programs or compilers which would preprocess all pro
gramming information and create the running program.
The programmer saw that, through the use of the sub
routine-assembly program idea, he could write in deci
mal and let the machine carry out decimal-to-binary
conversion. The programmer could write in mnemonic
instruction codes and let the assembly program trans
late those mnemonic codes into numerical instruction
codes. He saw that he could use symbolic addresses to
make programming easier and have the machine later
translate them to machine addresses by means of the
assembly program. Many of these ideas were developed
and explained by Hopper. 5

Thus, the so-called "one pass" assembly program was
born. This program performed the simple functions
described above and used "regional coding" so that all
machine codes would be assigned during the first pass
through the translation process. There was no need for
further recursive processing of the data. Incredibly
simple by today's standards, these one-pass assemblers
represented proud achievements by programmers in the
early 1950's.

For a time in the development of system program
ming there was competition between interpretive meth
ods and assembly/compiling methods. Assemblers and
compilers took a source statement program and pro
duced object code, properly location-keyed and ready
to run. With a well-done assembly or compiler system,
the object code could be efficient. The interpretive ap
proach, on the other hand, used, in essence, "a different
machine"-one built of programmed subroutines rather
than machine language itself. Interpreters could be very
rich in language power, but they tended to be profligate
of machine time.

Today the place of the interpreter, except for special

purpose interpreters, has been largely taken by the
hardware/software design approaches of stored logic,
read-only fast memories and microprogramming: "emu
lation" is the modern word used.

Early interpretive programming put heavy emphasis
on applications in instruction and education in pro
gramming itself. Interpreters were used to structure
simplified machines which could be learned easily and
rapidly by the relatively uninitiated. 6 This design ap
proach is seen in still viable form in many of the time
sharing system languages of today. Among the early
interpreters applied extensively was "Speed Code," an
IBM project started in 1953 and featuring operations in
floating point arithmetic. 7

Throughout the 1950's and 1960's, the cost of ma
chine time was always an important consideration.
Thus, interpreters tended to remain unpopular. But
near the end of the 1960 era, we began to see a rapid
rise in the cost effectiveness of the computer. Today
the interpretive approach enjoys a resurgence. Today's
operating systems provide, through software, or a
combination of software and hardware organization, a
"new kind of machine," than previously seen and used
by the applications programmer. The operating sys
tems of today are closer to the interpretive approach
than to the assembler/compiler approach.

Quite another facet of software came from the desire
to have the machine assist in hardware and software
diagnosis. One of the first of the systems stemming
from the search for diagnostic power was the trace pro
gram. It was an interpretive program which printed
the instruction itself and the results of the instruction
if the instruction handled data. Since trace programs
often required a long time in execution, selective trace
programs were developed which printed only the data
that the diagnosing programmer probably wanted to
know.

One of the earliest of hardware diagnostics dealt with
the problems of the memories of that day. Electrostatic
tube memories suffered from having a particular storage
location on the tube face affected by actions in surround
ing locations. A spot on the tube face could spill over
and affect neighboring spots-the "secondary emission
phenomenon." Hence came the "read-around-ratio"
testing programs. Such a program read around a given
spot to determine the frequency of action at which
failure would probably occur.

Other kinds of memory diagnostics took sums re
peatedly over large segments of memory, assuring,
hopefully, that the contents had not altered between
successive summings. Similar to the read-around tests
for tube memories are today's "delta noise" diagnostics
for core memories.

Diagnostics led to an increasing realization that

Software-Historical Perspectives and Current Trends 997

computers were strongly dependent on input/output
devices. Early computer programs tended to be long on
computation and short on input and output. Diagnostics
put emphasis on input/output capability, and these
devices too frequently proved to be the ones that
needed diagnosing.

Pattern watching on computers with tube memories
doubtless gave strong impetus to using a computer to
control a cathode ray tube display tube. In about
1952, the famous "bouncing ball" output program was
developed for display on output scopes (CRT) of the
Whirlwind computer.8 In this early work we undoubt
edly see the first beginnings of on-line systems. For the
first time there was immediate and visual reference to
what the machine was doing. From this it was a simple
step to let the programmer affect the operation of the
program, based on what he sees, through the use of
sense switches first (the IBM 704), later the keyboards
of CRT terminals.

Machine aids to programming, or the design of ma
chines easier to use, is not, in the strictest sense, part of
the res gesti of the development of today's program
ming. Yet hardware and system software are so in
separably tied together today that we must consider
the internal logic of the computer in a coherent dis
cussion of software.

Among the earliest of additions to machine design
was built-in floating point capability. We find, how
ever, that such early, one-of-a-kind machines as the
SEAC were equipped with an automatic trace mode. 9

The index register is a common design feature of com
puters today. It made its apparent first commercial ap
pearance named as the "B box" on an early Electro
Data Machine.10 As old timers know, ElectroData
machines later metamorphosed in Burroughs machines.

In the late 1950's, interrupt capability began to ap
pear in computers. This was a most significant develop
ment. For the first time, the computer could be "impe
dance matched" with interconnecting noncomputer
equipment. External devices could operate asyn
chronously from the main frame, and yet all essential
communication was maintained.

Imaginative programmers soon developed many
uses for the interrupt capability. What began as a
narrow adjunct to early real-time systems was rapidly
extended to general computer system operation; the
interrupt was beginning to be used extensively to inter
face with common computer peripherals.

The programmer's propensity to interpret and emu
late one computer on another through the years led to
still another programming aid being built into the
machine. Some machine designers reasoned that certain
computers would operate more efficiently on certain
types of problems if the instruction logic were chosen

to correspond to that type of problem. Also they rea
soned that emulation would be accomplished better if
one could build up instructions from subinstructions
in other words, if there were access to subinstructions
through programming. Thus, the idea of microprogram
ming was invented.u In its earliest form, it was not of
great commercial significance nor did it receive im
mediate widespread use. Nevertheless, the important
concept of storing in the memory the logic of the ma
chine in such a way that the logic could be changed had
a certain appeal and promise for the future.

The stored logic concept was brought into commercial
use with the IBM 360 equipments which allowed
emulation through microprogramming of second gen
eration (pre-IBM 360) computers. Logical flexibility of
the machine and ability to change its programming

.. character, a kind of "subconscious" or "subliminal"
level of the machine, has received the official stamp of
approval. The idea was to be developed further in the
1960's through the use of privileged instructions through
which only certain parts of the memory can be modi
fied and, of course, the important step of the protection
of the stored logic through read-only memories.12

Throughout the late 1950's and into the early 1960's,
there was gradual increase in the recognition that the
computer was neither a "scientific calculator" nor a
"business data processor," but was, in fact, an informa
tion processing device. Scientific problems involving
the solution of equations were a comparatively limited
activity. Furthermore, scientific applications were
usually imbedded in large design problems and engineer
ing applications, problems which required general in
formation handling capability. The recognition of this
true character of the computer came about slowly in
deed, and likewise the development of programming to
reflect this true character of the machine. Programming
systems for business data processing applications had
been developed on a limited basis by Univac and by
IBM in the 1950's, but the breakthrough in program
ming for business data processing applications did not
come until the turn of the decade: in 1960 the COBOL
language was specified and compilers were being de
veloped to process the language.13 An important new
era had begun.14

PROGRAMMING LANGUAGES

In previous sections primitive programming lan
guages, such as interpreters, assemblers and compilers
were discussed. Later developments include program
ming languages which most directly affect the end
users; i.e., those languages used for development of
applications. This category includes computational

998 Fall Joint Computer Conference, 1972

and information retrieval ability on an ad hoc basis, as
opposed to a predefined application program. Although
ad hoc "programming" for one-time needs has certain
similarities with the general category of program devel
opment, it is important to recognize that there are dif
ferences in terms of the user of the language, the facilities
required, and the mode of usage (e.g., batch vs conver
sational, compiled vs interpretive, etc.). Basically, the
"one-time" program should require less development in
vestment than the continually productive program
because of the short-term payoff involved. Thus, we
trade off simpler programming language against ef
ficiency of the object code produced. There are no
prizes for coding; the results are what count.

Assemblers reached a language level approaching that
of compilers with the facility for employing existing
routines or macros. The macro assembler, in effect,
permitted creation and usage of a higher-level language
than that of symbolic assembly language. Nevertheless,
assemblers produced object program code (instructions)
which could modify itself and could be recognizable as
source code by the originating programmer. Compilers,
on the other hand, generated assembly language or ob
ject program code which was not easily recognizable to
the source language programmer.

A principal goal of the "higher level" languages was to
allow "machine independence" or, at least, to permit
ease of transferability from one computer to another.
The high point of this interest was reflected in the
academic exercise with UNCOL (Universal Computer
Oriented Language), as a means for machine-to
machine translation. I5

There were many "languages" by the end of the
1950's, but only a few generally accepted by the user
community for practical, operational use. IS Needless to
say, this acceptance is based on practical, de facto
considerations, such as government or IBM endorse
ment and support. The acceptance of FORTRAN by
the programming community was very significant be
cause it helped reinforce subroutine library concepts,
calling sequence standardization, etc. FORTRAN was
designed primarily for scientific applications of numeri
cal nature. The language was procedural with an em
phasis toward algebraic notation and functions and the
handling of matrices. FORTRAN did not accommodate
parts of machine words or character manipulation.

ALGOL was a more definitive attempt at a computa
tionallanguage that was consistent with mathematically
"clean" notationY The ALGOL specifications gen
erated a variety of subset language implementations,
some of which still exist and are operating today. Al
though very useful for numerical computation, it
lacked features required by business data processing,
such as input/output facilities and report formatting.

COBOL was designed in order to satisfy the needs of
the business data processing community, including an
"easy-to-Iearn" language that was self-documenting,
and the separation of data descriptions from the pro
cessing and operating environment. IS PL/1I9 was aimed
at a most comprehensive spectrum of programming
applicability, scientific, business and system program
ming (including "real-time" interrupt processing).
Because of its ambitious scope, it has taken awhile to
gain its current operational acceptance. In the time
sharing environment, easy-to-use languages were de
veloped, notably JOSS,2° BASIC,2I and APL.22 JOSS
was an interactive language system for small numerical
problems. BASIC was designed as a simple but effective
computational language for use by nonprofessional
programmers in the conversational mode; its most
notable facility was built-in text editing for creating
and changing source code (which JOSS also had).

List processing languages, such as IPL and LISP,
have been primarily used in artificial intelligence ex
perimental and research work. The payoff is still to
come in future machine architectures.

Each of these languages was designed to function
with a compatible operating system but not with
another language per se. (Some compiler implementa
tions allowed for in-line assembly language code.)
Thus, each language as a "system" had the following
set of functional needs to account for, in addition to
computational code generation and execution control
needs:

1. data definition, file description-In order to
properly handle various types of data and their
logical storage organizations.

2. debugging facilities-Necessary for any applica
tion development effort at the source language
level.

3. documentation--Required for proper mainte
nance of production programs and as a debugging
tool.

4. output format control (reports)-This is an area
of "programming" which is functionally different
from computational programming.

5. Input/Output interface-Although there is sup
posed to be a maximum facility for "device
independence," the realities of various input/
output storage and terminal formats (e.g., type
writer or printer vs CRT) require proper
handling.

In addition, a language system should offer different
data entry, error reporting, recovery and debugging
facilities for the conversational mode of operation vs
the batch execution.

Software-Historical Perspectives and Current Trends 999

Every language system design varied in the manner
and degree to which it offered these facilities and, in
fact, every implementation had differences. What this
proved was that programming language design was be
ing accomplished at a time when the need was great but
neither the operational environment nor the experience
was stable and adequate enough to do a comprehensive
job. Much mention has been made about the conver
gence of scientific and business computing requirements.
However, it may have gone unnoticed that on-line
(interactive) computing also pushed scientific computa
tion to be concerned with things like character string
processing, report formatting, etc. The established pro
gramming languages could not really "grow up" until
the real world operational environment became more
stable.

To cope with language deficiencies that appeared in
order to program for new application areas, the idea of
"extensibility" was introduced. This was really a take
off on the macro concept and used in some compilers
(e.g., ALGOL, PLj1). The extensible language ap
proach, however, offered opportunity for language
proliferation rather than standardization.

Although the above-mentioned languages were
"higher level" for expressing computational require
ments and easier than assembly language for program
development, they did not adequately attack the com
plexities inherent with data access and storage, and
another layer of simplicity was added in the area of
secondary data storage or data file maintenance and
handling. As the proliferation of machine files increased,
both in numbers, usage and structure, a major gap ap
peared between the operating system, that was pri
marily concerned with physical data storage resources,
and the programming languages that dealt with manipu
lation of data that the object program could get its
hands on. It was up to the programmer to integrate all
the protocol for getting the data in and out of files,
along with appropriate file structure design and avail
able access methodology. It was also necessary to be
very efficient, because heavy inputj output activity is
the primary source of long and expensive machine
runs. This kind of responsibility was taken over, in
part, by the powerful automatic and default facilities of
"file management" systems, which came into promi
nence about 1967.23

With the powerful automatic and default facilities,
the development of writing of applications "programs"
became much more simplified because most of the cod
ing chores for doing things like validity checking, data
file opening and closing, line folding report dating, col
umn spacing, etc., were eliminated. It was not merely
a case of providing facilities the programmer had to ex
plicitly use; the use of structured forms and automatic

functions meant that the applications developer had
only to concentrate on the specifics of the application
and was not forced to be a "systems" programmer. In
effect, the automatic facilities of "file management"
systems provides the kind of capability that was sought
after in one of the historical buzz words, i.e., "implicit
programming. "

The descriptive name "file management" has been
abused and confused because of the wide range of func
tions to which it has been applied. If any part of the
data file accessing function were performed by a soft
ware package, it was called a "file management" or
"data base" system. In reality, there can be complete
languages which include all functional capabilities of,
say, COBOL, along with file handling and sophisticated
report generation facilities on the one hand, and on the
other, file organizing and accessing supplements to ap
plication processing programs written in a standard
programming "host" language. It is interesting to con
template how comfortably the combinations will fit
and evolve in the future.

OPERATING SYSTEMS

Concurrent with the goal of making programming
easier for the professional programmer, was the pres
sure to make computer operations more efficient and
reliable. These two major objectives gave rise to the
modern day operating system.

Operating systems, monitors, control programs, or
executives, etc., became more necessary as computer
hardware became more complex; the requirements for
sophisticated operating system functions depended
largely upon evolving machine architectural facilities.
The operating system, as a software facade for the
hardware, had to exploit the strengths of machine design
as well as make up for deficiencies.

The concept of operating systems has taken computer
usage full cycle from the open shop, job-at-a-time ap
proach to the batched, closed shop environment, and
back again to a flexible combination of on-line, time
shared execution coupled with batched production jobs.
In similar manner, we have seen a pattern of inde
pendent computers, followed by complete centraliza
tion, and now distributed computers in a network ap
proach. Needless to say, the extremes of open or closed
shop operations did not represent a true picture of the
needs of the real world. Although there were a number
of special purpose systems, particularly command and
control systems that utilized advanced operation system
ideas ahead of their time, it has taken awhile for these
operational concepts to evolve in the commercial world,
and they are still evolving along with hardware and
software developments.

1000 Fall Joint Computer Conference, 1972

The early days of job execution in the 1950's found
things done on a single-program-at-a-time basis. A
programmer personally, or through instructions to the
computer operator, supervised program execution,
directing all input/output routines with his own code,
coding specific peripherals, and tying up the complete
computer configuration.

In the interests of efficiency, the closed shop kept
machine operations in "specialized" hands and thereby
helped to increase throughput. However, job setup
time, during which the computer was in an idle condi
tion, still was a problem. This was true because of the
lack of permanent auxiliary storage; all jobs had to be
read singly and directly into the machine. Even with
the use of magnetic tapes, there were delays in setup
time and tape changes. The evolving operating systems
were aimed at automating the sequence of job execu
tion.

The relative slowness of peripheral input/ouput
equipment; i.e., card readers, punches and printers,
compared to magnetic tape, pointed to the next area of
throughput efficiency. Thus, in the mid-1950's, early
batch monitor systems (see Figure 2) were used as
simple loaders to control the sequence of jobs and pro
gram processors read in from magnetic tapes.24 These
monitors were themselves self-loading from tape.
Primitive "multiprogramming," the overlapping of
program execution with input/output, was accom
plished by off-line use of card-to-tape and tape-to
printer equipment.

The availability of magnetic tape made possible new
benfits to ease the chores of the programmer. By
standardizing input/output to system tapes, the use of
common library input/output routines was encouraged.
This sharing was particularly promoted with the advent
of FORTRAN where such facility was conveniently
made available. The use of magnetic tapes also escalated
the subroutine library concept in a dynamic way: user
programs could capitalize on the availability of library
routines loaded from a library tape when the user pro
gram was loaded. These routines were useful only if
flexible enough to be used anywhere in the object pro
gram. Finally, magnetic tapes fostered the overlay
concept by allowing portions of a job, too large for the
available core memory, to be brought into core when
called by the executing program. This concept expanded
the role of the loading function of these primitive
monitors.

The impact on programming languages became con
siderable. The loading function and calling sequences,
as well as availability of certain functions at execution
time, required language development compatible with
this operating system environment.

Hardware constraints on computer operations; i.e.,

core size, lack of sophisticated independent input/
output, direct access secondary storage, etc., all tended
to keep computer operations limited to one job at a
time in the main frame. As long as this was true, there
was little need for sophisticated accounting, security
protection for files and hardware protection and control
of machine resources. However, toward the end of the
1950's, the advent of independent input/output chan
nels pointed to the use of multiprogramming concepts
and concurrent usage of machine resources to increase
throughput efficiency.

In order to take advantage of and service the new
I/O hardware facilities, it became necessary to install a
resident software package called an I/O or interrupt
supervisor. On the 7090, there was IOCS and it pro
vided I/O-CPU overlap and core buffering to keep the
CPU busy. Service does not come free; one of the
penalties of the I/O supervisor was the preemption of
scarce core memory. Old programs had to be converted
to use the new environment. All of this contributed to a
somewhat negative attitude on the part of many of the
early assembly language programmers toward monitor
systems.

Whether the programmers liked it or not, it was neces
sary to preserve the integrity of resident routines. Thus,
software methods for protection were adopted. Since it
was possible to violate the resident routines and tables
through erroneous I/O requests, it was appropriate to
check the call requests for legitimacy prior to execution.
I/O error conditions had to be properly handled so that
object program execution could be gracefully termi
nated. Many a running system died because a user
program branched into or stored data in the supervisor
area and ran amok.

With the repertoire of execution time services pro
vided by resident monitors, a new language appeared.
This was for control of job execution (704 Monitor),
handling such matters as peripheral device assignments,
job accounting, job abort handling, and loading infor
mation. While job control languages have been the
source of sophisticated processing procedures, they have
also been the source of much waste of time and ma
chine resources because of sensitivity to erroneous
usage.

In the early 1960's, computer architecture took a
turn toward "real time." This involved a real-time clock,
the heavy use of interrupts, and the increased need to
make the resident operating system inviolate. The addi
tion of hardware protection, boundary registers, pro
vided safeguards for sensitive areas of memory.

Although drums were available for fast secondary
storage, their limited size and high cost inhibited wide
use. Disk files provided high volume storage which was
faster than tapes and less expensive than drums. Disk

Software-Historical Perspectives and Current Trends 1001

files made practical the use of resident monitor systems
which could be overlaid from disk and also provided
faster loading from the subroutine library.

Most significantly, multiprogramming techniques be
came highly practical in several ways, based on fast
access drums and high capacity disks; The multipro
gramming approaches involved staging peripheral
input/ output via disk, or spooling. This permitted
faster program execution because all input and output
occurred via disks rather than the slower card readers
or printers. Another variation of this approach was the
direct coupled system or "moonlight" system (e.g.)
7094/1440) where the main computer performs the
computation and the smaller computer controls the
peripheral I/O, using a disk. Last, but not least, multi
programming was applied to on-line interactive com
puter usage.

The pioneering general purpose time-sharing systems
such as MIT's CTSS25 and SDC's Q-32 TSS26 high
lighted the next round of facilities and responsibilities
for modern operating systems that evolved during the
latter part of the 1960's. Hardware protection was aug
mented to include Master-Slave modes of operation
which enabled only the resident operating system or
other privileged programs to execute I/O and certain
control instructions. User or problem programs are
trapped if any attempt is made to execute such
privileged instructions. The operating system also had
to provide access protection for centralized files.

With the shared concurrent use of system resources,
such as core, disks, and I/O channels, the old wall
clock method of computer usage accounting became
obsolete.27 Now it is important for the operating systems
to account more specifically for the resources used, e.g.,
core memory, I/O, CPU time, disk storage and com
munication lines. This accounting capability has be
come very critical for proper operational management
and configuration tuning.

The capability of relocating loader functions of
operating systems increased with the loading of object
programs via permanent secondary storage. The ATLAS
computer in England played a great pioneering role in
using secondary storage concepts.28 Such hardware de
velopments as memory maps for automatic relocation
or virtual memory machines to eliminate the need for
program overlay structures are currently impacting
programming design. The concurrent usage of a program
by several users in the time-sharing environment has
given greater emphasis to potential savings from re
entrant coding or pure procedures where all modifiable
data or variable data is separated from the reentrant
code. Job scheduling has become more intricate in
terms of concocting priority schemes and scheduling
algorithms for maximizing throughput or optimizing

turn-around time for particular job classes (especially
conversational processing in the time-sharing environ
ment).

With the on-line multi-user system, the need for re
liable operation became critical. As a result, recovery
and restart facilities were added to operating systems.
There is a great difference between rerunning a user job
by the batch operator and having a large number of
terminal users banging away at dead keyboards.

Communications handling by the operating system
became more standard for batch work and for con
versational terminals.29 The marriage of data communi
cations with data processing, among other benefits,
permitted the effective implementation of centralized
data bases, so critical to the needs of the modern busi
ness world. This in turn, has emphasized the need for
separation of processing routines from data structures in
programming design and development.

There are other practical benefits from the communi
cations interface in terms of the network concept. The
ARPA network, for example, is an indication of the
linking of independent systems, many having "special
ties." A user at a terminal can have access to pertinent
data and processing capabilities other than his own.

The current trend of computer operations is leading
away from restrictive batch production only toward a
more flexible operational environment. Hands-on inter
active facilities are of growing importance. The modern
operating system also offers the in-between approach of
conversational remote job entry which can exploit the
effectiveness of both batch and interactive modes of
operation. The evolution of operating systems has been
one of cumulative growth and expansion of facilities
along with control responsibilities. This growth can be
traced in Figure 2. Future growth appears to be limited
to consolidation and refinement of the current scope of
functions with major emphasis upon hardware/software
architectural synergism.

ON-LINE SYSTEMS PROGRAMMING

From the earliest days of development of the com
puter, consideration was given to electronic systems in
which the computer was an imbedded piece, usually the
control element. The early systems were those for the
military, such as fire control and air defense systems.30 ,3!

However, it was not until the early 1960's that on-line
systems* became sufficiently active to have a definable

* We use the term "on-line systems" to refer to all systems in
which the computer is attached to instrumentation from which
it receives (and gives) signals asynchronous to its operation.
This terminology, we find, is superior to "real time." "Time
sharing" systems refer to those on-line systems in which many
users are "simultaneously" using the machine.

1002 Fall Joint Computer Conference, 1972

~
I I I I I I I I I

1956 1958 1960 1962 1964 1%6 1968 1910 1912

Figure 2-Evolution of operating system functions

programming structure.32 By the late 1950's, the inter
rupt feature was "invented" and appeared on large
scale computers such as IBM's Stretch and Univac's
LARC, introduced in the early 1960's. Programmers
were increasing their understanding of the relationship
to interconnecting instrumentation and were becoming
better able to cope with it. In the early 1950's, the in
formation was given to the card reader and the program
"waited" until the entire card was punched. By the
late 1950's, with the introduction of computers such as
the IBM 709, the programmer was doing useful com
putation between punching of successive card rows.
The interrupt feature was important in cases such as
this; it allowed the program to continue the processing,
ignoring the operating of the external devices (and not
having repeatedly to test its status), and wait confi
dently for the interrupt to occur to cause control to be
transferred to the interrupt handling routine.

By the late 1950's, the subject of "multiprogram
ming" or "parallel programming" was being investi
gated.33 This approach was aimed at better machine
efficiencies through the overlap of various machine
functions hitherto done purely sequentially. Computa
tion could well proceed while memory cycles were
"stolen" to complete an input-output process. Also, the

approach of tying computers together ("multicom
puters")34,35 was receiving increasing attention. These
techniques, aimed at more efficient machine operation
in increasingly complex application environments, re
quired new programming solutions. Control programs
were needed to keep all the units operating efficiently in
concert.

An important subset of on-line systems is the com
puter/communications system. The development of
these systems has been traced, and the system defined
elsewhere.36 The development of particular functions
such as network control, message handling and line
control has resulted in an important programming
specialty, and one of growing importance.

The beating heart of the on-line system is the
"Master Control Program," sometimes referred to as
the "executive." This Master Control Program was a
unique, definable entity for it had no counterpart in
general purpose computing. The MCP performed the
functions of scheduling, controlling, synchronizing and
monitoring the entire process. It took its place along
side of and made use of utility programs (data moving,
memory controlling), console programs (the data for
matting, controlling operator logic), and application
programs.

By 1962, the subject had developed to a point where a
definitive paper36 could be written on the subject. Sub
jects which were now clearly understood, and hence
amenable for further development and more extensive
application included: man/machine interaction via
consoles, master control program design, multicom
puter and "graceful degradation" aspects, and compre
hensive interrupt handling.

General purpose operating systems and their appli
cation programs undoubtedly benefited from the on
line systems development that started with the mili
tary systems. Time-sharing, interactive systems, com
munication systems, the modern operating systems,
and the world of minicomputer applications can be said
to have these on-line and multiprogramming concepts
as direct antecedents. If one looks at the character of
the on-line systems (mostly military) developed prior
to 1962, one sees that these modern day systems per
form many of the functions first performed and pro
vided in these earlier systems.

EVOLUTION OF SOFTWARE PRODUCTS*

The notion of software as a product came late. This
was probably so because of the program-sharing spirit
of early computer pioneers. IVlost of these people were

* Sometimes called "program products."

Software-Historical Perspectives and Current Trends 1003

of the academic or scientific viewpoint. They believed
in immediate publication and full disclosure of all de
velopments. Further, there was no thought that soft
ware could become a commercially important product.
The tradition of freely shared software was fostered by
organizations such as SHARE, USE, and GUIDE.

It is hard to name the first significant instances of
software sold for money. Codes for linear programming
were developed by joint ventures in the late 1950's.
They may have been the first proprietary software sold
in the United States. Linear programming is important
to the work of the petroleum industry. Companies in
this industry developed linear programming packages
either singly or in coalition. Some commercial software
and service companies developed their own proprietary
methods and sold the services of these, though they
rarely sold the software itself, since the demand was
insufficient.

The mid-1960's was a period of controversy about
software products. Some spokesmen proclaimed the
bright future of software products as early as 1962, while
other pundits as recently as 1968 said there could be no
such thing. Much of the confusion about software
products can be attributed to a lack of understanding
about what kinds of software could be "productized."
General-purpose "tools," which can be utilized as-is by
users, make the ideal software product. Application
packages, on the other hand, particularly those which
are data base dependent, will usually require "tailoring"
before they are of practical value to individual users.
This is true because of the lack of standards in the
specific application areas aqd the dynamics of real world
needs.

The economic leverage of the software product is too
great to be ignored forever. In view of ever-increasing
machine capability and dramatic increase in computer
cost effectiveness, the path to ever-increasing software
complexity was wide open and lined with roses. Sooner
or later the world had to face the high cost of completely
home-grown, custom software. The distressing shortage
of highly competent software system designers and sys
tem programmers did nothing to improve the picture.

The resulting flourish of software entrepreneurs
blossomed remarkably rapidly. Software companies
sprang up everywhere. They were, in many instances,
encouraged by the view that the software product has
miniscule manufacturing costs, except at first item de
livery. The price bidding could be against the cost of a
purportedly equivalent in-house product, and the soft
ware supplier might indeed come out looking pretty
good.

Some of the brave hopefuls among the many small
and large software companies did not survive to see
their planned products delivered. Some of them had

badly underestimated the development costs of the first
delivery item. Others presumed that no manufacturing
costs meant no marketing costs. But the most conse
quential and glaring mistake was the significant under
estimation of maintenance and improvement costs and
general post-sale customer support.

By the mid-1960's, few if any data processing groups
would consider in-house development of a compiler.
Also, by that time the idea of developing any significant
piece of systems software or programming tool on a one
of-a-kind basis was becoming suspect.

Software products became real for all the world to
see when IBM, largely in response to anti-trust pres
sures, announced unbundling. Remaining doubts about
the reality of software as a product quickly disappeared.
The 1972 Datamation Industry Directory lists 41 pages
of them in 119 categories.

About the time of IBM unbundling, there were many
predictions about software products, some rather ill ad
vised. It became a mistaken belief, particularly among
starry-eyed startup investors, that any piece of soft
ware which purportedly worked was "a software prod
uct." There were some bad financial losses and disap
pointments and a pervading mistrust of software prod
ucts for a variety of psychological reasons. Fortunately,
both time and need are overcoming the mistakes of the
past.

While the patent situation is still unclear with regard
to software, lack of patent protection will not be a de
terrent to future developments of software products.
The trade secret body of law, and binding contracts
with customers and with employees, afford ample pro
tection for the software products supplier.

It is interesting to note the differences between soft
ware products and hardware products. Design and de
velopment is expensive in both areas of business. Main
tenance is highly decentralized with hardware, but much
more centralized with software, since the change need
only be made once, then copied to all users. Software
has essentially no manufacturing costs. Marketing
costs are high for both hardware and software. As a
percentage of revenue, marketing costs are currently
higher for software than for hardware.

FUTURE TRENDS

The central part of this paper traced the develop
ments of programming during the modern short twenty
year history of modern computing. On the theory that
we learn from the past in order to better equip for the
future, it seems appropriate in the light of the generated
historical perspective to comment on the future of pro
gramming. These comments take the form of opinions

1004 Fall Joint Computer Conference, 1972

on the current state of programming matters and pre
dictions for the future.

The day of programming languages being developed
by the hardware manufacturer passed in the late 1950's
or early 1960's. COBOL, the last language to be de
veloped which has in any sense gained universal ac
ceptance (in the business world), is now more than ten
years old. FORTRAN, still going strong, is even older.
The last attempt at a more "universal" language, PL/1,
has been something less than a spectacular success.
There is nothing on the horizon to suggest the develop
ment of a single comprehensive language for all scien
tific and business applications.

The programming profession has apparently come to
realize that there is no such thing as a "universal lan
guage." It has probably also come to realize that there
is a fundamental conflict between the power of a lan
guage by a wide class of applications on one hand and
the universality of that language on the other. Lan
guages in the framework of a burgeoning set of applica
tion "areas" cannot be all things to all users.

I t is appropriate to distinguish between a computer
based application which processes a specific set of input
parameters and produces a specific set of outputs and
an application "area" such as numerical control, photo
composition, computer-aided instruction, etc., where a
whole class of problems including unique terminology
and functions, must be dealt with in a flexible manner.
The latter requires a special "problem-oriented"
language, while the former needs a specific application
program.

The software era that we see the industry entering is
a phase of maturation that reflects both understanding
of real world needs and technological advances. Soft
ware will be separable into three major areas:

• Tools for the development of production applica
tions; e.g., language compilers, file menagement
systems, utility packages, etc.;

• Application programs for the direct use of end users
(or industrial processes). This will also include more
general purpose language systems for simple ad hoc
inquiry and computation; or,

• Operation control programs-operating systems
that control execution of user programs in an in
creasingly complex machine environment.

In the area of scientific applications, the major ad
vances appear to be the incorporation of those compu
tational and manipulative functions (such as array
manipulation) that the computer makes so convenient
into language notation, as has been done with APL.
However, the scientific community has been reasonably
satisfied in terms of language needs for defining their

problems. "Problem-oriented" languages will continue
to be developed as well-defined application areas with
unique requirements providing some basis of stan
dardization.

The pressing needs of the business world, however,
which are more pervasive and have been more neglected
than the needs of the scientific community, will further
help to establish the concept of data structures that
can be independent of program structures. Data and
file descriptions will permit data access and manipula
tion to be accomplished by application programs dy
namically at execution time. There will also be an ex
pansion of facilities for the proper management and
control of data within an operational system.

It would appear that in the foreseeable future, lan
guage development for business data processing will
consist of two mainstreams ... COBOL-oriented pre
processors (including shorthand and optimizer pre
processors) and the file management system approach.
The COBOL generator approach seems to be consistent
with evolving techniques throughout the history of
programming: layers of capability are successively added
to the machine in the forms of software systems. The
operating system relies heavily upon assembly language.
The COBOL layer is developed upon this combination
of hardware and software. Shorthand languages are
developed to facilitate the preparation of COBOL
programs. It is clear that with the need for stability
and continuity in business applications, the prepro
cessor approach seems destined to become increasingly
important in the future. <

In earlier sections of this paper, the reader has seen
how the file management approach evolved from the
early report generator systems. It seems clear that these
generalized data management systems represent the
only possible claim to a language (or a type of lan
guage) to compete with COBOL. In the realm of ad
hoc (one-time) retrieval, these systems have a clear-cut
superiority over COBOL, and all application areas have
a need for such a capability. These packages are be
coming increasingly powerful and increasingly used.
The trend will undoubtedly continue. There will be a
profusion of enhancements encompassing complete data
base needs and resulting in systems with faster pro
gramming execution and manifold options with which
to tailor systems to the particular application needs of
the user. COBOL achieved some degree of universal ac
ceptance because it was developed during the days be
fore software was considered a business in its own right
and because it had the power of the Department of De
fense backing it; the file (or data base) management sys
tems being developed today are proprietary items being
developed by private industry and, although no single
version among them is likely to achieve industry-wide

Software-Historical Perspectives and Current Trends 1005

endorsement, as a class, data management systems are
likely the wave of the future.

Programming languages for application development
will consist of not merely the compiler or code generator,
but a complete language-compatible set of tools for de
bugging, maintenance, documentation, etc. Thus, we
must think of a language "system" which starts with
application design needs through production operational
requirements.

The concept of applying "layers" of language will
become most significant in the area of applications. By
definition, every application program creates a new
king of language; i.e., its data input format. This is
true for highly parameterized inputs and for more
flexible, ad hoc query and computational languages for
specific applications. The preprocessing approach is
most effective when a highly interpretive mode is needed
for an interactive phase of operation or for very user
oriented, automatic code generation, and the "under
layer" language is an efficient standard. Compilers are
frequently preprocessors for assembly language; applica
tion preprocessors for compilers and interpreters, par
ticularly for business use, are coming into wider usage.

The need for simplifying the programming effort will
promote the use of automatic and default programming
tools. This has proved particularly successful in business
applications where common needs are stabilizing and
coding ingenuity does not produce much practical pay
off. It is not sufficient to provide tools that require
sophisticated expertise to avoid mistakes and misuse.
It must be there if necessary, but the common need can
be handled in a more simple, automatic fashion. The
file management and report generator packages have
notably demonstrated the effectiveness of this approach.

The development of comprehensive operating systems
is relatively recent, considering that the first such
"running operating systems" really came into being
with the third generation computers in the mid-1960's.
We have seen only the beginning of what will undoubt
edly be an exceedingly important development in the
years to come. The extraordinarily high speed of the
modern computer, the relatively low cost of high speed
memory, and in general, the dramatic increase in cost
effectiveness, means that complex layers of "machine"
capability (layers of software, actually) will be de
veloped, making the job easier for the programmer at the
application or the compiler level. The operating system
developer in reality is building a new machine on the
basis of stored logic principles starting from the stan
dard machine instructions. The trend is clearly evident
over a decade. There is no question that it will continue.

The role of operating systems has become significant
enough to warrant the concern over "operating system
independence." It is obvious from a practical standpoint

that computer operations must be sustained for the real
world production environment. Not only must there be
no drastic interface changes, but there must be graceful,
upward compatibility with new facilities in the areas of
communications, data structures, storage devices, etc.

It is apparent that the general purpose operating
system will allow the user installations a wide range of
operational modes ranging from batch, remote batch, to
highly interactive as well as transaction-oriented, on
line usage. The distributed network of computer pro
cessing will also expand remote access and the concept
of computer-based services.

Because of the increased operational usage and the
varied response requirements, the proper management
of configuration resources will become most significant.
Thus, instrumentation for evaluating throughput per
formance, coupled with controls for dynamically allo
cating priorities and resources, will assist in the under
standing and the effective management control of day
to-day operations.

The complexity of operating system facilities which
has caused the command language or job control lan
guage to proliferate, will cause more user-oriented,
automatic generation of such operating requirements to
be "buried" with the applications program.

The last ten years have also seen a marked increase
in the appreciation of cost of complex sbftware systems.
This is leading, in turn, to a most important trend
which does not seem to be clearly recognized. In the
past, whenever the programmer received a new ma
chine, his immediate and first thought was to reprogram
his application so that it would operate on the new
machine. N ow that many applications are more
stabilized and the high cost of programming systems
more clearly recognized, the hardware will be brought
with increasing frequency to the software rather than
vice versa. This means that the emulation by one
machine (presumably the more technologically ad
vanced one) of another machine will become increas
ingly important. This is mainly accomplished through
microprogramming and stored logic techniques. We
have seen this approach taken in the important com
mercial arena with the third generation computers.
We have seen the idea advanced through hardware with
the use of read-only memories and other microprogram
ming techniques. As long as cost effectiveness of hard
ware increases at the rate it has in recent years and cost
effectiveness of software approaches improves much less
rapidly, there will be increasing pressures to bring the
hardware to the software.

Hardware approaches to make the programmer's life
easier will proliferate. In the mid-1960's, we saw the
first machines of commercial importance expressly de
signed for time-sharing. These systems included hard-

1006 Fall Joint Comp~uter Conference, 1972

ware and software implemented capabilities which al
lowed the programmer to prepare his programs as if
he were the only user and as if he had unlimited mem
ory. The latter involved so-called "paging" and virtual
memory hardware facilities. The advent of these sys
teJp.s underscored the importance and acceptance of re
source-sharing techniques in the industry. It is likely
that by 1980, even with bigger, cheaper core memories,
nearly all new machines will have these capabilities and
further relieve the applications programmer of the con
cern for core storage limitations.

Application packages as proprietary software will be
come an important commercial area. Until now, the
customer of (or prospect for) an application package
has been unwilling to accept the system except in the
exact form he conceives it, all the way from computing
algorithms to the form of output reports. On the other
hand, the supplier community has not developed tech
niques which allow the creation of flexible, automatically
tailored application software. This gap will narrow; the
customer community will become more tolerant in
view of the economics of the situation, and the suppliers
will design and build more flexible software.

Utility packages (sorts, compilers, data management
systems, etc.) will continue to grow as important
proprietary software.

CONCLUDING OBSERVATIONS

We cannot let the opportunity pass to wax philosophic
about programming.

Senior observers of the last twenty-five years of pro
gramming development all agree on one point: it is a
continuing shock and surprise to realize anew the span
of time between the development of an idea and its
widespread, practical use. Old-timers recall how slow
the programming professional was in 1958 to embrace
FORTRAN. In 1964, why weren't almost all business
applications being programmed in COBOL? The lack
of fully checked-out, fully compatible systems is not
the answer, although such system problems contributed
in a minor way. The answer is that there seems to be an
inherent conservatism within the professional program
mer working in business and industry. Is he subcon
sciously increasing his job security? Is the spectrum of
progressiveness and inventiveness extraordinarily wide
within the programming profession? Is the lack of
proper education at fault? Finally, should we blame the
dominant computer manufacturers for de facto control
of progress?

But let there be no doubt about the fact that change

has occurred. * The developments recorded on these
pages are mute but uncompromising evidence of that.
Nevertheless, it is disappointing that, in the estimate
of most, programming cost effectiveness improves
slowly, probably 5 percent per year compared to a
whopping estimated 25 percent for hardware. Perhaps
this is due to immutable, intrinsic characteristics. But
it may be a result of the fact that the data processing
industry has placed true programming at too low a
professional level. The lack of attempts within the
profession to structure the field and organize and dis
cipline programming activity are also contributing
factors of a more minor nature.

REFERENCES

1 J A POSTLEY
Computers and people
McGraw-Hill New York 1960

2 W S MELAHN
Description of a cooperative venture in the production of an
automatic coding system
Journal of the ACM Vol 3 No 4 November 1951

3 S ROSEN
Programming systems and languages
McGraw-Hill 1967

4 M V WILKES D J WHEELER S GILL
The preparation of programs for an electronic digital computer
Addison-Wesley Press Reading Mass 1951

5 G M HOPPER
The education of a computer
Proceedings of the Conference of the ACM Pittsburgh 1952

6 JEAN E SAMMET
Programming languages: history and fundamentals
Prentice-Hall Inc Englewood Cliffs NJ 1969 pp 12-13

7 J W BACKUS
The IBM 701 speedcoding system
Journal of the ACM Vol 1 January 1954 p 4

8 R R EVERETT
The Whirlwind I computer
Electronic Engineering 71 August 1952 pp 681-686

9 S GREENWALD R C HOUETER
S N ALEXANDER
SEAC
Proceedings of the IRE Vol 41 (October 1953) pp 1300-1313

10 Commercially-available general-purpose electronic digital
computers of moderate price
Proceedings of the Symposium of the Navy Mathematical
Computing Advisory Panel and the Office of Naval Re
search Washington DC May 14 1952

11 M V WILKES
The best way to design an automatic calculating machine
Manchester U Computer Inaugural Conference 1951

* The twenty-fifth anniversary edition of the Communications
of the Association of Computing Machinery38 was published too
late for inclusion as a major source of references for this paper.
However, it has many valuable articles which relate to the topic
of software history and trends.

Software-Historical Perspectives and Current Trends 1007

12 R F ROSIN
Contemporary concepts of microprogramming and emulation
Computing Surveys ACM Vol 1 No 4 Dec 1969

13 COBOL: initial specifications for a common business oriented
language
Department of Defense US Government Printing Office
Washington DC April 1960

14 R BEMER
A view of the history of COBOL
Honeywell Computer Journal Vol 5 No 3 pp 130-135 1971

15 J STRONG et al
The problem of programming communication with changing
machines: a proposed solution
Comm ACM Vol 1 No 8 1958

16 SAMMET Op Cit p 5
17 A J PERLIS K SAMUELSON (for the committee)

Preliminary report-international algebraic language
Comm ACM Vol 1 No 12 Dec 1958

18 E L WILEY et al
A critical discussion of COBOL
Annual Review in Automatic Programming Vol 2
Pergamon Press New York 1961 pp 293-304

19 IBM system/360 operating system: PL/1 language
specifications
IBM Corp C 28-6571-0 Data Processing Div White Plains
NY 1965

20 J C SHAW
JOSS: A designer's view of an experimental on-line computing
system
ProcFJCC 1964

21 J G KEMENY T E KARTZ
BASIC
Dartmouth College Computation Center June 1961

22 K ElVERSON
A programming language
John Wiley & Sons, New York 1962

23 J A POSTLEY
The MARK IV system
Datamation January 1968

24 C L BAKER
The PACT coding system for the IBM type 701
Journal of the ACM Vol 3 No 4 October 1956 pp 272-78

25 F J CORBATO et al
The compatible time-sharing system, a programmer's guide
MIT Press Cambridge Mass 1963

26 J I SCHWARTZ E COFFMAN C WEISSMAN
A general-purpose time-sharing system
Proceedings of the Spring Joint Computer Conference 1964

27 A M ROSENBERG
Computer usage accounting for generalized time-sharing
systems
Communications of the ACM Vol 7 No 5 1967

28 T KILBURN B G EDWARDS M J LANIGAN
F H SUMNER
One-level storage system
IRE Transactions April 1962

29 A M ROSENBERG
Group communications in on-line systems
Proceedings of On-Line Computing Systems Symposium
UCLA/Informatics 1965

30 E H GOODMAN
Sage
Computing News Vol 6b Nos 15-17 Aug through Sept
1958

31 W F BAUER W L FRANK
Doddac-An integrated system for data processing,
interrogation, and display
Proceedings of the EJCC December 1961

32 W F BAUER
On-line systems-Their characteristics and motivation
On-Line Computing Systems (Proceedings of the
Symposium) America Data Processing Inc Detroit 1965
pp 14-24

33 S GILL
Parallel programming
Journal of the British Computer Society 1957

34 R PERKINS W C McGEE
Programmed control of multi-computer systems
Proceedings of the IFIP Congress-1962 Munich Aug
Sept 1962

35 W F BAUER
Why Multi-Computers?
Datamation August 1962

36 W F BAUER
Computer communication systems: patterns and prospects
(Proceedings of the Symposium on Computers and
Communications) Toward a Computer Utility Prentice-Hall
Englewood Cliffs New Jersey 1968

37 W L GORDON G L STOCK
Programming on-line systems
Datamation September 1962

38 Communications of the Association of Computing
Machinery
Vol 15 No 7 July 1972

NASDAQ-The evolution of automation in OTC trading

by GEORGE E. BELTZ

Bunker Ramo Corporation
Trumbull, Connecticut

THE TRADING PROCESS

There is a fundamental difference between trading
in listed securities and OTC securities that has spurred
the need for automation in the OTC industry. Listed
securities are, in general, traded only on the floor of
an exchange-in essence, a central market place in
which a single BID and ASK price are set, and dis
tributed via a ticker and stock quotation systems.
OTC securities, on the other hand, are traded in a
vast decentralized market place, by thousands of
broker dealers scattered nationwide.

The evidence of problems

In the mid 1960's, it was often difficult and some
times impossible to obtain up-to-the-minute, accurate
quotations on OTC securities. The only means available
to a private investor for the checking of his OTC in
vestment was either to consult the OTC page of his
newspaper, the problem being that newspapers would
often have only 1,200 or less issues, and the quota
tions would be at least one (1) day old, or to call his
customer's man, who in turn would either consult the
pink sheets, which contained quotation information
at least one (1) day old, or have the firm's trading de
partment find a market maker willing to buy or sell
in any event, it was a very time consuming and inac
curate approach. What was happening was the public
was not adequately being served in that the quotation
information was often old and many times misleading,
and the requirement that an OTC trade be executed
only after obtaining three (3) quotations was often
bypassed.

Market making firms and OTC trading departments
were also having difficulties in that large staffs were
required to man the phones, trying to obtain current
quotations. An additional problem was that only a

1009

very small number of the requests for quotations
actively resulted in a trade, and to add insult to injury
because of the numerous phone calls requesting quota
tion, a firm's telephone lines were often tied up and
legitimate trade requests were many times unable to
get processed.

Addressing the problem

It was in this environment that in 1966, Bunker
Ramo submitted a proposal to the NASD outlining
the concept of an on-line nationwide quotation system
displaying up-to-the-second quotation information.
The NASD, upon receiving this proposal, retained
consulting services to help study the feasibility of
the approach, and if deemed feasible, to prepare a
Request for Proposal. The RFP was submitted to
approximately ten (10) firms and in December of 1968,
Bunker Ramo was chosen by the N ASD to be the
NASDAQ System operator.

In the middle of 1968, however, concurrently with
early NASDAQ developments, the National Security
Traders Association selected Bunker Ramo to imple
ment a quick and inexpensive solution to the OTC
quotation problem. This led to the implementation,
in February of 1969, of the STAQ System, an acronym
for Security Traders Association Quotation System.

The STAQ System concept was to designate one
market making firm for each OTC security and allow
that firm's market maker to maintain a current quota
tion for the security. Market makers were asked to
submit their quotations on a IS-minute schedule, but
because of lack of incentive and for many other reasons
many times, quotations were not kept current, and
therefore, competing firms would not conduct business
at the ST AQ quotation price. While not the real
answer to the OTC problem, the ST AQ System did
provide an improvement over the prior "Quotation
by-Telephone" approach.

1010 Fall Joint Computer Conference, 1972

The main difference between STAQ and NASDAQ
is that under the STAQ concept only one firm repre
sents a security, whereas under the NASDAQ concept
all authorized market making firms are allowed to
enter quotations in a security and make these quota
tions instantaneously available to all OTC traders.
This concept of the NASDAQ System not only forces
market makers to keep their quotes current and honor
their prices, but also has resulted in better trade execu
tions.

IMPLEMENTING THE NASDAQ SYSTEM

In December of 1968, after the signing of the agree
ment with the NASD, Bunker Ramo began forming a
design team to implement the NASDAQ System. Al
though the contract contained basic requirements,
there were many unresolved details that had to be
explored and checked. It was a new concept, and no
one knew exactly how the subscribers would use it,
or what effect the system would have on doing business
in the OTC market. After four (4) months, representing
40 man-months of countless meetings with the NASD
and potential customers, the Functional Specifications
for the system were completed. After an elasped time
of 25 months and the expenditure of approximately
100 man-years of system and programming and hard
ware design effort, the NASDAQ System went fully
operational, serving an initial population of over 1,100
terminals in over 700 offices nationwide.

The project group

A Project Group, within Engineering, was formed
and assigned overall responsibility for project planning,
scheduling, coordination, and implementation. The
group consisted of a Project Director, an Administra
tive Assistant, a Systems Manager, a Programming
Manager, and their staffs. The group functioned as a
team with a common objective. Systems and pro
gramming personnel worked hand-in-hand to analyze
each task and establish approaches. There was not the
formality of Systems, alone, preparing a design specifi
cation and handing it over to Programming for imple
mentation.

Liaison with the N ASD was handled through the
Systems Group, which also acted as arbitrator and
final decision maker on internal discussions.

A 200-page design specification detailing system
inputs, processing actions and rules, and system out
puts was the result of some 40 man-months of team
effort working with the NASD. This document, with

the concurrence of the N ASD, became the bible for
the design effort which followed.

The Project Group handled, in addition to Systems
and Programming, vendor evaluation, processor selec
tion and acceptance testing, site layout, power fallback
selection and checkout, broker surveys, .modem evalua
tion and selection, specifications, and checkout of
Bunker Ramo designed terminal equipment and the
coordination of Manufacturing and Field efforts.

Most systems personnel had previous involvement
in other Bunker Ramo on-line real-time system imple
mentation and had background in Logic Design, circuit
design, communication techniques, and programming.

Programming was subdivided into four groups: On
Line, Off-Line, File Maintenance, and Recovery. Key
senior people with previous on-line real-time involve
ment with Bunker Ramo systems headed up these
groups working under the Supervisor and a Program
ming Manager. Again, this was a group which worked
together to establish approaches, and iron out problems.

When the Project Group was formed in December,
1968, it consisted of seven Systems, and four Pro
gramming personnel. This grew to a peak of ten Sys
tems and 35 Programming personnel. Console Operators
and Keypunch Operators were brought on, starting in
October of 1969, and totaled ten at cutover.

Monitoring the Project

A two-year implementation schedule was established
and laid out on a milestone chart, which was reviewed
first on a monthly basis; and at crucial points, on a
weekly basis. Review sessions included Department
Vice-Presidents, Group Managers, and Directors.
Weekly progress reports were prepared for manage
ment on each aspect of current activity. Each major
activity was assigned a category, which in turn, was
further subdivided into items. Labor, material and
other disbursements were booked by category and
item, and a detailed report, by cost center against
this category litem list was prepared monthly by Ac
counting.

Budget preparation and monitoring was a responsi
bility of the Project Group.

SYSTEM SERVICES

In designing the NASDAQ System, we have there
fore, attempted to address the problems that have been
basic to the Over-the-Counter JVlarket since its be
ginning. The main problem is one of visibility: (1) by
the market maker of his competition and of their cur-

Level 3
Market Maker

News Requests
Quote Requests
Indices Requests
Volume Requests
Quote Requests
Volume Updates

Level 2
Traders

News Requests
Quote Requests
Indices Requests

Levell
Distributors

RBA Prices
Indices

Figure I-NASDAQ services
Levels I, 2, and 3

rent prices; (2) by the retail trader of those market
makers willing to buy or sell securities, and at what
price; and, (3) by the general public as to security
prices, trading volumes, and stock indices. Last, but
certainly not least, visibility is important to the NASD,
the self-regulating body of the OTC industry, to
enable it to supervise the activities of its membership
in security dealings.

The NASDAQ System provides the following ser
Ices:

Level 3 service to Market Makers: (Figure 1)
a. Quote Request (Bid or Ask)
b. News Request
c. Indices Request
d. Quote Update
e. Quote Withdraw
f. Quote Re-Open
g. Quote Close
h. Volume Update and Read

Figure 2-Bunker Ramo Levell terminal

NASDAQ 1011

Figure 3-NASDAQ Level 2 and Level 3 terminal

Level 2 service to Traders:
a. Quote Request (Bid or Ask)
b. News Request
c. Indices Request

Level 1 Service to Quotation Distributors:
Representative Bid/ Ask (RBA) prices, as

calculated by the system based on all market
makers in each security are fed, as they change,
to Bunker Ramo, Scantlin, and Ultronics, the
three (3) major quotation distribution vendors.
Included also are indices calculated at five (5)
minute intervals.

Levell service is obtained typically through
a Bunker Ramo Telequote III terminal, (Figure

• Representative Bidl Ask Prices
• Indices
• Volume
• Daily Market Summaries
• Recaps (Weekly, Monthly, Yearly)

Figure 4-NASDAQ Services
Newspaper IN ewswire

1012 Fall Joint Computer Conference, 1972

2). Level 2 and Level 3 service is supplied only
through NASDAQ terminals (Figure 3).
Services to Newspaper and N ewswire Firms:
(Figure 4)

Hourly transmissions to the newswires, AP
and UPI, carry the latest RBA prices on all
securities along with indices. Day end trams
missions include volume on each security, based
on the Market Maker reports.

Newspapers are provided with hard copy
print out of the same information supplied to
N ewswire Services, at the N ew York Concen
trator.

Not to be overlooked are the Supervisory
Terminals at the NYC and Washington, D.C.
offices of the N ASD. From these terminals, the
NASD has supervisory control of the system
with full control over the market makers and
securities in the system, and all aspects of sys
tem operation.

The system has many surveillance features
built in, and daily generates a report on broker
activities measured against various parameters.
This report is transmitted to the N ASD and
printed in their office each morning prior to
commencement of trading.

Weekly, Monthly, Yearly, and Special re
ports are all generated by the system, based on
data captured daily, as each and every call
entering the system is logged along with all
internally generated data, including RBA prices
and indices.

SOME ASPECTS OF SYSTEM PLANNING

Since an OTC quotation service was only the first
phase of automation planned by the NASD, the pro
cessor selection and the system design had to be geared
to both present and future needs. In the more im
mediate future was the plan to include Trade Reporting,
Comparison, and possibly some phases of clearing.
Phase I traffic handling and response time require
ments were closely reviewed. Initial RFP requirements
were stated as requiring the handling of approximately
29 calls per second, four (4) to five (5) years out into
system operation; these objectives were drastically
revised in the early stages of system specification, to
call for handling approximately 200 calls per second
in the second and third years of operation, with plans
for increasing traffic handling capacity beyond that
point.

A review of existing large scale processors, with
emphasis on multi-programming, multi-processing,

recovery capabilities, communication handling, fast
access storage and reliability led to the selection of the
Univac 1108 as the processor for the Central Processing
Complex.

Since the system must serve brokers nationwide,
communication line costs and communication polling
loads were factors that were foremost in our considera
tion.

An analysis of communication line costs for the ex
pected customer distribution indicated the need for
remote concentrator points to serve customers in a
region and to feed a central site via high speed line
facilities.

Future prospects of after-hour batch operations at
strategic centers, scattered nationwide, along with the
need to de-centralize the communication polling load,
led to the selection of a G.P. machine to serve as the
remote Store and Forward concentrator. A Honeywell
DDP-516, coupled with Bunker Ramo's own design
communication front end, provided the capability to
handle up to 64 polled full duplex synchronous, or
asynchronous regional subscriber lines, and two (2)
full duplex, concurrently operative trunk curcuits, at
speeds up to 50,000 bits per second.

Subscriber equipment, including CRT's and key
boards designed to meet the users needs, along with
terminal control units capable of handling up to 24
terminals and a variety of peripheral devices and
options had to be designed, built, and installed. While
this might seem a sufficiently difficult task to tackle,
we had to include concentrator site selection prepara
tion and installation, along with the design and con
struction of a new Computer Center, including a fall
back power source.

The system, now officially in operation since February
8, 1971, consists of a Central Processing Complex at
Trumbull, Connecticut, housing two (2) Univac 1108's
working under Exec-8 in a multi-processing, multi
programming environment. The hardware complex
(Figure 5) consists of two (2) processors, three (3) 65K
word core banks, one (1) of which is for fallback, two
(2) dual access drum subsystems each handling two (2)
432 and two (2) 1782 drums, two (2) dual access tape
subsystems with eight (8) tape drives, two (2) com
munication interface subsystems, and two (2) 9300
processors, each supporting a card reader, card punch,
and line printer.

The hardware and recovery techniques were con
figured to insure that the system met the required
reliability objectives, which included a maximum down
time of ten (10) minutes per week and three (3) hours
per year. To further protect against outages due to
commercial power failures, or brown outs, the Center

Figure 5-NASDAQ data center

houses a 400 KV A Uninterruptible Power System with
battery interim fallback, supported by a 1,000 KW
turbine driven generator, fed from a 20,000 gallon
supply of fuel oil, allowing the Center to be self-sufficient
for nearly two (2) weeks without refueling.

Connecting the Center to the system's four (4)
store-and-forward concentrator locations in a network
of high speed, full duplex data circuits ranging from
7,200 bits per second to 50,000 bits per second, (Figure
6). Two (2) circuits connect the Center to each con
centrator location. Traffic is handled concurrently on
both circuits to utilize their available capacity and

•• IlETIUEVAL

--BU'TMO

NASDAQ

Figure 6-NASDAQ communications network

NASDAQ 1013

continually monitor their quality. Software and hard
ware techniques are used to monitor line faults and
error rate levels. In the event of trouble occurring on
one (1) of the two (2) circuits feeding a concentrator,
all traffic is routed to the good circuit and, if necessary,
a backup line is dialed up until full service is restored.
Trunk line speeds were increased from 4,800 bits per
second to 7,200 bits per second and will continue to
be increased to insure sufficient capacity, even on a
single line during fallback.

Concentrator sites are equipped with multiple sets
of hardware, all actively handling a share of the com
munication load, but configured to allow switching of
regional lines from a down machine to an active unit
with a negligible transfer time. Concentrators may be
loaded either locally from paper tape, or remotely via
communication circuits from the 1108 complex as a
result of a load request, thus minimizing recovery
times. Concentrators act as store and forward units at
present, but can be upgraded to Data Base concen
trators in the future to dead end quote request traffic
from subscribers, which is now running 20 times more
than update traffic. This would relieve a significant
load from the CPU, allowing it to take on other tasks.

lVIEETING THE OBJECTIVES

Let us consider some factors that have helped the
NASDAQ System meet its objectives:

1. Prior to cutover, the system was subjected to
a stringent functional and traffic test, both
automated, wherein the system was driven from
without, as opposed to simulated internal test
ing.

An extensive scripting effort produced some
12,000 query response frames encompassing the
full range of data variations, valid and invalid,
which live operation could bring.

A separate test processor complex simulating
broker's hardware was connected in normal
manner to the NASDAQ System via an operating
concentrator. Calls were manually entered
through the system and if handled properly,
were logged on magnetic tape by the test com
plex. Design problems found were corrected in
the process. When completed, we had a tape
containing queries and proper responses, which
could be played back at any time through the
system to validate system integrity after new
assemblies or program changes. The test com
plex, when run, verified all responses and
printed out any deviations. This approach

1014 Fall Joint Computer Conference, 1972

allowed us to simulate several days of system
activity and to verify not only the on-line
actions, but also the after-market report genera
tion, based on a known set of inputs.

Also designed were special traffic generator
programs for a separate test processor complex.
The output of this complex was 32 communica
tion lines, which were connected to a normal
concentrator's regional line interface, thus
simulating customer activity on all lines, thereby
checking out the concentrator programs and
the traffic handling capability of the concen
trator and the Central Site Complex.

One additional set of programs was designed
to replace the normal application program, in
any concentrator, to allow it to generate back
ground traffic into the system when conducting
response time tests. In this testing phase, some
20 operators, in a simulated broker's complex,
inputted calls into the system against back
ground traffic generated by all remote concen
trators. Response times were automatically
registered on special counters attached to each
operator's terminal.

2. Communication monitoring technique on both
the trunk and regional circuits have insured
quality of facilities by early warning of troubles.

3. Preventative maintenance and redundancy of
CPC and concentrator hardware have mini
mized down time.

Many enhancements have been, and are being,
put into the NASDAQ System to supplement
both broker and N ASD supervisory functions.
As a result, the maintenance programming
group has been continuously involved in imple
menting changes, thus keeping their level of
knowledge high, and allowing them to better
handle problems in normal system operation as
they arise. .

Once a month, after system shut down, the
Console Operators hold a refresher session, in
which operating and recovery procedures are
reviewed. During these sessions, hardware
faults are injected into the system, to test the
operators on recovery and reconfiguration pro
cedures.

4. Fast response time has been achieved by:

a. Allocating high activity securities to a core
resident dictionary and fast access drums.
Lower activity securities go on slower drums
and drum resident dictionaries. This alloca-

tion is an automatic file maintenance func
tion.

b. Drum files are direct addressed, as opposed
to normal indirect addressing.

c. Quote request calls access either a primary
record or a secondary record, depending upon
the respective queue lengths at the time for
the data sources.

d. First frame responses are modified as re
quired, by updates and stored on drum ready
for transmission in final form. Frame #2
and beyond are compiled, as needed. Since
all requests are for a minimum of frame #1,
this procedure reduces processor occupancy.

e. Multi-processing and tasking allow up to
seven (7) calls to be in some stage of pro
cessing at anyone time.

f. Nested polling and priority reinvite schemes
used with the regional multi-drop sub
scriber lines tend to equalize what would
otherwise be an imbalance between transmit
and receive line traffic.

g. Univac supported Exec modifications, along
with the Availability Control Unit, provide
35 second completely automatic program
matic drum re-boot of the Exec and Applica
tion programs in the event of a program fault
or loop.

h. Periodic file snapshots logged to tape, coupled
with the on-line generated tape log of all
calls coming into the system, provides for a
second level of recovery.

DUPLICATE TRUM CIRCUITS' 4800BPS

~:~~L --r--~---r--+t--~
CIRCUIT·
1600BPS

SUIlSCll18ER N SUBSCAlllER 2

THE NASDAQ COMMUNICATIONS NETWORK

TRUMBULL ,CONN.

Figure 7-NASDAQ block diagram

The NASDAQ System has been operative officially
since February 8, 1971. The daily call rate has grown
from approximately 300,000 calls per day at startup,
to approximately 1.2 million calls per day currently.

The system is currently serving approximately
1,500 terminals in over 1,000 brokers offices. These
are the Level 2 and Level 3 terminals in OTC Trading
Offices. Indirectly, through Level 1 quotation dis
tributors, such as Bunker Ramo, Scantlin, and UI
tronics, approximately 40,000 additional on-line ter
minals are supplied with representative Bid/ Ask
quotations out of the NASDAQ System.

We are currently experiencing traffic rates of 75 to
100 calls per second during the peak of market activity.

The system now handles over 3,400 securities, in
cluding over 100 third market listed issues, from five
(5) exchanges.

The system has just recently been opened up to
serve non-NASD members with Level 2 service. This

NASDAQ 1015

market area primarily covers the large individual and
institutional investors.

With Phase I having established itself in the OTC
community, interest is now turning to future possi
bilities for use of the system. Under discussion now
with the NASD, are plans to incorporate into the
system some phases of trade reporting, with tie in to
clearing operations.

Tie-ins with regional exchanges on a pilot basis have
already begun with the Philadelphia, Baltimore, Wash
ington and National Exchanges.

The NASDAQ System, with its flexibility and nation
wide communication complex, has stirred the imagina
tion of the entire brokerage industry.

The visibility gap in the OTe marketplace has been
bridged, and in doing so, the ground work has, we feel,
been laid for future and even more encompassing
changes and improvements in visibility and trading
approaches for the entire brokerage industry.

The Weyerhaeuser information systems
A progress report

by J. P. FICHTEN

Weyerhaeuser Company
Tacoma, Washington

Just as every company is unique, so too is the require
ment for information to operate the business effectively.
For this reason, Management Information Systems can
not be directly transferred from one business to another.
However, the experiences, conquests or "well dones",
and pitfalls or errors of one company can serve as
guidelines to another in providing Management In
formation Systems capability to their unique business.

In the 1950's, and early 1960's, Weyerhaeuser was
aptly characterized as the "sleeping green giant".
Business was good, but there were ominous clouds on
the horizon. It was determined in 1963, by the board
of . directors, that Weyerhaeuser should be a growth
company. At the same time, it was decided to guard
against explosive unplanned growth. The key leverage
points of healthy growth were identified as improved
business planning, better utilization of financial
strengths, and the development of management capa
bilities.

The objective to expand management capabilities
led to programs for management education, formal plan
ning processes, ,use of management science, and systems
and data processing.

I'll concentrate today on the systems and data pro
cessing effort. In 1962, there was some EAM processing
being done in accounting shops at the headquarters and
some of our field locations. We had a data communica
tions system which was transmitting punched paper
tape from one location to another to speed up the pro
cessing of orders.

Outside of the EA1V[shops and the small exposure to
communications capabilities, there was little familiarity
on the part of management with systems or data pro
cessing concepts. On the other hand, there was a con
viction on the part of the president that we had to get
involved with computers if we were to be a growth
company.

In 1963, George Weyerhaeuser, the head of the lum-

1017

ber division, initiated a study by a team composed of
lumber division line management and outside consult
ants. The purpose of the study was to determine how
systems and computers could be used to improve the
lumber division's handling of business transactions
and management capabilities. The study concluded that
the existing information system was too slow, lacked the
information storage and retrieval capabilities required,
and was too costly. The study team recommended a
computerized approach to handling orders and basic
production and accounts data, and to provide all levels
of division management with timely information neces
sary to make sound business decisions.

Specific recommendations were that they build an
integrated MIS for the Wood Products business, utiliz
ing an on-line integrated database for orders, inventory
information, product information, and customer data.

As a result of the study, a systems director was estab
lished during the initial phases of detailed specification,
and representatives of the three major business func
tions (manufacturing, marketing, and finance) were on
the team. The team also included a technical director
to solve the pure system problems of detail specifica
tions for systems and hardware, file design, and pro
gramming. Later, when the computer was received, a
computer center manager was added to the team.

This system was conceived as a communications
oriented data processing system with Wood Products
locations scattered throughout the United States,
communicating to the computer from Plan 137 A tele
type terminals and receiving information from the
computer on a teletype output device.

The computers used were General Electric 235's and
Datanet 30's. Special programming was required in
both the communications processor and in the main
frame to provide the capabilities required by the com
pany. This was done with relatively low resource re
quirements in a relatively short time. I'd like to inter-

1018 Fall Joint Computer Conference, 1972

ject a comment here, that the high measure of success
for the minimum amount of resources led us into a trap
as we approached the next phase of our systems effort.

Once the Wood Products systems were running, the
order processing time dropped from two weeks to two
days or less. The visibility of our order position and the
market improved, we were able to react promptly to
rising or falling markets, and our shipping delinquency
rate dropped. The success of the system and the large
benefits received by Wood Products were well publi
cized within the company.

By 1966, managers in other phases of the business
were heavily interested in getting a computer system
like Wood Products for themselves so that they, too,
could reap these benefits. At this time, a key decision
was made to centralize the major computer facilities
within the company, and to establish corporate control
of the data processing functions within the company.
Incentive for this was the capability of developing a
common corporate database of information required
to run the businesses. Cross functional files were also
visualized as sources of information for management
dec13ions in all facets of the business.

At this point, we went into Phase II in the develop
ment of Management Information Systems within the
company. In 1966, there was no facility on the market
to perform the functions required of a large computer
system operating with a large common database. A de
cision was made to proceed with software development
which would give us an operating system with the
necessary capabilities, a highly sophisticated communi
cations systems for processing both messages and data
with restart and recovery capabilities as an integral part
of the total configuration. The decision was made to
proceed with the WEYCOS operating system as a joint
development of the General Electric and Weyerhaeuser
companies to provide these capabilities based on the
success of the G235 project.

At that time, the operating system available from
General Electric was GECOS-II. This was the nucleus
upon which WEYCOS had to be built. WEYCOS was
to have the features of input/output device indepen
dence, large database capacity, concurrent database
usage, database recovery for aborted jobs and hard
ware. failure, user transparent system restart, transac
tion processing via process codes, job scheduling and
selection tailored to meet the needs of the business,
passive message capabilities, and minimal operator
intervention during the operation of the business day.
WEYCOS was to operate in conjunction with a sophisti
cated communications network, which would be sup
ported by communications processors with customized
software.

Perhaps a brief explanation of what is included in

WEYCOS, its outstanding features, and some of its
pitfalls, might be appropriate.

WEYCOS is used as the exclusive operating system
on one of our four GE-635 computers. The configura
tion of that system is as follows:

• 1-GE-635 processor
• 1-IOC
• 256K of memory
• 5-dsu 270 file electronics with 25 storage units
• 8-60KC tape drives
• 4-120KC tape drives
• I-card reader
• I-card punch
• I-printer
• 2-Datanet 30's interfaced to the communication

network.

The communication network consists of Western Un
ion plan 137 A dedicated circuits supporting the follow
ing:

• 31 circuits @ 10 C.P.S.
• 10 RO model 35 TTY's
• 81 ASR model 35 TTY's

WEYCOS is an operating system designed to control
the execution of on-line and batch processing jobs on
GE-600 line equipment.

The operating system provided by GE at the time
WEYCOS development began in 1966 was capable of
local. batch operation only. Remote batch capability
was in the process of being developed but was not
available. Weyerhaeuser's data processing needs far
exceeded the abilities of the standard operating system.
So a joint development was undertaken to provide an
operating system that would satisfy the needs of Weyer
haeuser Company and at the same time allow a com
puter manufacturer to gain experience in development
of oper.ating systems designed to utilize a large data
base.

The standard operating system provided by GE at
that time was called GECOS-II; the jointly developed
one is called WEYCOS which stands for WEYerhaeuser
Comprehensive Operating Supervisor. This new system
was an extension of the standard rather than a replace
ment. Under the WEYCOS concept, the main com
puter is just another station in a nationwide teleprocess
ing system. It has a station code and messages (JOBS)
can be addressed to it just like any other station.

Some of the extended features include:

• A large central database (maximum size 16 million
pages of storage with 1920 characters per page).

• Simplified job submission procedures-fewer con
trol cards.

• Automatic restart and recovery of the database for
protection against erratic user modification and/or
system malfunction.

• Automatic job scheduling-at a certain time each
day, etc.

• Automatic restart of programs making users un
aware of system problems. (To effect absolute
database integrity.)

• Data collection features-data, submitted as mes
sages, is collected until needed for processing.

• COBOL and FORTRAN language extensions al
lowing users an easy method of reading and writing
messages to and from the teleprocessing system.

• Monitoring capability greater than normally avail
able to the computer operators via the console
typewriters.

• Interface with a store and forward message switch
ing system.

• Extended Integrated Data Store (IDS) processing
capability to allow simultaneous access and update
of database files.

These concepts, techniques, and operational methods
must be thought of from a 1966 point of view. Some
manufacturers provide some of these capabilities today;
nobody did in 1966.

Characteristic of WEYCOS is the existence of a multi
programming uniprocessor environment, a full comple
ment of peripheral types, including a large database on
disc, multiple programs in memory simultaneously,
remote terminal capability, and elimination of external
input/output queues through a centralized control
structure.

WEYCOS is organized into several logical elements;
they are:

• Control Structure
• Database Management
• Restart and Recovery
• Input Media Conversion
• Monitor
• Allocator
• Program Dispatcher
• Termination
• Output Media Conversion
• Integrated Data Store (IDS)

Each module, although functionally independent,
interfaces with other modules. The more frequently
used elements reside permanently in memory, while
less frequently used sections are called from disc storage
and temporarily used as needed.

The Weyerhaeuser Information Systems 1019

As each message, in user terminology called a "JOB",
is presented to the system from a Datanet or local card
reader, its presence is recorded in the Control Structure
for use in subsequent job selection. During execution,
an activity interfaces with the Dispatch module of
WEYCOS which, as necessary, accesses other parts of
WEYCOS. After an activity is executed, it is processed
by the Termination module for any necessary post
processing. Peripherals and memory that were assigned
to that activity are de-allocated, and the activity leaves
the system, usually sending a response to the Datanet.

During activity execution, the system allows common
access to database files with full user and hardware
malfunction recovery. This is accomplished by the
Database Management module interfacing with the
Restart and Recovery module on· behalf of the user
program.

WEYCOS maintains internal control over jobs in
execution and awaiting execution through a queuing and
storage system called the control structure. The control
structure is stored in memory and on disc. It contains
dynamic information concerning jobs in the system, and
static information describing system resources, resources
required to run ~ach job, response time, and business
priority of each job.

The Control Structure Manager (CSM) performs
several functions. When system resources are available
and jobs have been queued preparatory to execution,
CS]V[reviews the list of available jobs versus available
resources to determine which jobs can be placed in
execution. If the system is on schedule, CSM selects
jobs for execution in the sequence. of their requested
start times. If the system is behind schedule, CS1VI
selects by sequence of requested start time within
business priority, starting with the highest business
priority.

A job terminates in one of two ways-either by nor
mal termination, if it completes execution without en
countering errors, or by abort termination in the event
that errors are detected during its execution. In either
case, Recovery and Restart gains control, performs
some processing, and then passes control to CSM. At
this time, it can release the resources that have been
utilized by the job during its execution and consider
these for reassignment to other jobs not yet in execution.

The primary function of the Data Base Manager
(DB1Vl) is to coordinate access to database information.
DBM performs all database operations in terms of
physical units of information called pages. Each group
of pages (i.e., file) is called a Page Set, and as such is
controlled by a Page Set Manager (PSM). An example
of a PSM is the Integrated Data Store (IDS) executive,
which we will discuss later. Each PSM is responsible
for the organization of information within its pages. All

1020 Fall Joint Computer Conference, 1972

communication between DBIVI and the PSl\;f's refers
to page num~ers within a Page Set.

Centralized control of the database has several ad
vantages. DBIVI controls the distribution of pages across
available hardware by means of a mapping function.
This function consists of a number of algorithms used
to convert page number within page set to a physical
device address. Mapping algorithms can be easily
changed; in fact, this was the major change required
within WEYCOS in order to substitute DSU-270's for
the previously used disc devices.

DBl\;f also provides protection against database hard
ware malfunction. If requested by the PSl\;f, it records
the contents of each updated page on magnetic tape
(after alteration image) as well as on mass storage. If
any area of mass storage is unreadable or cannot be
written on, DBl\1 automatically invokes the appropri
ate recovery actions, so that the system user is unaware
of the failure.

If a program in execution commits an error which is
detectable by the hardware or the operating system,
this program will be placed in a bypass status if it is a
production job, or removed from the system with ap
propriate notification to its originator if it is a test job.
In the former case, if the job has been referencing a
production database, the contents of the database will
be restored to its condition prior to the execution of the
malfunctioning program at the time its failure is de
tected. If the failure of the program is thought to be
due to an intermittent hardware failure, it may then be
rerun at manual option. In any event, the database will
have been protected from erroneous modification or
multiple modification in the event of rerun.

The Recovery and Restart (R&R) function within
WEYCOS is intended to protect the system against
detectable hardware and software malfunction. R&R
will restore the database if a slave program which up
dated it aborts. This is the most common type of failure,
and the R&R function is necessary to preserve the in
tegrity of the database. This type of recovery does not
affect the system as a whole, except that other data
base jobs are temporarily suspended while the recovery
takes place.

Another function of R&R is to recover and restart
the entire system, rather than a single slave job. Re
start is responsible for recovering the control structure
to a point known to be correct, reestablishing any re
mote traffic which was in process when the system came
down; initiating slave database recovery, and reschedul
ing all slave jobs which were in process. Except for tape
mounting, restart is done automatically.

The Input Media Conversion module reads the job
from the input file that was preprocessed, generates
control tables to be used by the Allocation module, and

stores the job into its queues. The control cards are
uniquely identified by a $ symbol in the first column
and a system control word in columns 8 through 13.
Through the interpretation of the control cards, Input
l\1edia Conversion creates files on disc for the many
activities within the job, and channels pertinent in
formation into tables for the use of the Allocation
module.

When presented to the- Input Media Conversion
module, each job is considered to consist of one or more
dependent activities. Allocation is based upon the indi
vidual activities of a job, and Input l\;fedia Conversion
segregates these activities and presents them in an
ordered manner to the Allocation module.

The Allocation module of WEYCOS performs the
scheduling and allocation of peripheral devices and
memory for each individual job activity. The scheduling
algorithm of the Allocation module provides a practical
foundation for initiating multiprogramming. The func
tion of the Allocation module is governed by five guid
ing principles:

1. No peripheral device or storage is assigned to an
activity until all the peripheral requirements for
the activity can be satisfied.

2. No job activity is initiated until all preceding ac
tivities are completed.

3. Look-ahead through job activities for peripheral
allocation.

4. An urgency criterion permits delayed activities
to get first consideration each time allocation
occurs.

5. The scheduling algorithm encourages an efficient
blend of processing and input/output activities
so that delays attributable to setup are mini
mized.

The Allocation module utilizes information files gen
erated for each activity by the Input l\;fedia Conversion
module. One file is the Allocator Table, which is a core
table providing immediate reference information to the
Allocation module. A second file is the Control Stack,
which is a disc file containing complete peripheral re
quirements, operator instructions, core storage, and time
limits, and the activity definition.

As each activity is considered, the Allocation module
scans the Allocator Table to determine the gross periph
eral requirements for that activity. If the requirements
are met, specific peripherals are allocated and instruc
tions are issued to the operator from information con
tained in the Control Stack. This technique allocates
peripherals to activities in advance of execution, as de
termined by available peripherals, thus allowing opera-

tors to perform preparatory functions (such as mount
ing tape reels) while prior programs are in execution.

When the assigned peripherals are ready and sufficient
memory is assigned to the activity, the Allocation
module initializes the program and assigns the activity
for in-process IVlonitor control.

The order of job allocation or scheduling is based
upon a dynamic urgency concept. Initially, jobs are
processed by the Allocation module as they are pre
sented by the Input Media Conversion module; how
ever, each time that a particular activity is scanned in
the Allocator Table and its gross peripheral require
ments cannot be met, the urgency of the job is incre
mented. When a threshold of urgency has been passed
(that is, the urgency value has exceeded a predetermined
limit), the entire job assumes maximum urgency and
no other jobs receive consideration for allocation until
the urgent job requirements are filled.

In summary, Allocation as described satisfies the first
four principles listed at the beginning of our discussion
on allocation. Regardless of the mix of processor-bound
and input/output-bound programs to be processed, the
Allocation module will attempt to assign components
for complete utilization of the GE-635 system, thereby
facilitating the achievement of effective multiprogram
ming.

The Monitor oversees the execution of each activity.
I ts functions include:

• User communication with WEYCOS.
• Processor-detected fault interpretation.
• Control of Master mode entry from job programs.
• Policing of the WEYCOS memory overlay area.

The user and operator interface with WEYCOS is
performed under the Monitor module control. Operator /
WEYCOS communication via the input/output type
writer is a function of IVlonitor.

The Monitor interprets the various fault conditions
that can be detected by the Processor. In cases where
the fault is of the type that can be recovered by the user
program, the Monitor module allows user-provided
routines to' be substituted for WEYCOS fault routines.
These routines can be activated by the user through
a fault vector.

Master mode entries are also translated by the Moni
tor. The result of an entry translation causes the
Monitor to call upon other WEYCOS modules and
routines.

The least used of the routines are not permanently
stored in the WEYCOS reserved storage, but are con
tained in disc storage and, as needed, brought into an
overlay area of the WEYCOS memory which is policed
by the Monitor module.

The Weyerhaeuser Information Systems 1021

Monitor also contains the system loader that is used
to call system programs as required to process jobs pre
sented to the system.

Individual activity and overall job termination is
initiated by the Monitor module either at job program
request or whenever it is determined that an activity
must be removed because an error was detected. A
portion of the Termination module is an overlay that
is brought in from disc and placed into the memory area
reserved for the use of the Termination module. Termi
nation provides these functions:

• Provides a postmortem dump if the termination
was requested via a forced termination condition.

• Communicates with the operator for the removal of
files when needed.

• Closes the systems output file.
• Summarizes the output file information for Output

Media Conversion.
• Produces an accounting record on the systems out

put file.
• De-allocates peripherals.
• Deletes appropriate Input/Output Supervisor, Dis

patcher, and Allocator Table entries.
• Forces database activity completion (normal and

abnormal).
• Deletes control structure reference to terminating

job.

When these functions have been accomplished, a
transfer of control to that portion of Termination that
resides in permanent WEYCOS storage occurs, where
core storage is compacted. This is made possible
through the use of the Base Address Register which
makes all programs dynamically relocatable. After com
pleting these tasks, the Termination module relinquishes
control to the Allocation module for reallocation of the
released peripheral devices and memory.

The Integrated Data Store (IDS) is implemented as
standard software for the GE-625/635. The form in
which it is normally available, however, is not suitable
to perform the multiuser/multiaccess type of operation
required within WEYCOS. Hence, IDS has been ex
tended so as to fulfill the requirements of WEYCOS
users. The extensions made to IDS are:

• Multiple number of users are allowed to access and
modify the data store concurrently.

• Special locking features are provided to prevent
multiple users from making concurrent reference
to the same data within the database. If not prop
erly controlled, such references could cause incor
rect results.

1022 Fall Joint Computer Conference, 1972

• A method of operation referred to as "test mode"
is provided to simplify IDS program testing in this
environment.

l\10des of operation for IDS jobs in WEYCOS:

Q-l\10de-Read from possibly changing file.
R-l\10de-Read from unchanging file.
P-l\10de-Protect against concurrent updates. (Al-

lows multiple users to modify concurrently
the same file.)

X-Mode-Exclusive access to the file.
T-Mode-Test mode changes are made to a scratch

file. The accessed file remains unmodified.

This operating system was designed to provide a
large corporate database capability. The needs of all
operating divisions were to be met. Size was the first
limiting factor. It was increased significantly. l\1uItiple
users of the database were also necessary. This is pro
vided by special modes allowing users to specify if
multiple users (at the same time) are allowed. Auto
matic restoration (of the database) to a known state
in case of abnormal termination is also a must as files
cannot be left in an unknown condition.

Remote teletypes used for inputting orders cannot be
expected to follow the normal job submission proce
dures. These terminals are usually operated by clerks
and use the same program many times a day. To facili
tate this type of operation, the control information re
quired by the system to start a job is stored within the
system. It is accessed by a trigger called a process code
and the data. The system uses the process code to tie
to program records which contain pointers to program
and job control stacks. Program records contain in
formation on computer resources needed to execute this
job. Station records describing every station known to
the system are provided to simplify programming.
Users address the desired station without worrying
about whether it is a 33 or 35 teletype, a GE-115 com
puter, a GE-400 or GE-600computer. The operating
system prepares the output the way the specific terminal
needs it. The user does not have to worry about folding
lines, special slew characters, speeds, .etc. This is very
useful when special forms are used in certain teletypes
for orders, shipping reports, inventory, etc.

l\1any business applications have a specific cutoff
point every day. Shift changes are an example.
WEYCOS has the capability to automatically start
jobs so that they are finished or started at a certain
time. The cutoff times are known to the system through
process records which are user-supplied and perma
nently reside in the system. Along with this, end-of-day

techniques are provided. There are two types: logical
end-of-day from the operator's point of view, and
business end-of-day from a user's point of view. Busi
ness end-of-day can be started whenever wanted, i.e.,
shift changes, office closure, etc. This is necessary to.
know where you are in round-the-clock operations.

Large computer systems are very complex interac
tions of hardware and software. This is further compli
cated by communication lines which aren't as precisely
tuned as computer hardware. Errors, faults, and prob
lems do occur. When troubles do occur, the programs
in execution either stop or produce unpredictable re
sults. Users cannot afford service interruptions. A large
part of the WEYCOS system is concerned with auto
matic recovery and restart. This restart must be in
visible to users. They want their jobs processed and do
not even want to know about system problems, much
less have to worry about them.

To accomplish this, snapshot pictures of the system
are periodically taken and recorded on magnetic tape.
They are taken at specific time intervals, i.e., three
minutes or when significant events happen, i.e., certain
on-line processing functions occur. Then, if the system
fails, it can be rolled back to a known point and re
started.

l\1any business computer applications process data
collected over a period of time. WEYCOS provides
the capability to accumulate data for use later. All
entities "flowing" through a WEYCOS network are
called messages. These could be administrative from
one teletype to another, jobs addressed to the computer,
or just data. Jobs addressed to the computer are called
active messages. These can be complete job stacks (all
control cards included) called indirect jobs or the
trigger-data type called direct jobs. Data only, ad
dressed to the computer, is called a passive message. It
is collected and journaled until called for by a processing
program. This is especially useful in collecting data on
equipment p~rformance. Programs themselves can
generate active and passive messages (i.e., spawn jobs).
This makes an easy way to count the number of times a
certain program is executed per time period.

To enable programmers to use the new features and
capabilities of WEYCOS, COBOL language extensions
had to be provided. These were primarily in the areas
of database operation and message file accessing. Stand
ard GE software includes a package to handle a ran
domly stored database. This package was modified to
allow a larger size database, and concurrent users under
special conditions.

A system such as WEYCOS requires more than the
computer operators to monitor what is happening.
Recognizing this, a control function has been provided.

A teletype station serves as the monitor. A capability
called bypass is used to control the system load. All
jobs entering the system must have a process code. A
process code can be used by more than one user. If
trouble has been reported with a certain program, the
process code associated with it is put on bypass. Mes
sages (jobs) trying to get at that program are put on
bypass until the trouble is corrected. Then the process
code and messages are removed from bypass and can
become candidates for execution. This monitor is really
the stethoscope into the system. Message queues are
watched, output queues are counted, etc., helping to
ensure that the system keeps operating. This monitor
capability is also used to change program, process, and
station records. Thus, the operating system does not
have to be reassembled whenever changes are wanted in
some critical tables.

The ability of the WEYCOS system to initiate the
execution of programs on the advent of messages is
unique among general-purpose operating systems. It is
this ability which makes WEYCOS particularly well
suited for the on-line execution of Weyerhaeuser's busi
ness transactions. It is not feasible to expect the vast
majority of employees in large business to know or un
derstand programming and the peculiar set of rules and
procedures to submit programs to computers for execu
tion according to conventional methods. The ability of
WEYCOS to respond appropriately to messages repre
senting normal business transactions in normal business
oriented format enables any normal intelligent clerical
employee to utilize the system without undue or un
usual training or effort in performing his normal tasks.

The WEYCOS system is capable of executing up to
eight users' programs concurrently. This capability
provides for a high system throughput which in turn
should provide adequate facilities to handle the routine
data processing and normal business transactions for a
wide range of business activities. In addition, the system
contains special recovery features which protect the
database from being garbled due to malfunctioning
programs and prevents production jobs from being lost
in the event of malfunctioning hardware or software.

A computer controlled by the WEYCOS operating
system is available to all users connected on Weyer-

. haeuser's leased line network. The computer is tied into
the store-and-forward message switching network and
had a unique station code. Programs developed by the
central staff, in higher level languages (COBOL, FOR
TRAN) , can be addressed by users from any station.
Users can submit jobs to the computer to be run against
previously written programs or against programs sub
mitted with the job. Under WEYCOS, this is a batch
process, not conversational or time-sharing.

The ,Weyerhaeuser Information Systems 1023

With these thoughts in mind, it might be good to
review the performance of the WEYCOS system.

• Peak processing rates of 893 messages (JOBS) per
hour. These jobs are heavily IDS oriented running
in a multi-access database with full recovery capa
bilities.

• Downtime of less than 1 percent. (both hardware
and software).

• Average recovery time from a system fault is 12
minutes or less.

• Full automatic database recovery of 100 percent
for all the aborted application jobs.

• Periods as high as 27 days with no software or
hardware failures.

SUMMARY

WEYCOS is a success but also leaves us in a quandary.
We have what we consider the most advanced and
capable operating system available to us today. We are
in a position of continually answering the question from
our management, "Can't we get off of WEYCOS and
go to standard software?" The answer, from the users
of the system is always, "No". The users want and need
the capabilities and comfort factors that WEYCOS
provides.

We have looked for but not found a replacement. We
know it is coming but can't say just when. We feel we
are ahead of the field; we want to switch to vendor-sup
ported software, but will have to wait till they catch up,
although some vendors are getting close. In the mean
time, we are caught in the vise between costs to main
tain unique software and the availability of the capabil
ities the users require. For example, it is costing us about
$140,000 a year to support WEYCOS, if you include
memo billing charges for computer time.

So we come to the end of Phase III with some
uppers and some downers. What does the future look
like? Obviously we have learned our lesson the hard way
and as a result we have had to learn to plan our future
more.thoroughly. We've established the system planner
role as an integral part of the business planning process,
and to serve as a communications link between the
business and the systems organization.

We have established a Weyerhaeuser approach to
uniform system implementation, which calls for' review
and approval at various steps through the development
process by the business to insure that the business man
ager is getting what he thinks he is paying for.

The director of the Business Systems department has
established minimum standard configurations for com-

1024 Fall Joint Computer Conference, 1972

puters located remote from Tacoma to insure compati
bility and interchangeability between locations. In ad
dition, guidelines for the development of common trans
ferable and modular systems have been developed so
that each remote location servicing a specific segment of
the business is not continually reinventing the wheel.

This is where we are in the '70's. What do we see
coming in the future? We see small user-oriented smart
terminals assuming an ever-increasing role within the
system configuration of the company. We see more com
prehensive database management than has been prac
ticed before; database management that will reduce
redundancy and insure completeness of the informa
tion contained, while maintaining database flexibility,
processing efficiencies, and easy access. This leads to the
ability for managers to easily query files for information.

This leads to a continued shift in skill requirements,
not only within the systems organization but within the
various businesses' organizations themselves. The com
puter will be more of a tool of management rather than
a temple of knowledge.

We see more use of management science in systems
with the concepts of projections, distributions, and
statistical analysis becoming more and more a tool of
management at all levels. We see a continued economic
emphasis on systems in the areas of applications, de
velopment, specialized query languages, and operating
systems themselves. We are projecting more concern
for long-range planning, supported by a staff manual
which will guide the planning function through its vari-

ous intricacies and provide to management the informa
tion required to support the needs of the business.

We have the computing power in place to meet these
requirements, such as full local batch processing capa
bilities, timesharing and remote batch from high-speed
and low-speed terminals. Today, our load is shifting
rapidly to batch processing. We see a future shift to
interactive processing-a capability that only vendor
supported software will meet.

We expect that systems costs will require economic
justification just like any other business investment.
Our senior management has set this direction very
clearly.

"We believe that the involvement in the business
and departments in planning, evaluating, and de
signing systems is critical and must be continued."

"We want a continuing tough look at both on
going and new systems."

"We don't want to discourage new systems, but we
do want them to face a tough justification test just
like any other capital project."

We have learned many lessons that will provide
practical building blocks to develop and maintain cost
effective computer resources that will meet Weyer
haeuser Company's everchanging management de
mands.

The future of remote information processing systems

by M. J. TOBIAS and GRAYCE M. BOOTH

Honeywell Information Systems
Phoenix, Arizona

INTRODUCTION

Remote information processing is the computer com
munity's wave of the future. For both computer users
and I tor computer vendors it represents an enormous
opportunity. To the user, it is a powerful tool with
great potential to increase his business efficiency and
profit. To the vendor, it opens a broad new market.
Properly used, it can benefit both.

This paper discusses remote information processing
networks in the rapidly growing area of on-line business
applications. We have chosen to survey trends in this
area, pointing out some of the important considerations
which the poteptial designer or user of such a system
cannot afford to overlook.

One aspect of remote processing is the use of multiple
computer information networks. Large complex net
works, such as ARPA, represent the leading edge of
remote system technology. However, the authors feel
that the majority of on-line business applications in the
70's will be implemented as individual systems, not as
information utilities. Large scale use of shared or public
information networks for on-line business applications
will not be seen in the decade of the 70's, mostly because
of problems of control, security, and privacy.

TRENDS

Much has been written recently about "the changing
computer markets of the 1970's" and the industry's
"coming of age," and still more in regard to the
increasing sophistication of the computer user. Today's
users are:

• Demanding system solutions to their business
problems .

• Using an information systems approach to the
control of their geographically dispersed organi
zations.

1025

• Insisting that the emphasis be on INFORMATION
as well as on computer power.

Basically, then, we can conclude that there is an
increasing trend toward business oriented information
systems whose characteristics are:

• Use of a data base-often large and possibly
distributed among several branch offices.

• Communications orientation for information collec
tion and distribution.

• Use of information processors (computers) for
transformation and manipulation of information.

The needs which these users are expressing have of
course been present all along. The historical objections
to the computer have been:

• It is located far away from the field "where the
action is."

• Only computer professionals can talk to it.
• It is very difficult to organize and store data

within it.
• Somehow it always seems more suited for scientific

than business problems.

Today these problems are gradually being solved,
allowing the emergence of effective remote information
processing systems for business use.

There are strong indications that the trend toward
remote information processing is a significant on.e, and
will continue to be so. Figure 1 shows projected
shipments of new build computer equipment (for the
industry as a whole) for batch vs on-line use. While the
market estimates are relatively firm only through 1975,
the trend can be proj ected with reasonable assurance
farther into the future.

Though various market surveys may differ in detail,

1026 Fall Joint Computer Conference, 1972

100",(,

90 86%

80

70

% 60
OF ~-> ANNUAL 50

NEW
~--BUILDS

40

30

20

10
14% ;r 42%

66 67 68 69 70 71 72 73 74 75 76 77 78 79

Figure I-New build shipments forecast

all seem to agree that on-line information systems will
be of increasing importance in the decade of the 70's.

APPLICATIONS

Before looking into the future of remote information
processing, it may be interesting to briefly survey
applications of the past and present. This can indeed be
done briefly, since remote information processing is still
in an early stage of development. This of course is one
of the reasons that its future fascinates us.

Yesterday's applications

Remote processing began in the 1950's. The earliest
examples were special purpose systems, and were largely
concentrated in a few types of applications.

Airline reservations

In 1952, American' Airlines installed the first com
puterized reservation system, which employed a special
purpose computer, Teleregister's Magnetronic Reservi
sor. Several other airlines installed identical or similar
systems. The first break in this pattern occurred in
1958, when Eastern Airlines installed a Univac File
Computer, 1\1odel 1, marking the first use of a general
purpose digital computer for airline reservations.!

COInInand and control

One cannot speak of early remote systems without
mentioning SAGE. This on-line command and control

system for the U.S. Air Force was planned early in the
1950's, and became operational in 1958.2

There were many other pioneering remote information
systems. However, in general the cost and complexity
of on-line systems deterred their use except when there
was no alternative. The airlines, for example, simply
could not handle their increasing reservation loads
except through automation. Similarly, SAGE repre
sented the only possible means of detecting and
reacting to an enemy attack employing missiles and jet
aircraft. The absolute need for these systems therefore
overrode cost considerations.

From our current vantage point in time, we can see
that other applications had a similar serious need for
on-line processing, to provide improved efficiency, cost
reductions, and competitive advantages. However, these
potential advantages were not recognized at the time,
so these (to us) very real needs were ignored.

Today's applications

We shall look at today's remote information process
ing applications more generally than we looked at
yesterday's. The accompanying papers in this session
describe some interesting examples of today's uses. We
will therefore speak generally of the types of applications
which are installed, not specifically of the companies or !

agencies which use them.

On-line banking

Many of the larger banks have already moved into
the use of on-line teller terminals to provide instant
balance checking and updating.

, Order entry

These systems, with the necessary supporting inven
tory management features, are in fairly wide use today.
They are Susually applied in the area of wholesale,
rather than retail, sales.

Retail sales

Credit checks are being increasingly automated. A
number of retail establishments have installed terminals
at each cash register, so that credit can be checked prior
to every sale.

Point-of-sale automation is being carried farther, in
some cases, to encompass not only credit checks but
sales slip preparation and even simultaneous inventory

updating. One of the pioneering efforts of this type, the
TRADAR system jointly developed by General Electric
and the J.C. Penney Co., was discontinued, for reasons
apparently not directly related to its. technical
feasibility. 3

Computer aided instruction

CAl is being used in some schools, but is not yet in
widespread use. Student teaching methods using com
puter-controlled consoles range from quite straight
forward drilling to sophisticated interactive tutorials.

Law enforcement

On a small scale, law enforcement systems have many
of the same requirements as the armed forces' command
and control systems. Government funding is being
heavily applied to these systems, especially the FBI's
National Crime Information Center network, and the
local/regional Law Enforcement Assistance Administra
tion-funded systems. 4

Network utility

It would be unrealistic to complete any discussion of
today's applications without mentioning the ARPA
network. While beyond the scope of the more common
applications, it has amply proved its feasibility. It is now
operational, tying together over 25 computers (as of
early 1972) in a research-oriented network. The ARPA
design goals are built around providing ~ second access
from a terminal anywhere on the net to a host anywhere
on the net, regardless of the number of nodes separating
them. The great variety of host computers involved
Digital Equipment, Honeywell, IBM, Burroughs, etc.
-and the consequent enormous potential for resource
sharing make ARPA unique. 5

Tomorrow's applications

It is now time to gaze into our crystal ball at the
applications of the future. In general, we see these as
logical outgrowths of today's systems, expanded in
scale and scope, but not dramatically different in basic
concepts. However, this growth and broadening of scope
will enormously increase the computer's influence on
society, as on-line systems move more and more into the
mainstream of the average person's life.

Future of Remote Information Processing Systems 1027

Retail sales

There will be nearly universal computerization of
point-of-sale recording, including instantaneous credit
checks. The average retail store or supermarket of the
late 1970's will have its cash registers on-line. They may
be locally on-line, to the store's private computer, or
linked to a regional or national network of many such
stores.

This trend will also extend into a more hostile
environment, the automobile service station. On-line
credit checking, and possibly on-line account updating,
will be standard.

Medical systems

On-line hospital management will be widely used. The
computer will also be used for the storage of medical
histories, and to aid in diagnosis.

Increased population mobility makes centralized
medical records almost a necessity, and this need will be
met via remote information processing. The ever-in
creasing pace of developments in medicine makes it
impossible for any doctor to remain abreast of current
trends, even in his area of specialization. An information
processing system, however, can be kept up-to-date, so
that all current and/or obscure diagnostic information
is available to every doctor.

Law enforcement

Increasing crime rates will provide the incentive for
further use of computers. The criminal, like the
population in general, is increasingly mobile, forcing
improved intercommunication between law enforce
ment agencies. The local/regional networks now being
developed will gradually merge, creating a national
network tying together all levels of law enforcement
agencies.

Financial utility

Banks will continue to expand their use of remote
information processing. On-line banking may merge
(although perhaps not within this decade) with other
systems to form the often discussed "financial utility."

The financial utility will be the means of creating the
"checkless society," or even the "moneyless society."
Each citizen will have a "money card," which he will
use for all purchases. When the card is inserted in an
appropriate terminal, the buyer's credit will be checked

1028 Fall Joint Computer Conference, 1972

and, if good, his bank account will be reduced and the
store's account increased.

This application will require a network of computers
similar to that in ARPA. Certain technical problems
(mostly of scale) are involved; however, these may well
not be the limiting factor. Human reaction to this form
of money management may be sufficiently negative to
delay or limit its acceptance. In some form, and at some
time, however, it is bound to come.

Computer utility

For our final example of tomorrow's remote informa
tion processing applications, the computer utility seems
the obvious choice. IVluch has been written and spoken
about the computer utility, and it is difficult or impossi
ble to evaluate many of the predictions.

In speaking of the computer utility, we mean the very
general, highly reliable, information network which
provides data, message, and computing services to an
extremely wide spectrum of society. We also mean·
systems utilizing large and flexible information pro
cessors to provide low cost computing to the average
person-the home owner, the housewife, the student,
and so on-as well as to business and industry.

In many respects the computer utility represents the
"goal" of remote information processing. When the day
arrives on which the computer utility is both feasible
and practical, all of the problems discussed during this
session will have been solved. The most important of
these problems will relate to the acceptance of the
utility by a society confident of the reliability and data
integrity and security of the total system. When (or
possibly if) this day arrives, the computer will indeed
have had an ineradicable effect on society.6

BUILDING AN INFORIVIATION NETWORK

The implementor of any remote information process
ing system must realize that he is faced with a net
working problem. Every remotely oriented system
requires a network, where a network is defined as a set
of hardware and software elements which provides for
the collection, processing, and distribution of
information.

The problem of creating an information network with
optimum characteristics is logically the same regardless
of scale. A small information processor surrounded by a
few terminals forms a network. So does a nationwide
hookup of half a dozen geographically separated
information processors, tied together via communica
tions lines, interfacing with hundreds of terminals, as

Figure 2--Large information network

shown in Figure 2. The major difference is in scale, not
in the techniques of networking.

Before discussing, in the following sections, the
hardware and software elements needed to form an
information network, it is important to point out the
characteristics shared by all remote information pro
cessing systems.

Flexibility

As a company becomes increasingly involved with
remote information processing, the business becomes
closely intertwined with the system. Thus, the informa
tion system must be as flexible and capable of growth as
the business itself.

Availability and integrity

A company which implements a remote information
processing system (for purposes other than simple time
sharing) is committing an important part of its com
munication and control structure to that system. When
a company commits its business (or part of it) to the
information processing system, its dependence on that
system becomes very great. High availability, or
continued operation of the system, is therefore required.
The user must carefully evaluate the degree of avail
ability needed; this is an expensive commodity, but an
absolutely essential one.

Provisions for protecting data integrity are also
essential. The heart of any remote information process
ing system is its data base. These large data bases are
often the only repository of vital business data. It is not
only impractical but impossible to maintain this

information in any manual form. It is therefore abso
lutely essential that this data be protected against loss
or damage.

Optimum cost/performance ratio

Remote information processing systems are usually
more expensive than batch systems, but many are more
costly than necessary. There are many techniques for
reducing costs, especially communications facilities
costs, while retaining desired performance. Some of the
commonly used cost reduction techniques, such as
multiplexing, concentration, and line switching, are
described in the following section on Network Hardware
Elements. These must be thoroughly investigated by the
user who wishes to install an effective remote informa
tion processing system.

NETWORK HARDWARE ELEMENTS

An information network is formed of anum ber of
hardware elements, which can be classified as folIo ws:

• Terminals
• Distribution facilities-lines, trunks
• Network (communications) processors
• Information processors
• Multiplexors and/or concentrators
• Switching devices

Some of the more important features of each of these
elements are discussed in the following sections.

Terminals

The proper choice of terminals is important to the
success of any information network. Great flexibility in
terminal design is important, since the terminal is the
part of the system closest to the user and with the most
need to adjust to his individual requirements.

Many categories of terminals will be used in the
1970's, including teletypewriters, CRT displays, remote
batch, data preparation, and graphics. The two most
important types, however, will be displays and applica
tion specialized terminals.

Displays will normally operate on voice grade lines,
at line speeds up to 9600 or 10800 bps (the higher speeds
will be needed to satisfactorily perform screen filling/
emptying operations). Displays will most often be used
on multi-drop lines, in poll and select mode, with
occasional use on single station private or dial lines

Future of Remote Information Processing Systems 1029

when heavy utilization makes multi-drop lines im
practical.

Application specialized terminals will include· teller
sets for banking, factory data collection devices, stock
broker sets, airline reservation sets, and other similar
devices.

These specialized terminals will be heavily used in
transaction processing systems. The terminal operator
will, in many cases, use the terminal only part-time, and
will therefore not be an expert operator. His lack of
specialization as a terminal operator will often be
compensated for by terminal specialization.

Distribution facilities

The distribution network is the means by which
information flows between nodes in the network.
Distribution facilities are provided by the common
carriers-AT&T, Western Union, etc.-or potentially
by the newer carriers such as lVICI and Datran.

Digital networks will represent a significant advance
ment in the time frame beyond 1975. Both AT&T and
the specialized carriers are beginning to install such
facilities. The advantages of such networks include:

• Emphasis on digital traffic
• Improved switched line facility
• Low error rate
• High availability
• Significantly reduced cost

The reduction of user cost is a primary advantage of
such networks. In the Datran network, for example,
regional transmission (i.e., transmission beyond the
local trunk) will be independent of distance. The
charges proposed are much lower than current rates,
especially at the higher transmission speeds of 9600 or
14400 bps.

It is concluded, then, that distribution facilities are
becoming more flexible, more reliable, and more
economical. This trend should continue as competition
strengthens in this field. The resulting improvements
will be manyfold for remote information processing.

Network processor

A network processor is a computer specifically
designed for the control of data communications.
Network processors are vital to the success of remote
information processing systems. A network processor
can be used either as a front-end to an information
processor, or as a free-standing system performing

1030 Fall Joint Computer Conference, 1972

functions such as complex concentration and/or message
switching.

The important reasons for the use of a front-end
network processor are:

• Off-loading of network oriented functions from the
information processor.

• Greater flexibility and versatility.
• Increased system availability.

It has been found in practice that the network
processor design should emphasize flexibility and
memory capacity, rather than the maximum in pro
cessing speed. Its primary tasks are those of data
manipulation and transliteration, not "number crunch
ing." However, the instruction set of the network
processor must necessarily lend itself to efficient
character and byte data handling. If this is not the case,
processing speed m~y indeed become a limiting factor.
It has also been found advantageous for the front-end
network processor's instruction set to be closely related
to that of the associated information processor.

Some of the important design requirements of a
network. processor are these:

• Memory size up to 256K bytes.
• Fast access disk interface (the disk space in

front-end applications should ideally be shared with
the information processor in the "delta'-' configura
shown in Figure 3).

• Optional console, card reader, and printer
interfaces.

• Optional non-interruptable power source.
• Ability to be configured with full redundancy.
• Program controlled reconfiguration and communi

cations line switching.
• Interfaces to narrow band, voice band, and

broadband lines, both dedicated and dial-up.
• Ability to support several hundred concurrent user

messages-possibly as high as 1000 in 1975 and
beyond.

• Floating dial-out channels.
• Integrated modems.
• Ability to interface with other network elements

such as multiplexors, line switches, etc.
• Ability to interface with more than one information

processor.

The above listed requirements are probably not fully
met by any network processor design in existence today.
Also, the rather large load requirement listed is
representative of only a very few present day applica
tions. However, the trend toward large loads and very
high availability requirements is unmistakable. Thus,

NETWORK

PROCESSOR

MASS

STORAGE

SUBSYSTEM

INFORMATION

PROCESSOR

Figure 3-"Delta" configuration

these requirements are not blue-sky-they are for
tomorrow's applications.

Two aspects of the network processor requirements
are sufficiently interesting to warrant further discussion.

The "small" communica,tions oriented user requires
the same degree of sophistication and functionality as
the large user. Thus, the growth of the front-end
network processor function on site is largely related to
load handling capability. This makes the network
processor design even more difficult, in order to provide
for the" small" load economically yet grow to the very
large loads as well.

Though the communications front-end processor has,
in the past, been thought of as merely an instrument of
the information processor, it is now clear that it must
function quite independently of the information pro
cessor. For example, the front-end processor must,
remain operational even when its information processor
fails. In this way contact with the rest of the network is
not lost, input messages are still received, output
messages can still be sent, and-most important-full
service' can be brought back with the minimum of
difficulty and time delay after information processor
repair is effected. Front-end processor independence is
also needed as this processor takes on more and more
tasks related not to information processor interface, but
to the network (i.e., message switching).

I nf ormation processor

The information processor is of course where the
actual application processing takes place. Perhaps the

most important hardware feature of an information
processor to be used for remote processing is modularity.

In a remote system, the information processor should
be capable of at least fail soft, and for some applications
fail safe, operation. Fail soft is aided by hardware
modularity, with the possibility of configuring multiple
processors, multiple memory modules, multiple I/O
connections, and so on. This modularity must be such
that failure of any hardware element, such as a memory
module, does not prevent continued operation of the
remainder of the system.

Multiplexors / concentrators

Both multiplexors and concentrators can be used to
greatly decrease communications line costs. Multiplexors
are passive, non-programmable devices, while concen
tra tors are programmable.

A multiplexor splits up a single communications line
so that it can carry a number of multiplexed messages
concurrently. There are two types of multiplexors, Time
Division (TDM) and Frequency Division (FDM).

A wide range of manufacturers offer TDM's and
FD1VI's. General Electric, Timeplex, Computer Trans
mission Corp. (Multitran TDM), and GTE Information
Systems are only a few of these. AT&T also offers
multiplexors.

A concentrator is a form of network processor, whose
function is to compress data on many lower speed lines
onto fewer higher speed lines. Because it is program
mable, a concentrator is more flexible and potentially
more powerful than a multiplexor. As with other
network processors, it is also capable of assuming other
network oriented tasks.

The Honeywell Model 730/50 is a typical concentra
tor built around a minicomputer. It concentrates up to
128 low speed lines (up to 300 baud) or up to 64 medium
speed (up to 2400 baud) onto 1 to 4 medium speedlines
(uP. to 10,800 baud) leading to a remote network
processor or information processor.

Switching devices

Reconfiguration line switches are used in many
networks. Their most common use is to switch communi
cations lines between two or more network processors.

Figure 4 shows a typical fail safe system. The
reconfiguration switch shown might be the Honeywell
Line Transfer Device 355, which can switch up to 96
lines under either manual or program control. The
diagram also shows a "Deadman Timer," such as the
Honeywell Computer Monitor Adapter, typically used

Future of Remote Information Processing Systems 1031

NETWORK NETWORK

PROCESSOR #1 PROCESSOR #2

RECONFIGURATION SWITCH

COMMUNICATIONS LINES

Figure 4-Fail safe configuration

for automatic failure detection in configurations of this
type.

SUPPORTING NETWORK SOFTWARE

The implementor of an information network must
also look closely at software requirements. It is not
possible, in a paper of this length, to discuss-or even
list-all of the functions needed. Therefore, only a few
of the more important are included here.

Terminal interface

Th~ system interface seen by the terminal operator
must be appropriate to the application, and to the
operator's level of training. Particular care must be
taken to support the type of operator who uses the
terminal, not as a full time task, but as a subsidiary part
of his job.

For these cases, the language used by the terminal
operator must be simple and self-explanatory. Clear
diagnostics must be provided in case of error, and
software assistance must be available when the operator
is presented with unusual conditions.

Load leveling

Some networks of multiple information processors
may require a load leveling function. This allows jobs to

1032 Fall Joint Computer Conference, 1972

be distributed between the processors to even out work
loads. If the processors have unequal capacity, or are of
different types, load leveling can also detect jobs too
large to be run on a smaller system, or jobs which require
a specific type of processor, arid direct them to the
appropriate location for execution. As large distributed
information systems become more widely used, load
leveling in various forms will be increasingly necessary.
However, vendor-supplied software for this function is
rare today (if not non-existent).

Distributed data base

As networks with distributed computing capabilities
become prevalent, distributed data bases will naturally
develop. A distributed data base exists when two or
more information processors which communicate via the
same network allow creation and sharing of permanent
files.

Without going into the complexities of distributed
data bases-which are many-it can be pointed out
that a single job may require access to more than one
part of a distributed data base. This can be achieved
either by transmitting file data or by transmitting jobs
or tasks. Both of these methods cause increased
communications load, and may require very high speed
transmission.

Message management

Applications which process remote input and output
have, in general, a more complex task than those which
handle local I/O. Ideally, an application program
should be able to treat a message from a CRT identically
with one from a card reader, and be able to send output
identically whether to a CRT or to an on-line printer.
In practice, it is seldom this simple.

One approach to this problem has been provided in
the COBOL communications-oriented verbs RECEIVE
and SEND. The approach is an unfortunate one, in the
authors' opinions,since it would be more consistent to
use READ and WRITE. However, CODASYL has
chosen to use different verbs, so the COBOL community
must accept this.7

One pitfall which the user must watch for in a vendor's
implementation of these verbs is whether or not device
independence is provided. CODASYL has not specified
whether terminal characteristics are to be handled by
system software or by the user program. The former,
except in very rare, cases, is much preferable.

For example, the verb RECEIVE should cause a line
(or other logical increment) of input to be presented to

the program, stripped of terminal control characters and
blank filled if necessary (for short lines or imbedded
horizontal tabs). If this is not done, a great deal of
tedious-and sometimes complex-processing is re
quired in the applicatio~ program. Output should
similarly be prepared as a line or page by the program,
with all necessary terminal control provided by the
system.

Although it makes no difference to the application
where (outside of its boundaries) terminal-specific
processing takes place, this is important to the system
as a whole. Terminal characteristics should be handled
entirely in the network processor, allowing the informa
tion processor to ignore these characteristics. This
allows much greater flexibility to change/add terminal
types, and/or to redirect messages to alternate
destinations.

In the context of remote input/output, a software
generator approach to creating the coding to handle
terminal specifics is an absolute necessity. It is un
realistic to expect any vendor to provide terminal
handling software for every terminal on the market.
Instead, the use of a generator package can make it
relatively simple to add types of terminals to the
network. This is the only realistic way to approach the
variability inherent in remote terminals.

Data base management

The designer of a remote information processing
system must look very closely at data base processing,
since this will be the heart of the system. A data base
management software system of considerable sophisti
cation is normally required.

The most important point to be considered, which is
sometimes overlooked, is the need for concurrent access
to the data base. If any of the on-line applications
update the data base, there is a potential problem of
access conflicts.

Even with update access, these problems can be
minimized if each application can be structured to read
only one record and hold it the minimum possible time
before updating and releasing it. In this comparatively
simple case a software system for record locking can
prevent any other access to a record being updated.

More complex situations occur if one or more
applications must update multiple records. Locking
records in this case can cause the "deadly embrace"
situation shown in Figure 5. The data base management
software should detect and resolve these conflicts.

To improve throughput, locking may be used only for
updating programs, with inquiries allowed to run

without check. This approach can cause the inquiry
mode application to see inconsistent data base status,
as shown in Figure 6. Programs must be written to take
this into account; otherwise they may malfunction when
a "shifting data base" condition arises.

There is a considerable difference in complexity
between the simplest case of concurrent update (one
record read and updated by each program) and the
most complex (many concurrent applications each
updating many records).

Whenever possible, on-line applications should be
structured to achieve the simpler case. One way to do
this is to perform the minimum updating necessary
on-line. For example, an order entry system might be
set up to update credit limits, inventory balance, and
production and shipment schedules. Analysis might
show that update of the production and shipment
schedules could be postponed for batch handling, either
once daily (usually at night) or in slack on-line periods.
This would significantly decrease the amount of on-line
updating, therefore decreasing the overhead involved in
locking records and monitoring for interference.

PROG RAM # 1 HAS
RECORD B
AND
NEEDS
RECORD

A-\
\

PROGRAM #2 HAS
RECORD A AND

NEEDS
RECORD
B-,

/
/

/
I

I

Figure 5-"Deadly embrace"

Future of Remote Information Processing Systems 1033

PROG RAM # 1 READS
RECORD A AND
FINDS BALANCE

EQUAL TO 145~ PROGRAM # 2
~ READS AND UPDATES

OTHER RECORD A

PRO~CESSING ::t~~~E
EQUAL
TO 22

PROGRAM #1~~------
READS RECORD
AAND

FINDS BALANCE
EQUAL TO 22

Figure 6-'-Shifting data base

This area should be extensively studied during system
design. Unnecessarily complicated on-line update appli
cations can be very costly in terms of software complex
ity, debugging difficulties, overhead, and in operational
delays associated with locking and resolving access
conflicts.

Integrity protection

Integrity is a broad heading, covering a number of
hardware and software features. Both hardware and

1034 Fall Joint Computer Conference, 1972

software must be properly oriented toward achieving
adequate integrity.

Fail soft or fail safe configurations must provide
graceful degradation when a non-essential component
fails. Restart/recovery features must be provided, in
case of total system failure.

Data protection is extremely important, so that data
base information and incoming/outgoing messages will
not be lost, duplicated, or garbled. Features such as file
change journaling and automatic recovery are especially
important, to protect against file damage in case of
application program or system failure.

Test and diagnostic routines must be available, to
test communications components, network and informa
tion processor and their components while the remainder
of the system is processing normally. Off-line T&D is
also necessary; however use of off-line T&D will
generally be minimal, as most error diagnosis will be
required while the system is on-line.

Security

Security (including privacy protection) features must
include, as a minimum, terminal and user validation
procedures independent of the information processor
(because of terminal/terminal exchanges in some
systems). Detailed user validation, including password
and permission checks, may also be performed in the
information processor. More complex security features,
such as data encoding, may be required in some
networks.

Debug aids

It is important that adequate debugging aids be
available and specifically applicable to the on-line data
base and business processing environment. Too often,
on-line software systems are designed for production use
only, forgetting that both initially and on a continuing
basis system/program changes will be required. The
prudent user will avoid this trap by insisting on
adequate test features.

In testing on-line applications, it is very helpful to be
able to easily load and test an on-line application from
any convenient location, perhaps a teletypewriter,
perhaps a card reader. To allow this, the software
system must provide device independent I/O, and also
the ability to obtain snapshots and traces interactively
during test execution. Interactive debugging, when
properly supported, can enormously improve program
mer productivity.

Testing must often take place concurrently with

production work. This is particularly true in systems
which process actively for all or most of the 24 hour day.
In these systems, all debug aids must be structured to
allow concurrent test and production operations.

Finally, aids are needed to allow testing of data base
update programs. The best aids allow test programs to
be run, simulating update, without actually altering any
file data. If test aids are not available, the user will find
that he must manually set up test data bases, and quite
likely also alter his programs so that they can use these
data bases.
CONCLUSION
Remote information processing systems are technically
feasible today. The most complex forms of such
systems, information networks, are being implemented
in small-but growing-numbers.7 The ARPA network
referred to earlier is an outstanding example of these.

These networks represent the leading edge of tech
nology in at least some respects. They have proven the
feasibility of distributed information systems, but not
necessarily the general applicability of this approach.
Most of the remote information processing of the 70's
will still be in the form of individual on-line business
systems. In many cases these will be networks which
include multiple information processors, but single user
owned. The mass use of public networks to solve
business problems on-line will not be seen for some time, I

largely for reasons of security, privacy, and control.
Much work remains to be done to improve software

technology, particularly in the areas of message manage
ment, data base management, and integrity protection.
Innovative users, perhaps more than the hardware/
software vendors, are leading the attack on these
problems. The papers which follow describe some of the
systems which embody today's state of the art in remote
information processing systems.

ACKNOWLEDGMENT

The authors would like to acknowledge the contribution
of Hal B. Becker, from whose work on structuring and
organizing Information Networking we have borrowed
freely.

REFERENCES

1 R A MC AVOY
Reservations communications utilizing a general purpose
digital computer
Proceedings of the Eastern Joint Computer Conference
The Institute of Radio Engineers Inc NY NY 1957

2 R R EVERETT C A ZRAKET
H D BENINGTON

SAGE-A data-processing system for air defense
Proceedings of the Eastern Joint Computer Conference
The Institute of Radio Engineers Inc NY NY 1957

3 R M PETERSEN
TRADAR: Death of a retailer's dream
Datamation Vol 17 No 11 June 11971

4 P HIRSCH
LEAA: Who guards the guardians?
Datamation Vol 17 No 12 June 15 1971

5 L G ROBERTS B D WESSLER
Computer network development to achieve resource sharing

Future of Remote Information Processing Systems 1035

AFIPS Conference Proceedings SJCC May 1970
6 D F PARKHILL

The challenge of the computer utility
Addison-Wesley Publishing Company Reading Mass 1966

7 First report of the Communications Task Group to the
CODASYL programming language committee on the
COBOL extensions to handle communications processing
COBOL PLC Item No 68114 May 1969

8 D J FARBER
Networks: An introduction
Datamation Vol 18 No 4 April 1972

Interactive processing-A user's experience

by HERBERT F. CRONIN

The First National Bank of Boston
Boston, Massachusetts

INTRODUCTION

During the years 1965 to 1968, The First National
Bank of Boston developed an active interest in the con
cept of cost savings that could be obtained from major
accounting operations through the use of interactive
processing. The amount of clerical effort which could
be saved through the installation of an effective real
time system was believed to be quite large, and, if so,
the reduction in the labor costs could support a rather
large computer charge and still generate significant net
savings. The operation which appeared to be the best
candidate for a pilot project was that of the Bank's
Factoring Division, an enthusiastic computer user for
ten years. In fact, the desire on the part of the Division's
Management to obtain a real time system considerably
pre-dated the availability of off-the-shelf hardware and
software that could be obtained within reasonable lim
its of expense and risk. The Factoring Division is pri
marily responsible for an accounts receivable operation
involving one-hundred and forty thousand accounts and
a total of some two million invoices which are posted to
these accounts each year. When these invoices come due,
the customers mail their payment checks to the Bank,
and the Bank then matches the checks to the specific
account and invoice or invoices which are to be paid.
The invoices are then paid and removed from the file
and appropriate printed reports are prepared. At any
given point in time, there will be about four hundred
thousand invoices and related items open on the file.

The accounts have headers of fixed size to which are
attached a variable number of invoices. The size of an
account varies from about four hundred characters on
an inactive account to about one-hundred and fifty
thousand characters for several of the very largest and
most active customers. The total account file includes
about one-hundred and fifty million bytes.

Prior to the introduction of the real-time system,
there was a staff of about three-hundred and twenty

1037

clerks who processed the accounts receivable work.
This complement was adequate to handle the average
daily transaction volume of about twenty-five thousand
entries, but periods of overtime were required at seasonal
business peaks. The skills of the staff were varied, rang
ing from that of keypunching from completely prepared
source documents, to that of bookkeeping, a function
which involves considerable responsibility and judg
ment in the handling of cash and the allowance of deduc
tions.

This clerical organization had been designed to work
with a batch processing computer system. There was
little interchangeability of function among the staff
groups because each of the groups was structured around
a file of computer printed documents used for that one
function. Each morning, the new ledgers and other re
ports were received from the computer and distributed
among the clerks who then filed the sheets into their
individual buckets. As a result of the document filing
requirements, it was difficult for the Division manage
ment to reallocate its staff from function to function
as the workload varied.

EXPECTED OPERATIONAL BENEFITS

The primary benefit which the Bank hoped to gain
from a real-time system was one of a reduction in the
unit cost of work processed. "Instant" information had
no monetary value in this case, but the centralization
of all data onto a single file would be a great value. The
major advantages of the real-time system which could
reduce the labor content of the operation were expected
to be:

• Availability of the data base to anyone in the
division who had a need for information. This
facility alone would eliminate the need to print
and file bookkeeper's ledger sheets. It would also

1038 Fan Joint Computer Conference, 1972

almost completely eliminate the input effort and
delay associated with special request ledger sheets,
which were used by other sections as the main
vehicle for obtaining information from the file.

• The ability to validate transactions during the
original input.
The batch system was always subject to a reject
rate of about three percent, and these "kickouts"
created a need for. a large and complex manual
control system to insure that they were researched
and re-input without being lost.

• The potential for performing a complete set of
daily proofs on the computer.
It had not been possible to implement these proofs
in the batch system since the items rejected from
the system caused all of the larger accounting cate
gories to be out of balance. Therefore, a manual
balancing system was required. In the new system,
all transactions would be kept in the file.

• The installation of an account locator program
which could help the staff identify the accounts to
which they wished to post transactions.
The batch system required the use of the computer
account number on each item input. The process of
determining this account number was clumsy, and
it often required the use of special files, both com
puter printed and manually recorded, which were
some distance from the work stations of the people
needing the information. The account locator was
designed to allow users to input transactions by
account number, by a simple name code which
could be derived from the name and address of the

. check: received, by the DUNS number, or by a
bank checking account number taken from the
MICR encoding on the check.

The general expectation was that the Factoring Division
could improve the operation and reduce the staff by
making the data base available to those who needed it
by purifying the input at the point of entry into th~
system so that the file would be accurate and complete,
and by eliminating the huge amounts of printing and
clerical effort required to keep the old batch system in
balance.

These concepts had existed at the Bank fora period
of several years but. no active steps had been taken
toward starting a detailed examination of the feasibil
ity of the project. During 1968 the Bank prepared a
long range plan to replace its existing main line com
puters (which were then seven years old) with new
hardware. This process had been started with the ac
quisition of a new computer for several small applica-

tions, and a master plan was developed which would
cover the period during which all of the major applica
tion systems of the old computers were to be repro
grammed and upgraded onto new hardware.

PROJECT INITIATION

The master plan included the task of reprogramming
the existing Factoring system, and it provided the op
portunity to examine whether a complete re-design
might be economically justified. Therefore, the Bank
retained an experienced consultant to make a prelimi
nary review of the potential savings, costs, and practi
cality of a real-time system. The evaluation was made
in the Spring of 1968, and the consultant's report en
dorsed the real-time concept and estimated that hard
ware and software costs would be low enough to make
the investment a profitable one. A detailed feasibility
study was then initiated. Four systems analysts from
the Bank, four from the consultant, and four from the
Factoring Division were allocated for a period of four
months to study the existing operation, and to write a
formal feasibility report covering cost, systems design,
and hardware specifications.

The report was distributed in September of 1968.
It included an overall system plan (a design which has
provedto be remarkably accurate) an estimate of the
number of programmers and the schedules needed, and
a forecast of the computer hardware that would be
needed. The cost . model indicated that the recovery of
the investment could be expected to take two and one
half years. Much of the actual design and estimation
was done by the three senior systems people who were
most closely associated with the project, one representa
tive of the Factoring Division, one consultant, and one
member of the Bank's Systems Research Division.

The report favoring the real-time system was sub
mitted to senior management officers for their considera
tion and approval. No decision was reached at the first
review meeting because the division heads involved in
the project were concerned that the study team had not
adequately examined the various other types of systems
that could be designed. In particular, they requested
that we study:

• The cost of this proposal in relation to the other
alternatives (i.e., a new batch system), and

• The risk in undertaking a development venture of
this type in view of the problems that other real
time systems users were reputed to have had.

In response to these concerns, the team spent an addi-

tional month in evaluating the costs for various alterna
tive systems. This review found that the costs of re
programming for a batch system would be less than
those for the on-line system, but there would be no
prospect for a reduction in expenses since the new sys
tem would essentially duplicate the old one. The only
difference would be the new machine on which the sys
tem would operate.

The question of risk favored the batch system, which
obviously had only a minimum of developmental un
knowns. However, the team recommended that the
real-time system be the one implemented, primarily
because it felt that prospects of gaining a net profit
from such a system would more than justify the risks
assumed. Management concurred, and the decision to
begin the new system was issued in November of 1968.

DESIGN OBJECTIVES

The goals by which the results were to be measured
were:

• A saving of twenty-five percent of the operations
staff.

• A computer running time of twelve hours per day,
eight on-line, and four for the nightly runs.

• A response time of fifteen seconds per message (this
response time appeared to be intolerably slow
once actual experience was obtained).

• A time frame of twenty-one calendar months and
planned level of four hundred and nine man months
of labor.

START-UP

The start of any large proj ect (this one was expected
to have a staff peaking at thirty people) is largely con
sumed by the task of organization, personnel selection,
acquisition of quarters and all of the other administra
tive details. This phase took one and one-half of the
twenty-one months which we had forecast. Following
this was the preparation of a formal, written project
development .plan which covered schedules, individual
responsibilities, reporting, organization charts, and
standards. It took another six weeks to complete this
plan, and we realized that three months of our allotted
twenty-one had gone by, and we had not yet begun a
concentrated study of the technical alternatives. It
now seems obvious that we did not properly plan for
the time and manpower to handle the administrative
de~ails and the organizational work which proved to

Interactive Processing-A User's Experience 1039

be so time consuming throughout the first half of the
project.

DESIGN DECISIONS

The early months of the project were the period in
which the major project decisions were reached. Seven
of these decisions will be covered in the following sec
tions of this paper, and, during the discussion, the reader
may find it helpful to refer to the brief tabulation of sys
tem statistics to be found at the end of the paper.

Modeling

The first major decision that the project team reached
was one in favor of building a system model. The level
of effort that the development of this model would re
quire was unclear, but the general belief was that it
would be no more than several months before the model
could be put into operation. The most pressingargu
ment for the model was the feeeling that the batch
processing experience of the team members could not
provide an adequate framework within which real-time
systems decisions could be reached. The first model
used the IBM TP AD analytical procedure, and the re
sults, even before the model was complete, convinced
the team that the equipment on site at the Bank could
not handle the CPU load that the system would produce.
New hardware was. ordered and the project costs were
adjusted accordingly.

The individual models of the application programs
were very crude during the initial runs of the TP AD
system, and the subsequent development of the detailed
specifications for the programs produced a constant
stream of changes to the model, all of which seemed to
be in the direction of the consumption of _more and more
of the available computer resources. At this point, the
analysis indicated that the system would develop im
possible queues, even with faster hardware, at a message
level less than that needed to complete a day's work,
and thus a new and more accurate simulation model
was undertaken using CSS. This model was intensively
developed over a period of about four months, and sys
tem modifications were made and simulated until the
results from the model indicated an improved but still
borderline set of response times. There was a consider
able amount of disagreement within the Bank's tech
nical staff as to whether the system would actually
operate within the fifteen second promised response
time for sustained periods. Many more changes were
made in the file accessing plans, and new applications

1040 Fall Joint Computer Conference, 1972

programs (such as those in the MIS area) were post
poned, in order to reduce the CPU load. The use of the
simulation was the key to the technical changes that
were made during this period. All changes were modeled
and those that produced improvements in the file access
ing and CPU loads were incorporated into the plans.
The importance of the simulation and its effect on
specific programming decisions cannot be overempha
sized. The lack of real-time experience on the part of
our people forced them to rely upon the simulation for
many decisions that might have been made intuitively
by a more experienced team.

The final result of this phase of the modeling effort
was a prediction that the modified system could handle
the anticipated workload, but that there would be little
room for expansion. The manufacturer restricted the
availability of the CSS language at this time and the
modeling efforts were stopped for an extended period of
time. The current model used by the Bank is a GPSS
model which has been developed as support for the new
projects that have been started in the area of real-time
processing.

The use of a drum

The primary. characteristic of this system was the
reading, repetitive on-line updating, and writing of
large accounts into and out of the disk file. One account
could be searched, displayed, and updated many times
in order to complete one transaction. This file handling
problem created a need for an intermediate speed storage
device and to avoid the extensive delays that would oc
cur if all I/O were done from the disk. The early simula
tions confinp.ed our assumption that adequate response
times could not be reached without some storage device
which was considerably faster than a disk, the fast
access to data stored with a block of large core storage
appeared attractive but the slow net transfer rate made
it ineffective for very large units of data such as those
processed by the Factoring System. The drum, while
slower in accessing due to latency time was actually
much faster because it could transfer records at channel
speeds~ A drum was chosen and it has proven to be an ef
fective and reliable device.

Real-time update

The question of updating the file as transactions were
processed or writing the transactions onto a log tape
for later processing, was decided by the savings to be
gained in the Factoring Division's operations. The sys-

tem could only produce the' expected personnel savings
if the payment process were to eliminate items as soon
as the payment was made. The real-time update, which
had been the original plan, was again confirmed by the
project team. This decision, however, created the poten
tial' for future trouble. Normal problems such as pro
gram errors, power failures, and the file problems could
not be cured by a simple re-run as in the past batch
systems. The initial availability of the system to the
user suffered as a result of this, and adequate control
over the problems was obtained only after an extended
period of system operation had led us to develop safe
guards against the common types of file errors.

The decision to update on-line implied that the CPU
consumption of the system would be much higher than
with a simpler data collection system. Because of this,
several types of transactions were eventually switched
to a batch type update in the nightly runs in order to
reduce the daytime CPU load.

Pre-processor

The question of obtaining a pre-processor to reduce
the load on the main computer appeared several times
during the early stages of the project. The final decision
against a pre-processor was an important one, since it
was expected to set the policy for future Bank systems.

The benefits of a pre-processor were expected to be:

• A reduction of about 30K in the CPU core storage
requirements.

• A reduction in CPU consumption of about 15 per
cent for the planned computer (according to the
model).

The drawbacks were:

• The increased cost for the pre-processor, which
would only be used for the eight hours per day of
on-line time.

• The additional potential for vendor interface
problems.

• The need to have a second pre-processor to provide
backup.

• The need to learn to program a new machine and
to provide all of the associated assemblers, li
braries, and backup procedures attendant to the
use of another manufacturer's software.

The cost of the two pre-processors appeared to be
about $280,000, a very large price for a 30K and
15 percent CPU saving. Our multivendor problems

(terminals-telephone-computer) were already trou
blesome enough and there was a distinct desire to avoid
additional complications of this type. The decision was
made against the pre-processor, and the teleprocessing
load was assumed by the main CPU. There have been
no reasons to doubt that, for this one system, this was
the best approach. Since that time, the Bank has up
graded its computers twice in order to provide additional
capacity for the other hew systems being installed.
The resultant increase in speed and core means that
the share of the load attributable to the teleprocessing
programs has decreased, for the computers have grown
larger while the teleprocessing load has remained fixed.
The impact of this load is now small enough to be of
little interest.

Shared hardware

Cost allocation was the major factor in the decision
between a smaller computer dedicated to the real-time
Factoring system and a larger computer shared with
other applications. The daily time requirement for the
Factoring system was eight hours on-line and four
hours for a reorganization and report preparation run
at night. Any cost for equipment to be used only by
this system would have to be charged in total to the
division using the system, but any equipment which
could be used by others would be on a shared cost basis.
With only a half day's expe"cted use, it was apparent
that we should accept compromises in order to make the
hardware usable by other applications and thus cut
our costs. This overall philosophy has never proven to
be a problem. At the present time, the concept has been
expanded so that the teleprocessing and queue manage
ment programs can handle multiple applications con
currently. The hardware on which the Factoring system
is now running will be processing three independent,
large scale real-time systems by the fall of 1972.

COBOL

The next major consideration that deserves discussion
is the use of COBOL for the on-line applications pro
grams. The original opinion of the project team was
that the teleprocessing and work queue managers should
be written in assembly language in order to make them
re-entrant and avoid the fatal problem of reloading the
modules before each execution. The 'systems programs
were, in fact, written in assembly language, but the

Interactive Processing-A User's Experience 1041

Bank management was anxious to see the application
programs written in COBOL. The method chosen to
achieve this was to divide each application program
into steps, each of which corresponded to the processing
of one of the messages which formed part of a transac
tion. Each of these steps was given a step number within
the COBOL application program. The programmer's
working storage (which includes the step number) was
required to be placed in a terminal work area (called
TWA) which could be kept on the drum between uses.
There was one terminal work area for each terminal.
COBOL statements such as ALTER were prohibited,
and the programmers quickly learned to keep their
working storage confined to the TWA. Therefore, each
time an application program was turned on, it found
the TWA set as it had been at the end of the last step,
already read into core and available for the next step
as determined by the step code. The modules could
then be serially re-used although only one terminal
could be using a given application module at one time.

In practice, the steps tend to be short, and the pro
grams are thus close to being re-entrant in the way the
programmers use them. This feature facilitated the use
of COBOL, and the CPU and core inefficiencies have
proven to be tolerable.

CRT display consoles

The CRT versus typewriter decision was the easiest
to make. There were no technical reasons why the CRT
displays would be more difficult to work with than
typewriters. The need on the part of the user was for
the display of rather large quantities of data for which
no printed record was needed. We therefore selected
CRT displays and obtained them from a vendor other
than the CPU vendor. No programming problems were
encountered and the CRTs operated as expected.

PROJECT RESULTS

The results of the project have been most satisfactory
and the system performance relative to the original
goals is as follows:

• The clerical savings began to develop as soon as
the new programs went into production, and, once
the period of installation problems was over, the
full savings were achieved. Our recent experience
has convinced the Factoring Division that some

1042 Fall Joint Computer Conference, 1972

additional savings, which were not in the original
plan, can be obtained through the development of
new programs.

• The computer running time is eight hours on-line
and three hours at night for a total of eleven hours.
The productivity of the CRT consoles in this sys
tem is so satisfactory that the Factoring Division
is investigating the possibility of cutting the on-line
hours per day or of reducing the number of termi
nals used to service the operation.

• The response times are in the three to six second
range and only a few exceed the original (but ex
cessively long) fifteen second response time esti
mate.

• The development time was about double the esti
mate, but during much of that extra time the proj
ect consisted of a five-man maintenance team
which was finishing the periodic programs and
special reports. This is the one category in which
the project failed to meet its goals, and we will be
more cautious in the future in estimating the time
consumed in the learning of a new technology. If
the project were to be started today, with the ex
perience we have already acquired, the estimate
would be twenty-four months.

The present· satisfactory state of events was, how
ever, preceded by a long period of agonizing problems,
frustrating delays, and excessive costs. The installa
tion of the on-line programs created a constant series of
failures which resulted in frequent re-starts and the
need for the users to re-input data. The telephone lines
used to communicate between the computer center and
the user's quarters were a daily source of trouble, and
the only solution which worked was to move most of
the users to the computer center and communicate by
means of a direct cable within the building. Two tele
phone lines remained ini use after the move, and these
eventually became completely reliable.

Once the communications line problems were solved,
the Factoring Division hit a seasonal operations peak
and the system developed impossibly long response
times. The CPU and I/O consumption problem which
had occupied the team's attention during the modeling
effort had not actually been solved, and CPU utilization
rose to a level of 90-95 percent with long queues being
developed. The evidence gained from a comparison of
the actual system against the model indicated that the
I/O in the model was based upon "good" transactions
and efficient programming. N either of these was a
realistic assumption, and the rate of messages input for
each transaction processed was about double that

which had been expected, due to batch proofs, wrong
account identification, re-tries, and all of the usual
human errors. The programs, as well, were discovered
to be performing unnecessary I/O. Although the sys
tems and the clerical problems were somewhat relieved
by program changes, the final answer was found in the
replacement of the computer by a faster one which
fortunately was already scheduled in accordance with
the Bank's long term plan. Response time has averaged
five seconds since that time, and the users feel that
improvements beyond that point cannot yield increased
clerical efficiency.

Once the response time problem was eliminated, the
production rose and we encountered running times for
the nightly reorganization and report preparation run
of up to ten hours. Times of this magnitude meant that
a normal re-run due to a program error would often
delay completion of the nightly runs until well into the
working hours of the next morning, thus preventing
the system from going on-line at the normal starting
time. Our availability suffered as a result, and some
backlogs of work appeared in the user operations. A
concentrated effort in improving the inefficient parts of
the job has cut the running time to three hours per
night. The availability of the on-line system gradually
increased during the same period to its present level of
97 to 98 percent. (Note: The availability is calculated
by dividing the sum of the hours each terminal was
actually available by the sum of the total possible
terminal hours.)

CONCLUSIONS

Reflecting on the course of events during the project
and upon the final results that were obtained, there are
several important l~ssons which we have learned (or
re-Iearned) that may be of value to others who are con
sidering real-time systems proj ects for large clerical
operations areas.

Project potential

This system was installed for purely financial reasons.
The original estimates of a 25 percent personnel reduc
tion through the elimination of paper handling and the
double processing of some work turned out to be easily
attained, and the computer costs have dropped below
the planned level because the system shares the cost of
a larger, faster machine with other departments. The

net annual savings, therefore, are higher than antici
pated. The cost overruns for the project have extended
the payout period, but there is evidence to suggest
that the lessons learned will have the effect of improv
ing future estimates and of reducing future real-time
system development costs.

Risk

The experience that the Bank's technical staff had
gained in its twelve years of programming large com
puters was,assumed to have a carry-over into the area of
real-time systems. All were conscious, however, of the
risk of entering a new technology with such a large
project. The early months of the development went
quite smoothly, but when the system began to come on
line there was a traumatic and extended period of
trouble with such unfamiliar items as modems, tele
phone lines, and CRT controllers. Furthermore, the
traditional problems of program error, power failure, or
machine trouble now could cause highly visible system
crashes and leave bad records in the data base. New
disciplines had to be learned in order to bring these
problems under control. It often seemed that the
failures, especially in the area of remote communica
tions, were as new to our vendor's representatives as
they were to the Bank, and that both were learning
about the equipment at the same time.

The fire-fighting efforts required to keep the system
running took more and more of the development team's
time, and the rate of progress toward completion of the
project slowed to a halt on several occasions. The
scheduled completion date was passed and management
began to become very concerned with the availability
problems and with the project slippage, especially since
these had been recognized as potential trouble areas
from the very start. At times, the problems were so
numerous that the achievability of the project goals
was in question.

Gradually the problems diminished, then disap
peared, and the remaining programs were completed.
An overhaul of several key programs was undertaken,
and the revised programs saved large amounts of time
and CPU usage. The Bank's subsequent interactive
systems projects have benefited from the Factoring
system, and their risk is now no greater than it would
have been for a batch system.

Management must be made aware of the potential for
delays and interim problems in a pilot project, and the
project team should realize that the ability to obtain
satisfactory results from the on-line terminals during
the early testing stages of the installation must not be

Interactive Processing-A User's Experience 1043

extrapolated into a belief that all will be well under a
full production load. It may be prudent, in some cases,
to program all of the nightly runs and printed reports
prior to allowing the team's (and management's) atten
tion to be drawn into a demonstration of the on-line
part of the system, for people may conclude that the
project is nearly done when, in fact, only the on-line
terminal programs have been finished.

Modeling

The use of a system model seems to be absolutely
necessary in order to evaluate alternatives and to pre
dict system capacity and performance. The user starting
his first project in this area will benefit most of all, for
the model will act as the substitute for past experience
with similar systems. As the user acquires his experi
ence, th~ modeling process may determine fewer major
decisions, but it will provide a means of checking the
decisions and predicting the performance improvements
from faster computers or peripheral devices

File accesses

File accesses can be a major source of CPU problems
in a large system. The file handling will often' be pro
vided to the application programs by means of macros,
and careless use of the access macros can result in un
needed I/O as well as wasteful CPU Execution. In the
Factoring system, the CPU requirement for computa
tion and logic within the application programs is
about one tenth of the CPU consumed by the file
handling part of the system. In the Factoring system
the files are large and the proportion of system load
due to file I/O is perhaps larger than in other applica
tions in other companies. Nevertheless, systems de
signers should count file accesses with great care in any
real-time system, and regard every additional access
to the file as a significant systems load. Each of the
heavily used applications programs should be subjected
to a review by several programmers to provide assur
ance that the accessing plan is as efficient as possible.

In summary, the system has met our expectations
but the problems encountered during the development
were severe and prolonged enough to place success in
doubt. The experience gained has been invaluable, and
the Bank is capitalizing on that knowledge by building
two additional systems of a similar size. The writer
believes that there is a great savings potential for sys
tems of this type in other business areas and that their
development and use should not be assumed to be
limited to large firms.

1044 Fall Joint Computer Conference, 1972

STATISTICS-The First National Bank of Boston Factoring On-Line System

File Size 150 Million Bytes Average Printing Require- 200,000 lines

Average Messages per hour in = 4,800, out = 4,800 ments

Peak Messages per hour in = 7,200, out = 7,200 CPU IBM 370/155, 1 megabyte of

Average Message Size in = 100 characters, out
core

CPU Utilization (On-Line) 35-40% in June, 30%
400 characters (planned) in December '72.

Teleprocessing Remote, 1 second poll Drum 2303 in June, 2305 in Decem-
Lines 10 lines, 2,400 bps speed ber'72

On-Line System Core 420K, 610K including OS Drum Utilization (On-Line) 50-60% in June, 30%
Requirement (planned) in December '72

On-Line System Running Time 8 :45 a.m. to 4 :45 p.m. Disk 4-2314 Spindles in June,

Response Time 82% under 6 seconds, .5%
2-3330 spindles in Decem-
ber '72

over 50 seconds Disk Utilization (On-Line) 20% in June, 10% (planned)
Nightly Run Core Require- 6 programs at 120K, 1 pro- in December '72

:fuent gram at 600K Terminals 58 Sanders Model 720 CRT
Nightly Run Time 3 hours average, 4 peak Consoles

The myth is dead-Long live the myth

by E. L. GLASER and F. WAY, III

Case Western Reserve University
Cleveland, Ohio

Although the field of computation has been of the
most explosively expansive in the history of mankind,
still we find certain basic ideas which were valid many
years ago are still assumed to be valid today. On the
other hand, some apparent truths that were discovered
at the beginning of the computer era unfortunately
have been lost in antiquity and must be rediscovered,
not once but many times. In this paper we do not expect
to be definitive but at least to examine some of these
myths, the true and the false, and perhaps to find some
that should be destroyed and to uncover others to pre
vent younger workers from having to rediscover what
each of us has had to do several times ourselves. To com
pound our problem we have the fact that the electronic
calculator of the programmable variety is now starting
to encroach and has already well overlapped the capa
bilities of the minicomputer. "This new machine is a
hybrid. It overlaps both the minicomputer and the
programmable desk calculator. The standard machine
containing 1000 locations is capable of containing a
program of over 2000 steps. In addition, specialized
tape units using modern cassettes are available. The
basic machine comes equipped with a number sufficient
to handle all of your temporary storage needs, will
enable you to bring in new programming systems, and
it will even have sufficient facilities to permit you to
sort blocks of data. As a consequence this machine will
meet the needs of office, laboratory, or accounting
room! Its size is moderate and will fit on a reasonably
large desk. Cost is under $18,000. As a special added
feature, its basic instruction set is implemented by
using the most modern techniques of microprogram
ming and, therefore, may be modified in the future as
the manufacturer develops new classes of instructions
that will be of use to the various customers of this excel
lent machine. Programming systems that take full ad
vantage of the human oriented decimal arithmetic are
already available with it and, furthermore, all registers
can handle both numeric and alphanumeric quantities!
For further information circle ... "

1045

Such an ad does not seem in any way unusual. It
could have appeared in anyone of the trade magazines
such as "Datamation" or "Computer World" any time
within the last year. It appears to be an interesting
architectural structure, and a rather interesting com
promise between a desk calculator and a general purpose
computer. Obviously this is a made-up example.
Further, it should be obvious to the reader that this is
meant to lead you down some kind of a primrose path.
For those who have not guessed or for those who are
not old enough to have remembered, the machine de
scribed has a venerable history and it is known as U ni
vac 1. The only thing that we have done is to rescale it
in terms of modern technology.

The purpose of the preceding bit of fairy story was
strictly to bring out the fact that our concept of what
is a small computer and what is a large computer, what
is a mini and what is a desk calculator have undergone
radical changes, not just in the last twenty years, but
in the last five. For those that don't believe it they may
go through the exercise that we have done. A more in
teresting one might. be to examine some of the new
minicomputer offerings that take advantage of elec
tronic MOS memory. At our university we have re
cently installed such a machine that also has built-in
floating operations and memory protection hardware.
This particular machine is being used as a minicomputer
to support a special laboratory. 'It happens to be satel
lited to a much larger machine. Imagine our shock and
surprise when, at the time the programming system was
being established, we found it has the throughput
capability of what everybody in this audience was call
ing a large machine as recently as 1965. We have
purposely not identified either the minicomputer or the
machine we compared it to. We leave that as an exercise
for the reader and the hearer since after making this
rather shocking discovery we looked at other potential
pairs in this little game and found that it almost
doesn't make any difference which ones you look at.

The purpose of all this has been to ask the reader to

1046 Fall Joint Computer Conference, 1972

re-examine some of the "truisms" that have been
around. The problem with any unwritten law is that
you don't know where to go to erase it. Within the field
of computer systems we are in an unusual position of
being still a very young field with unbelievable number
of customs, old wives tales, etc., that bind us and many
of us are not even aware of it. This particular example
we feel is a good one since it starts to challenge the
most common of all such myths. "There is economy in
scale." This is true. There is. It is also true that as our
understanding of computing grows our aspirations for
more and more computing also grow. However, the
above example raises the question of do we really need
as much economy of scale, for example, for interactive
time-sharing where the main purpose is simple program
ming and editing. Even in the case where we are develop
ing programs for very large and demanding problems
that do require the modern equivalent of the largest
computers, the question can be asked "is it really neces
sary that humans interact to develop these programs
with the largest machines or could we not by means of
modern technology place a simpler machine in the
hands of the user for this purpose and subsequently
transmit the problem when debugged to the large
machine if the large machine requires it?" Not that
long ago most people would have felt that being able to
afford a Univac 1107 or an IBM 7094 for each person
that needed computing was an unbelievably optimistic
dream. The question is, now that we can do it, is that
the way we are going to go?

SOME SACRED COWS FOR THE SLAUGHTER

The preceding sacred cow which was exposed is not
the only one. In fact, it is the most commonly referred
to myth of our field. At the time we were originally pre
paring this paper we identified four additional such
canards that had to be examined and either accepted
or rejected on their worth but not on faith. We find,
fortunately, that at least one of these has been partially
rejected. It applies primarily to the user of small
machines. For years it was felt that it was possible to
cut corners on small machines. One can have good de
bugging features and all kinds of aids for the programs
in the large machine but since the small machine is so
small one can cut corners and not give the user all of
this "help". Weare glad to say that this feeling no
longer is' rampant in the industry as it once was. Large
machines can support large staffs. Small computers,
minis, and programmable electronic calculators cannot
support staffs at all and therefore must supply the help
for the user. We regret to say, however, that the re
maining sacred cows are still alive, healthy, and doing

ecologically un-nice things to the programmatic land
scape. The first of these is "well, I know the machine
does have some problems in its architecture but we'll
fix that with software". How many times have we heard
that, either in those words or words similar to it? We
would even suggest that perhaps some new terms be
offered, that henceforth the software be called hard
ware, and the hardware should be called easyware. All
of us know of systems where this particular concept
was applied and the pieces were never picked up totally.
There are even two or three machines that we know of,
made incidentally by different manufacturers, where
the pieces never were picked up. No manufacturer is
immune from this particular set of comments.

The second of our three mythical animals for the
slaughter is "of course computers operate in binary.
That's how God meant them to, that's why he gave
you two thumbs!" to paraphrase Tom Lehrer, who
once pointed out that counting in octal was just like
counting in decimal if you didn't have any thumbs.
We might add that counting in binary is just like count
ing in decimal if you are all thumbs. We have always
assumed in recent years that the machine must operate
in binary, and we can store other representations such as
alphanumeric and decimal in it if we so need because
they can always be displayed on small indicator lights
for the serviceman and after all the 'software will make
sure it gets printed out on the printer. What can we I

say? Machines are finished and operating systems are
finished but computing systems are never done. The
programmable calculator people have learned this and
are now delivering machines that are ready to use as
soon as you uncrate them. Unfortunately, however,
they are having to relearn what the computer industry
learned some 15 years ago. They are having to deal
with the problems of specialized functions versus gen
erality and in some cases they are having to relearn the I

whole technique of algebraic scanning and interpreta
tion. However, they have learned many of their lessons
well. For those of you who don't believe it, go look at
some of the modern programmable desk calculators
that operate from an algebraic language. The fact re
mains that people still think in decimal despite the fact
that many programmers pride themselves in being able
to read in octal almost as well. This is not to say that
binary manipulation is not required inside the machine.
The question however, must be raised and re-examined
as to whether it is better to compute in decimal when
decimal answers are required. For those who think that
this is a dead issue, when was the last time you tried to
explain to a good hardnosed accountant why it was by
putting his problem on' a modern machine you could
only come out with inexact answers?

The third sacred cow that should be examined care-

fully is that of secondary storage. The cache memory
has come into quite wide acceptance over the last several
years. Yet, most machine designers insist that secondary
storage disk memories and drums, are really input
output. We might humbly suggest that the core or
MOS memory is really a cache for the larger online
store. The implications of this are broad, however, they
should be examined carefully since ultimately if you
want online storage, you've got to be able to get at it in
some reasonable way and an integrated approach rather
than the massive peripheral attack that has been
mounted upon the problem of memory, memory or
ganization, and name space, just might be fruitful.

One of our most widely regarded cows has apparently
been strangled by a twisted pair of wires-the cow was
"closed shop is better" and the demise is being caused
by remote terminals running in either batch or interac
tive mode. It is indeed marvelous to view the influence
of state of the art technology (a pair of wires) making
such a pronounced change in the management of com
putation centers. Another beastie which is long overdue
for extinction is the practice of letting circuit designers
dictate the arithmetic properties of a machine. This has
produced such anomalies as a machine which does not
have a floating point multiplicative identity-try and
explain to an irate user just why one times X is not X.
and yet another marvel wherein raising a real number
to an integer power is more accurately done by ex
ponentiation and logarithms than by successive ma
chine multiplication. To add further fat to the sacrificial
fires we now have shirt pocket calculators with nine or
ten DECIMAL digit floating point (+99 to - 99)
numbers, trig functions and inverses, etc. It clearly is
high time for some specialists in numerical mathe
matics (note-not numerical analysts) to have a say in
things.

As a concluding blast in the large scale animal divi
sion, let us merely note some atrocious characteristics
of some of the higher level languages such as letting
machine "features" to percolate thru to the point
where the user must know about them, or languages
which have made the compiler writer's job simple at the
expense of the target user-again try to explain just
why the user should not write

DO 403 X = -9.35,0.45,0.33

Of course we can get around the problem, but some
users seem to think that the machine should help them
solve problems rather than the other way around.

SOME SACRED CALVES

In this section we would like to put forth some sacred
calves that have not had the chance to grow up yet.

The Myth is Dead-Long Live the Myth 1047

It is our fervent hope that they too someday may also
be cluttering up the technological landscape and a
latter day programmatic Don Quixote may sally forth
to do battle with them. Our first candidate is already
becoming well accepted. Don't put it in software if
you know it isn't going to change. Put it in the hard
ware, it's easier to debug. If it is in the software, it's
there because it needs to be parameterized and will
change, either within one user's environment or between
users, and change rather drastically. A parenthetical
comment might well be inserted here that often is put
in software for a somewhat different reason, namely
"we don't really understand it so we'll give it to the
programmers. "

A second small critter has to_ do with microprogram
ming. Microprogramming really isn't an answer, it's a
question. The question is, what is the place of interpre
ters? There is nothing basic about a microprogramming
system. It is just that the old concept of interpreting in
real time has been rediscovered. What is its future?
Will we start seeing languages again that are inter
preted rather than compiled and executed? Obviously
we already have. A very well-known one is APL.
Excellent work is going on in several centers including
Harvard on languages and language systems in which
both interpretation and compilation can be exploited
quite interchangeably and continuously.

Our third candidate for immortality as bovinus
mythicalus is in many ways the most important. A
number of networks have sprung up in recent years.
The work currently going on between a number of
centers on the ARPA network may well be one of the
most important information handling experiments that
have been conducted in the last decade. Obviously it is
of interest to demonstrate what can be done with long
range, broadband communication that ties together a
number of computing centers for load-sharing, for gain
ing access from one center to many other centers, and
even more importantly, for making ·available computer
resources at a distance so that each center need not
have their own machine, but buys the service as they do
"electric power", to cite a common cliche. The im
portance of this experiment may well transcend any of
these reasons. As speed of devices increases the problems
of the interconnection increase also, but at this point
they are increasing at a much higher rate. Weare
rapidly approaching the time when it will no longer be
possible to increase the speedy machine merely by in
creasing the speed of its elements. For those of you who
are interested in circuit and hardware design, pray con
sider the dilemma if we were to offer you an unlimited
supply of absolutely free components that were capable
of operating in the one to two pico second range. These
components, however, are sized ,about the same as our

1048 Fall Joint Computer Conference, 1972

present IC dual-inline packages. What difference would
they make? The answer is not muchf We are already at
the very edge of what present day packaging can do
with present day organizations. Still, if we can network
machines together across the country and have them
work on some kind of a cooperative task, then obviously
we can do it across a cabinet or even a PC board. Thi~ is
not quite the same as array processors such as ILLIAC
IV, rather it is looking to the time of learning how to use
cooperative independent processes for the solution of
large problems.

CONCLUSIONS

It is hard to say what will happen if we either follow
the new dictums or keep the old. Prognostication in this
field has been woefully poor. The majority of it has
either been overly pessimistic or just totally off the
beam. There is one conclusion that can be drawn.
Whether these new dictums are the ones to be adopted
or not, the fact remains that computer systems design
is becoming much more complex than it ever was before.
Systems design must do quite a bit more than merely
putting software on existing hardware. What is needed
is an integrated set of design tools aimed at solving
users problems and meeting users needs. Where possible,
the users needs should be anticipated since user be
havior will change with the advent of new tools and the
availability of new techniques. It is our firm belief
that it is this specific problem of being able to handle the

complexity of modern systems that has caused the rather
noticeable slowdown in the change and design of large
computers today and it is the lack of this inhibition
that has promoted the burgeoning minicomputer in
dustry. Computers have been designed as tools to handle
large and complex problems. They have been applied by
many different industries, not to just the implementa
tion of technological solutions but to the investigation
of complex technological design problems. Unless and
until the computer industry adapts its own tools and
finds workable mathematical models that will permit
the handling of the inordinate complexity of modern
day computing systems, the stagnation that has ap
peared in the medium to large scale computer area will
continue and these medium and large scale computers
could ultimately be swept away by new, small, high
powered minicomputers aimed at individual use or for
the use of a few people together with cooperative net
working techniques. It is our fervent hope that this
does not happen. However, hope is insufficient and the
change can only come with identification of the valid
problems to be attacked and a conviction as to where
the real design aims are coming from. Are they coming
from the designer or are they a part of a set of myths?
Based partially on reality but primarily having their
roots in lack of understanding, lack of awareness of the
user, and lack of that most essential of all ingredients,
the willingness to look at a problem in a new way and
understand that the world has changed, the real design
aims must be examined carefully and before the system
is unleashed on the innocent users.

Distributed intelligence for
user-oriented computing

by TIEN CHI CHEN

IBM San Jose Research Laboratory
San Jose, California

INTRODUCTION

The primitives used by the computer designer have
blossomed from the single logical connectives of two
decades ago, into chips containing thousands of circuits
and bits. Yet the quantitative aspect of the achieve
ment, imposing as it is, signifies less than the qualita
tive injection of machine intelligence down to the chip
level. With the consequent freedom to distribute
computing power, machine design enters a new era.

We assert that very powerful extensible systems,
based on the loose-coupling of nested autonomous
modules, can harmonize with the hardware trends and
be directed toward human-oriented, interpretive
computing. The key to performance is self-optimization
conducted throughout the polycentric system.

DISTRIBUTED INTELLIGENCE

Machine intelligence and self-optimization

An important aspect of intelligence is the ability to
make, then follow, decisions based on available informa
tion. This ability is present in machines (in however
small a measure) by the interplay among logic, memory,
and the environment, especially through the use of
stored programs.

Machine intelligence can be directed toward en
hancing the processing throughput of the system itself;
this self-optimizationl can be practiced globally for.the
entire system, as well as locally within a unit of the
system. The degree of self-optimization is largely dic
tated by cost and packaging considerations.

Local autonomy

In very large machines efficient processing cannot re
sult from the complete prescription from a central

1049

mechanism. Local events with large performance im
plications may not be predictable, and it is too costly in
time and bandwidth to submit these for central judg
ment in real time. It is clearly desirable to decentralize
into intelligent autonomous units, each capable of local
self -optimiza tion.l

Until recently, local self-optimization has been diffi
cult to achieve. Electronic circuitry was too expensive;
inexpensive magnetic core memories are not only slow,
but are package-incompatible. Designers had to evolve
electronic devices with low circuit count~, in most
cases barely achieving the minimum requirements for
local intelligence.

A new era

The onrush of large-scale integration has now voided
the technological distinction between logic and memory;
their historical packaging incompatibility and speed
mismatch have vanished. The cost of logic and memory
have become very low, and is still dropping rapidly,
and the size per circuit (or bit) also shrinks accordingly.
A single chip (or a very small number of compatible
chips) can now contain enough circuitry, non-volatile
control memory, and read-write memory to work as a
fast, low-cost unit with arbitrary degrees of stored
program character. 2

With the revolutionary freedom to plant machine
intelligence anywhere, machine design and machine
usage should see a fundamental change. While the full
implication of the new technology may not be fully
known for some time, it is clear that the major stum
bling block to effective local autonomy is no longer
there ..

The dawn of the new era brings new economies and
new priorities. The production cost of hardware is
measured mainly by the' number of interconnections
and the communication cost,3 and the development cost

1050 Fall Joint Computer Conference, 1972

is measured mainly by the number of chip types. Logical
complexity has receded into secondary importance in
the economic equation. Logic redundancy, no longer
frowned upon, is becoming a practical necessity.

User accommodation

In these days of sharply lowering hardware costs
and rising human values, no stone should be left un
turned in accommodating the human user. The pro
gramming cost, now standing at roughly 40 percent of
the total expenditure of average computer installations,
stands in sharp contrast to the CPU cost, which is less
than 10 pel"cent of the total, and the overall hardware
cost (30 percent).4.5 It is now far more reasonable to
bend the machine to suit the man than vice versa, and far
easier.6 ,7 Effective throughput analysis should take into
account the entire problem-solving process.

Distributed intelligence

The new technology has already produced fast, small
systems at attractive prices; it is relatively untried in
the building of large supermachine systems.

While it is always possible to remap "proven" de
signs and mend the potential deficiencies in standard
systems, the new capabilities, re-oriented priorities, and
the increased appreciation of the users' role in global
cost-performance strongly suggest that past designs
may no longer be optimal.

We assert that very powerful, indefinitely extensible
systems, harmonizing with new technology and new
economic realities, can be constructed without the long
development time which has been the bane of very large
systems.

To transcend the basic switching time restrictions on
performance in a supermachine, some form of multi
processing is necessary. Our experience. shows that
intra-CPU communications tend to be vastly more
frequent and more intricate than communications to
the outside world (which could have other CPU's). It
is therefore reasonable to base the communication
limited multisystem on the loose coupling among nearly
self-sufficient, programmable modules. The structure
then shows an extreme form of decentralization, not
unlike a present-day computer network.8 The system
Can be organized as a polycentric hierarchy, relying on
labels and language for intercommunications.

Self-optimization will be instrumental to make such a
decentralized system workable and efficient. An ex
tension of the self-optimization scope can lead to opti
mal interpretation of higher-level languages, bringing
genuine economy where it matters most, and reducing
the barrier between man and machine.

Reappraisal

While reaching toward these goals a reassessment of
the entire computing scene is necessary. Established
techniques, conventions and viewpoints, their worth
demonstrated in the past, may turn out to need revision.

Perhaps the greatest reward lies in merging concepts
previously held to be distinct, irreconcilable opposites,
but are more appropriately items for tradeoff. Examples
are

logic-memory
hardware-software-firmware9

compilation-interpretation-execution
man-machine
control-cooperation

Actually, the walls keeping these concepts apart have
been under erosion for some time; the new realities
merely focus on their artificiality and hasten their
demise. The barrier between logic and memory has
already fallen; others will follow in due course.

THE NEED FOR LOOSE-COUPLING

Parallelism and pipelining

In discussing performance magnification, parallelism
and pipelining invariably come to mind. Both are ex
amples of tightly-coupled multiprocessing, demanding
the intimate linking of a number of processors in a
parallel or serial fashion, to give predictable behavior
in detail. In a fully parallel system every functioning
processing element moves in unison; in a fully pipelined
system every microprocessor (pipeline segment) has a
unit throughput, generating a result at the end of every
cycle.

However, in general computing, these tightly
coupled designs cannot function efficiently without in
troducing loose-coupling and a measure of stored pro
gram character.

Diminishing returns

A job can be characterized by the parallelism ratio

the amount of work,which can be done in parallel
p=

the total amount of work

(a unit of work takes a single processor a quantum of
time). With this definition it is easy to prove10,7 that,
regardless of the number M of parallel processors as
signed for the job, the throughput, expressed as the
effective number M eff of fully utilized processors, cannot

Distributed Intelligence for User-Oriented Computing 1051

exceed l/(l-p), which for most standard jobs (p<0.9)
is less than 10 (see Figure 1). In fact

M eff = 1
~5
~9
~9.99

for M=l
for M=9
for M =81
for M =8991

(efficiency 100%)
(efficiency 55%)
(efficiency 11%)
(efficiency 0.11%)

Pipeline systems are subject to the same law of
diminishing returns (with p bounded by (1-1/ L), L
being the number of similar jobs being sent through the
pipeline). In realistic computations the efficiency loss is
even more severe-conditional branches are notorious
for serializing otherwise parallel processes, and for
draining otherwise full pipelines.

Therefore, low though the cost for the added hard
ware may be, the unlimited use of parallelism and pipe
lining cannot be advised unless there is a scheme to fill
the extra capacity. Otherwise the extra equipment
would largely be wasted by disuse, except for special
purpose computations.

Conversion to loose-coupling

Such an efficiency-inducing scheme is micro-multi
programming, that is, multiprogramming adapted to
the multiprocessing down to the smallest processing
units.

Here the tight-coupling is relaxed sufficiently in the
multiprocessors to accommodate unrelated pieces of
work, so that idle processing power in executing a given
task can gainfully be employed for some other tasks.
The units in a parallel system, for example, will be

Simple bound: Mell -,l/(l-p)
10~--------------~~------~----======

OL-~~~ ____ ~~~~~ __ ~ __ ~ __ ~ __ ~~M
1 10 20 40 200 400 1000

Figure 1-Bounds to tightly-coupled multiprocessor
performance for p SO.9

called upon to do several. unrelated tasks at the same
time, and a pipelined system may be allowed extra
entry-exit points in the interior. Then the input jobs
are quantized for the available processing power, and
the system must be preceded by a "throughput opti
mizer" consisting of a buffer and a selection mechanism
to choose the appropriate tasks to maximize through
put, often deviating from the sequence of arrival of the
task assignments.

The tightly-coupled multiprocessor, thus converted
for self-optimization, becomes loosely coupled to the
environment, independent of the detailed timing and
arrival sequence. It becomes a suitable module in a
distributed intelligence system.

In such a system, the total workload may still be
distribute<i"by a central mechanism; but the local unit,
no longer limited to passive processing, is now autono
mous and will actively manipulate its own job queue
for throughput. This way the administrative burden
on the central mechanism will be lightened greatly
it is no longer necessary to know the detailed timing re
quirements of each unit before dispatching. Many more
functional units can thus be brought under central
"control" .

The above analysis indicates that loose-coupling with
self-optimization is a more viable form of multiprocess
ing than tight-coupling, which needs to be loosened to
enhance throughput. While detailed predictability of
sequencing is thereby lost, numerous techniques are
available to guarantee the precedence of dependent
events, hence the correctness of the final outcome. These
interlocks again call for local intelligence to respond to
messages accompanying the tasks.

POLYCENTRIC COMPUTING

Labels and routing

To reduce the inter-communication cost in a large
system, processing power must be used to compensate
for a limited connectivity and bandwidth, using a
language-oriented identification scheme to resolve am
biguities and enhance processing.

An output from module A destined for module B
cannot be specified by a physical path alone, with its
multiple destinations; nor by time-slots because of the
loose-coupling. The communication must rely on coded
control, or label, using a common language of exchange.
This coded control is needed not only to describe the
~nformation travel, but the environmental constraints
accompanying the task, including the interlock informa
tion needed to preserve precedence as mentioned in the
previous section.

1052 Fall Joint Computer Conference, 1972

From A
To B,D and units chosen by D

----8- =8-0-0-0)----
Information .

Figure 2-A routing slip

A job requiring processing by several modules in se
quence can be given a "routing slip", specifying the
major visitations, as shown in Figure 2.

We remark in passing that labels and routing slips
already exist in many large machines (notably the
S/360 Model 90 seriesl), computer networks, and the
human society.

The routing need not always be encoded exactly,
specifying all visitations in detail. The complete
enumeration by a single agent may be expensive, or
even impossible because of unforeseen or conditional
events. It also tends to handicap the units downstream.
Each unit should have limited freedom to determine
both the subsequent routing and the ways to specify it;
the full exercise of this freedom is an important aspect
of self-optimization.

Typical modules

Most modules forming the nodes in the network can
be classified conventionally into memory units, arith
metic units, instruction units, I/O channels, I/O units,
and terminals.

Special modules may be necessary to direct the traffic,
interpret the environment, and provide buffering in the
event of congestion. These behave rather like intelligent
I/O channels.

Loose-coupling demands the rather free use of com
puting power, especially non-numeric ability to inter
pret labels, and read-write associative memory to serve
as buffers. For larger units it may be desirable to in
corporate complete CPU-like stored program facilities
for thorough self-optimization; the cost of redundancy
in the new technology would be relatively low, and the
possible gain in throughput and fail-safety may be
considerable.

To provide the required power, a stored-program
module should not be limited to hardware, distinguished
by speed, bandwidth, memory and precision; it also
may have software with its information complexity,
high connectivity and flexibility, and firmware for ef-

ficient mapping into virtual machines. Distributed intel
ligence implies a complete dispersal of computing power
throughout the system.

The modules can vary greatly in function, perfor
mance, and structural detail. Many may be identical;
many may be complete minicomputers differing only in
firmware and softWare. Some may be isolated units;
the others will be constructed of smaller ones, like
nested DO-loops in a Fortran program.

Polycentric nesting

The hierarchical nesting of modules form a poly
centric system. At each level there is a collection of
intelligent centers; each may have lower level intelligent
centers as subsets, and so on down to an indivisible
module. The entire polycentric system has the topology
of a tree (see Figure 3).

Although there is a chain of command, the higher
. level commands to not exercise complete control over

subordinates. While adhering to broad guidelines on
responsibilities and system integrity, the low-level
centers generally function as autonomous units to
maximize throughput, and can process in a manner un
expected at the higher levels. Division of labor then can
provide for the orderly flow of information, and provide
a general framework for problem-solving. As stored
program facilities are abundantly available, the labor-

I
0 0

·A

/1"'-
BCD

/11 ~
EFG HIJKL

/ /1\ //\ "" "" M NOP QRS T U

/ /\
v wx

Figure 3-A polycentric system and its tree representation

Distributed Intelligence for User-Oriented Computing 1053

division can be implemented within wide latitudes. The
users' detailed needs are met by real-time assignments
of subsets of the network.

The polycentric scheme offers many advantages.
From the physical viewpoint, interconnections are
simplified. Communication channels are partitioned
into short, non-interfering pathways, each linking a
small number of stations in good order (for a three level
communication hierarchy see Piercell). In an N-point
system the path length between two arbitrary nodes of
the tree is measured by log N, rather than N. The rout
ing labelling is correspondingly systematized. Intra
center processing is naturally enhanced by the entailed
short distances and easy access.

Further, entire centers can be units of replacement;
addition, removal, or alterations 'can occur with least
disturbance on the surroundings. The design and debug
time of the large system is therefore expected to be much
shorter than for more conventional systems.

The logical advantage to the designer lies in the
clarity in delineating functional interdependence. There
is no need to be bogged down at any stage by excessive
detail. The structure offers a natural resilience;
reprogramming (and remicroprogramming) can be
practiced at all levels to compensate for design over
sights, structural imbalances. Self-optimization, of
course, is a type of reprogramming, dynamically re
balancing the system in real time.

Reductive mapping

A full logical specification of the polycentric system
corresponds to a very large physical design. Feasible
smaller physical designs can result from mapping onto
fewer physical modules, trading performance for econ
omy and compactness. Several logical modules within a
center, sometimes even across center boundaries, may
become "virtual machines" within the hardware, firm
ware, and software of one physical module, as shown in
Figure 4. Modules may also undergo expansion to ac
commodate the increased workload.

A

/1"-
BCD

/1/ ~
EFG HIJKL

/ //\ 1/\"'-~
M NOP ORS T U

1 /\

A(D)

/~
B(G) C(IORSVWX)

/I /~
E F(NOP) HJ(K)L

I I
T U

v WX

Figure 4-Reductive mapping

Examples of the reductive· mapping may be:

1. The replacement of several stored program
processors by one with a larger memory, and
multiple sets of firmware;

2. Reduction of the degrees of parallelism, pipe
lining, and overlap;

3. Centralizing certain facilities, such as large
memory and I/O channels, also sharing of one
facility (say a fast .multiplier) by several
modules;

4. Rebalance the hardware-firmware-software ad
mixture. 9

When systematically conducted, the mapping should
preserve the loose-coupling polycentric character.

Unified access

That the polycentric system may have more than one
set of hardware, firmware, and software, and that entire
modules may become "virtual", should not disturb the
user; his problem is only the convenient access to com
puting power. The detailed means to provide power does
not even concern the architect, whose job is to specify
the logical mechanisms to provide service.

The system design is predicated upon a unified access
to facilities, regardless of the implementation. For a given
function, the allotment to particular unites) and the
distribution among hardware, software, or firmware
are all resource parameters subject to tradeoff by the
designer of the particular systems. This tradeoff can
even occur dynamically as an aspect of self-optimization
and self-repair.

INTERPRETIVE PROCESSING

Nested programs and machine execution

It is now commonly agreed that a large program
should be written as a nested collection of procedures
with controlled interfaces. An important technique to
generate nested procedures is top-down program
ming12,13 based on the successive refinement of the
original goal, which may be considered to be a zeroth
level sub goal. A given subgoal may either be readily
attainable, or, more commonly, may require the
specification and attainment of next level subgoals. In
programming, the successive goal refinement involves
first the orderly creation of interfaces and environments
for the lower level sub procedures, then the programming
of the latter themselves in some order. The entire
program has the topology of a tree.

1054 Fall Joint· Computer Conference, 1972

Top-down programming maintains a clear framework
at all times, sharply reducing the chances for misunder
standing and errors. The lower level programs are free
to supply details once the interfaces with the higher
levels are made explicit, and the programming can be
assigned to relative strangers. The technique is a major
ingredient in the "chief programmer team" approach to
the management of software projects. The program
produced this way is easy to read and maintain; modi
fication also would occasion minimal disturbance to the
rest of the program.13

The usefulness of nested programs would have been
further enhanced, if their hierarchical structure is re
flected during execution by a corresponding "top-down
processing". In other words, the hierarchical program
should ideally be handled by an "algorithm machine"
which mirrors the program behavior in detail, so that
the program never relinquishes control of the computa
tion. The clarity in the top-down program will then
be extended consistently into the execution phase. This
feature will be particularly welcome in intimate man
machine interaction situations such as interactive com
puting and debugging, also in program modification
during execution.

Very few experienced programmers today would be
lieve that his own jobs are handled by a "Fortran
machine". This is because most program executions are
preceded by a compiling phase, when procedural code is
replaced by machine code, concurrently "meaning" is
replaced by representations. This way the original pro
gram syntax is beclouded; this is even more evident with
object code optimization. There is a net information loss
by compilation.

Compilation into machine code moreover tends to
overspecify the processing, sharply limiting the possibil
ities of self-optimization. A case in point is the process
ing of a matrix innerloop by the IBM System/360
Model 90 series machines, which combine several
machine instructions into a Fortran-like statement to
permit efficient execution, thus undoing the compiling
process. I The redundant use of intermediate registers in
the compiled instructions turned out to be an over
specification and a major source of inefficiency there,
and is avoided only by extra self-optimization effort.

Interpretative machine8

This writer has advocatedlO constructing super
machines with some or all of the features below:

M: Multioperator statement execution, rather
than instructions;

A: Array handling, rather than dealing with
single numbers;

N: Name and descriptor handling, rather than
addresses.

These features are mutually consistent, indeed
mutually reinforcing. Together they form a framework
for a truly interpretive machine, befitting the advance
in large-scale integration.

Interpretive computing means top-down processing
the state of the interpretive machine can be arbitrarily
close to the state of execution of the nested program, as
is well-known to users of the (software) APL/360 in
terpretive system.I4 Recent experimental efforts to con
struct firmware and hardware interpretive ma
chines4, 15-18 are encouraging responses to Gosden's
challengel9 that it is the engineers' role "to make pro
cessors and storage so fast, so large, and so cheap that
interpreting becomes attractive."

We shall now briefly discuss each of these features in
the light of the new technology and the polycentric
system.

In advocating names and descriptors rather than
addresses, let it be noted that the classical "address"
is not really a tenable concept in the polycentric system.
A piece of information may not have an address, if it is
not yet available; it may have only a forwarding address
if it has been moved; it may have several viable ad
dresses if it has been copied, or several possible addresses
if it is in transit. In many current large systems the
address is already treated as a restricted label. As noted
before, label processing is already needed with· the
linkage-constrained distributed intelligence system.
The user names and descriptors may not exactly cor
respond with labels, but the technique and equipment
for processing are essentially the same.

Array processing allows the proper scheduling of
pipelines, parallel processors, and other tightly-coupled
resources. The concise referral prevents piecemeal ac
cesses. It frees the decoding mechanisms for decode
limited work elsewhere, and enhances high-bandwidth
data flo.w. The ability to restructure arrays in real time
avoids storage wastage and simplifies programming.

A statement is a concise quantum of procedure with a
logical thread of causality, in sharp contrast to the
fragmented steps in the compiled instructions. The
direct use of statements simplifies routing assignments,
protection, arid interruption monitoring. The handling
of intermediate results, no longer prescribed by instruc
tions, is then subject to self-optimization.

Polycentric systems, being themselves hierarchical
in nature, can further be designed to exploit the notion of
successive refinement implied in the nested program.
Clearly delineated subprocedures can be executed con
currently with little fear of conflicts. Each subprocedure
can be allotted a "virtual machine" which in turn is

Distributed Intelligence for User-Oriented Computing 1055

+

Use canonical
code

1
I

:

Generate and
No preserve the proper

---.. canonical code

Figure 5-0ptimal interpretation

mapped into the polycentric system in real time. Such
simultaneous assignments would be very difficult with
conventional machine-language codes, because of the
causality uncertainties.

Optimal interpretation

Interpretation, especially when performed exclusively
by software, has a tendency to be slow, in contrast to
the execution of a well-compiled Fortran object pro
gram. The performance gap may even widen, as com
piling techniques to produce optimized machine code
are constantly being improved.20

Optimal interpretation, though little known and sel
dom practiced, is just the real-time creation and selec
tion of alternative processing techniques. It is a form of
self-optimization, with stronger emphasis on linguistic
manipulation and educated guesswork. There is also
greater commitment of resources, particularly memory.

There are at least two different ways to specify the
processing of a job, either in human-oriented procedural
code, or in a more restrictive but machine-efficient
"canonical" code. The latter can contribute significantly
to efficiency for repetitious tasks. Therefore, the opti
mally interpretive machine can generate the canonical
equivalent of the human-oriented code once, and use it
at every known occurrence of the applicable environ
ment. The original procedural code, being universal
though slow, can be preserved for possible use whenever
the available canonical code fails to apply. This way the
top-down syntax is preserved until the system guaran-

tees that equivalent results are obtained more ef
ficiently.

A simple flowchart is given in Figure 5; the analogy
to loop-traversal optimization having been pointed out
in an earlier paper. 7

For the APL language codes, Abrams21 developed an
optimal interpretation scheme to postpone array han
dling in anticipation of future simplifying actions, in
order to minimize the time and memory cost of handling
intermediate arrays. Here the choices are quite dissimi
lar: processing or procrastination, but the underlying
principle is still the choice of alternatives. The Abrams
scheme is also reminiscent of the self-optimizing
mechanism to avoid redundant use of intermediate
registers (as mentioned in an earlier section), but is far
more elegant and powerful in the APL array processing
context.

Self':'optimization, conducted in real time, tends to
favor tactics and ignore strategy, because of the limited
scope and pressure of time. Nevertheless, strategic de
ployment of resources, heretofore the exclusive domain
of human or compiler optimization, may be seen as a
tactical issue at a high level for a well-nested hierarchi
cal program, thus becoming exploitable by correspond-
ingly hierarchical processing systems. '

Potentially, optimized interpretation can reap most
of the speed benefits of conventional compilation,
without the syntax loss nor overspecifications of the
latter. It combines advantages of incremental compila
tion, interpretation, and execution, and is in fact a
merger of all three forms of. processing.

CONCLUSION

In the polycentric system outlined, the distribution of
machine intelligence becomes really practical only with
the new technology.

In order to enhance system throughput, most of the
processing resources are committed to work not ex
plicitly specified by the user. Perhaps the greatest dif
ference from previous decentralized systems will. be in
the pervasive use of self-optimization, that is, the exer
cise of machine initiative in real time. This occurs in
queue ,,-~election to service tightly-coupled systems,
choice 'of routing and label encoding in communica
tions, dynamic trade-offs in function handling, and the
creation and selection of equivalent problem-solving
algorithms during optimal interpretation.

The price is a loss of detailed predictability-the
user will not know how his job is handled. This is not a
major issue; with a reliable computer system few users
really want to know, and predictability already has been
lost long ago with multiprogramming. Conceivably, the

1056 Fall Joint Computer Conference, 1972

user might insist on doing things in the sequence he
thinks best, and end up slowing down all processing,
including his own.

Beyond choosing algorithms of increasing intricacy, a
natural next step in the use of system initiative in in
terpretive computing would be to anticipate the user's
needs, and to assist him in formulating his problem.
This calls for very large systems with a sizable informa
tion library, and man-machine conversation near the
natural language level. In the long run problem-solving
and inquiry handling should become indistinguishable,
and the supermachine need not be distinguished from a
management information system.

ACKNOWLEDGMENT

Although the views expressed here in no way reflect
those of IBM management, they result from the writer's
exposure to various large IBM projects. The writer
acknowledges stimulations received from his colleagues,
especially Messrs. John C. McPherson, Carl J. Conti,
William E. Worley, John R. Walters, Jr., Dines Bj~rner,
and Laszlo Belady. He is also indebted to Professors
Harold Lawson, Wesley W. Chu and David J. Farber
for helpful discussions.

REFERENCES

1 T C CHEN
The overlap design of the IBM System/360 Model 92 central
processing unit
AFIPS Conf Proceedings FJCC 1964 Part II pp 73-83

2 H G RUDENBERG
Approaching the minicomputer on a silicon chip-Progress
and expectations for LSI circuits
AFIPS Conf Proceedings SJCC 1972 pp 775-781

3 R RICE
I nteraction between LSI and computer system architecture
Parallel Processor Systems, Technologies and Applications
(L C Hobbs D J Theis J Trimble H Titus I Highberg
editors) Spartan Books New York 1970 Chap 8 pp 165-190

4 R RICE W R SMITH
SYMBOL-A major departure from classic software
dominated von Neumann computing systems
AFIPS Conf Proceedings SJCC 1971 pp 575-587

5 S F DENNIS M G SMITH
LSI-Implications for future design and architecture
AFIPS Conf Proceedings SJCC 1972 pp 343-351

6 C McFARLAND
A language-oriented computer design
AFIPS Conf Proceedings FJCC 1970 pp 629-640

7 T C CHEN
Unconventionalsuperspeed computer systems
AFIPS Conf Proceedings SJCC 1971 pp 365-371

8 D J FARBER
Networks: An introduction
Datamation April 1972 pp 36-39

9 H BARSAMIAN A DECEGAMA
Evaluation of hardware-firmware-software tradeoffs with
mathematical modelling
AFIPS Conf Proceedings SJCC 1971 pp 151-161

10 T C CHEN
Parallelism, pipelining and computer efficiency
Computer Design Vol 10 pp 69-74 1971

11 J R PIERCE
How far can data loops go?
IEEE Trans Communications Vol COM-20 pp 527-530
1972

12 N WIRTH
Program development by stepwise refinement
Comm ACM Vol 14 pp 221-2261871

13 F T BAKER
Chief programmer team management of production
programming
IBM Systems J Vol 11 p 56-731972

14 L GILMAN A J ROSE
AP L/360 an interactive approach
John Wiley and Sons New York 1970

15 A HASSITT
Microprogramming and high level languages
Proceedings 1971 IEEE Int Computer Soc Conf Sept 1971
pp 91-92

16 A HASSITT J W LAGESCHULTE L E LYON
Implementation of a high level language machine
4th Annual workshop on microprogramming Sept 1971

Preprints Volume To be published Comm ACM
17 R ZAKS D STEINGART J MOORE

A firmware AP L time-sharing system
AFIPS Conf Proceedings SJCC 1971 pp 179-190

18 E W REIGEL U FABER D A FISHER
The interpreter-A microprogrammable building block system
AFIPS Conf Proceedings SJCC pp 705-723

19 J GOSDEN
Summary Session remarks (ACM Programming Languages
and Pragmatics Conference Aug. 8-12 1965 at San Dimas,
Calif)
Comm ACM Vol 9 p 220 1966

20 F E ALLEN-
Program optimization
Annual Review in Automatic Programming Vol 5 1969

21 P ABRAMS
An APL machine
PhD thesis Stanford University 1970

Design of a fault-tolerant, modular computer with
dynamic 'redundancy *

by RALPH B. CONN and NIKITAS A. ALEXANDRIDIS

Ultrasystems, Incorporated
Newport Beach, California

and

ALGIRDAS A VIZIENIS

University of California, Computer Science Dept.
Los Angeles, California

INTRODUCTION

This paper presents the results of a design. study for
a Modular Spacecraft Computer (MSC). The MSC is
a fault-tolerant computer that is designed to preserve
the continuity and correctness of its programs in the
presence of both transient malfunctions and perma
nent failures in its hardware. The MSC is designed
to detect and to implement recovery from faults
without external assistance. The fault-tolerance goals
are to provide a reiiability of 0.95 for a five-year
period of unattended operation and to provide re
covery from a specified class of repetitive transient
malfunctions, bounded by maximum repetition rate
and • maximum duration specifications, during that
time period.

Dynamic redundancy (self-repair)! is used in most
parts of the MSC to achieve fault-tolerance. The
reliability prediction is based on a specific choice of
logic and memory technology. The MSC is required
to provide a constant computational capability over
a five-year period, therefore partial fault-tolerance
("graceful degradation") is not applicable in this
case. The required reliability is attained by the use of
spare modules and continuous ("concurrent") fault
detection procedur~s that verify the execution of every
instruction before the next instruction is executed.
Errors that are due to transient faults are . eliminated

* This work was supported by the Space. and Missile Systems
Organization of the U.S. Air Force under Contract F04701-71-
C-0361.

1057

by "rollback", i.e., repetition of a specified sequence
of the current program. Replacement of failed modules
is employed in the case of permanent faults, then a
"rollback" is used to restart regular operation.

The foundations for this study have been supplied
by recent research on fault-tolerant computer design,
mainly the JPL STAR computer, 2 the IBM MARCS
design,3 and studies at the MIT C S Draper Labora
tory.4 The goal was to define a fault-tolerant architec
ture that would meet a set of performance and reli
ability specifications, and physical constraints (espe
cially weight and power), using projected logic and
memory technologies. The detailed design led to the
identification and resolution of several fault-tolerance
problems. One major result is the demonstration
that the level of modularization depends very strongly
on the hardware technology, and that the critical
factors at the present time are the reliability and
physical characteristics of non-volatile random-access
memory modules. Other major results are: a detailed
functional design of a Configuration Control Processor
(CCP), methods to implement the replacement of
Power Converter and Timing (clock) Modules, de
velopment of a class of fault-tolerance aiding instruc
tions, a systematic CCP-replacement procedure, use
of spare control bus wires, and error-coded fioating
point arithmetic.

The system organization and the reliability modeling
of the MSC are presented in the following sections.
The design approach chosen is that of functional
modularization2 ,3 with extensive use of error-detecting
codes, 5 rather than the partitioning into "subcom-

1058 Fall Joint Computer Conference, 1972

puters" operating in a multiprocessing mode with
complete duplexing.4 Reliability modeling is illustrated
by considering a number of competitive MSC con
figurations in order to arrive at a most cost-effective
choice. The results show that the implementation of
complete fault-tolerance and self-repair in a space
craft computer is feasible within the constraints of
projected logic and memory technologies.

MSC SYSTEM ORGANIZATION

M odularization

The baseline design presented is that of a fully
parallel, fault-tolerant, modular spacecraft computer.
The recommended design evolved from consideration
of four different possible MSC architectures. The initial
architecture, which is called the "functionally modu
lar MSC" (see Figure 1) used the most detailed level
of modularization into functional modules. The archi
tecture of the functionally modular MSC was outlined
in detail and estimates made of the required equip
ment. The detailed architecture was formulated for a
fully-parallel (36-bit words) MSC and two versions
using byte-serial information transfer of 4 and 12 bits
respectively. Finally, an alternative fully-parallel
design called the "combined processor MSC" was
evolved. The following discussion provides the back
ground for the comparison and choice that was made.

r------ --------- ---------1
I
I
I
I

I
I
I
I
I
I
I

----------------------------~

P RIP L
EOUIPr€!!.T.!!!S_

I
I
I

INTERPROCESSOR BUS

I I L _________ ~~~~~~~~~~ _________ J

Figure I-MSC block diagram-Functionally modular approach

Functional modularity of the initial MSC design
was achieved through use of the following techniques.
First, the processors are divided functionally. Arith
metic is performed in the arithmetic processor, logic
operations in the logic processor, etc. Much of this
modularity was retained in the recommended baseline
design when, as a result of reliability and physical
characteristic analyses, some functional processors
were combined. Similarly, the memories are divided
functionally into a read-write or scratch-pad memory
and the program memory. The memories are further
divided into modules. Modularity of operations rate is
achieved through variation of bus width and/or clock
rate. Adaptability to various peripheral devices is
achieved through use of input-output processors of
various speeds, and through use of a peripheral-device
connection bus.

Figure 1 has been arranged so as to illustrate the
basic configuration of a non-redundant ("perfect")
modular computer, and then to show the additional
equipment required to make the machine fault-tol
erant, and also to identify the application-dependent
modules. Spares and power, timing, and control buses
are not explicitly shown. The upper nine rectangles
enclosed by the dashed line are the modules used in
the functionally modular MSC design. In addition
(not shown) there are timing and power converter
modules. The instruction processor (ISP) performs
the instruction counter manipulation both for normal
sequencing and in connection with transfer operations.
The index registers are part of the ISP and the opera
tions associated with these are executed by the ISP.
The logic and check processor (LCP) performs all logic
instructions and also checks all bus transmissions
for correct coding. The arithmetic processor (ARP)
executes the normal arithmetic instructions. The input
output processor (lOP) provides data buffering and
control signals to the peripheral units. The interrupt
processor (IRP) provides storage for received interrupt
signals and executes the instructions concerned with
interrupt handling. The read-write memory (RWM)
holds the input data, the temporary results of com
putations, and the results to be output. The program
memory (PRM) , operated in a read-only manner,
holds the instructions of the program. Two modules of
PRM are needed to contain all programs. All of the
above units are connected to the interprocessor bus,
as is the configuration cpntrol processor (CCP) which
performs a function similar to that of the instruction
timing unit in an ordinary computer.

However, the MSC is not an ordinary eomputer,
but rather a fault-tolerant computer employing con
current fault detection. The principal method of fault

Design of Fault-Tolerant, Modular Computer with Dynamic Redundancy 1059

detection is through the use of error detecting codes
applied to each word. The error code is preserved
through arithmetic operations. Non-numerical opera
tions, e.g., logic operations, do not preserve these
check codes and thus the LCP and IRP modules are
duplexed. The read-write memory module is duplexed
in order to retain a correct copy of information in
case of memory failure. Error detection for duplexed
modules is accomplished by checking for disagreement
between the outputs of two corresponding modules.
When a disagreement is detected, the error detecting
code is used to quickly isolate the faulty module. The
duplexed modules are shown on the right side in
Figure 1.

Fault detection is aided and rollba~k capability
made possible through the use of the configuration
control processor (CCP). Because of the critically im
portant functions of this processor, it is operated in
triplicate with voting at the outputs. The two addi
tional CCP modules necessary for voting are shown
here, as is a duplexed bus checker and monitor (BCM)
module, which performs the checking and monitoring
function on the peripheral equipment data bus. It is
connected to the interprocessor bus for communication
with the input-output processor and the CCP. Finally,
the units at the left of Figure 1 are the application
dependent modules. The mission data modules, the
mass memory modules, and the additional MSC (if
required) are all connected to the peripheral equip
ment bus. The special processors, which may be added

r--------------- ---------~
I I
I ~c I
I MODULES I
I 1

INTERPROCESSOR BUS

Figure 2-MSC block diagram-Combined processor approach

TABLE I-Baseline Configuration Characteristics

Power Converter Module
Timing Module
Input-Output Processor
Interrupt Processor
Program Memory
Read-Write Memory
Combined Processor
Configuration Control Processor
Five-Year Reliability
Power
Volume

Weight

* Operated in duplex
** Operated in triplex with voting

Basic
Quantity

1
1
1
2*
2
2*
1
3**

0.953
21 watts
582 cubic

inches
33 pounds

Spares

2
2
3
3
4
5
3
1

to compute special functions, from generation of a
square root to a fast-Fourier transform are connected
to the interprocessor bus.

With this detailed architecture available it was
then possible to make estimates of processor reliabili
ties and physical characteristics. An analysis of these
results illustrated that the modularization overhead,
for the projected technologies, was high enough to
question the idealized theoretical conclusion . that
increased partitioning leads to greater reliability. 6

Thus a new MSC design was formulated, which em
ployed parallel bus transfer and combined the func
tions of three of the processors (ISP, LCP, ARP) of
the functionally modular approach into a single com
bined processor CP. The block diagram of the Com
bined Processor MSC is shown in Figure 2 and it is
the recommended baseline design. Because of the
detailed architecture that had been formulated for
the functionally modular approach, it was possible to
make this combination quickly and accurately without
repeating the design work associated with each pro
cessor. It must be noted that the "functionally modu
lar" approach of Figure 1 also provides the required
reliability and that it may become superior to the
"combined processor" approach if the evaluation of
component technologies departs from the current
projections.

Table I summarizes the properties of the baseline
MSC configuration, including the number of spares
needed to attain the required five-year reliability.
The projected physical characteristics are also pre
sented.

1060 Fall Joint Computer Conference, 1972

Functional characteristics

A summary of the principal MSC characteristics
(excluding the" fault-tolerance features) is presented
in Table II. The most unusual feature" in this table is
the use of check bits in both the data words and in
structions of the MSC. The formats of MSC words
are shown in Figure 3. The error-detecting code used
in the MSC is the inverse residue code, using the
check modulus 15. The four-bit "check byte" C(X)
is attached to a word which represents the integer
value X. It has the value:

X(X) = 15-151X

where 151X designates "the modulo 15 residue of X."
The floating-point word has separate check bytes for
its two parts. The instruction word uses a 16-bit ad
dress part that is divided into a 4-bit "module name"
part and a 12-bit "internal address" part for addressing
within the module. Separate check bytes are provided
for both parts of the address, as well as for the 8-bit
operation-code part.

It is very important to note that the "module name"
in the address part refers to the "soft" name of a
memory module. Every memory module (including all
spares) has its unique "hard" name. When power is
first turned on in a memory module, a special instruc
tion "Set Soft Name" is employed to assign a four-bit
"soft" name to the module. All other instructions
refer to this "soft" name only. Duplex operation is
attained by assigning the same "soft" name to two
memory modules. A failed module is replaced by
assigning its "soft" name to a newly powered spare;
thus continuity of addressing is preserved although
replacement has taken place.

The instruction set of 58 basic operation codes has

.....__Most Significant Bit Ii. e., Sign)
3231 ..---

Data
132 bits)

FIXED POINT MSC DATA WORD FORMAT

Fraction
122 bits)

FLOATING POINT MSC DATA WORD FORMAT

~;;~r ~~r~:s
112 bits)

MSC INSTRUCTION WORD FORMA T

Figure 3-MSC word formats

TABLE II - MSC Functional Characteristics

Number System

Data Representation

Information Transmission
Data Word Length

Instruction Word Length
Instruction List

Indexing Capability

Input/Output Control

Interrupt Capability

Memory Modularization

Memory Capacity

Binary, fixed-point (floating point
option provided)

Fractional two's complement for
fixed point

Fractional two's complement coef-

ficient { For
Integer exponent (ex-

cess-32) floating
System radix-16 point
Parallel
Fixed point-32 data bits plus 4

check bits
(22 coefficient bits

Floating point t . plus 4 check bits
6 exponent bits plus

4 check bits
36 bits including 12 check bits
90 single-address instructions using

58 basic operation codes which
include special fault-tolerance
operation codes

320-bit, plus 4 check bits, index
registers

Simultaneous single input or output
with compute

Accepts up to 32 external inter
rupts, each mask able under pro
gram control.

Program memory is modular in 4K,
36-bit word modules.

Read-write memory is modular in
2K, 36-bit word modules.

Maximum directly addressable mem
ory (program plus read-write) is
63,488 words, or 16 modules. The
allowable number of spare memory
modules is not restricted. Program
memory modules can be operated
in duplex.

Baseline capacity is 8K words of
program memory and 2K words of
duplexed read-write memory .

a complete repertoire of control, indexing, logic, arith
metic (fixed and floating point), interrupt-handling
and I/O operations. In addition, there are five special
"fault-tolerance class" operation codes which include
"Set Soft Name" discussed above and four other opera
tion codes (to be discussed in the following section).

FAULT-TOLERANCE FEATURES OF THE MSC

Approach

Dynamic redundancy (self-repair) was chosen as
the main fault-tolerance method in the MSC. The

Design of Fault-Tolerant, Modular Computer with Dynamic Redundancy 1061

TABLE III - MSC Fault-Tolerance Features

Modularity The computer is composed of auto-
matically replaceable processor,
memory, timing, and power supply
modules.

Concurrent Diagnosis Fault-detection is performed concur-
rently with instruction execution
through use of inverse, modulo-lS,
residue code and module status
messages.

Duplex Operation An option is provided in which every
type of processor or memory module
may be operated in duplex mode as
long as spares exist.

Data Redundancy Redundant data storage is provided
in duplexed read-write memory
modules.

Self-Repair Permanently failed processor, memory,
timing, and power supply modules
are automatically replaced by
spares. The allowable number of
spares is not restricted by the design
and may be adjusted to mission
reliability requirements.

Program Restart Automatic program restart, on fault
detection or after module replace
ment, to programmer-specified
restart point.

System Restart Automatic system restart following
occurrence of catastrophic faults.

Power Switching A module is removed by turning its
power off, and connected into the
system by turning power on. Un
powered modules are connected to
the bus, but produce only logic
"zero" outputs.

Centralized Monitoring The Configuration Control Processor
monitors computer operations by
observing status messages and by
checking the code validity of all
words being sent by the bus. Hybrid
redundancy (triplication with voting
and with spares) is employed to
provide CCP fault-tolerance·. The
CCP executes all restart and re
placement operations.

principal features of the MSC fault-tolerance approach
are summarized in Table III. The design utilizes a
number of features which were proven in the experi
mental STAR computer,2 as well as the self-checking
logic circuits of the MARCS study3 to protect the
critical fault-detecting logic within the MSC modules.

Four fault-tolerance instructions that serve to aug
ment the hardware monitoring are: Test Fault Signal
(TFS) , Power Control (PWC) , Read Status Word
(RSW) , and Update Restart Register (URR). TFS is
employed to verify that fault signals in a designated

module are still operational. PWC designates a module
in which power is to be turned off or on. This allows
program-controlled checkout of spares, change to
duplexed operation, and increase or decrease of avail
able memory. RSW reads out a status word that is
internally stored in every module, and indicates the
cause of a fault message to the CCP. URR causes its
address part to be stored within the CCP in the regis
ter that contains the address at which the program is
to be resumed if a fault is detected.

Fault detection

This section presents the. methods used to check
data and instruction words and to identify faults in
the different parts of the MSC.

In terprocessor bus (IPB)

All information transmitted on the bus is checked
for code validity by the "Bus Checker" in the CCP.
Since the CCP also accepts and decodes instructions
and issues the synchronization signals (Tl, T2, ...
T6) to the various MSC modules it knows at each
instant what type of information (data vs. instructions)

. is placed on the bus. For data words, it performs a
modulo-15 addition of the nine 4-bit bytes. For in
struction words, it performs modulo-15 additions of
the various fields that contain their O\vn check-bytes.
(See Figure 3)

COIllbined processor (CP)

There are four facets of operation code validation
in the CPo

a. The 6-bit operation code, the 4-bit check-byte
(both in the operation code register), and the
two index bits (held internally in the referenced
index register) are all added in a modulo-15
adder.

b. Each microinstruction is parity checked.
C. Microinstruction bits are compared with "Reply

Back" bits from activated gates.
d. The 6-bit operation code is compared with the

6-bit operation code stored in the last micro
instruction of the corresponding microprogram.

A modulo-15 adder is used to: (a) check the effective
address calculation (i.e., indexing and instruction
counter incrementing); (b) check the interim results

1062 Fall Joint Computer Conference, 1972

of arithmetic operations; (c) generate the checkbyte
for a 32-bit logic results; (d) monitor bus coupler
failures by checking the operand entering the CPo

The logic operations hardware (e.g., Logic Opera
tions Net, Shift Net, etc.) is duplicated and the in
dependently obtained results are compared for equality.
Any mismatch is reported to the CCP. Two logic
accumulators and two operand registers are provided
to identify possible faults at the inputs of these du
plexed logic nets.

The CP internally-held word is compared with the
word placed on the bus by the CP to identify failures
of the CP output circuits.

Input-output processor (lOP)

Data words input from the lOP are placed on the
interprocessor bus which is monitored by the CCP
while lOP output is placed on the peripheral equip
ment bus which is monitored by the Bus Monitor and
Checker (BMC). Program and scratchpad memory
addresses are checked by the CCP and also inside
the m~mory modules (for Read-Write). The lOP's
"Data Block" counter is monitored by the CCP.
Operation code validation is accomplished as in the
CPo

Interrupt processor (IRP)

Two IRP's are operated in duplex. Interrupt signals
are transmitted on the interrupt bus encoded in "one
out-of-two" code and are internally translated from
double-rail3 to single-rail signals prior to their being
sent to the Interrupt Register. A modulo-15 generates
the 4-bit checkbyte for the 32-bit Interrupt Register.
Results of IRP operations are placed on the inter
processor bus. These are checked by the "Bus Checker"
in CCP. Proper functioning of an IRP module is
checked by comparing the internally held result with
the word appearing on the bus. Operation code valida
tion is accomplished as in the CP.

Read-write m.em.ory m.odules (RWM)

RWM modules are always operated in duplex and
their internally held words are compared with the
word placed on the IPB. Each memory module in a
functioning RWM duplexed pair has a unique 4-bit
Hard Name, but both have the same assigned 4-bit
Soft Name. The CCP determines whether the module
with the correct "Hard Name" responds. In addressing

a module, the module name (MN, MN') of the re
ceived address is compared with the addressed memory
module's assigned soft name (SN, SN'). If they match,
then the Internal Address (IA) decoder is enabled. The
received internal address (lA, IA') is used for ad
dressing within the module. Each word in a memory
module has four additional read-only bits appended
to it. These bits are the inverse, modulo-I5 residue
code of the word address (WA). During "Read," lA'
(the 4-bit checkbyte for the internal address field IA)
is compared with W A' to verify that the proper loca
tion has been accessed. "Write" is preceded by the
comparison of lA' and W A' to avoid overwriting and
destroying a word in the wrong location. To assure
that a "Write" took place in the correct modules, an
EVENT status message is sent to the CCP identifying
the responding modules' Hard Names after the "Write"
has taken place.

Program. m.em.ory m.odules (PRM)

PRM modules operate in simplex, Read-Only mode.
"Write" circuitry is disabled for ordinary operation
(it is enabled only during loading from mass memory).
Monitoring and checking is accomplished as in the
RWM.

Tim.ing m.odule (TM)

To provide detection of wave shape deterioration,
internal duplexing and comparison of oscillator out
puts was chosen. The TM is replaced when internal
discrepancy is detected and reported to the CCP. The
CCP's contain independent internal timing (provided
by a delay line) which serves to bridge the TM switch
over time.

Power converter m.odule (PCM)

The CCP contains a Power Monitor circuit which
issues a Power. Alarm signal to CCP when a PCM
voltage strays out of tolerance (too high or too low).
Replacement of a faulty PCM is accomplished under
CCP control.

Configuration control processor (CCP)

Triple redundancy with voting is used for the CCP
outputs. When one CCP disagrees, a transient error is
assumed, and a "circulate CCP registers" is performed
serially through a voter. If disagreement reappears, the

Design of Fault-Tolerant, Modular Computer with Dynamic Redundancy 1063

faulty CCP is replaced by power switching. Every
CCP compares the voted output with its own input to
the voter. In caseof a disagreement, the CCP issues a
"distress" message to the other CCP modules, which
initiate a CCP register circulation sequence. If the
"distress" message reappears, the two good CCP
modules switch off power to the bad CCP, switch in a
spare, and once again go through the CCP register
circulation sequence in order to load the new "blank"
CCP with all necessary information.

INSTRUCTION EXECUTION

This section introduces the concurrent instruction
sequences in the MSC processors. An arithmetic-type
instruction with memory operand access has been
selected as an example and its sequence is shown in
Table IV. Letter-Gothic type has been used for the
ordinary computer actions and italic type for the
fault-tolerance (error detection) actions. Fetch-execute
overlap is now shown in this table and the lOP and
IRP are omitted.

The events occurring during each time interval are
described below.

Ta: The CP issues the instruction counter (IC)
which is accepted by the PRM. The Module
Name field of the IC is also accepted by the
CCP.

Tb: CP increments IC and checks this operation
and the PRM accesses the next instruction.
CCP decodes the module name field of the IC
and uses a hardware table to identify memory

modules whose hard name has been assigned a
soft name equal to the IC module-name field.

Tc: PRM issues next instruction which is accepted
by all MSC modules. The Hard Name of the
responding PRM module is sent to the CCP
which in turn identifies whether the correct
memory module responded.

Td: Indexing (if necessary) is performed in the CP,
while CCP checks the accepted next instruction
for validity.

Te: CP issues the operand' address (on the bus)
which is accepted by CCP and RWM.

Tf: This address is checked for validity in the CCP
and is used by the RWM to access the operand.

Tg: RWM issues the operand (on the bus) which is
accepted by the CP and CCP.

Th: The operand is used in the CP to compute the
arithmetic result and is at the same time checked
for validity in the CCP.

Ti: The arithmetic result (including computed
check bits) is placed on the bus and accepted
by the CCP.

Tj: The CCP checks the result check byte to detect
failures in the CP.

Overlap of present-instruction execution and next
instruction fetch was implemented in the'MSC base
line as shown in Table V to increase the computational
rate of the system. The SYNC signals (T1, T2, ... T6)
are operation code dependent and are issued by the
CCP to all units so that they can advance in syn
chronism to the next sequence step. Each instruction
type is identified by CCP to determine the time dura
tion of each SYNC signal (e.g., for a DIVIDE instruc-

TABLE IV-Arithmetic Instruction (With Operand) Sequence

Configuration Control
Sync Combined Processor Processor Program Memory Read-Write Memory

Signals (CP) (CCP) (PRM) (RWM)

Ta Issue IC Accept Module Name Accept IC
Tb Increment IC Decode Module Name to Access Next Instruction

(check Ie incrementing) Identify Hard Name
Tc Accept Next Instruction Accept Next Instruction Issue Next Instruction Accept Next Instruction

Correct Hard Name Send Hard Name to CCP
Responded? Accept the issued instruction

Process Instr. Address Part Check Next Instruction
(i.e. indexing, if required)

Te Issue Indexed Address Accept Indexed Address Accept Indexed Address
Tf Check Address Access Operand
Tg Accept Operand Accept Operand Issue Operand
Th Compute Arithmetic Result Check Operand
Ti Issue Arithmetic Result Accept Arithmetic Result
Tj Check Arithmetic Result

1064 Fall Joint Computer Conference, 1972

TABLE V-Arithmetic Instruction Sequence With Overlap

Configuration Control
Sync Combined Processor Processor Program ~emory Read-Write ~emory

Signals (CP) (CCP) (PR~) (RW~)

T5 Process Instr.(n) Ad. Part Check Instr. (n)
(indexing, if required)

T6 Issue Indexed Ad. (n) Accept Indexed Ad. (n) Accept Indexed Ad. (n)
Tl Issue IC (n+l) Accept IC (n+l) Accept IC (n+l) Access Operand (n)

Check Indexed Ad. (n)
T2 Increment IC (to n+2) A ccept Operand (n) Access Next Instr. (n+l) Issue Operand (n)

(check incrementing) Decode Mod. Name of IC
Accept Operand (n) (n+l) to Identify Hard

Name
Check IC (n+1)

T3 Compute Arith. Result (n) Check Operand (n) [continue access]
T4 Accept Next Instr. (n+l) Accept Next Instr. (n+l) Issue Next Instr. (n+l) Accept Next Instr. (n+l)

Accept Issued Instr. (n+l)
T5 Process lnstr. (n+l) Ad. Check Next Instr. (n+1)

Part (indexing, if required) Accept Arith. Result (n)
Issue A rith. Result (n)

T6 Issue Indexed Ad. (n + 1) Accept Indexed Ad. (n+1) Accept Indexed Ad. (n + 1)
Check Arithm. Result (n)

tion, CCP would issue T4 much later than it would
for an ADD).

RELIABILITY MODELING

The objective of the MSC reliability analysis and
calculations was, in conjunction with appropriate
physical requirements determinations, to answer the
questions, "What should be the MSC baseline con
figuration?" and "How many spares are required for
the desired reliability and mission time objectives to
be met?" A related consideration is the sensitivity of
the results to the assumptions used. The approaches
taken to obtaining these answers, the computational
results, and their discussion are presented in the fol
lowing three subsections.

Approach

The basic approach to the computation of the MSC
reliability was to determine the reliability of the MSC
modules and then, for the assumed number of spares,
the power-on/power-off failure rate ratio, and coverage,
to calculate the MSC reliability. The reliability models
for the two contending MSC configurations are implied
in the information presented in Table VI.

The CCP units are operated in a hybrid...:redundant
fashion. That is, the three units with power-on are
operated in a TMR configuration, but with standby
spares for replacement when one of the active units

fails. The RWM, IRP, and LCP units are operated in
duplex for checking purposes. It is assumed that
when one of the last two units fails, that the module
group has failed. This is the most conservative ap
proach. The remaining units are all operated in simplex
standby redundancy.
. Since every group of modules must survive the
mission, it is evident that the MSC reliability is the
product of the module group reliabilities. These module
group reliabilities are a function of the module failure
rates, the power-on/power-off failure rate, the cover
age, and the number of spares utilized.

TABLE VI-Operating ~odes For ~SC Units

Operating ~ode

Functionally Combined
Unit ~odular Design Processor Design

CCP T~R T~R

RW~ Duplex Duplex
IRP Duplex Duplex
LCP Duplex Not Used
PR~ Simplex Simplex
lOP Simplex Simple1C
T~ Simplex Simplex
PC~ Simplex Simplex
ISP Simplex Not Used
ARP Simplex Not Used
CP Not Used Simplex

Design of Fault-Tolerant, Modular Computer with Dynamic Redundancy 1065

Failure rate determinations

Failure rates for LSI arrays are not available in the
published component reliability tabulations and there
fore must be estimated. The approach taken7 ,8 involves
establishing the failure rate for an integrated circuit
of quality and complexity comparable to the basic cell
of the large scale array. This failure rate is then ap
portioned according to the failure modes contributing
to the failures. The failure mechanisms which cause
each mode of failure are then grouped according to
the failure modes contributing to the failures. The
failure mechanisms which cause each mode of failure
are then grouped according to the point in the pro
cessing where they a:re introduced and weighted to
refleCt the frequency of occurrence. The fractional
failure rates are then weighted to reflect the differences
between integrated circuit and LSI technologies. The
summation of these weighted fractional failure rates
is then the LSI failure rate. This base failure rate is
then modified by complexity, package type, environ
mental, and quality factors. Assuming 300 gates and
40 connections per chip, a chip failure rate of 0.0985
failures/l06 hours was obtained. This figure agrees
quite well with those implied in Reference 9. Failure
rates for other components were estimated using data
from RADC-TR-67-108.10 The resulting module failure
rates are shown in Table VII.

Reliability c.omputations

The reliability computations reported below were
performed using the Computer-Aided Reliability Esti
mation (CARE) program developed at the Jet Pro
pulsion Laboratory.u The program was modified to

TABLE VII-MSC Module Failure Rates

Module

Configuration Control Processor
Read-Write Memory
Logic and Check Processor
Interrupt Processor
Program Memory (per 4K module)
Instruction Processor
Arithmetic Processor
Combined Processor
Input-Output Processor
Timing Module
Power Supply

Module Failure Rate
(X) (Failures per

million hours)

2.1
7.8
2.5
2.4

10.2
2.9
3.4
5.6
5.1
0.5
1.8

delete the extensive plotting capabilities and to im
prove the printout format.

There are two types of reliability configurations
used in the MSC design. These are the hybrid-redun
dant configuration used for the CCP, and the standby
replacement configurations used for all other modules.
The applicable equations are given in Reference 11.

CARE produces, as a function of time, the reliability
of each module, the reliability of the module group
for the assumed number of spares, and the reliability
of the entire system, i.e., the MSC.

The reliability computations were performed for
four MSC configurations. These configurations are
the: Functionally modular, fully parallel; combined
processor ~ fully parallel; functionally modular, 12-bit
byte-serial; and, functionally modular, 4-bit byte-serial.

Reliability tradeoffs

The data obtained showed that for all cases the five
year reliability of the MSC(CP) is higher than that
of the MSC(FM). However, in none of the cases, is
the advantage for the MSC(CP) so overwhelming as
to make it the obvious choice. Perhaps the most sig
nificant conclusion that can be drawn from the data
is that the modularization overhead is high enough to
keep from disqualifying the MSC(CP) altogether.
This in itself is a significant conclusion since past
studies which ignored the modularization overhead
concluded that the greater the modularization, the
more dramatic the life improvement. A second signifi
cant conclusion is that there are configurations for
coverage values of 0.99 that exceed the desired 0.95
five-year success probability. The importance of know
ing what coverage is achieved by a fault-tolerant
computer design, and achieving high coverage, was
demonstrated by assuming a coverage of 0.95. Even
for high sparing and the power-on/power-off failure
rate ratio (K) of 2, the five-year reliability is below
0.88.

Before attempting to resolve MSC(FM) /MSC(CP)
question it is necessary to examine systems that are
designed to meet the 95 percent mission success prob
ability criterion.

The five configurations shown in Figure 4 use K
equal to one for the· PS, TM, PRM, and RWM, and
K equal to two for the remaining modules. While
there are undoubtedly those who might wish to relax
K even further,· this combination is thought to be a
reasonable compromise. The initial two configurations
of Figure 4 assume coverage equal to 0.9, while the
remainder use the individual "best estimate" values of

1066 Fall Joint Computer Conference, 1972

UNIT
MODE
LAMBDA
Q

K
SPARES
COVERAGE
5 YR REL

K
SPARES
COVERAGE
5 YR REL

K
SPARES
COVERAGE
5 YR REL

K
SPARES
COVERAGE
5 YR REL

K
SPARES
COVERAGE
5 YR REL

PS
SIMPLEX

1.8
1

1
2

.9999999

.9995643

1
1

.9999999

.9942525

1
2

.9999999

.9995643

1
2

.9999999

.9995643

1
2

.9999999

.9995643

TM
SIMPLEX

0.5
1

1
2

.9999999

.9999898

1
1

.9999999

.9995308

1
2

.9999999

.9999898

1
2

.9999999

.9999898

1
2

.9999999

.9999898

lOP
SIMPLEX

5.1
1

2
2

.9999999

.9956533

2
2

.9999999

.9956533

2
3

.9900000

.9970932

2
3

.9900000

.9970932

2
3

.9900000

.9970932

IRP
DUPLEX

2.4
2

2
3

.9999999

.9997877

2
3

.9999999

.9997877

2
3

.9999999

.9997877

2
3

.9999999

.9997877

2
3

.9999999

.9997877

PRM
SIMPLEX
10.2

2

1
4

.9999999

.9745065
PRODUCT 1 =

1
4

.9999999

.9745065
PRODUCT 1 =

1
5

.9900000

.9789315
PRODUCT 1 =

1
4

.9900000

.9647535
PRODUCT 1 =

1
4

.9900000

.9647535
PRODUCT 1 =

R\~M
DUPLEX

7.8
2

1
4

.9999999

.9907581

.9606708
MSC(FM)

1
4

.9999999

.9907581

.9551271
MSC(FM)

1
5

.9999999

.9969080

.9724275
MSC(FM)

1
5

.9999999

.9969080

.9583437
MSC(H~)

1
4

.9999999

.9907581

.9524317
MSC(FM) =

ARP
SIMPLEX

3.4
1

2
2

.9999999

.9986017

.9560877

2
2

.9999999

.9986017

.9505704

2
2

.9900000

.9971003

.9650923

2
2

.9900000

.9971003

.9511147

2
2

.9900000

.9971003

.9452473

ISP
SIMPLEX

2.9
1

LCP
DUPLEX

2.5
2

2 2
2 3

.9999999 .9999999

.9991110 .9997525
PRODUCT 2 = .9974670

2 2
2 3

.9999999 .9999999

.9991110 .9997525
PRODUCT '2 = .9974670

2 2
2 3

.9900000 .9999999

.9978280 .9997525
PRODUCT 2 = .9946884

2 2
2 3

.9900000 .9999999

.9978280 .9997525
PRODUCT 2 = .9946884

2 2
2 3

.9900000 .9999999

.9978280 .9997525
PRODUCT 2 = .9946884

CCP
H(3.S)

2.1

2
1

.9999999

.9977565

MSC(CP)

2
1

.9999999

.9977565

MSC(CP)

2
1

.9999999

.9977565

MSC(CP)

2
1

.9999999

.9977565

MSC(CP)

2
1

.9999999

.9977565

CP
SIMPLEX

5.6
1

2
3

.9999999

.9991946

.9577436

2
3

.9999999

.9991946

.9522167

2
3

.9900000

.9966232

.9669695

2
3

.9900000

.9966232

.9529648

2
3

.9900000

.9966232

MSC(CP) = .9470860

Figure 4-MSC reliability trade-off configurations

coverage shown in the figure. The next to the last
configuration of the figure is the recommended one
since the last one shows that decreasing the number
of RWM spares to four drops both the MSC(FM)
and MSC(CP) reliabilities below the required value.

Having illustrated that the required MSC five-year
reliability can be met with either of two configurations
it is necessary to choose between these. The reliabilities
of the two are essentially equal. The main factors
favoring the choice of the combined processor ap
proach are: a smaller number of power switches, i.e.,
four vs. eleven; and a similar decrease in bus con
nections. Therefore the design using the combined
processor approach was chosen as the baseline; This
design and the appropriate sparing are summarized in
Table I.

ACKNOWLEDGMENTS

The authors wish to acknowledge the support and
assistance given by Capts. W. E. Kuehner, L. A. Fry,

and W. E. Koss of the Air Force Space and Missile
Systems Organization, and Drs. H. Hecht and W. A.
Sturm, and Messrs. I. K. Egashira and D. J. Theis of
The Aerospace Corporation. Appreciation is also
extended to Mr. L. R. Murphy and Dr. R. L. Fulton
for the many stimulating discussions.

REFERENCES

1 R A SHORT
The attainment of reliable digital systems through the use of
redundancy-A survey
IEEE Computer Group News Vol 2 No 2 1968

2 A AVIZIENIS G C GILLEY F P MATHUR
D A RENNELS J A ROHR D K RUBIN
The STAR (Self-Testing-And-Repairing) computer: An
investigation of the theory and practice of fault-tolerant
compUter design
IEEE Trans. on Computers Vol C-20 No 111971

3 W C CARTER et al
Design techniques for modular architecture for reliable
computer systems
Report No 70-208-0002 IBM Space Systems Center
Huntsville, Alabama 1970

Design of Fault-Tolerant, Modular Computer with Dynamic Redundancy 1067

4 A L HOPKINS JR
A fault-tolerant information processing concept for space
vehicles
IEEE Trans. on Computers Vol C-20 No 111971

5 A AVIZIENIS
Arithmetic error codes: Cost and ~ffectiveness studies for
application in digital system design
IEEE Transactions on Computer Vol C-20 No 111971

6 I S REED D E BRIMLEY
On increasing the operating life of unattended machines
RM-3338-PR The RAND Corporation 1962

7WGTEES
Predicting failure rates of yield-enhanced LSI
Computer Design February 1971

8 D M AARON M F ADAM
MOS reliability prediction model
Ninth Reliability and Maintainability Conference 1970

9 R L CUNNING~AM
High reliability beam-lead devices
WESCON Session 2{} 1971

10 C M RYERSON et al
RADC reliability notebook volume II
RADC-TR-67-108 September 1967

11 F P MATHUR
Reliability estimation procedures and CARE: The
computer-aid reliability estimation program
Jet Propulsion Laboratories Quarter Technical Review
Vo111971

MOS LSI minicomputer comes of age

by G. W. SCHULTZ and R. M. HOLT

American Micro-systems, Inc.
Santa Clara, California

INTRODUCTION

At the turn of the decade, a number of development
programs were in progress to achieve a cross-breeding of
the computer and semiconductor technologies. Since
then, we have seen the advent of LSI mainframe
memories. Fur-ther advances in LSI technology have
incited considerable interest in other areas of computer
applications, and as 1972 ends the LSI minicomputer
comes of age.

Interestingly enough, the activities that led to this
development were not stimulated by mainframe manu
facturers, but by minicomputer users and terminal
manufacturers in particular. In the course of this
development, the tradeoffs that are necessary to make a
minicomputer design a practical candidate for MOS
LSI were of major concern to computer architects and
systems designers. The factors that must be considered
to attain an optimum LSI minicomputer system that
operates at TTL speeds form the bases of this paper.

The specifications that apply in the discussions are:

1. The machine must be capable of addressing 65K
words or bytes of memory directly. The 16-bit
address to memory must not be sent as a single
byte transfer, even in 8..:bit oriented machines.

2. Speed is a major factor in achieving processing
powers that approach TTL minicomputer de
signs; therefore, every possible effort must be
made to gain speed.

3. TTL requirements external to the LSI should be
minimized for cost effectiveness.

4. Only those LSI processing technologies that are
presently being used in low-cost mass production
should be considered.

5. The system should be able to function as an
8- or a 16-bit machine and its performance should
be equivalent to TTL minicomputers that are
most commonly· used.

1069

LSI MtNICOMPUTER ARCHITECTURAL
TRADEOFFS

Microprogrammed VB. Conventional Control

The tradeoffs in implementing the control section for
the LSI machine are bounded primarily by two criteria:
(1) system partitioning and related pin limitations; and
(2) efficiency of chip area utilization.

If the entire machine could be placed on a single chip
the problem would be greatly simplified and only the
second restriction would remain. The other alternative
is to partition the registers and arithmetic logic unit
(ALU) as byte slices and place the control on other chips.
However, this approach introduces speed problems
because of chip-to-chip transition delays of approxi
mately 150 to 200ns. The transition problem can be
solved by using pipelining techniques which mask the
time spent in communicating control between chips so
that the registers and ALU section can be operated
autonomously.

In byte slice partitioning, pin limitation is a major
factor in the control section design. Present packaging
technology and cost considerations constrain the de
signer to 16-, 24- and 40-pin packages. The 16- or 24-pin
configurations are undesirable because the registers and
ALU would have to be partitioned into 4-bit slices. The
resultant chip-to-chip transitions between sections of the
ALU will greatly reduce machine speed. Assuming that
a 40-1 ead package is used:

1. At least 6 pins are required for power sources and
clocks on all the chips.

2. 16 pins are needed on the registers chip for
16-bit memory Bus Interface.

3. At least three ALU Lines (Carry In, Carry Out
and Zero Detection) are needed to form 16-bit
machines.

This leaves a maximum of 15 pins for controlling the

1070 Fall Joint Computer Conference, 1972

registers and ALD. This pin limitation problem
combined with the fact that, for a given speed, Read
Only l\1:emories (ROl\1s) are approximately 6 times
more efficient in chip space usage than sequencers and
associated random logic, leads the designer'to seriously
consider microprogramming techniques.

Aside from the basic LSI layout problems, other
system tradeofi's heavily favor the microprogrammed
approach. l\1:uch of the· reasoning that applies to the
design of TTL machines also applies to LSI designs.

Additional arguments for a microprogrammed ap
proach are:

i. The need for emulating all or part of the
instruction sets for existing TTL designs to
minimize software development.

2. The need for applying the LSI machine to areas
where the microlevel of control is either manda
tory or desirable for meeting speed requirements.
A good example is the CRT display terminal in
which the microlevel of control is much more
efficient, it may eliminate the need for core
storage of macroinstructions and it allows the
required speeds.

3. The desire for flexibility at the lowest logic level.
4. The short development spans which do not allow

Jor complete re-Iayout of complex chips when
minor errors are discovered during the design
phase.

Instruction decoding

The instruction fetch and decode process poses a
difficult speed problem. Particularly for the first phase
of execution, it is desirable to load the Instruction
Register (IR) with a new instruction and immediately
relate the IR contents to a microinstruction ROM
location. However, thIS ROM address mapping process
typically requires a minimum of 300ns as well as 300 to
400 ns to access the first microinstruction used in
executing the macroinstructions. This is approximately
equal to the time required to execute two microinstruc
tions. This problem can be solved as shown in Figure 1
wherein the control section is designed to initiate the
execution of one ·or more microinstructions after the
instruction register is loaded, and as soon as the mapping
array output is valid, it causes their completion to be
inhibited or skipped. The inhibited microinstructions
are used to fetch additional bytes in the process of
forming a 16-bit memory address. For single-byte
instructions, such as Clear Accumulator, the Fetch
Address phase is skipped. For all other instructions the
address is fetched and the instruction is decoded
concurrently.

LOAD INSTRUCTION
,.....-...... --~ REGISTER

INDIRECT
ADDRESSING

DECODE

SKIPIF
EXECUTION
STORES
OPERAND

~"--l
'f

FETCH
OPERAND

,r

EXECUTE

INSTRUCTION
FETCH

DECODE

"'---,
, I SKIP IF

ADDRESS

I IS NOT
FETCH REQUIRED

ADDRESS I

t

INDEXED
ADDRESSING

SINGLE-BYTE
EXECUTIONS

I

DECODE

SKIP IF EXECUTION
STORES OPERAND---,

FETCH
OPERAND

I
I
I

..... _J

EXECUTE

Figure I-Instruction decoding

... -

This same technique may be applied during the
execution of memory reference instructions to differ
entiate between executions which store or fetch
operands. In this case it is assumed that the execution
phase will fetch an operand; if it is to store, the fetch
operand microinstructions are inhibited or skipped.

Thus the Instruction Decode ROM provides ROM
Addresses to the ROM Address Register (RAR) for
each of the major execution phases:

1. Operand Address Preparation which includes

indirect, indexed and/or autoindexed addressing
computation.]\fore than one decode may be
required for complex addressing schemes.

2. Execution of the instruction with the operand
after address preparation or immediate execution
for single-byte type instructions.

3. Occasional fetching and decoding of additional
bytes or fields of the instruction for a third
phase.

Fortunately, speed is not a problem for the second
and third phases because the instruction is in the IR
ahead of time.

Microinstruction formats

The speed of the LSI machine is determined primarily
by the speed at which

1. Arithmetic operations can be performed, viz.,
the speed at which the operands can be accessed
from two registers, added and returned into one
of the original sources or a new register.

2. The machine can change control states. In a
microprogrammed machine the ROM access
speed and the microprogrammed branching
process become determining factors.

The microprogrammed 1\10S LSI machine is op
timized when the ROM access time equals the speed of
arithmetics. If the machine is only used to interpret and
execute macroinstructions, branching is not a major
consideration, inasmuch as branching will seldom occur
in the microprogramming process. If the machine is used
mostly as a controller, the speed of branching will be an
important factor. These factors influence the choice of
microprogramming formatS' and field assignments.

In constructing the appropriate microinstruction
formats the designer should take advantage of pipelining
techniques which can be implemented at a very low cost
with MOS LSI due to its dynamic storage node
characteristics. This alone makes only a few TTL
designs good candidates for LSI. Secondly, in an LSI
machine the registers would most likely be implemented
as two-port Random Access lViemory (RAM) cells and
must be accessed by two source register, Address fields
in much the same manner as any other semiconductor
m~mory. While the two operands are being accessed the
registers and AL U section need not know how to control
the ALU or the destination of the results. Therefore,
virtually no speed will be lost by communicating
portions of the microinstruction format in a sequential
manner as long as they are available in decoded form
when required. This would suggest that machine time be

MOS LSI Minicomputer Comes of Age 1071

an additional constraint in the construction of fields. It
should be noted that if the system is pipelined exten
sively, two new operands must be accessed before the
result of the last two operands is written into a destina
tion register. Therefore it will be necessary to provide
pipeline storage for the execution of microinstruction
destination fields received by the registers and ALU
section.

Presently, a single high speed (300ns access) micro
programmed MOS ROM contains as many as 12,000
bits, along with associated ROM addressing registers
and control logic. Assuming that a 24-bit microinstruc
tion format is used, 512 words are available which is
adequate to implement a powerful minicomputer if the
micro address sequencing is optimized to reduce repeti
tive coding. One approach is the microsubroutine
technique. Another equally powerful technique is to
combine the decode operation ·and the CoCal!. The
decode operation retains the RAR + 1 in the ROM
Return Address Register (RRAR) before the RAR is
loaded with the Decode Address. The CoCall causes the
RAR to be swapped with the RRAR (RAR + 1 ~
RRAR). The decode acts as a call to the microroutine
and the CoCall acts as a return. Co Calls can also be
used for branching between two routines.

I nput/ output interface

The designer should recognize that the MOS chip will
drive only one TTL load efficiently and that power
dissipation can be a major problem. Therefore it is
necessary to consider an I/O buffering scheme which
would provide the lightest possible load to the 1\10S
chip in order to minimize speed and power dissipation.
This can be accomplished by several techniques.

One interface technique is shown in Figure 2. When
the MOS circuit drives data out the Drive/Receive
control line is such that the receiver is in the tristate
condition while the TTL buffer is driving the I/O Bus.
When the MOS circuit is in the receiving mode the input
data is driven sufficiently by the quad Driver/Receiver
to overcome the data that are still being driven out
from the output buffer and the MOS I/O chip need not
know when t4e I/O Bus is driving or receiving.

The second techniq~e, shown in Figure 3, requires
separate Drive and Receive control lines, but it
eliminates the need for the 1\10S output driver to be
overcome by the data driven in. With this technique the
output data is latched onto the I/O Bus, thereby
lowering power dissipation on the chip. In smaller
machines this could possibly eliminate the need for an
I/O Buffer.

Of the two techniques the first requires fewer pads

1072 Fall Joint Computer Conference, 1972

---- - ---,
I

OUTPUT BUFFER REGISTER
r

I
I

DATA
BUS A

DATA
BUS B

I/O PIN

.1. I ,
OUTPUT DRIVER

I ,
I
r ,
J

DRIVE/RECEIVE
CONTROL LINE

TTL I/O BUS

1/4 PART OF
SIGNETICS
8T26 QUAD
DRIVER/RECEIVER

Figure 2-1/0 interface with one control line

DATA
BUS A

DATA
BUS B

OUTPUT DRIVER}
WITH DISABLE

.L

1.

INPUT RECEIVER~

RECEIVER
CONTROL-----4--~

LINE

I
I
I
I
I
I
I
I
I
I

I/O Pin

DRIVE CONTROL LlNE--...

MOS LSI CI RCUIT

TTL I/O BUS

1/4 PART OF
SIGNETICS
8T26 QUAD
DRIVER/RECEIVE

Figure 3-1/0 interface with two control lines

and external interconnect, while the second dissipates
less power on the chip.

Stack organization

The internal organization of a single address computer
is such that both programming and running time are
wasted for the storage of immediate results in the
sequence of computation. This problem is amplified in
the 8-bit byte machine because the full address must be
fetched with the two memory accesses in order to
transfer the operand. Moreover, memory products that
are properly matched with these low-cost processors are
likely to be slow. The two most efficient structures that
can be implemented on LSI chips are RO]Vls and
RAMs. Therefore it is desirable to consider an architec
ture that consists of a larger number of registers than
are used in TTL designs; these. would be used for
temporary storage of operands.

Furthermore, it is highly desirable to have a push
down stack on the chip which would allow fast sub
routine calls and interrupts which can then execute at
microinstruction speeds. This feature is one of the most
important factors in achieving the speeds equivalent to
TTL designs. A single set of registers can be used either
as a push-down stack or as a set of general file registers
if the design incorporates a stack pointer counter which

Q

-_r_-------.---OUTPUT BUS

B

CELL 1

A

SINGLE

B

CELL 8

A

ACCESS~~ ________ __
CONTROL

ACCESS
CONTROL

OUTPUT

Figure 4-Single-port ram structure with static cell (input data
and control not shown)

MOS LSI Minicomputer Comes of Age 1073

--.,....-----...-- A BUS

.,..--t-----.--+-- B BUS

CELL 1
C 0
CELL 8

ACCESS CONTROL A -tI -+----....
ACCESS CONTROL B--....... ---__J

OUTPUT B

A
J. C
n....r:>o=-0UTPUT A

Figure 5-Dual-port ram structure with static cell (input data
and control not shown)

can be loaded to randomly address the registers within
the set.

Register implementation

The use of the RAM structure as a means of register
implementation presents several interesting tradeoff
considerations, such as single-versus dual-port struc
tures, static versus dynamic cells and speed versus
power.

In the single-port configuration shown in Figure 4 the
general registers become one of the operands (A) and the
accumulator or possibly the Program Counter becomes
the other (B).

The dual-port structure shown in Figure 5 allows any
of two general registers to be accessed simuItaneousiy.
In the dual-port configuration each RAM cell requires
an additional access control line as well as output data
line. Both of these lines can increase the size of each cell
by 20 percent. The overall RAlVl structure including the
additional outputs will increase by 30 percent. Along
with the increase in the areas of the RAM structure, one
must also consider the increase in interconnections for
the additional eight output lines. The size tradeoffs for
a single- and dual-port approach for ten general byte
registers are:

Cell
RAM Core
Output Drivers

Single Port (miJ2) Dual Port (miI2
)

18
1440

150

1590

22
1760
300

2060

1074 Fall Joint Computer Conference, 1972

A BUS

ACCESS
CONTROL~--~~-----------

Q OUTPUT

SINGLE PORT

A BUS

ACCESS
CONTROL A -t---------

ACCESS
CONTROLB~I---

Q OUTPUT

DUAL PORT

8 BUS

Q OUTPUT

B BUS

Q OUTPUT

Figure6-Refined ram static cell (inputs not shown)

It should be noted that the size of RAlVI cells have
been decreasing constantly as new processing technolo
gies have become available. Whereas an area of 18 mils2

is practical today, it is very likely that the ion implant
and silicon gate technologies will produce static RAM
cells that are less than 10 mils2•

The design process for register configurations must
include consideration of the static and dynamic RAM
cells. The static cell is the larger of the two and draws

INPUT
DATA BUS

OUTPUT OUTPUT
DATA DATA
BUS A BUS B

Figure 7-Dual-port dynamic ram cell

enormous power if the number of cells is large. This
problem can be eliminated by relying on the capacitance
at the Q, Q nodes to store information and by pulsing
the load devices periodically. A refinement of this
technique uses the Q, Q output data lines as sources of
current to Q, Q nodes. This eliminates two devices from
the cell structure but places a restriction on the size of
the devices used to implement the cell. The single- and
dual-port static cell structures are shown in Figure 6.

A BUS

, I "

I REGISTER A I REGISTER B

,r

GENERAL
REGISTERS

I
If"

ALU I
I

Scheme 1 - Single Bus with Operand Registers
A BUS . ~ ~ ~

B BU S

~

1
I r , t

GENERAL
ALU REGISTERS

Scheme 2 - Dual Bus

A BUS

~

B BUS

~

I, , , .,
GENERAL

ALU

REGISTERS

t " D BUS

Scheme 3 - Triple Bus

Figure 8-Data bussing schemes

MOS LSI Minicomputer Comes of Age 1075

One advantage of the static cell is that it need not be
refreshed.

The dynamic cell, shown in Figure 7, can be quite
small due to its capacitive storage and it requires
extremely low power. However, the dynamic cell must
be refreshed, either with hardware or software. In
either case, the processing stream must be interrupted
periodically to refresh the data. Typically a dynamic
cell must be refreshed at least once every millisecond
(approximately once each 50,usat 125°C). For an
M OS processor with 32 dynamic registers and a machine
cycle of 1 ,us, approximately 3 percent of the machine
time would be spent in refreshing. Of course, as the cycle
time increases this percentage would decrease, possibly
to the point of insignificance. The system designer must
determine whether this refresh time is worth the added
complexity in control and timing logic versus the added
chip area and power of a static cell. For an MOS LSI
system with high computing performance requirements
the dynamic RAM would not be a suitable choice. On
the other hand, in systems where high performance is
not the primary consideration, or the number of cells is
larger, the dynamic IVIOS cell structure should certainly
be considered.

Data bussing

The best criterion on bussing is to use the fewest
number possible without sacrificing machine cycle
speed. In some cases this will require that data be stored
until the bus is available. Figure 8 shows three schemes
that can be used to bus data around a chip. Scheme 1
uses a single bus which has the advantage of minimum
interconnection but suffers in overall machine speed. In
this type of organization the two operand registers must
have two machine cycles and possibly a third cycle to
transfer the result back to the general registers. In this
case, hardware is traded for time.

Scheme 2 uses two busses to transfer the operands.
The dynamic storage inherent with M OS allows these
busses to look like registers. While this scheme eliminates
one machine cycle for accessing the second operand, the
general registers must have a dual-port structure.

Scheme 3 requires the greatest chip area and uses
three busses, two for operands and one for the result.
Pipelining techniques can be used in this scheme in that
the A and B busses store operands while the D bus is
being used to store the result of the previous operation.

For the sake of comparing the bussing schemes,
consider the bus lines to run along three sides of the
chip. The two layouts in Figure 9 show the relative
importance of a proper layout.

Table I shows a comparison of bus chip area for the

1076 Fall Joint Computer Conference, 1972

three bussing schemes in Figure 8 and for the two lay
out methods shown in Figure 9. Compared in the table
are 150 and 200 mil2 chips. Note that the amount of
chip area consumed by bussing can vary from 4 to 30
percent depending on which bussing technique is used.

lVIOS LSI 7200 PROCESSOR

General

The AMI 7200 Processor is a fully parallel, bus
organized system wherein a 16-bit Data Exchange Bus
interconnects the I/O devices, memory modules and
central processors so they communicate with each other
asynchronously. Multiprocessor capability is incorpo
rated in the design of the Data Exchange Bus. The
CPU contains 45 static registers of which 32 may, unde~
microprogram control, be used as a First In-Last Out
(FILO push-down) stack or as a file of 32 general
registers.

The basic 8-bit 7200 processor is constructed of three
ion implant, P-channel MOS LSI devices: (1) Registers
and ALU Device; (2) Microinstruction ROM; and (3)
Microcontrol Device.

TABLE I-Comparison of bus area for bussing schemes and
chip layout methods for an 8-bit machine

Bus
Sche)ne

1
2
3

Bus
Scheme

1
2
3

Layout A

150 mil2 Chip (Active
Area)

Total Area
of Busses*

(mil2)

2880
5760
6720

Percent of
Chip Area

12.8
25.6

'30.0

Layout B

150 mil2 Chip (Active
Area)

Total Area
of Busses*

(miI2)

960
1820
4700

Percent of
Chip Area

4.3
8.1

21.0

200 mil2 Chip (Active
Area)

Total Area
of Busses

(mil2)

3840
7680
8960

Percent of
Chip Area

9.6
19.2
22.4

200 mil2 Chip (Active
Area)

Total Area
of Busses

(miI2)

1280
2560
6400

Percent of
Chip Area

3.2
6.4

16.0

* Areas are based on a line width of 0.4 mil with a spacing of
0.4 mil.

A B o B A

LAYOUT A

o A B o

LAYOUT B

Figure 9-Chip bus layout methods

The registers and ALU device and the microinstruc
tion device may be paralleled to form either 4- or
5-chip fully parallel 16-bit machines. The 7200 performs
all of the functions commonly found in most minicom
puters; the primary difference is the speed of execution
which is approximately one-half to one-third of
minicomputers. In a few cases the 7200 may be faster;
for instance, the 32 byte stack alIows for fast subroutine
calls executed at microinstruction speeds rather than
memory cycle speeds.

The basic machine architecture and partitioning are
shown in Figure 10. The A, Band D busses which may
also act as temporary storage registers are connected
~irectly to the ALU. The ALU performs its operations
in five time slots. While the ALU is operating on one set
of operands, those for the next operation are being
accessed from the general file registers or stack. After
the next operands have been accessed the last result is
written into the register as specified by microprogram
control. The microinstruction timing is shown in
Figure 11.

The Control section of the processor is implemented
by microprogramming techniques. The microcontrol

I - - -- -- -ST-ART-IN-G - ~
ADDRESS

I n! r ROM I
...--

I ROM I
ADDRESS ~ 1~
REGISTER w ~

I 512 ~ ~ 1 h--+---+-l~ X ~ <.!) III

I 24 ~~ SEL Ir
ROM ROM « 12

RETURN r« L~~
ADDRESS r--- I I REGISTER 0

I 1 T ~ I ~;;:; BRANCH ADDRESSES

I ~I L __ MICROINSTRUCTION ROM CHIP __ --1
en
;:)
c:J

I -- --MICROCQj\jTROLCHIP - I ~

TIME

BASE

COUNTER

I

-- ~I
MICRO I LOGIC H- I
UNIT

1L-:'-:'-:'=====~~_-+-_-fR EG H.\
-al MICRO L r~ I
~ I COUNTER J --
'-----r--, ~ [DE~~DE I I

H GENERAL .~ I
FLAGS

~------~ I ~

f

HINSTRUCTIONL
REGISTER r--

.-

INSTRUCTION
MAPPING
ARRAY

I

r-----"I I
I/O

CON
TROL
LOGIC

I
I

rr
"'------I

MOS LSI Minicomputer Comes of Age 1077

j---------l
f

STACK
COUNTER

1
T

STACK
POSITION
DECODER

I

-

en
!::
c:J
co

I

en
D

OP CODE ~
DECODE

A BUS

SOURCE

DECODE

B BUS
SOURCE
DECODE

D BUS

DECODE

ALU
CONTROL
DECODE

32
BYTE

STACK

OR

FILE
REGS

-

I
I
I
I

~ ,
~ co ,
c:J ~
co :>

I c:J

~ «
c:J I~
c:J

I~
c:J

H ADDRESS
REGISTER ,

CORE/RAM
MEMORY

• H DATA
REGISTER

'-------"

ROM

12 ~ _ I tS
z

__ I
~ GENERAL ~--......

REGISTERS I ~

I ~~ H I/O

~ STATUS
REGISTER

-ALU

= DEVICE

I - I

I H I/O
DEVICE

I I
I :
I H I/O

DEVICE

I .. I
DATA ~ I H- EXCHANGE _ ~
MPX •

_ _ ~ 1 I --o...L
R

-IV-E R-/----.

~ L ______ _ T' RECEIVER
~ L ~ I PAIRS ____ REGISTERS CHIP ___ -1

~ DATA EXCHANGE CONTROL LINES

Figure 10-AMI 7200 processor

program is contained in the microinstruction ROM
which has a maximum capacity of 512 words by 24 bits.
The instruction decoding function is performed by the
Instruction Mapping Array. The large microinstruction
ROM and instruction mapping array allow for imple
mentation of virtually any minicomputer instruction
set. Twelve general purpose flags have been provided on
the micro control chip to simplify the implementation

of calculators and controllers. An interval timer with
two time base ranges is also provided to aid in the
design of control systems.

The logic was greatly reduced by using polynomial
counters rather than binary counters. The RAR,
RRAR, Time Base Counter and Stack Pointer are
polynomial counters, while the microcounter is binary
since the macrolevel of programming uses it.

1078 Fall Joint Computer Conference, 1972

I-----f DECODE MICROINSTRUCTION 1

I-----f ACCESS REGISTERS 1

t-------II PERFORM ALU 1

~ STORE RESULT 1

t--------I DECODE MICROINSTRUCTION 2

t-------1 ACCESS REGISTERS 2

t-------fl PERFORM ALU 2

I----t STORE RESULT 2

Figure 11-Timing chart for microinstruction pipelining in
AMI 7200

7200 Microinstruction format

Four microinstruction formats for the 7200 processor,
viz., Control, Literal, Test and Command, and Branch
Address, are shown in Figure 12.

CONTROL FORMAT (Format 1)

4 Bits 4 Bits 4 Bits 4 Bits 8 Bits
I

Bus A Bus B Bus D
OP Code ALU Control

Source Source Destination
I

23 20 19 1615 12 11 8 7 o

LITERAL FORMAT (Format 2)

4 Bits B Bits 4 Bits 8 Bits
I

Bus D
I

OP Code Literal
Destination

ALU Control

I I

23 20 19 12 11 8 7 o

TEST AND COMMAND FORMAT (Format 3)

4 Bits 8 Bits 12 Bits
I I I

OP Code Extended OP Code T est or command

I I I

23 2019 12 11 o

BRANCH ADDRESS FORMAT (Format 4)

1 1 1
3 Bits 9 Bits Bit Bit Bit 9 Bits

BRANCH
RCl RCO

BRANCH
OP Code ADDRESS 1 ADDRESS 0

23 21 20 12 11 10 9 8 o

Figure 12-AMI 7200 instruction formats

Control format (format 1)

The Control Format is used to configure the registers
in executing transfers and arithmetic operations. The
Op Code field specifies Branching and Decoding Func
tions so that branching may be specified simultaneously
with register control. The Bus A and Bus B source fields
indicate one of 16 sources to be clocked onto these
busses. Bus D destination stores the result of a register
movement or arithmetic operation. The 32-byte stack is
popped each time it appears as a source and pushed
when it appears as a destination. The ALU control field
specifies control of the arithmetic unit as well as shifting
operations, I/O and status operations.

Literal format (format 2)

The Literal Format allows an 8-bit byte of any
configuration to be clocked onto the B Bus and then
used as an operand to the AL U as specified by the AL U
destination field. The A Bus is loaded with the previous
ALU result.

Test and command format (format 3)

The test and command format utilizes an extended
Op Code field to further specify such operations as:

1. Setting and testing condition flags on the
Register Chip.

RAM
(STACK &

GENERAL REGISTERS)

TSC = TIME SLOT COUNTER

BUSSES

STATUS
RE'GISTERS

& LOGIC

Figure 13-AMI 7200 registers and ALU chip

2. Branching-on condition and status flags.
3. Branching-on each bit of the instruction register.
4. Setting, resetting and testing general purpose

flags.
5. Controlling the interval timer.

Branch address format (format 4)

The branch address format contains two branch
addresses that are used alone or with Format 3. When
an unconditional branch parameter is specified, one
branch address is used for a zero and the other for a one.
Two bits of the format are used to specify control of the
RAR and the RRAR as follows:

1. Load Branch Address 1 into RAR and leave
RRAR undisturbed.

2. Load RAR + 1 into RRAR and Branch Address
1 into RAR.

MICROINSTRUCTION ROM
(512 X 24)

57%

RAR = ROM ADDRESS REGISTER

RRAR = ROM RETURN ADDRESS REGISTER

TSC = TI ME SLOT COUNTER

SAR = STARTING ADDRESS ROM

Figure 14-AMI 7200 microinstruction rom chip

MOS LSI Minicomputer Comes of Age 1079

IMA = INSTRUCTION MAPPING ARRAY

IR = INSTRUCTION REGISTER

TSC = TIME SLOT COUNTER

TBC = TI ME BASE COUNTE R

MLU = MICROLOGIC UNIT

GF = GENERAL FLAGS

MC = MICROCOUNTER

Figure 15-AMI 7200 micro control chip

3. Load Branch Address 1 into RAR and Branch
Address 2 into RRAR.

4. Load Branch Address 1 into RRAR.

Chip area allocations

The design results of the 7200 are included here to
assist the system designer in planning new machines and
effecting the tradeoffs discussed previously. The func
tional allocations for the Registers and ALU chip, the
microinstruction ROM chip and the micro control chip
are shown in Figures 13, 14 and 15 respectively. All
chips are approximately 200 mils2

•

SUMMARY

The boundaries of computer performance that can be
achieved through present MOS LSI processes approach

1080 Fall Joint Computer Conference, 1972

those in corresponding TTL minicomputer designs when
various architectural features and MOS design tech
niques are considered. MOS LSI technology makes it
possible to incorporate various schemes in the computer
architecture that were previously not economically
available to the TTL designer. The AMI 7200 processor
exemplifies a machine that has been optimized by using
MOS LSI. The chip allocation data obtained from the
7200 will aid in planning new designs with architectures
that would provide significant advantages in perform-
ance and economy. '

Looking ahead, it is reasonable to expect that the new
LSI processes that are now emerging, such as N -channel
silicon gate, will make it possible to reduce chip sizes and
increase operating speeds by a factor of two. Clearly,
MOS LSI technology allows greater freedom in memory
organization than other technologies in existence, and
even wider applications will be achieved as system
designers and computer architects become familiar with
the characteristics of the new generation of MOS LSI
devices.

ACKNOWLEDGMENT

The authors wish to acknowledge the invaluable
assistance provided by the Circuit Designers at AMI
and the Engineers of the Litton Advanced Retail
Systems Division, particularly H. McFarland. We also
extend our appreciation to the personnel of Comtec
Data Systems, a subsidiary of AMI, for their assistance
in the critique and preparation of the manuscript. Of
course, the authors assume full responsibility for the
accuracy and clarity of the content of this paper.

BIBLIOGRAPHY

L L BOYSEL J P MURPHY
Four-phase LSI logic offers new approach to comupter
designers

Computer Design April 1970 pp 141-146
T C CHEN
Parallelism, pipelining and computer efficiency
Computer Design January 1971 p 69
R W COOK M J FLYNN
System design of a dynamic microprocessor
IEEE Transactions on Computers Vol 19 No 3 1970
pp 213-222
ENGINEERING STAFF OF AMERICAN
MICRO-SYSTEMS, INC
MOS integrated circuits: theory, fabrication, design and
systems application
Van Nostrand Rheinhold N ew York 1970
R SENTNER
The advanced avionic digital computer system
Computer Design September 1970 pp 73-76
F FAGGIN M E HOFF
Standard parts and custom design merge in four-chip
processor kit
Electronics April 24 1972 pp 112-116
R GRAHAM
The parallel and the pipeline computers
Datamation April 1970 p 68
R GRUNER L SELIGMAN J SUTTON
Standard LSI chips breed a fast new series of minicomputers
Electronics November 9 1970 pp 64-69
D C GUNDERSON
Some effects of advances in memory system technology on
computer organization
IEEE Computer Group Conference Proceedings 1970
pp 7-11
M E HOFF
One chip CPU-computer or component
Proceedings of the Computer Systems Design Conference
1972 p 16
R M HOLT
MOS processor for the F1J,.A CADC
Garrett AiResearch Corp Torrance California Technical
Report No 71-7266 April 1971
F J LANGLEY
Small computer design using microprogramming and
multifunction LSI arrays
Computer Design April 1970 pp 151-157
S R REDFIELD
A study in microprogrammed processors: a medium-sized
microprogrammed processor
IEEE Transactions on Computers Vol 20 1971 pp 743-750

Control of the R'ancho electric arm

by M. L. MOE and J. T. SCHWARTZ

University of Denver
Denver, Colorado

INTRODUCTION

In the past few years significant efforts have been made
in the design of powered orthoses for upper extremities.
These arm aids often consist of several linkages and
many actuators making their control quite complex.

The critical problem to be discussed here is the de
velopment of a control system which will make it easy
for the user to utilize the capabilities of the arm aid.
The following are desirable properties of the control
system:

1. Volitional control of the wrist of the arm aid
over as wide a range of motion as possible.

2. Variable speeds to permit fast gross motion and
slower speeds for fine positioning.

3. Direct control of wrist motion along natural
trajectories using automatic coordination of
individual joint motion.

4. Automatic features, such as keeping the hand
level while drinking, available when the user
desires.

5. A natural relationship between the source of
control signals and the direction of motion de
sired.

While these properties determine the performance re
quirements of the control system, there are several
additional factors which are of vital importance in de
termining patient acceptance of the complete system.
These are:

1. Cosmesis-A disabled person has a desire to
look as natural as possible. All equipment used
should be designed to be as inconspicuous as
possible.

2. Cost-Effectiveness-The additional function af
forded the patient must be commensurate with
the cost.

3. Reliability-The equipment should be designed

1081

to work for years without maintenance. If the
equipment requires frequent maintenance it will
tend to be discarded by the patient.

4. Ease of Application-It should be easy to put
the equipment on the patient each time he wants
to use it.

5. Simple Activation and Deactivation-It should
be easy for the patient to turn the control sys
tem on and off with unique control signals. This
will permit the patient to relax the muscles used
to obtain control signals.

These requirements greatly increase the engi~eering
effort required in the design of the arm aid, the control
system, and the transducers used to obtain the required
control signals. The objective of the research described
here is the development of a complete arm aid system
which has the specified control properties and also
meets the additional requirements for patient accep
tance.

The design objectives for the arm aid are somewhat
different than those for most manipulators because of
differences in operational environment and manipula
tive tasks. However, similar control strategies can often
be used for both.

APPROACH

A block diagram of the complete control system under
development is shown in Figure 1. Control sites capable
of providing signals, 'ri, which' can be smoothly con
trolled over a wide dynamic range, are essential to ob
tain suitable speed control. The control system is de
signed to be of assistance to quadriplegics, generally a
a result of a high-level spinal cord injury. This places
severe constraints on the location of control sites which
are not present in controllers for most manipulator sys
tems. A transducer which monitors eye motion by means
of infrared reflection techniques is being developed to
provide two of these signals since smooth control of eveS

1082 Fall Joint Computer Conference, 1972

VISUAL FEEDBACK

Figure 1-Block diagram of system

motion is available in even the most severely para
lyzed patients. Additional control sites are chosen to
utilize other residual function.

To simplify the control task an electronic coordinate
converter is employed to compute the rate of motion
f.or each joint of the arm aid when the desired direction
and rate of speed of the hand is specified. The conscious
effort required for control of the hand is minimized
since the user can use the control transducers to specify
speed and direction of motion of the hand in familiar
coordinate systems rather than specifying anatomical
joint motion. In order to achieve the desired coordinated
motion, variable motor speed control is needed. Since
the arm aid used, the Rancho electric arm, l has perma
nent magnet dc motors it was necessary to generate a
variable duty cycle pulse train to obtain the necessary
range of motor speeds.

OCULAR TRANSDUCER

Previous tests using EOG methods for monitoring eye
motion for control purposes indicated that such control
was feasible. 2•3 •4 However, because the use of electrodes
did not seem compatible with the requirements of
patient acceptance, this method of monitoring eye

Figure 2-Infrared ocular transducer

motion was discarded in favor of a method using infrared
reflection techniques. This new transducer, shown in
Figure 2, uses infrared sources and detectors placed so
that they do not interfere with normal lines of vision.
Vertical motion is sensed by the source and two detec
tors above the right eye and horizontal motion is
sensed by the sources and detectors on the sides of the
glasses. By modulating the sources it was possible to
design the transducer to operate over a wide range of
ambient light conditions. A. block diagram of the ocular
transducer is shown in Figure 3 where the blocks con
taining S are sources and those containing a D are de
tectors. A study of infrared hazards to the eye indicate
that the power levels used for the sources produces in
frared radiation well below the threshold of damage to
the eye.5

HORIZONTAL CHANNEL

HORIZONTAL
OUTPUT

VERTICAL
OUTPUT

Figure 3-Block diagram of ocular transducer electronics

The control currently available from the ocular trans
ducer is illustrated by the eye "writing" shown in
Figure 4. This writing was obtained by attaching the
vertical and horizontal outputs of the ocular transducer
to the vertical and horizontal inputs of a storage
oscilloscope.

It is important that the patient be able to turn off
the control system quickly when he wants to look
around or talk to someone. Two approaches to this
problem are currently being investigated. The first
method uses the occurrence of two blinks within a 175
to 350 millisecond period to disconnect the transducer.
The other method uses the presence of a zero signal in
both channels for a specified period, as the indication.
Of course, similar methods can be used to reconnect
the transducer.

ELECTRONIC COORDINATE CONVERTER

Many techniques can be used to perform the calcula
tions necessary to convert the input signals specifying
direction and speed into signals specifying individual
joint rates. Since these calculations effectively transform
signals from a spatial coordinate system into the co
ordinate system of the arm, the device performing the
calculations will be called a coordinate converter.
Earlier research used a mechanical coordinate con
verter based on spherical coordinates for the spatial
coordinate system.2,3,4 Zeb06 has used a mechanical
coordinate converter based on Cartesian coordinates.
Because of slow operating speeds and lack of flexi
bility, these mechanical coordinate converters have

Figure 4-Eye "writing" using infrared ocular transducer

Control of the Rancho Electric Arm 1083

given way to electronic coordinate converters. Many
approaches to the coordinate conversion have appeared
in the literature. Whitney7,8 has proposed a coordinate
system based upon the direction the hand is pointing.
Lawrence and Lin9 have proposed a statistical method
for determining the elbow positions of an arm aid.
Gavrilovic and .l\1aric1o have developed equations
for keeping the hand direction colinear with wrist
velocity. Singhll developed the coordinate transforma
tion equations for spherical coordinates with the center
of the coordinate system at the shoulder. This was later
extended by Greeb12 to allow the center of the spherical
coordinate system to be displaced from the shoulder.
Greeb also developed the equations for a Cartesian
coordinate system. If the center of the spherical system
is located at the mouth then a single signal can be
used to bring the hand to the mouth. Thus, the spherical
coordinate system would seem to be good for eating.
However, the Cartesian system may be better for lap
board activities when motion parallel to the board is
desired.

Any implementation of a coordinate converter must
make specific choices to resolve three situations which
arise. The first is a result of the two-bar linkage having
four degrees-of-freedom when only three degrees-of
freedom are required to define a point in space. This
extra degree-of-freedom makes the solution of the co
ordinate transformation equations non-unique. Each
resolution of this ambiguity leads to a different control
strategy. Some strategies proposed are:

1. .l\1inimization of instantaneous weighted system
kinetic energy7

2. Hold one joint, such as humeral rotation, fixed12

3. Use statistical procedures to determine whethp ...
to use high or low elbow position9

N one of these strategies has yet received enou~h
testing to determine which would be preferred bv a,

user.
The second situation arises when one of the joints of

the arm aid reaches a limit. In this case, the joint can
not move further so coordinated motion is destroyed if
motion toward that limit. is required. Some of the pos
sible resolutions of this problem are:

1. Permit uncoordinated motion by stopping the
joint at the limit but letting the other joints con
tinue moving. This procedure can be unnerving
to the user as it often appears to him that he has
lost control.

2. Stop the arm aid when any joint reaches a limit
and ignore all input commands which require
motion against the limit. This often severely

1084 Fall Joint Computer Conference, 1972

limits the range of motion of the arm. Also,
since the inputs are end-point commands and not
joint commands, it is often difficult for the pa
tient to determine a command that will permit
motion away from the limit. The lack of a re
sponse to input commands which are illegal be
cause they require motion into a limit is very
discomforting to the user.

3. Control the arm to move in a direction which
most closely approximates the desired direction.
This would greatly complicate the control al
gorithm although it may be necessary to give the
patient an adequate feel of control.

While the first two strategies have been used in
preliminary tests, none has been used extensively
enough to evaluate its effectiveness.

The third situation arises because of the singUlarities
which must exist in the solution of the coordinate
transformation equations because of the mechanical
structure of the arm aid. Some strategies which can be
used to avoid the singularities are:

1. Adjust the limits of the arm aid so it cannot be
driven to a point where a singularity exists.

2. l\10dify the arm position data when close to a
singularity so that the position data used by the
equations do not result in a singular solution.
Since the actual arm angles are then a few de
grees from the angles used in the coordinate con
version process, a degradation in coordinated
motion results. However, in general the change
in performance is not noticeable to the user.

3. Adopt a different control algorithm in the vicin
ity -of a singularity. Because of the unique posi
tion of the arm near a singularity a simple
strategy such as temporarily going directly to
joint angle control may be adequate.

In the system currently being tested, as shown in
the block diagram of Figure 1, the coordinate converter
computes the desired joint rates ~c, specified by the
command signals, '!:.i,· and information on the current
position of the arm, ~p, as measured by potentiometers.
Both Cartesian and spherical·· coordinate systems are
being used by the coordinate converter for evaluation.
At present, the extra degree-of-freedom problem is be
ing resolved by letting the patient directly control
humeral rotation so its rate is not computed by the co
ordinate converter.

The equations developed by Greeb12 are those cur
rently being used in the electronic coordinate con
verter. The origin of the reference coordinate system is

located at the mouth, and oriented such that + X is
forward, + Y is to the right, and + Z is down. The
constant vector, So, where

defines the location of the shoulder with respect to the
origin.

The location of the wrist in space is defined by four
joint angles as shown in Figure 5. The reference posi
tion is the arm extended to the front parallel with the
X axis. From this reference position a positive rotation
of 1/;1 moves the wrist to the right; a positive rotation of
fA raises the wrist and a positive rotation of CPl rotates
the arm clockwise when viewed from the shoulder.
Positive rotation of (}2 produces elbow flexion bringing
the wrist closer to the shoulder. The components of the

Figure 5-Angles defining wrist position in space

wrist position can be expressed as:

where

rC1/I1C(hLl+(C1/I1C(hC02 l I -Cy,lS81C"'lS8,- SY,lS"'lS8,)L,

+lS1/I1C01Ll+ (S1/I1C01C02 J
- S1/I1S01C(P1S02+ C1/I1Sq>lS(2) L2

- SOlLl- (SOlC02+C01Cq>lS02)L2 .

Ll = Length of upper arm

L2 = Length of lower arm

(1)

and C and S are used to designate the Cosine and Sine,
respectively. '

In order to simplify the equations, the upper and
lower arm will be assumed to be of the same length:
L = Ll = L2• This is actually an advantage since it per
mits control of the palm of the hand rather than the
wrist, although we will still call it the wrist.

The rate equations for the wrist can be written:

(2)

where it is assumed q>l is held constant. Thus, q>l is not
used in the coordinate conversion process but rather is
placed under direct control of the patient. The com
ponents of A can be written as follows:

an = S1/Il[SOlCq>lS02- C01(1 + CO2)]-C1/I1Sq>lS021
a12= ~C1/Il[SOl(1+C02) +C01Cq>lS02]

= -[C1/Il(C01S02+S01Cq>lC02) +S1/I1Sq>lC02] I
a2l = C1/Il[COl (1 + CO2) - SOlCq>lS02]- S1/I1Sq>lS02 I
~2= -S1/Il[SOl(1+C02) +C01Cq>lS02] r (3)
a23 = ~ [S1/Il (C01S02+ SOlCq>lC(2) - C~hSq>lC02] I
a31=O
a32 = SOlCq>lS02- COl (1 + CO2) J
a33= SOlS02-C01Cq>lC02

The desired joint speeds can then be computed from
Equation (2) to obtain:

(4)

Control of the Rancho Electric Arm 1085

As one would expect, the equations reveal that the
joint rates are not dependent on the position of the
origin of the coordinate system relative to the shoulder.

For the spherical coordinate system, the origin will
again be assumed to be the mouth. The position of the
wrist will be defined by the radial distance, R, the azi
muth angle, 0, and the elevation angle, q>. :The input
commands will be R, (), and cP, and defined such that
positive R moves the hand away from the mouth, a
positive () moves the wrist to the right and a positive
cP raises the wrist. The rate equations can be written:

(5)

Before defining the elements of G and H, we first
define:

r= (X02+Yo2)1I2
a=Tan- l (Yo/-Xo)
T=L(C01+C01C02-S01Cq>lS02) -rC(a+1/Il) (6)
B = LSq>lS02+ rS (a+1/Il)
Zw= ZO-L(SOI +SOlC02+C01Cq>lS(2)
R = (T2+ B2+Zw2) 1/2

Then the elements of G may be written:

gn= (T2+B2)/R
g12=0
g13 = Zw (T2+ B2) 112
g21=O (7)
g22= T2+B2
g31=R
g32=g33=0

and the elements of H may be written:

hn =rTS(a+1/Il) +rBC(a+1/Il)
h12 = -LT(SOl+SOlC02+C01Cq>lS02)
h13 = - LT (C01S02+ SOlCq>IC(2) - LBSq>lC02
h21 = T2+B2- rBS(a+1/Il) +rTC(a+1/Il)
h22 = LB (SOl + SOlC02+C01Cq>lS(2)
h23=LB(C01S02+S01Cq>lC02) +LTSq>lC02 (8)
h31 =hn
h32= -LT(SOl+SOlC02+C01Cq>lS02)

+ LZw(SOlCq>lS02- C01-C01C(2)
h33= -LT(C01S02+S01Cq>lC02) +LBSq>lC02

+Lzw(SOiS02-C01Cq>lC02)

The desired joint speeds can then be computed from
Equation (4):

(9)

1086 Fall Joint Computer Conference, 1972

START

MEASURE
JOINT

ANGLES

COMPUTE
SINE & COSINE
OF EACH ANGLE

SAMPLE
INPUT RATE

COMMANDS

COMPUTE

A

INVERT
MATRIX
(A OR H)

STOP
APPROPRIATE

JOINTS

COMPUTE

G AND H

MULTIPLY
INPUT RATES

BY G

COMPUTE
JOINT

RATES

CONTROL
MOTOR
SPEEDS

Figure 6-Flow diagram of computer program

It can be seen that the coefficients of G and Hare
somewhat more complex to calculate than those of A.
Also, since the spherical coordinate system uses the
mouth-to-shoulder offset, So, these measurements of
the patient must be available in addition to arm
length.

The prototype electronic coordinate converter was
implemented using a Data General Nova 1200.mini
computer with a 4K core. A flow diagram of the pro
gram is shown in Figure 6. A front panel switch is used
to determine whether the Cartesian or spherical co
ordinate system is used. This switch can be changed
during program operation and allows the patient to
make a quick comparison between the Cartesian and
spherical coordinate systems for any task. .

Since the computer used does not have the hardware
multiply option, the number of multiplications required
is an important factor when using fixed point calcula
tions. The implementation of the Cartesian coordinate
system requires 51 multiplications, whereas 68 are re
quired for the spherical coordinate system. If direct
substitution is used instead of matrix inversion for the
Cartesian coordinate system, the number of multiplica
tions could be reduced to 36.

Simple high-speed floating-point subroutines were
developed for the Nova 1200 to simplify programming
during the initial development phases. In this system
the mantissa is stored in one 16-bit word and the ex
ponent in the following 16-bit word. Although this does
not make most effective use of memory, it permits much
faster floating-point operations than the standard
routines.

The execution time for each floating-point routine is
given in Table I. For addition and subtraction, shifts
are required to make the exponents equal, but no shifts
are made to normalize the result. In multiplication,
shifts are made to left justify the product to preserve as
much accuracy as possible.

A complete pass through the program takes about 20
milliseconds using fixed-point computations and about
60 milliseconds using simple high speed floating-point
calculations.

ELECTRONIC MOTOR CONTROLLER

Since the permanent magnet motors of the Rancho
electric arm do not have good speed control using a
variable supply voltage, and proportional control of
motors using linear amplifiers results in high power dis
sipation in the drive circuitry, a variable frequency
pulse drive is being used. The computer is programmed
to produce a series of pulses with the duty cycle re
quired to obtain the desired speed. The pulse train con
trols a solid state electronic switch which connects
the motor to the battery with the appropriate polarity

TABLE I-Signed Floating-Point Operation Times

Time Required Additional Time
When No Shifts For Each Shift

Needed Required
Operation (Microseconds) (Microseconds)

ADD 90 13
SUBTRACT 110 13
MULTIPLY 190 11

Figure 7-Patient using ocular control system

during each pulse. Since the pulse sequence for each
joint is determined by the computer, it is easy to experi
ment with different strategies of pulse-frequency or
pulse-width modulation.

PATIENT TESTING

The prototype system being used for preliminary
patient tests is shown in Figure 7. The patient is shown
operating the Rancho electric arm by use of the ocular
transducer. The minicomputer used to perform the co
ordinate transformations and control the arm aid
motors is shown in the background.

ACKNOWLEDGMENTS

This research was supported in part by Grant A1VI-
10763 from the National Institute of Health, Depart
ment of Health, Education and Welfare, Washington,
D. C., and carried out in cooperation with Rancho Los
Amigos Hospital, Downey, California and Craig Re
habilitation Hospital, Denver, Colorado.

Control of the Rancho Electric Arm 1087

REFERENCES

1 J R ALLEN
The Rancho electric arm
Record of the Third Annual Rocky Mountain
Bioengineering Symposium pp 79-82 May 1966

2 J T SCHWARTZ M L MOE C A HEDBERG
A coordinated motion controller for an electric arm orthesis
Record of the Fifth Annual Rocky Mountain
Bioengineering Symposium pp 44-48 May 1968

3 J T SCHWARTZ M L MOE
A coordinated motion controller for the Rancho electric arm
Record of the Sixth Annual Rocky Mountain
Bioengineering Symposium pp 85-86 May 1969

4 M L MOE J T SCHWARTZ
A coordinated, proportional motion controller for an
upper-extremity orthotic device
Proc of the Third International Symposium on External
Control of Human Extremities pp 295-305 Dubrovnik
Yugoslavia August 1969

5 J T SCHWARTZ M L MOE
Ocular safety considerations for divergent infrared sources in
the near field
Record of the Eighth Annual Rocky Mountain
Bioengineering Symposium pp 157-162 May 1971

6 T J ZEBO
Myoelectric control of the Rancho electric arm
Proc of the 21st Annual Conference on Engineering in
Medicine and Biology November 1968

.7 D E WHITNEY
Resolved motion rate control of manipulators and human
prostheses
IEEE Transactions on Man-Machine Systems Vol MMS-10
No 2 pp 47-54 June 1969

8 D E WHITNEY
Coordinated control of prosthetic arms
Proc of the 23rd Annual Conference on Engineering in
Medicine and Biology p 237 1970

9 P D LAWRENCE W C LIN
Statistical decision making in the real-time control of an arm
aid for the disabled
IEEE Transactions on Systems Man and Cybernetics
Vol SMC-2 No 1 pp 35-42 January 1972

10 M M GAVRILOVIC M R MARIC
An approach to the organization of the artifical arm control
Proc of the Third International Symposium on External
Control of Human Extremities pp 307-322 Dubrovnik
Yugoslavia August 1969

11 B SINGH
Design of an electronic controller for an upper extremity
orthosis
Denver Research Institute Research Report DRI #2445
March 1968

12 F J GREEB
Equations of motion for control of an upper extremity splint
structure
MS Thesis Department of Electrical Engineering University
of Denver May 1970

Computer aiding and motion trajectory
control in remote manipulators

by A. FREEDY and J. LYMAN

University of California
Los Angeles, California

INTRODUCTION

This paper presents an advanced version of a learning
system for operator aiding in artificial limbs and remote
manipulator control. The detailed mathematical devel
opments of the technique and results of preliminary
work are contained in previous publications.

The nature of this paper is expository and the goal is
to introduce the approach and provide a general
description of the concept.

The control qoncept incorporates the sharing of
control responsibility between the operator and a
separate automaton able to observe the patient re
sponses, learn part or all of the task at hand, and take
appropriate control actions. Its purpose is to relieve the
operator of routine or exacting control requirements and
reduce his information handling load.

A computer is incorporated into the control loop. The
computer program contains a learning program which is
capable of controlling the manipulator autonomously.
Initially all control actions are generated by the opera
tor. As learning occurs the computer begins to partici
pate in the control process and take over control
responsibility. The computer based system has been
termed as Autonomous Control Subsystem (ACS).

Figure 1 illustrates how such a computer system
functions in the man/machine c<;mtrolloop. The major
components of this relationship are defined as follows:

(li) Computer Aiding is provided by a computer
placed parallel to the human operator in the
man/machine control1oop. The computer aids by
making and displaying control decisions, and by
supplying autonomous control inputs to the
machine system.

(b) Adaptive Decision Making and Control comes
from a trainable "machine learning" algorithm
programmed on the computer. Various sensors
allow the program to observe operator perform-

1089

ance and its results, and to optimize control
decisions accordingly. The computer learns com
plicated control strategies, can be pretrained for
future tasks, and forgets unused actions.

(c) Decision Information is presented to the operator
continuously by the computer. The amount and
type can very with the application, and may
include such factors as the degree of confidence
in a computer decision, the planned action and
the probable outcome, etc.

(d) Allocation of Function between the operator and
the computer is made on the basis of the
particular system and task, the immediate pro
cessing load, the decision information, etc. The
operator retains the capability to override com
puter decision, and in fact, operator overrides
help train the adaptive component. In future
systems the operator may also adjust the
adaptive parameters of the computer program.

Systems of this type constitute bona fide examples of
the man/computer "symbiosis" heralded a decade ago
by Licklider,2 as Parsons3 points out, long remained
little more than a catchword.

Other related work is being pursued by numerous
groups. This work is directed primarily toward achiev
ing independent machine perception, mobility, and
manipulation. 4, 5,6 Examples are development of scene
analysis techniques, "hand-eye" control programs, and
robot mobility programs. Related work involves
machine problem solving per se and interactive com
puter languages.7,s

ACS System Operation

Manipulator control with the ACS involves two main
control loops, an external loop, which incorporates the
operator and his means of feedback, and an internal

1090 Fall Joint Computer Conference, 1972

Figure l-Adaptive computer aiding in man/machine systems

loop, which contains only the autonomous control
subsystem (as shown in Figure 2). The manipulator
responds to either the operator or the autonomous
subsystem.

Initially, the autonomous control subsystem (ACS)
acts as a passive observer, trying to "understand" how
the operator controls the manipulator and developing an
"awareness" of the operating environment. In this
phase, the ACS defines the relationship between the
operator's responses and the external world.

After the acquisition of this passive experience, the
internal loop begins to participate in the control of the
manipulator. In this second phase, the operator acts
mainly as an instructor, letting the internal loop
(loop B) control the manipulator whenever possible, and
correcting its decisions when they are wrong. In time,
for certain classes of tasks, the function of the operator
may be reduced to that of an initiator and inhibitor, who
provides occasional start and override commands.

In such an arrangement, the decision load associated
with controlling the manipulator is substantially re
duced, giving significant advantages in completion time,
efficiency of manipulator use, and operator satisfaction.

The ACS is designed with the ability to forget what it
has learned, and learn new tasks in place of old unused
ones. This feature provides the adaptive capability to
change behavior in response to changes in the operator's

Prosthesis
Control

System

Figure 2-System diagram

control policies and in the environment. It makes the
ACS a powerful tool, applicable to a large variety of
man/machine systems.

Theoretical basis

The theoretical basis forthe ACS is the maximum
likelihood decision principle.9 Its structural organization
is a conditional probability matrix relating future states
of the manipulator devise to its past and present
states.10

Spatial movement of a manipulator is non-random
for practical tasks. That is, patterns of movements in the
past lead to predictable movements in the future. In the
ACS prediction is based on the likelihood of occurrence
of a particular position in space, or of a movement path,
computed from the conditional probability matrix.

Maximum likelihood was chosen for the ACS over
various other possible classification systems because it
has several significant advantages. These include:

• Training is rapid and relatively simple
• Decision strategy can be changed while the system

is active
• Classification categories are not restricted to dis

joint sets

As the ACS acquires more and more information
about previously observed states, the currentstate, and
the next observed state, of the teleoperator it controls,
the conditional probability matrix stabilizes, and the
ACS achieves its control decisions with a higher level of
confidence. Figure 3 illustrates the system organization,
and shows how ACS experience leads to "reward" or
"punishment" of the probability (P) matrix.

In one sense, the ACS is a redundancy machine, able
to extract redundant aspects of a task even if they are
hidden in a scatter of apparently random motions. In
manipulatory operations the element of redundancy is
quite high. Movements from one location to another
tend to be repeated, specific paths are often followed,
and certain movement spaces are largely avoided. This
makes the ACS a shrewd predictor of teleoperator
action.

Redundancy is highest in repetitive operations, and
the ACS learns extremely fast under these conditions.
But it is important to understand that the ACS
organization allows it to comprehend much more subtle
task factors after long-term operation. For example, as
the ACS builds up a depth of experience with a certain
general class of tasks, learning of specific subtasks occurs
much more rapidly than it did initially. Furthermore,
the ACS is able to move among the separate subtasks
without losing its adaptation to each.

(a)

APPLY MAXIMUM LIKELIHOOD
DECISION SYSTEM (b)

DISPLAY
"LACK OF

CONFIDENCE"
LIGHT

OBSERVE
OPERATOR
CONTROL

REWARD
P MATRIX

PROCEDURE r..stt.=CT aj)

YES

PUNISH
P MATRIX

Figure 3-System organization

GENERATE
OUTPUT
VECTOR

Likewise, the ACS is able to recognize patterns of
movement, of implicit movement "rules," and adapt to
changes in such patterns. An operator placing objects
sequentially in locations A, B, C, D, ... will find that
the ACS learns to predict ... E, F, and so on, even
though it has not yet observed that particular
movement.

Through a built-in function termed "List Control,"
the ACS is also able to recognize repetitive sequences
(or lists) of teleoperator movements, add these lists to
the probability Matrix decision space, and retain them
as long as they are needed. Thus, the ACS can at times
handle a complete subtask as a single decision. There
are marked advantages to this approach in practical
machine control.

The power of this approach is in the ability of the
ACS to operate with limited amount to input data. By
using long-term experience it is able to operate autono
mously with a minimum amount of sensory cues. It is
difficult to gauge the limit of ACS capability when
implemented on more powerful, specialized computing

Computer Aiding and Motion Trajectory Control 1091

systems, and after extensive training with practical
machine tasks.

System implementation

A first operational system of the ACS with a remote
manipulator has been reported in an earlier publication.
Experiments indicated the feasibility of the technique;
with a relatively short training period, the ACS was
able to initiate the majority of the control decisions
necessary to perform a series of manipulative tasks.

The system presented here is an advanced version of
the ACS with added capabilities of complete trajectory
motion control. The computer specifies a unique set of
points in space through which the hand must pass in
translation between two points in space. This is in
contrast to our earlier system that included only point
to point control commands. This capability is ad
vantageous for manipulative tasks, where the environ
ment of operation contains obstacles.

The technique is amenable to prosthesis and manipu
lator control and has the following properties:

1. Trajectories can be learned from a human
operator while he controls the arm in actual
tasks. Psychologically the operator can feel he is
personally in control whenever the system takes
over.

2. Trajectories can be changed as the environment
of operation and tasks are changed.

3. The number of trajectories that the system can
learn to generate is not constrained by the
available computer memory.

4. The learning system can be implemented with
currently available mini- or micro-computers,
thereby greatly increasing the practicality of the
system.

The approach utilizes the learning properties of the
computer system to learn typical trajectories generated
by the operator. Under this configuration the trajectory
of movement of the arm in moving between two points
is broken into a set of movement segments. These
segments consist of a set of el~mentary directions which
translate the hand between neighboring points. In
directing the hand to an end point a sequence of
decisions will be performed to determine the instantane
ous direction of the movement trajectory. For each
submovement segment that is selected (between two
consecutive points) a decision will be required. This is
accomplished in the following way:

The decision space is illustrated in Figure 4. The three
dimensional space of motion is shown at each arbitrary

1092 Fall Joint Computer Conference, 1972

t----:::MIf----IDl ~~~~~:;e of
direction

Discrete positions

Figure 4-Directional decision space

point in space, Pi. The hand can move to any of 26
directions. These directions include the basic six degrees
of freedom along each of the Eucledean axis (x, y, & z)
and along a direction which falls symmetrically between
each of the axes.

By setting the elementary decision to be a specific
direction of motion rather than an absolute location the
memory requirements are significantly reduced while

; ---------1
I I
I .---1 I
I I
I I t I I

i I i ; I
I I I I ; I I I I L ____ J

I I
I I __ J

r----- I
:

I I l _____ ----..-I

-- Trajectory 1
--- Traj ectory 2

Test Trajectories

Figure 5-Test trajectories of motion

the capabilities of the system increases. Since the
decision space is constrained to 26 choices the ele
mentary decision computation time is fixed and
independent of the size of the allowed space of motion.

Refinement of motion accuracy increases the require
ment of computer memory in additive fashion rather
then multiplicative. This provides the capability for
increasing motion accuracy at minimum memory cost.

A prototype traj ectory learning system has been
developed and implemented on an Interdata Model 70
computer. The system was tested in a simulated
2-dimension environment using a 25 X 25 cm oscillo
scope screen. A 2 degrees of freedom, second order
system was used to simulate motor motions in two
degrees of freedom. The operator trained the learning
system by a joy stick controller, moving the curson
along a trajectory of motion while the computer

Net %
Computer

(;ontrol
100

90

80

70

Go

50

liD

30

20

10

/1
, /
V

I
I

_.I

I
I

I
I

J

30 35 //0

Trial Number

Figure 6-System learning for two trajectories intersecting at
single points

observed and learned. As the probability of correct
response reached the level of confidence, the computer
took over control automatically.

The memory requirements of the prototype program
included 4K of 16 bit words of memory. 2K were used
for storage of the program and 2K were used to store the
conditional probability parameters.

Figure 5 illustrates complex trajectories of motion
which the system was trained to perform. As can be
seen the trajectories intersect each other at 10 points.
The trajectories were performed in a random order.
Figure 6 describes the performance of the learning
system in terms of percent of correct control decisions at
each complete trial of the trajectory. The figure
illustrates system performance over 40 trials of opera
tion. The ordinate describes the percent of correct

decisions while the abscissa represents the trials of
operation. As shown, after 10 trials the computer took
over more than 80 percent of the control. Inspection of
the first trajectory reveals that performance mono
tonically increases to a level of about 80 percent and
then fluctuates around this value. These fluctuations are
due to the intersections between the trajectories. Each
time the trajectories intersect each other relearning
occurs, since the decision regarding a direction of travel
is partially based on the location. As· two trajectories
intersect they have a common decision data point with
different decision outcomes.

Human factors aspects

The concept of sharing control responsibility between
the operator and a learning system introduces a new
dimension to the man-machine relationship. This aspect
of the concept must be further explored before optimum
allocation of control function can be made.

Factors of importance to this new relationship include
the operator approaches his shared task, as well as how
closely the ACS is adjusted to fit the operator's capa
bilities. For example, the learning rate of the machine is
adjustable-the basic question is how closely this rate
should match the normal operator's learning rate, and
how variations in machine learning rate affects the
operator's performance.

A related problem is the Feedback aspect of the
system. Here the question is what type of feedback the
operator must have from the learning system (in
addition to the normal required feedback which is
associated with operator control). There are a number
of possibilities, among them is to provide a display
which indicates to the operator the level of experience
the learning system has acquired. Such information
can be transformed into a certainty measure which will
indicate to the operator what decision is to be made,
and its level of certainty.

In addition, practical control situations in remote
manipulators will most likely involve remote viewing,

Computer Aiding and Motion Trajectory Control 1093

and may also involve time-delays, such as those
encountered in extraterrestrial transmission. The in
fluence of these factors will have to be examined. The
objective will be to develop controls, displays, and on
operating strategy which allows the operator to take
maximum advantage of the help promised by adaptive
aiding in various applications.

REFERENCES

1 A FREEDY F HULL L F LUCACCINI
J LYMAN
A computer based learning system for remote manipulator
control

2 J C LICKLIDER
Man-computer symbiosis
IRE Transactions on Human Factors in Electronics
1960 1 pp 4-10

3 H M PARSONS
The scope of human factors in computer-based data
processing systems
Human Factors 1970 12 2 April 1970 pp 165-175

4 M L MINSKY
An autonomous manipulator system
Project MAC Progress Report III MIT
July 1970-July 1971

5 R PAUL
Trajectory control of a computer arm
London Artificial Intelligence Conference Imperial College
London September 1971

6 N J NILSSON B RAPHAEL
Preliminary design of an intelligent robot
Computer and Information Science II Academic Press Inc
New York 1967

7 D J BARBER
MANTRAN: A symbolic language for supervisory control
of remote manipulators
S M Thesis MIT 1967

8 D E WHITNEY
State space models of remote manipulation tasks
Massachusetts Institute of Technology PhD Thesis
January 1968

9 N J NILSSON
Learning machines
McGraw-Hill Book Company New York 1965

10 A M UTTLEY
Conditional probability machines and conditional reflexes
Annals of Math Studies 34 pp 253-273

A robot conditioned reflex system
modeled after the cerebellum

by JAMES S. ALBUS

National Aeronautics and Space Administration
Greenbelt, Maryland

INTRODUCTION

Most modern theories of behavior involve a hierarchical
structure whereby low level behavioral units are con
trolled or manipulated by higher centers so as to pro
duce characteristic patterns of movement. In the sim
plest life forms, low level behavioral units may consist
of simple reflex arcs with very little higher level control.
In intermediate forms, the low level behavioral units
may be relatively complex in themselves and subj ect to
sophisticated control from higher centers. In the most
advanced nervous systems, higher centers may them
selves be arrayed in a hierarchical structure, with each
level monitoring activity and exerting control over the
levels beneath it.

It has been suggested1,2,3 that the brain has a reper
toire of behavioral units arranged much as the keys of
a piano. Friedman suggests that a higher level "select
ing mechanism activates these behavioral units to
produce complex behavior just as an accomplished piano
player produces a Beethoven sonata from his simple
keyboard."

Theoretical workers in the behavioral sciences have
suggested a number of ways in which these selecting
mechanisms might interact to choose the proper be
havioral units for the task to be accomplished. Just
what these behavioral units are, however, or how they
are specifically controlled, has been an open question.

There have been, of course, a number of hypotheses
concerning the structure and function of reflex arcs. At
a very simple level, such as the motor system "gamma
loop," these models have been convincing. However,
at more complex levels, theories such as Hebb's cell
assemblies4 have been completely unsuccessful in pro
viding substantive explanations for behavioral phe
nomenon. Sufficient quantitative data concerning the
anatomy and physiology of complex brain structures
has, until recently, simply not been available for formu-

1095

lating precise models with convincing properties. In
the absence of data, most models have been vacuous
conj ections.

In the past 8 to 10 years, however, the electron
microscope and refined techniques of microneurophysi
ology have revealed quantitative data of considerable
detail concerning the structural and functional organi
zation of the brain, particularly in the cerebellum. A
great deal of the physiological data about the cerebellum
has come from an elegant series of experiments by
Eccles and his co-workers. These data have been com
piled along with the pertinent anatomical data, in book
form by Eccles et al. 5 This book set forth one of the
first reasonably detailed theories on the function of the
cerebellum.

Shortly after the publication of Eccles' book, another
theory was developed by two different researchers
working independently. Marr6 published his Theory of
Cerebellar Cortex in 1969 and shortly thereafter the
present author7 published a Theory of Cerebellar Func
tion. Recently this theory has been developed further
and reduced to computer software for the control of a
mechanical manipulator.

FUNCTION OF THE CEREBELLUM

Although the Theory of Cerebellar Function was de
veloped largely from neurophysiology and anatomical
evidence, its reduction to computer software can be
explained 'without detailed knowledge of the biological
literature.

The cerebellum, along with the higher level brain
centers which control it, can be thought of as a type of
finite state mzchine.

M = (8, I, 0, 0, A)

where

8 is a finite non-empty set of states

1096 Fall Joint Computer Conference, 1972

I is a finite non-empty set of inputs
o is. a finite non-empty set of outputs
o:SXI~S is the transition function
A :SXI ~O is the output function

The "set" (or state) of the higher level brain centers
determines the state S of the cerebellum. The sensory
signals from various nerve endings in the limbs being
controlled provide input I. The combination of I im
pinging on the cerebellum in state S, produces output
O. The output function A:SXI~O corresponds to a
reflex arc. In the cerebellum the function A is defined,
and may be altered, through the process of learning.

The transition function 0 :SXI ~S, although un
doubtedly of great importance to theories of higher
level perception and intelligence, is considered beyond
the scope of the elemental reflex level control functions
being addressed in this paper. Weare here considering
merely how the cerebellum can be put into state S by
the higher level centers, and then act as a reflex arc
which transforms input I into output 0 under the
operation A. We will also discuss how A can be altered
through training.

Input I enters the cerebellum via mossy fibers from

SENSORY ASSOCIATION ADJUSTABLE
CELLS CELLS WEIGHTS

RESPONSE
CELLS

Figure I-Classical Perceptron. Each sensory cell receives
stimulus either + 1 or O. This excitation is passed on to the
association cells with either a + 1 or -1 multiplying factor. If the
input to an association cell exceeds 0, the cell fires and outputs a 1;
if not, it outputs O. This association cell layer output is passed on
to response cells through weights Wid which can take any value,
positive or negative. Each response cell sums its total input and
if it exceeds a threshold, the response cell Rj fires, outputting al;
if not, it outputs' o. Sensory input patterns are in class 1 for
response cell Rj if they cause the response cell to fire, in class 0
if they do not. By suitable adjustment of the weights Wid

various classifications can be made on a set of input patterns.

(Figures 1, 2, and 3 reprinted by permission from Mathematical
Biosciences 10, 1971)

SENSORY
CELLS

N-IOON

RECODER

ASSOCIATION
CELLS

RESPONSE
CELL

ADJUSTABLE
WEIGHTS

Figure 2-N, lOON Expansion Recoder Perceptron. The associa
tion cell firing is restricted such that only 1-2 percent of the
association cells are allowed to fire for any input pattern. This
Perceptron has a large capacity and fast learning rate, yet it
maintains the number of association cells within limits reasonable

for the nervous system

. the periphery. (The engineer unfamiliar with anatomi
cal nomenclature must excuse the' quaint terminology.
Many terms, like mossy fiber, were coined by early
anatomists over a century ago. Peering through their
crude microscopes and seeing fibers resembling moss,
they merely called them as they saw them. In other
instances, features such as Purkinje cells were named
after the first investigator who observed them.) All
mossy fiber input enters a section of the cerebellum
called the granular layer. In the granular layer, in
formation carried by the mossy fibers in the form of
pulse interval (or frequency) modulation is transformed
into information carried on parallel fibers. The im
portant feature of this transformation is that there are
from 100 to 1000 times as many parallel fibers coming
out of the granular layer as there are mossy fibers going
in. This implies that in the granular layer, information
is recoded. The evidence seems to indicate that the
granular layer transforms mossy fiber information in
the frequency domain into parallel fiber information in
the spatial domain. The theory predicts that only a
very few (i.e., about 1-2 percent) parallel fibers are
active for any given pattern of pulse frequency modula
tion on mossy fibers.

Output from the cerebellum itself is via Purkinje
cells. The theory predicts that Purkinje cells perform a
weighted summation of parallel fiber activity analogous
to the way in which a Perceptron response cell performs
a weighted summation on association cell firings. Thus

----- PARALLEL FIBERS

GRANULE
CELL

N-lOON
RECODER

t t t t
MOSSY
FIBER

INPUTS

ADJUSTABLE
WEIGHT

SYNAPSES

PURKINJE
RESPONSE

CELL

Figure 3-Cerebellar Perceptron: P, Purkinje cell; B, basket
cells; S, stellate b cells. Each Purklnje cell has inputs of the

type shown

the cerebellum can be considered to be a form of Per
ceptron where mossy fiber input is analogous to sensory
cell firings. The granular layer corresponds to the inter
connection network between sensory cells and associa
tion cells, parallel fibers correspond to association cell
outputs and the synaptic connections between parallel
fibers and Purkinje cells correspond to the variable
weights. The Purkinje cells themselves correspond to
the Perceptron response cells. This analogy can be seen
in Figures 1, 2, and 3. Figure 1 is the classical Percep
tron. Figure 2 shows the classical Perceptron modified
to conform to the anatomical fact that the cerebellar
granular layer contains more than 100 times as many
parallel fibers as input mossy fibers. Figure 3 extends
the Perceptron analogy to take into consideration the
fact that in the nervous system certain types of cells
are excitatory and other types are inhibitory, but no
type is both. Thus, in order for the cerebellar Per
ceptron to have both positive and negative valued
weights connecting parallel fibers to Purkinje cells,
some intermediary cell types (i.e., B, basket cells, and
S, stellate b cells) are necessary. To an engineer, these
intermediary cells are inverters.

There is one important difference between the clas
sical Perceptron and its cerebellar counterpart. The
classical Perceptron typically accepts only binary input
signals, performs an analog weighted summation,
compares this sum with a threshold, and responds with
a binary output. The cerebellar Perceptron, on the
other hand, accepts input which, although consisting
of binary pulses, contains information in. the form of
pulse frequency modulation which is essentially analog

A Robot Conditioned Reflex System 1097

in nature. This analog data is recoded from the fre
quency domain to the spatial domain by the granular
layer. The Purkinje response cell, at least to a first
approximation, can be considered a linear summation
device. It performs no thresholding in the sense of a
classical Perceptron response cell. Purkinje cells are
typically spontaneously active at some steady-state
output rate. A weighted summation of parallel fiber
activity merely increases or decreases. the frequency of
the Purkinje output pulse train. Thus, both outputs
and inputs to the cerebellum should be considered·to be
analog signals coded into pulse frequency modulation.

Learning

The cerebellum is hypothesized to learn by an error
correction system similar to Perceptron training algo
rithms. Each Purkinje cell is contacted by a single
climbing fiber. These climbing fibers are hypothesized
to carry the information necessary to adjust synaptic
weights in an error correcting manner. Climbing fibers
carry information from higher motor centers as well as
centers of emotional reward and punishment.2 These
higher centers presumably are able to sense conscious
motor commands, compare these conscious commands
against the cerebellar reflex motor output, and correct
the cerebellar output when it deviates from what the
higher centers consider to be satisfactory performance.
This correction takes place by adjusting the synaptic
weights between active parallel fibers and erroneously
responding Purkinje cells. The weights are adjusted so
as to null the difference between what conscious centers
send to the motor system, and what the cerebellar reflex
arc produces. Thus, as training proceeds, more and
more of the routine motor control can be relegated to
the cerebellar reflex ar.c, and higher centers are then
free to concentrate on other matters.

This corresponds to the common experience which
everyone has had when learning a new motor skill. At
first, a task such as driving an auto, playing a musical
instrument, or roller skating requires a great deal of
conscious concentration. However, as learning proceeds,
more and more of the new motor skill comes under reflex
control, and less. conscious mental effort is required.
This presumably is the process of training the cerebel
lum (and other similar subconscious motor centers) to
take over the r~petitive and routine tasks which can be
controlled by reflex responses.

The cerebellum thus can also be viewed as a memory.
The mossy fibers constitute the address lines. The
climbing fibers constitute the data storage inputs. And
the Purkinje cell outputs correspond to the contents of
the memory. This is illustrated in Figure 4. The mossy

1098 Fall Joint Computer Conference, 1972

STATE OF
MIND

(S) CEREBELLAR }

ADDRESS MEMORY CONTENTS (0) Mu~~:~;iE~~ERS
(I) (>.)

STATE OF
ARM

Figure 4-Cerebellar Memory. The state S of higher brain
centers is communicated along with the input I from peripheral
proprioceptors to the cerebellum via mossy fibers. S and I
together constitute an address. Data to be stored arrive via

climbing fibers

fiber input constitutes an address. The Purkinje cell
response corresponds to the memory contents. Each
Purkinje cell output can thus be considered a separate
memory bank. By this means the cerebellum achieves
the redundancy which is so characteristic of circuitry
in the brain.

It, of course, is obvious that if mossy fiber address
lines are essentially analog in nature, there exists an
enormous number of possible addresses. If we assume
that there are N mossy fiber address lines, and each
mossy fiber can carry an analog signal with 50 dis
tinguishable values of pulse frequency, then we have
50N possible addresses. If we consider that each square
millimeter of granular layer has approximately 5 X 104

mossy fibers entering it, we clearly have a potentially
enormous number of addresses. However, one must
remember that if the world is subjected to a state-space
analysis, there exists an equally enormous number of
possible states-of-the-world. Mossy fiber input from
sensory receptors in the limbs are essentially reporting
the state of the limbs. Since people and animals are
able to cope with the infinity of possible states in the
real world, it is clear that somehow these states are
grouped into a manageable number of sets of states.
States within such groupings are for all practical pur
poses equivalent. So too, the virtual infinity of possible
mossy fiber addresses are grouped into sets of essentially
equivalent addresses. This grouping is accomplished by
the granular layer. The granular layer performs a
transformation such that if two mossy fiber addresses
are within an equivalence group, the same pattern of
parallel fiber outputs will occur.

The mossy fiber input can be considered a vector

where mfi is the firing rate of the i-th mossy fiber.
We can define similarity between mossy fiber patterns

in terms of the Hamming distance HI between input
vectors I and 1'.

N

HI = :E I mfi-mf/ I
i=l

The mossy fiber input vector I is transformed by the
granular layer into a parallel fiber vector

J = (pit, ph, pf3, '.' . pflOON.)

where ph is the firing rate of the i-th parallel fiber.
The theory hypothesizes that at any instant of time

only about two percent of the pfi firing rates are non
zero. Thus, the vector J is a very sparce vector. The
principal feature of this transformation is the conversion
of mossy fiber patterns in the frequency domain to
parallel fiber patterns in the spatial domain. Parallel
fibers thus are hypothesized to code information in
terms of the specific set of parallel fibers which have
non-zero firing rates. We can define a set

L = {ph I pfi has a non-zero firing rate}

We can then represent similarity between two parallel
fiber patterns J and J' in terms of the intersection

LnL'

The granular layer is hypothesized to perform such
that if HI is small, I LnL' I will be large, and as HI
grows large I LnL' I will approach zero. This implies
that training for dissimilar tasks (i.e., such that HI is
large) will produce very little interference. Weights ad
justed for pattern [will be entirely different from those
adjusted for pattern [' because I LnL' I is zero. How
ever, for similar patterns, training will generalize. Simi
lar mossy fiber patterns (i.e., HI small) will cause
many or most of the same weights to be adjusted be
cause I LnL' I is large. Thus, the cerebellum need not
be trained to cope with every possible mossy fiber
address corresponding to every possible state of the
arm. Instead, training over a small but representative
sample of the possible states will suffice.

A n electro-mechanical model

Consider now how such a model of the cerebellum
can be reduced to computer software. An IBM 1800
computer was connected to a Rancho Los Amigos arm
with seven degrees of freedom. Each degree of freedom
was driven by a separate motor. Each motor amplifier
was controlled by a computer model of a single Purkinje
summation cell. Each Purkinje summation in the com
puter thus represents a large number of Purkinje cells
in the real cerebellum; some activating flexar muscles,
others activating extensor muscles.

TASK NAME
FROM KEYBOARD

HIGHER LEVEL
MOSSY FIBERS

GRANULAR LAYER
MODEL

WEIGHT SELECTION
ALGORITHM

PERIPHERAL MOSSY FIBERS

POSITION AND
VELOCITY MEASUREMENTS

FROM SLAVE ARM

1024 SYNAPTIC
WEIGHTS

20 ACTIVE /
GRANULE /

CEUS//
/ ./

/ /'

~~--

POINT TO
20 ACTIVE
WEIGHTS

\
\

\ \\ PURKINJE
,'\ SUMMATION
''\\ CELL
',\\

MOTOR
20 S~IVE }; r--.---- DRIVE
WEIGHTS/ SIGNAL

/

/
/ ADJUST

/ ACTIVE
/ WEIGHTS

CLIMBING
FIBER

ERROR CORRECTION
SIGNAL FROM

TRAINING INPUT

Figure 5-Computer model of cerebellar Perceptron

Each of the seven Purkinje summation cells in the
computer are related to a table of 1024 synaptic
weights, as shown in Figure 5. These weights are ad
justable over the range -32767 to +32767. According
to the theory, only two percent of the parallel fibers,
and hence two percent of the synaptic weights, are
activated at anyone time. In the computer model, the
granular layer selects 20 out of the 1024 weights to be
active. The Purkinje cell then sums .the values of these
20 active weights. This summation is the Purkinje cell
output.

In the model, mossy fiber inputs convey information
concerning the position and velocity of each joint. This
information constitutes an address which is converted
by the granular layer into a set of 20 active parallel
fibers. These 20 parallel fibers connect to 20 active
weights which are summed by the Purkinje cell. The
value of this summation can be considered to be the
"contents" of the memory location addressed by the
mossy fiber pattern.

For any position-velocity state of the arm, each
Purkinje summation cell delivers a drive voltage to the
actuator motors. If this voltage is not appropriate to
the task being attempted, it can be modified by adjust
ing the 20 active weights in each Purkinje summation.
This is the training mode. When the arm is being
trained to perform a particular task, the weights se
lected by the granular layer are adjusted by the train
ing algorithm to follow the instructions being generated
by the teacher. The teacher in the model is a master
arm worn by a human operator. The training operation
begins by the operator entering the name of the task

A Robot Conditioned Reflex System 1099

to be learned on a keyboard. This name corresponds to
the psychological '.'set" or state of the higher centers in
the brain. This determines the state S of the cerebellum.
For example, the number 0101 on the keyboard might
correspond to the task "reach-out." The operator
would then proceed to teach the cerebellar model by
performing a reach-out motion with the master arm. At
closely spaced intervals along the reach-out trajectory
the controlled arm position is compared against the
master arm position. Whenever a discrepancy is de
tected, the weights connected to the 20 active parallel
fibers are adjusted so as to drive the motors in a direc
tion which will null the difference.

By this means, the memory stores the proper motor
drive voltage for each position-velocity state along the
desired trajectory. Repeated training can store the
proper corrective voltage outputs for other states to
either side of the desired trajectory. The generalization
properties of the memory make it feasible to train the
arm on only a representative sample of the universe of
possible· states, and still achieve satisfactory perfor
mance. The process of training defines the function A for
the universe of input states I encountered in performing
the task S.

MODELING THE GRANULAR LAYER

The selection of which set of parallel fibers are active
at any instant of time is the function of the granular
layer. It is one of the principal hypotheses of the Theory
of Cerebellar Function that the manner in which this
selection is made gives the cerebellum its unique powers
of motor coordination, precision control, and flexibility.

The origin of coordination

It has been experimentally shown8 that a somatotopic
mapping exists from the cerebellar cortex to the muscles
of the body. This means, for example, that Purkinje
cells affecting the elbow are likely to be physically
located in close proximity to each other, and an ap
preciable distance from those affecting the wrist. Since
any single parallel fiber extends only about 1 mm.
along a folial ridge, it is quite unlikely that a parallel
fiber which contacts an elbow Purkinje will also con
tact a wrist Purkinje. This implies that the sets of
parallel fibers involved in Purkinje summations for con
trolling specific joints in the model should be disjoint.
Thus, in the model, each Purkinje summation will in
volve a separate set of granule cells and a separate set
of weights.

On the other hand, somatopy is much less well de
fined from the periphery to the cerebellum.9.1o.1l.12

1100 Fall Joint Computer Conference, 1972

Granule cells which are close neighbors in the cere
bellum often have receptive fields at widely separate
areas of the same limb or even in different limbs.13

Mossy fibers enter the cerebellum and ramify diffusely
throughout a single folia and even into several different
folia. This is not to say that somatopy is non-existent
for mossy fiber input, just that it is diffuse and over
lapping.

The implication is that Purkinje cells are fairly spe
cific in their control over individual muscles, or syner
getic groups of muscles. However, the input to any
particular Purkinje cell in the cerebellum, while strong
est from its somatopic area in the periphery, is also
appreciably strong from other areas of the periphery.
Strength of influence from neighboring peripheral areas
falls off slowly with distance. Thus, the strongest input
to a Purkinje cell controlling the elbow should arrive
via mossy fibers fro~ the elbow. However, an appreci
able input to the elbow Purkinje should also come from
the forearm and shoulder, and to a lesser extent from
the wrist and hand. Similar conditions exist for each
set of Purkinje cells corresponding to each joint. Input
should be strongest from the joint to which a Purkinje
projects, and fall off in strength from other joints as a
function of distance.

The relevance matrix

In order to model the relative degree of influence
which mossy fibers from the various joints have on the
sets of granule cells unique to each joint, a relevance
matrix is constructed as shown in Figure 6.

The numbers in this matrix indicate relative values.
Each row sums to 72. (The number 72 derives from the
fact that there·· are 72 entries in the matrix shown in
Figure 8). The first row of the matrix suggests that
30/72 of the mossy films influencing shoulder rotation
carry feedback information concerning the state of the
shoulder rotation joint, 12/72 carry information con-

Shoulder Elbow Forearm Wrist Finger
Rotate Lift Rotate Lift Rotate Lift Grasp

Shoulder Rotate 30 12

Shoulder Lift 12 30 6

Elbow Rotate 30 15

Elbow Lift 15 30

Forearm Rotate 30 12

Wrist Lift 12 30 12

Finger Grasp 12 30

Figure 6-Relevance Matrix. This matrix represents the relative
degree to which input from each joint is relevant to the computa

tion of motor output for each joint

FIRING
RATE

JOINT POSITION

Figure 7-Assumed mossy fiber firing rates plotted against joint
position for two different mossy fibers

cerning the shoulder lift joint, 9/72 concern the elbow
rotation joint, 9/72 concern the elbow lift joint, 6/72
concern forearm rotation, and 6/72 concern wrist lift.
Similarly for forearm rotation. Row 5 of the matrix
indicates that 30/72 of the peripheral mossy fiber input
carries information about forearm rotation, 12/72 about
wrist lift, 9/72 about elbow lift, 9/72 about elbow rota
tion, 6/72 about shoulder lift, and 6/72 about finger
grasp. Each functional portion of the cerebellum has a
different mixture of inputs. In each case 30/72 of the
input to the control circuit for each joint is simply
feedback information from that joint. The remaining
42/72 of the input carries information concerning re
lated joints.

The mechanism of selection

It seems to be the caseIO that individual mossy fibers
fire at their maximal rate when specific conditions exist
in specific parts of the periphery. A mossy fiber carry
ing joint position information will tend to fire at its
maximum rate when a specific joint is within a certain
range of positions. For example, a typical elbow posi
tion fiber might fire at its maximum rate when the elbow
joint angle is between 10° and 30°, and at a slower rate
otherwise. A different· position fiber might fire maxi
mally for elbow positions between 12° and 32°, etc. It
has been observed that position fibers fire maximally
over some extended range and that considerable overlap
exists between the maximal firing ranges of various
fibers. See Figure 7.

A mossy fiber carrying information concerning joint
velocities will tend to fire at its maximum rate when a
particular joint is moving at a rate within a certain
range of velocities. Some mossy fibers indicate positive
velocities and others negative velocities.

Mossy fibers which fire at their maximum rate are of

critical importance if it is true that only 1-2 percent of
the parallel fibers are active at once. This 1-2 percent
hypothesis implies that for any granule cell to be active
a very special set of excitation conditions must be
satisfied. Active granule cells must have their input in
the upper 1-2 percent of excitation values. Since granule
cells have relatively few mossy fiber inputs, each input
contributes a large percentage to the total excitation of
the cell. It is thus reasonable to assume .that for a
granule cell to become a member of the very select set
of active cells, all, or nearly all, of its mossy fiber inputs
must be firing at or near their maximum rate.

From anatomical measurements concerning the
numbers and densities of granule cell inputs,5 and argu
ments concerning probability of excitation by mossy
fiber inputs,14 it is possible to predict that:

10 percent of active granule cells have 1 input (s)
20 percent of active granule cells have 2 input (s)
20 percent of active granule cells have 3 input (s)
20 percent of active granule cells have 4 input (s)
15 percent of active granule cells have 5 input (s)
10 percent of active granule cells have 6 input (s)
5 percent of active granule cells have 7 input (s)

This implies that in a model where 20 granule cells are
active,

2 should be a function of 1 mossy fiber (s)
4 should be a function of 2 mossy fiber (s)
4 should be a function of 3 mossy fiber (s)
4 should be a function of 4 mossy fiber (s)
3 should be a function of 5 mossy fiber (s)
2 should be a function of 6 mossy fiber (s)
1 should be a function of 7 mossy fiber (s)

Notation for naming

In order to compute the seven sets of 20 active
granule cells in a computationally efficient manner, it is
convenient to introduce some special notation. First,
each mossy fiber entering the cerebellum will be given
a unique number. Such a numbering is, in fact, a nota
tion for naming. We will refer to each mossy fiber's
number as its name. Thus, mossy fiber # 1 is named 1,
mossy fiber # 2 is named 2, etc. It will also be conve
nient from time to time to refer to mossy fibers by
another convention, or "nickname." 1 will be nicknamed
M F1, 2 will be nicknamed M F2, etc.

We will now define a classification of mossy fibers
called an ·exclusive set.

Df: ·An exclusive set is the set of all mossy fibers
such that no two mossy fibers can possibly be
maximally active simultaneously.

A Robot Conditioned Reflex System 1101

For example, if
M Fl is maximally active when the elbow is between

0° and 40°
MF2 is maximally active when the elbow is between

40° and 80°
M Fa is maximally active when the elbow is between

80° and 120°
M F 4 is maximally active when the elbow is between

120° and 160°

then {MFl' MF2, MFa, MF4} is an exclusive set.

Df: A complete exclusive set is an exclusive set in
which at least one mossy fiber is always maxi
mally active. For example, the exclusive set
given above would be a complete exclusive set if
the elbow would never move outside the range
0° to 160°.

It is assumed that each joint has a number of both
position and velocity mossy fibers with overlapping
ranges of maximal excitation. These can be grouped
into complete exclusive sets.

Df: iPki is defined as the kth complete exclusive set of
position-indicating mossy fibers coming from joint i and
carrying information for Purkinje cell j.

Df: iV k i is the kth complete exclusive set of velocity
mossy fibers from joint i going to Purkinje cell j.

Df: iPki is the name of the mossy fiber in iPki which
is maximally active.

Df: iV k i is the name of the mossy fiber in iV k i which
is maximally active.

For example, if

and M F 15 is maximally active, then

The k subscript indicates different exclusive sets of
mossy fibers with overlapping ranges. For example,

IPI I might refer to the set {MFl, MF2, MFa, MF4}
such that

and

M Fl is maximally active when 0° ~ ex < 40°
M F 2 is maximally active when 40° ~ ex < 80°
M Fa is maximally active when 80° ~ ex < 120°
M F4 is maximally active when 120° ~ ex < 160°

1102 Fall Joint Computer Conference, 1972

such that

M F 5 is maximally active when 00 ~ a < 380

M F 6 is maximally active when 380 ~ a < 780

MF7 is maximally active when 78°~a<118°
M F 8 is maximally active when 1180 ~a < 1580

The granular layer matrices

The above notation will now make it possible to com
pute which 20 granule cells are selected for each
Purkinje summation.

As was previously discussed, the statistical distribu
tion of the number of inputs per active granule cell
indicates that out of 20 active granule cells, two depend
on only one mossy fiber input, four depend on two in
puts, etc. This functional relationship can be formulated
into a matrix as shown in Figure 8.

This matrix is the granular layer matrix for the
shoulder rotation joint. Each space in the matrix is
assigned to a complete exclusive set of mossy fibers
such that the corresponding matrix element is the name
of the maximally active mossy fiber in that set. All of
the mossy fiber sets represented in this matrix are
carrying information to the shoulder rotation Purkinje
summation. In the model there are six other matrices,
similar to this one, for the six other Purkinje summa
tions. These matrices contain information concerning
the state of the arm as reported by the peripheral mossy
fibers.

The numerical values of the elements in these
matrices change as the state of the arm changes. A
small change in the arm will cause a small number of
elements to change in value. A large change in the

..-
V.

sP. sPa SP.2
s
p. sPa s

P'2
s

P,s sv. sVa .
P3
.

Ps
. . .

P,s '~a
. . • s Pg P'2 V3 Vs V 9 Va

2 V 2 2 V. 2 V S 2 V a 3 V 3 3 V S 3 V 9 S P.s 3 P 3 3 P s 3 P 9
3

P'2
3

P,s 3p,a

'V, 'V2 'V3 'V. 'V s 'Vs 'V) 'Va 'V g 'V,o 2P2 2 2 2
2plO/2p,2r p,./2 p,s/ p. Ps Pa

'P, ' P2 ' P3 'p. 'Ps 'ps ' p) 'Pa 'Pg 'P,o 'P" ' p'~ 'P,3 'P,. 'P,s/'P,s/'Pll /' P,a!'P,g/' ~o/

Figure 8-Shoulder Rotation Granular Layer Matrix. This
matrix is used to compute which set of 20 granule cells are active
for the shoulder rotation joint. Note that input from shoulder
rotation position 1 Pk and shoulder rotation velocity IV k occupy
a dominant role in the shoulder rotation matrix. In the model
there are six additional granular matrices, one for each of the

six other joints

state of the arm will cause many or all of the elements
. to change in value.

The particular assignments of elements from each
joint represented in the matrices are derived, in part,
from the relevance matrix in Figure 6. For example,
the granular layer matrix for shoulder rotation, shown
in Figure 8, has twenty position sets and ten velocity
sets making a total of thirty sets of mossy fibers from
the shoulder rotation matrix. This corresponds to the
fact that the relevance matrix in Figure 6 specifies that
30/72 of the inputs to the shoulder rotation Purkinje
should come from shoulder rotation mossy fibers. It is
arbitrarily assumed that approximately % of the inputs
from each. joint should be position indicators and the
remaining 73' should indicate velocity.

As can be seen from Figure 8, the assignment of
particular sets to particular matrix elements was not
done randomly; This was because it was felt that the
number of matrix elements was too small to rely on
statistical probabilities to give representative impor
tance to the various mossy fiber inputs. Therefore, the
various matrices were set up by hand and represent
(as does the relevance matrix) the subjective judgment
of the author as to which inputs are important to each
Purkinje cell for controlling motor outputs. It ig,l im-
port ant to emphasize, however, that once these matrices
are set up they are not changed. This corresponds to a
granular layer structure defined by genetically coded
interconnections and not structurally altered during an
animal's lifetime.

Computation of active granule cell names

These granular layer matrices can now be used to
compute which granule cells are active. In each matrix
the 20 columns correspond to 20 active granule cells.
Columns 19 and 20 correspond to granule cells with
only one mossy fiber input. Columns 15, 16, 17" and 18
correspond to granule cells with two inputs, etc. The
names of the active granule cells can be computed by
the concatenation of elements in the columns of the
matrices. For example, in Figure 8, the name of the

granule cell computed by column 11 would be 3P91n

[2P21/ IIPlll I If

I aP9
11 = 15, 12P211 = 12, and IIPll11-= 59

then, 151259 is the name of the granule cell· computed
by column 11. Thus, we have described a method for
finding the names of granule cells, given the state of
the mossy fiber inputs.

At this point in the discussion, the names we have

defined for granule cells are not yet in a particularly
useful form nor are they necessarily even unique. The
uniqueness problem is rather easily solved by requiring
each mossy fiber name to contain the same number of
digits. Leading zeros may be employed to accomplish
this for mossy fiber names with small numerical values.
For example, if it requires three digits to name all the
mossy fibers, then m/I will be named 001, mf2 will be
named 002, etc. The question of how to utilize the
names of granule cells once they are determined is
slightly more complicated. Assume, for example, that
an active granule cell is named 10956321. How do we
find the contribution this cell firing makes to its re
spective Purkinje output? In the computer it is neces
sary to locate the weight which connects a granule cell
to its respective Purkinje in order to compute its effect.
This implies that for each granule cell which is active
there must be a pointer which can locate its respective
weight in a table of weights. Setting up a table of
pointers for each possible granule cell name would be a
most tedious job. Fortunately, there is a much simpler
technique available. We can instead map the active
granule cell names onto the set of integers from 1 to
1024 by means of hash-coding. This may be done quite
simply by use of a pseudo-random number generator
which uses the numerical value of the active granule
cell name as an argument and computes a pseudo
random number in the range 1 to 1024. This pseudo
random number can be considered a new name or
"alias" for the active granule cell. This alias can be used
directly as a pointer to a table of 1024 weights which
connect granule cells to Purkinje cells.

In summary, the following procedure obtains. Each
joint has a matrix representing its own peculiar mossy
fiber input distribution. In each of the seven matrices
we may compute the mossy fibers which are maximally
active from measurements of joint position and velocity.
The names of these maximally active mossy fibers
make up the elements in each matrix. Concatenation
of the elements in each column yields the names of
active granule cells. Each of these names are used as
input to a pseudo-random number generator which
maps them onto the integers from 1 to 1024. The result
of this procedure is seven sets of 20 integers. These
integers point to the 7 sets of 20 weights which are
summed by the 7 Purkinje cells. The resulting summa
tions define the output signals which drive the motors
for each joint.

Computations for the mechanical arm

In the actual electro-mechanical arm there are, of
course, no mossy fibers with overlapping characteris-

A Robot Conditioned Reflex System 1103

tics as in the physiological arm. Instead, each joint has
a potentiometer which measures position to a rather
high degree of precision. Such a measurement certainly
contains all the information which a multiplicity of
overlapping mossy fibers would contain. However, the
system of overlapping mossy fibers and granule cell
Golgi cell network, produce the phenomenon that if the
arm moves slightly, only a few granule cells change
from active to inactive, or vice versa; the great majority
of granule cells. are unaffected. 1\tJossy fibers map their
activity into patterns of granule cell activity which are
"nearly the same" when the state of the arm is "nearly
the-same." In order for the computer model to capture
this "nearly-the-same" property, a method has been
devised for converting the potentiometer readings into
names of maximally active mossy fibers. These names
can then be used as elements in the granular layer
matrices.

Rather than attempt to describe the details of these
computations in the limited space available here, the
interested reader is referred to Reference 14 in the
bibliography.

Input from higher centers

Higher level mossy fibers constitute a major source
of input to the entire cerebellum. Once these fibers
enter the granular layer, they are physically indis
tinguishable from peripheral mossy fibers. Because of
their great numbers, they undoubtedly have a very
strong influence on the selection of which granule cells
are to be active. This would seem to imply that higher
level mossy fibers should be represented in the matrices
used to compute the granular layer transfer function.
In fact, since the higher level mossy fiber input is so
massive, it would seem that it should dominate the
granular layer matrices. Surely a change in input on a
mossy fiber system which so permeates the entire
granular layer should affect, either directly or indi
rectly, the firing threshold of practically every granule
cell in the cerebellum. And so it does. However, there
is a simpler way of modeling the influence of higher
level mossy fibers than inserting them in the granular
layer matrices explicitly. A change in the pseudo
random number generator can model the effects of a
very broad and diffuse change in granule cell thresholds
throughout the entire cerebellum. Thus, the effect of
higher level mossy fiber input can be modeled by as
suming the hash-code operation to be under the con
trol of higher centers.

The cerebral cortex is, or course, the place where de
cisions are made as to what task should be performed
by the motor system. The cortex may decide that the

1104 Fall Joint Computer Conference, 1972

arm should perform the task "reach out." This "reach
out" task would then be sent to the cerebellum as a
specific cerebral mossy fiber firing pattern M RO. With
the M RO pattern on the cortical mossy fibers and with
the peripheral mossy fibers reporting the state of the
various joints in the arm, the cerebellar Purkinje cells
would tend to produce outputs to drive the motors to
"reach out." If these outputs were incorrect, error cor
rection signals via the climbing fibers would cause ad
justments in the weights leading from the active gran
ule cells. Thus, the cerebellum would be trained by
error correction to correctly perform the task "reach
out."

If the cerebral cortex were then to decide that the
arm should perform the task "pull back," a new pat
tern M PB would be sent to the cerebellum via the corti
cal mossy fibers. This new pattern M PB would change
the hash-code function and cause a completely different
set of granule cells to be chosen for any pattern of
peripheral mossy fiber inputs. Once again the cerebel
lum could be taught to perform the "pull back" opera
tion by adjusting weights under direction of climbing
fiber error correction. Each different task decided upon
by the cerebral cortex can be communicated to the
cerebellum by a different firing pattern on the cortical
mossy fibers. In the model this implies that each differ
ent task should be assigned a different hash-coding
function.

By this means the cerebral cortex is able to impose
high level control on the motor system without worry
ing about continuous control of each individual muscle.
The lower level control functions are carried out by the
cerebellum. Only in the case of learning a new motor
task, or in case of errors or deviations from the desired
performance of previously learned tasks, does the
cerebrum need to worry about the detailed control of
lower level motor functions.

The cerebellum thus is the repository of detailed
motor control sequences which have been previously
learned under conscious effort, and which can be called
up repeatedly by task name via higher level mossy
fiber patterns much as subroutines are called by an exec
utive program. The higher level mossy fibers make it
possible for higher centers to control the cerebellar
motor system with a macro command language.

REFERENCES

1 K Z LORENZ
The comparative method in studying innate behavior patterns
Physiological Mechanisms in Animal Behavior Symp Soc
Exper BioI 4 London Academic Press 1950 pp 221-268

2 J M R DELGADO
Free behavior and brain simulation
International Review of Neurobiology 6 C C Pfeiffer and
J R Smythies (Eds) New York Academic Press 1964
pp 340-449

3 L FRIEDMAN
Instinctive behavior and its computer synthesis
Behavioral Science 12 1967 pp 85-108

4 D 0 HEBB
The organization of behavior: A neuropsychological theory
New York Wiley 1949

5 J C ECCLES M ITO J SZENTAGOTHAI
The cerebellum as a neuronal machine
New York Springer-Verlag 1967

6 D MARR
A theory of cerebellar cortex
J Physiol London 202 1969 pp 437-470

7 J S ALBUS
A theory of cerebellar function
Mathematical Biosciences 10 1971 pp 25-61

8 A BRODAL
Anatomical studies of cerebellar fiber connections with special
reference to problems of functional localization
Progress in Brain Research The Cerebellum Vol 25 C A Fox
and R S Snider (Eds) Elsevier New York 1967 pp 135-173

9 B HOLMQUIST 0 OSCARSSON I ROSEN
Functional organization of the cuneo-cerebellar tract in the cat
Acta Physiol Scand 58 1963 pp 216-235

10 J K S JANSEN K NICOLAYSEN T RUDJORD
Discharge pattern of neurons of the dorsal spinocerebellar
tract activated by static extension. of primary endings of
muscle spindles
J Neurophysiol 29 1966 pp 1061-1086

11 A LUNDBERG OOSCARSSON
Functional organiz.ation of the dorsal spino-cerebellar tract in
the cat
Acta Physiol Scand 38 1956 pp 53-75

12 0 OSCARSSON
Functional organization of the spino- and cuneocerebellar
tracts
Physiol Rev 45 1956 pp 495-522

13 W T THACH
Somatosensory receptive fields of single units in cat cerebellar
cortex
J Neurophysiol30 1967 pp 675-696

14 J S ALBUS
Control of a manipulator by a computer model of the cerebellum
PhD Thesis University of Maryland 1972

Data base design using IMS/360

by R. M. CURTICE

Corporate-Tech Planning Inc.
Waltham, Massachusetts

TOWARD A DATA BASE DESIGN
METHODOLOGY

Data base or file design is the process of specifying how
the data is to be located on and retrieved from the vari
ous storage media, and what relationships exist among
the keys, data elements, records and files of the data
base. Occasionally It is useful to distinguish between
file design and file engineering. File design is concerned
with the logical relationships among file elements,
while file engineering deals with physical concerns such
as block size, arm movement optimization, and other
hardware dependent factors. Although file design nec
essarily precedes file engineering, very often several
iterations between these two are necessary because
file engineering considerations suggest a rethinking of
many of the file design approaches.

People have been designing data bases with meas
urable success for. as long as there have been random
access devices. What eludes us however, is a clear for
mulation of the precise steps by which the design was
constructed. Noone has been able to describe a co
herent. methodology for achieving an optimal or even
a good design. Much of data base design thus remains
an art.

One prerequisite to the development of a data base
design methodology is a clear measure of performance
of the resulting design. At first glance we are inclined to
measure performance merely in terms of say, daily
running time, or total number of accesses, for a given
volume of transactions. But often we are quite willing
to trade several hours of overnight batch running time
to speed up an on-line transaction by a few seconds, or
to take an extra disk revolution for a write check to
insure data integrity. Moreover, how do we specify a
desirable balance between running time and storage
size? Or account for periodic reorganizations or future
flexibility? It may well be that these factors will have
to lie outside the measures associated with initial design
methodologies, and a limited objective constructed.

1105

Such an objective may be expressed as "given a maxi
mum storage capacity, certain reorganization frequen
cies, a minimum response time on on-line transactions,
etc., then what is the optimum data base design?"

In the end, what we are striving for is something like
a deterministic model of data base design, in which
the parameters of a particular design situation are in
put, and a full data base design is output-but we
appear to lack the formalisms necessary to describe all
the elements involved, as the examination of measures
above indicates. Some work has been done on a formal
description of a data base structure, and to a degree the
COBOL Data Division or something similar would
suffice. But very little work has been done on a sym
bology for transactions, and the resulting "transfor
mations" to the data base they are intended to achieve.

Until such a model, or'other data base design for
malism, is developed we can only generalize upon past
experience in order to construct rules or guidelines
toward a design methodology. Several papers present
rules of thumb for this purpose.1-6 These and other dis
cussions of data base design methodology usually make
no assumptions about the hardware or software used to
implement the design. As more users turn to generalized
data base management systems, however, the need
arises to identify design guidelines which are specific
to a particular system. This paper discusses several
data base design guidelines based on the use of IBM's
Information Management Systemj360 (IMS/360) data
management package.

IMS/360

The IMSf360 software package includes a compre
hensive data management system called DL/I (Data
Language I). This system is either being used or care
fully considered by users in many large IBM installa
tions for data base applications. One important feature
of IMSj360 is that it also includes a teleprocessing

1106 Fall Joint Computer Conference, 1972

Figure I-Data base example #1

capability which is intended to facilitate the conversion
of initial batch data base applications to an on-line
mode. Like most data management systems, IMS en
ables the user to separate the data base description
from the applications programs, thus permitting cer
tain changes to be made to the files without affecting
all programs~' The system also includes backup and re
covery modules as well as file reorganization and sta
tistics collecting utilities. It is clear that for most in
stallations developing large integrated data base appli
cations a generalized data management capability
similar in scope to IMS will be required.

In addition, IMS provides a quite general structure
with which to describe the data base record (or in IMS
terminology, segment) relationships. This structure is
a hierarchy of fixed length segments emanating from a
root segment for each data base. Figures 1 and 2 both
show examples of such structures. Up to 255 segment

Figure 2-Data base example #2

types, arranged in a maximum of 15 levels, may be
specified for an IMS data base. Each segment type may
occur any number of times or not at all under a given
root. As shown in Figure 1, the immediate subordinate
segments are referred to as child segments, the segment
they appear under is referred to as the parent, and
different occurrences of the same segment type are re
ferred to as twins.

One dominant feature of the IMS data management
scheme is that the applications programmer always
views the data structure as hierarchical, regardless of
the access method employed, or physical location of
the data. Thus the four IMS access methods all begin
with "Hierarchical"; namely: the Hierarchical Sequen
tial Access Method (HSAM), the Hierarchical Indexed
Sequential Access Method (HISAM), the Hierarchical
Indexed Direct Access Method (HIDAM), and the
Hierarchical Direct Access Method (HDAM). When

INDEX

r+----- Fixed Length Block.-----__

NEXT HIGHER PART 112

} ~~ ~<
r~----~----~-------~

Figure 3-HISAM example

using either HSAM or HISAM, the hierarchy relation
ships are maintained by physically recording the seg
ments sequentially in a top-down, left to right conven
tion. HISAM is conceptually similar to the indexed
sequential access method under O/S. It provides an
index to the root segment, and a separate overflow
area, as the example in Figure 3 indicates. This figure
shows how a sample record from the data base in Figure
1 would be physically stored using HISAM. As many
of the segments occurring under a root as can fit into a
fixed length block are stored there, while the rest are
chained together in other overflow blocks. The seg
ments under a root must be accessed sequentially, and
insertion of a new segment causes others to be shifted
down. This necessitates periodic reorganization.

HIDAM and HDAM do not record the segments
under a root sequentially, but rather allow direct
pointers to the children, from the children to the parents

Figure 4-HIDAM and HDAM example

and among the twins under a given root, as shown in
Figure 4. In effect, each segment type becomes a file.
As the names imply, HIDA1VI provides an index to the
root segments, and HDAM accesses the roots with a
user supplied randomizing module.

The ability to specify relationships across data bases
is provided by defining a logical data base which is
composed of segments from one or more physical data
bases. The sample data base assumes there is a require
ment to process both parts and job orders as separate
entries, but often we need to access one file from the
other as well. While this can be done by repeating job
orders for each part, and part numbers for each job,
redundancy of data results and the programmer must
perform a double maintenance task. As an alternative,
IMS permits the specifying of a direct access pointer

pointer

Figure 5-Use of logical pointers

Data Base Design Using IMS/360 1107

from one segment to another, as shown in Figure 5.*
Here, the job order segment in the Part Data Base
does not contain the job order number but rather a
direct pointer to the root segment for that order number
in the Job Order Data Base. Other information, called
intersection data, may be recorded in the job order
segment in the Part Data Base. While a similar reverse
pointer can be made from the part segment under the
job, an equivalent capability would be to begin a chain
from the job order root, connecting all the segments
for this given job order number under the various parts
in the Part Data Base. To do this a "virtual" segment
(shown in dotted lines) is defined. Once these direct
pointers are in place, logical views of the combined
data base may be specified. A logical view is a hierarchy
of segments which, while not physically related in that
hierarchy, can be made to appear so by utilizing the
direct pointers. For example, when a programmer
accesses the job order segment under a part number,

PART NO.

(root)

I
I 1

JOB ORDER (JOB ORDER
(root) ~~a~;!;~ -

I
I
ROUTING
OPERATIONS ~

I
J 1

I J

MACHINES TOOLS
!- ~

Figure 6-Logical view using logical parent

* These are referred to as logical pointers to distinguish them
from the physical pointers used in the primary hierarchy as shown
in Figure 4.

1108 Fall Joint Computer Conference, 1972

JOB
ORDER

(root)

I
1 In

PART NO ffl
Quantity

~ Of Parts

These segments are actually chained
together with the logical twin chain
shown in Fig¥re 5. When IMS accesses
them, it also gets the key of their
parent segment. In this way PART NO.
'appears in the input area.

Figure 7-Logical view using logical child and logical twin

the record to appear in the buffer includes the job order
root segment in the Job Order Data Base. Another
possible logical view is shown in Figure 6.

Using other pointers, a different logical view would
appear to the programmer as shown in Figure 7. Here
the virtual segment appears to be under the job order
root. Since IMS retrieves the key of the parent segment
of a logical child segment, the part number appears in
this virtual segment as well.

This brief introduction to IMS contains obvious
oversimplifications, and the reader is cautioned to re
fer to the IMS manuals for further detail. Other fea
tures of IMS are introduced below as required.

THE DATA BASE DESIGNER

The use of a generalized data base management sys
tem, and the desire for integrated data bases, both
necessitate centralization of the file design effort, rather
than distributing it among the various application
programmers, for example. Much has been written
about the importance of the data base designer and
his role as an interface among the applications teams.
Experience with IMS reinforces this view. Moreover,
experience indicates that the data base designer must
be knowledgeable in the applications at hand. The data
base design permeates the applications to such a de-

gree that if any hope of efficiency is to be realized, the
data base designer must be able to make positive con
tributions to program and job stream flow based on
optimizing data base performances (relative to the
time and/or storage measures as discussed above).
Thus, it may be easiest from the application program
mer's point of view to generate and deal with a par
ticular logical structure, say as shown in Figure 7. But
it is the data base designer who knows that each part
record under the job number will require at least two
physical accesses; he can suggest the duplication of the
part number as a trade-off possibility.

Another reason that the data base designer must be
familiar with the applications is that application de
pendent features are actually coded in the data base.
For example, IMS permits the optional specification
of only unique keys for multiple occurrences of a given
segment type. An attempt to add a duplicate key will
cause a certain message to be returned and this may be
significant in the program logic. Another instance of
such dependency concerns the addition and deletion of
segments using logical relationships. IMS permits sev
eral options with regard to adding or deleting from a
logical view. In Figure 7 for example, suppose a pro
gram reads a job number, and then deletes a part under
this job number. Certain IMS coding may now cause
the part number in the Part Data Base to be deleted
as well. Obviously, this coding should only be specified
after a thorough understanding of the application.

UTILIZATION OF RESOURCES

The price to be paid in the use of a generalized data
base management system is some overhead in resource
utilization, typically storage space, CPU time, or ac
cesses. It is a mistake to assume this overhead is fixed,
and invariant to the data base design. Quite the oppo
site is true: since each task consumes more resources,
the opportunity (and in many cases the necessity) for
efficiencies is very prevalent. A methodology of data
base design then, depends largely on estimating the
"overhead" or cost of certain options, in order that
profitable trade-offs can be made. Unfortunately, as
with many other systems, the costs associated with
various IMS' features are not publicized, and in some
instances can even be counter-intuitive. In most cases
the data base designer must extrapolate from his knowl
edge about the internal workings of the data manage
ment system in order to estimate overhead.

Another input to design trade-off studies is data base
statistics. Accurate statistics about the data are vital
to an efficient data base design. Note that in some in
stances, however, the use of a data management system

PART NO.

(root)
Part Number
Standa:-rd

Reference III
Standard

Reference In

I
I

PART NO.

(root)

Part Number

Figure 8-Creating a new segment type

removes the necessity of obtaining accurate statistics
prior to data base design. These instances involve pre
cisely the parameters which we are allowed to alter
without affecting the applications programs, since these
can be changed easily after actual experience with a
loaded file has been achieved. The use of IMS permits
the data base designer to allocate different physical
space to a file, change between HDAM and HIDAM,
add a new segment to certain places in the data base,
or change blocking factors, all without affecting an
application program. But he may not alter fields within
a segment, add a new segment to certain places, or
modify the logical pointers without incurring some re
writing of the programs. To the degree that the data
base is more or less fixed, the trade-offs will only be as
good as the accuracy of the statistics upon which they
are based:

To illustrate the preceding points, consider this trade
off problem concerning the specification of new segment
types. Basically the question is "under what circum
stances is it best to create a new segment type?" One
case arises when subordinate data may repeat a number
of times; it is clear that a new, repeatable, segment is
preferable to a large space reserved for the maximum
data possible. But what if we know the data can only
repeat twice for example? l\,fore specifically, suppose we
wish to record references to standards for each part,
up to a maximum of two standards per part. The trade
off is then between allowing for two such fields within
the part root segment, or creating a new segment type
subordinate to the part root segment containing a stan
dard reference, as depicted in Figure 8. What factors
should be taken into account in making this trade-off?
The factors include the following items:

• The IMS storage overhead associated with each
new segment occurrence;

Data Base Design Using IMSj360 1109

• The added complexity of the data base description;
• The unused space if a field is always present but

has no value;
• If HIDAM or HDAM are used, the space for the

pointer to a subordinate segment from the parent,
and the pointer connecting the child twins;

• The accesses necessary to obtain the data in a dif
ferent segment;

• If HISAM is used, the time to process each new
segment type after the block is in core.

Thus the trade-off among storage, accesses, and CPU
time must address these factors. To simplify things
though, assume we merely wish to minimize storage
space, and each standard reference consumes 8 bytes.
Each IMS pointer requires 4 bytes, and there is a 4
byte overhead for each segment occurrence. If we allow
for 2 standards in the part root we clearly require 16
bytes per part no matter what. But the storage require
ments for a new segment type depend on the actual dis
tribution statistics of standards per part. If very few
parts have standards then we are better off with a new
segment type. Clearly also, if most parts actually do
have two standards then one segment is best since each
new segment requires at least 12 bytes, 4 for overhead,
and 8 for data (if HIDAM or HISAl\,f are used 4 more
bytes for twin pointers plus 4 bytes for a pointer from
the part root to the new child are required as well). If
the actual occurrences lie somewhere in between then
more accurate statistics are probably needed for the
trade-off to be made. Otherwise, if either method is
likely to result in about the same storage requirement,
then some other factor, probably number of accesses,
would be optimized.

DATA BASE MAINTENANCE

Whereas on-line inquiry or status posting applications
are the more interesting ones, it is very often the batch
file update and reorganization runs which take up the
vast majority of system resources. The file designer
must be sensitive to the batch update requirements be
cause these can become system bottlenecks just as eas
ily as the on-line applications. In attempting to opti
mize the overall system, a very delicate trade-off de
cision is required.

Again, good statistics make for an informed decision.
An especially important use of these statistics is to esti
mate file sizes and growth. File size estimates are needed
since the size of the file will directly affect the time re
quired to backup and restore the file or to reorganize it.
This is in addition to the input of file size estimates to
hardware configuration planning.

1110 Fall Joint Computer Conference 1972

When using a data base management system such as
IMS/360, the data base designer must take into account
the storage requirement imposed by the system, in
cluding pointers, control fields, and indices. Actual ex
perience has shown that storage overhead for pointers
and IMS control fields can easily reach 50 percent of
the total storage requirement. In applications approach
ing a billion bytes, this overhead becomes a very costly
factor. Not only must the cost for physical storage be
borne, but the maintenance load is proportionally in
creased, resulting in a greater processing requirement.
Thus the trade-off between storage and accesses should
only be made considering the entire system-batch
data base maintenance as well as on-line transaction
processing.

A final note then about accesses. Hidden accesses in
IMS (Le., the average ratio of logical accesses to physi
cal accesses) has run as high as 4 or 5 to 1. Translating
into accesses per transaction, the result often shows
that between 20 and 50 physical accesses are required
per transaction. More complex transactions such as a
Bill of Materials update can require hundreds of ac
cesses per item. One can see here that a· data base de
sign which minimizes hidden accesses can affect a re
duction in running time of a B/M processor by sub
stantial margins.

CONCLUSIONS

One can argue that a data base management system
should not be chosen until the optimal file structure has
been identified. In this way a system which supports
that structure can be selected-rather than forcing an
application into a structure dictated by the system and
thereby paying in perlormance. While this argument
has merit, practical considerations often leave no choices
open. To some degree this will be the case with many
IMS/360 users. It is the only data base management·
system supported by IBM for large applications. It is
one of the few systems now supporting TP. It has many
(but not all) of the backup and recovery features needed

for large data base applications. Other systems like the
Honeywell Integrated Data Store offer file structuring
capabilities which may be more suitable to a particular
application, but are not implemented on IBM hard
ware.

While this may sound fatalistic, it points up the need
to be. especially careful in designing files under these
circumstances. Too many users have the view that
the use of IMS/360 or any other similar system pre
cludes him from paying much attention to file design
that the system will design the files. The examples above
show that this is not the case. The user should view the
data base management system as a tool in implement
ing a design which has been arrived at by taking into
account both the applications requirements and the
features and limitations of the g~neralized system. Only
in this way can he expect both reasonable performance
and overhead.

REFERENCES

1 F H BENNER
On designing generalized file records for management
information systems
AFIPSConference Proceedings Vol 31 1967 Fall Joint
Computer Conference

2 N CHAPIN
A comparison of file organization techniques
Proceedings of the ACM 24th National Conference
San Francisco California August 1969

3 A M COLLMEYER
File organization techniques
IEEE Computer Group News March/April 1970

4 A M COLLMEYER J E SHEMER
Analysis of retrieval performance for selected file
organization techniques
AFIPS Conference Proceedings Vol 37 1970 Fall Joint
Computer Conference

5 G G DODD
Elements of data management systems
Computing Surveys Vol 1 No 2 June 1969

6 J K LYON
An introduction to data base design
John Wiley & Sons Inc 1971

An information structure· for data base
and device independent report generation

by C. DANA and L. PRESSER

University of California*
Santa Barbara, California

INTRODUCTION

The generation of computer output information that
is easily read by humans is a tedious and elaborate task
when present-day programming languages are em
ployed. This is certainly true when assembly language
is used. Features like PL/I's DATA and LIST output
options are improvements over FORTRAN's require
ments of mandatory FORlIl AT statements. However,
such desirable formats as tabular listings still require
much programming and coordination. Another trouble
some area involves the generation of information (i.e.,
reports) on devices that have different characteristics
(e.g., printer, CRT). Typically, the size of the "page",
and thus the amount of information that can be placed
on a "page" will be different for the various devices.
Current programming practice forces specification of
the output format in a device dependent manner. Thus,
to generate a report on more than one type of device
would require recoding the section of a program that
specifies the output format. Therefore, a method for
describing just the logical format of a report, without con
sideration of the characteristics of the possible output
device, would be desirable.

Once a device independent description of a report
is obtained, it is a natural extension to attempt to sepa
rate the specification of the report from any given file
or data base. Consequently, a generalized information
structure for data base and device independent report
generation is obtained. To generate reports it is nec
essary to implement a system that, with the device
specification as a parameter, interacts with the inform a
mation structure and the data base in order to generate
actual output.

This paper describes a data base and device inde-

* Department of Electrical Engineering. This work was supported
in part by the National Science Foundation, Grant GJ-31949.

1111

pendent information structure for the representation
of reports, the environment in which the structure re
sides, and the support programs that allow the genera
tion of output.

It should be noted that a report need not be limited
to business applications as is now generally thought.
All areas of computer applications can benefit from un
complicated output coding and from an orderly pre
sentation of information. Indeed, there is a set of "out
put needs" that is common to most application areas.
For example, observe the structural similarity between
a report on employee's earnings (Figure 1) and a report
on the performance of subroutines (Figure 2). It is our
firm opinion that every (computer) system should in
corporate at design time facilities for debugging and
measurement purposes. Hence, the need to output in
formation is inherent and ubiquitous, and thus, should
be an integral consideration in the design of any pro
gramming language.

It is worthwhile at this point to discuss the general
characteristics of a report. By a report we imply any
visual computer output that is easily understood by
humans. A report is not a static entity. That is, one can
not, in general, lay down on a pie~e of paper the exact
line and column positions of all items that will be part
of a page and then complete the final report by just
filling in the assigned areas with values. There can be
sections of a report that may be repeated a number of
times, the actual number being known at the time
values are read from a data base. In Figure 1 each line
in the body of the report corresponds to one employee,
and the number of employees can vary from month to
month. Similarly, in Figure 2, the number and fre
quency of subroutines used can vary from execution to
execution. Therefore, since the final form of a report is
not known until the data base is read, the logical de
scription of a report must specify how input records are
to be obtained, processed, and actual output generated.
In general, one could conceive of a report whose final

1112 Fall Joint Computer Conference, 1972

Dept. #

351

376

EMPLOYEE EARNINGS

(A SampZe Repopt)

Employee Pay Rate

John Smith 6.90

Ann Jones 6.50

Petep Wilson 5.00

Mapy Adams 5.50

James Petepson 6.60

Henpy Jennings 5.90

TOTAL PAID OUT = $1768.20

Houps

41

45

60

55

44

51

Figure 1-Employee earnings report

Page 1

TotaZ

282.90

292 .. 50

300.00

875.40

$ 302.50

290.40

300.90

893.80

form would depend on a wide variety of relationships
among variables. For instance, in our business example,
we may wish to flag the names of those employees who
have worked more than a fixed number of hours and
whose pay rate is above a certain level. Similarly, in
the measurements example, we may wish to flag the
names of those subroutines that executed more than a
fixed number of times and required more than a certain

Program

Program 1

Program 2

SUBROUTINE USAGE DATA

(A Samp le Report)

Number of Total CPU
Subroutine Executions Time(ms)

A

B

C

D

E

C

129.51

100.92

71. 32

1100.31

91.29

39.98

TOTAL EXECUTION TIME = 1.532 seconds

Figure 2-Measurements report

Page 1

Ave. time
per execution

43.17

25.18

71.32

220.06

30.43

39.98

period of time. Thus, a facility for testing relationships
between variables and performing actions based on the
results is needed for the logical description of reports.

The data base may not include all the values that
are to appear in a report. For instance, we may wish
to output total pay as part of a report when only pay
rate and hours worked is present in the data base. Or
we may desire to output average subroutine execution
time when only total execution time and number of
calls is present in the data base. Therefore, a facility to
carry out calculations is needed for the logical descrip
tion of reports.

In summary, the mechanisms needed for the logical
specification of reports are the basic elements of a pro
gramming language. In fact, the information structure
described here can be viewed as a special purpose report
generating machine. It is also possible to view it as an
intermediate representation for the translation of the
output sections of programs. Indeed, it is this latter line
of thought that motivated this work.

INFORMATION STRUCTURE ENVIRONMENT

Our environment for report generation is outlined in
Figure 3. The user specifies, in some report generator

User Specification
of Report in Some
Language

User Specification of
Correspondence Between
Report and Data Bose
Variables

User Specification of Physical
Unit Parameters and Logical to
Physical Mopping

Figure 3-Information structure environment

language, the form of the desired report. For our pur
poses a report generator language is any language that
possesses the facilities needed to describe the desired
reporting. It may be a language designed specially for
report generation (e.g., RPG), a more general language
that includes special facilities for report generation
(e.g., COBOL), or it may be a general purpose language
(e.g., PL/I, assembly language). In the latter two cases
the report generation code may only be part of a larger
program.

Information Structure for Data Base and Device Independent Report Generation 1113

REPORT
A B C D

01 bl cl d1

02 b2 c2 d2
03 b3 c3 d3
04 b4 c4 d4

mapping>

A

01
02
03

REP

B
bl
b2
b3

ORT

C
cl
c2
c3

I 04 b4 II c4

D
dl
d2
d3

d4
logical report unit

physical report units

a. Logical report unit larger than physical report unit.

REPORT REPORT

A B A B A B

01 b 1 01 b 1 05 b5
02 b2 06 b6

03 b3 07 b7
02 b2

mapping> 03 b3
04 b4 04 b4

05 b5
06 b6 physical report unit
07 b7

logical report unit

b. Logical report unit narrower than physical report unit.

Figure 4-Sample mappings

The user's program is translated such that the logi
cal description of the report is mapped into the informa
tion structure. (This information structure is discussed
in detail in a later section of this paper.) The key
information about the report, as originally described
by the source language and now embodied in the
information structure, ilcalled the logical report. This
is a specification of the report (e.g., where the head
ings are to be and what they are to state) in terms
of some virtual (nominal size) surface called the logical
report unit. The logical report unit consists of a fixed
number of rows and columns. When the report finally
appears on an output device media (e.g., paper, CRT
face) it is called the physical report and the size of
the actual display surface of the device is termed the
physical report unit.

The mapping of a logical report unit into one or more
physical report units is called the logical to physical
mapping or simply the\.report mapping. Such a mapping
includes obtaining data from the data base and the
proper placing of results in the logical report, before
generating a physical report unit. Report mapping is
carried out by a program referred to as report mapper in
Figure 3. Based on the information structure, the map
per fills out the logical report unit and then employs
default or user specified parameters in order to carry out

a logical to physical mapping. Examples of possible
mappings are shown in Figure 4.

In general, soft-copy devices require mappings dif
ferent from those employed with hard-copy units. In
the case of a hard-copy device the logical report units
can be split at arbitrary places to satisfy the physical
report unit. The hard-copy segments can be later placed
side by side and viewed as a whole. On the other hand,
in the case of a soft-copy device the output can only be
viewed one physical unit at a time; thus, care must be
exercised to make each display coherent and readable.
For example, the mapping shown in Figure 4a would
not be very meaningful if the physical units must be
viewed separately. In such a situation it is necessary to
repeat identifying information and to make sure that
all items are properly placed. Specific mapping algo
rithms are beyond the scope of this paper.

The report mapper buffers the physical report units
before sending these units to the output device. The
buffer size is important. If it is smaller than the logical
report unit, placement of information would be restrict
ed. For instance, a total could not be placed at the
top of a physical report if the physical report unit that
corresponded to the top of the physical report had al
ready been sent to the device by the time the total was
obtained.

In order to complete the discussion of the environ
ment outlined in Figure 3 we need to describe the inter
face with the data base. The user must specify the cor
respondence between the variables present in the infor
mation structure and those residing in the data base.
The function of the data base interface module (refer to
Figure 3) is to supply the report mapper program with
any data needed to generate a report.

INFORMATION STRUCTURE

The information structure consists of a number of
tables (lists) each of which describes a section of the re
port format or generation process. Entries in each of
the tables contain pointers to entries in other tables,
thus, a linked structure is formed as depicted in Figure
5.

The Report Head describes the gross structure of the
report. It contains the dimensions of the logical and
physical report units. The latter may be supplied by the
user or may be set, by default, to the value. of the logi
cal report unit. The report head also specifies any ac
tions to be carried out at the beginning/end of the re
port and at the beginning/end of each logical page. The
report body action entry is responsible for all of the other
details of the report and, in essence, it represents the
bulk of the reporting activity. The action entries in the
Report Head point to a list of actions in the Action Table.

1114 Fall Joint Computer Conference, 1972

DATA DESCRIPTION TABLE (DDT) TEST TABLE

LOCATION DATA To
OF DATA IN FORMAT FLAG TEST I" -~"'Actlon Table
MEMORY "-~-----------"~I~g~~~llt

IN TABLE

To DDT

LINE TABLE

COMPUTATION
TABLE

+

REPORT HEAD

ACT/ON TABLE

INPUT

COMPUTE

TEST

OUTPUT

POSITION NODE Logical Report Unit Description

Physical Report Unit Description

Report Heading Action (s) ,.....
NODE TABLE

Logical Page Heading Action (s) ~
To Action Table

Report Body Actions J.,.......
J

OUTPU
TAB STOP FORMAT

Logical Page Footing Action (s~
Report Footing Action (s) ~ -I

Figure 5-Information structure

The Action Table lists the sequence of actions that
comprise the report generating process. There are four
types of actions: input actions to obtain data from the
data base; compute actions (including logical opera
tions) ; test actions to determine flow of control; and out
put actions to create actual output. The detailed spec
ification of these actions is contained in the In Table,
Computation Table, Test Table, and Line-Node Tables
respectively. Flow of control in the Action Table is se
quential unless a transfer occurs as a result of a test.

The Data Description Table (DDT) contains informa
tion about the location and format of the data elements
manipulated in the report. All references to data in any
other table is specified by a pointer to a DDT entry.
The DDT entry in turn contains a pointer to the loca
tion in memory where the actual datum is stored. There
are two other fields in each DDT entry. The flag field is
used to represent one of three possible conditions: (1)
there are more data values to be input from the data
base; (2) there is not more data available from the data

base (i.e., "end of file"); (3) this datum represents an
internal variable. * The test field specifies any test that
is to be performed when the datum receives a new
value. In essence, this facility implements an "on-con
dition". Such a capability may be exploited in the re
port generator language to free the user from having
to specify a detailed ordering of calculations.

The In Table consists of a set of nodes, where each
node is associated with an input action in the Action
Table. A node consists of an ordered list of pointers to
the DDT; the first entry of a node points to the last en
try. The DDT pointers pinpoint which data values are
to be input from the data base.

The Computation Table is a linear list. This table con
tains a postfix (Reverse Polish) representation of the
computations to be performed on data. Each entry rep-

* Internal variables are those created to store intermediate values
during report generation. It is assumed that a segment of memory
is dedicated to auxiliary storage.

Information Structure for Data Base and Device Independent Report Generation 1115

resents: an operand (i.e., pointer to the DDT), an opera
tor, or an end of computation marker. The sequences of
computations corresponding to compute actions in the
Action Table are delimited by markers.

The Test Table contains the specification of the tests
to be carried out and the action to be taken if the end
result is true. The operand field points to the postfix
representation of the test. The action field points to the
action to be executed if the result is true. Note that
tests are activated at two possible times: after manipu
lating (e.g., input operation) a DDT entry if the test
field of the DDT entry is not null; or when control flows
into a test in the Action Table.

The Line Table and the Node Table together specify
the format of rows of the logical report described by the
information structure. These tables support output ac
tions. The Line Table defines line (row) position in
formation for the lines of the logical report units. A line
may have either a relative or absolute position specified
in the position field. The relative position relates to the
previous line and is employed with those sections of the
report that may be repeated an indefinite number of
times. For example, referring to Figure 1, relative posi
tioning would be used to output a summary of em
ployees' earnings when the number of employees to be
reported is not known until the data base is read. An
absolute line position corresponds to a fixed distance
from the top of the logical report unit. It is used for
those sections of the report whose positions will not vary
from (logical report) unit to unit: for instance, page
numbering. The segments of a line of output are defined
by a list of nodes stored in the Node Table. The first
node is specified by the node field in the Line Table.
Each entry in the Node Table specifies the tab (column)
position of the corresponding line segment, in the tab
stop field; the external format in which data is to be
output, in the output format field; and a pointer to a
DDT entry for the data item to be output, in the data
field. The tab stop field may also indicate a relative or
absolute position.

Next, we discuss the support programs that allow
the actual generation of output.

IMPLEMENTATION

The implementation of the system we have described
is divided into two main parts. First, it is necessary to
have a Translator that transforms a user's specification
of a report into our information structure form. Such a
transformation is not much different from that carried
out by conventional translators; thus, it will not be dis
cussed here. For an overview of the subject see Refer
ence 1. The second part of the system is the Report

TABLE I-Subprograms in Report Mapper

Subprogram
name

ACTION

Associated Table

ACTION

COMPUTE COMPUTATION

DATA DATA DESCRIPTION

LINE LINE

NODE NODE

TEST TEST

INPUT IN

Function

Causes other subpro
grams to be called
as directed by the
Action Table.

Performs the operation
specified in the
computation table.

Accesses information
through DDT and
passes it to other
subprograms.

Causes a line of the
report to be properly
positioned and
triggers beginning/
end of page actions.

Converts internal data
format to external
format and positions
data in report buffer.

Causes execution of
logical test and sub
sequent transfer of
control.

Obtains new value for
input variable(s).

Mapper. The basic design of this unit consists of a series
of essentially independent subprograms. In terms of
Figure 5, each subprogram relates to a particular table,
and each performs the functions associated with the
table in question. The subprograms employed in an
experimental implementation are tabulated in Table 1.

As an illustration, let us examine how the N ode sub
program operates in order to place a segment of a logi
cal report line in a physical report. This subprogram
is called by the Line subprogram and it is passed the
address of the node describing the first segment of
the line to be output. Node obtains a pointer to the
DDT from the first entry in the Node Table. Next,
with the aid of the Data subprogram, the desired datum
is obtained as well as a description of its format. Then,
the data and output format specifications are compared,
and if they differ, a conversion to the otuput format
specified by the Node Table entry is effected. Finally,
the converted datum is positioned ina physical report
buffer, as specified by the tab stop field of the Node
Table entry and the report mapping algorithm. The
remaining segments of the logical report line under con
sideration are processed in a similar fashion. The physi
cal report is composed unit by unit in a buffer. When

1116 Fall Joint Computer Conference, 1972

the buffer is full it is output by a device dependent rou
tine and reset to blanks.

It is worthwhile to observe that the implementation
described here mechanizes a pseudo-machine whose
instruction repertoire consists, in essence, of the four
actions: input, compute, test, and output.

SUMMARY

In this paper we have presented an information struc
ture for report generation that separates the data base
and device dependent parts from the logical descrip-

tion of a report. Such a representation of reports (i.e.,
output) allows a clean and elegant interface to data
bases and devices. It also brings out with some strength
the need for better output facilities in current program
ming languages. Furthermore, it may serve as a guide
in the design of report generator language facilities.

REFERENCE

1 L PRESSER
The translation of programming . languages
In Computer Science A Cardenas L Presser and M Marin
(Eds) John Wiley and Sons Inc New York 1972

SIMS-An integrated, user-oriented information system

by M. E. ELLIS, W. KATKE, J. OLSON, and S. C. YANG

University of Wisconsin
Madison, Wisconsin

INTRODUCTION

SIMS, a Social Science Information Management
System, has been developed by the Social Science Data
and Computation Center (DACC) at the'University of
Wisconsin for the purpose of providing the social
scientist with a personalized data base management
system (DBMS). Over the past four years many
DBMS were surveyed and their basic features compared
to our requirements. All systems surveyed had their
strong and weak points but no one system was found to
satisfy all our needs. In addition, new and improved
methods and algorithms for language processing, storage
and retrieval, and analysis capabilities have been
developed by DACCl, 2,3,4,5 and others since the advent
of these earlier systems. These facts, coupled with the
fact that conversion of existing systems seemed im
practical due to their machine dependence, has resulted
in the development of SIMS. It is the intent of SIMS
through its features and basic design to serve as an
information processing tool for social scientists and
others working with large and complex data files.

FEATURES

In establishing the requirements for SIMS we were
cautious to heed Sibley's warning to the effect that "the
extent to which we set sights too high or inconsistent
goals, especially among users, we do a great disservice to
the industry, both users and suppliers."6 Requirements
were gleaned from past experience and continuously
updated as the system developed. These requirements
have evolved into the present features of the SIMS
system, which are briefly as follows:

• SIMS provides a complete repertoire of inte
grated processing functions for the creation of
machine readable data files; data validation, con-

1117

sistency checking, maintenance and retrieval; and
statistical and other analytical processing of data.
• SIMS provides the user with both on-line and
batch communication with the system. The syntax
of the SIMS language is conducive to allowing the
user to prepare his requests on cards or pre coded
forms for batch submittal, or enter them on-line in
free field format from a teletypewriter. These means
of user interaction satisfy the requirements of both
an experienced and non-experienced SIMS user.
• SIMS enables non-programmers to use the system
via the user-oriented, descriptive request language
and at the same time allows programmer types the
latitude of combining their Fortran routines with
the system. Output options and formats for most
processing functions are predetermined but can be
annulled or supplemented via user supplied
routines.
• SIMS is capable of processing hierarchical files of
n levels composed of fixed length data items. Such
files are characteristic of most quantitative data
processed on computers.
• SIMS has a complete data definition capability
which allows the user to describe his data meaning
fully using terms familiar to him, and to retain the
description in machine readable form for easy
updating and use by the system.7 This feature
applies to data already in machine readable form
(such as information produced on another com
puter) or data which is coded by the user of SIMS.
Data descriptions of previously defined data files
may be automatically modified or created by the
system as a result of a ,processing function, such as
a merge or extract, or may be altered by the user.
This feature guarantees continual file documenta
tion and provides a redefinition capability and an
efficient retrieval of information based on the.
individual's specific use of a particular file or files.
• SIMS provides three modes of operation, DIAG-

1118 Fall Joint Computer Conference, 1972

NOSTIC, TEST and PRODUCTION. DIAG
NOSTIC mode checks the completeness and
accuracy of the input request. TEST mode extends
the job past the DIAGNOSTIC stage to include
processing of the first n entries of a file for each
function specified. PRODUCTION mode implies
continued execution until job termination.
• SIMS restates the problem posed by the user in
complete English sentences enabling the user to
easily verify that the abbreviated SIMS statements
of his request are an accurate and complete
description of what is to be performed.
• SIMS through its TEACH function provides
users with an interactive query facility for learning
about SIMS.
• SIMS provides an option for the user to obtain
certain intermediate output from the system which
the user may modify to compensate for special
features not present in SIMS or inefficiencies in the
software. These inadequacies may occur during
development or if SIMS is transported to another
installation.

USER INPUT

• SIMS has been designed, implemented and docu
mented in a manner which lends to a minimum
number of conversion problems and problems with
extending or modifying the system. SIMS uses a
combinatorial approach in system design and em
ploys a network structure to communicate among
subsystems. Every attempt has been made to code
routines in ANSI Fortran or Cobol whenever
possible. Non-standard statements are flagged as
well as all Format statements, calls to installation
dependent routines or any other statements which
may present possible conversion problems.s

The features listed above describe the general charac
teristics of SIMS and, if viewed in detail, would reflect
the system's fulfillment to its diverse scope of users. The
undergraduate student using the computer for the first
time represents one end of the spectrum and the
programmer with multi-language familiarity the other.
Included also is the "foreign" researcher who has no
prior knowledge of Wisconsin's operating system control
language and its idiosyncrasies, and whose alternatives

SIMS PROCESSINr. USE~ OUTPUT

r-------,
r------------------+1'-----~1 STORED nATA (

.--____ I~~~~~~N~~~

NOTE: DASHED LINES DENOTE OPTIONAL OUTPUT. DASHED BOXES DENOTE

INTERMEDIATE SYSTEMS OUTPUT AVAILABLE TO USER.

Figure I-SIMS processing functions and information flow

I
I
I

~-------

I
I
I
I r-
I I
I I L ____ ..

I
I

I
I

~-

l _______ _

SHIS REQUEST

*BEGIN, USER=SmTH, ACCOUNT=2908,MODE=PROD, RUN- ID=SURVEY-RUN

*TITLE FAMILY EXTRACT FROM SURVEY Fn.E

,'<INPUT SURVEY

,"SELECT OBSERVATION IF LOCATION. IS. NW-REGION .AND.
TNCmtE OF HEAD .GT. 3000 .AND.
OCCUPATION OF SPOUSE . IS. NOT-\.]ORKING

*ANALYSIS-LEVEL IS FANlLY

*EXTRACT HOUSE- ID/LOCATION OF HOUSEHOLD/ INCOME OF HEAD/
OCCUPATION OF SPOUSE/ INCO~tE/S IZE OF FAMILY /
TOTAL-ASSETS/FAM- ID

1'OUTPUT FILE-NMtE=SURVEY-EXTRACT, DEVICE=TAPE, MODE=BCD

1'DESCRIP'fION, FILE-NAME=SURVEY
ABSTRACT, 1971 SURVEY OF HEADS OF HOUSEHOLDS

THIS DATA OBTAINED FROM U. S. DEPT. OF WELFARE
STORAGE-DESCRIPTION, STORAGE-DEVICE=TAPE, MODEaBCD

RECORD- ID=CRD- ID, RECORD- LENGTH=80
BLOCK-SIZE=800, DENSITY=556, LA BE L=1Jl 11 1

OBSERVATION- ID ID=HOUSE-NUMBER/STATE/COUNTY,
NAME=HOUS EHOLD

P-STRUCTURE ROOT=HOUSEHOLD, TREE=HOUSEHOLD FOLLOWED BY FAMILY
IF CRD- ID • EQ. 2 El.SE HOUSEHOLD. FAMILY FOLLOWED BY
SPOUSE ELSE HEAD. SPOUSE FOLLOWED BY HEAD ELSE
FAMILY ELSE HOUSEHOLD. HEAD FOLLOWED BY SPOUSE ELSE
FAMILY ELSE HOUSEHOLD.

*RECORD- DESCRIPTION SEGMENT NAME=HOUSEHOLD, CRD- ID= 1
VARIABLE NAME=HOUSE-NUMBER, FORMAT=1/I6
VARIABLE NAME=STATE, FORMAT=7 / A3
VARIABLE NAME=CRD-lD, FORMAT=10/I2

BOUND-NAME"'HH, VALUE=l
BOUND-NAME=FAM, VALUE=2
BOUND-NAME=HD, VALUE=3
BOUND-NAME=SP, VALUE=4

VARIABLE NAME=COUNTY , FORMAT=12/ 13
VARIABLE NAME=LOCATION, FORMAT=15/ 11

BOUND-NAME=SW-REGION, VALUE=l
BOUND-NAME=NW-REGION, VALUE=2

1'RECORD-DESCRIPTION SEGMENT NMtE=FAMILY, CRD- 10=2
VARIABLE NAME=FAM-ID, FORMAT=19/I2
VARIABLE NAME=INCOME, FORMAT=31/FlO.2
VARIABLE NMtE=TOTAL-ASSETS, FORMAT=4l/FlO. 2
VARIABLE NAME=S IZE, FORMAT=63/ 12

*RD HEAD DETAIL=I!EAD AND SPOUSE VARIABLES SAME
V TYPE-PERSON 21/11

ADULT 1
CHILD 2

V INCOME 39 (flO. 2
OCCUPATION 58/12

NOT-WORKING 1
BLUE-COLLAR 2
WHITE-COLLAR 3
PROFESSIONAL 4
MISSING 99

*RECORD-DESCRIPTION SEGMENT-NAME=SPOUSE, CRD-I0=4
*END

SIMS 1119

EXPLANATION OF STATEMENTS

This is a PRODuction run for SMITH, the input request catalogued under account
2908 and the run identification SURVEY-RUN. The TITLE appears on all pages of
pri nted ou tput.

Input is the SURVEY file described under *DESCRIPTION.

Only OBSERVATIONS that meet the specified conditions will be retrieved. Variable
and value names listed in this statement are defined in the VARIAB·LE and BOUND
statements of the SURVEY file's DESCRIPTION. HOUSEHOLD is defined to be the root
of the tree for an observation. This statement redefines the root to be the
FAMILY.

The ~;XTRACT file generated will contain a fixed length record for each FAMILY
containing the variables listed. An observation on the SURVEY-EXTRACT file
is a FAMILY. This file wi 11 be written as a BCD TAPE, the format to be deter
mined by the SIMS system.

The INPUT file, SURVEY is a BCD tape file containing card images blocked 10.
The number of cards/observation is dependent on the number of families in the
household an<l the number of persons in a family. Observations are households
identified by HOUSE-NUMBER, STATE and COUNTY. The SURVEY tape has the iden
tification U1lll. There are 7 types of records: HOUSEHOLD (1 in column II),
FAMILY (2 in column II), HEAD (3 in column II) and SPOUSE (4 in column II) and
CHILD (5-7 in column II). The possible ordering of records on tape is given
by the P-STRUCTURE statement. Since the logical structure for this file is the
same as the physical, the L-STRUCTURE statement has been omitted to conserve
space.

Four RECORD-DESCRIPTION statements appear, one for each type of record to be
retrieved. Only variables to be retrieved need be described. Others can be
but will be ignored if not· referenced in the request. The FORMAT is "Starting
Column"("Fortran format." The BOUND is the code or value of a variable. The
first four variables specified appear on every record. VALUES may be referenced
by their name, e.g., HH, FAM, HD or SP for CRD-ID. The VARIABLES may be refer
enced by their name or a number that will be assigned by SIMS. Statements
may continue on any number of additional cards. BOUNDs needn't be specified,
e.g., INCOME.

Parameter names may be omitted and statement names abbreviated, e.g., HEAD
record description. A blank can be used as a delimiter. DETAIL description
may be given as last parameter of RECORD-DESCRIPTION, VARIABLE or BOUND
statements.

If OCCUPATION was not given, a MISSING value of 99 was assigned.

VARIABLE and BOUND statements for SPOUSE record same as head record, therefore
omitted. END of SIMS request.

Figure 2-Sample SIMS request

lay either in learning a new system (rather than
concentrating on his research) or hiring a programmer.
Major problems have also arisen from the disparity
between the programmer's neology and the social science
jargon of the researcher. All this merely points to the
need for a unified data management system which (1)
provides a request language which can be tailored to fit
the needs of a particular user class and be a comfortable
and familiar means of communication with the system,
(2) provides the user an interface to his routines or any
other existing generalized routines which were initially
exogenous to the system and (3) enables complete
processing of data from outside sources, which implies
provision for file creation, maintenance, generation and

analysis. We have found that these three basic features
are best realized by a system that provides the user with
a descriptive or non-procedural request language and
whose design reflects the independence of data from
applications programs.

SYSTEM OVERVIEW

SIMS is presently implemented in a remote batch,
time-shared environment on a Univac .1108 operating
under Exec-8. Figure 1 presents a general overview of
SIl\rlS in terms of the user's input and output and the
system's input and output. The descriptive requst

1120 Fall Joint Computer Conference, 1972

IDENTIFICATION DIVISION.
PROGRAM-ID. PROGRAM NAME.
AUTHOR. WILLIAM KATKE VIA LENS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION
SOURCE-COMPUTER. UNIVAC-ll08
OBJECT~COMPUTER. UNIVAC-ll08
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT SURVEY-EXTRACT
ASSiGN TO UNISERVO U2222.
SELECT SURVEY
ASSIGN TO UNISERVO Ulili.

I-O-CONTROL.
DATA DIVIS ION.
FILE SECTION.
FO SURVEY-EXTRACT

BLOCK CONTAINS 40 RECORDS
RECORDS CONTAINS 50 CHARACTERS
LABEL RECORDS ARE FORMOI
DATA RECORDS ARE SURVEY-EXTRACT-RECORD.

01 SURVEY-EXTRACT-RECORD
02 FILLER
02 CARD.

04 STATE
04 COUNTY
04 HOUSE-NUMBER
04 HOUSEHOLD

05 LOCATIONX
88 SW-REGION VALUE 1.
88 NW~REGION VALUE 2.

04 HEAD
05 INCOME

04 SPOUSE
05 OCCUPATION
88 NOT-WORKING VALUE 1.

04 FAMILY.
05 INCOME
05 SIZEX

04 TOTAL-ASSETS
04 FAM-ID

02 FILLER
FO SURVEY

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 10 RECORDS
LABEL RECORDS ARE FORMO 1

PICTURE X(10).

PICTURE X(3) .
PICTURE 9(3).
PICTURE 9 (6).

PICTURE 9

PICTURE 9(10).

PICTURE 9(2).

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

9(10).
9(2).
9 (10).
9(2) •
X(73) .

DATA RECORD ARE HOUSEHOLD FAMILY HEAD SPOUSE.
01 HOUSEHOLD.

04 HOUSE-NUMBER
04 STATE
04 CRB-ID
04 COUNTY
04 LOCATIONX

88 SW-REGION VALUE 1.
88 NW-REGION VALUE 2.

04 FILLER

PICTURE 9(6).
PICTURE X(3).
PICTURE 9(2).
PICTURE 9(3).
PICTURE 9.

PICTURE X(64).

01 FAMILY.
04 FILLER PICTURE X(l8)
04 FAM-ID PICTURE 9(2).
04 FILLER PICTURE X(1O)
04 INCOME PICTURE 9(10)
04 TOTAL-ASSETS PICTURE 9(10)
04 FILLER PICTURE X(l2)
04 SIlEX PICTURE 9 (2) .
04 FILLER PICTURE X(l6)

01 HEAD.
04 FILLER PICTURE X(20)
04 TYPE-PERSON PICTURE 9.
04 FILLER PICTURE X(9).
04 INCOME PICTURE 9 (10)
04 FILLER PICTURE X(9).
04 OCCUPATION PICTURE 9(2).

88 NOT-WORKING VALUE 1.
04 FILLER PICTURE X(29)

01 SPOUSE.
04 FILLER PICTURE X(20)
04 TYPE-PERSON PICTURE 9.
04 FILLER PICTURE X(9).
04 INCOME PICTURE 9(10)
04 FILLER PICTURE X(9).
04 OCCUPATION PICTURE 9(2).

88 NOT-WORKING VALUE 1.
04 FILLER PICTURE X(29)

COMMON-STORAGE SECTION.
WORKING-STORAGE SECTION.

77 SURVEY-EXTRACT-COUNT VALUE 1 PICTURE H9(10
77 SURVEY-COUNT VALUE PICTURE H9(10
77 CONTROLl PICTURE X(3) •
77 CONTROL2 PICTURE 9(3).
77 CONTROL3 PICTURE 9(6).

CONSTANT SECTION.
77 ABNORMAL VALUE 'ABNORMAL END' PICTURE X(12)

Figure 3a-The precompiled MCP cobal program of the sample SIMS Request of Figure 2 (Identification and Data Division)

language consists of a Data Description Language
(DDL) for describing data which is already in machine
readable form to the system, and the Data Manipulation
Language (DML) to specify processing to be done on
the data. * The physical and logical attributes of data

* Statements of the DDL and DML are summarized in Figures
5 and 6, respectively.

files described by the DDL and the processing instruc
tions provided by the DML are made available to the
DDL-DML language processor. This processor, LENS,9

interprets these user statements, prints diagnostic
messages and pre compiles a job stream that is data,
program and applications dependent. The descriptive
request is translated into a summary consisting of

PROCEDURE DIVISION.
START

OPEN OUTPUT SURVEY-EXTRACT.
OPEN INPUT SURVEY.

READ SURVEY AT END
GO TO ENDPROG.

NOTE INITIALIZATION (USER).
NOTE INITIALIZATION (SIMS).

MOVE STATE OF HOUSEHOLD OF SURVEY TO CONTROLl.
MOVE COUNTY OF HOUSEHOLD OF SURVEY TO CONTROL2.

HOUSEHOLD.
NOTE SEGMENT (USER).
NOTE SEGMENT (SIMS).

RECORD!.
MOVE STATE OF HOUSEHOLD OF SURVEY TO

STATE OF SURVEY-EXTRACT.
MOVE COUNTY OF HOUSEHOLD OF SURVEY TO

COUNTY OF SURVEY-EXTRACT.
MOVE HOUSE-NUMBER OF HOUSEHOLD OF SURVEY TO

HOUSE-NUMBER OF SURVEY-EXTRACT.
MOVE LOCATIONX OF HOUSEHOLD OF SURVEY TO

LOCATIONX OF HOUSEHOLD OF SURVEY-EXTRACT
PERFORM READ-SURVEY THRU SURVEY-READ.
IF CRD-ID EQUALS 2

GO TO FAMILY.
GO TO STRUCTURE-ERROR.

FAMILY.
NOTE SEGMENT (USER).
NOTE SEGMENT (SIMS).

RECORD2.
MOVE INCOME OF FAMILY OF SURVEY TO

INCOME OF FAMILY OF SURVEY-EXTRACT.
MOVE SIZEX OF FAMILY OF SURVEY TO

SIZEX OF FAMILY OF SURVEY-EXTRACT.
MOVE TOTAL-ASSETS OF FAMILY OF SURVEY TO

TOTAL-ASSETS OF SURVEY-EXTRACT.
MOVE FAM-ID OF FAMILY OF SURVEY TO

FAM-ID OF SURVEY-EXTRACT.
PERFORM READ-SURVEY THRU SURVEY-READ.
IF CRD~ID IS GREATER THAN 2

IF CRD-ID IS LESS THAN 7
GO TO PERSON.

GO TO STRUCTURE-ERROR.
PERSON.

NOTE SEGMENT (USER) •
NOTE SEGMENT (SIMS).

RECORD3.
GO TO UEP

UEP
HEAD
SPOUSE
SKIP-PERSON
SKIP-PERSON

DEPENDING ON CRD-ID.
HEAD.

NOTE SEGMENT (USER) .
NOTE SEGMENT (SIMS) .

RECORD4.
MOVE INCOME OF HEAD OF SURVEY TO

INCOME OF HEAD OF SURVEY-EXTRACT.
GO TO SKIP-PERSON.

SPOUSE.

RECORDS.

NOTE SEGMENT (USER).
NOTE SEGMENT (SIMS).

MOVE OCCUPATION OF SPOUSE OF SURVEY TO
OCCUPATION OF SPOUSE OF SURVEY-EXTRACT.

SIMS 1121

SKIP-PERSON.
PERFORM READ-SURVEY THRU SURVEY-READ.
GO TO HOUSEHOLD

FAMILY
DEPENDING ON CRD-ID
IF CRD-ID IS GREATER THAN 2

IF CRD-ID IS LESS THAN 7
GO TO PERSON.

STRUCTURE-ERROR.
MONITOR STATE OF SURVEY

COUNTY OF SURVEY
HOUSE- NUMBER OF SURVEY
CRD-ID OF SURVEY

GO TO ENDPROG.
READ-SURVEY.

READ SURVEY RECORD AT END
GO TO ENDPROG.

ADD 1 TO SURVEY-COUNT.
IF STATE OF SURVEY IS NOT EQUAL TO

CONTROLl
GO TO SURVEY-OBSERVATION.

IF COUNTY OF SURVEY IS NOT EQUAL TO
CONTROL2
GO TO SURVEY-OBSERVATION.

IF HOUSE-NUMBER OF SURVEY IS NOT EQUAL TO
CO NT ROL3
GO TO SURVEY-OBSERVATION.

SURVEY-READ. EXIT.

SURVEY-OBSERVATION.
MOVE STATE OF SURVEY TO CONTROLl.
MOVE COUNTY OF SURVEY TO CONTROL2.
MOVE HOUSE-NUMBER OF SURVEY TO CONTROL3.

NOTE INPUT (USER).
NOTE INPUT (SIMS).

IF NW-REGION OF SURVEY-EXTRACT
IF INCOME OF HEAD OF SURVEY-EXTRACT

IS GREATER THAN 3000
IF NOT-WORKING OF SPOUSE OF SURVEY-EXTRACT

GO TO SELECT-SURVEY.
GO TO HOUSEHOLD.

SELECT-SURVEY.
WRITE SURVEY-EXTRACT-RECORD.
ADD 1 TO SURVEY-EXTRACT~COUNT.
GO TO HOUSEHOLD.

ENDPROG.
NOTE FILE-END (USER:
NOTE FILE-END (SIMS:

SYS-END.

UEP.

WRITE SURVEY-EXTRACT-RECORD.
MONITOR SURVEY -EXTRACT~COUNT.
CLOSE SURVEY-EXTRACT.
MONITOR SURVEY-COUNT.
CLOSE SURVEY.
STOP RUN.

MONITOR ABNORMAL.
STOP RUN.

Figure 3b-The precompiled MOP cobol program of the sample SIMS request of Figure 2 (Procedure Division)

1122 Fall Joint Computer Conference, 1972

English-like statements which indicates what and how
a file or files is to be processed.

The job stream generated by LENS contains all
necessary Exec-8 control cards and source statements of
the precompiled program. Since the generated program
and its subroutines are data and applications dependent
they may be entirely in Cobol or Fortran or a mixture
of both. The job stream written on drum and data
descriptions of user files are made accessible to the ~ser
as an output option. This enables the user to obtam a
machine readable description of his data and/or
resultant program and control cards, which he may store
as catalogued files, punch on cards or store on magnetic
tape. This option allows the programmer user to use
SIMS as a means for generating a basic program which
he can then enhance to perform additional functions for
which SIMS is not designed.

Figure 2 is a sample SIMS request with an explana
tion of each statement. Statements following and
including the DESCRIPTION statement and preceding
the END statement represent the data description
(DDL) for the INPUT file, SURVEY. The BEGIN and
END statements are SIMS control statements which
identify segments of the input request. All other
statements specify what processing is to be done and the
output of the request; they are DML statements.
Descriptions of these statements and others are provided
in the following sections.

The general form of statements of the SIMS request
language (DDL and DML) is:

statement-name parameter-name-1 parameter-value-1
parameter-name-2 parameter-value-2

parameter-name-3 ...

Some statements may be complemented by one or more
substatements (e.g., DESCRIPTION followed by other
DDL statements) which are identified by the fact that
they follow their owner. For clarity to the user, major
statements have been described as having to appear
preceded by an asterisk, but the LENS processor
distinguishes statement types by the sy'ntax and
semantics of the DDL and DML. Parameter names may
by assigned synonyms but since a parameter order is
also assumed for each statement, they may be deleted if
parameter values are listed in the assumed order. Since
default values have been assigned to certain parameters,
statements can be further abbreviated by omitting such
parameters from the statement. .

Figure 3 is the precompiled Cobol program that IS
generated by LENS from the SIMS request illustrated
in Figure 2. The remainder of this paper will discuss
characteristics of the DDL and DJ\fL in more detail

relating to the example in Figure 2, describe in general
ter~s the LENS system and by way of the sample
Cobol program of Figure 3, describe the structure of a
precompiled program of SIMS.

DATA DESCRIPTION-FILE CREATION

"The creation of the initial instance of a file or data
base is the process of making known to the data base
management system a' set of entries on which it can
perform other functions."lo In SIMS the DDL is used
for this purpose. Data files to be processed are assumed
to be already in machine readable form, either on cards,
magnetic tape, or as a disk or drum file. Card or tape
files in EBCDIC or ASCII from most any computer
installation can be described to the system via the
SIMS-DDL. Specially formatted files, e.g., an IBM 360
tape containing floating point hexadecimal data, can
not-with the existing DDL-be described to SIMS,
but through the user' subroutine option could be input
to the system.

A file is stored in its original physical form. If the file
format is to be changed for one reason or another, a new
file must be generated (see the section on Generation). In
most instances however, SIMS can assume the physical
structure remains fixed, e.g., a sequential BCD file, and
have the logical structure be dependent on the particular
use that is to be made of the file, e.g., random access
through an indexing procedure. In this instance only one
copy of the file need be made available to u~ers, ~hus
reducing storage. * Also, cost savings are realIzed smce
the file does not need to be reformatted to fit the
particular application. Therefore, a user who is expect
ing to retrieve for example, 90 percent of the file, can
describe the file as sequential, and if at a later date he
expects to retrieve say 10 percent of the file, he can alter
the data description by specifying index terms from
which a table of pointers is created. The additional cost
and space is only the cost of reading the file once and
storing the index table. . .

Before discussing statements of the DDL It IS
necessary to define terms used in describing those
statements (Figure 4). The statements of the DDL have
been classified as Physical Descriptive Statements and
Logical Descriptive Statements. The Physical Descrip
tive Statements are used to describe the storage struc
ture or the physical structure of the data file, 'e.g.,
recording medium, blocking factor, record length ~nd
padding. The Logical Descriptive Statements descrIbe

* Algorithms and procedures for indexing files stored sequentia~ly
have been developed and tested but have not as yet been In

corporated into SIMS.3,4

TERM

VALUE

VAlUABLE
(i tem/ fie ld/
attribute)

RECORD
(logical record)

SEGMENT
(group/set)

OBSERVATION
(entry)

FILE

GROUP

BLOCK
(physical record)

BAS IC DEFINITION IN SIMS

A fixed length code, either numeric or alphanumeric
which does not exceed some computer words of a
fixed length.

The term applies to the structural element (item),
which can not be structurally subdivided and which
may associate with occurrences of VALUES. The
name of a variable may consist of up to 12
alphanumerics.

A physical entity consisting of contiguous infor
mation.

A fixed set of related VARIABLES from the same
hierarchica 1 leve 1.

A single set of occurrences of all SEGMENTS from
the same hierarchical structure.

The set of all occurrences of the OBSERVATION.

A selection of VARIABLES from any SEGMENTS of an
OBSERVATION and/or other GROUPS.

A collection of one or more contiguous RECORDS.

SIMPLE FILE A FILE consisting of a fixed number of VARIABLES
(rectangular file) per OBSERVATION with the VALUES of a ~articular

VARIABLE always appearing in the same position
in every RECORD.

COMPLEX FILE
(hierarchical
file)

A FILE containing more than one type of RECORD
and a variable number of RECORDS per OBSERVATION.
RECORDS may be grouped into SEGMENTS and SEGMENTS
may be related to one another via complex logical
condi tions.

Figure 4-Basic definitions of data base terms

the data structure or logical structure of the data, e.g.,
a simple rectangular file. n , 12,13 Since SIlVIS is a "drop in"
file system, i.e., accepts existing data· files, the physical
descriptive information is necessary.

Statements of the SIMS-DDL

Figure 5 is a summary description of all statements of
the SIMS-DDL. The statements given in this illustra
tion are those that we have assigned based on experience
in servicing social scientists. However, with programmer
assistance the SI1\1S-DDL specification and vocabulary
can be easily expanded to conform to other types of
users. Abbreviated synonyms have also been assigned to
facilitate DDL entry from a CRT or teletypewriter. The
language ·does not address the data security problem.
The Univac 1108 control language is relied upon to
provide security and integrity of data files.

A DESCRIPTION statement is required for all data
descriptions. The file will be catalogued by the FILE
NAME listed on this statement and this name must be
specified when references to that file are made in the
DML.

All records of a file must contain variables that
uniquely identify an observation. Such variables must
appear in the same positions in all records. The
OBSERVATION-ID statement specifies this identifica-

SIMS 1123

tion and provides a means for assigning a name to the
observation (Figure 2).

The P-STRUCTURE and L-STRUCTURE state
ments are very similar. They differ only by the fact that
the P-STRUCTURE statement refers to the physical
structure of the file and therefore" to RECORDS,
whereas the L-STRUCTURE statement refers to the
logical structure of the file and hence to SEGNIENTS.
Each of these statements describes all possible hier
archical structures occurring in any of the observations
of a sequential file. The mapping of the logical structure
to the physical structure is determined by the D D L
processor, LENS, from information obtained from
parameters of these statements and the RECORD-

PHYSICAL DESCRIPTIVE STATEMENTS

*DESCRIPTION

OBSERVATION-ID

P-STRUCTURE

STORAGE-DESCRIPTION

LOGICAL DESCRIPTIVE STATEMENTS

ABSTRACT

INDEX-TERM

COMMENT

NOTE

L-STRUCTURE

*RECORD-DESCRIPTION

VARIABLE

BOUND

GROUP

Figure 5-The SIMS-DDL statements

1124 Fall Joint Computer Conference, 1972

DESCRIPTION statements. For complex files the
L-STRUCTURE statement must be present. The
P-STRUCTURE statement must also be present if the
physical structure cannot be derived from the L
STRUCTURE and RECORD-DESCRIPTION state
ments.

The physical attributes of a file are specified on the
STORAGE-DESCRIPTION statement. Parameters
specify storage device, recording mode, sort sequence,
label information, record and block size, block padding,
density, and the location and format of the record
identifiers. The values of record identifiers for a given
record type are listed on the RECORD-DESCRIP
TION statement.

The RECORD-DESCRIPTION statement assigns a
record to a SEGMENT by the SEGMENT-NAME
specified, since segments are comprised of records. In
Figure 2 records and segments are equivalent. In this
example there are four logical segments HOUSEHOLD,
FAMILY, SPOUSE, HEAD and one record for each. If
there had been two records of HOUSEHOLD informa
tion then two RECORD-DESCRIPTION statements
would be required, each with the SEGMENT-NAME,
HOUSEHOLD.

RECORD-DESCRIPTION statements are followed
by the VARIABLE statements that describe variables
which are stored in that record. VARIABLE statements
are followed by BOUND statements which describe
values and ranges of values of that particular variable.
Names may be assigned to variables and bounds.

Variables may be members of a set or group. The
GROUP statement may appear anywhere within the
DDL. A name may be assigned to the GROUP defined
by a list containing variable and other group names. It
defines a group of variables from one or more hierarchi
cal levels and this group is defined to be at the hier
archical level of the lowest level represented by a
variable. In the household example (Figure 2), if a
group contained variables from all 3 levels (HOUSE
HOLD, FAMILY and person (HEAD, SPOUSE)), it
would be defined to be at the third or person level.
Variables or items of the group from higher levels would
be saved for the observation, and thus repeated for
each occurrence of the lower level variable.

The INDEX-TERM statement is used to specify a
list of index terms to be used for random access of a file
on drum or disk. At present this statement has no effect
since a random access capability has not been
implemented.

The ABSTRACT, COMMENT and NOTE state
ments have no affect on processing of a file. They are
purely descriptive and are used for documentary
purposes.

DATA MANIPULATION

The SIMS Data Manipulation Language (DlVIL) is
the user's request language for specifying (1) data access
to and redefinition of files previously defined by the
SIMS-DDL, (2) criteria for maintenance of files that
have been described to the system, (3) criteria for
generating a new file from an edited file which has been
described to the system and (4) analyses to be performed
on files. The form of the DML is the same as the DDL,
and like the DDL it is a descriptive language for stating
what is to be done. SIMS determines how it is to be done.

The DML is dependent on the DDL for obtaining
information on both the data and storage structures,
i.e., the logical and physical structures of the file. The
DDL is dependent on the DML to create data descrip
tions for generated files (e.g., the extract file in the
sample request in Figure 2), including information on
newly derived items or variables. A new data description
for the extracted file that is generated will be created by
the system and be in a form consistent with the DDL.
The two are independent in the sense that information
from the DDL can be linked to a descriptive DML like
the SIMS-DML or communicated directly to a
programming language such as C;obol or Fortran. This
independence allows the description of a file to be
retained with the data. The DDL is compatible with
most high level languages, 7 and the compilers for these
languages could be enhanced to process the D D L.

A summary of the Dl\1L statements is given in
Figure 6. Major statements are followed by their
corresponding subordinate statements. With the excep
tion of some statements which specify special analytical
processing functions, statements of the SIMS-DML are
of a general applications nature and could be applied to
other disciplines.

Data access

The data access statements specify which file or files
are to be retrieved from the data base (the INPUT
statement), which entries or observations are to be
retrieved (the SELECT or OMIT statements) and
define what level of hierarchy shall be the basis for the
retrieval (the ANALYSIS-LEVEL statement). The
INPUT statement is required for all data manipulation
requests and the ANALYSIS-LEVEL statement is
required only if the retrieval is to be at a lower level
than that of the root of the tree. If a SELECT or OMIT
statement is not present, all entries or observations will
be retrieved from the file.

The ANALYSIS-LEVEL statement is one means of

DATA ACCESS STATEMENTS

*INPUT ~!'SELECT *OMIT *ANALYSIS-LEVEL

DATA MANIPULATION STATEMENTS

1) Redefinition:

*RESTRUCTURE *DEFINE

*GROUP NEW-VARIABLE

*MODIFY BOUND

2) Maintenance:

* DUMP *EDIT

*UPDATE VALIDATE

*MODIFY CHECK

3) Generation:

*OUTPUT *SORT

*MERGE *EXTRACT

*COPY *SAMPLE

4) Analysis:

*CORRELATIONS *CROSSTABS

*MOMENTS TABLE

*MARGINALS

Figure 6-A summary of statements of the SIMS-DML

redefining an observation that consists of more than one
hierarchical level. If in the original file description an
observation had been defined to be a household
containing one or more families (each family consisting
of one or more persons) and at execution time an
analysis was to be based on families, then the
ANALYSIS-LEVEL statement could be used to estab
lish the family level as the observation base. Items or
variables from the root level, "household," and 'variable,s

SIMS 1125

from the lower level, "person" would still be associated
with the appropriate family. No reorganization of the
physical file takes place.

Example:

• INPUT HOUSEHOLD
• SELECT OBSERVATION IF

LOCATION.IS.NW-REGION.AND.
INCOME OF HEAD .GT. 3000 .AND.
OCCUPATION OF SPOUSE .IS. NOT-WORK
ING

• ANALYSIS-LEVEL IS FAMILY

This redefinition could alternatively be accomplished
with the redefinition statement RESTRUCTURE.

Redefinition

The RESTRUCTURE statement is analagous to the
L-STRUCTURE statement of the DDL. Since data
files are commonly used by users with varied applica
tions and for use that is often not predetermined when
the file is created, there needs to exist a means for
respecifying the logical structure of the file. For the
above example of a household file, if household informa
tion was not needed, the structure of the file could be
respecified (deleting reference to the household informa
tion and making the family the root of the tree) via the
RESTRUCTURE statement. All records containing
household information would not be examined, thus
increasing retrieval efficiency. The new structure speci
fied is in effect only for the duration of the run in which
the RESTRUCTURE was specified.

Another data manipulation statement for redefinition
is the GROUP statement. This statement is the same as
the GROUP statement of the SIMS-DDL described in
the above section on Statements of the S1 M S-DDL.

In the social sciences, transgeneration (transformation
and generation) of variables is a common occurrence in
processing requests. Transgenerated variables therefore
are recoded items either of an input or master file or are
new variables computed as a function of input variables
and other new variables. The formulation of such
transgenerations is a function of input variables and
other new variables. It is also a function of a particular
user's methodological assumptions and, as a result,
these computations are frequently of a temporary nature
to be sustained only for the duration of a run. However,
they may also exist permanently as an integral part of a
file that is generated.

Other user-oriented systems for social science analyti
cal applications, such as OSIRIS, STATJOB,

1126 Fall Joint Computer Conference, 1972

SPSS,14,15,16 provide specialized statements for comput
ing transgenerated variables. For the SIMS-DML, a
basic Fortran approach was taken. This was done for
two reasons. First, many potential users of SIMS know
or have been exposed to Fortran; and second, the user
has at his disposal almost all features of the Fortran
language. The standard Fortran language syntax has
been appended to provide the necessary link to the
SIMS-DDL and to include statements for performing
special functions frequently used by the social scientist.
The following statements exemplify the transgeneration
capability and special functions of the DML.

IF (SEX .EQ. MALE)- WAGE = HOURS*3.50
TOTAL-INCOlVIE = INCOME OF SPOUSE +

INCOME OF HEAD
TEMP1 = COMSUMPT + SAVINGS - LAG1

(INCOME)
SELECT OBSERVATION IF (INCOME .BT. 0,

3000)

Variables not defined by the SIMS-DDL are assumed
to be local or temporary. Local variables defined must
conform to the naming conventions and format of the
Fortran compiler and may not be assigned names that
are SIMS reserved words (such as OF, SELECT,
OBSERVATION, etc.). Blanks must delimit the
qualifier, OF, and may be required to delimit arithmetic
operators if part of a hyphenated SIMS variable name
is also the name of some other variable (e.g., TOTAL
INCOME and INCOME). Details on how SIMS
extended Fortran statements and user subroutines are
integrated with other statements of a SIMS request and
how they are processed is given in the last section.

Associated with every non-temporary, transgenerated
variable that appears on the left side of a SIlVIS Fortran
arithmetic statement is a DEFINE statement. This
statement defines the SEGMENT of the output file to
which a transgenerated variable is to be assigned.
Following the DEFINE statement are VARIABLE
definitions and BOUND statements written in the DDL
of SI1\1S. This technique provides the link between the
SIlVIS-D1VIL and DDL for generated or output files that
contain transgenerated variables. The following DE
FINE, VARIABLE and BOUND statements could
apply to the transgenerated variables, WAGE and
TOTAL-INCOl\IE as defined above.

• DEFINE SEGMENT = PERSON
NEW-VARIABLE NV-NAME WAGE,

FORl\1AT = F5.2 DETAIL = WAGE OF
l\1ALES COl\IPUTED AS HOURS * 3.50

• DEFINE SEGMENT = FAMILY

NEW-VARIABLE NV-NAME = TOTAL-IN
COME, F·ORMAT = F10.2 DETAIL =
TOTAL FAMILY INCOME OF HEAD
AND SPOUSE

BOUND B-NAME=LOW VALUE =

0-5000
BOUND B-NAME=l\1EDIUM VALUE=

5001-

BOUND B-NAME=HIGH
10000

VALUE =
10000+

The data definition (DDL), redefinition and mainte
nance features must be linked closely with one another,
particularly in applications dealing with data which are
already in machine readable form. As the data descrip
tion of a file is a function of the application for which
the data are to be used, it is obviously also a function
of the data itself. Errors in the file description, i.e.,
incorrectly specified codes or values of items or an
invalid structure specification, will be detected as errors
in the data during editing of the file. Therefore, the
process of preparing a file description and editing the
raw data could end up being an iterative process. If the
source data is not available, which is often the case with
survey information and other data obtained from
outside sources, modification of the file description and
updating of the data can only be continued to a certain
point before assumptions need be made or information
lost. Therefore, a data librarian or owner of a file can
only go so far in describing and maintaining such files.
The rest must be left to the discretion of the users.

The MODIFY statement enables a user to modify a
catalogued source data description of a file for his own
particular use and thereby allows him to make his own
assumptions about invalid codes or observation struc
tures. It is also used to edit the data description of a file
as maintenance is being performed on it. This statement
essentially dictates a link to a text editor which reads
transaction statements for updating the data descrip
tion. This feature is equivalent to text editing capabili
ties found on most other computing systems.

Maintenance

The maintenance statements of the DML provide
either the data librarian or user with various means of
examining the data, comparing the data with its
description and correcting or updating a data file. The
present version of SIMS provides only for batch
maintenance of a file. The DUMP statement performs

the standard utility of printing various portions of a file
as specified via the parameters of this statement. The
EDIT statement specifies the criteria to be used when
comparing the file's description to the actual data.
Editing continues until a predetermined error limit is
reached (specified as a parameter. of the EDIT state
ment) or until normal termination of the run. Options
include editing of the physical structure (item or
variable formats, record lengths, etc.) and the logical
structure (variable values or codes, consistency checks
among variables, and observation structure). Numerous
output options exist and the particular option or options
selected are dependent on the user's file, edit criteria and
the number of errors he expects. The EDIT output is
used to prepare the input to the UPDATE function. The
present version of UPDATE provides only for deleting,
adding or correcting entire records or entries (observa.:..
tions). When an interactive capability exists, specific
variables will also be able to be updated without re-entry
of an entire record or observation. The descriptive
SIJVIS-D1\1L becomes a mixture of parametric and
Boolean algebraic statements in order to provide the
file maintenance features. It incorporates the Fortran
like IF statement using the relational and logical
operators of Fortran to implement the checking
necessary for updating and validation. This adaption
may appear to relegate SI1\1S to a LOW Data Sub
language (Boolean selection procedures) or an INTER
MEDIATE Data Sublanguage (algebra oriented) as
defined by Codd.17 But the power of the SI1\1S-DDL is
transmitted to the D1\1L by their dependence. Hence,
file maintenance can be done on variables and their
logical structure in the data file. This provides the user
with a tool not directly available in Fortran or Cobol,
unless he is a sophisticated programmer. Figure 7 is an
example of a SIMS file maintenance request.

----------------_._------
*BEGIN, USER=S~lITH, ACCOUNT=2908, MODE=PROD, RUN- ID=1971-SlJRVEY-TABLES

*INPUT, 1971-SlJRVEY

'~EDIT, TYPE=OBSERVATIONS, MAX-ERRORS=100

VALIDATE \fAR IABLES SEX/INCOME/ AGE/OCCUPATION OF HEAD
CHECK, IF SEX OF HEAD IS MALE AND AGE OF HEAD .GT. 21 AND
INCOME . GT. 2000
CHECK IF SEX OF HEAD IS MALE AND MARITAL-STAT OF HEAD • EQ. 1 AND
SEX OF SPOUSE IS FEMALE

~'MODIFY SEGMENT=HEAD
VARIABLE "'NAME=RACE
DETAIL=UPDATED NAMED BOUNDS FOR VARIABLE

BOUND BOUND-NAME=l BOUND-VALUE=WHITE
BOUND BOUND-NAME=2 BOUND-VALUE=BLACK
BOUND B<-:JND-NAME=3 BOUND-VALUE=OTHER

*DATA, FILE-NAME=1971-SURVEY

(data cards for 1971 Survey File)

Figure 7-A SIMS file maintenance request

SIMS 1127

Generation

The generation class of data manipulation statements
specifies creation of a data file or files from data already
in machine readable form. If the storage structure or
physical format of the generated file is to be different
from the assumed storage structure of SIMS, an
OUTPUT statement must be associated with every
generation statement that is specified in a request. One
valuable use of this feature is for defining the storage
structure to be consistent with some foreign computer,
thus enabling transportability of the generated file. The
SORT and 1\1ERGE statements specify the parameters
necessary for performing the standard utility functions
of sorting a file and merging two files. The EXTRACT
statement describes a sub-population of an input file
that is to be generated. By using a number of
EXTRACT statements and associating them with the
same input. file, numerous subpopulations can be
created on a single pass of the original file. The COpy
statement is the general case of the EXTRACT
statement, since entire files may be extracted or copiedi
The SA1\1PLE statement describes a random sample
that is to be taken of the input file. The sample SIMS
request in Figure 2 is an example of a request for file
generation.

Analysis

Since the main intent of SI1\1S was to provide the
social scientist with a means of describing and retrieving
information from complex files and not to reinvent
statistical packages,18 the present analytical capability
of the SI1\1S-DML is quite limited. STATJOB15 and
other statistical systems and programs have been
successful in fulfilling this void in SIMS. There are some
analytical routines, however, which are useful aids to
the user who is editing and summarizing his data. The
functions specified by the CORRELATIONS and
MOMENTS statements specify which variables and
observations are to be included in computation of the
correlation and moment or cross-product matrices for
input to other analysis packages. These matrices may
also be generated as data files. The MARGINALS
statement describes which variables and observations
are to be used in tabulation of marginal or one-dimen
sional frequency distributions, and similarly, the
CROSSTABS and TABLE statements describe multi
dimensional tables of frequencies, sums, means or
standard deviations of variables. 1 As with these
analytical statements and others that are specified, the
SIMS-D1\1L processor analyzes what the user has

1128 Fall Joint Computer Conference, 1972

*BEGIN, USER=SMITH,ACCOUNT=2908 ,MODE=PROD, RUN- ID=1971-SURVEY-TABLES

*TITLE ANALYSIS OF SURVEY DATA

*INPUT, 1971-SURVEY

*USER

C INPUT

RACE=-9

IF(RACE OF HEAD .EQ. 'WHITE')RACE=1
IF(RACE OF HEAD .EQ. 'BLACK')RACE=2
IF(RACE OF HEAD .EQ. 'OTHER')RACE=3
SELECT OBSERVATION IF(AGE OF HEAD . GT. 18 AND MARITAL-STAT OF HEAD

• IS. MARRIED)

*DEFINE, SEGMENT=HEAD-CASH

NEW-VARIABLE NV-NAME=RACE, FORMAT=I1
DETAIL=RECODED SEX OF HEAD FROM ALPHABETIC TO NUMERIC REPRESENTATIO~

BOUND BOUND-NAME=WHITE BOUND-VALUE=1
BOUND BOUND-NAME=BLACK BOUND-VALUE=2
BOUND BOUND-NAME=OTHER BOUND-VALUE=3
BOUND BOUND-NAME=MISSING BOUND-VALUE=4

*CROSSTABS CELLS ARE FREQUENCIES, ROW-PERCENT, COLUMN-PERCENT

TABLE, ROW=OCCUPATION, COLUMN=SEX OF HEAD
TABLE, ROW=OCCUPATION, CO LUMN=WO RK-CO DE , PAGE=SEX OF HEAD/RACE OF

HEAD, FREQUENCIES

*DATA, FILE-NAME=1971-SURVEY

(data cards for 1971 Survey File)

*END

Figure 8-A SIMS analysis request

described in order to determine the validity and
completeness of the request. A sample SIMS CROSS
TABS analysis request with transformations is Figure 8.

IMPLEMENTATION

As stated in the introduction to this paper, a basic
design philosophy in SIMS is that data should be
separated from applications programs. For most applica
tions this can be done without creating extreme
inefficiencies in processing, particularly if the application
programs do not operate on data at the bit level and do
not assume a file structure completely foreign to the
standards of the system.

SIl\rIS uses a precompilation technique to facilitate
data independence from applications programs. Both
the DML and DDL are input to a precompiler which
generates a job stream consisting of Cobol and/or
Fortran code and the Univac operating system (Exec-8)
control cards. The job stream created is a function of the
user's specified request and predefined relations among
SIMS statements and associated code to be generated.
The association nets or the nets which describe the
relation of statements and their parameters of the

existing DDL and DML can be modified "as data" if
ever the syntax or semantics of these statements need to
be altered. The system needs only to be modified if new
statements, and consequently new processing functions,
are to be added to the SIMS-DML. The new statements
and precompilation output that is to be generated must
be described. This procedure requires an experienced
programmer. Alteration of existing syntactic and seman
tic nets or the description of an existing SIMS-DML
however, can be performed by any user. The following is
a discussion of the design of the programs and su b
routines that are generated by LENS and the restric
tions placed upon user supplied code. This basic design
is independent of the precompilation or any other
implementation method.

The source Cobol· or Fortran code generated from a
DML statement is derived from information obtained
from other DML and DDL statements and may contain
calls to existing relocatable routines. An option exists to
have the generated source code punched, so that it may
be modified for a different computer system. A pre
compiled source deck could also be altered so as to
achieve better efficiency in the compiled object code.
This does not imply source code generated by SIMS is
inefficient. On the contrary, the code generated in most

instances is more efficient than what the user might
write. This option would allow him to modify the code
taking into account some preknowledge he may have of
object code generated by the Cobol or Fortran cOTIlpiler,
and provides one method for a programmer to have
access to data at the record level or even the bit level.
Another method is discussed later.

Figure 3 shows the Cobol program that is precompiled
from the request for an EXTRACT file to be generated
from the input file, SURVEY (Figure 2). The data
description for the SURVEY file had been catalogued or
stored as a catalogued file on drum in a previous run.
LENS· retrieves the file description and from this
generates the appropriate system control cards for
loading the file description, operating system control
cards (Univac Exec-8 in this case) and Cobol Data
Division for reading the input file. Similarly the output
file's Exec-8 statements and Cobol Data Division are
determined from the OUTPUT, EXTRACT and input
file description statements. The observations or entries
to be extracted are determined from the SELECT and
ANALYSIS-LEVEL statements, and the L-STRUC
TURE and P-STRUCTURE statements of the DDL
and the variables or items from the EXTRACT
statement. The L-STRUCTURE, P-STRUCTURE,
ANALYSIS-LEVEL and data manipulation statements
(EXTRACT in this case) provide the information on
the file's structure and use necessary for generating the
procedural input statements that perform the mapping
between the complex structure of the input and the
rectangular or fixed length structure assumed for an
observation. This procedure is illustrated in Figure 9
and is completed when the "observation built?" check
is true.

The Main Control Program (MCP) (the Cobol
program in Figure 3) created from the DDL and DML
of the SIMS request by the LENS system is divided
into three operating stages, INITIALIZATION, IN
PUT and FILE-END. All processing assumes only one
pass of an entire file wil~ be made in a given run. The
INITIALIZATION stage of the MCP is executed
before retrieving any observations or entries from the
file. In this section of the M CP, calls are made to any of
the housekeeping and initialization routines. The
INPUT section of the MCP is executed for every entry
(in the case of sequential processing) until the end of the
file is reached or a predetermined number of observa
tions or entries have been processed, in which case the
FILE-END portion of the IVICP takes control. FILE
END processing includes printing run summary in
formation, etc., and terminating the SIMS run. For any
form of a random access file this same 3-stage technique
can be applied. If the file is indexed, then the "se-

SIMS 1129

---------------- ----------------~

STAGE 1 I
INITIALIZATION I

I
I
I
I
I
I
I
I

---------------------------------~
STAGE 2 I

INPUT

FILE'S IO(;ICAL

END FILE?

'If)

SEGMENT

TYPE?

NO

YES

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~-------------------------------
I
I
I
I
I
I
I
I
I
I
I
I
I

STAGE 3
FILE-END

Figure 9-Logical flow of a sample MCP

quential" processing of the INPUT stage does not
examine every record but retrieves only the indexed
records one at a time. The FILE-END section of the
MCP routine, in the random access case, assumes
control when the list of indexes is exhausted. The

1130 Fall Joint Computer Conference, 1972

INITIALIZATION stage retrieves the file and con
structs the index information used in INPUT processing.

The generated code for each of the three sections of
the MCP contains calls to relocatable elements which
may be generalized routines of the SI1\1S system or user
supplied SIMS Fortran code (such as transgeneration
statements like those illustrated in the section on
Redefinition). For example, to produce CROSSTABS,
calls are made to a crosstabulation subroutine (XTAB)l
that tabulates observations during the INPUT stage
and prints the tabulations at FILE-END. User
supplied code for creating new variables for tabulation
would be compiled as one of the routines of the generated
run stream and the M CP of the same run stream would
contain a call to that routine in its INPUT section.
A simple EXTRACT, as shown in Figure 2, has no
subroutine calls and consists of straight-line Cobol code.
The difference between these two examples occurs
because the EXTRACT request has no user code
supplied and there did not happen to exist a generalized
extract routine when that function was implemented.

The MCP performs all input operations on files
described via the SIMS-DDL. A user has the capability
of reading data via his Fortran program and transmit
ting it to the DML routines. The 1\1CP builds SEG
MENTS and OBSERVATIONS7 and makes these
available to a user routine (if present) before transmit
ting the same to SIMS routines for processing. In
sequential retrieval from hierarchical files, this construc
tion enables the user to examine information at any
hierarchical level and perform operations on the data
which may not be presently available through the
SIMS-DML. The same is true of computations or
complex logical checks that he may wish to perform
after an observation is constructed. For an indexed file
only a routine related to an observation is possible,
since the hierarchy "disappears." Figure 9 illustrates
the main construction of a model MCP by showing a
possible flow of a generated program to process the
SURVEY file mentioned earlier. User supplied routines
at all three stages of processing and for each type of
segment are illustrated. The retrieval of the various
segments of an observation is a function of the L
STRUCTURE specified in the DDL. The specific
L-STRUCTURE of the SURVEY file is immaterial to
this discussion, since each of the segment routines,
HOUSEHOLD, FAlVIILY and PERSON, are called
whenever the associa.ted segment is detected.

The user can input data not described via the
SIl\1S-DDL by modifying a punched deck of the
MCP, as discussed above, or by including input
statements in any of the user supplied subroutines. A
complete knowledge of the processing flow of the
generated MCP and communication among the MCP

and its subroutines is required. The special data may
appear on cards or tape. The DATA statement,
identified by a segment name (e.g., HOUSEHOLD,
FAMILY, PERSON) or the user subroutine names
(INITIALIZATION, INPUT or FILE-END), must
precede the card data that is to be read by the sub
routine listed. The programmer-user must adhere to the
restricted logical input unit assignments, layout of
COMMON and subroutine calls or else erroneous
results may occur or the run will terminate abnormally.
Special output, resulting from user output statements
in a user subroutine, is produced using an analogous
procedure as described above for special input.

SUMMARY

Design and implementation features of a data base
management system for social science applications have
been presented. A particular class of user was examined,
his needs brought to focus and the requirements for
SIMS established. These requirements were continually
reviewed during development of the system and
eventually evolved into the system features described
in this paper.

The basic system and language design provided the
flexibility necessary for implementing new features as
they became known. It was possible to easily incorporate
generalized analysis subroutines developed independent
of SIMS, make use of file handling routines of the host
operating system when needed and add or alter
statements of the DDL or DML. With a minimal
knowledge of the· system, the user benefits from these
design features by being able to incorporate his own
routines and alter the request language. Potentially he
can create his own personalized data base management
system.

A user is provided a complete file handling facility for
file creation, maintenance and generation. Additional
familiarity is provided the user by the fact that he can
process data he has created previously for other
purposes without reformatting the data in some new
system format. This facility answers in part Gosden's
complaint, "Such systems [for receiving foreign files]
have not been reported in the general literature and the
common data management systems do not appear to
have given more than minimal attention of this problem.
This is probably because they have made their success in
application areas operating on well-organized data bases
consisting of files especially constructed for a set of
applications where they do not need to provide facilities
for files ... 19 Since file processing functions bridge all
application areas, the file creation, maintenance and
generation functions in SIlVIS apply to other disciplines
as well.

SIMS via LENS precompiles a descriptive user

request and generates a job stream that is data, program
and application dependent. Despite the complexity of
the generated code, the data description and manipula
tion languages are not complex and are not order
dependent. Therefore the user can supply his request in
what is a logical order for him, not the assumed order of
the system. The syntax, semantics and completeness
can be checked when the entire request has been read
and while the entire request is being processed. The
program that is generated is efficient because it is
custom tailored to the request.

LENS, the DDL and DJ\1L processor for SIl\1S, is a
language processing system written in Fortran and
Cobol. In converting SIlVIS to another hardware
configuration only the Fortran and Cobol routines need
be compiled and debugged to implement LENS and
consequently SIl\IS. Some of the generated code would
need to be modified, i.e., Univac 1108 Exec-8 statements.
This is done by changing generation macros within
LENS. Thus with the LENS implementation, trans
portability and modularity of SIlVIS is enhanced.

ACKNOWLEDGJ\tJ:ENTS

The SIJ\tJ:S system has been funded by the National
Science Foundation (grants GS-1992 and GS-3307) and
the University of Wisconsin. This project has been under
the faculty direction Df Professor Dennis Aigner with
lViax Ellis directing the system design and implementa
tion. Significant contributions in development of the
system have been made by William Katke, James
Olson, Shou-Chuan Yang and Kenneth Nelson. These
persons with J\tJ:ax Ellis have designed the system, its
user interface and programs.

The critical advice of Professors Dennis Aigner, Tad
B. Pinkerton, Larry E. Travis and Richard L. Venezky
in preparation of this paper is greatly appreciated.
Special thanks are due to our highly-spirited secretary
Bonnie Balcer.

REFERENCES

1 DATA AND COMPUTATION CENTER
XTA.B-XT A.BRUN: A. cross-tabulation package (user
programmer's manual)
Data and Computation Center University of Wisconsin
1969

2 M E ELLIS K H NELSON
A. data description language for hierarchical data files
1970 ACM-SIGFIDET Workshop on Data Description
& Access
ACM 1970 pp 87-106

3 S C YANG
A. search algorithm and data structure for an efficient infor
mation system

SIMS 1131

1969 International Conference on Computational
Linguistics (Stockholm) preprint no 51

4 S C YANG
H A. I C S: A. data structure for efficient search and retrieval
Data and Computation Center University of Wisconsin
1971

5 S C YANG Y PAL
A. design of a pupil data base subsystem for decision-making in
public schools
Data and Computation Center University of Wisconsin
1972

6 E H SIBLEY G C EVEREST
Critique of the GUIDE-SHARE DBMS requirements
1971 ACM-SIGFIDET Workshop on Data Description,
Access and Control ACM 1971 p 103

7 S C YANG M E ELLIS
SIMS-DDL: A. data description language for social science
applications
Data and Computation Center University of Wisconsin
1972

8 M E ELLIS
Fortran coding standards
Data and Computation Center technical paper (TP-15)
University of Wisconsin' 1970

9 W F KATKE
LENS: A. language implementation system
Data and Computation Center University of Wisconsin
1972

10 CODASYL SYSTEMS COMMITTEE
Feature analysis of generalized data base management systems
ACM 1971 p 377

11 CODASYL
CODA.SYL data base task group A.pril1971 report
ACM 1971

12 C J DATA P HOPEWELL
Storage structure and physical data independence
1971 ACM-SIGFIDET Workshop on Data Description,
Access and Control ACM 1971 pp 139-168

13 R W. ENGLES
A.n analysis of the A.pril1971 data base task group report
1971 ACM-SIGFIDET Workshop on Data Description,
Access and Control
ACM 1971 pp 69-91

14 ICPR AND ISR
OSIRIS II user's manual
University of Michigan 1971

15 MACC
STATJOB reference manual for the 1108
Madison Academic Computing Center University of
Wisconsin 1970

16 N H NIE D H BENT C H HULL
SPSS: Statistical package for the social sciences
McGraw-Hill 1970

17 E F CODD
A. data base sub language founded on the relational calculus
1971 ACM-SIGFIDET Workshop on Data Description,
Access and Control ACM 1971

18 J R OLSON
SIMS: A. social science information system
Data and Computation Center University of Wisconsin
1972

19 J A GOSDEN
The conceptual requirements for a management information
databank
IFIP Congress 71 Booklet TA-5 p 55

A data dictionary / directory system
within the context of an integrated
corporate data base

by B. K. PLAGMAN

Federal Reserve Bank of New York
New York, New York

and

G. P. ALTSHULER*

Chase],fanhattan Bank, N.A.
New York, New York

INTRODUCTION

The evolution of information

The evolution of commercial business applications
has gone from simple repetitive accounting to ex
tremely complex jnformation systems, and has been
characterized by decentralized control of data. Most
corporations began their automation efforts by com
puterizing the repetitive operations of the clerk and
bookkeeper. These may be referred to as Accounting
or Operational Level Systems. With the advent of
second ~nd third generation hardware and software,
it became feasible to collect relevant Accounting Level
Systems under a functional umbrella and to relate
these applications in some manner or means with the
objective of providing management with a slightly
broader scope of information about the business opera
tion. Systems supporting this level of information can
be termed Functional Level Systems. In the banking
environment this has manifested itself in information
systems (sometimes labeled MIS) dedicated, for
example, to Deposits or Loans. These systems contain
within them subsystems which are in essence Ac
counting Level Systems, such as Demand Deposit
Accounting or Installment Loans.

In recent years, another level of informational need
has arisen. Corporate Level Systems are designed to
provide management with information that will impact

* As of September 1, Diebold Europe S.A., 6000 Frankfurt
(Main), Feuerbachstrasse 8, West Germany.

1133

decision-making on a corporate-wide basis. The various
Functional Level Systems are required to supply in
come, expense, cost and profit-related data to the
Corporate Level Systems to facilitate the reporting
of this higher level of information. (See Figure 1.)

It has been this hierarchy of informational needs,
the Accounting, Functional and Corporate Levels,
that systems have evolved' to support. (The term
evolution is emphasized because of the decentralized
nature of development.) It is through no fault of the
system designers, however, that when the need for
Corporate Level Information had arisen, the hierarchy
failed. Indeed, some have experienced problems at the
Functional Level before attempting to develop Cor
porate Level information. The problems of the imple
mentation of these systems under a decentralized
approach'are characterized by the following difficulties:

Redundant data

As each Functional Level system evolved it created
and maintained its own data files. To continue the
examples in the banking industry, if the Deposit
system and the Loan system were dealing with the
same customer, typically the customer's identification
data (e.g., name, address, social security number) were
stored redundantly in each system. Furthermore, if
the bank were supporting a Central Customer Informa
tion File, typically the data would be stored all over
again. This is but one type of redundancy: Duplication
of data because it is actually needed in two places and

1134 Fall Joint Computer Conference, 1972

CORPORATE 3

FUNCTIONAL 2

OPERATIONAL
1

Figure 1-Levels of information

the current technological trade-offs dictate redun
dancy. However, the problem has been compounded
in large organizations where communication among
staff has failed and inadvertent redundancies have
been introduced in data systems. (We shall return to
these two types of redundancies.)

Inconsistency lin compatibility of data

As data files were created and maintained by each
Functional Level System, large corporations found
themselves in a position where each system was dealing
with data which was either inconsistent or incompatible
with the data of other systems. At one high level meet
ing of a large computer manufacturer, attendees had
brought what were purported to be comparable finan
cial reports from their respective operating divisions,
only to realize that the reports were unrelatable. The
definition of terms and therefore the data collection
in the various systems were so diverse as to render the
comparison of information useless.

Software data dependence

As each functional system was designed and imple
mented, utilizing its own data files, the supporting
software became bound to the data which it manipu-

lated. This in turn created high maintenance costs in
instances where the dynamic aspects of data manifested
themselves causing large reprogramming and recom
piling efforts. Witness, for example, the situations in
most large financial institutions just a few years back
when the Standard Industrial Codes were introduced
into data files.

The integrated corporate data base

These major problems and others not mentioned
have one thing in common. They all stem from and
are fostered by decentralized control over data. The
concept of allowing each application to "own" and
control the data which it manipulates is the underlying
cause of difficulty. One potential solution to these
problems is the implementation of the Integrated
Corporate Data Base concept (ICDB). This basically
means treating data as a corporate resource just as
machines and money are. An ICDB can be formally
defined as:

The consideration of the collection, storage and
dissemination of data as a logical, centrally con
trolled and standardized utility function.

The elements of the integrated corporate data base

It should be emphasized at this point that an ICDB
is not a system, it is a concept under which systems
should be implemented. There are five sub-systems or
elements of such an ICDB concept:

1. The Data Bank-the logically centralized re
pository of all the data utilized in a corporation.

2. The Data Dictionary/Directory System-the
repository of all definitive information about
the Data Bank such as characteristics, relation
ships and authorities.

3. The Data Base Administrator-a human function
responsible for coordination of all data related
activities.

4. The Data Base Management System-a software
function performing the storage, retrieval and
maintenance of data.

5. The User/System Interface-the necessary· sub
systems to permit multiple classes and types of
users to direct the system to effectively structure
the available data into information and thus
communicate with and fully utilize the re
sources at their disposal.

Two alternative architectures

1. Data base management system driven ICDB
In an ICDB, where the Data Dictionary/Directory
System is subordinated to being solely a source of in
formation, the Data Base Management System is the
component that causes data to flow through the system.

In this approach, the Data Base Management Sys
tem will have its own sources for obtaining information
about the data stored in the Data Bank. Users would
be required to specify meta-data, that is, data about
data, in specialized formats to the Data Base Manage
ment System. This meta-data required by the DBMS
~s usually limited to directory type data, such as the
Internally necessary items that it must know to ef
fectively store, retrieve and maintain data to from
and in the Data Bank. Dictionary type data th~t is of
special interest to the users of data (e.g., source of
data, type of data, etc.) is not collected nor stored. It
remains, if at all, a function of a special collection
system to collect, store, and maintain this type of data
about data. It becomes a matter of redundancy, if not
contradiction, in instances where the needs of the
DB1VIS and the user overlap. Where should meta-data
such as the length of a data element be stored? How
should it be stored, as the user sees its length (absolute
value) or as the DBMS sees its length (relative dis
placement) ?

It is perhaps most ironic that this first architecture
of an ICDB permeates within it precisely the maladies
that the ICDB is designed to eliminate. Data redun
dan?y is built in by creating two sources ·for collecting,
storIng and maintaining meta-data, albeit one is for
the machine and one is for the man. Inconsistency /

USER
DATA

SYSTEM L • • DICTIONARy ~ INTERFACE , IF
I ~t

DATA DATA

BANK
BASE

ADMIN'OR /:='/
rt----1j

Figure 2-DBMS drivenlCDB

DBMS

A Data Dictionary/Directory System 1135

USER

DATA

BANK

Figure 3-DD/DS driven ICDB

DATA

BASE

ADMIN'OR

incompatibility cannot be insured against by allowing
the control over data definitions to reside in the soft
ware that executes on the data. There is no assurance
that what the user is told via a free standing DD/DS
is actually what is being stored and maintained in the
Data Bank. Finally and possibly most important, Data
Base Management Systems which store meta-data
within themselves CRuse the user's data to be dependent
on the DBMS. This is in essence a form of data depen
dence. Storing data base definitions internally in a
DBMS precludes the ability to change from one DBMS
to another. This issue should be an important one in
today's competitive market where it is so difficult to
choose the "best" DBMS available. When should an
installation be locked into the use of one DBMS? (See
Figure 2.)

2. The alternative that this paper proposes and
details is an ICDB that is driven by a Data Dictionary /
Directory System. In this architecture, the DD /DS
is the central source of control of all data specification
and data flow. The DD /DS contains, in a logical sense,
all the meta-data in the ICDB. The Data Base Manage
ment System requests from the DD/DS the necessary
information it needs to execute physical to logical
mappings made necessary by requests of users. The
users of data consult the Dictionary/Directory for
information about data that they might need in making
queries, writing programs or simply knowing what
data is available and where it is. Thus the DD /DS
serves the User/Systems Interface and Data Base
Management elements of the ICDB. Further, by
definition the DD/DS defines and describes the Data
Bank and is the most important tool of the Data Base
Administrator. (See Figure 3)

1136 Fall Joint Computer Conference; 1972

DETAILS OF THE DATA DICTIONARY/
DIRECTORY SYSTEM

The objectives of design

The design of a DD/DS will generally address two
objectives, but in varying degrees of emphasis.

• Collection and dissemination of data-This entails
the function of supplying the users of data with
meta-data, and providing the DBMS with the
information it needs to operate.

• Establishment of standards-This addresses the
need of establishing standards for such things as
data naming, usage and coding conventions.

The amount of emphasis placed on each of these
objectives will have a profound effect on specific as
pects of the design. If standardization is emphasized
then the scope of what is allowable in the system can
be narrowed down to standardized elements. If collec
tion and dissemination is the primary objective, then a
wider range of possibilities must be provided for, since
what is, must be collected as opposed to what should
be. The degree of emphasis to be placed on either of
these objectives will usually be indicated by the in
dividual characteristics of the systems environment.
For example, a highly decentralized systems structure
would probably require emphasis on collection and
dissemination, while a centralized environment with
stricter controls would more aptly lean toward em
phasis on standardization. Regardless of . emphasis,
however, both objectives must be addressed and met
to the degree necessary.

Functional requirements

The following is a statement of the functional re
quirements for a DD /DS within the context of the
ICDB concept.

1. Clear specification of data-,--Most data process':'
ing installations are engaged in the continuing
activity of developing systems to support the
development of Corporate Level Information.
In order to design the appropriate information
flows for future management. support, the sys
tem designers must be able to analyze existing
data and data flows precisely. The emphasis
here is in specifying and describing data so that
it would be clear to anyone interested, exactly
how to utilize the data element. A DD/DS
designed to maintain clear specifications of data
will provide this necessary support.

2. Simple, selective retrieval~The users of the
data should be able to select precisely the items
of meta-data that are of interest to them and
review only the specifications of those individual
items. This requirement implies the ability to
access meta-data on the basis of standard
labels (keys) as well as by associative searching.

3. Inconsistent redundant data analysis capa
bility~Identical or very similar items of data
occurring in data files in different parts of the
business indicate potential areas for concern.
Detection of such cases must be possible so that
each may be studied in detail. Those responsible
for the data involved (the DBA in general and
the user in particular) must have a tool to
enable them to determine if inconsistency I
redundancy does actually exist. In general
there are two types of redundancies. Technical re
dundancy is knowingly built into a system
because of existing technological trade-offs.
Periodically these trade-offs should be re
evaluated, and if it is decided that redundancy
should be tolerated, consistency between dupli
cated items must be maintained. The second
type of redundancy, the inadvertent type,
should never be tolerated and where possible
should always be eliminated when detected.
Unless one has precise specifications of data and
can readily compare these specifications, it is
very difficult to detect cases of possible incon
sistency and/or redundancy.

4. Knowledge of the location of data-When a
systems analyst requiring certain data for a
particular application is not in a position to
know the existence of relevant data, redundancy
may occur. To avoid this, the DD/DS must
include not only a clear specification of the
data but also a statement of where it exists and
when appropriate how it can be retrieved.

5. Determination of data users-It is possible
that an individual in one functional area has
been an unofficial user of data generated in a
second functional area. When the functional
area that generated and maintained this data
no longer has a need for this particular data
item it will, not knowing of the impact on other
users of the data, delete the data items. To avoid
undesirable deletion in such circumstances, the
DD/DS must include means for registering all
users of each data item.

6. Assignment of responsibility for data integrity
and specification-In general the Data Base
Administrator carries the ultimate responsi
bility for insuring the correctness and complete-

ness of the data itself and the specification data.
He must, however, delegate this responsibility
to users of data. When, for example, data is
transmitted from a remote location to a central
point and modified there in one way or another,
confusion may arise regarding exactly who is
responsible for specifying the data that is
processed centrally, and who is responsible for
the correctness and completeness of the data
per se. The DD JDS must clearly delineate both
of these responsibilities.

7. Support of the DBMS-The majority of data
management systems on the market today in
clude directory modules, which contain neces
sary descriptive data which the data manage
ment software needs to execute requests. The
DD JDS should contain this information and
be able to supply it (via an appropriate inter
face) to the DBMS upon request. This will
preclude storing such data twice and insure the
integrity of the DDjDS, to the extent of the
information transferred to the DBMS for use
in executing requests.

8. Support data validation-Most corporations
with highly transaction-oriented businesses (e.g.,
Public Utilities) require elaborate data valida
tion procedures. The DD JDS should provide
the facility to specify the validation requirements
for each data item specified and be able to pass
parameters to appropriate software modules
(which mayor may not be part of the DBMS)
which then actually perform the validation, and
produce error reports. By centralizing valida
tion procedures in this manner, greater control
over input can be realized as well as effecting
a savings in' terms of software development,
since each application will no longer be required
to develop its own validation routines.

9. Open-ended design-The design of the DDjDS
must be such that it allows for graceful expan
sion to satisfy new and varied requirements of
data users, and Data Base Management Sys
tems. The new and evolving nature of data base
technology dictates that any element of the
ICDB that is to remain useful over any ex
tended period of time must be designed so that
it can adapt to changing needs. For example,
should the need arise to support a second
DBMS there should be no problem of compati
bility. The open-endedness of design will have
insured against any such problem. (The next
section will indicate a design that can satisfy
these requirements.) Another example along
different lines might be when the need should

A Data Dictionary jDirectory System 1137

arise to include a new type of specification for
data (e.g., including data element names for a
new programming language), the DDjDS
should be able to accommodate the specifica
tions for it.

Data management system independence

Many corporations are currently faced with the
dilemma of choosing from among available data
management systems to satisfy functional require
ments of specific applications, while at the same time
realizing that they do not have answers to these press
ing questions.

• Can the data management system chosen be used
by all other applications that will need such a
system?

• Will the data management system chosen be able
to support the ICDB concept?

• Will the next data management system chosen be
compatible with the one currently being con
sidered?

The most perplexing aspect of these questions is that
there are no clear-cut answers. Nevertheless, one pos
sible solution may be by incorporating within the
ICDB design a software interface between the DDjDS
and the DBMS. The interface would be adaptable to
the requirements and formats of any DBMS. In es
sence what any DBMS requires in terms of data
specification is a data control block containing relative
displacement, access method and mode of representa
tion, among other things, in certain pre-defined for
mats. The interface would provide these control blocks
from the data available in the DDjDS. Thus, one'
need not worry about converting from one DBMS to
another in terms of converting data, but rather in
terms of adapting the interface. It should be noted
also, that to effect complete program independence
from the DBMS, it would be necessary to incorporate
into the interface a standard program. interface by
developing a language to be used in making requests
from the Data Bank. This second aspect is much more
difficult and complex than the first, since a DBMS also
comes with its own language to be used in making
requests. Thus the interface would also need the capa
bility to map from the standard language request to
the DBMS language request.

The contents of the dictionary j directory

The characteristics or attributes of data items stored
in the Data Bank make up the contents of the dic-

1138 Fall Joint Computer Conference, 1972

tionary/directory. In order to allow for maximum
flexibility and minimum redundancy in organizing
the DD/DS its contents may be divided into two
parts, variable and non-variable.

• Non-variable meta-data-This refers to attributes
which cannot change from one use of the data
element to another. A data element's name and
description, for example, would usually be non
variable.

• Variable meta-data-This refers to attributes
which can change for one use of the data element
to another. The representation (binary string as
opposed to character· string) of a data element
would be classified as variable.

By utilizing this dichotomy of meta-data, the DD /DS
provides data specifiers with the ability to define
similar data elements by specifying the attributes that
are similar only once and then defiriing the variable
characteristics. This referencing is then extended
within the DD /DS and minimizes redundancy by
storing non-variable attributes only once.

A ttributes to be collected

The exact list of attributes that will be collected and
maintained in the DD/DS largely depends on the rela
tive emphasis placed on either of the two obj ectives,
collection/ dissemination and standardization. Regard
less of which approach is taken, however, the following
classifications· of attributes of data must be addressed
at one level of detail or another.

1. Identification of data-In this category it is
necessary to record the varying nomenclature
used to refer to a data element. A DD/DS
should provide for specifying of an official name,
program language names, and synonym names.
In addition this section should include a textual
description of the data element to be under
stood by any user of the system. It is interesting
to find that most DD/DS also provide for a
rigorously structured technique to be used in
describing data elements. This description or
some part of it is then used as the official name.
One such notable technique is a language de
veloped at IBM, sometimes referred to as the
"OF Language". Specifications relating to the
security of data would also fall within the
general category of identification. It should be
noted that there are two types of security:
content security refers to security for access to
the values of a data element, and descriptive

security provides for security for accessing the
meta-data relating to a data element.

2. Source of data-This category of meta-data re
lates to the source of values for elements of
data. Data element values can be stored as
received or generated from other source data.
If values are obtained from source documents
these should be enumerated and identified.
Those responsible for the entries in source docu
ments should also be included to insure integrity
of data values at their source. In cases of
generated data, the algorithms or formulae
used to derive the data item in question should
be specified.

3; Type of data-There are basically two types of
data elements: those that measure or represent
amounts, and can be termed quantitative, and
those that tell something or contain qualitative
meaning and can be termed indicative. De
pending on the need for precise detail, this
category can be broken down into as many as a
dozen different sub-types within these two types.
Some examples are: codes, names, amounts and
dates.

4. Use of data-There is a wide variety of both
essential and non-essential attributes that fall
within this category. Some of these are where
used specifications, both internal and external,
and length and representation data. Other
attributes that might be included are the status
of the data element (e.g., proposed or approved)
and the names of programs which physically
utilize the data element.

5. Qualification of data-This category indicates
the exact circumstances or pretext under which
the data element is intended for general use.
The accuracy of quantitative elements would
be indicated and time dependencies such as
frequency of update might be included. Of con
siderable importance in the DD/DS would be
the accessing key of the record (i.e., the logical
unit of retrieval) in which this data element
appears. (The key may be the data element
itself, in which case either it is actually the
accessing.key or the file is inverted.) Edit masks
would also appear in this category, as well as
data validation requirements.

6. Relationships of data-In this category a
specifier of data would enumerate what relation
ships this data element had with others. Mem
bership in groups, arrays, sets, networks and
any other type of data structure would be
specified. In addition special relationships such
as precedence and coincidence (e.g., "condi-

tion: if data element A is equal to value X then
data element B must also be value X, or if in
order for data element B to contain a value
other than null, data element A must not be null"),
could be identified.

IMPLEMENTING A DDjDS IN THE CURRENT
ENVIRONMENT

The foregoing is a detailed statement of require
ments for a DD JDS that is designed to support the
ICDB concept. Two critical issues remain unsolved,
however. How would an installation go about installing
such a DD JDS and how would this lead in the direc
tion of the ICDB concept?

DDjDS as step one toward an lCDE

The DD JDS in conjunction with the DBA is the
logical first step for a corporation to take in beginning
to implement the ICDB concept. This concept is
manifested in treating data as a corporate resource to
be shared by all users. The clear specification of data,
ready access to such specifications and central adminis
tration of data using these tools are the necessary
prerequisites to sharing data between functional areas.
The ability to share data is clearly the first step toward
integrating data across functional lines.

DD j DS may be most justifiable in its own right

A more pragmatic reason for beginning to implement
the ICDB concept with the DD IDS is that in many
cases a DD IDS can prove to be cost justifiable because
of the immediate benefits that can be realized from it.
The degree to which these benefits are attainable in the
short range depend on the particular environment in
volved. Thus, in general terms, a typical large ED P
installation stands to benefit from a DD IDS in the
short range in the following areas.

1. Redundancy-The initial DD/DS will at least
uncover the instances of redundancy. Those
that are inadvertent in most cases can be elimi
nated immediately, while those that are techno
logical will usually be, at least temporarily,
tolerated.

2. Data transfer-The initial DD IDS will make
the process of transferring data from one func
tional area to another easier to accomplish. By
simply having clear data specification available
to both parties involved in the transfer of data,
the ability to effect these transactions will be
enhanced.

A Data Dictionary jDirectory System 1139

3. Locating relevant data elements-The initial
DD IDS should provide systems analysts with a
formidable tool in locating those existing data
elements which have relevancy to systems which
they are designing. This facility will address the
problem of inadvertent redundancy at its
source.

4. Documentation-Depending on the level of
sophistication, the initial DD IDS should provide
some documentation support to programmers
andlor analysts. One relatively simple design
installed in a manufacturing environment pro
vided for automatic generation of record layouts.

The data base administrator and the DDIDS

The DDjDS is primarily a tool for the DBA in
carrying out his duties and responsibilities. A full and
detailed description of the DBA and his function is not
proper in this place. What should be clear at this point,
however, is that as the DDjDS is being installed,
preparations should be made to establish the DBA in
his proper place. The initial task of the DBA will
largely be related to the administration of the DDIDS.
As the DDIDS evolves and grows into supporting the
full ICDB concept, the DBA and his functions will
evolve and expand in a complementary fashion.

Evolutionary development of the DD I DS

It cannot be over-emphasized that the initial DDjDS
is not the end but only a means to an end. The initial
DD IDS must have the inherent capability to evolve
into a fully grown DDIDS supporting an ICDB con
cept. The open-endedness requirement stressed at the
outset of this paper should insure that this capability
exists. There are at least two specific areas where this
aspect of the design can be taken into account.

1. File design within the DDjDS-the DDjDS
should contain files which are organized around
the concept of the data element. The ICDB
concept emphasizes the sharing of data. This is
accomplished by viewing data at its lowest
possible unit of significance, the data element.
To facilitate the evolution to support this con
cept the D D IDS should be designed and or
ganized to revolve around the data element.

2. DDIDS interfaces-The most important inter
faces that the DDIDS must support are to users
of data and to the DBMS. As the ICDB concept
evolves and comes to fruition, the users of data
will require different types of support. The user

1140 Fall Joint Computer Conference, 1972

interface with the DD/DS should be able to
accommodate these changing requirements.
More critical than this last interface is the neces
sity to support and interface with the DBMS.
This should be accomplished with the software
interface detailed in previous sections. What is
necessary in general in developing the interfaces
is to maintain the perspective of the ICDB
concept.

CONCLUSION

The central role that the DD/DS can take in an ICDB
environment has been illustrated and emphasized.
The contention has been made that the first step
toward realizing the benefits of the ICDB concept is
to install a DD/DS. It remains now for the vendors of
data base software to take the initiative and develop a
DD/DS that will meet these requirements and thus
assist the owners of data (the corporations) in utilizing
this resource to its fullest extent.

ACKNOWLEDGMENT

After the manuscript was completed, it was read by
Miss Donnie Simons, who helped to clarify thought
and improve language.

NOTE

Subsequent to the preparation of this paper, and
prior to its publication, IBl\1 announced an Installed

User Program (IUP) product entitled "Data Diction
ary /Directory". Further information is available in the
IBl\1 flier G320-1521-0.

REFERENCES

1 CODASYL SYSTEMS COMMITTEE
Data base task group report
April 1971

2 GUIDE SHARE
Requirements for a data base management system
November 111971

3 CONSTRUCTION MANAGEMENT SYSTEM
ACTION GROUP
Data base management system requirements
June 23 1971

4 K T SPENCER
Data validation system
Proceedings of GUIDE 33 November 1971

5 H N LIU
A file management system for a large corporate information
system data bank
FJCC Proceedings 1968

6 THE DIEBOLD GROUP INC
Organizing for data base management
Doc No 516 December 1971

7 R L ACKOFF
Management misinformation systems
Management Science December 1967

8 R V HEAD
The elusive MIS
Datamation September 11970

9 WOLLE
The large data base-its organization and user interface
Data Base Fa111969

10 D P MOEHRKE
Evolution of data base management at A 0 Smith
Proceedings of SIGFIDET Workship November 1971

Framework and initial phases for
computer performance improvement

by T. E. BELL, B. W. BOEHM, and R. A. WATSON

The Rand Corporation
Santa Monica, California

INTRODUCTION

Computer performance analysis often evokes an image
of a hardware monitor dictating a particular hardware
modification that doubles the system's capacity. In
fact, it usually involves measuring system performance,
but is not necessarily limited to the use of hardware
monitors, nor does it necessarily involve a hardware
modification. It also includes the use of such measure
ment data sources as software monitors, computer
accounting systems, sign-in logs, maintenance logs,
and observations from computer operators, system
programmers, and users. No specific improvement
modification (hardware, etc.) is dictated by the mea
surements; the analyst must (1) formulate hypotheses
about possible inefficiencies and/or bottlenecks in the
system by gathering and analyzing computer per
formance data and (2) suggest alternative system
modifications that will improve performance. Such
modifications may deal with computer hardware, but
they may also deal with computer software, operational
procedures, job scheduling, job costing, and any
system elements that directly or indirectly affect total
system performance. .

We suggest a hydrodynamic analogy as one way of
visualizing the alternatives open to the analyst who is
seeking to improve his system's performance. Consider
the computer system as a channel of certain capacity
through which a workload is flowing, retarded by
several obstructions in the channel, as in the left half
of Figure 1. Now suppose that the workload builds
and threatens to overflow the channel, as in the right
half of Figure 1.

In such a situation, three possible actions can keep
the workload from overloading the system.

1. Enlarge the channel, as in Figure 2a, by up
grading the computer to a more powerful model.

1141

2. Remove obstructions from the channel to in
crease channel capacity, as in Figure 2b. In
computer systems, this method involves making
modifications in computer system hardware,
software, and/ or operating procedures to in
crease system efficiency; it is often referred to
as "tuning" a computer system.

3. Reduce the workload flow, as in Figure 2c.

Each method has an appropriate context for applica
tion, e.g., if one has a strong requirement for processing
a larger, efficiently programmed, compute-bound work
load, then upgrading (2a) is necessary because tuning
a compute-bound system does not usually make an
appreciable difference. Often, however, tuning can
increase the flow of an I/O-bound workload enough
to meet the new requirements with the existing sys-

Original lor planned)
Workload

I ncreased (or octuo I)
Workload

Figure l-Hydrodynamic analogy: Situation

tem (2b). When computing is offered to users as a free
good,* situations exist where the workload can be de
creased by (1) instituting a direct-charging algorithm
or a compute-time rationing scheme, or (2) analyzing
application programs to increase their efficiency (2c).

These points are simple," but unfortunately not ob
vious in practice. There is a tendency to settle hastily

* A "free good" is a resource that has no cost to the user and is
unlimited in availability.

1142 Fall Joint Computer Conference, 1972

(0) Buy More (b) Tune the
System

(c) Reduce. the
Workload

Figure 2-Hydrodynamic analogy: Solutions

on either (2a) or (2b) , without much consideration
of alternative (2c). These cases result in either a non
solution that is at best technically interesting to
computer system tuners, or an expensive overkill. The
objective of a computer performance improvement
effort is to determine which areas will improve cost/
performance and then achieve the improvement.

OVERALL PROCEDURE

Common performance improvement procedures

After an installation decides that it should be con
cerned with performance improvement, the most com
mon step is to examine available software and hardware
monitors. Salesmen present their products, and one is
selected. It is procured and personnel are assigned to
begin measuring the system with the unfamiliar tool.
This is very expensive; monitors tend to be costly and
personnel must be diverted from other work to the new
activity. To make matters worse, the measuring process
usually severely disrupts machine operation. The
payoff for the expense is anticipated in the implemen
tation of a system modification leading to improved
performance. Unfortunately, this reward seldom ar
rives. Instead, the procedure resembles the flowchart
of Figure 3. Rand initially tried this procedure; but
like most installations that have remained in the field,
we modified our approach so that we could be effective
in our environment. Our work with other installations
indicated that this modified approach could be genera
lized into an efficient overall procedure, and that pro-

Choose a Perform Wonder what
monitor

.. ... some ---+ to do with
measurement the data

Figure 3-Common procedure

cedure has since been effectively applied several times
by personnel from both Rand and other installations.

Suggested procedure

The following phased procedure is suggested as an
efficient and effective approach toward improving the
performance of a computer system. The procedure,
summarized in Figure 4, is discussed below.

Understand the system. (phase 1)

The first phase of a performance improvement effort
involves understanding the particular computer system
in terms of management organization of the installation,

Understand
the

System

Test
Effectiveness

of
Modifications

Analyze

Operations

Formulate

Figure 4-Suggested performance improvement procedure

characteristics of the workloads processed by the
computer system, descriptions of the hardware con
figuration(s) and software programs in use, and infor
mation as to what computer-usage data are collected.

Analyze operations (phase 2)

The second phase involves the collection of more de
tailed data to analyze operations. These data, more
quantitative than the data collected in the initial
phase, provide an analyst with sufficient information to
analyze and evaluate the performance at most com
puter installations. In addition to analyzing opera
tions, data collected in this phase can be useful in re
viewing the operational objectives of the installation.
Such objectives may include rapid on-line response,

Framework and Initial Phases for Computer Performance Improvement 1143

low costs, flexibility, easy-to-use software, and good
batch turnaround. Because installation management
may not have well-defined operational objectives, the
analyst must define a set and enumerate their charac
teristics to assess the criticalness of inefficiencies and/or
bottlenecks that are indicated by this analysis.

For:m.ulate perfor:m.ance i:m.provement
hypotheses (phase 3)

Based upon system inefficiencies and/or bottlenecks
indicated in the analysis of operations (phase 2), hy
potheses about probable problems and possible cures
can be formulated. These should be specific and per
formance-oriented. Not

but

or

"It looks like we are I/O bound."

"Our CPU utilization is low, and the disk arms
appear to be perpetually jerking around. Perhaps
if we reorganize the locations of files on the disk,
we will lose less CPU time from programs waiting
for the disk arm."

"Our CPU utilization is low, but there does not
seem to be much disk-arm or channel contention.
Perhaps if we add more core, we could get a third
job into execution to soak up those CPU cycles
lost during other jobs' I/O operations."

Analyze probable cost-effectiveness of
improvement modifications (phase 4)

Before hastily gathering data to test a hypothesis,
it is important to analyze whether the resulting per
formance improvement would be worth the invest
ment. For example, consider the possible hypothesis:

"If we add another $60,000 worth of communi
cations equipment, we can probably reduce
response time from 2 sec to 0.1 sec on our job
query terminals."

Because a two-second response is probably acceptable
to practically all terminal users, it would be difficult to
justify the cost-effectiveness of such a hypothesis.

Test specific hypotheses (phase 5)

Although short studies (two or three days) usually
devote little time to this phase, the bulk of an exten
sive performance improvement effort is spent here.
Figure 5 suggests an ordered set of steps (including

Formulate
Specific

Hypotheses
To Test

Choose
Measurement
Tool, Design

Tests

Collect
Data

Reformulate Improvement Hypotheses

Implement Modifications

No

No

Figure 5-Suggested hypothesis testing procedure

feedback loops) to be performed in this phase of per
formance improvement effort. *

Implement appropriate combinations of
IDodifications (phase 6)

Several modifications are often simultaneously im
plemented because the effort required may be about the
same as the effort for only one. Care must be taken
that an installation can stand mUltiple changes with
out undue impact on production. Also, additional care
must be exercised so that modifications do not cancel
each other.

Test effectiveness of modifications (phase 7)

Utilizing the measurement tools, data-collection
techniques, and test designs used above in "Test
specific hypotheses" (phase 5), the effects of modifica
tions upon performance must then be tested. Modifica
tions may result in satisfactory improvements in per
formance, but often further modifications are neces
sary to achieve the desired effect. A recycling of the
process (starting in phase 3 above) will be required.

Initial phases

Although the suggested procedure includes all
phases of the performance improvement effort, the
remainder of this paper considers only the first three
phases-understanding the system, analyzing opera
tions, and formulating performance improvement
hypotheses. We discuss only the. initial phases for two

* For material on selection of measurement tools, see References
1-5; for evaluating hypotheses, see Reference 6, which explains
the use of accounting data.

1144 Fall Joint Computer Conference, 1972

reasons. First, the work required in these phases can
be generalized and applied to virtually all computer
installations-without respect to the type of computer
system used or the types of workloads processed.
Second, experience has shown these first phases to be
frequently slighted by crews eager to try a new measure
ment device. In contrast, later phases of the per
formance improvement effort cannot be so generalized.
They depend not only upon the results of the first
phases, but also on the particular types and configura
tions of the computer systems studied and the charac
teristics of the workloads processed.

PHASE ONE-UNDERSTANDING THE
SYSTEM

Initial data gathering is very important-whether a
performance improvement effort is conducted by in
stallation personnel or by outsiders. Because an analyst
from outside the installation is not familiar with its
objectives, workload, configuration, etc., he needs the
data to identify and work on the correct problem. An
analyst from within the installation also needs to
collect the data because his background knowledge
about some of the specifics is often inaccurate. The
following series of general questions include most of
the additional data requirements for an outside analyst.

These question have been assembled for the purpose
of providing general descriptive information about a
computer installation. The questions should provide
an analyst with sufficient information about the
computer system to initiate a preliminary study in
anticipation of performance evaluation and improve-

r

ment. The information requested by the questions
below is usually immediately available at every in
stallation, and should be gathered and recorded at the
outset of a performance improvement effort.

These questions comprise a "preliminary question
naire", to be distinguished from the "detailed question
naire" to be discussed in phase 2. The information re
quested is grouped into five categories: organization,
workload, hardware, software, and accounting.

Organization

Organizational information is necessary to provide
insight into why an installation is interested in ana
lyzing the performance of its computer system(s). This
information is also necessary to answer such questions
as "who answers to whom?" "who makes what de
cisions?" "whose approval is required for what?" and
questions related to the organization's operational

procedures. Questions (1) through (6) should aid In
determining this environment.

1. What are the computer center's operational
objectives (e.g., providing an on-line system
with one-second response time for text editing
and two-hour turnaround time on batch de
bugging jobs)?

2. What situation(s) has provoked a performance
improvement effort (e.g., users complaining
about poor response time for time-sharing jobs,
backlogs of work building up, budget cuts)?

3. What is the organizational position of the com
puter center with respect to the organization
that it serves (e.g., an organization chart)?

4. How are the managers, programmers, operators,
etc., structured within the computer center
(e.g., an organization chart)? How many sys
tems programmers, applications programmers,
operators, etc., are associated with the computer
center?

5. Is the computer center run under a "closed
shop" or "open shop" philosophy regarding
programming, or is there a mixture?

6. How many hours per day and week is the
computer system(s) operational (e.g., two shifts
per day during the week, and one shift on
Saturday)? How many operators per shift?

Answers to the above questions are imperative if an
analyst's work is to be relevant to the particular in
stallation. The answers largely define the areas in which
alternatives can be considered and, from the stated
objectives, indicate where effort should be concen
trated. In addition, an "outside" analyst needs this
information to determine with whom to speak on his
first visit; implied responsibilities can aid in inter
preting the comments of in-house personnel.

Workload

Workload information gives insight into some
computer system requirements and constraints. These
constraints concern the types of jobs that must be
processed (e.g., installations that perform much of tape
processing or other I/O-bound work often are restricted
to low CPU utilization). It is important to know the
types and quantities of work submitted to the computer
to assess performance in context with any idle capacity
or backlog. Also, it is important to determine how jobs
are scheduled and priorities assigned. This information
gives some idea of how much latitude system personnel

Framework and Initial Phases for Computer Perfor:wance Improvement 1145

have in scheduling for efficient job mix. Questions (7)
through (14) pertain to establishing the workload at
the computer center.

7. Have any job classes been established to classify
and group the workload?

8. What specific projects, programs, and personnel
use or request the services of the computer cen
ter? (Please include an approximate breakdown
of the number of jobs and related machine time
submitted to the computer center from the above
sources.)

9. Approximately what is the load in terms of the
number of jobs on each computer system at the
computer center (e.g., 10 percent CPU-bound
batch, 25 percent real-time, 40 percent code
check, and 25 percent I/O-bound batch)?

10. Does an established schedule exist for produc
tion jobs? If so, state times during which the
system is dedicated to production runs, and
state when it is available for other work.

11. How are priorities assigned to jobs?
12. What have been the general historical trends in

workload (i.e., job count, CPU time usage, I/O
usage)?

13. Does a backlog ever build up, or does a backlog
permanently exist? (Please explain in terms of
the number of hours, the priority, and the man
ner in which the backlogged work'is scheduled
and proeessed.)

14. Are there periods during which the computer
system is idle? (Please explain in terms of the
number of minutes or hours per day/week, and
the time during the day/week that idle periods
occur.)

Hardware

Information relating to hardware configuration is
very useful in gaining a sense of familiarity with the
computer system. The outsider's need for this fa
miliarity is obvious, but installation personnel often
are not familiar with the details of the configuration
either. Knowledge of the make and model of the com
puter system(s) is therefore also beneficial because
analysts involved with performance improvement can
review system specifications and capabilities from
literature. Information indicative of tuning already
performed at the computer center can be obtained
through questions relating to hardware modifications.
Questions (15) through (17) request information re
garding hardware description.

15. What computer system(s) is operated by the
computer center? (Plesae supply general hard
ware configurations for each system.)

16. On what dates have major modifications in
hardware configuration taken place, and what
were the modifications (e.g., IBM 360/50 to
IBM 360/65, additional core added)?

17. What additional hardware components are con
templated or needed at the present time?

Software

The bulk of desirable information regarding software
requires much time from the systems programmers, and
should be collected in the next phase. General informa
ti9n, though, is necessary in gaining an understanding
of the system. Such information is requested in ques
tions (18) and (19).

18. What computer software is used at the computer
center? (What operating system is used and
what version? What language processors are
available and what is an approximate percentage
breakdown of use by the programs? What major
utility programs are available from the vendor
and what utility programs have been written
in-house?)

19. What additional software programs are needed
at the present time? What software is contem
plated for future purchase? What software is
currently being developed in-house?

Accounting

Data generated by the accounting system of a
computer system may be the most important source
of information for assessing performance (unless a
software or hardware monitor is available). It is de
sirable to know what data are recorded by the ac
counting system and how such data are used. Even
tually, . the accounting log data may be analyzed to
measure and' evaluate the performance of the computer
system, but for the preliminary study, only questions
(20) and (21) need be answered.

20. How is computer usage reported? (That is,
assuming an accounting log of some type is
generated by the system, what measures of
computer usage are recorded?)

21. Is the computer a "free good" or are the users
charged for computer usage? If users are charged,
what charging algorithm(s) is used? If the

1146 Fall Joint Computer Conference, 1972

computer is a "free good", is usage budgeted
to/by department, projects, etc.?

PHASE TWO-ANALYZING OPERATIONS

In addition to the information supplied in response
to the "preliminary questionnaire" (phase 1), more
detailed data are necessary to analyze computer'
system performance. These data are less descriptive
in nature and largely quantitative.

At some installations, these detailed data exist only
as "feelings" that managers have for their system's
performance. Unfortunately, these feelings are not
very accessible to others because they exist only in
the minds of the managers. The press of day-to-day
problems can easily distort such intuitive data to be
more reflective of odd situations than normal ones.
Even if an accurate feel is obtained, a manager will
have difficulty maintaining its accuracy because of the
ever-changing nature of the environment.

An o~ganized list of data-collection tasks from which
an appropriate subset (for a particular installation)
can be taken is presented. The most cost-effective set
of data collection tasks for a particular installation may
include some not taken from the suggested list. How
ever, the list provides an example of the detail of data
collection required. The data collection tasks some
times appear more onerous than they are. However,
they do require a significant effort, which should be
justified.

These data-collection tasks are structured in the
form of a "detailed questionnaire", and deal specif
ically with the topics of operational, system, and job
characteristics, as well as current measurement and
evaluation activities at an installation.

The information requested by the questionnaire
should be available either in the form of (1) direct
answers from qualified personnel at. the installation,
or (2) summaries of accounting records . and/or reports
on computer usage, computer operations, etc.

Data of these types are necessary to analysts work..,.
ing on the performance improvement effort. However,
the data are also necessary· to installation management
for control and improvement of operations on a con
tinuing basis. Because of this latter need, quantitative
data of. these types should be maintained· in an up;..to
date manner in order to continuously re-evaluate
earlier decisions.

A "detailed questionnaire" is presented below. It
does· not attempt to ask for all possible information
regardip.g system performance; however, it is exhaustive
enough that an appropriate subset should provide

sufficient information to analyze and evaluate the
performance at most computer installations.

Operational characteristics

1. Determine (from interviewing operators) what
operational task is considered the most impor
tant in maximizing throughput, responsiveness,
and/ or efficiency of the computer system (e.g.,
keeping the largest possible number of jobs in
core, maintaining control over cards, keeping
tapes hung).

2. List any peculiar or extraordinary actions taken
by operators to increase throughput.

3. Determine (from interviewing the head of opera
tions) how critical good operators are to through
put.

4~ Determine (from interviewing the head of opera
tions) what the most common operator errors
are, and what effect they have on system per
formance.

5. Determine (from interviewing operators) the
extent to which the following are done:
(a) Detailed scheduling of jobs;
(b) Pre-mounting of tapes and/or disks;
(c) Talking to users;
(d) Handling many cards;
(e) Responding to commands from the console;
(f) Documenting problems noted by operators.

6. Determine (from interviewing the head of opera
tions) how much influence on-line jobs have on
operations and throughput.

7. Determine (from interviewing a few major
users) how adequate turnaround is for batch
jobs and how adequate response time is for on
line jobs. Obtain specific estimates.

8. State the number ofthnes the operating system
is loaded on an average day.

9. What average amount of time does it take from
the . beginning . of a dead-start until normal
operations are under way?

10. State the number of hours that the system is in
each of the following states for an average week:
(a) System operational in native mode.;
(b) System operational in emulation mode;
(c) System operational in simulation mode;
(d)· System idle;
(e) System undergoing preventive maintenance;
(f) System down-hardware failure;
(g) System down-software failure.

11. State how classified or sensitive jobs aresched
uled.

Framework and Initial Phases for Computer Performance Improvement 1147

12. State the number of different output forms that
are used, and how often the forms are changed
during the day.

13. State the number of extra, high-priority jobs
that require special scheduling each day. State
approximate computer resources used by each of
these jobs.

System characteristics

1. Generate a histogram of CPU utilization* over
a two-day span, with each period approximately
one hour long.

2. State what CPU utilization is averaged over a
month, for each of the last two months.

3. Generate histograms of the average number of
jobs in core and the number of I/O operations
performed per second (or I/O second) over a
two-day span, with each period approximately
one hour long.

4. State how much use is made of disk storage as
compared to tape storage for:
(a) Temporary (scratch) files;
(b) Program storage;
(c) Short-term data storage;
(d) Long-term data storage;
(e) Working storage when doing sorts.

5. Give a diagram of the hardware and its inter
connections for each computer system in use.

6. Draw core maps.** Or, for any system on which
this is not possible (because of· relocation or
other problems), give a chart showing on-time
and off-time for each job and/or job step. The
core maps (or chart) should cover a two-hour
period at morning start-up, and a two-hour
period during the middle of the day. Include
(for each job on the core map) the CPU time,
the number of I/Os (or I/O time), and the core
requested and/or used.

7. Determine (from interviewing the chief systems
programmer) what appears to be the chief
limiting resource (bottleneck) in obtaining more .
throughput (e.g., core, disk space).

8. Determine (from interviewing the chief systems
programmer) what elements of the system appear
least used.

9. Determine (from interviewing individual sys
tems programmers) how much of their time is

* The appendix provides an example of such a histogram.
** The appendix provides an example of a core map.

spent on each of the following efforts:

(a) Solving system catastrophies caused by the
operating system;

(b) Aiding users to get jobs in the system and
to interpret abnormal output;

(c) Maintaining old applications programs;
(d) Maintaining and developing new applica

cations programs;
(e) Maintaining old on-line systems;
(f) Maintaining and developing new on-line

systems;
(g) Altering software to improve throughput

without adding new capabilities;
(h) Responding to changes suggested by the

manufacturer;
(i) Other (please specify)

Job characteristics

1. Generate two frequency charts of CPU usage
per job from two months' data-generate one
chart for jobs run during prime shift and one
for jobs run during off-prime shifts.

2. Generate a frequency chart of the number of
tapes used per job, and another for the number
of disk files· used per job (both over a week's
time period).

3. State the percentage of jobs that perform a
compile.

4. Generate a chart over a typical time period with
the following data for each language used:
number of jobs run, CPU time used, and the
number of I/Os (or I/O time).

5. State what portion of jobs are classified or sensi
tive.

6. State the percentage of total CPU time used by
production jobs.

7. State the required response time for real-time
or on-line inputs.

8. Generate a ·chart of the 10 or 15 largest jobs
(with respect to CPU seconds used) processed
during the prime shift of each day· in a given
week. Generate a similar chart for the off-prime
shifts for each day in the same week. For each
job, give the elapsed time on the system, and
the I/O usage.

9. Generate similar charts requested in (8); but
generate them for the 10 to 15 largest jobs with
respect to I/O usage.

10. State the inter-arrival characteristics for real
time or on-line inputs (number per hour, etc.).

1148 Fall Joint Computer Conference, 1972

11. State the reasons for which jobs are being run
on real-time or on-line systems (instead of
batch). That is, why is the quick response
needed?

Current measurement and evaluation activities

1. State how data from the following sources are
used to evaluate performance:
(a) Accounting data;
(b) Hardware monitors;
(c) Software monitors;
(d) Other sources.

2. State the exception reporting used to identify
abnormal jobs· (e.g., a list of jobs requesting
more core than allowable, console logs, trouble
lists).

3. State how software andlor hardware modifica
tions are evaluated for their effect on system
performance.

4. List all internal documentation that exists re
garding system modifications and related effects.

5. What specific data obtained from either the
accounting log (or facsimile) are used to indi
cate system performance?

6. What summary reports (daily or monthly) are
produced from the system accounting log?

7. List the techniques employed to help improve
user Iprogram efficiency.

Adapting tasks to a particular installation

Because different computer installations use dif
ferent computer systems, operate under different sys
tem and operational procedures, and process different
types of workloads, modifications to the above tasks
may be required when using such a "questionnaire
approach" for a particular computer installation.

In practice, we suggest that the detailed question
naire not be used until the information implied in the
preliminary questionnaire is known. The analyst can
then use this information to modify some detailed
questions after picking the ones that apply tothe par
ticular installation. Such modifications might include
the deletion, addition, or modification of some ques
tions. An illustration of such modifications is given in
the following example:

Suppose that an installation uses an IBM 360 series
computer with multiprogramming. In such a situation,
task 8 under Operational Characteristics (State the
number of times the operating system is loaded on an
average day) would be modified to give information

about the number of times the operating system had
to be reloaded, as opposed to the number of times that
the job queue had to be reloaded in addition to re
loading the operating system. This question would be
modified to say: State the number of "warm start
IPLs"*and "cold start IPLs" on an average day.

The detailed information obtained in this phase is
very important in the performance improvement ef
fort; without it, hypotheses about how to increase
performance become stylized statements only infre
quently relevant to specific conditions. Because changes
in a system and its load are continuous, data must be
constantly revised if a high level of performance is to
be maintained in this dynamic environment.

PHASE III-FORMULATING PERFORMANCE·
IMPROVEMENT HYPOTHESES

The procedure outlined above indicates that hy
pothesis formulation should follow analyzing opera
tions. This section suggests methods of analysis and
describes some general hypotheses that might be ap
propriate in particular problem situations.

Analysis

The transition from detailed reports to hypotheses
is the most difficult phase of the improvement effort.
The items in the "detailed questionnaire" are designed
to provide reports for this phase. The analyst may use
any of several approaches to generate hypotheses,
examples of which are given later. Of the five possible
approaches explained below, none is the "Eureka"
technique, in which the analyst simply stares at the
data until suddenly, some basic truth becomes ap
parent and he shouts "Eureka, I have found it!" This
technique is appealing, but the five listed below have
been successfully applied far more consistently.

SiInilar situation identification

The route to a valid hypothesis leading to system
improvement is usually marked by ill-formed and
incorrect hypotheses and false assumptions. The analyst
who has generated successful hypotheses in the past
has an advantage because he understands the ap
propriate detail in which to state hypotheses. In ad
dition, his experience enables him to pursue those
hypotheses most likely to be true in his particular

* Initial Program Load.

Framework and Initial Phases for Computer Performance Improvement 1149

situation. If the similarity between the present and
former situations happens to be great, the analyst
need only note the similarity to regenerate the old,
successfully applied hypotheses. After enough diverse
experiences, the analyst may be able to immediately
specify a small number of hypotheses, with a very high
probability of being correct on one or more.

This approach for generating hypotheses is most
fruitfully applied by analysts with extensive experi
ence. However, even the novice may be able to use it
by obtaining his experience vicariously through reading
other analysts' reports and by attending professional
meetings at which such experiences are presented.

Outlying value discovery

The frequency distribution of job CPU time is.
usually very skewed, with a long tail containing a few
high values. These values appear insignificant in
comparison with the many instances of "typical"
values. This can easily deceive an analyst into be
lieving that the data are uninteresting, and that other
facets of a system should be examined. In many cases,
the analyst will have been led away from an important
system characteristic; he will have neglected to c;xamine
the few, important outliers.

Those few jobs at the tail represent only a small
subset of jobs submitted, but they are exactly the ones
deserving special attention. In many cases, we have
found that less than 5 percent of jobs use more than
30 percent of a system resource. This is very fortunate
because only a very small, manageable population
need be considered in generating hypotheses.

The above example is only one case in which outliers
need special attention for hypothesis generation. Any
outlying value-CPU utilization, residency in core
system downtime, I/O distribution, or other per
formance indicator-should be ignored only after it
is thoroughly explained. Any residual uncertainty is
an indicator that important hypotheses may exist.
The analysis leading to uncertainty resolution about
outliers can be one of the most successful analysis
techniques because outliers are so easy to discover.

Pattern detection

Detecting a pattern in a performance variable over
time is more difficult than simply discovering that a
group of values is distinctly different from the rest.
Common types of patterns in computer performance
analysis are cyclical and trend behavior.

Plotting is a powerful technique because it allows

the analyst to . quickly grasp a large mass of seemingly
unrelated data. The key to successful graphing is the
selection of both a time scale and, through hypothesis,
the data points to plot against them.

Long time periods may be useful when examining
workload fluctuations. For example, many computer
shops have a periodic workload (in the form of routine
reports) that must be produced for normal control in
the organization. If this behavior is suspected, then
plots of backlog and CPU utilization by day of the
week for several months should show a sawtooth form,
with the utilization rising a day or so before the back
log. Once it has occurred, the backlog may continue
to rise until the weekend allows the shop to catch up
when the process cycles once again.

A much shorter period may be appropriate in other
investigations. After using a hardware monitor, one
investigator reduced his raw data by taking a computer
driven plotter and preparing time-sequence plots of
millisecond time intervals for some of his data. He
found the inter-job time period interesting. After
plotting several hundred intervals, he could show that
the operating system inefficiently used resources
between jobs. This, in turn, led him to examine disk
assignments, the static contents of core memory set
aside to hold system subroutines, and the accounting
and· charging algorithm, which needed a constant to
account for the five seconds lost between jobs to keep
track of all wall-clock time when the machine was
saturated.

Although many statistical techniques can be used to
analyze a time series, these are more appropriate for
hypothesis testing than analysis for hypothesis genera
tion. In general, the objective in detecting patterns in
computer performance analysis is to generate hypoth
eses about the causes of patterns rather than quanti
fying characteristics. The analyst should be concerned
with detecting important patterns, hypothesizing
causes for them, and determining the validity of the
hypotheses.

Although all outlying values should be explained,
the analyst cannot expect to understand all patterns
because some may be caused by randomness over a
short period. However, distinct patterns over any
time period should usually be either explained or
examined over an expanded data base.

Correlation detection

Detecting a pattern in a single variable is often done
merely by plotting the variable's value over time.
Detecting correlations between two or more variables

1150 Fall Joint Computer Conference, 1972

is a more formal process in which the analyst must be
checking for their existence. This usually occurs after
the analyst suspects some correlation, checks its exact
nature, and then generates hypotheses that might
explain the precise relationship.

Although the existence of a significant correlation
may lead to important hypotheses, analysts often have
a tendency to assume that a correlation implies a
cause-effect relationship. Because correlations can be
indirectly caused-or simply spurious-analysis of the
correlation's source must be pe~formed very carefully.

For example, there may be a strong positive cor
relation between a job's memory requirements and its
turnaround time. The analyst might therefore hypothe
size that the system has inadequate memory. However,
the cause might simply be a scheduling algorithm that
discriminates against jobs with large memory needs.
The system might, in fact, be processor bound, but the
detected correlation could lead the analyst away from
the fact.

Because correlation detection is one of the more
difficult analysis techniques, it should be used with
discretion. Other approaches should be attempted
first because nearly all hypotheses can be generated
through other analysis techniques.

Inconsistency identification and resolution

The identification and resolution of inconsistencies
in raw data are conceptually very simple, but this
technique is less widely used than it should be. It
appears at the end of this list of increasingly difficult
techniques because it is so difficult to convince analysts
to use. Although rigorous checking of all relationships
in data is the most reliable analysis technique for
generating hypotheses, it appears most fruitless be
cause it seems to involve verifying obvious relation
ships. These obvious relationships are usually correct;
however, the few incorrect ones are clues to hypotheses
that improve understanding of a system. Adding the
hours allocated daily to each activity may show that
an installation has either an underused machine or one
that is allocated 110 percent. Comparing machine
utilization indicated by hardware monitors, software
monitors, accounting systems, and metered hours may
show that different definitions for "utilization" are
implied, and that an analysis of the differences can
aid in generating hypotheses.

A common admonition in test equipment use is
"when all else fails, read the instruction manual." A
computer system analyst should check relationships
between (1) data collected from different sources, (2)

job-related and system-related measures, (3) measure
ments that should be the same, and (4) expected and
measured data. When all else fails, identify and re
solve inconsistencies between data.

Sample hypotheses

The sample hypotheses below are purposely con
structed to apply to a large number of systems-in
contrast to a detailed set of specific hypotheses that
would need generation in an actual performance im
provement effort. The hypotheses are organized around
the three basic methods of improvement suggested by
the hydrodynamic model in the Introduction: reducing
the workload, tuning the existing system, and up
grading the computer system. A number of sample
hypotheses are given for each of the three basic methods
of improvement; however only the first two for each
method are discussed in this paper. (The remaining
hypotheses are listed, but not discussed.) Detailed
discussions of all sample hypotheses are included in
Reference 7.

Reducing the workload

As mentioned in the Introduction, reducing the
workload keeps the system from overloading. The
following five hypotheses identify problem areas as
sociated with overloaded computer systems· and indi
cate possible solutions.

Hypothesis (1): A Free Good Approach Has Led to
Large Demands.

Given a zero price for computing, virtually any
computing facility will be saturated. Almost any prob
lem that an individual conjures up and programs is
worth the zero cost to run it. Therefore, load submittal
is limited only by the generation of code. Because
programmer time is always scarce (at least to the pro
grammer), choices between human-debugging time and
machine-debugging time are resolved in favor of having
the machine do it. This sets the maximum submittal
rate considerably above the maximum processing rate,
except in situations where machine resources grossly
exceed human resources.

Too often, a small number of users constitutes the
bulk of resource misuse. This has led many installa
tions, particularly universities, to establish a "ten
most wanted list" of users who are the worst offenders.

Framework and Initial Phases for Computer Performance Improvement 1151

They are encouraged to improve their code and reduce
the number of submissions.

Ideally, a tradeoff analysis should be performed to
determine at each instant whether a job is worthwhile
and whether more programmer time should be devoted
to reducing machine resources required. This "ideal"
situation, though, would mean that a vast majority of
programmer time would be spent performing tradeoffs
instead of programming. An alternative is to perform
full-cost pricing of machine resources to keep people
aware that a computer is not a free good and to provide
information to aid in making informal tradeoff analyses.

Hypothesis (2): Unconverted Workload Causes
Inefficient System Use.

The recent introduction of a new type or generation
of computing system combined with a step increase in
demand may be a particularly strong clue to the analyst.
Users may be thinking of the new system as merely an
extension of the old one. Techniques from a previous
generation's system may be extremely poor when
applied to new equipment. Inappropriate use of I/O
facilities, memory usage, and instruction mixes may
cause gross inefficiencies. Simulation and emulation of
an old system on the new one are the most obvious
sources of inefficient machine use, but they may be a
cost-effective alternative to a wholesale conversion
effort.

The new system may allow a repressed workload to
appear, but inappropriate machine use is a more com
mon cause of a suddenly increased workload. Hy
potheses about programming techniques often require
great effort for validation, but their effects may justify
the effort.

Hypothesis (3): Unlimited "Rights" Lead to Unlimited
Demand.

Hypothesis (4): Unneeded Real-Time Systems Consume
Scarce Computer Resources.

Hypothesis (5): Organizational Problems Compromise
Efficiency.

Tuning the systeIn

The structure of modern computers makes their
performance quite susceptible to a variety of seemingly
minor details about hardware, software, load, and
operating procedures. Tuning is the process of changing

these details to make relatively large improvements in
performance. Although the performance increase from a
single tuning change is often on the level of one per
cent, a sequence of such changes can lead to con
siderable increases in performance.

Hypothesis (1): Apparent Minor Actions by Users are
Having Strong Adverse Effects.

Tuning can often be performed by influencing user
submission of jobs. This can involve actions more de
tailed than the gross effects referred to in the first
hypothesis under "Reducing the Workload." For
example, if users have a tendency to submit heavily
I/O-bound jobs, a large increase in system performance
is often achieved by informing users that larger block
ing factors for I/O can increase throughput on the
system. Users are usually quite reasonable; when in
formed of the effects of easily performed actions, they
often change to operate in the desired manner. This
change is often accelerated by charging schemes or
priorities that penalize bad choices. Similarly, bad
effects may be caused by large core requirements.
Again, informing users of problems often solves the
problems without expending funds for hardware. Be
cause of the large leverage that exists for changing the
system through informing users, hypotheses regarding
workload characteristics should be considered before
others. Information about workload characteristics
and interviews with several users often provide ade
quate information for determining the validity of these
hypotheses once they are made.

Hypothesis (2): Scheduling by Shift has Compromised
Multiprogramming Capabilities.

Hypotheses regarding external scheduling usually
involve the characteristics of the mix of jobs submitted
to the machine. In some installations, only test jobs
are run during prime shifts. These jobs tend to have
heavy I/O activity. At night, the CPU-bound jobs
are run, taking up large amounts of core and executing
for long periods. The result may be a machine that is
inefficient because of I/O boundness during prime shift
and CPU boundness in the off-prime shift. Hypotheses
regarding this can be checked simply by looking at the
CPU and I/O activity per job during the two relevant
periods.

Hypothesis (3): Inappropriate Short Sequences of Jobs.
Compromise Multiprogramming Capa
bilities.

1152 Fall Joint Computer Conference, 1972

lfypothesis (4): Inappropriate Static Internal Sched
uling Priorities Compromise Efficiency.

Hypothesis (5): Inappropriate Dynamic Internal Sched
uling Priorities Compromise Efficiency.

Hypothesis (6): I/O Contention for a Specific Device
Slows Processing.

Hypothesis (7): Inadequate Core Restricts I/O Overlap.

Hypothesis (8): Inappropriate Operating System Options
Reduce System Performance.

Hypothesis (9): Insufficient Peripheral Capability Causes
a Bottleneck.

Hypothesis (10): Excess Peripherals Increase Cost.

Hypothesis (11) : Unplanned System I nitializations are
Wasting Processor Capabilities.

Hypothesis (12): Special Requirements Cause Initializa
tions that Waste Pro<;essor Capa
bilities.

Hypothesis (13): Operational Problems are Compro
mising Efficiency.

Upgrading the computer systeIn

We now discuss the maj or increases in system re
sources that are involved in upgrading a computer
system. The following hypotheses indicate problem
areas that imply upgrading the computer system as a
primary alternative solution.

Hypothesis (1): Inadequate Software Resources Cause
Overuse of Hardware.

Extremely high CPU utilization and a backlog
usually indicate that a major acquisition must be
undertaken unless requirements can be reduced through
a reduction in jobs submitted or through an improve
ment in coding. Excess I/O capacity, when combined
with high CPU utilization, often is an indication that
different programming techniques should be employed.
Different compilers, languages, or improved code often
help avoid costly equipment purchases.

Hypothesis (2): A Computer System is CPU Bound and
Contractual Restraints Prevent U p
grading to a Different System.

Where heavy CPU usage is encountered, additional
capability can sometimes be obtained economically by
upgrading from a uniprocessor to a multiprocessor
system without appreciable increments in I/O re
sources. This option is particularly attractive when the
installation, through such contractual restraints as
ownership or long-term lease, cannot economically
upgrade to a different system but can augment its
processor capability through addition of another CPU.
Multiprocessors often have only a hypothesized ability
to handle the load to which they may be subjected
often a year or two in the future-because other parts
of the system may become limiting with the augmenta
tion of the CPU resource. Such hypotheses must be
carefully evaluated by predicting trends in load compo
sition and comparing them with supported multi
processor options and realized performance.

Hypothesis (3): A n Odd Category of Jobs is Overloading
the System.

Hypothesis (4): Workload Reductions and Tuning Ef
forts have been Exhausted, and the
System is Still Overloaded.

Caveat

The hypotheses may imply that they should all be
applied to each installation. Even preliminary con
sideration of such hypotheses must be considered within
the context of the installation. Special conditions
specified by higher level management (such as im
mediate turnaround for certain jobs) often mean that
an installation operates in a manner that in other cir
cumstances would be considered totally inappropriate.
However, because situations differ and individual
modes of management vary from manager to manager,
a variety of operational techniques can be employed to
achieve operations, at any individual installation, that
are totally appropriate to the management of that
installation.

For example, one installation was using third-genera- '
tion equipment in a distinctly second-generation
manner. The utilization of the high-powered CPU was
below 30 percent and all output went to tape to be
printed offline. On the surface, this appeared to be a

Framework and Initial Phases for Computer Performance Improvement 1153

highly inappropriate way to use the machines, but a
deeper analysis indicated that it was appropriate for
this particular situation. The environment dictated
that huge amounts of printing be done. As a result,
the off-line printing of tapes on a smaller machine was
justified in order to unload the higher-powered CPU.
This CPU, on the other hand, could not be replaced
with a slower machine because the data-transfer rate
on slower machines was inadequate to handle the
massive amounts of data passing between tape and
core. Because of the recent acquisition of this third
generation equipment, programs remained in their
second-generation form and were slowly being revised
to reflect third generation operating characteristics.
There was a valid reason for this: the operation of the
entire organization depended on reliably providing
management with information for which the installa
tion was responsible.

This installation was in a transitory period between
second- and third-generation systems and was know
ingly sacrificing operating efficiency in order to achieve
higher-level management objectives. As a result of this
environment, many of the above hypotheses would be
inappropriate, and investigating their validity would
be a waste of time, probably alienating operating
personnel.

The most common indicator of performance is CPU
utilization. If CPU utilization exceeds 70 percent, the
prima facie assumption is that operations are reasonably
well tuned. On the other hand, if CPU utilization is
below 30 percent, the assumption is that operations
are out of control. These rules of thumb are probably
wrong as often as they are appropriate. An installation
that reports 90 percent CPU utilization may be
achieving this goal only by giving unacceptable turn
around to users and byhaving poorly programmed code
running on the machine. On the other hand, an installa
tion with low CPU utilization may be fulfilling manage
ment objectives in the only way possible. One of the
more common instances of this is in the realm of highly
reliable systems that use multiprocessors. Multi
processors seldom come with slow-speed CPUs; if the
reliability of a multiprocessor is needed, the installa
tion must go to a higher-speed CPU.

In this area, rules of thumb must be surrounded with
so many restrictions and additional statements that
they become virtually useless. Experience in looking
at a number of installations is a necessity for using
quantitative data to determine "goodness" or "badness"
of operation. This experience can be gained through
discussion with personnel at other installations or by
actually visiting them. Professional organizations often
provide a medium for information interchange that can

enable an installation to achieve the collective experi
ence necessary to identify and improve its weak spots.

LATER PHASES

Based on the results of the first phases, the analyst
can become far more specific in terms of assessing the
overall operation of a computer installation and iden
tifying possible problems and/or bottlenecks in system
performance. It is then appropriate for him to consider
carefully the details of the current situation and p~o
ceed to later phases. Because the first two phases
(understanding the system and analyzing operations)
assume no information, a common procedure is pos
sible for nearly all situations. Because hypothesis
formulation is dependent on information obtained in
the first two phases, only indicative hypotheses were
given. The remainder of the process is so dependent
on the first two phases that each phase is virtually a
field of its own.

Special tools (e.g., hardware monitors, special soft
ware monitors) are often needed to perform certain
types of data collection in later phases of the process.
When this is the case, an installation' may prefer to
hire an outside organization to assist it. Even the most
competent outsider, however, will usually not be
familiar with all the details of a particular installation.
In-house personnel should actively participate in a
performance improvement effort and not leave de
cisions on procedures of testing or system modifica
tions to an outsider, particularly a vendor of the in
stalled system.

The objectives of this paper are to introduce a useful
framework and to provide specific suggestions for
beginning a performance improvement effort. Even the
most impressive measurement tool is useless if applied
to the wrong problem. The framework and suggestions
about the first three phases are presented to help
analysts direct their work to fruitful areas in the later
phases.

REFERENCES

1 T E BELL
Computer performance analysis: measurement objectives
and tools
The Rand Corporation R-584-NASA/PR February 1971

2 P G BOOKMAN B A BROTMAN K L SCHMITT
Use measurement engineering for better system performance
Computer Decisions Vol 4 No 14 April 1972 pp 28-32

3 L E HART G J LIPOVICH
Choosing a system stethoscope
Computer Decisions Vol 3 No 11 November 1971 pp 20-23

1154 Fall Joint Computer Conference, 1972

4 K W KOLENCE
A software view of measurement tools
Datamation Vol 17 No 1 January 11971 pp 32-38

5 D W WARNER
Monitoring: a key to cost efficiency
Datamation Vol 17 No 1 January 11971 pp 40-42+

6 R A WATSON
Computer performance analysis: applications of accounting
data
The Rand Corporation R-573-NASA/PR May 1971

7 T E BELL B W BOEHM R A WATSON
Computer performance analysis: framework and initial
phases for a computer performance improvement effort
The Rand Corporation R-549-PR August 1971

APPENDIX

100

C
CIl 80
~
CIl
Q.

60
c:
.~
(;
.~

:;
:::> 20 a..
u

Time (hr)

Figure 6-Processor utilization histogram

c 300 t
.~
o
u
o

....J

~
o
u 200 I-

,g,g
00 ..,..,

100 ~~~f~l~~%~~{~~~~t~~IH~~{t~l~¥1~I.~t~~§~~!&{J{~~~~i~~~~~t~mIJJ.i~t~i~~{[:;;;~Wf~@

o l"t'!illlfi~~~;I.~\f.lflf~~I~,J~i~
o 200 400 600

Time

Figure 7-Core map

Core complement policies for
memory allocation and analysis *

by STEPHEN R. KIMBLETON

The University of Michigan
Ann Arbor, Michigan

INTRODUCTION

The increasing availability of hardware and software
monitors facilitates the measurement of computer
systems. The effective utilization and interrelation of
these measurements is increased by the development of
suitable system models. Model construction, in turn,
requires a careful identification of the type of informa
tion which the model is to provide.

A primary objective in modeling computer systems is
the prediction of system performance as a function of
the various policies which may be used to allocate
system resources. The two primary resources of a
computer system are the CPU(s) and the memory
hierarchy (MH). CPU allocation policies have been
extensively studied3,l1 as have memory management
policies for two level virtual memory systems.I,5,6,IO
However, allocation policies for a multilevel MH having
three or more levels have received relatively little·
attention.2 ,15

This lack of attention would appear to be at least
partially due to the fact that although allocation in the
first two cases was understood to fall in the domain of
the operating system (subject to policy constraints
established at system generation time by its designers),
control of the allocation of information over a multi
level MH was divided between the operating system
and the user. For instance, in most virtual memory
computer systems, the operating system controls
migration among executable memory (hereafter re
ferred to as core) and the fastest secondary storage
device while the user is responsible for controlling the
allocation and migration of information among the
various remaining levels in the memory hierarchy.

* This research was partially supported by the Office of Naval
Research, Information Systems Program under Contract NOOO-
14-67-A-0181-0036 (NR 049-311).

1155

The development of a policy for the efficient alloca
tion and migration of information over all levels in the
MH requires knowledge of the "state" of the system in
terms of the requirements of the other concurrently
executing processes. Since the programmer does not
usually have access to this knowledge, it follows that
any general solution to this problem must be imple
mented within the system.

Current policies for migration and allocation of
information over an lVIH with three or more levels are
multiple stage policies. I3 That is, the memory manage
ment algorithm first migrates information from core to
the . next fastest level in the memory hierarchy. Pro
vided a block of information remains unreferenced for a
sufficiently long time at this level, it is then migrated
down to the next level, etc. It is natural to seek a
Single Stage Memory Policy (SSl\1P) in which in
formation is automatically migrated to an appropriate
level in the NIH upon its ejection from core. Such
policies would preclude the need for frequent retrans
mission of infrequently used information.

In this paper a single stage policy for the allocation
of information during the lifetime of a process executing
in a paged environment is developed. This policy is
shown to be optimal for the case of a single process
executing in isolation whose reference string can be
characterized in terms of a semi-Markov process. It
will be apparent, from the development that the results
remain valid provided the sequence of return times to
each page constitute a sequence of independent and
identically distributed random variables. The form of
the policy permits a natural extension to the case of
multiple concurrently executing processes whose in
dividual reference strings may not be semi-Markov
processes.

The results obtained permit comparison of actual MH
costs incurred during execution of a process against
those which would prevail if the optimal policy were

1156 Fall Joint Computer Conference, 1972

implemented. This allows one to examine the efficiency
of the memory migration policy currently being used.
Performing this comparison requires the gathering of
certain data on system performance which can easily be

f ·t 14 obtained through the use of a good so twate mom or.

PROGRAM BEHAVIOR

In Reference 15 the optimal assignment of equally
sized information blocks to the MH for a file system is
discussed. The necessary extensions to treat unequally
sized information blocks are given in Reference 2. The
authors appear to be primarily con~erned with the
techniques necessary for handling rather large blocks of
information and therefore feel justified in modeling the
reference string of these blocks as an independent trials
process. Consequently, they are able to apply tech
niques related to mathematical programming in order
to obtain their results.

Both empirical and theoretical results indicate that
the independent trials assumption is untenable when the
page is taken as the basic information block.1•6 Con
sequently, we are led to the following three assumptions
describing the process and its relation to the MH.

ASSUl\IIPTION AI: The page is the basic unit of
information transfer and the
page reference string (PRS) is
an ergodic stationary semi
Markov process (SMP),16 with
transition matrix P and holding
time matrix H. The basic unit
of time is the interreference time
to executable memory.

ASSUMPTION A2: A process has Q pages which can
be distributed over M + 1 levels
in the MH labelled 0, ... ,M of
which only memory level 0 is
executable. To denotes the time
between successive references to
executable memory and T j de
notes the time required to trans
fer a page between core and
memory level j. The cost per
unit time of storing a page at
level j is denoted by R j • We
assume Ro> Rl > ... > Rm and
To<T1<··· <Tm •

ASSUMPTION A3: The decision to eject a page from
core is made in accordance with
a Denning working set policy.
Only one copy of a page is main-

tained in the system and ej ection
is initiated for a page immediately
upon its becoming a candidate
for ejection.

Alternatively, one might assume the PRS is a
Markov process. However, this requires that the
number of consecutive references to a given state must
either be identically one or be geometrically distributed.
(Let Pii be the probability that the next reference will
be to state i given the current reference is to state i.
If Pii = 0, exactly one reference will be made to state i
and if Pii~O, the distribution of the number of con
secutive references to state i will be geometric with
parameter Pii.) Since the validity of this assumption is
open to question and the added complexity induced by
modeling the PRS as an SMP is minimal, we have
chosen to do s().

We observe that, in general, the random variables T j

will be dependent upon the amount of traffic between
core and a given level j. Since our primary concern is
with the development of the structure of an optimal
policy, these variations will not be explicitly taken into
account. The reader interested in analyzing the effects
of queueing properties on the optimal policy will find
the approach indicated in Reference 2 to be of use.

The kth cycle for a given fixed page i is the elapsed
time between the kth and (k+l)st fault for page i.
The time of occurrence of these page faults and three
other points within a cycle are of interest. In particular,
for page i, let Fk (i) denote the time of the kth page
fault, let I k (i) denote the time of the kth inj ect~on, .let
Ek(i) denote the time of initiation of the kth ejectIOn
and let Uk(i) denote the time of completion of the kth
ejection. To correctly sequence the indices of these
random variables we assume that a page does not
initially reside in executable memory.

Our primary concern is not with the instant at which
an event occurs but rather with the elapsed time
between their various occurences as summarized in:

DEFINITION. For a given fixed page i and k ~ 1 :

(i) Ak(i) =h(i) -Fk(i)
denotes the time required to retrieve the ith
page for the kth time,

(ii) Bk'(i) =Ek(i) -Ik(i)
denotes the kth extended core residence time
(ECRT) of page i,

(iii) Ck(i) = Uk(i) -Ek(i)
denotes the time required for the kth ejection
of page i,

Core Complement Policies for Memory Allocation and Analysis 1157

(iv) Dk'(i) = Fk+1(i) - Uk (i)
denotes the kth extended core complement
time (ECCT) of page i, i.e., the elapsed time
from completion of the kth ejection until the
(k+1)st page fault occurs for page i.

The random variable B k ' (i) contains several sub
intervals of time of total length, say, (3k (i) corresponding
to time expended while page i is in core waiting for a
page fault to be satisfied for another page. We let
B k (i) = B k' (i) - (3k (i). Analogously, we let Ok (i) denote
the total amount of time in Dk ' (i) which the page
spends on a secondary storage device while waiting for
a page fault for some other page to be satisfied, and let
Dk(i) =Dk'(i) -ok(i). We refer to Bk(i) and Dk(i) as
the core residence time (CRT) and core complement
time (CCT) respectively. Further, the level in the
memory hierarchy at which the page is stored when not
in core will be known as its core complement location
(CCL). Observe that the activity. of a page during a
cycle (exclusive of the time the process spends in page
fault) is completely described by its CRT, CCT and
CCL. The activity of the page including the time spent
in page fault is described by its ECRT, ECCT and CCL.

Let Lk(i) =Ak(i) +Bk(i) +Ck(i) +Dk(i) and let
Lk'(i) =Ak(i) +B/(i) +Ck(i) +Dk'(i). Denoting the
expected value of a random variable X by x, let p =
lk' (i) I (bk (i) +dk (i)). Then p represents the delay per
unit time induced by executing the process in a multi
level environment instead of with all pages in core.
Using standard techniques, it is easy to verify that the
ergodicity of the underlying SlVIP implies p is in
dependent of i. For later use we also note that since
Ak(i) +Ck(i) «Bk(i) +Dk(i) in any reasonably man
aged memory environment it is reasonable to assume
p = lk' (i) Ilk (i) .

Since p is a measure of the extent to which process
execution is delayed by operating in a multilevel MH,
a normal design objective is to ensure p is near one by
minimizing the amount of time the process spends in
the page wait state. However, for business data pro
cessing installations with very large file handling
requirements which need only a small amount of pro
cessing, p may be significantly larger than one.

The preceding comments remain valid for multiple
concurrently executing processes. However, the inter
vals B k ' (i) and D k ' (i) would have subintervals corre
sponding to the time the processor is servicing other
processes.

In the following the sequences of random variables
{Ak(i); i~ I} and {Ck(i); i~ I} will be assumed
independent and identically distributed. If the assign
ment policy places pages at the same level as that from

which they were retrieved, it is also reasonable to
assume that {Ak(i)} and {Ck(i)} possess the same
distribution.

The net effect of our assumption that the PRS is an
SMP is provided by the following theorem. Conse
quently, this theorem exposes the main limitation of the
model which in effect requires that the intervals be
tween page faults must constitute a sequence of in
dependent and identically distributed (iid) random
variables. There is someevidence6 to indicate that the
results of the theorem are a reasonable approximation
to reality for programs possessing good locality and a
low page fault rate.

Theorem

Under assumptions A1-A3, for a single process
executing in isolation, the sequences of random vari
ables {Bk(i); i~l}, {B/(i); k~l}, {Dk(i); i~l}, and
{Dk ' (i) ; i~ I} are iid.

Since we shall not need to refer to a particular cycle
in the following, we agree to drop the subscript k.
Further, unless otherwise indicated, we shall always be
referring to a given fixed page i, and thus we shall not
explicitly indicate the dependence of these random
variables on i. .

In the remainder of the paper usage of the terms CRT,
CCT, ECRT and ECCT will refer to their expected value
and not an individual sample value.

THE PAGE COST STRUCTURE

The expected cost· of a page to the system during a
cycle of expected length l'=a+b'+c+d' is the sum of:

(i) R j d'
the cost of storage on memory level j for a
length of time d',

(ii) (Ro+R j) (a+c)
the cost of transmission between core and the
secondary storage device,

(iii) Rowa
the cost of keeping the average working set in
core during the time required to satisfy a page
fault, and

(iv) Rob
the core cost of the page during b,

which is:

(Ro+R j) (a+c) +Ro(wa+b) +Rj d'. (1)

Observe that the cost of the page during the time
interval (3=b' -b is subsumed in the analogue of (iii)

1158 Fall Joint Computer Conference, 1972

for those pages generating the page faults of total
length {3. Since the PRS isa stationary SMP, the level
at which the page is stored when not in core will not
vary and thus a = c = tj if level j is the CCL. Thus (1)
may be rewritten as:

2(Ro+Rj)tj+Ro(wtj+b) +Rj d'. (2)

The sequences of random variables {Lk } and {Lk'} are
iid since their summands are by the preceding theorem.
Consequently, it is reasonable to define the average cost
per unit time of a page by:

[2(Ro+Rj)tj+Ro(wtj+b) +Rj d'Jll'. (3)

(The mathematically inclined reader might also note
that a basic result for renewal reward processes [16,
Theorem 3.16J proves that this definition is consistent
with the usual interpretation of the term average re
ward per unit time.) Since d'=pd and p-I=lll', this
expression may be rewritten as either:

or

qj(d') = p-I[2(Ro+Rj)tj+Ro(wtj+b) +Rj d'Jll. (4b)

Given the cost structure described in. equations (4)
we may now seek an optimal (minimal) cost CCL in
terms of band w which are assumed fixed in the re
mainder of this section. (In making a choice regarding
the use of either (4a) or (4b) observe that allocations
made in terms of dt reflect page fault time and are thus
interdependent with the assignments made for the
other pages. Allocations made through the use of d do
not suffer this disadvantage, but the measurement of d
is somewhat more difficult.) The optimal policy can be
developed in terms of either d or d'; we shall use d. The
details for d' are completely analogous and will be left
to the reader.

The optimal CCL for a page with CCT d will be at
level n provided:

l~j~M. (5)

We now prove the optimal policy is a cutpoint policy,
i.e., the real line can be subdivided into intervals
Int =In(b, w) J, O~n~M such that dEl implies CCL n
is optimal. This follows, since (prime denotes differ
entiation) j<k implies qj(O) ~qk(O), q/(d) ~qk'(d)
and q/(d), qk'(d) <0. That is, the cost per unit time of
a page stored at level j when not in core is monotone de
creasing to pRj. Since storage at a slower level is more
expensive for small CCTs, and since 0> q/ (d) ~ qk' (d) ,
it follows that there can be at most 'one positive point
of intersection say Xjk[=xjk(b, w) J. This situation is
indicated graphically in Figure 1.

Co~,T/ur:!T Tl~lE

I
'2 ~-l-I ____ ~~========----

I

'H
Figure I-Illustration of behavior of Fl(D), J = 1,2,3 and

points of intersection

It may happen that qj(d) and qk(d) have no point of
intersection. In this case placement of a page at level k
always costs more than placement of the page at levelj.
Consequently, memory level k may be deleted from
further consideration for the given (b, w). Following
[15J the set of memory levels on which information
should actually be stored will be termed the derived
hierarchy. This hierarchy may be obtained in the
following manner.

Memory level 0 will always be in the derived hier
archy since it is the only executable level. Assume that
it has been established that memory levels j -1 and
j should be in the derived hierarchy. The next level in
this hierarchy corresponds to the first index k > j for
which Xjk>Xj-I,j. In the case of ties we agree to use that
level with the smallest index since it may be accessed
more rapidly.

In the remainder of the paper we shall only be con
cerned with the derived hierarchy. This being the case,
for simplicity in notation, we shall assume that there are
M' such levels labeled 0, ... , M. This double usage of
the symbol M seems reasonable since we shall never
need to refer to levels not in the derived hierarchy. For
this hierarchy, we have shown that the optimal policy
has the following form. The real line is divided into
intervals lj=[xj-I,i, Xj,HI). If dEli, the optimal assign
ment for a page with CCT d, CRT b'and working set w
is level j. Note that if d = Xj,j+I the decision to store the
page at level j or j + 1 is arbitrary. Observe that if the
CCL is to be determined from d', it follows from (4b)
that storage will be at levelj provided d' E [pXj-I,i,pXj ,HI) .

It should be noted that our discussions have always
assumed that an adequate amount of memory existed
at each level. However, if the available memory at a

Core Complement Policies for Memory Allocation and Analysis 1159

given level has been exhausted, this simply corresponds
to removing that level from the derived hierarchy.
Thus, assume that levels J -1, J and J + 1 are in the
derived hierarchy. An assignment is made to level j if
dE [Xj_l,j, Xj,i+I]. If level J has been exhausted and
level J + 1 is available, the assignment is then made to
levelJ+l since Xj-l,j<Xj,j+l <Xi+l,i+2. This stability and
the consequent ease of making appropriate level assign
ments should be compared with the relative complexity
of other policies. 2 ,15

Finally, let us remember that the push algorithm
determines when a page should be ejected from core.
If a given page is referenced often enough (i.e., d<XO,I)
it is possible that it may never be ejected. In that case,
clearly, no further determination of the optimal location
need be made.

AN OPTIMAL POLICY

Establishment of an optimal policy requires the
identification Of17: (a) a method for judging optimality,
(b) the sequence of times at which a decision can be
made, (c) the set of decisions which can be made, and
(d) the information to be used in making these de
cisions. We assume these to be average cost per unit
time, the sequence of instants at which a page is ejected
from executable memory under a working set policy,
the memory level to which the page is migrated and
d, b, w respectively.

The cost of executing a process on a given computer
is the sum of the CPU cost, the lVIH cost (we assume
channels are included in the lVIH) and the costs of unit
record equivalents, e.g., card readers/punches, printers,
etc. For a symmetric multiprocessor system possessing
an adequate accounting routine, the variations in the
cost of using the CPU (s) over different executions of
the same job as measured by the total amount of CPU
time required by the job should be less than one percent.
Further, the costs of unit record equivalents may be
billed on a usage basis.12 Thus, minimization of the
system costs is equivalent to minimization of the costs
of the memory hierarchy.

To minimize the costs of all the pages of the process
over the lVIH, first observe that the assignment policy
for a given page is based only on the properties of that
page as measured in terms of CRT, CCT, wand access
times. The other pages of the process influence the
assignment of a given page only through the expected
size of the working set, whose implementation, in turn,
requires no comparison of the properties of a given page
with those of the other pages in core to determine the
eligibility of the page for ejection.

It follows that we may minimize the costs associated
with an SSMP by optimally assigning each page
individually in accordance with. the policy developed
earlier. That is, if a is a memory policy, i.e., a is a map
of (d, b, w, {tj}, {Rj}) to a given level in the hierarchy,
and C(a) denotes the lVIH costs associated with policy
a for a given process, then:

Q

C(a) = L: CU, a)

where C (i, a) represents the cost of page i to the system
under policy a. Consequently our objective is to deter
mine a* such that:

However:

C(a*) = MIN C(a)
{a}

C(a*) ~ L: MIN C(i, a)

and the cost on the right hand side can be achieved
through application of the policy described in the pre
vious section. Note that these remarks are also valid for
the case of multiple concurrently executing processes.
However, the optimal policy for a single page was
obtained only in the context of a single process executing
in isolation.

AN EXA1\1PLE

In an earlier section we have shown that given the
CRT b, the optimal policy is a cutpoint policy. Equa
tion (5) and the discussion following implies that the
level change point (LCP) from storage at level J to
storage at level J+ 1 for a given b, w is the intersection
of qj(d) and qj+l(d). The LCP's may be easily deter
mined since the resulting equation is a quadratic with
one negative root and one positive root.

A short program was written to perform the necessary
root determinations and the results of this program are
indicated in the following tables. We assumed four
levels in the memory hierarchy corresponding to core,
drum, disk and datacell. Using the monthly rental
figures for the costs of core, 2301 drum, eight drive 2314
and 2321 datacell (4001\1 bytes), the ratio of the costs
of core, drum, disk and datacell to core for storing one
page of information for one unit of time were found to
be 1.0, .015, .0068, and .0019 respectively. We assumed
p = 1 (note that the corresponding tables for p -:;61 can
be obtained by scaling) and a mean core interreference
time of one microsecond, a mean access time to drum
of 10 ms., to disk of 50 ms. and to datacell of 350 ms.
With these hardware characteristics and w = 10, b = 100,
d= 1000, each of the parameters was then varied in-

1160 Fall Joint Computer Conference, 1972

TABLE I-LCP variation.as function of CRT b (ms.)

Level Switch b=20 b=100 b=1000

0-1 122 ms. 122 ms. 122 ms.
1-2 58.6 s 58.5 s 58.4 s
2-3 735 s 734s 736 s

dividually to examine the sensitivity of the LCP to
this variation.

It is apparent from Table I and the preceding re
marks that the LCP is reasonably insensitive to varia
tions in b. Variations in w have a very pronounced effect
as do variations in access times or cost ratios.

CONCLUDING REl\tlARKS

The preceding policy has been obtained in the con
text of a single process executing in isolation. Its use
provides a means for judging the efficiency of other
allocation policies. The form of this policy permits an
easy extension to the case of multiple concurrently
executing processes. The mathematical justification for
this extension will require additional development since
the transitions among the pages of the collection of
concurrently executing processes will not be an Sl\1P.

I t should be noted that the implementation of this
policy does not require detailed measurements to
determine the precise form of the transition and holding
time matrices. Only the average CRT and CCT (or
CRT and ECCT) for each page must be measured or
estimated as well as the average working set size of the
process. In view of the relative insensitivity of the
policy to changes in the CRT as indicated in Table 2,
the use of a nominal value for the CRT would be
appropriate. Further, an examination of Tables 1-6
indicates that the policy is fairly stable as a function
of d (i.e., small variations in d will not produce a large
variation in the level at which a page is stored). Con
sequently, provided the approximate value of p is
known, use of the ECRT allows the implementation at
the cost of two words per page plus one additional word
per process for the estimator of the average working set

TABLE II-LCP variation as function of working set size w

Level Switch w=l w=lO w=100

0-1 31 ms. 122 ms. 1035 ms.
1-2 14.6 s 58.5 s 497.4 s
2-3 183 s 734 s 6244 s

TABLE III-LCP variation as function of level 1 access time

Level Switch T(l) =2.5 T(l) =5.0 T(1)=7.5 T(l)=lO

0-1 31 ms. 61 ms. 92 ms. 122 ms.
1-2 69.4 s 65.7 s 62.0 s 58.4 s
2-3 734s 734 s 734 s 734 s

size. Word one would be used to maintain a moving
average for the CCT and word two would be time
stamped upon the ejection of a page from core. Upon. its
return, the current time would be compared with the
time stored in word two and the result would be used to
update the moving average.

For multiple concurrently executing processes having
no shared pages, the effect of the other processes on a
page of a given process will be to lengthen its CRT and
CCT by an amount of time related to the amount of
time that the system devotes to the other processes.
The average working set size will remain unchanged.
Because of the relative insensitivity of the policy to
changes in the CRT it follows that a page may be stored
on a slower I/O device than would be indicated by the
policy for that process executing in isolation. However,
for the present generation of I/O devices, the differences
in the characteristics of the various levels in the memory
hierarchy are so great that it seems unlikely that this·
would often be the case.

To analyze the effects of multiple processes on a
shared page, note that the CRT, CCT and trans
mission time of a page may be determined independently
of whether or not the PRS is an Sl\1P. Viewed in this
light, it is evident that a page shared among multiple
concurrently executing processes will experience a
larger CRT and smaller CCT than the corresponding
quantities of any of the processes executed in isolation.
The natural analogue for a shared page of the car
dinality of the working set is the cardinality of the union
of the working sets for the individual processes which
reference that page. Consequently, as would be ex
pected, this would tend to lead to storing the page at a
higher level in the memory hierarchy.

TABLE IV-LCP variation as a function of level 2 access time

Level T(2) T(2) T(2) T(2) T(2)
Switch =20 =35 =50 =65 =80

0-1 122ms. 122ms. 122ms. 122ms. 122ms.
1-2 14.5s 36.5s 58.4s 80.4s 102.2 s
2-3 807s 770s 734s 697s 660s

Core Complement Policies for Memory Allocation and Analysis 1161

TABLE V-LCP variations as a function of level 3 access time

Level T(3) T(3) T(2) T(3) T(3)
Switch =200 =350 =500 =650 =800

0-1 122ms. 122ms. 122 ms. 122 ms. 122ms.
1-2 58.4 s 58.4s 58.4s 58.4s 58.4s
2-3 366s 734s 1100 s 1468s 1833s

The assumption that the PRS is an SlVIP provides:
(i) a more realistic assumption than the independent
trials assumption, and (ii) a manageable characteriza
tion of program behavior which is necessary in order to
be able to obtain an optimal policy. The departure from
reality is due to the fact that program references tend to
exhibit a time-varying character, often referred to as
the property of locality. 5 ,6

The time variation in the PRS could be conceptually
accommodated through the use of a time-varying, i.e.,
nonstationary SlVTP. Analysis of a general nonstationary
SlVIP is very difficult. However, the preceding policy
could be used to analyze the following simple time
varying case. Assume there are a sequence of time
instants tI, t2, ... and a sequence of semi-Markov
processes (PI, HI), (P2 , H 2), ••• such that the PRS is
represented by the Sl\1P (Pi, Hi) over the time interval
(t i - l , ti). If {td is known, the preceding policy could be
applied by changing the measured or estimated values
of w, CCT and CRT at these switch points.

Our discussion has tacitly assumed that only the
amount of memory needed at any given level must be
acquired. It is more realistic to assume that memory
must be acquired in modules. Should this be the case,
the policy developed in this paper may be used to
determine the optimal location of information among
memories and the minimum cost system for this optimal
location. This cost may then be compared with the
actual cost imposed by the modularity of memory to
determine the "inefficiencies" caused thereby. Further,
because of the previously established stability of the
cutpoint policies, it is evident that the most desirable
blocks of memory to move into any level with extra

TABLE VI - LCP variations as a function of cost ratio varia
tions. Ratios are (1, .1, .0068, .0019), (1, .1, .05, .0019) and (1,

.1, .05, .025) in columns 1, 2, 3 respectively

Level Switch

0-1
1-2
2-3

135 ms.
5.01 s

733.9 s

135 ms.
9.5 s

74.0 s

135 ms.
9.5 s

143.2 s

space requires consideration of only those blocks with
CCT's closest to those of that level.

BIBLIOGRAPHY

1 A V AHO P J DENNING J D ULLMAN
Principles of optimal page replacement
JACM 1970 Vol 18 No 1 pp 80-93

2 S R ARORA A GALW
The optimal organization of multiprogrammed multilevel
memory
Proceedings of the ACM W orkshopon System Performance
Evaluation
Harvard University April 5-7 1971 pp 104-141

3 E G COFFMAN L KLEINROCK
Computer scheduling methods and their countermeasures
SJCC 1968 pp 11-21

4 P J DENNING
The working set model for program behavior
CACM 1968 Vol 11 No 5 pp 323-333

5 P J DENNING
Virtual memory
Computing Surveys 1970 Vol 2 No 2 pp 154-189

6 P J DENNING J E SAVAGE J R SPIRN
Models for locality in program behavior
TR No 107 Department of Electrical Engineering
Princeton University Princeton New Jersey May 1972

7D J HATFIELD J GERALD
Program restructuring for virtual memory
IBM Systems Journal 1971 Vol 10 No 3 pp 178-192

8 R A HOWARD
Dynamic programming and Markov processes
MIT Press 1960

9 D J KUCH D H LAWRIE
The use and performance of memory hierarchies: A survey'
In Software Engineering
Vol 1 Academic Press 1970

10 R L MATTSON J GECSEI D R SLUTZ
I L TRAIGER
Evaluation techniques for storage hierarchies
IBM Systems Journal 1970 Vol 2 p 78

11 J M McKINNEY
A survey of analytical time-sharing models
Computing Surveys 1969 VolIN 0 2 pp 105-116

12 MTS manual
Volume 11971 The University of Michigan

13 E I ORGANICK
The MULTICS system
MIT Press 1972

14 T B PINKERTON
The MTS data collection facility
Memorandum 18 CONCOMP Project The University of
Michigan June 1968

15 C V RAMAMOORTHY K M CHANDY
Optimization of memory hierarchies in multiprogrammed
systems
JACM 1970 Vol 17 No 3 pp 426-445

16 S M ROSS
Applied probability models with optimization applications
Holden-Day San Francisco 1970

17 D TEICHROEW
An introduction to management science: Deterministic models
J Wiley New York 1964

1162 Fall Joint Computer Conference, 1972

APPENDIX

PROOF OF THEORElVI

The following proof is for a given fixed page i and to
simplify notation explicit indication of the dependence
of the random variables on i will be suppressed. We first
verify {Bk } and {Dk } are iid.

Use of a working set policy with window 7 implies
that a page is core resident for only as long as it is
accessed every 7 time units during the periods when the
process is active. 4 Since the PRS is an SMP the
sequence of return times {Rn} to page i is iid. 16 Further,
if:

{

Rn, Rn .:::; 7

Ln=
0, otherwise

t
o, Rn >7

Gn =
Rn , otherwise

then Rn=Ln+Gn and {Ln} and {Gn} are iid. However:

*

where Nk counts the number of returns to page i until a
return time exceeding 7 is obtained. If 1-p denotes the
probability of a return exceeding 7, it follows that the
distribution of Nk is geometric with parameter p. Con
sequently {Nk } is iid, and (*) thus implies that {Bd
is iid.

Since {Gd, {Cd are iid and Dk = max (0, Gk- Ck), it
follows that {Dk } is iid.

Let J k denote the number of page faults during Dk •

Since the PRS is an SMP, {Dd iid implies {Jd iid.
Consequently, Dk' =Dk+ L:~:1 Yn , where Yn repre
sents the time to satisfy a page fault. In view of our
assumptions, {Y n} is iid. Consequently {Dk'} is iid.
Verification that {B,/} is iid is analogous.

Data modeling and analysis for users
A guide to the perplexed

by ARNOLD F. GOODMAN

McDonnell Douglas Astronautics Company
Huntington Beach, California

INTRODUCTION

There are styles in management, science and tech
nology, just as there are styles in politics, music and
much of life. At any given time, some concepts and
approaches are in-with lots of action surrounding
them-and other concepts and approaches are out
with not very much action surrounding them. And
now the winds of change are blowing strongly.

Disciplines which have traditionally been less mathe
matical in their development are becoming more mathe
matical, with each passing year. Concepts such as
mathematical modeling and computer simulation are
becoming increasingly popular and useful. Approaches
oriented toward solving real problems with real or
simulation data are becoming more and more prevalent.

In fact, current management, science and technology
are literally characterized by their dependence upon a
tremendous amount of complex data which are gen
erated for analysis. Many important resources are
expended in data generation, and many significant
decisions await data analysis. Data modeling and
analysis have become not only a significant topic, but
also a stylish one.

That the above statements are true for science and
technology is easily verified by an inspection of their
literature. That they are also true for management is
supported by a recent survey of new uses for computers
in business. 1 As for government, there is a current
emphasis on cost benefit modeling and analysis within
the popular Planning, Programming and Budgeting
System (PPBS), the approach of the Environmental
Protection Agency, and the trend toward technology
assessment and guidance.

Introduction of modeling and analysis into areas
where they have not traditionally been employed-in
order to raise the level of decision from one of sup
position to one of logic-is, however, as delicate and

1163

difficult a process as it is essential for success. There are
many such introductions which have failed, due to
actually lowering the level of decision to one of ap
parent logic. An insider's view of data modeling and
analysis is presented, in order to help guide users
through the potentially rewarding-but hazardous
and perplexing-maze. An appropriate perspective on
the topic is attained by discussing it in terms of its
objective, solving problems.

Three. areas of phenomenal growth-computer utili
zation, computer technology and computer science
have produced the requirement for a new discipline,
measurement of computer systems. In an atmosphere
of escalating computer cost and increasing budget
scrutiny, measurement provides a bridge between de
sign promises and operational performance. This func
tion of measurement is complemented by the traditional
need for measurement of any art in ~earch of a science.

Measurement of computer systems has been named
"compumetrics"-in the spirit of biometrics, econo;..
metrics and psychometrics-by Hamming.2 It con
cerns measurement in or of computer systems. and is
extensively discussed by the author. 3 At present,
compumetrics might be characterized as a growing
collection of measurements on their way toward a
science, and in need of planning and analysis to help
them get there. Measurement of computer systems
provides a specific context in which to view data model
ing and analysis.

Bell, Boehm and Watson4 adapt the scientific method
to performance measurement and improvement of a
computer system: from understanding the system and
analyzing its operation, through formulating per
formance improvement hypotheses and analyzing the
probable cost-effectiveness of the corresponding modi
fications, to testing specific hypotheses and imple
menting the appropriate combinations of modifica
tions-as well as testing the cost-effectiveness of these

1164 Fall Joint Computer Conference, 1972

combinations. This paper complements that one by
proposing an approach to viewing and utilizing such
a framework.

The presentation begins with a discussion of the
sequence from a problem through a solution to its
assessment. Some observations are then made con
cerning aspects of solving problems which should be
considered-but all too often, unfortunately are not.
Finally, an approach is described for the design and
analysis of a complex system through utilization of both
experimental and computer simulation data.

As is appropriate for a guide to users, comments are
general and suggestive, rather than detailed and
complete. There are too many treatments of data
modeling and analysis which concentrate upon the
technical details, at the expense of general philosophy
and approach. It is probably true, however, that many
more mistakes of a much more serious nature are due
to improper general philosophy and approach than
are due to incorrect technical details. In addition, words
are employed in their usual nontechnical sense.

PROBLEM SOLVING SEQUENCE

In solving problems with mathematics, the sequence
of steps which leads from the problem through a solu
tion to its assessment-the problem solving sequence
may be viewed as being composed of pre-mathematics,
mathematics and post-mathematICs (see Figure 1).
Pre-mathematics begins with the problem, develops a
structure-or framework-for it, and then associates
number with the structure. Mathematics begins with
construction of a model-or picture-for the nu
merical structure, utilizes appropriate techniques and
software, and then obtains a solution to the problem.
Post-mathematics begins with validation of the solu
tion, evaluates the quality of that solution, and then
assesses its impact-or effect. Since the solution's
assessment should influence the entire problem solving
sequence in reverse-by implying how much blood,
sweat and tears should be expended on each portion
of the sequence, in turn-it should be considered prior
to actually beginning the sequence. For a given problem,
the entire problem solving sequence may not be feasible.
An illustrative example of pre-mathematics and
mathematics is described by the author.5

Mathematics has traditionally grown and prospered
in conjunction with development of the measurement
oriented disciplines in science and technology: where
both the pre-mathematics of problem structure and
number association, and post-mathematics of solution
validation, evaluation and assessment were relatively
simple to accomplish-in addition to being relatively

PRE_MATHEMATICS WITH I SgENCE ANP TECHNOLOGY I MATHEMATICS
POST-MATHEMATICS WITH
SCIENCE AND TECHNOLOGY

.EXPLORATION. EXPLOITATIO~ AND EXPLANATION

.PRIMARY VERSUS SECONDARY

ePERFECTIO!'l vERSUS SUFFICIENCY

.ANALYSIS VERSUS SYNTHESIS

.SPECIALTY VERSUS GENERALITY

.COMMUNICATIO~ WITH COLLEAGUES AND USERS

.• EFFECTIVENESS VERSUS EFFICIENCY

eACCURACY VERSUS PRECISION

eNUMBER ASSOCIATION, UTILIZATION AND INTERPRETATION

Figure I-Problem solving

unimportant in the problem solving sequence. However,
pre-mathematics and post-mathematics are now be
coming more important to those management, scien
tific and technical disciplines which have not been
measurement oriented.

A typical problem of significance today and tomor
row-such as measurement of computer software
will be like a large gelatinous mass: we will reach for it
in order to develop structure and associate number,
but it will squirt out of our hand. We will somehow
have to delve beneath the problem's soft exterior and
develop a structure for it, and then associate number
with that structure. At the other end of the problem
solving sequence, we will have to validate, evaluate
and assess the solution in the same squishy environ
ment. And both of these will be as delicate and difficult
to accomplish as they will be essential for success.

PROBLEM SOLVING ASPECTS

Over the past five years, I have closely observed
mathematically oriented scientists and ep.gineers
well educated, well experienced and well paid-ap
proach the solution of software problems involving
computer and information systems. There are certain
aspects of solving problems with mathematics which
we should consider, if we are to increase our proba
bility of success-whether they are chemical or com
puter problems, ecology or engineering problems, legal
or linguistic problems, management or medical prob
lems, physical or planning problems. However, most
of these scientists and engineers fail to consider many
such aspects-both in doing their own work and in
reviewing the work of others. Why?

The approach of those scientists and engineers is
best characterized as having solutions-or mathe-

matical techniques' to obtain solutions-in their
pockets, and going around looking for problems to fit
the solutions or techniques. Now that is not at all the
way to solve a problem: a much better way is to start
with the problem, and then look for a solution or tech
nique to fit the problem. We should reason from the
problem toward mathematics, not from mathematics
toward the problem-for problem solvers seek solutions,
not merely more mathematics. How much of the
compumetric literature on modeling and simulation
starts-and for that matter, ends-with mathematics
rather than measurement?

Some of the aspects which we should consider are
now briefly discussed, from the more general to the
more specific (see Figure 1). The discussion might be
viewed as a partial characterization of solving problems
with mathematics-including its do's and its don'ts.
Users should constantly be aware of not only the
strengths of mathematics, but also the weaknesses of
those who practice it.

In management, science and technology-as well
as in mathematics, there are three sequential stages
in the search for knowledge. First we explore the un
known, such as go fishing ... then we try to exploit
or utilize what exploration has yielded, such as use
the caught fish for reasonable purposes ... finally we
try to explain exploration and exploitation themselves
or what they have accomplished, such as describe
fishing and fish use or their accomplishments. Explora
tion seeks the descriptive or indicative, exploitation
seeks the predictable or promising, and explanation
seeks the provable or conclusive. Each stage has its own
philosophy and psychology-which are generally pro
ductive for it, but usually unproductive or counter
productive for the others. A successful explorer, a
successful merchant and a successful historian es
sentially accomplish their objectives in different ways
the rules of thumb which generally work for one, usually
do not work for the others. It is critical-if not crucial
that we know which stage we are in, and that we act
accordingly. Measurement of computer systems is
somewhere between exploration and exploitation, but
far from explanation.

When resources-money, people or time-are limited,
we should first distinguish that which is of primary
importance from that which is of secondary impor
tance. We should then expend the available resources
on solving the primary portion of a problem, with re
sources being expended on solving the secondary portion
only as they become available. However, we usually
commit our scarce resources equally between solving
the primary and secondary portions of the problem
to an equally unsatisfactory degree, of whose computer
system is this not reminiscent?

Data Modeling and Analysis for Users 1165

The very cornerstone of mathematics is perfection:
never settle for an approximate solution when an exact
one is possible. A much superior guideline is to never
seek an 'exact solution when an approximate one of
sufficient quality is possible-the watchword is K(eep)
I(t) S(imple) S(tupid). Or as an old Russian proverb
warns, "The enemy of the good is the better." The
solution to any problem is only worth so much agony
suffer that much and then stop. Since that has not been
the tradition in computer hardware and software de
velopment, one wonders what will happen in computer
hardware and software measurement.

Analysis is concerned with fragmenting a whole into
its component parts-essentially by emphasizing dif
ferences and secondary details, while synthesis is con
cerned with combining constituent parts into a whole
essentially by emphasizing similarities and primary
essentials. Analysis frequently leads to refinement:
synthesis frequently leads to expansion. Through both
education and experience, most of us are analytic
whizzes and synthetic flops. Analyzing computer system
measurements is one thing, but synthesizing system
improvement from this analysis is quite another thing.

Related to this is the distinction between specialty
and generality. A specialist knows a lot about a little
possessing depth rather than breadth, but a generalist
knows a little about a lot-possessing breadth rather
than depth. The maj or difficulty in being a meaningful
generalist is in becoming sufficiently deep to be pro
ductive-without becoming deep enough to be preoc
cupied-in several significant disciplinary areas. There
are few of us who can envision the entire problem pic
ture, yet fully appreciate the style of, and technique _
required by, many of its parts. Those who are computer
hardware or software specialists are occasionally
knowledgeable about measurement, but are seldom
knowledgeable about data modeling or analysis.

Kelley is reputed to have said that effective com
munication of mathematics involves both precise
statement and "vaguing it up." We might well add
that effective performance of mathematics itself in
volves both precise interpretation and vaguing it up.
Although the power of mathematics lies in the precision
of its language and operations, the usefulness of mathe
matics lies in our ability to translate that language
and adapt those operations to users of mathematics
and to their points of view-focusing upon similarities
and primary essentials, while obscurIng differences
and secondary details. But modelers insist upon pro
jecting the image that mathematics and modeling
constitute a mystical religion which is led by ordained
high priests, who communicate only among themselves
and with the gods of mathematics and modeling. They
behave as if they are either incapable of, or uninterested

1166 Fall Joint Computer Conference, 1972

in, describing concepts and techniques in easily under
stood and meaningful terms.

Being effective is obtaining a good solution to the
actual problem, and being efficient is obtaining what
ever solution to whichever problem in a timely and
inexpensive manner. Effectiveness is more externally
oriented toward pre-mathematics and post-mathe
matics while efficiency is more internally oriented
toward mathematics. If we cannot be both effective
and efficient, it is far better to be inefficiently effective,
than it is to be efficiently ineffective. Measurement of
computer systems must relinquish some of its efficiency
orientation in favor of some effectiveness orientation,
as is advocated in Gruenberger6 and by the author.s

Similarly, accuracy means closeness and is m?re
involved with pre-mathematics and post-mathematIcs,
but precision means repeatability-whether being
close· or not-and is more involved with mathematics.
Weare usually lured away from accuracy by precision,
just as we are usually lured away from effectiveness by
efficiency. To borrow the phrasing from above, being
imprecisely accurate is greatly preferable to being
precisely inaccurate. How often are inappropriate
computer system characteristics measured with ex
treme precision?

There is an inherent relationship among the manner
in which number should be associated with the prob
lem's structure during pre-mathematics, the manner in
which number should be utilized through the problem's
model within mathematics, and the manner in which
number should be interpreted from the problem's
solution during post-mathematics. A given introduction
of number supports only an analysis and its solution
which are "weaker" than a determined maximum,
while a certain implementation of an analysis and its
solution is supported only by an introduction of num
ber which is "stronger" than a determined minimum.
Stevens7 describes four scales of number association:
nominal, ordinal, interval and ratio. Nominal as
sociation, such as player numbers on a team, only
distinguishes among entities ... ordinal association,
such as house numbers on a street, merely assigns an
order among entities ... interval association, such as
temperature in degrees Fahrenheit, just assigns a mean
ing to differences between entities ... ratio association,
such as temperature in degrees Rankine, also assigns
a meaning to ratios of entities. Number utilization and
interpretation should not be blind to number associa
tion-which, in turn, should not be blind to desired
number utilization and interpretation. Compume
tricians need to pay serious attention to the inherent
relationship between measurement and mathematics.

Just for fun, why not compile your own list of
aspects which should be-,-but all too often, unfor-

tunately are not-considered in solving problems with
mathematics in general or data modeling and analysis
in particular?

COMPLETE SYSTEM DESIGN AND
ANALYSIS

Experimentation regarding many complex and im
portant systems is impossible during their design, and
difficult or expensive during their analysis. For such
systems, a mathematical solution for output in. terms
of input usually does not exist, and computer SImula
tion may be effectively employed as a substitute for
experimentation during design and as a complement
to it during analysis.

The system and the effects of various factors upon
it may be simulated when a model of the system or
process is translated into a simulation computer pro
gram. Accuracy and precision of the simulation in
crease, as the accuracy and precision of the model
increase.

A general approach to utilization of both exp~ri
mental and computer simulation data in system deSIgn
and analysis-called complete system design and
analysis-is discussed by the author, 8 and the pre
mathematical portion-quantitative system design
and analysis-is illustrated by the author. 5 Complete
system design and analysis are summarized by Figures
2-17.

The basic configuration of complete system design
and analysis is that of a double diamond. Its outer
portion (AB, BC, CD, DA, AE and OF) contains those
stages which are not data based, and its inner port~on
(EB, BF, FD, DE and EF) contains those stages whICh
are data based.

The model and simulation computer program are
developed and validated by means of stages which
comprise the upper part of the double diamond (AB,
BC, CF, FE, EA, EB and FB). Analysis of data, an~
des~gn of experimental and simulation trials to OptI-

Figure 2-Complete system design: Framework for utilization of
computer simulation in design of a complex system

• QUANTITATIVE SYSTEM DISIGN DEVELOPS" SYSTEM MODEL

(MATHEMATICAL REPRESENTATION OF THE SYSTEM). WHICH
IS SUFFICIENTLY GENERAL TO COVER eACH ALTfRMATE
SYSTEM, BY TRANSFORMING QUAlITUIVE SYSTEM SPECIFt·
CATION ELEMENTS IHTO "UMERICA.l FORM 0 COHSTRUCT.
ING A MODEL FOR RELATIONSHIPS AMONG SYSTEM SPECIFICATION

COMPONENT PARTS.

• TRANSFORMATION OF QUALITATIVE $YSTEM SPECIFICATION

ELEMENTS INTO NUMERICAL FORM IS ACCOMPLI$H£D BY

.RHAHGING THE ELEMENTS INTO AN INFORMATIVE DET AILED
(LOCAL) STRUCTURE, AHD THEN ASSOCIATING .. MEANINGFUL
HUMBER WITH EACH ELEMENT.

• CONSTRUCTION Of" MODEL FOR RELATIONSHIPS AMONG

SYSTEM SPECIFICA. liON COMPONENT 'ARTS IS ACCOMPLISHED

8Y ARRANGING THE COMPONENT PARTS INTO AN INFORMATIVE
GENERAL (GLOBAL) STRUCTURE. AND THEN SPECIFYING THE
GEHERAL FORM OF MEANINGFUL RelATIONSHIPS AMONG COM

PONENT 'Aln.

Figure 3-Quantitative system design

• SYSTEM DESIGN PRODUCES ALTERNATE SYSTEMS I
~MEHT SYSTEM $PEOfICATIOM$.

• $YSTEM MODEL $PECIFICATIOIi PRODUCU. FOR EACH
ALTERNATE 1TEM. VALUUOF UN$PEClfIED CONSTAMT$
IN THE GENERAL fOllM Of RELATIOMSIIIP$ IN THE $YSTEM
MODEL; AND A l'RELIMIMARY. BUT INSUffiCIENT. EVALU·
ATION AND YALIDATION (POSITIYE CHECK) Of THE SYSTEM'S
REPRESENTATION BY THE SYSTEM MODEL.

Figure 4-System design and model specification

(8)
• SYSTEM SIMULATION PROGRAMMING TRAN5L.ATES THE

SYSTEM MODEl (MATHEMATICAL REPRESENTATION OF
THE SYSTEM) INTO A SYST!M SIMULATION COMPUTER
PROGRAM (COMPUTER REPRESENTATION Of THE SYSTEM) •

• A SYSTEM SiMULATION TRIAL PRODUCES SYSTEM

SIMULA.1ION DATA FOR EACH AL1ERNATE SYSTEM.

Figure 5-System simulation programming and trial(s)

• SYSTEM MODEL AHD SYSTEM SIMULATION DATA COMPARISON
PROVIDES. FOR, EACH AL. TERHATE SYSTEM, AN EVAL.UATION
AND VALIDATION (POSITIVE CHECKI OF THE SYSTEM
MoaEL'S REPRESENTATION BY THE SYSTEM SIMULATION
COMPUTER PROGRAM

• SYSTEM AHD SYST£M SIMULATION DATA C(.MPARISON
PROVIDES, FOR aCH AUERNATE SYSTEM, AN EVAlUA·
TION AND VAl:DA TlON OF THE SYSTEM'S REPRESENTATION
BY THE COMBINATION OF SYSTEM MODEL AND SIMULATION
COMPUTER PROGRAM, AND AN INDIRECT EVALUATION AND
VALIDATION OF THE SYSTEM'S REPRESENTATION BY THE
SYSTEM MODEL, GIVEN THAT THE MODEL'S REPRESENTATION
BY THE SIMULA.TlON COMPUTER PROGRAM HAS BEEN VA.LlDATED.

Figure 6-System model, system simulation data, and system
comparison

Data Modeling and Analysis for Users

• SYSTEM CONfiGURATION AND $eMULATION DATA ANALYSIS

CHARACTERIZE' AND EVALUATE EACH ALTERNATE S'nTEM,
AND SUGGEST MODIFICATION OF THE nUE __ DUIGN FOR
SYSTEM DESIGN OPTIMIZATION (ACHIE EMENT Of WHI,
CIENT IMPROVEMENTI.

• EVALUATION OF EACH AL TERNAn SYSTEM IS IN TERMS

OF SYSTEM CRITERIA AND CONSTRAINTS (fOR UAMPLE,
THOSE OF COST OR EfFECTIVENESS).

1167

Figure 7-System configuration and simulation data analysis

• SUTfMOHIGNOPTIMIZATIOHMOOIFIUTHE$ynt:.IOESU:'N.AHOAPPLIUTHEAPPROPRIAn:

POIitTiOHSOFCOMPUTEsnu .. OUIGHTOTHfMOOIl'I(OOfSIGNvIN"HIUffATIVfM"HHER
UNTILTKE ACHtfVEMENTOF SlJfFIClfNT.WPROVEMENT

Figure 8-System design optimization, designation of system
design and simulation trial(s), and system requirements analysis

Figure 9-Complete system design: Framework for utilizationof
computer simulation in design of a complex system

Figure lO-Complete system analysis: Framework for utilization
of computer simulation in analysis and optimization of a complex

system

1168 Fall Joint Computer Conference, 1972

(B)
• QUANTITATIVE SY5TEM ANAL Y5IS DEVELOPS A SY5TEM

IIIIDEL (IIATHE TIC .. L REPRESENT .. TlON OF THE SYSTE ..)
8Y TRANSFORMING QU .. LITA TlVE SY5TEM ELEMENTS INTO
NUMERIC .. L FORM, AND CONSTRUCTING .. IIIIDEL FDR
RELATIONSHIPS AMONG SYSTEM COMPONENT P .. RTS.

• TRANSFORIIATION OF QU .. LITATIVE SYSTEM ELEMENTS INTD

NUMERIC .. L FORM IS .. CCOMPLISHED BY ARRANGING THE

ELEMENTS INTO AN INFORIIA TIVE DET .. ILED (LOC"L)
STRUCTURE, AND THEN ASSOCI .. TING .. MEANINGFUL
NUMBER WITH EACH ELEMENT.

• CONSTRUCTION OF A IIIIDEL fOR RELATIONSHIPS AMONG

SYSTEM COMPONENT P .. RTS IS ACCOMPLISHED BY ARRANG

ING THE COMPONENT PARTS INTO AN INfORIlATIVE GENERAL
(GLOBAL) STRUCTURE, AND THEN SPECIFYING THE GENERAL
FORM OF MEANINGFUL RELATIONSHIPS AMONG COMPONENT
PARTS.

Figure l1-Quantitative system analysis

.... SYSTEM fXPERIMENT AL TRIAL PROOUCES $YSTEM
EXPERIMENTAL ou

• SYSTEM MODEL ESTIMATION PRODUCES ESTlMAnS OF
UNSPECIFIED CONST TS IN THE GENERAL 'ORM Of
RELATIONSHIPS IN THE nSTEM MODEL; AND A
PRELIMINARY, BUT INSUFFICIENT, EVALUATION AND
VALIDATION (POSITIvE CHECK) OF THE SUTEM'S
REPRESENT AlION BY THE SYSTEM MODEL.

Figure I2-System experimental trial(s) and model estimation

(I)

• SYSTEM SIMtJUTIOtrl PROC8AMM'NG TRANSLATES THE
SYSTEM MODEL (MATHEMATICAL REPRESENTATION OF
THE SYSTEM) INTO A SYSTEM SIMULATION COMPUTER
PROGRAM (COMPUTER REPRESENTATIOM OF THE SYSTEM).

• A SySTEM SIMULATION TRIAL PRODUCES SYSTEM SIMU.
tATlON DATA.

FigUre I3-System simulation programming and trial(s)

(I,

• ~YSTEM MODEL AHD $IMUlATlON OAT. COMPARISON

PROVIDES AM EVALUATION O.V.LIO ... TIOM {POSITIVE
CHECK} OF THE snT£M MaDIEl'S REP.fUNT AlIOH BY
THE SYsTEM SIMULATION COMPUTER PROGRAM.

• SYSTEM EXPERIMENTAl OA'A AHO SIMULATION DATA.

COMPARISON PROVIDES AN EVALUATION AND vALIDATION

~EM'S REPRESENTATION BY THE COMBINATION
OF SYSTEM MODEL AND SIMUU. TlON COMPUTER PROGRAM;
AND AN INDIRECT EVALUATION AHD VALIDATION OF THE
SYSTEM'S REPRESENTATION BY THE SYSTEM MODEL,
GIVEN THAT THE Ir4ODEL'S REPRESENTATION BY THE
SIMULATION COMPU-TER PROGRAM HAS BEEN VAliDATED.

Figure I4-System model, simulation data, and experimental
data comparison

(E) (F)

• SYSTEM EXPERIMENTAL AMD S'MULATION DATA "MALYSIS

CHARACTERIZE AND EVALUATE THE SYSTEM. AND SUGGEST
MODIFICATION OF THE SYSTEM FOR sYSTEM OPTIMIZATION
'ACHIEVEMENT OF SUFFICIENT IMPROVEMENT).

• EVALUATION OF THE SYSTEM IS IN TERMS OF SYSTEM

CRITERIA AND CONSTRAINTS (FOR EXAMPLE, THOSE OF
COST OR EFFECTIVENESS).

Figure IS-System experimental and simulation data analysis

mize the system, are performed by those stages which
comprise the lower part of the double diamond (AD,
ED, FD and CD).

Development of the model and design, and per
formance and analysis of experimental trials are
accomplished by those stages on the left side (AB, BE,
ED, DA and AE). Finally, the right side (BC, CD,
DF, FB, CF and FE) contains those stages concerned
with developing and validating the simulation com
puter program, and with designing, performing and
analyzing simulation trials.

The inherent symmetry and simplicity of the double
diamond make it a very meaningful and suggestive
way in which to view complete system design and
analysis. In complete system design (Figure 2) and
analysis (Figure 10):

• l\1odeling is applicable to quantitative system
design (AB) and to quantitative system analysis
(AB) .

• Statistical estimation in general and regression
analysis in particular are applicable to system
model specification (EB) and to system model
estimation (EB).

• Statistical testing in general and analysis of
variance in particular are applicable to system
model and simulation data comparison (BF), to

~""""Q","',"""""""" ..
• STSTfMOPTIMI!ATIOfoIIIIOOIFIUTH£StSTEM AHDAPPLIBTHE APPItOPRIATEPOItTIOWSOF COMPLETE

SYSTEMAH4LYSISTOTH£IIoIODIFIEOSTSTEM-IHAHlfEItATiV£MilHHEIt.UHTiLTHEilCHI£V£ldHTOF
SUFFiCIEHTStSTh"MPItOVEMEHT

• DBIGHOFSVSTEMEXPfItIME",TALAWDSIMULilTiOHfItIABAIDSTHEIMPLEME"'YATIONOFHSTEM

• SVSTEMUOUllthIEMTSilM4LVSISPItOYIOUA",SISFORSVSTEMOPTIMIIAlIOM,AMD OUI(i.HOFSVSTEM

EXPEltIMEMTALilHOSIMULATlO",TItIALS

Figure I6-System optimization, design of system experimental
and simulation trials, and system requirements analysis

Figure 17 -Complete system analysis: Framework for utilization
of computer simulation in analysis and optimization of a

complex system

system and system simulation data comparison
(EF), and to system experimental and simulation
data comparison (EF).

• Statistical estimation and testing in general, and
regression analysis and analysis of variance in
particular, are applicable to system experimental
data analysis (ED) and to system simulation data
analysis (FD).

• Statistical design is applicable to design of ex
perimental trial(s) (DA), to designation of system
simulation trial(s) (DC), and to design of system
simulation trial(s) (DC).

ACKNOWLEDGl\1ENTS

The critical review of this paper and constructive sug
gestions for its improvement by Barry Boehm, Richard
Hamming and Stephen Kimbleton are gratefully
acknowledged.

Data Modeling and Analysis for Users 1169

REFERENCES

1 R HAA VIND Editor
New Uses for computers in business:Marketing finance
administration scientific decision making and planning
Computer Decisions Vol 4 No 11972 pages 17-40

2 A F GOODMAN Editor
Computer science and statistics: Fourth annual symposium
on the interface-An interpretive summary
Western Periodicals Company 1971

3 A F GOODMAN
Measurement of computer systems-An introduction
Proceedings of 1972 Fall Joint Computer Conference
AFIPS Press 1972

4 T E BELL B W BOEHM R A WATSON
Framework and initial phases for computer performance
improvement
Proceedings of 1972 Fall Joint Computer Conference
AFIPS Press 1972

5 A F GOODMAN
Flow of scientific and technical information: The results of
a recent major investigation
Western Division Paper 4516 McDonnell Douglas
Astronautics Company 1967 and Revised 1970 (Available
from the National Technical Information Service as
AD 657558)

6 F GRUENBERGER Editor
Effective versus efficient computing
Publisher to be selected

7 S S STEVENS
Measurement statistics and the schemapiric view
Science Vol 161 No 40 1968 pages 849-856

8 A F GOODMAN L GAINEN CO BEUM JR
Complete system analysis: Quantitative system analysis
computer simulation and system optimization
Western Division Paper 4431 McDonnel Douglas
Astronautics Company 1967 and Revised 1969 (Available
from the National Technical Information Service as
N69-16331)

From PLANNER to CONNIVER-A genetic approach

by GERALD JAY SUSSMAN and DREW VINCENT McDERMOTT

Massachusetts Institute of Technology
Cambridge, Massachusetts

THE PROBLEM WITH PLANNER

A higher level language derives its great power from
the fact that it tends to impose structure on the problem
solving behavior of the user. Besides providing a
library of useful subroutines with a uniform calling
sequence, the author of a higher level ·language im
poses his theory of problem solving on the user. By
choosing what primitive data structures, control
structures, and operators he presents, he makes the
implementation of some algorithms more difficult than
others, thus discouraging some techniques and en
couraging others. So)- to be good, a higher level language
must not only simplify the job of programming, by
providing features which. package programming struc
tures· commonly found in the domain for which the
language was designed, it must also do its best to dis
courage the use of structures which lead to bad al
gorithms.

PLANNERl is the language designed by Carl Hewitt
of the MIT Artificial Intelligence Laboratory. (A sub-

. set of PLANNER was rather haphazardly imple
mented by G. J. Sussman, T. Winograd and E.
Charniak. We call this operational system MICRO
PLANNER2). PLANNER incorporates three basic
ideas; automatic backtrack control structure, pattern
directed data-base search, and pattern-directed invo
cation of procedures. Basically, backtracking is a way
of making tentative decisions which can be taken back
if they don't pan out. The pattern-directed data base
search allows the user to ask for the data items called
assertions which match a given pattern, and is inti
mately linked via the GOAL function to pattern
directed procedure invocation, which gives the user the
ability to say "Find and run a program whose declared
purpose matches this pattern." This type of program,
called a theorem, is expected to instantiate the pattern
(succeed), and thus simulate an assertion. In fact, it
simulates a whole class of them, since failures back

1171

into any such theorem cause it to make different
choices and succeed with different instances.

How these mechanisms are related can best be illus
trated by an example. The statement (GOAL (?A IN
?B)) is expected to assign the question-marked variables
that do not have values already, or fail if it can't,
causing a backup to the last decision point in the
program. GOAL instantiates its pattern by matching
it against successive assertions, like (BLOCK2 IN
BOX1). If it finds none, or enough failures propagate
back to the GOAL to use up those it has found, it calls
theorems with matching patterns, such as:

(CONSEQUENT (X Y Z) (?X IN ?Y)
(GOAL (?X IN ?Z))
(GOAL (?Z IN ?Y)))

which expresses one facet of the notion that IN is
transitive. A PLANNER program executing (GOAL
(BLOCK2 IN ?B)) first checks to see if it "knows"
the answer, and if so· sets B to it. If not, it binds X to
BLOCK2, links Y and B, enters the theorem, and looks
for a Zcontaining BLOCK2 and contained in some Y.
Its net effect is to assign a value to B.'

If a failure propagates back into the theorem, it
finds another Y containing Z, and hence generates
anotherB; enough failures to use up those Y's drive
it to find another Z; and a few more will make it and
the original GOAL fail themselves. Backtrack control
structure is the heart of this apparatus.

Automatic backtracking is implemented as follows:
A PLANNER program, as it runs, grows a chrono
logical stack of jailpoints each of which corresponds to
either a side effect or a decision point (a place where a
choice is made between several alternative possibilities).
A failpoint carries with it all information necessary to
reconstruct the state of the running process at the time
the failpointwas made. It may logically be considered
to be a snapshot of that process (though it really saves

1172 Fall Joint Computer Conference, 1972

much less than a copy). At some time, the process may
decide to fail, perhaps because some decision made at
a previous decision point led the process into a blocked
state from which there are no viable alternatives. The
failure then pops off the latest failpoint on the chrono
logical stack. If this failpoint was a side effect, then it
is undone, and the process continues failing. If this
failpoint was a decision point, and there is another
alternative, execution proceeds from that failpoint
with the next choice taken. If there are none the
failure continues to propagate. In these terms, GOAL
finds exactly one assertion or theorem each time it is
reached, but sets a failpoint which regains control if
a failure should occur later.

For some time we have been studying PLANNER
and the uses to which it has been put, hoping to learn
just what modifications would be desirable to the user
community. These investigations have led us to decide
that this basic control structure of PLANNER is
wrong, though its successes indicate that it contains
many powerful (and seductive) ideas. This investiga
tion has led to the design and implementation of a new,
and hopefully cleaner language, CONNIVER,3 built
largely on·the good ideas found in PLANNER.

Here is our thesis: automatic backtracking, which
occupies a place in PLANNER analogous to that of
recursion in LISP, 4 is the wrong structure for the
domain for which PLANNER was intended, that is,
Artificial Intelligence. We argue that:

1. Programs which use automatic backtracking are
often the worst algorithms for solving a problem.

2. The most common use of backtracking can
almost always be replaced by a purely recursive
structure which is not only more efficient· but
al&o clearer, both semantically and syntactically.

3. Superficial analysis of problems and poor pro
gramming practice are encouraged by the
ubiquity of automatic backtracking and by the
illusion of power that a function like GOAL
gives the user merely by brute force use of in
visible failure-driven loops.

4. The attempt to fix these defects by the intro
duction of "failure messages" (to be explained)
is unnatural and ineffective.

Thus we contend that the problem with PLANNER
is automatic backtrack control structure. We must
stress, however, that PLANNER has introduced many
valuable constructs into our way of thinking, the most
important of which is pattern-directed search of a
hierarchical data base.

Note also that we are not contending that good

programs cannot be implemented in PLANNER;
that would be absurd. Weare only claiming that
PLANNER gets in the user's way when he tries to
embody certain straightforward concepts in his pro
grams. N or are we making the weak point that
PLANNER occasionally lures foolish programmers
into inefficiency. One could try to make this criticism
of LISP by pointing out, for example, how it tempts
one to write an exponentially exploding, doubly re
cursive algorithm for computing the nth element in
the Fibonacci sequence:

(DEFUN FIB (N)
(COND ((= 0 N) 1)

((= 1 N) 1)
(T (+ (FIB (- N 1))

(FIB (- N 2))))))

The language has led us astray here, since it discourages
writing the iterative algorithm, but this is no condemna
tion of LISP; the mechanism or recursive control
structure, although the wrong one to use in this patho
logical case, is often both the most natural and the
most efficient control structure for the problems of
symbolic manipulation that are typical of LISP applica
tions. PLANNER, however, almost forces inefficiency
in exactly the applications for which it was designed.

We now consider our points in detail:

1. All will readily admit that a perfectly clever
program would do no backtracking; it would
know where it was going at each step and never
need to undo a bad decision. Good programs
that know the structure of their problem do
mains (such as Moses' SIN5) have no need for
an ability to thrash about, searching for a good
approach (as in SAINT6). Pure backtracking
(without failure messages) is essentially a
mechanism for easily undoing a bad decision in
the hope that a better alternative will be found.
Thus it is most appropriate to algorithms which
make such bad decisions either because of lack
of sufficient guiding structure in the problem
space or of sufficient knowledge of that structure
in the program.

It is, of course, impossible in practice or in
principle to achieve perfect knowledge in most
AI application programs. Inevitably, programs
will recognize that they have gone seriously
agley, and will have to undo part of what they
have done. Unfortunately, pure backtracking
undoes everything since the last decision, with
out enquiring as to whether it was the one at
fault. Such a program will eventually stumble

upon the right path, but its organization makes
it hard for it to learn something from an attempt
that failed and erased all its side effects. The
only attempt at correcting this intrinsic defect
of failure in the PLANNER sense is the failure
message device, to be discussed under point four.

2. Observation of the MIT vision group's7 use of
MICRO-PLANNER tends to indicate that one
of the more important uses of backtracking, in
programs which are not searching because they
know exactly where they are going, is in infor
mation retrieval. Although important, it is
curiously quite elementary for such a powerful
sounding primitive as GOAL. Vision programs
maintain large data bases of information about
a visual scene, and often must be able to search
out relevant data items from a mass of irrele
vancies. For example:

(GOAL (?X IS BIG))
(GOAL (,X IS GREEN))
(GOAL (,X ON ?Y))
(GOAL (,Y IS BLUE))
(stuff X Y)

means "do the stuff" on the first objects X and
Y such that "the big green X is on the blue Y."
If stuff doesn't like the first ones found, it can
easily fail, hoping to get more if there are any.
Note that what is going on here is sequential
filtering of the possible assignments of X and Y
by pattern-directed search of the data base
and theorems. We see that backtracking must
be used here because any particular big X chosen
on line one may not be green, or may not be on
something blue. The stack frame of each goal
statement thus maintains a list of the hitherto
untried possibilities and if a failure reaches it,
it tries the next one and proceeds.

A much more straightforward and revealing
approach would be to use ordinary recursive and
iterative control structure to filter the possibil
ities directly. Thus, for example, a LISP func
tion FOR-ALL might be written, such that:

(FOR-ALL (?X IS BIG)
(FOR-ALL (, X IS GREEN)

(FOR-ALL (,X ON ?Y)
(FOR-ALL (,Y IS BLUE)

(stuff X Y)))))

would have the desired effect. Here, FOR-ALL
is just a standard LISP function which, upon
entry, looks up all of the assertions and theorems

From PLANNER to CONNIVER 1173

matching the pattern given as its first argument
(with values substituted for variables which are
already assigned). It then assumes the first
possibility, assigning variables appropriately,
and evaluates its second argument. If the evalua
tion ever returns, rather than exiting the loop,
the first element is removed from the list of
possibilities and the process repeats. Notice
that by appropriately nesting our loops no
backtracking is required in the data retrieval.
Here stuff is done on each X and Y which
satisfies the criteria until stuff decides it has had
enough, and leaves the nest of FOR-ALL's
(with a RETURN, GO, or something similar).

This good nesting of loops has decided ad
vantages. Besides being more efficient than
backtracking (a marginal advantage), good
nesting makes the scope of the action clear.
There is no chance an unexpected failure will
propagate back into this code and compute
without our explicit programming of this
activity. We want to emphasize that this in
sidious problem is not invented. It is observed
by real users of MICRO-PLANNER who com
plain that they cannot understand the behavior
of their programs because the flow of control is
not explicit in the code. Usually, any choice
made in a piece of code doing such filtering
eventually fails for the same reason that the
first choice did, but backtracking tends to treat
all decision points as equally important and
tries all possibilities; the only symptom that
the program is running amok is that it takes an
excessive amount of time to fail. The consequent
theorem given suffers from exactly this problem;
if called by, e.g., (GOAL (BLOCK2 IN BOXl)),
its only possible actions are either to find a Z
between BLOCK2 and BOX1, or to fail. Al
though which Z is found cannot possibly affect
subsequent events, a failure back to the theorem
will cause it to look up another Z, succeed, and
~llow its caller to fail again in exactly the same
way!

A number of primitives (FINALIZE,
STRAIGHTEN, etc.) have been added to
PLANNER to give the user some control over
backtracking. In some cases these help, in some
cases not; what is always a problem is that the
structure of a PLANNER program does not
reveal what the programmer's intentions are.
He must always keep in mind that in effect
there is only one gigantic nest of failure-driven
loops in any PLANNER process, and every
subprogram that might fail is only a tiny piece

1174 Fall Joint Computer Conference, 1972

of it. We think that it is essentially clearer for
any looping or nesting structure to -be made
explicit.

3. As PLANNER is currently organized, it pro
vides a very compact notation in which to encode
exhaustive depth-first searches for solutions to
problems the programmer understands poorly.
Other program organizations, though certainly
possible, are more complex and less transparently
described. To ameliorate this situation a multi
processing capability with ports and a hier
archical data base has been added to PLANNER
in later versions. This is an important step in
the right direction which we develop extensively
in CONNIVER. In PLANNER, however, each
process is still crippled by the automatic back
tracking built into system primitiv-es. The
multiprocessing primitives give a breadthwise
capability to PLANNER but this is not enough.
A clever program does not exhaustively search
a problem space in any a priori order but is
rather guided by what it finds. It is often neces
sary to examine the assumptions leading to a
dead end. If hitting a dead end implies backtrack
ing, undoing the bad assumptions and their con
sequences, this structure cannot be easily ex
amined. Thus the sophisticated user of
PLANNER must continuously avoid back
tracking, often programming around system
primitives which set failpoints or possibly fail.
He must spend time calculating the possible
directions from and circumstances under which
he could lose control to the automatic control
structure. With all that machinery hung on his
programs to circumvent the control structure,
they look much less understandable; most
programmers just can't be troubled.

We do not ask what is needed in PLANNER
to make it more powerful; we ask instead what
it is about PLANNER that makes it so difficult
to control. Its defaults are chosen throughout
so that backtracking must be tediously reckoned
with in every case unless the user explicitly
prevents it. It is easy to say (as some PLANNER
advocates do) that people should write their
programs avoiding the temptation to backtrack
except when necessary, but it is hard to avoid
when the language gives them every oppor
tunity to fall.

4. In order to give the user a modicum of control
over the backtrack mechanism, failure messages
were incorporated into PLANNER early in its
history. The intent is to give a program the
ability to fail to a specific point in its history

where a failpoint has been set up. Associated
with each failure is a message (possibly null),
which each failpoint examines when the failure
propagates to it, until a failpoint with a match
ing pattern is found. This does not give the user
the ability to perform eVBn the simplest of con
trol functions. The sy;stem primitives, like
GOAL, which make most failpoints, create them
with null message patterns which are transparent
to failures with any other message. Thus, it is
impossible to fail to a specific goal statement
when it is determined that a bad choice was
made there. Even worse, it is difficult to control
the alternatives that will be chosen if the current
choice fails. Suppose, for example, we have a
goal which invokes a theorem. This theorem, in
probing the search space, discovers something
relevant to its further exploration. It would
like to edit the list of theorems which are pend
ing in the goal which called it (the alternatives
which will be tried if the current theorem fails),
deleting some entries and inserting others. It
might even wish to sort the list of alternatives
according to some general criterion. It has not
yet, however, failed, and thus cannot return a
failure message. Furthermore, it cannot get at
the list of alternatives pending on its failure.

This is not a fine point of control structure the
ory; it would be extremely relevant to a PLAN
NER encoding of a chess program like that of
Greenblatt.8 For example, this program, in an
analysis of a move, may discover that it is in
danger of being forked. This discovery must
change the whole set of criteria by which it
judges further alternatives. It must try to make
a move which meets the discovered threat, if
possible.

We have been concentrating here on the sloppy
interface between failure messages and GOAL,
but there is a fundamental difficulty with them
that would be encountered even if the user
abandoned GOAL altogether. That is, they
can't carry enough information. There is no way
to fail back with the message: "Process P ran
into difficulty T," because process P and its
context have been destroyed by the failure. So
all the relevant information must be contained
in the T part of the message: "Difficulty T."
It is clear that including all and only the relevant
information is as impossible a job for a sub
routine as anticipating the form of every possible
failure is for its caller. In fact, the THMES
SAGE primitive of MICRO-PLANNER has
never been successfully used; it seems to be one

of those superficially good ideas that prove to
be unworkable.

It seems that a failing program has no choice
but to make too much information frozen in too
global a context, or to flush everything it has
discovered and bet all its chips on one message
it hopes somebody, somewhere, can figure out.
These alternatives do not really alter the blind
nature of a failure-driven process, or of several
of them. This is probably why they go unused.

At this point it is desirable to abstract our entire
discussion away from the particular primitives of
PLANNER, and enquire what is gained and what is
lost by the use of automatic backtracking. What is

. gained is clear, and very appealing. In the first place, it
provides a mechanism for generating alternatives, one at
a time, to be used in an effort to accomplish some task.
Secondly, it provides a mechanism for eradicating the
consequences of accepting an alternative later found to
be unstable.

We have already criticized the consequences of this
scheme in several ways. Now we shall argue that its
basic defect is that it forces the dangerous assumption
that the alternatives at each decision point are in
dependent; that (as within all PLANNER primitives)
the trial of one of them may produce little or no in
formation which can influence the selection of further
alternatives, or the way in which they are run. This is
enforced ·by the eradication of the consequences of a
hypothesis when that hypothesis is discarded.

For example, a robot wants to pick up an object, and
he has several ways of doing so. In trying the first
method, with his right hand, he discovers that the object
is hot by seriously burning himself. It is clear that
though this method failed he should not go back and try
his left hand. Nor should it be necessary for him to have
foreseen the difficulty and thus set up a message catcher
for burnt hand failure (or for lightning striking); such
caution, applied to all possible contingencies, is im
possible. The reasonably designed robot will drastically
modify his behavior at this point, say be getting a pair
of tongs, after screaming.

Notice also that any failure-driven generator (a
function that returns a value but sets a fail-point) is
constrained to generate alternatives one at a time. If
the alternatives are interdependent, surely the best one
should be chosen while all or most are in view. In fact,
the only reason for generating objects rather than just
making a list of them is that sometimes the number of
possibilities (as, say, the prime numbers) may be
infinite, or the cost of generation of the next possibility
is much greater or grows much faster than the cost of
testing its usefulness. In many cases, however, an ex-

From PLANNER to CONNIVER 1175

plicit list of all or some of the alternatives is what is
desired. Of course, even in PLANNER, such a list must
exist, snuggled inside some GOAL's failpoints, but there
is no natural way to access it.

The PLANNER implementation of pattern-directed
procedure invocation reinforces these problems of back
tracking. The anonymity of the procedures that may be
fetched by pattern-directed call makes it even easier to
pretend to have many "independent" methods of
solving the same problem, hoping that one of the
methods, to be found by failure, will come up with an
acceptable solution. Not only does this organization
force each method to have to be able to run in complete
ignorance of what has been tried so far, or even that
other methods exist, but in many cases the "independ
ent" methods will come up with the same unacceptable
answer more than once, causing the system to thrash
ridiculously. The solution, of course, is to abandon the
myth that there could be several independent methods
of attacking any interesting problem, and concentrate
on techniques for making methods interact reasonably.

This is not to say that the pattern-directed function
call does not have its place in the arsenal of problem
solving. It is valuable whenever, either due to the
infiniteness of the set or the economics of storage vs.
computation, a procedure can be used to represent a
set of assertions.

There are many excellent ideas in PLANNER. They
include the notions of "generator" and "possibilities
list." But they have been pushed far beneath the sur
face, so that the user may think in terms of "goals."
While the concept of goal-directedness is certainly as
well established as any in our field, it seems clear that
naming a primitive function "GOAL" is not enough to
capture the essence of the idea. In the next section, we
shall concentrate on isolating the best ideas in PLAN
NER, discarding those that have gotten so many
l\1ICRO-PLANNER users in trouble, starting with
automatic chronological backtracking.

BUILDING CONNIVER

We have shown in the first section that backtracking
is a device of questionable usefulness at the very tasks
for which it was designed. It encourages a linkage of
the mechanism for generating alternatives with the
mechanism that restores the environment after the
investigation of each one. Each time, the generation
of the next must proceed on the basis of very little
information besides the fact that the last failed. We
have, in the end, a control structure that almost forces
the user to regard all his problem-solving methods as
independent.

1176 Fall Joint Computer Conference, 1972

It seems to be the linkage of these two mechanisms
in the GOAL statement that is at fault. As an alterna
tive, imagine that we are not allowed to clean things
up upon failure; that everything each goal-directed
subroutine does stays done. Then, if the speculation it
has indulged in is not to have effects on the environ
ment of its caller (the program considering the alterna
tives), it must have a local environment of its own to
make changes to. These changes may make its model
of the problem conflict with its superior's model, or
may simply be hypothetical additions to it. The im
portant point is that a simple return to the caller will
be sufficient to make the changes invisible.

This concept can be made clear by analogy with the
familiar notions of "control environment" (a stack, for
example), and "access environment" (where variables
are bound; the term is Bobrow and Wegbreit's;9 in
CONNIVER, we generalize the latter to "data base
environment," or context. Just as LISP 1.5 supports a
tree of access environments ("association lists"), so
CONNIVER supports a tree of contexts, in which each
daughter-context represents a data base incrementally
different from her parent.

This tree, it will be made clear, must be grown and
maintained in conjunction with a control environment
of equal complexity. But the control structure exists
only to exploit the data base, so we return to it later.

Conniver contexts contain items, which are simple
list structures like PLANNER's assertions (without
the theorem-proving connotations that surround the
latter term). An item such as (SQUARE48 PAWN3)
may be added to the current context with

(ADD '(SQUARE48 PAWN3))

and taken out with

(REMOVE '(SQUARE48 PAWN3)).

The arguments to ADD and REMOVE are skeletons,
list structures that define items after substitution of the
values of their variables. Variables are indicated by
",". Thus, if X = PAWN2, (ADD , (SQUARE49 ,X»
adds the item (SQUARE49 P A WN2) to the current
context.

Now, if the presence or absence of an item is to be
reflected only in a local data base, that is, be "hypo
thetical," the data environment must be "pushed
down" before doing ADD's and REMOVE's of this
sort. Since, in CONNIVER, a context is a data type,

and the current context is assigned to the variable
CONTEXT, all we need to write is:

(PROG "AUX" «CONTEXT (PUSH-CONTEXT»)
(ADD '(SQUARE48 PAWN3»

)

CONNIVER syntax is roughly that of LISP, but a
declaration of local variables must be explicitly in
dicated with the atom "AUX", and each such local
must be given an explicit initial value, if it is not to be
unassigned, by being declared as "(variable value)"
instead of just "variable." This PROG thus rebinds
CONTEXT to the value returned by the system func
tion PUSH-CONTEXT. The current context has had
one more context-frame pushed onto it. New changes
apply to this frame only. After the body of the PROG
has been executed in this "hypothetical" context, the
PROG's control frame will be exited. CONTEXT will
be unbound, restoring its old value, in which the action
of the ADD is invisible; in effect, a data frame has been
exited as well.

From now on, we shall abbreviate a construction
such as the above as

(ASSUMING (SQUARE48 PA WN3) ...),

to emphasize concisely the nature of the computation.
" ... " as proceeding in a slightly new environment.
However, it should not be forgotten that, since con
texts are data structures, they can be returned as
values of functions, assigned to global variables, etc.,
so that in fact the user has available a tree of contexts
his program has left behind, in the same way that using
functional arguments (closures of functions) in LISP
creates a tree of variable-value associations.

Items can be retrieved from the current context by
means of the CONNIVER primitive FETCH, which
finds all items present in the context that match a
pattern. For example, if we let the presence of the item
(obj1 ON obj2) mean "object obj1 is resting on top of
object obj2," we can find all the objects on BOX2 with

(FETCH '(?X ON BOX2»

Roughly as in PLANNER, the "?" indicates that the
variable X is to be assigned a value by matching the
pattern (?X ON BOX2) against some item. However,
FETCH does not make the assignment. Since back
tracking has been exorcised from CONNIVER, it
simply returns a possibilities list which points to all the
matching items, rather than hiding them in a failpoint

in GOAL, to be handed to us coyly, one per failure. The
user can manipulate this list in any way he chooses;
one way is with the system function TRY-NEXT,
which pops off and returns the first item in the list, and
assigns the pattern variables as the possibility directs.
For example, if PYRAMID6 is the first object found,
(TRY-NEXT (FETCH '(?X ON BOX2))) sets X to
PYRAMID6.

A useful "canned-loop" function, which is imple
mented using FETCH and TRY-NEXT, is FOR
EACH, defined so that

(FOR-EACH pattern ...)

performs the computation " ... " for each assignment
of the pattern's variables corresponding to an item in
the data base. Hence,

(FOR-EACH (?X ON TABLE)
(PRINT X))

prints the names of all objects resting on TABLE.
As in PLANNER, we want to be able to include a

set of items in the current context on the basis of some
procedural criterion instead of their actual presence.
In PLANNER, this ability was attained by the use of
consequent theorems, which behave as failure-driven
assertion-generators when invoked by GOAL state
ments. Since there is no backtracking in CONNIVER,
the analogous CONNIVER structure, the if-needed
method, must return all of its possibilities in a single
bundle. The simplest type of if-needed uses the primi
tive NOTE to save the current instantiation of its
pattern with the values of the variables, which were not
assigned when it was entered, but have been computed
by the method. When the method is exited, it returns
a possibilities list which includes all the NOTEd in
stances.

For example, if the presence of an item of the form
(obj1 SUPPORTS obj2) is to mean "objl is helping
maintain obj2 in its present position," the following
method expresses part of the idea that if an object is on
another, it is supported by it:

(IF-NEEDED SUP-ON (IX SUPPORTS I?Y)
"AUX" (X Y)

(FOR-EACH (?Y ON ,X) (NOTE)))

The "I" and "I?" prefix characters mark method
pattern variables that are to receive or to avoid re
ceiving a value, respectively, when the method is
entered. The "I?" -variables are to be assigned in the
body of the method (here, by the TRY-NEXT of a
FOR-EACH loop); hence, this method returns a list

From PLANNER to CONNIVER 1177

of all generated item possibilities for Y's supported
by a givenX.

Methods like SUP-ON are treated by the systcm, as
other data, as present or absent in a givcn context. If a
method matching a FETCH or FOR-EACH pattern
is found, a method possibility is put into the possi
bilities list produced, to be invoked by TRY-NEXT
when the possibilities before it are used up. Upon re
turning, the method replaces itself on the caller's
possibility list by the instances it generated. Hence, the
presence of SUP-ON in a context represents the presence
of the items it can produce on demand.

As an illustration, suppose the items (TABLE
SUPPORTS APPLE3), (PLATE1 ON TABLE), and
(BOX2 ON TABLE) are present. Then the loop

(FOR-EACH (TABLE SUPPORTS ?OBJ)
(PRINT OBJ))

prints

APPLE3
PLATE!
BOX2,

with the method SUP-ON simulating the two items
for the second two objects.

A more complex method may require the creation of
a hypothetical data base:

(IF-NEEDED SUP-UN (IX SUPPORTS I?Y)
"AUX" (X Y)

(ASSUMING (,X VANISHES)
(FOR-EACH (PHYSICAL-OBJECT ?Y)

(COND «UNSTABLE Y) (NOTE))))))

This method creates a hypothetical context in which X
no longer exists, and sees which objects are no longer
stably immobile according to the (sophisticated) func
tion UNSTABLE. These are NOTEd, and, as before,
all objects X supports (by this criterion) are found
before SUP-UN returns.
'Our concept of generator appears simpler than

PLANNER's; methods like these dump all their in
stances into the caller's possibilities list and return,
leaving their control environments and any bindings of
CONTEXT to be collected as garbage. Even if its
caller wants only one new item possibility, such genera
tors give him all of them. The scheme we have de
scribed does not allow the caller to influence the order
or selection of objects to be generated. If each genera
tion is expensive, as, in SUP-UN; a call to UNSTABLE
might very well be, a lot of unnecessary overhead may
be incurred if not all members of the set at issue are

1178 Fall Joint Computer Conference, 1972

wanted. If, in fact, this set is infinite, the scheme breaks
down completely.

We have returned to our original problem: how can
we maintain in existence the control and context
structure of a generator while returning from it with

i only a few of the possibilities it can find? The answer
lies in the structure and function of the possibilities
list; to invoke a method found in such a list is to re
place the method by its value, itself a list of possi
bilities. If this value list contains a generalized tag
back to the generator's activation, its environment
will be preserved and accessible. Not only that, but
if TRY-NEXT comes upon such a thing in a possi
bilities list, it is bound to transfer control to it. Now
the method can generate items in finite groups, asking
to be reawakened if none of the items satisfies its
caller. A new version of SUP-UN that works this way
looks like:

(IF-NEEDED SUP-UN2 (!X SUPPORTS !?Y)
"AUX" (X Y)

(ASSUMING (,X VANISHES)
(FOR-EACH (PHYSICAL-OBJECT ?Y)

(COND ((UNSTABLE Y)
(NOTE)
(AU-REVOIR)))))).

AU-REVOIR causes an immediate return from the
method when the first Y is found, but also returns a
tag to its own activation. Remember that SUP-UN2
is interacting with a possibilities list (perhaps hidden
in a FOR-EACH) at a higher level. The method itself
was found there, representing a set of simulated items;
now when it returns, it leaves one new supportee, plus
an AU-REVOIR tag which similarly represents the
set of remaining possibilities it knows about. From the
point of view of a FOR-EACH loop, this type of possi
bilities list is equivalent to the previous exhaustive list,
but it differs in several crucial ways.

First, the list is as short as the generator wishes to
make it, no matter how large the set it can generate if
requested. Second, such a list represents a generation
in-progress which is not complete; the calling process
that asked for it is in a position to intervene and advise
the generator how to proceed. Third, an AU-REVOIR
tag can be treated explicitly as a datum representing
a parallel problem investigation and associated world
view. A generator's caller can use such a tag to do
relative evaluations, close functions, and fiddle with
its binding of CONTEXT. Notice, for example, that
a program that uses SUP-UN2 has available a pointer
to an incompatible environment where the object X
no longer exists; a more sophisticated version could use
this ability to communicate the context and remaining

physical object possibilities to take advice from its
caller on how to generate more objects supported by X.

The requirement that there be generalized tags, tags
that mention whole control environments, makes it
necessary that CONNIVER maintain a control tree
similar in structure to the context tree it serves. All
such still-viable environments form a set of processes
coopera ting to solve a problem. Some of these are
generators, using possibilities lists as communication
channels with their callers, but this by no means ex
hausts the alternative ways of interacting. In par
ticular, CONNIVER's generalized control structure
makes it easy to put all of failure and backtracking
back in if the user wants them, but he has the duty
(or privilege) of designing and maintaining control over
what he builds.

A couple of points remain to be made. Notice that,
although the loops in SUP-ON and SUP-UN are ex
haustive and blind, they are explicit. The only natural
way to write these generators in PLANNER is by use
of successive GOAL statements that filter out the bad
choices. Although the user may intend a loop like a
FOR-EACH, and, locally, a GOAL conglomeration
behaves like one, it suffers uncontrollably from the
effects of global failures.

Generators do not have to be methods; we have only
been pursuing this example because of the PLANNER
analogy; it seems much more rational that the support
finders be generator functions of one argument X, with
values corresponding to Y. (See Reference 3.) There
are several such points of CONNIVER style on which
we have been deliberately misleading in order to make
a simple point about how a kind of generation problem
ought to be approached. We do not, in fact, condone
the use of exhaustive FOR-EACH loops, or the hiding
of basic machinery such as FETCH and TRY-NEXT
from the user. Each programmer must confront the
problems and powers of the primitive routines in order
to devise his own higher-order functions in an informed
way.

Communication between processes is essential to the
effective use of mUltiprocessing. We have tried to build
as many communication devices into TRY-NEXT
and generators as possible in hopes that they will be .
used. It would be very dangerous to try extending the
exhaustive searches used in SUP-UN to something as
much more complicated as a plausible chess move
generator. A clever generator must be able to talk to
its caller. Even in SUP-UN, it seems clear that the order
and methods of generation of physical objects should
depend to some degree on the problem situation, in
cluding the use to which the objects are to be put.

We have constructed CONNIVER partly by raising
to prominence ideas casually embedded in PLANNER,

partly by reformulation of the primitives to give hidden
PLANNER constructs to the programmer, and partly
by concentrating on what is needed in a programming
language as opposed to a theorem-prover. Our major
contribution, we think, is the elimination of automatic
backtracking upon failure as a mechanism for the
generation of alternative approaches to a problem.
We have shown how PLANNER makes it difficult to
write controllable programs; how, like most theorem
provers, it is committed to loosely guided exhaustive
search as a problem-solving method; and how the user
must either succumb to the will of the control structure
or spend much of his time using primitives (like
FINALIZE, STRAIGHTEN, TEMPROG, etc., ad
infinitum) that save him from it.

ACKNOWLEDGMENTS

We must deeply acknowledge the profound influence of
Joel Moses on this paper. Some of the ideas here are
directly due to him; others were independently ar
rived at by him. Most of our ideas were arrived at by
observation of real users of MICRO-PLANNER. We
thank especially Carl Hewitt, many of whose structures
we used in the design of CONNIVER. Dan Bobrow,
Jeff Rulifson, Bob Balzer, Chris Reeve, Marvin/Minsky,
Seymour Papert, Tom Knight, Terry Winograd,
Richard Greenblatt, Donald Eastlake, David
McDonald, Jon L. White, and William Gosper provided
valuable sounding boards for these ideas.

Work reported herein was conducted at the Artificial
Intelligence Laboratory, a Massachusetts Institute of
Technology research program supported in part by
the Advanced Research Projects Agency of the De
partment of Defense and monitored by the office of
Naval Research under Contract Number N00014-
70-a-0362-0003.

From PLANNER to CONNIVER 1179

REFERENCES

1 C HEWITT
PLANNER: A language for manipulating models and
proving theorems in a robot
MIT AI Memo 168 (rev) 1970
See also DE Walker and L M Norton (eds) Proc IJCAI 1
pp 295-301

2 G J SUSSMAN T WINOGRAD E CHARNIAK
MICRO-PLANNER reference manual
MIT AI Memo 203A

3 D McDERMOTT G J SUSSMAN
The CONNIVER reference manual
MIT AI Memo 259 1972

4 J McCARTHY et al
LISP 1.5 programmer's manual
MIT Press Cambridge 1962

5 J MOSES
Symbolic integration
MIT Cambridge Mass PhD dissertation 1967

6 J SLAGLE
A computer program for solving problems in freshman calculus
(SAINT)
MIT Cambridge Mass PhD dissertation 1961
Also in EA Feigenbaum and J Feldman (eds) Computers
and Thought McGraw-Hill pp 191-203

7 P H WINSTON
The MIT robot
D Michie and B Meltzer (eds) Machine Intelligence 7 1972

8 R GREENBLATT et al
The Greenblatt chess program
Proc FJCC pp 801-810 1967
Also MIT AI Memo 174 1969

9 D G BOBROW B WEGBREIT
A model and stack implementation of multiple environments
Bolt Beranek and Newman Inc Report No 2334 1972

10 C HEWITT
Description and theoretical analysis (using schemata) of
PLANNER: A language for proving theorems and
manipulating models in a robot
MIT Revised PhD dissertation April 1972 AI Technical
Report 258

11 C HEWITT
Procedural embedding of knowledge in PLANNER
Proc IJCAI 2 pp 167-182 Sept 1971

The QA4 language applied to robot planning*

by JAN DERKSEN, JOHNS F. RULIFSON, and RICHARD J. WALDINGER

Stanford Research Institute
Menlo Park, California

INTRODUCTION

This paper introduces an implemented version of a
problem-solving language called QA41 ,2 (Question
Answerer 4) and illustrates the application of that
language to some simple robot problems. This applica
tion is especially appropriate, because the QA4language
has features that are recognized as useful for problem
solving programs;3 these features include built-in
backtracking, parallel processing, pattern matching,
and set manipulation. Expressions are put into a
canonical form and stored uniquely, so that they can
have property lists. A context mechanism is provided,
so that the same expression can be given different
properties in different contexts. The QA4 interpreter is
implemented in LISP and can interface with LISP
programs. The language is especially intended to be
useful for research leading to program verification,4

modification, and synthesis,5 to semantically oriented
theorem proving,6 and to various forms of robot plan
ning.7

DESIGN PHILOSOPHY

QA4 has been designed with a specific problem
solving philosophy, which it subtly encourages its users
to adopt, and which is an outgrowth of our experience
with its antecedent, QA3.8 QA3 contained an axiom
based theorem prover, which we attempted to use for
general-purpose problem solving. However, all knowl
edge had to be stored in the declarative form of logical
axioms, with no indication as to its use. When a large
number of facts were known, the knowledge could not

* The research reported herein was sponsored by the National
Aeronautics and Space Administration under Contract NASW-
2086.

1181

be used effectively. The system became swamped with
irrelevant inferences, even when supplied with several
sophisticated syntactic strategies.

In contrast, QA4 can store information in an impera
tive form, as a program. This makes it possible to store
strategic advice locally rather than globally: In giving
information to the system, we can tell it how that
information is to be used. Strategies tend to be semantic
rather than syntactic: Weare concerned more with
what an expression means than with how long it is.
QA4 programs are intended to rely on an abundance of
know-how rather than a large search in finding a solu
tion. We expect our problem solver to make few poor
choices, and we try to give it all the information at our
disposal to restrict these choices.

There are many similarities both in detail and in
philosophy between QA4 and a language designed at
MIT called PLANNER,7 a subset of which has been
implemented and has been very successful for expressing
programs to manipulate building blocks. We have
adapted some PLANNER features for our own uses,
and some features shared by both languages have been
arrived at independently. The fact that the same
devices have been found useful by different groups of
people and for diverse problem domains encourages us
to believe that languages of this sort will have appeal
for problem solvers in general.

THE ROBOT PROBLEMS

We will now examine the kind of knowledge we expect
a robot planner to have, and the class of problems we
expect it to be able to solve. We will consider some
problems of a type recently approached by the SRI
robot.4 We will then be better able to discuss the
application of QA4 to this domain and the merits of
the QA4 approach.

1182 Fall Joint Computer Conference, 1972

We envision a world consisting of several rooms and a
corridor, connected by doorways. There are boxes and
other objects in some of the rooms, and there are
switches that control the lights. The robot can move
freely around the floor, can pass between the rooms, can
see and recognize the objects, can push all the objects,
and can climb up onto the boxes. If the robot is on top
of a correctly positioned box, it can switch the light on
and off.*

The first problem faced by the robot is to turn on the
light in one of the rooms. To solve this problem it must
go to one of the boxes, push the box next to the light
switch, climb up on the box, and turn the switch.

We supply the problem solver with a model or repre
sentation of the world, which includes the arrangement
of the rooms and the positions of and relationships
between the objects. Furthermore, corresponding to
each action the robot can take, we supply an operator,
whose effect is to alter the model to reflect the changes
the robot's action makes on the world. Each operator
has preconditions, requirements that must be satisfied
before it is applied.

For example, the pushto operator corresponds to the
robot's action of pushing a box. It changes the model by
changing the location of the robot and the location of
the box. Its precondition is that the robot be next to
the box before the operator is applied.

The goal of the problem is a set of conditions that we
want the model to satisfy. For example, in the problem
of turning on the light, we require that the light be on
when the task is completed. The problem of planning,
then, amounts to the problem of finding a sequence of
operators that, when applied to the initial world model,
will yield a new model that will satisfy the goal condi
tions. If the robot then executes the corresponding
sequence of actions it will, presumably, have solved
the problem.

Let us suppose that the problem solver works back
wards from its goal in its search for a solution. It finds
an operator whose effect is to change the model in such
a way that the goal condition is satisfied. However, the
preconditions of that operator might not be true in the
initial model. These preconditions then become sub
goals, and the problem solver seeks out operators whose
effect is to make the subgoals true. This process con
tinues until all preconditions of each operator in the
solution sequence are true in the model in which that
operator is applied, and thus, in particular, the pre-

* Actually, the robot that exists at SRI can neither climb boxes
nor turn switches.

conditions of the first operator in the plan are true in
the initial model.

THE SOLUTION OF THE PROBLEM: OF
TURNING ON A LIGHT

Let us examine within this framework the complete
solution of the problem of turning on a light. We
assume that, in the initial model, the light switch, the
robot, and at least one box are all in the same room. We
assume that the problem solver can apply a set of
operators that includes the following: turnonlight,
climbonbox, pushto, and goto, which correspond to the
actions necessary to turn on the light. The goal is that
the status of the light be ON. The operator turnonlight
has the effect of making this condition true. However,
the preconditions of this operator, that the box be next
to the light switch and the robot be on top of the box,
are not true in the initial model. These preconditions
therefore become new subgoals. For the robot to be on
top of the box, it suffices to have applied the climbonbox
operator. Hmvever, this operator has the precondition
that the robot be next to the box; this precondition
becomes a new subgoal.

Both this subgoal and the unachieved precondition
of the turnonlight operator, that the box be next to the
light switch, are achieved by the pushto operator, which
can move a box anywhere in the room. However, the
pushto operator still has the precondition that the robot
be next to the box. This new subgoal can be achieved by
the goto operator, which can move the robot anywhere
around the room. The only precondition of the goto
operator is that the robot be in the same room as its
destination, but this condition is satisfied in our initial
model, since the robot and the box are assumed to be in
the same room. Thus, a solution has been found: the
sequence goto the box, pushto the box next to the light
switch, climbonbox, and turnonlight.

The QA4 solution to the robot problems is a direct
translation of the approach of the STRIPS problem
solving system,7 which uses the above framework.
STRIPS is the problem solver that does the planning
for the SRI robot. The solution of the first three
problems approached by STRIPS was the first exercise
for the QA4 language. The operators were encoded in
the QA4 language, and the model was expressed as a
sequence of QA4 statements. This package of informa
tion, with no further supervision or strategy, sufficed
for the solution of the three sample problems. Finding
the plans amounted to evaluating the goals expressed
in the QA4language. The solutions were found quickly
and with no more search than necessary. More signifi-

cantly, the operator descriptions were written quickly
and are concise and fairly readable.

The S T RIPS representation

For STRIPS, the model is a set of sentences in first
order logic; the preconditions of an operator are also
expressed as a set of first-order sentences. The descrip
tion of the operator itself is restricted to a rather rigid
format: There is a delete list, a set of sentences to be
deleted from the old model, and the add list, a set of
sentences to be added to the new modeL The delete list
expresses facts that may have been true before the
action is performed but that will not be true after the
action has been completed. The add list expresses facts
that might not have been true before the action is
performed but that will be true afterwards. In STRIPS,
the turnonlight operator, for instance, is described as
follows: Its preconditions are that the robot be on the
box and that the box be next to the light switch. It
deletes from the model the fact that the light is OFF,
and it adds to the model the fact that the status of the
light is ON. In STRIPS, the strategy for selecting and
forming sequences of operators is embodied in a large
LISP program. The applicability of operators and the
differences between states are frequently determined by
a general-purpose, first-order, theorem prover, and the
operators themselves are coded in a special-purpose
l\larkov Algorithm language. In QA4, all these elements
of the problem-solving system can be handled within a
single formalism. We can use the full power of the QA4
programming language to construct the operator
description. To describe the operators we have dis
cussed above, we follow the STRIPS format rather
closely. For more complex operators and plans, we may
make use of more of the language features, as we shall

, see below.

,I, The QA 4 representation

We will now look at the QA4 program for the turnon
, light operator;* the reader can thus become familiar

~ with the flavor and some of the features of QA4 without

* The QA4 programs for the other operators, the precise formula
tion of the light switch problem, and the tracing of the solution
of that problem are included in the appendix.

QA4 Language Applied to Robot Planning 1183

having to read a general description:

(LA1\1BDA (STATUS ~M ON)
(PROG (DECLARE N)

(EXISTS (TYPE $1\1 LIGHTSWITCH»
(EXISTS (TYPE ~N BOX»
(GOAL DO (NEXTTO $N $M)
(GOAL DO (ON ROBOT $N»
($DELETE (' (STATUS $M OFF))
(ASSERT (STATUS $1\1 ON»
($BUILD (' (:$TURNONLIGHTACTION

$1\1))))).

First, we summarize the action of this operator on the
model: It selects a box and asks that the box be next to
the light switch and that the robot be on top of the box.
I t then turns the light on, and it adds the turning of the
switch to the sequence of actions to be executed by the
robot.

The reader will note how concise and readable the
QA4 representation of operators is. Now we will examine
the turnonlight operator in more detail, to see what it
does and the constructs it uses.

The pattern

The program has a LISP-like appearance, but it is
evaluated by a special interpreter. In place of a bound
variable list, it has a pattern (STATUS ~1\1 ON). This
pattern serves as a relevancy test for application of the
function. An operator will be applied only to goals that
match its bound variable pattern. This operator will be
applied only when something is to be turned on. In
STRIPS, the add list serves the same function as the
pattern. However, in QA4 the relevancy test is distinct
from the changes in the model.

All variables in QA4 have prefixes; the prefix ~ of the
variable M means that the pattern element ~ M will
match any expression, and M will then be bound to
that expression. The other two pattern elements,
STATUS and ON, have no prefixes: They are constants
and will match only other instances of themselves.

For the following example we shall assume that we
want to turn on LIGHTSWITCHl; our goal, therefore,
is (STATUS LIGHTSWITCHI ON). The pattern of
the turnonlight operator matches this goal, binding M
to LI GHTSWITCH1.

Patterns play many roles in QA4; they may appear
on the left side of assignment statements and in data
base queries. The ability to have a pattern as the bound
variable part of a function gives us a concise notation
for naming substructures of complex arguments. It

1184 Fall Joint Computer Conference, 1972

also gives us a flexible alternative to the conventional
function-calling mechanism, as we shall see.

Searching the data base

The program must first be sure that the value of M is
a light switch. This is one of the preconditions of the
operator. The statement (EXISTS (TYPE $1\1
LIGHTSWITCH)) searches for instances of the
pattern (TYPE $M LIGHTSWITCH) that have been
declared TRUE in the data base.

The $ prefix of the variable lV1 means that $M will
match only instances of the value of M; lV1 will never
be rebound by this match. Thus, in our example we
look only for the expression (TYPE LI G HTSWITCHI
LI G HTSWITCH) in the data base.

Unless otherwise specified, the EXISTS statement
also checks that this expression has been declared true.
Expressions have values; to declare an expression true,
we use the ASSERT statement. This construct sets the
value of its argument expression to TRUE. This value
is stored in the property list of the expression. In QA4,
the model is the set of expressions with value TRUE.
For our example, we assume that the user has input
(ASSERT (TYPE LIGHTSWITCHI LIGHT
SWITCH)) before attempting the problem. Thus, the
fact that LIGHTSWITCHI is a light switch is in
cluded in the model.

The EXISTS statement will cause a failure if no
suitable expression is found in the data base. A failure
initiates backtracking: Control passes back to the last
point at which a choice was made, and another alter
native is selected. 1\1uch of the power of the QA4
language lies in its implicit backtracking, which relieves
the programmer of much of the bookkeeping responsi
bility.

Choosing a box

The operator uses another EXISTS statement to
choose a box to use as a footstool: (EXISTS (TYPE
~N BOX)) searches the data base for an expression of
the form (TYPE ~N BOX) whose value is TRUE.
That such a box exists is one of the preconditions of the
operator. Note that here the variable has prefix ~, so
there is a class of expressions the pattern will match,
and the variable N will be bound by the matching
process. We will assume that (TYPE BOXI BOX) has
been asserted to be true, and that N is bound to BOXl.

If for some reason the operator is unable to use
BOXl, a failure will occur. Control will pass back to the
EXISTS statement, which will then select another box.

Moving the box

The operator now insists as one of its preconditions
that the chosen box be next to the light switch. For this
purpose it uses the GOAL construct, a mechanism for
activating appropriate functions without calling them
by name. To move the box, the operator uses (GOAL
DO (NEXTTO $N $M)).

The GOAL first acts as an EXISTS statement: It
checks to see whether (NEXTTO $N $M), that is,
(NEXTTO BOXI LIGHTSWITCHl), is in the data
base. If BOXI is already next to the light switch, the
goal has already been achieved. However, in general, it
will be necessary to move the box by using other
operators. In other words, the precondition is established
as a sub goal.

Every operator has a bound variable pattern and a
"goal class," a user-defined heuristic operator partition.
A GOAL statement specifies an expression and a goal
class. In these problems there are two goal classes, DO
and GO. The operators in the GO class are those that
simply move the robot around on the floor: for example,
goto. The operators that move objects or that cause the
robot to leave the floor are in the DO class: pushto,
climbonbox, and turnonlight.

To put an operator in a goal class we input (TO
goal-class operator). For instance, for this example we
assume that we have input (TO DO CLIMBONBOX).

An operator can only be applied to a goal if it belongs
to the goal class specified by the GOAL statement. In
our example the goal class is DO. Therefore, the only
operators that can be applied are pushto, climbonbox,
and turnonlight.

Each of the operators has a bound variable pattern.
To be applied to a goal it is not sufficient that the
operator belong to the specified goal class; it is also
necessary that the bound variable pattern of the
operator match the expression specified by the goal
statement. In this case the bound variable pattern of
the pushto operator, (NEXTTO ~1\1 ~N), matches
the goal expression (NEXTTOBOXI LIGHT
SWITCHl) , with 1\1 bound. Therefore, the pushto
operator is activated.

We will be somewhat more sketchy about the opera
tion of the pushto operator, since our aim is to focus
attention on the turnonlight operator. The pushto
operator establishes another subgoal, (NEXTTO
ROBOT BOXl), with goal class GO. This goal ac
tivates the operator goto, which succeeds without
establishing any further subgoals.

The GOAL mechanism is powerful because we need
not know in advance which functions it will activate;
that choice depends on the form of the argument. The

relevant operators come forward at the appropriate
time.

The turnonlight operator requires not only that the
box be next to the light switch, but also that the robot
be on top of the box, before it can turn on the light. This
precondition is described as (GOAL DO (ON ROBOT
$N)). Of the operators of the DO class, the only one
whose bound variable pattern matches the goal expres
sion is climbonbox, with pattern (ON ROBOT ~lVl), so
this operator is applied. The preconditions of this
operator, including the requirement that the robot be
next to BOXl, are already satisfied in the model. Thus,
the operator can report a quick success.

The remaining statements effect the appropriate
changes in the model. The statement ($DELETE
(' (STATUS $1\1 OFF» corresponds to the specification
of the delete list in the STRIPS description of the
operator. There is a $ prefix on the DELETE function
because this function is user-defined: Its definition is
the value of the variable DELETE. The statement
(ASSERT (STATUS $M ON» represents the add list
of the operator. The final statement, ($BUILD ('
(:$TURNONLIGHT ACTION $1\1»), simply adds
the action of turning on the light to the planned
sequence of actions to be carried out by the robot.

DESIGN PHILOSOPHY REVISITED

Although our operators are as concise as those of
STRIPS, we have given them a certain amount of
strategic information. For example, in turnonlight we
tell the system that the box must be brought up to the
light switch before the robot mounts the box, while in
STRIPS the same preconditions are unordered, so the
planner may investigate the ill-advised possibility of
climbing the box first and moving it later. STRIPS
could have been given ordered preconditions, but its
designers were more interested in the behavior of the
problem solver when it had to discover the best ordering
by itself. The decision about how many hints to give
the operator is, we feel, primarily a matter of taste.
For QA4 we prefer to give the operators as much
information as possible, and risk the charge of using an
ad hoc approach. We feel that this is the only way that
our programs will solve interesting problems.

Although STRIPS does not rely as heavily on axiom
based theorem proving as QA3 does, it still uses a
theorem prover for such purposes as determining whether
an operator is relevant or applicable, tasks that QA4
accomplishes by using pattern matching. As STRIPS
has shown us, the theorem proving involved in such
processes is quite straightforward, and a pattern-

QA4 Language Applied to Robot Planning 1185

matcher seems to be a more appropriate tool here than
a full-fledged theorem prover.

We also applied the system to the two other problems
from the STRIPS paper.9 In these problems the robot
is envisioned to be in a building with several rooms and
a corridor. It is asked first to push together the three
boxes in one of the rooms and second to find its way
from one of the rooms to another. The QA4 system
solved these problems also, and it made no mistaken
choices.

These problems are, of course, particularly simple.
Had they been sufficiently complicated, any QA4
program would have to do some searching in trying to
find a solution. In that case, we would have had to
write our operators in a somewhat different way.

OTHER FEATURES AND APPLICATIONS

These problems did not use many of the features of
QA4 that we feel would be valuable for more complex
problems and in other problem domains. For example,
STRIPS plans are always linear sequences of operators;
plans never include branches that prepare for various
contingencies. There is no mechanism for considering
alternative world models in a single plan. The con
struction of conditional plans is facilitated by the
"context mechanism" of QA4, which allows us to store
alternative hypotheses under distinct contexts without
confusion.

STRIPS plans also have no loops; an action in a
STRIPS plan can be repeated only a prespecified
number of times. However, the fact that QA4 plans are
programs that admit both interaction and recursion
opens the possibility of writing plans with repeated
actions.

If QA4 is successful in writing robot plans with
loops, it will probably be equally effective at the
synthesis of computer programs. Assembly code pro
grams, in particular, are strikingly similar to robot
plans: Computer instructions are analogous to operators,
and whereas for robot plans we model the world, for
computer programs we model the state of the registers
of the machine. QA4 has already been successful at
producing simple straight-line assembly code programs.
More general theorem-proving ability would enable
QA4 to construct programs in other languages, in
cluding QA4 itself.

We also plan to apply QA4 to the verification of
existing programs.10 For this application we need con
siderable sophistication in formula manipulation and
the handling of arithmetic relations. We have intro
duced some new data types, sets, and bags (bags are

1186 Fall Joint Computer Conference, 1972

like sets, but may have several instances· of the same
element), which simplify many arithmetic problems.
For example, a stumbling block of earlier deductive
systems has been the equality relation, which has
required either a plethora of new axioms or a slightly
less clumsy new rule of inference in order to describe its
properties. In QA 4 we simply place expressions known
to be equal in the same set; the symmetric, reflexive,
and transitive laws then follow from the properties of
sets, and need not be stated explicitly.

A similar technique simplifies the description of
commutative functions of n arguments, such as plus
and times. We make these arguments bags rather than
n-tuples. Then the commutative law for addition need
no longer be mentioned, since bags, like sets, are un
ordered.

PLANNER AND QA4

Let us examine the similarities and differences be
tween QA4 and PLANNER. The two languages are
quite similar in conception, and there are also more
detailed parallels. Our operators in the above example
are similar to PLANNER consequent theorems.
ASSERT, GOAL, and EXISTS all have their
PLANNER counterparts. Both the variable prefixes
and the heavy reliance on pattern matching are
PLANNER features. PLANNER also has built-in
backtracking.

There are some differences in detail. QA4 relies more
on the use of new data types such as sets, whereas
PLANNER would implement the same features by
using more complex procedures. The context mechanism
is unique to QA4, and a coroutine mechanism has been
implemented in QA 4 but is only proj ected in PLANNER.
The PLANNER pattern matcher that has been imple
mented does not allow the nesting of patterns. l\1ore
over, QA4 is intended to be modified in design and
implementation, with experience. Therefore it is
implemented in LISP, and we have no immediate plans
to rewrite it in assembly code; PLANNER is being
implemented in assembly code.

Il\1PLEl\1ENT ATION

The BBN-LISP systemll in which QA4 is embedded
has many sophisticated debugging features, and QA4
has been designed to take advantage of such packages
as the BBN editor and the programmer's assistant. At
the top level, QA4 and LISP coexist side by side: Lines
preceded by ! go to the QA4 evaluator rather than the
LISP interpreter.

Although we have never stressed efficiency in our
design, ·we have managed to make the implementation
reasonably efficient. Our representation of the robot
problems compares favorably with that of STRIPS:
The solutions to the three problems were each found in
less than half a minute. The TRACE feature, whose
output is shown in the appendix, is quite elaborate; we
can follow the search for a solution with the appropriate
degree of detail.

The ease with which it was possible to construct a
robot planner on this scale gives us hope that QA4
will be an appropriate vehicle for the development of
more complex problem solvers.

ACKNOWLEDGl\1ENTS

The research reported herein was sponsored by the
National Aeronautics and Space Administration under
Contract N ASW -2086.

The goals and original concepts of QA4 were formu
lated with C. Cordell Green and Robert A. Yates. We
have benefited by discussions with and criticism from
other members of the staff of the Artificial Intelligence
Center at SRI, especially Bertram Raphael and the
STRIPS group, Richard E. Fikes, Peter E. Hart, and
Nils J. Nilsson. We have also profited from many
conversations with Carl Hewitt. Nils J. Nilsson and
Bertram Raphael gave us critical readings of the
manuscript.

REF.ERENCES

1 J A C DERKSEN
The QA4 primer
Artificial Intelligence Center Stanford Research Institute
Menlo Park California 1972

2 J F RULIFSON
QA4 programming concepts
Artificial Intelligence Technical Note 60
Artificial Intelligence Center Stanford Research Institute
Menlo Park California 1971

3 T A WINOGRAD
Procedures as a representation for data in a computer program
for understanding natural language
Ph.D. Thesis Department of Mathematics Massachusetts
Institute of Technology Cambridge Massachusetts

4 R W FLOYD
Assigning meanings to programs
Mathematical Aspects of Computer Science Volume 19
American Mathematical Society pp 19-32 Providence
Rhode Island 1967

5 Z MANNA R WALDINGER
Towards automatic program synthesis
CACM Volume 14 pp 151-165 1971

6 W W BLEDSOE R S BOYER W H HENNEMAN
Computer proofs of limit theorems
Artificial Intelligence Volume 3 pp 27-681972

7 R E FIKES N J NILSSON
STRIPS: a new approach to the application of theorem
proving to problem solving
Artificial Intelligence Volume 2 pp 289-3081971

8 C C GREEN
Application of theorem proving to problem solving
International Joint Conference on Artificial Intelligence
Washington 1969

9 C HEWITT
Description and theoretical analysis (using schematic) of

QA4 Language Applied to Robot Planning 1187

PLANNER: a language for proving theorems and
manipulating model in a robot
Ph.D. thesis Department of Mathematics Massachusetts
Institute of Technology Cambridge Massachusetts 1972

10 B ELSPAS M W GREEN K N LEVITT
R J WALDINGER
Research in interactive program-proving techniques
Information Science Laboratory Stanford Research
Institute Menlo Park California

11 W TEITELMAN D G BOBROW A K HARTLEY
D L MURPHY
BBN-LISP TENEX reference manual
Cambridge Massachusetts 1972

1188 Fall Joint Computer Conference, 1972

APPENDIX

THE QA4 OPERATORS: THE GOTHRUOOOR OPERATOR

[RPA:)i~ GOTdRUOOGR <LAl"i8iJA (INROOM (TUPLE ROBOT "M»
(PROG (DECLARE X K L)

THE GOT02 OPERATOR

(IF (~OT 'U~FLGQR)
1 ~E~"!
(FAll»

(EXI':,TS «(;QNNECTS .. K .. L $M»
(GO AL GO <I NR 00 M RO 80 T $l,.»
{ GOA L G 0 (r~ EXT TOR 0 80 T 1; K))
(i'j APe «(J U OlE (T UP L E (A T ROB 0 T .. x)

(NEXTTO ROSOT .. X»)
'f; DE Lt. TE)

(ASSt.?T (INROOM ROBOT $M»
($t3UI LD (' (: $GOTHRUUOORACT ION $K J

[RPACQ GOT02 CLAMSOA (NEX1TO ROgOT .. M)
(~ROG (DECLARE X Y)

(IF (N0T iO~FLOOR)
THE",I
(FAIL»

lATTlMPT (LXISTS (INROOM $M .. X»
(GOAL GO (INROOM ROBOT lX»
ThE ~~
«,0 F J!'.JI S H)
EL SE
(GOAL (~O (Ii~ROOM ROBOT .. X»
<lXlSTS (CON~ECTS i>M $X .. y»)

F li~ ISH
(MA~C (QUUTE (TUPL[(ATROBOT .. X)

(NEXTTU R080T .. X) »
'~ f) t: L l T E)

(ASS F R T (1\1 ~_ X T TOR 0 bOT $ M))
($ H l.. I L:) (' (: ') GOT 02 ACT ION $ M J

THE FUNCTION DELETE

[R P A l~ Q D l L £ T E (L A r-1 iJ LJ A .. c:: X P
(PROG (DECLARE X)

THE GOTOl OPERATOR

(ATTr~pT (SETU .. x (EXISTS ~lXP»
111 '- ~!
(JE:--JY liXJ

(RPAQ~ GOT01 (LA~HOA (AT~U80T "M)
(PRaG (OECLAR[X)

(IF (:,!rJf 101-iFLCJUR)
I d[·\j

CFAIL»
(EXljTS (LUCINROOM $M .. X»
(GO~L GO (IN~OOM ROBOT $X»
(·lAP •. ; (I~Uulr. (TUPL[(ATROSOT .. X)

(NEXTTO ROLjdT .. X»)
$:)ELI:. Tt.)

(~ S~.; O~ T (A T R 01:; 01 $ M))

(j,!3'JILD (' (:$G()T01ACTION $MJ

QA4 Language Applied to Robot Planning 1189

THE Pl[JSHTO OPERATOR

[RPAQQ PUSHTO (LAMBDA (NEXTTO ~M ~N)
(pROG (DECLARE X)

(IF (~OT ~ONFLOOR)

Tdt:'J
(F.~lL»

(EXISTS (PUSHABL£ $M»
(ATTEMPT (EXISTS (INROOM :liM ~X»

(~XISTS (INROOM $N $X»
THEN
(~O FINISH)
ELSE
(EXISTS (INROOM $M ~X»
(lXISTS (CONNECTS $N $X ~Y»)

FltI,qSH
(GOAL GO (~EXTTO ROBOT iM»
(MAPC (CUOTE (TUPLE (ATROaOT ~X)

fOELETE)

(AT $M ~X)
(NEXTTO RoaoT ~X)
(NI::'..XTTO liM ~X)
(NEXTTO $X '£'-1»)

(ASSE~T (N[XTTO iM iN»
(AS~lRT (~lXTTO $N $M»
(ASSEHT (NlXTTO ROBOT $M»
($ d iJl L U (' (::b PUS H T n ACT I Ol\j (T UP L E $ M :h N)

THE CLIMBONBOX OPERATOR

[R P A ;J lJ eLl"" H 0 N a 0 x (L. AM FiU A (0 N ROB 0 T ~ M)
(PROG (DECLARE X)

(IF (NOT $ONFLOOR)
TriE\
(lieL IJlbOFFBOX»

<(:<I:.:;T5 (TYPE 'b~Jl BOX»
(G04L GO (N(XTTO ROBOT $M»
(~Q~LI::'..TE '~UOTE (ATRaROT ~X»)
(SET0 ~ONFLOUR FALSE)
(ASS E H T (U !'J R 013 0 T 1£ i"1))
(<J; H lJ I L 0 (' C: j, eLI M 8 uN f3 0 X ACT I 0 1\4 If);'1 J

THE CLIMBOFFBOX OPERATOR

(H PAC! (J C L Ii t: I) F F b ~) X (L A ~'~ rj i..; I, (T up L t::)
(P I (C G (U EeL M~ [' ~ I)

C!,::X!:JTS «(;j" R020r "'M»
(EXLjTS (TYPE 'f~~ t~OX»
(~DElETE (~UOTE (O~ RObOT iM»)
(;j t: r (J ~ 0 :.~ f' L DOH T r~ U E)
C:~rli)IVJ (' (:i>CLIM80rF80XACTION $dJ

THE TURNONLIGHT OPERATOR

(R P A Q Q T u R .,; 0 f'~ L T ~ rl T (L AM 8l.J A (S TAT U S ~ 11 0 N)
(f.l f? 0 G ('J E. C L ARE f'4)

{lXI~TS (TYPt:: ~M LIGHTSWITCH»
CEXI~TS (TYPE ~N ~OX»
(GO~L 00 lN~XTTn iN lM»
(GO.'lL DJ (ur~ HOpf1T ROX1»)
(£) f. L t: T E (I.~ U 0 T E (S TAT U S $ t1 0 F F)))
(~S~~~T (STATUS 1M ON»
(;~JllO " (:iTUR~O~LIGHTACTION ,M)

1190 Fall Joint Computer Conference, 1972

THE FUNCTION BUILD

CRPAQQ BUILD (LAMBJA ~X
(SETQ ~ANS~EH (Cu~S $X $ANS~E~J

THE FUNCTION SOLVE

(RPAQQ SOLVE (LAMBOA ~PRObLEM
(PROG (DECLARE X)

(SETW ~X (REVERSE $PROBLEM»
(RETURN (PROG (DECLARE)

!i>3,X J

The model of the robot world. Expressions are evaluated by the QA4 evaluator
("!") and stored in the net.

(OEFLlSTCQUOTE(
(SETUP «(: eTO DO CLIM~ONROX»)

«! eTa 00 TURNQNLIGHT»)
«~ (TO 00 PJSHTO»)
«! (TO GO GOT I-ii-<UO CJ(jFO »
((: (TOG 0 l~ IJ T (H)))
«! (TO ~() I;OT02»)
((: (SET \J ... (j :"J FLOOk T R U F)))
[(! (S£T0 "'~NS~[~ (' (TUPLE]
[(! (A SSE r< T (I I\! ROO;1 L I G f1 T S \oJ I T C i-a ROO M 1 J
(: (A:';SEr~T (I i'~~<(Ju~1 R0t40T ROOM1)
[(: (A SSE r~ T (A T ROb () T E J
(! (A:)SERT (L:)clr\JROO~·1 I=" ROO~14)
l (: (ASSE;1T (PUSHABLE F10X1 J
[(: (A :) S U~ T (p U S rl A bL [:i 0 x 2 J
[(: (ASS['~T (PUStiA'~LE ti0X3J
l(: (ASSERT (INRUO~ ~OXl ROOM1]
[(! (ASSE'.(T (I NRuOM "OX? F~OO~l J
((! (A S ~ [r~ T (I N R 0 01 GO X "i ROo M 1]
(: (ASSE~T <STATUS LIG~TSwITC~l OFFJ
[(: (ASSt.~T {TYPE LIGHTSWITCHl LIGHTSWITCHJ
[{! (A SSE l~ T (T Y D l 8 0 X 1 130 X]
l(! (AS3~.~T {TYPt. HOX2 ,lOXJ
((! (A SSE H T (T Y P E Ii 0 X 3 !~ 0 X J
(: (AS3EqT {I\T LIGHTS~~ITCHl oJ
(! (ASSERT (AT duX1 AJ
[(! (ASSERT (AT buX2 t,,)

(! {ASSt:~r (AT uOX) C]
({! (A SSE fn (c 0 ~'i fIJ I:.. C T S DOOR 1 ROO M 1 ROO H 5 J
[(! (ASSE~T (CO~NECTS DOOR1 ROOM5 ROOM11
(! (ASS E i-< T (C Oi.J j\J E. C T S Q 0 0 R 2 ROO M 2 ROO M 5 J
(! (ASSERT (CON~lCTS OOOR2 ROOMS ROOM2)
[(: (ASS[r?T (CO>Jr..!:.CTS DOORS ROOM3 ROOi-1~J
[{! (A SSE R T (C 0 \ i'~ leT SuO 0 R 3 ROO M 5 ROO M :3 J
[(: (ASS u~ T (CO: ~ I~ t. C T S DO 0 k 4 ROO M 4 ROO M 5]
((! (A S S l R T (C 0 ~,! f\ E C T S D 0 0 R 4 ROO M 5 ROO 11 4]

THE 3 INITIAL PROBLEM STATEMENTS

[3BOXPR08LE~ «(! ($SOLV~ (LIST (GOAL 00 (NEXTTO bOXl ~OX2»
(GOAL 00 (NEXTTJ BOX2 BOX3)

CGOROJMPRU2LEM «(! (iSJLVE (GJAL GO (ATROaOT ~J
(TURNONLIGHTP~U8LEM «(! (1S0LVE (GOAL DO (STATJ~ LIG~TSWITChl U~]

»(QUUTE HIST0~Y»

QA4 Language Applied to Robot Planning 1191

TRACE OF THE SOLUTION OF THE PROBLEM OF TURNING ON A LIGHT

(GOAL IjO (STATUS (TUPLE LIGrtTS~qTCHl ON»)
FAILURE
TO MATCH FAILURE PUSHTO

LAM8DA TURNONLIGHT
SETVALUE M LIGHTSWITCHl
(EXISTS (TYPE (TUPLE $M LIGHTSWITCH»)
(EXISTS (TYPE (TUPL[.N BOX»)
SETVALUE N 80Xl
(GOAL 00 (NEXTTO (TUPLE $N $M»)
FAILURE

LA M80A PUSHTO
SETVALUf. ~J LIGHTS~~ITCHl
SFTVALUE ~ 80Xl
([XISTS (PUS~ABL£ $~»
([XISTS (INROOM (TUPL[$M .X»)
SE. TVALUl X RO\)i"11
(EXISTS (INROOM (TUPLE $N $X»)
(GOAL GO (~[XTTO (TUPLE ROSOT $M»)
FAILURE
TO MATCH FAILURE GJTHRUOOOR
TO MATCH FAILURE GOTOl

LAMBUA GOT02
S[TVALUE M 80)(1
(EX IS TS (I N RO 01'4 (TU PL E. $M • X)))
SET V AL U [X ROO >11
(GOAL GO (II-.fH)OM (TUPLE ROBOT $X»)

LAMBDA DELETE
SETVALUE EXP (ATROaOT ~x)
(EXISTS J,EXP>
SETVALUE X E
SETVALUE X (ATK0801 E)
(DENY ~X)

LAMBDA DELETE
SETVALUE EXP (NEXTTO (TUPLE ROROT .X»
(EXISTS ~£XP)
FAILUkE

(ASSE~T (NEXTTO (TUPLl ROBOT $M»)
LAfv!8~)A BUILD
SETVALUE X (~GOT02ACTION BOX!)
SETVALUE ANS~ER (TUPLE ($GOT02ACTION BOX1»

LAMBDA DELETE
SETVALUE EXP (ATR080T .X)
(EXISTS $f.. XP)
FAILlJHl
LAMBDA DELETE
S [T V ~ L u E.. r:'(P <. II T (T U P LE ~V1 ~ X))
<rXISTS :hEXP)
FAILUHE
LAi'-1BUA DELETE
SETVALUE E~P (\[XTTO (TUPLE ROBOT ~X»

1192 Fall Joint Computer Conference, 1972

(t.XISTS SEXP)
SETVALUE X BOX1
SETVALiJE X (I"EXTTO (TUPLE ROROT. 60Xl»)
CUENY $X)
LAM8DA DELETE
SETVALUE EXP (~EXTTO (TUPLE $M ~X»
(EXISTS $EXP)
FAILURE
LAt-'f80·A DELETE
S£TVALUE EXP (NEXTTQ (TUPLE $X $M»
(EXISTS $tXP)
FAILURE

(ASSERT (NEXTTO (TUPLE $H $N»)
(ASS E R T (:\1 EXT TO (T U P L E $1\1 $ M)))
(ASSER~ (NEXTTO (TUPLE ROBOT SM»)

LAMBDA HUILD
SlTVALUE X ($PGSHTOACTION (TUPLE BOXl LIGHTSWITCH1»
SETVALUE ANswER (T0PLE ($PUSHTO.CTION (TUPLE BOXl LIGHTSWITCH1»

($GOT02ACTIO~ BOX1»
(GOAL 00 (ON (TUPLE ROBOT 80X1»)
F A I L UF(£
TO MATCH FAILURE Pu~HTO
TO MATCH FAILURE TJRNONLI~HT

LAMHOA CLIM80N80X
SETVALUE M BOXl
(EXrST~ (TYPE (TUPLE $M BOX»)
(GOAL GO (NEXT TO (TUPLE ROSOT $M»)

LA~80A UElETE I

SETVALUE EXP (ATR080T ~X)
(EXISTS :~EXP)

FAILURE
SETVALUE ONFL00R FALSE
(ASSERT (ON (TUPLE R080T $M»)

LAMBOA 8UILD
Sl TV AL uE X (liC L I M8 Of\Jt,W XA CT ION BO Xl)
SE.TVALUE. Af\jS~JEh (TuPL~ CfiCLIMrlON80XACTIOr'~ 80Xl) (~PUSHTOACTION

(TUPLE B0Xl LIGHTSWIT~Hl» ($GOT02ACTION BOX1»
LAf"lf~DA DELETE
SETVALUE fXP (STATUS (TUPLE $t1 OFF»
(EXISTS :h[XP)
F'.4ILURE.

(ASS E R T (S TAT U S (T UP L E $ ~l 0 ~4)))
LAM bOA tP) 1 L 0
SETVALUE X ($TUR~n~LIGhTACTION LIGHTSWITCH1)
SETVALU£ ANS~lR (TUPLE ($TURNONLIGHTACTION LIGH1SWITCH1) (

$CLIMeONBOXACTION ~OX1) ($PUS~TOACTION (TUPLE bOXl LIGHTS~ITCH1»
(:GGOT02ACTIO\i dOX1»

LAl'-18DA SOL VE
SETVALUE PROHLEM (TuPLE ($TURNONLIGHTACTION LIGHTSWITC~l) (

iCLI M80NBOXACTION BOX1) (~PUSHTOAcTION (TUPLE BOXl LIGHTS~ITCH1»
($GOT02ACTION HOX1»

SETVALUE X (TUPLE (~GOr02ACTION BOX1) ($PUSHTOACTION (TUPLE bOXl
LIGHTSWITCH1» ($CLIM30NBOXAcTION BOX1> ($TURNONLIGHTACTION LIGHTSWITCH1»

THE ANSWER RETURNED BY QA4

(PROG (DECLARE) (iGOT02ACTION BOX1) ($PUSHTOACTION (TUPLE BOXl
LIGHTS~ITCH1» ($GLIMHONBOXACTION BOX1) (STURNONLIGHTACTION LIGHTSWITCH1»

Recent developments in SAIL-An
ALGOL-based language for artificial intelligence

by J. A. FELDMAN, J. R. LOW, D. C. SWINEHART and R. H. TAYLOR

Stanford University
Stanford, California

INTRODUCTION

Progress in Artificial Intelligence has traditionally been
accompanied by advances in special purpose program
ming techniques and languages. Virtually all of this
development has been concentrated in languages and
systems oriented to list processing .. As the efforts of
Artificial Intelligence researchers began to turn from
purely symbolic problems toward interaction with the
real world, certain features of algebraic languages
became desirable. There were several attempts (notably
LISP2 and FORMULA ALGOL) to combine the best
features of both kinds of language. At the same time,
designers of algebraic languages began to include
features for non-numerical computation. No new general
purpose language without some sort of list processing
facility has been suggested for several years. We have
followed a tack somewhat different from either of these
in the design of SAIL and in its subsequent
modifications.

The starting point for the development of SAIL was
the recognized need for a language incorporating
symbolic and algebraic capabilities, primarily for
Hand-Eye research. The problems are somewhat similar
to those in Computer Graphics and one of us had just
developed a language, LEAP,4 for such applications.
After an attempt to honestly evaluate alternative
techniques, we decided that the associative processing
features of LEAP were the way to go. There are
important differences between LEAP and the first
SAIL (primarily in input-output, string manipulation,
and implementation), but these differences are not
relevant here. It is essentially this system for the
PDP-I0 which is distributed by DECUS and is being
used for Artificial Intelligence and other research in a
number of laboratories.

This original SAIL met our needs for about two years
before requiring serious change. Then we began to face

1193

the problem of putting together a hand-eye system
which was much bigger than the available main memory
and which did not lend itself to a static overlay
structure. Our solution involves a number of language
additions which facilitate the treatment of jobs under
the time-sharing system as a set of cooperating sequen
tial processes, and has been described in Reference 5.
The three main additions were: a monitor for user
control and debugging, a shared data facility; and the
introduction of message procedures. The shared data
facility makes use of the second relocation register of the
PDP-I0 to allow jobs to access a common global data
area in a natural and efficient manner. The message
procedures are the main mechanism for asynchronous
communication and control between jobs. A message
procedure is a procedure in one job which can be invoked
from another job. Control information associated with
the invocation can provide the effect of subroutines,
coroutines, parallel processes, events, and a variety of
other disciplines. These multitasking modifications to
SAIL have enabled researchers to assemble and modify
large collections of jobs with a minimum amount of
attention to system problems.

A number of factors have combined recently to cause
us to make a second set of major modifications to
SAIL. The multi-tasking facilities of the second SAIL
were seen to be at least as useful within a single job as
they were across jobs. In addition, the ability to
assemble large collections of routines brought us to the
point of facing one of the core problems of Artificial
Intelligence-what is the right sequence of actions for
carrying out a given task in a particular environment.
This strategy problem is currently very popular and is
the driving force behind much of the recent development
in languages for Artificial Intelligence. Our view of the
problem is somewhat unorthodox and merits some
discussion.

Problem solving for an entity which deals with the

1194 Fall Joint Computer Conference, 1972

real 'Yorld is fraught with uncertainty. The state of the
world cannot be assumed to be known-in fact, one of
the main goals of a strategy must be to gain enough
information to carry out the task. An additional
problem arises in resource allocation; even if an exhaus
tive search of the environment will yield a solution, it
may not do so at an acceptable cost. Considerations of
this sort cause us to view the strategy problem as
inherently involving numerical estimates of probabili
ties, costs, etc. A complete discussion of these issues is
beyond the scope of this paper, but the recent SAIL
modifications have been influenced by our model of the
strategy problem.

Our recent language work has been intended to
facilitate the design of programs for the construction
and execution of strategies for interaction with the real
world. The facilities are being applied to other problems,
but we will concentrate on the original theme. However,
the language design effort was concerned with expanding
the power of SAIL as a general purpose language as
opposed to developing a special purpose system. One
critical design constraint was that the features not
entail large hidden overheads or appreciably degrade
the performance of programs not making use of them.
We believe we have found a set of features which meet
our design goals. The major additions are: backtracking,
procedure variables, matching procedures, and a general
multi-tasking facility.

STATE SAVING AND BACKUP

Ln order to try several different alternative strategies
it is often necessary to save the current state of the
computation. Thus, if the first attempt does not
succeed, we may "back up" and try one of the other
alternatives. We may also switch between alternatives,
continuing with one only until it no longer seems the
most promising, but retaining the option of resuming it
later if the other alternatives do not prove to be
satisfactory. Another technique. used in programming
non-deterministic algorithms, parallel processes, will be
discussed later in this paper.

In general the state of a SAIL computation includes
the current control environment, the input and output
which have been requested, the contents of the LEAP
associative store and the contents of all variables. New
SAIL has features which will help handle the last of
these components: the contents of variables.

We normally do not want to have the values of all
variables "backed-up" when we switch between alterna
tives. One reason is that it is often useful for one
alternative to communicate certain pieces of information
it has acquired to the other alternatives. This informa-

tion is usually saved in certain variables. If we back~up
those variables, we lose the information. Another reason
for not backing-up all variables is that often only a
small subset will have meaning for more than a single
alternative, and it is very costly to back-up large
amounts of data which may not be relevant for the
other alternatives. Therefore we have implemented ways
of saving the values of specific variables and then
restoring them at a later time.

The state-saving mechanism is based on two new
statements: REMEMBER, and RESTORE. Each of
these operate on a new SAIL data-type called a
"context." A context consists of a set of references to
variables and their values.

We save the contents of variables by means of
REMEMBER statements,

REMEMBER (i, j, a[3]) IN context!:

This statement would save the values of "i," "j,"
"a[3]" in the context named "contextl." If any of
these variables had been previously saved in "context1,"
the old values would be lost.

An alternate form of the REMEMBER statement is:

REMEMBER ALL IN context!;

The current value of each variable which has been
remembered in "context!" would replace the value that
was previously stored there.

The RESTORE statement also has two forms. The
first has an argument-list,

RESTORE (j, a[3]) FROM context1;

This would search context1 for the arguments and give
an error indication if any were not "remembered"
within that context. The values saved for those argu
ments "remembered," would be restored to the
appropriate variables.

The other form of the RESTORE statement is:

RESTORE ALL FROM context1;

This would restore the contents of all variables saved
within the named context.

These new features seem to provide the most
important features of state-saving without the large
overhead imposed by automatic back-up of the entire
state or incremental state-saving as implemented in
some other programming systems.

LEAP

SAIL contains an associative data system called
LEAP which is used for symbolic computations. LEAP

is a combination of syntax and runtime subroutines for
handling items, sets of items and associations.

An item is similar to a LISP atom. Items may be
declared or obtained during execution from a pool of
items by using the function NEW. Items may be stored
in variables (itemvars), be members of sets, be elements
of lists, or be associated together to form triples
(associations) within the associative store.

A set is an unordered collection of distinct items.
Items may be inserted into set variables by "PUT"
statements and removed from set variables by
"REMOVE" statements. Set expressions may also be
assigned to set variables. The simplest set expression is
of the form:

{item1, item2, item3 ... }

which represents the set consisting of the denoted
items. More complicated set expressions involving set
functions, set union, subtraction and intersection are
also provided. Sets are stored in a canonical internal
form which allows us to carry out such operations as
intersection, union and comparison in a time propor
tional to the lengths of the sets involved.

Sets are deficient in some applications, though,
because they are unordered. Thus we could not easily
try different alternatives in order of their expected
utility. To remedy this, as well as provide a mechanism
for creation of parameter lists to interpretively called
procedures (see PROCEDURE VARIABLES below),
SAIL now contains a data-type called "list." A list is
simply an ordered sequence of items. An item may
appear more than once within a list. List operations
include inserting and removing specific items from a list
variable by indexed PUT and REMOVE statements.
List variables may also be assigned list expressions, the
simplest of which is of the form;

{ {item1, item2, item3 ... } }

which represents the explicit sequence of denoted items.
Other list expressions include list functions, concatena
tion, and sublists.

Triples are ordered three-tuples of items, and may
themselves be considered items and occur in subsequent
associations. They are added to the associative store by
executing MAKE statements. For example:

MAKE use ® plan1 == task1;

The three item components of an association are
refered to as the "attribute," the "object," and the
"value," respectively. Associations may be removed
from the store by using ERASE statements such as:

ERASE use ® plan1 == ANY;

Recent Developments in SAIL 1195

Each item other th~n those representing associations
may have a DATUM which is a scalar or array of any
SAIL data-type. The data-type of a DATUM may be
checked during execution. DATUMs are used much as
variables. For example:

DATUM(it) ~ 5;

would cause the datum of the item "it" to be replaced
with "5."

SAIL contains a compile-time macro facility which
allows such things as string substitution and conditional
compilation. As is the custom of many SAIL pro
grammers, we will use the macro "a" to stand for the
string "DATUM." Thus the above example would
appear as:

a(it) ~ 5;

PROCEDURE VARIABLES

It is quite natural in an interpreter to allow for the
execution of program generated sequences of actions.
This is an important feature for artificial intelligence
applications and is not easily made available for
compiled programs. In new SAIL, the generation. of
such sequences is facilitated by a procedure variable
mechanism which fits in quite nicely with the associative
search features of the language. These procedure
variables are created at runtime from items by state
ments of the form

ASSIGN (item expression), (procedure specification»)

where

(procedure specification) :: = (procedure id) I
DATUM «procedure item expression»)

For instance,

ASSIGN (xxx, baz)

would cause the datum of item xxx to contain a
description of baz, together with a pointer to baz's
current environment. Similarly, the statement

ASSIGN(yyy, a(xxx))

would cause yyy to be made into a procedure item
containing the same information as that in xxx.

In addition to dynamically specifying what procedure
to execute, one would also like a convenient way to
dynamically specify an argument list for a procedure
call. This facility is provided by the APPLY mechanism:

APPL Y ((procedure specification), (argument list»)

1196 Fall Joint Computer Conference, 1972

where (argument list) is any SAIL list and may be
omitted if the procedure has no parameters. For
example,

APPLY(foo)
APPLY(a(xxx),list1)
APPLY(a (APPLY(yyy)) , {{x, y, z}})

APPL Y uses the items in the argument list, together
with the environment information from the procedure
item (or from the current environment, if the procedure
is named explicitly) to make the appropriate procedure
call. If the called procedure produces a value, that value
will be returned as the value of APPL Y.

Procedure items permit a great deal of flexibility. For
instance, the user can say things like

FOREACH x I xEactions /\ use®x:=fastening do
BEGIN
APPLY(a(x), {{board1, board2}});
IF together (board 1 , board2) THEN
GO TO donejt;
END;

donejt:

This would search the set "actions" for any procedures
which have been asserted to be useful for fastening
things together until either the list is exhausted or the
task is successfully completed.

MULTIPLE PROCESSES

The control structure of SAIL was originally very
much like that of Algol 60-that is to say block
structured and procedure oriented. Although this struc
ture is adequate for many problems, there are some
cases in which it is uncomfortably restrictive. In
hand-eye applications, for instance, there are frequently
modules of code which are more or less mutually
independent but that wish to call on each other for
various services. Similarly, one may wish to investigate
several possible strategies at once, with the results of
one computation perhaps influencing the course of
others. In such cases, it is much more natural to think
of (and write) these modules as coroutines or inde
pendent processes rather than as nested procedure calls.
To some extent, message procedures provided the
desired facilities, with each job acting as a separate
process. This solution has some rather severe draw
backs, since the overhead involved in switching control

from process to process and in interprocess communica
tion is so high that close interaction becomes pro
hibitively expensive. One of our goals in providing new
control facilities was to make possible the close coopera
tion of many small-to medium-sized processes within
a single job without imposing an excessive overhead
either on old-style procedural programs or on users of
the shiny new features. In doing this, we wanted to
retain the block structure rules of Algol, since these
rules are generally familiar to programmers and provide
a useful means of determining which data is to be
shared.

The implementation we have chosen somewhat
resembles the mechanism described by Organick &
Cleary8 for the Burroughs B6700. In SAIL, a process is
essentially a procedure activation which has been given
its own run time stack and which thus does not have to
return before the process that invoked it can continue.
SAIL procedures normally make up-level references via
a "static" (lexical nesting) chain maintained for that
purpose in the stack. When a procedure is to be called as
an independent process, a "process" routine first gets
space for a new stack. It then sets up appropriate
process control varia;bles in the new stack area and in
the "parent." Finaliy, the procedure is invoked using
the new stack. When this procedure is entered, it will set
up its static link by looking back along the static chain
of the calling process until it finds an activation of its
lexical parent. Thus, different processes will share data
belonging to their common ancestors.

Many of the applications which we have considered
do not permit us to predict just how many subprocesses
a process might wish to spawn or require that several
processes be instantiated using the same procedure on
different data. Therefore, we have chosen to "name"
processes by assigning them to LEAP items, rather than
by using procedure names or some special data type
called "process." This approach has the added advan
tage of allowing complex structures of processes to be
built up using the mechanisms of LEAP. New processes
are created by statements of the form:

SPROUT((item expression), (procedure call),
(options »)

where the item specified by (item expression) is to be
used as the process name, the (procedure call) tells
what this process is to do, and (options) is an integer
which is used to specify how certain process attributes
are to be set up. (If the (options) parameter is omitted
or only partially specified, SAIL will provide default
values). For instance, a procedure to nail two boards

together might contain a sequence like

ITEM pI, p2, p3;

SPROUT (pI, grab (handl, hammer»;
SPROUT (p2, grab (hand2, nail»;
SPROUT (p3, lookat (tvl, boards»;

JOIN ({pI, p2, p3});
pound. (hammer, nail, boards);

In this case, grab(handl, hammer) would be executed
as process pI, grab(hand2, nail) would be executed as
process p2, and lookat(tvl, boards) would be executed
as process p3. The process creating them continues on
its way down to the JOIN statement. In general,

JOIN «set »

causes the process executing it to be suspended until all
the processes named by the (set) have terminated. Thus
pound (hammer, nail, boards) will not be called until
pI, p2, and p3 have all terminated. In our example,
both SPROUTed processes and the original process
would theoretically run in parallel. In fact, this is not
possible with a single processor. Instead, the SAIL
runtime system includes a scheduler that decides which
process is to be executed at any given instant. Each
process is given a priority and time quantum and may
be in one of four states: "running," "ready" (i.e.,
runnable), "suspended," or "terminated." The sched
uler, which is invoked either by a clock interrupt or by an
explicit call by the user, uses a simple round robin
algorithm to distribute service among the highest
priority ready processes.

When a process is SPROUTed, the system assigns it
a standard default priority and time quantum, unless
the user specifies otherwise by appropriate options. The
SPROUTed process usually becomes the running pro
cess, while the SPROUTing process reverts to ready
status, unless some other option is specified. For
instance, suppose we have some procedure "wander"
which searches a data base or the real world at random
for potentially useful objects. Then we might write
something like:

SPROUT(wanderer~ NEW, wander (world_model),
PRIORITY (very_low) + QUANTUM (2)
+ RUN_ME)

Recent Developments in SAIL 1197

The current process would continue to run, and
wanderer would languish in ready status until every
thing of higher priority had been suspended.

Processes may be suspended or terminated via

SUSPEND((process item expression»

and

TERMIN ATE((process item expression»

which do just what one might expect. Similarly, SAIL
provides system functions for changing a process'
priority or quantum.
Co-routine style interactions are facilitated by the use
of the RESUME construct:

x~RESUME((process item expression),
(return value), (options»

where (options) is again optional. The usual effect of
RESUME is to cause the currently running process to
be suspended and the process specified by (process item
expression) to become running. If the process being
resumed had suspended itself by means of a resume
statement, then it will receive (return value) as the
value of the RESUME. For instance,

PROCEDURE tool_getter (ITEMV AR tool_type) ;
BEGIN
ITEMV AR tool;
FOREACH tool I tool E tool_box /\ type®tool

=tool_type DO RESUME (CALLER(THIS_
PROCESS), tool};

END;

SPROUT(tg~NEW, tool_getter (screwdriver),
SUSPEND_HIM) ,

DO sd~RESUME(tg, NIC) UNTIL
fits (sd, screwl);

TERMINATE(tg) ;

In this case, the tool getter process "tg" will be initial
ized and immediately suspended. Then, the RESUME
(tg, NIC) will wake it up to find one screwdriver, which
will be assigned to itemvar "sd" by the RESUME
(CALLER (THIS_PROCESS), tool). (THIS_PRO
CESS and CALLER «procid» are system supplied
routines that return the process items for the currently
running process and for the process that last awakened
process (procid), respectively). Later on, we will discuss
a somewhat cleaner solution, using matching pro
cedures, to the problem used for this illustration. We

1198 Fall Joint Computer Conference, 1972

will also show how the interprocess communication
facilities of the language may be used to handle the
problem of what to do if tool_getter runs out of tools.

FOREACH STATEMENTS

The standard way of searching the LEAP associative
store is the FOREACH statement. A FOREACH
statement consists of a "binding list" of itemvars, an
"associative context" and a statement to be iterated.
Consider the following example,

FOREACH gp, p, c I parent Q9 c == P /\ parent
~ p == gp DO MAKE grandparent Q9 c == gp;

In this example the binding-list consists of the itemvars
"gp," "p," "c." The associative context consists of two
"elements," "parent 0 c == p," and "parent Q9 p ==
gp." The statement to be iterated is the MAKE
statement.

Initially all three itemvars are "unbound." That is,
they are considered to have no item value. Since "p"
and "c" are unbound, the element "parent @ c == p"
represents an associative search. The LEAP interpreter
is instructed to look for triples containing "parent" as
their attribute. On finding such a triple, the interpreter
assigns the object and value components to "c" and
"p" respectively. We continue to the next element
"parent ® p == gp." In this element there is only one
unbound itemvar, "gp," "p" is not unbound even
though it is in the binding list because it was bound by
a preceding element. A search is made for triples with
"parent" as their attribute and the current binding for
"p" as their object. If such a triple is found, its value
component is bound to "gp" and the MAKE statement
is executed. After execution of the MAKE statement,
the LEAP interpreter will "back up" and attempt to
find another binding for "gp" and then execute the
MAKE statement again. When the interpreter fails to
find another binding, it backs up to the preceding
element and trys to find other bindings for "p" and
"c." Finally when all triples matching the pattern of the
first element have been tried, the execution of the
FOREACH statement is complete.

In old SAIL,. FOREACH elements consisted of
either triple searches, set membership, or boolean
expressions not dependent on unbound itemvars. Only
triple searches and set membership were allowed to bind
an unbound itemvar.

New SAIL contains a new way of binding itemvars
called a MATCHING procedure. A matching procedure
is essentially a boolean procedure which may have zero
or more BINDING (written as "?") itemvars as formal
parameters. These parameters are not necessarily bound

at the time the procedure is called. If the procedure
cannot find bindings for its unbound BINDING
parameters, it FAILs, causing the LEAP interpreter to
back up to the previous element within the associative
context of the FOREACH. If it SUCCEEDs, bindings
for the unbound parameters will be returned. The
matching procedure is actually SPROUTed as a
coroutine process. SUCCEED and FAIL are essentially
forms of RESUME which return control to the caller
with the values TRUE and FALSE, respectively. FAIL
also causes the matching procedure process to be
TERM IN ATEd. When the matching procedure is
called by "back-up," it is merely RESUMEd. Thus, the
entire environment in terms of the procedure's local
variables, stack, etc., is the same as when the procedure
executed the previous successful return. The matching
procedure may continue from the point· at which it left
off, generating new bindings for its unbound parameters,
In many respects matching procedures are similar to the
IPL-V "generators" which have appeared in varied
forms in other problem-solving languages.

To aid in the binding operations we have provided
predicates to determine if a specific par:ameter is
unbound for this call of the procedure. We also have
introduced a new form of the FOREACH statement
which conditionally adds itemvars to its binding list.
Consider the following example of the new form:

MATCHING PROCEDURE tool_getter (?
ITEMV AR tool, tool_type);

BEGIN FOREACH ?tool, ?tool_type I tool E
tool_box /\ typeQ.?>tool == tool_type DO
SUCCEED;

FAIL;
END;

The binding list of the FOREACH would contain
"tool" only if "tool" were unbound. Similarly it would
contain "tool_type" if "tool_type" were unbound. The
action of the matching procedure is to find a tool if the
tool is unknown but the type is known; find the type
if the tool is known but the type is not; verify that the
tool is of the required type if both are known; or search
through the toolbox and return tool, tool_type pairs if
neither tool nor type is known. The actual semantics is
determined by which, if either, of the parameters are
bound.

Unfortunately in general, matching procedures with
more than a single potentially unbound parameter are
not so easy to code. The user may have to provide up to
2 iNdifferent code sequences to handle the various
combinations of N BINDING itemvars.

To illustrate one class of uses of matching procedures
let us consider the following problem. We are given a set
of cube shaped blocks of varying sizes and are requested

to pick a subset of the blocks such that when stacked
they will form a tower of a given height. Assume that we
will represent a cube by an item whose datum is the
height of the cube. We may easily solve this problem by
using a recursive procedure "find 1. "

RECURSIVE BOOLEAN PROCEDURE find 1
(SET bset, INTEGER diff; REFERENCE SET
ans);

BEGIN INTEGER ITEMVAR newb;
FOREACH newb I newb E bset /\ (a (newb)
~ diff) DO IF (a(newb) = diff) V findl (bset
{newb}, diff-a(newb), ans)

THEN BEG IN PUT newb IN answer;
RETURN (TRUE) END;

RETURN (FALSE);
END;

However, now let us consider a slightly different
problem. Suppose we wish to simultaneously build two
towers from a single set of blocks. Calling "findl"
twice, first with the entire set of blocks for for the first
tower, then with the remaining blocks for the second,
will not work. Though there may exist many possible
subsets which ~ill form the first tower, "findl" will
always return the same one even though it is possible to
construct the second tower only if a different subset of
the blocks were chosen for the first tower. For example,
if the set of blocks consisted of sizes 1, 4, and 5 and we
were to construct towers of heights 5 and 4, "findl"
would construct the first tower using blocks 1 and 4 and
thus be unable to construct the second tower.

N ow let us see how we would use matching procedures
to overcome this problem. Let us write the matching
procedure to solve a single tower problem [1],

MATCHING PROCEDURE find2 (SET bset;
INTEGER height; ? SET ITEMV AR ans) ;

BEGIN
RECURSIVE PROCEDURE aux

(SET sl; INTEGER diff);
BEGIN INTEGER ITEMVAR newb;

FOREACH newb I newb E sl /\
(a(newb) ~ diff) DO BEGIN PUT newb IN
a(ans) ;

IF (a(newb) = diff) THEN SUCCEED
ELSE aux (sl-{newb}, diff-a(newb));

REMOVE newb FROM a (ans) ;
END;

END;
ans ~ NEW ({ }); COMMENT new item. The

empty set is datum;
aux (bset, height);

FAIL;
END;

Recent Developments in SAIL 1199

To call the matching procedure we would simply have
a FOREACH statement:

FOREACH ans I find2(blockset, height, ans) DO
printset(a(ans)) ;

This is clearly equivalent to the solution given above
for "find1." However, now consider the two tower case:

FOREACH ansI, ans2 I find2 (blockset, height 1 ,
ansI) /\ find2 (blockset-a(ansl) , height2,
ans2) DO

printsets(a(ansl), a (ans2)) ;

This will find a solution if any exists, because if, after
finding a solution to the first tower, it is impossible to
find a solution to the second problem, we back-up and
find a different solution to the first tower and then try
the second again.

An inten~sting distinction between the programs for
"findl" and "find2" may be found. Notice that "findl"
only returns to its caller after "unwinding" the recur
sion, thus allowing the answer set to be constructed as
the recursion is being "unwound" within a successful
call. With "find2," however, the procedure may
"return" or succeed while it is still deeply nested in
recursion and thus the answer set must be constructed
before the next recursive call of "aux" is made.

We envision that matching procedures will be used to
simulate n-ary relations, serve as generators of moves or
strategies, as well as simply aid in the coding of complex
associative contexts.

INTERPROCESS COMMUNICATION

In complicated systems such as the Stanford Hand
Eye system, where there are many cooperating pro
cesses present, one would like to have a mechanism by
which an occurrence in one process can influence the
flow of control in other processes. Such occurrences
frequently fall into several basic groups, with perhaps
some distinguishing information associated with each
occurrence of a given type. In designing interprocess
communication facilities for SAIL we wanted to make it
easy for the user to distinguish among happenings of the
same general type and to define for himself just how
each type is to be handled. We have chosen an "event"
mechanism which is really a fairly general message
processor. Any item may be used as an "event notice,"
or message, and each type of event in a program is
represented by an item. With each such event type,
SAIL associates:

1. A "notice queue" of items which have been
"caused" for this event type.

, 1200 Fall Joint Computer Conference, 1972

2. A "wait queue" of processes which are waiting
for an event of this type.

3. Procedures for manipulating the queues.

The two essential actions associated with any event
type are

CAUSE((event type), (notice item), (options»)

and

INTERROGATE((event type), (options»)

where, as elsewhere, (options) may be left out if the
default case is desired.

The statement

CAUSE(typel, ntc)

would cause SAIL to look at the wait queue for typel.
If the queue is empty, then "ntc" would be put into
typel's notice queue. Otherwise, a process would be
removed from the wait queue and reactivated, with
"ntc" as the awaited item.

If a process executes the statement

itmv~INTERROGATE(typel)

then the first item in the notice queue for typel would
be removed from the queue and assigned to itemvar
itmv. If the queue is empty, then itmv would be set to
the special item NIC. If a process wants to wait for an
event of a given type, it may do so, as in

itmv~ INTERROGATE (typel, WAIT)

In this case, if the notice queue is empty, then the
process will be suspended and put onto the wait queue
for typel.

Similarly,

itmv~INTERROGATE(typel, RETAIN)

causes the event notice to be retained in the notice
queue for typel.

This event mechanism should prove useful in problem
solving applications in which processes are sprouted to
consider different actions. An "or" node in a goal tree,
for example, might be represented by

SPROUT (pI, nail (sucevt, boards));
SPROUT (p2, glue (sucevt, boards));
SPROUT (p3, screw (sucevt, boards));
winner~ INTERROGATE (sucevt, WAIT);
FOREACH piPE {pI, p2, p3} 1\ p~winner

DO TERMINATE(p);

When a branch discovers that it has succeeded, it can
execute a statement like

CAUSE (sucevt, THIS_PROCESS);

which would announce success and cause its parent to
terminate its less successful brothers.

Events give us a means by which some discovery
made by one process can be made to "unstick" some
other process which has gotten into trouble. Let's
consider our tool getter again:

PROCEDURE tool_getter (ITEMV AR
tool_type) ;

BEGIN
ITEMV AR tool;
FOREACH tool I toolEtoolbox 1\ type(gltool==

tool type DO
RESUME (CALLER (THIS_PROCESS),

tool) ;
DO tool~INTERROGATE (tool_found,

WAIT) UNTIL type0tool==tool_type;
RESUME (CALLER (THIS_PROCESS), tool);
END;

If the FOREACH statement fails to find a tool of the
correct type, then tool_getter will be suspended until
some process causes an event of type tool_found, using
the item representing the tool as the event notice.
Suppose that our process "wanderer" has finally gotten
a chance to run (everything of higher priority being
stuck) and that it does, in fact, stumble across a
screwdriver, which it knows to be a kind of tool. It
might then do something like

MAKE type0 thing == screwdriver;
PUT thing IN tool_box;
CAUSE (tool_found, thing, TELL_EVERYONE

+DONTSAVE);

This would cause every process waiting on the event
"tool_found" to be awakened. (If no process is waiting,
the notice will not be saved on the notice queue.) This
would wake up whoever called tool_getter, which
would then see if it can use the "thing."

Frequently, one wishes to ask about one of several
possible conditions. In some cases this could be done by
a simple loop which INTERROGATEs each event type
in a list. Unfortunately, if one wishes to wait for an
occurrence within a given set of events, this doesn't
work very well, since an attempt to wait for one event
type will keep the other types from being seen. There
fore, SAIL allows a process to ask about a set or list

of event types directly, as in

itmv~ INTERROGATE

(ev _type_lis, WAIT+ RETAIN)

If WAITing is requested, then the process will only
wait if all of the notice queues are empty, and it will be
reactivated as soon as any of wait queue entries is
serviced (All wait queue entries for this request will be
deleted.) If it is necessary to know just which type was
responsible for a given notice, the option SAY_WHICH
may be used. Suppose the statement

itmv~INTERROGATE (ev_type_Iis,

WAIT + SAY_WHICH)

returns item "notic," which was caused as an event of
type catastrophe, as its value. Then the association
EVENT_TYPE@notic==catastrophe will be made by
the system.

Thus, one way to program an "and" node within
process "foo" might be something like

SPROUT(p1, fetch(hammer, hand1, sucevt,
failevt» ;

SPROUT (p2, fetch(nail, hand2, sucevt, failevt»;

SPROUT(pn, 100kat(tv1, boards, sucevt, failevt»;
FOR i ~ 1 STEP 1 until n DO

BEGIN
p~ INTERROGATE ({ {failevt, sucevt} } ,

WAIT);
IF EVENT _ TYPE@p==failevt THEN

BEGIN
MAKE failure_cause@foo==p;
FOREACH pip E {{p1, p2, ... , pn}}

DO TERMINATE(p);
CAUSE(foos_failure_event, foo);
SUSPEND (foo) ;
END;

END;
CAUSE(foos_success_event, foo);

Here, it is assumed that each process is to take
responsibility for making "life or death" decisions
regarding any subprocesses. As soon as one of the Pi
reports failure, foo will terminate all its "children"
(whose appointed tasks have become pointless) report
its own failure, and suspend itself. If all the Pi report
success, then foo will do likewise.

Events may be used together with matching pro
cedures to do deferred updating, as is shown by the
following example. A matching procedure may want to
make some change to the data base only if the rest of the

Recent Developments in SAIL 1201

associative context of the FOREACH succeeds. A
simple way of implementing this is to have the matching
procedure spawn a process which will do the updating.
This process will go into event wait, and the event will
only be caused if the entire associative context of the
FOREACH succeeds. Consider the following guilt-by
association program. For each member of the suspect
list, we first see if he is really undesirable by checking
his bank account. If he doesn't have enough money to
bribe us we will put another blackmark in the file of
anyone who has any association with him, unless that
person's only association with his is as an informer (in
which case the fink will be given a "negative" black
mark). When a person gets 5 black marks he then
becomes a suspect.

SET badguys; LIST suspect;
MATCHING PROCEDURE linked

(BINDING ITEMV AR x);
BEGIN

PROCEDURE UPDATE;
BEGIN INTEGER ITEMVAR y, f;

WHILE TRUE DO
BEGIN f~INTERROGATE

(linkedok, WAIT);
PUT x IN badguys;
a(f)~a(f)-2;

FOREACH y I·ANY ® x == y
DO
BEGIN a(y)~a(y)+1;

IF a(y) 2:: 5 THEN PUT y IN
suspect AFTER OC);

END;
END;

END;
ITEMVAR z;
z~NEW; SPROUT (z, update);
FOREACH x I x E suspect DO

SUCCEED;
TERMINATE (z);
FAIL;

END;

COMMENT main procedure execution;
FOREACH person, fink I linked (person) /\

(wealth (person) (lots)
/\ InformerOperson==fink DO

BEGIN CAUSE (linkedok, fink);

END;

1202 Fall Joint Computer Conference, 1972

This simple example does of course not really require
either matching procedures or the event mechanism to
c.~use the updating, but the technique it illustrates
should be quite valuable in more complicated situations.

Although the provided event primitives are sufficient
for most of the applications which we have considered,
there are some cases for which they are not quite right.
For instance, a process might want to wait for a given
event only if no other process is already waiting for that
event. Instead of trying to provide a special option to
cover every possible contingency, we have instead
provided a set of queue and process primatives with
which the user can write his own CAUSE and INTER
ROGATE procedures. To substitute his own procedure
for the one provided by SAIL, the user makes an
association of'the form

CAUSE _ PROC 0type1 == new _ cause_proc

or

INTERROGATE_PROC0 type1 ==new _int_proc

where type1 is the event type and new_cause_proc and
new_int_proc are procedure items bound to the sub
stitute procedures. These procedures will be run as
"atomic" operations, and will be allowed to finish
without interruption. In particular, any CAUSEs or
changes in process status requested by such a procedure
will not actually take place until after the procedure
exits. This "interrupt level" turns out to be quite useful
and permits one to write interrupt handlers that look at
a notice of some event, do what they can, and then
either just return or else cause an event that will trigger
some stronger condition.

CONCLUSION

Each of the features described in this paper was
intended to solve particular programming problems. We
have not yet had sufficient practical experience with the
new system to say with certainty that they are the
right ones. There is a great deal of work on these
problems in several laboratories and new issues are being
raised frequently. We do feel, however, that the basic
solutions suggested here will prove useful and that they

do significantly extend the capabilities of Algol-like
languages.

ACKNOWLEDGMENT

While the work described in this paper was being done,
there has also been a significant effort at the Stanford A.
1. Lab to produce a new LISP system (LISP 70) which
also includes provisions for multiple processes, back
tracking, and other similar features. We would like to
thank the authors of this effort, Horace Enea, Larry
Tesler, and David Smith for several interesting con
versations about their system. Although the approach
they have taken is somewhat different from ours, these
talks provided us with several useful insights.

REFERENCES

1 B ANDERSON
Programming languages for artificial intelligence: The role
of non-determinism
School of Artificial Intelligence Univ of Edinburgh
Experimental Programming Reports No 25

2 G BIRTWISTLE
Notes on the SIMULA language
Norwegian Computing Centre Publication S-7 April 1969

3 J A DERKSEN
The QA4 primer
SRI Project 8721 Draft Memo 15 June 1972

4 J A FELDMAN P D ROVNER
An Algol-based associative language
Comm ACM 12 8 August 1969 pp 439-449

5 J A FELDMAN R F SPROULL
System support for the Stanford hand-eye system
Proc Second IJCAI September 1971 pp 183-189

6 C HEWITT
Procedural embedding of knowledge in Planner
Proc Second IJCAI September 1971 pp 167-182

7 D V McDERMOTT G J SUSSMAN
The CONNIVER reference manual
MIT AI Memo 259 May 1972

8 E I ORGANICK J G CLEARY
A data structure model of the B 6700 computer system
SIGPLAN Notices 62 February 1971 pp 83-145

9 D C SWINEHART R F SPROULL
Sail manual
Stanford Artificial Intelligence Laboratory Operating Note
No 52

A survey of languages for stating requirements
for computer-based information s.ystems*

by DANIEL TEICHROEW

The University of Michigan
Ann Arbor, Michigan

BUILDING COIVIPUTER BASED INFORMATION
SYSTEMS

Society depends more and more on the recording,
analysis, storage, processing, and transmission of data
and information. Practically every activity requires an
information system. The larger and more organized the
activity, the larger and more organized is the informa
tion system which serves it. This paper is concerned
with Information Processing Systems (IPS) which are
built to aid the management and operation of an
organization. In particular, the paper is concerned with
the methods by which the information needs of the
organization can be communicated effectively to those
who are asked to implement systems to satisfy the
requirements for planning, control, and operations.

The size and complexity of society makes it imprac
tical for a manager or other user personally to satisfy
his own information needs, and therefore several func
tions have evolved with the growth in the use of the
computer:

Analysis: Frequently, this term is used with an
adjective such as systems, management, or
business. The objective of the analysis is to
determine, and record, the information needs of
the organization and the individuals in it.

Design: The purpose of design is to select the best
method of meeting information needs. Since
there are usually a number of alternatives avail-

* This work was supported in part by the ISDOS Research
Project, Department of Industrial and Operations Engineering,
University of Michigan, and by the U. S. Army under Research
Grant DAHC 19-71-G-0005. An earlier version of this paper was
published as "Problem Statement Languages in MIS," in
E. Grochla (ed.), Management-Informations-Systeme, Band 14,
Schriftenreihe Betriebswirtschaftliche Beitrage zur Organisation
und Automation, pp. 252-282, Betriebswirtschaftlicher Verlag,
Wiesbaden, 1971.

1203

able in hardware, software, and processing
organization, and since making changes once
construction has begun is difficult, it is crucial to
design the system as completely as possible
before beginning the construction.

Construction: This function consists of building
and assembing the modules selected in the design.
It includes programming, file construction, hard
ware acquisition and development of the neces
sary non-computerized procedures.

In practice, the number of individuals involved in
these functions becomes large and some organization is
required. One common method is that of a project team
which accomplishes all three functions. Another common
method is to assign the three functions to separate
departments and pass a particular problem from one
department to the next, e.g., from analysis to design to
construction. (Detailed discussions of the systems
building process in use today are available in many
papers and books.1•2•3)

Regardless of whether the project team or functional
organization is used, it is of course desirable to docu
ment as completely and precisely as possible at each
step. The chain of steps of analysis, design, and con
struction, is only as strong as its weakest link and in
practice the chain falls apart first in the lack of adequate
documentation from one step to the next.

PRESENT METHODS OF DOCUMENTING
REQUIREMENTS

. Overview of present methods

The purpose of an IPS, or any group of them, is to
serve the organization, and therefore any discussion of
the use of the computer must start from the objectives
of the organization and the means that its owners and

1204 Fall Joint Computer Conference, 1972

managers have chosen to achieve the objectives. As is
well-known, it is quite difficult to bridge the gap between
the managers and their chosen methods of operating the
organization and the precise statements necessary to
get computers to do the data processing. There are
several major reasons for this difficulty.

First, the organizations are very large and complex
and it is not easy for individuals, or groups of indi
viduals, to comprehend all of the interrelationships to
the detailed level required for computer processing.
Second, the organization has a number of activities
going on in parallel and it is difficult to describe every
thing in a "serial" fashion as is necessary for today's
computers. Furthermore, there is no good language for
communicating requirements that is understandable by
both management and the computer.

This paper concentrates on the techniques by which
needs are documented and transferred from the first to
the second step, i.e., from analysis to design. The paper
is not specifically concerned with the process in the
first step, namely, the determination of what the
information requirements should be.

Methods for reducing problems associated with
documentation of requirements

There have been various attempts to reduce the
documentation problem by "shortening" the distance
between the person in the organization who needs the
information (the user) and the computer. Some methods
are listed here in order of the amount of detailed docu
mentation the user must supply, directly or indirectly,
from very little to a great deal.

Turning the problem over to another
organization

One intuitively appealing approach is for the or
ganization to contract with another for all of its in
formation needs. This has become known as "installation
management" or "facilities management." There is not
yet enough experience to indicate how successful this
will be but in any case, it merely transfers the problem
of documentation to another organization. There is
certainly more opportunity for this firm to develop
expertise in documentation and in fact the absolute
necessity of legal, contractual agreements should lead to
formal documentation of requirements.

Generalized software packages

In this approach all that is required of the user is to
select the package that is appropriate to his needs and

to supply the values of the appropriate parameters.
Generalized packages4 are basically of two kinds
application dependent packages and application in
dependent packages. Application dependent packages
are generalized programs for performing specific applica
tions such as billing, payroll, accounting, banking and
engineering. Application independent packages include
report generation and file maintenance, operating
system enhancement, simulators and performance
monitors, and programming aids. Generalized packages
have had only limited success and account for only a
small part of the total software development. A recent
report5 estimates the 1972 revenue to be $90 million for
applications packages and $110 million for application
independent packages. Major interest currently centers
on what is probably the most sophisticated example of
this approach, the data base management systems, 6

some of which are controlled by parameter values
entered on forms or questionnaires-the most widely
used example in this category is }\!IARK IV.6 (Other
data base management systems are controlled by task
definition and data definition languages.) An example
of where user requirements can be stated on forms and
directly translated to object code is the Applications
Customizer used for the IBM System/3.7 ,8

User-oriented languages

This approach differs from that of generalized soft
ware packages in that the user supplies statements
rather than parameter values. A user-oriented language
is one in which the statements are intuitive and under
standable to the user. In the case where the users are
managers, the most frequently proposed languages are
subsets of English. A number of such languages are in
existence but their use appears to be limited to special
situations. An example of a user-oriented language
intended for management information systems is
MUSE.9

"Conceptual" frameworks

In these systems the basic framework is provided by
the language and is available in a package. This must
be supplemented by additional programs unique to the
particular situation. An example of this approach is the
SIl"1SCRIPT system for simulation and IVIASTlo for
business data processing. The user must select the
appropriate system and then state his own unique
needs usually at the level that permits a program to be
written. In practice this approach requires that the
user describe his requirements to an analyst or pro
grammer rather than using the language himself.

Survey of Languages for Computer-Based Information Systems 1205

"Block" systelll

"Basic Functions" or "Primitives" are defined and
usually implemented as macros or sub-routines. The
user must then assemble these blocks to satisfy his
needs. An example is the BEST system;11.12.13 several
general descriptions exist.14.15.16 While in theory this
approach permits a user to state his needs without a
programmer, in practice these systems are used by a
programmer. Even for this use, however, these systems
to date have received only limited acceptance.

General purpose progralllllling languages
(GPPL)

The general purpose programming languages,
COBOL, FORTRAN, and PL/l currently are the most
widely used method for building information systems.
This category also includes assembly languages which
are used whenever optimum use of hardware capabilities
is paramount. These languages, of course, require that
the user obtain the services of a programmer to imple
ment his information needs.

Relative illlportance of different approaches

While the above listing has not been supported by
quantitative data on relative usage, there are few who
would contest the conclusion that by far the largest
amount of effort in system building today is based on
the use of general purpose programming languages and
that undoubtedly this will continue to be true for the
foreseeable future. Packages that accomplish "data
processing tasks," particularly those now commonly
referred to as data base management systems, will
come into wider use, and while their use will reduce the
amount of programming that would otherwise have to
be done, a very large fraction of the total system build
ing will continue to depend on the use of general purpose
programming languages. It is therefore worthwhile to
examine the system building process based on the use of
general purpose programming languages and particu
larly the inherent problems of communicating between
the persons who need the outputs from the system to be
constructed and the first automaton in the sequence,
namely the compiler. In order to describe these problems
it is necessary to make a basic distinction between
requirements that an IPS is to satisfy and the processing
procedures that will be used to obtain the desired
results.

Distinction between information requirements and
processing procedures

At the heart of the problem of system building lies
the distinction between stating information needs and
developing processing procedures that are to be used
to satisfy them using the technology of computer-based
information processing systems available today. This
is a particular instance of the very general concept of
goals-means chains. One starts with a goal, lists the
various means that could be used to achieve the goal
and selects one which then becomes the goal; then the
possible means to achieve this goal are listed, one is
selected, and so on.

As an example, suppose one is at point A and has a
goal of getting to point B. The possible means may be
walking, taking a bus, taking a taxi, etc. Assume the
taxi method is selected. The goal of getting to point B
is communicated to the taxi driver and he selects the
means, e.g., the route, etc. Sometimes the passenger
will tell the driver the route rather than the destination
and sometimes the driver will question the goal (the
passenger should go to C instead of B). In general, these
actions will be undesirable; in the first case, because the
driver presumably knows more about which route is
best and in the second because the passenger knows
better where he wants to go. This analogy is relevant to
the system building situation because ideally the user,
or his analyst, should determine the goal~ of the com
puter-based system and the system designer and
programmer should then select the best method of
implementation. All too often, unfortunately, the analyst
worries about the best computer means (e.g., the best
file structure and record layout) and the programmer
worries about the goal (e.g., is this report really
needed?). Consequently, both the analyst and the
programmer do poor jobs and the resulting system is
not effective.

Satisfying the information needs of organization can
be represented by a goals-means chain, usually of
several stages. The distinction between requirements
and procedures at the level immediately before the
physical systems design and programming can be
illustrated by a simple payroll processing example. (In
this simple example, the statement of requirements is
represented by one and only one stage. In more realistic
examples, several stages of goals-means analysis may be
required). The task of the person specifying the needs,
i.e., the problem definer, is to describe the requirements
for the "target" system which will produce one output:
employee paychecks. Certain input information will be
available to the target system and the required output
type and format is known. These are shown in Figure 1.

In this example it is assumed that the purpose of the

1206 Fall Joint Computer Conference, 1972

OUTPUTS. INPUTS. AND TRANSFORW.TIONS

BADGE IPS

D

EVENT: -EMPLOYEE ENTERS

BADGE WHEN STARTING

OR TERMINATING WORK

DATA: -EMPLOYEE NUMBER

-TIME

SYSTEM REQUIREMENTS

PAYCHECK

---~> PAYCHECK

ONE PAYCHECK REQUIRED

EACH WEEK AT 1:00 P.M.

TUESDAY FOR ALL

EMPLOYEES WITH NON

ZERO DATA ELEMENTS

GROSS PAY

NET PAY = GROSS PAY - DEDUCTIONS

GROSS PAY = TOTAL HOURS WORKED x RATE

-The number of employees is given by the value of the data item "NE"

-The objective of PAYSYSTEM is to produce the required outputs on

time at minimum cost

Figure I-Statement of requirements for the IPS
called PA YSYSTEM

target IPS called PAYSYSTEM: is to produce one
output called PAYCHECK. The time the outputs are
to be available is given: each week at 1 :00 p.m. on
Tuesday for the previous week's work. The number of
outputs is specified by saying that one PAYCHECK
is required for each employee for whom at least one of
the data items included in PAYCHECK other than
NAME is different from zero.

The form of the output is stated to be a document
containing three data elements: NAl\1E, GROSS PAY,
NET PAY. Formulas for computing GROSS PAY and
NET PAY are given. P A YSYSTEl\1 must accept one
input called EVENT which occurs whenever an em
ployee enters his badge into a transaction recorder.
When this occurs the EMPLOYEE NUl\1BER and
TIME are recorded.

Some additional information is given: the number of
employees is given by the value of data item NE, and
the objective of the IPS is to produce the outputs at
minimum cost.

The type of information mentioned above, and shown
in Figure 1, is representative of what is necessary to
describe the requirements and is sufficient for the
purpose of this example, although in a real situation
much additional information would have to be specified.

For example, Where does the value of NAME come
from and how is it associated with the value of EM
PLOYEE NUl\1BER?, How is the value of TOTAL
HOURS WORKED determined from TIl\1E?, Where
does the value of DEDUCTIONS come from? Addi
tional inputs have to be defined, e.g., to add a new
employee to the set of valid El\1PLOYEE NUMBERs
and to supply changes to the value of RATE and
DEDUCTIONS.

All of this merely corroborates what everyone already
knows, namely that stating all the requirements for an
organization can be a tedious process. Unfortunately
tedium is all too frequently avoided by omitting details
that are thought to be obvious and leaving them to the
programmer to fill in later.

Under any method of system building the type of
information illustrated by Figure 1 has to be collected.
Usually this is done manually and is recorded using a
natural language (English) augmented by tabular or
graphic methods such as decision tables and flow charts.
Sometimes an attempt is made to follow the company
manual that prescribes standards for documentation.

The deficiencies of manual documentation systems
based on the use of natural languages have been ana
lyzed in detail elsewhere17 and it is sufficient to merely
summarize the major shortcomings. While English is a
good language for communicating qualitative informa
tion, it is too ambiguous for quantitative relationships.
The addition of tables, flow charts, decision tables helps
a little but major difficulties still remain. The methods
are too imprecise, e.g., different data names may be
used causing confusion and incorrect results. l\1anual
documentation cannot cope with changes. In large
systems the documentation becomes too costly and it
absorbs too large a share of total resources. Finally,
manual documentation methods based on natural
languages cannot be automated efficiently.

In the design process the system designer might
follow the procedure outlined in Figure 2. First he will
determine the hardware that will be used. Sometimes
there is only one alternative, in some other situation
this step may require considerable effort. Next he will
choose the hard software through which the IPS will be
constructed and also through which it will be operated.
As one aspect of this process the system designer should
consider which of the methods outlined in the previous
subsection should be used. In most cases today the
method of construction will be through general purpose
programming languages perhaps supplemented by data
base management systems.

Then the system designer decides what files are
needed and what information they should contain. In
this case, assume that he has decided that there will be
a file called EMPFILE and that it will be stored on a

Survey of Languages for Computer-Based Information Systems 1207

HARDWARE SELECTION

HARD SOFTWARE SELECTION

FILES AND FILE ORGANIZATION

EMPFILE: ONE RECORD FOR EACH EMPLOYEE ON RANDOM
ACESS DEVICE

QUEUE: A LIST OF EVENTS WAITING TO BE PROCESSED

PROCESSING PROCEDURE PROGRAM

1. BUILD UP QUEUE FOR A WEEK X

SORT X

UPDATE EMPFILE AND PRODUCE PAYCHECK X

2. BUILD UP QUEUE FOR DAY X

SORT X

MERGE AT END OF WEEK X

UPDATE EMPFILE AND PRODUCE PAYCHECK X

3. UPDATE EMPFILE FOR EACH EVENT X

PRODUCE PAYCHECKS AT END OF WEEK X

Figure 2-Physical system design

random access unit with one record for each employee
and that another file called QUEUE will ~ontain all the
events waiting to be processed.

Next, he makes a list of alternative processing pro
cedures (perhaps mentally) and chooses the one which
seems to be the best. In this case he might consider
letting QUEUE build up for a week (since the output is
needed only once a week), sort by EMPLOYEE
NUMBER at the end of the week and then update
EMPFILE and produce the outputs at the end of the
week. In alternative two QUEUE would be built up
each day, sorted each day and merged at the end of the
week. As alternative three, he might consider updating
EMPFILE for each EVENT as it occurred and then
producing the output in a weekly run.

The alternative the system designer would choose
should be based on the objective stated in requirements.
This is frequently a difficult step and may involve much
effort if done completely. In this case he may choose
alternative three since it is the simplest in concept.
However, if he is concerned with processing time he
might choose alternative one because it will require less
computer time than alternative three. Once the alterna
tive has been chosen the designer then divides the
system into parts. Specifications for the various parts
of the system are prepared and given to a programmer
to write the programs.

The system building process as described above, and

as conducted today, depends on manual documentation
through the analysis and design phases. Formal docu
mentation begins when the programmer expresses
specifications furnished by the system designer in a
general purpose programming language. While the basic
purpose of this paper is to compare languages for
documentation during the analysis phase it is necessary
to clearly document why general purpose programming
languages are not satisfactory for this purpose, if for no
other reason than to dispel the myth, still far too widely
believed, that they are.

System building using General Purpose Programming
Languages (GPPL's)

While there are methods for causing computers to
produce needed output which do not depend directly on
GPPL's, it was concluded above that much of the
system building in the future will be based on the use
of GPPL's or their immediate extensions.

In practice GPPL'sare involved in system building
only in the construction phase, as shown in Figure 3.
The programmer produces source statements which are
turned into object code by a compiler. The use of general
purpose programming languages causes problems in
systems building because by default they frequently are
the documentation for the earlier phases. Throughout
this discussion COBOL will be used as the example of
GPPL since it is now the most widely used in building
organizational systems. (The basic arguments, however,
are just as valid for the others: FORTRAN, PL/l,
and ALGOL, etc.

When COBOL was first developed, it was claimed to
have the advantages of being self-documenting and
hardware independent. While in most cases it is un
doubtedly better to use COBOL than an assembly
language, .the limitations of COBOL for organizational
users of computers are becoming more and more evident:
COBOL is a second generation language; it forces the
intermixing of business specifications and data pro
cessing functions; it results in freezing procedures in
the programs; it is not a satisfactory method for com
munication of information needs; and its use limits the
number and size of systems that can be built. The
effect of each is discussed further below.

o _ .. - 'L:J SPECIFICATIOIIS

SOURCE B
STATJ!2!EIITS

IR COMPILER

GPPL

Figure 3-Use of GPPL in systems building

1208 Fall Joint Computer Conference, 1972

"Second" generation hardware

COBOL was designed'to be compiled on second
generation hardware. It was developed using experience
of another general purpose language, FORTRAN,
which was initially designed for first generation hard
ware; the changes were primarily intended t? make
COBOL suitable for business data processmg, as
opposed to numerical calculations. Since COBOL was
developed for second generation hardware, it has no
facility for dealing with hardware capabilities that are
generally available in third generation, but not in second
generation, hardware. A program written in COBOL
cannot make effective use of random access devices, for
example, without some extensions either in the language
or in the addition of another language, such as the
command language to . communicate with operating
systems.

COBOL programs are more or less hardware in
dependent of hardware capabilities from one generation
to another. The result, however, is performance that is
not hardware independent when hardware capabilities
change. One immediate consequence of this is that once
requirements are implemented in COBOL, the programs
must be redone for the next generation, otherwise the
result is merely emulation.

As a requirements statement language, COBOL is
also limited because much of the information of the
type illustrated in Figure 1 cannot be represented. For
example, there is no provision for stating that outputs
are needed at a certain time or for stating the number
of outputs that will be needed.

Intermixing of business specifications and
processing procedures

The use of the COBOL language forces the inter
mixing of the definition of information needs, here
called business data specification functions, and the
procedures chosen to satisfy the needs, here called data
processing functions.

-Business Data Specification Functions (BDSF)
define the data manipulation and calculation that
must be accomplished to satisfy requirements.
Usually these are formulas that define the value for
one or more variables, e.g., a BDSF may be "ex
pected sales in a given region, in a given period for
a given class of products" or "the total value of
inventory at a given time." BDSF are part of the
statement of information requirements; in the
example in Figure 1, the BDSF are:

NET PAY = GROSS PAY-DEDUCTIONS
GROSS PAY = TOTAL HOURS WORKED*
RATE

In many cases, there may be several ways to define
a business function. For example, "inventory
value" may be defined using the First In-First Out
or First In-Last Out method. It is the responsibility
of the user to state the exact definitions he wishes
to have used. The BDSF are independent of the
particular computer implementation that is used
to perform the computation.

-Data Processing Functions (DPF) are the opera
tions that must be used in any particular imple
mentation in order to accomplish the actual com
putation of the values of the business data specifica
tion functions at the time they are needed. For
example in order to (eventually) compute "in
ventory 'value," data values such as quantity and
price must first be stored somewhere. Then they
must be retrieved, multiplied, and summed. Other
BDSF may use one or both of quantity and price,
and hence it may be better from a data processing , .
point of view to combine several of these reqUIre-
ments. The DPF used are dependent on the
particular hardware and processing procedu:es
selected for their implementation. Data proceSSIng
functions are selected during the design process; in
the example in Figure 2 some of the DPF's used are:

SORT,MERGE,UPDATE

It is essential to be very precise in distinguishing
between BDSF and DPF. For example, the user may
specify that the IPS in Figure 1 is to ~ro~uc~ PAY
CHECK alphabetically by N Al\1:E. ThIS IS dIfferent
from saying, SORT by NAME. SORT is a DPF.which
mayor may not have to be performed dependmg on
other system design decisions. . .

The use of COBOL results in a program contammg
both the BDSF's such as

NET PAY = GROSS PAY-DEDUCTIONS

and the DPF's that the systems designer has selected,
e.g.,

SORT

Since both BDSF and DPF are intermixed, usually
in relatively complicated ways, it is difficult for pro
grammers to separate out the statements which imple
ment the BDSF from those which implement DPF and
it is certainly impossible for a computer program or a
user to do so. COBOL designers recognized the necessity
to separate data descriptions from the statements in
the procedure division. It is now necessary to go one
step further and separate BDSF from DPF.

l\1:ost organizations are now trying to develop data
directories and data bases on an integrated basis for as

Survey of Languages for Computer-Based Information Systems 1209

large a part of the organization as possible in order to
avoid duplication and permit comprehensive analysis.
In the same way, organizations in the future can be
expected to develop directories of BDSF so that they
can have standard definitions that can be specified once
and used whenever needed.

Freezing processing procedures in program.s

One of the consequences of intermixing BDSF and
DPF is that the processes are frozen into the program.
The programmer expresses the means that the system
designer has selected which then become goals to the
compiler. The language forces the programmer to
specify processing at the level of locating, reading, and
writing records and operations on individual data
items (PL/I permits some operations on arrays, i.e.,
matrices). Therefore, once a program is written units of
data cannot be changed without changing the pro
grams. In general, whenever the processing procedures
are changed because of changes in hardware, volume of
processing, etc., it is necessary to reprogram.

GPPL's as docum.entation for com.m.unicating
inforlllation needs

When general purpose programming languages were
first considered for business problems it was expected
that the language being developed, COBOL, could be
used for the documentation of information needs. How
ever, this has not happened, as is well stated by
Weinberg :18

"Some years ago, when COBOL was the great
white programming hope, one heard much talk
of the possibility of executives being able to read
programs. With the perspective of time, we can
see that this claim was merely intended to attract
the funds of executives who hoped to free them
selves from bondage to their programmers.
Nobody can seriously have believed that executives
could read programs. "18

COBOL programs are not satisfactory as a com
munication medium between the user and programmer
precisely because they must contain the DPF's. Much
of what a user reads when he tries to read a COBOL
program is not of interest to him.

Program.m.er productivity

The amount a programmer can write in COBOL in
any given time is limited. Programmer productivity is

measured in terms of statements per day-from five to
twenty-five. There are not enough programmers to
write all the programs that are needed. The reasons for
this rate of productivity are partly the difficulties
caused by lack of adequate documentation of require
ments and partly the fact that the DPFs are pro
grammed many times.

Improvements and extensions to General Purpose
Programming Languages

The limitations inherent in the GPPL's listed above
are, of course, well-known and a number of attempts to
improve or extend COBOL have been made. These
need to be listed to examine whether an extended lan
guage could eliminate the need for a new requirements
language.

"Larger" verbs such as SORT and REPORT
WRITER have been embedded in COBOL so that the
program is easier to understand and requires less pro
grammer time. Facilities have been added to COBOL to
make it possible to use the capabilities of third genera
tion hardware. For example, one manufacturer added
IDS to COBOL to make it possible to use random
access devices efficiently. Operating Systems and Job
Control Languages have been developed to interface
the programs and the machines with new capabilities.

These efforts, and the efforts to build data base
management systems, are necessary in order to use the
present day machines to solve today's problems. How
ever, it is unlikely that such incremental improvements
will be sufficient, just as it is doubtful that continued
incremental improvement in assembler languages would
ever have led to FORTRAN because of the limitations
inherent in assembler languages. Similarly, the present
effort to solve the problems of adequately documenting
information needs by building data base management
systems starts by accepting some current features which
will, in the long run, limit the effectiveness of the
approach.

Need for a requirement statement language

What is required to overcome the difficulties cited
above is a formal method of communicating information
needs. It must be able to express needs of the type
exemplified by Figure 1 without implying any data
processing functions of the type selected in the design
process exemplified by Figure 2. The analysis in this
section has been directed toward showing that general
purpose programming languages and their extensions
are not suitable for this purpose. The next section will
describe a number of languages that have been proposed.

1210 Fall Joint Computer Conference, 1972

A set of detailed specifications for an ideal "require
ments statement language" will then be given.

COMPARISON OF REQUIREIVIENTS
STATEMENT TECHNIQUES

Survey of techniques

The need for a more formal method of documenting
requirements for information during the analysis phase
has long been recognized. A number of techniques have
been proposed. Some of these are listed in Table 1.19- 53

Undoubtedly this list is not complete but it includes the
known techniques that state as their objective the
formalization of statement of requirements or include

TABLE I-Systems Analysis and Requirements
Statement Techniques

Acronym References Developer Status

ADS 19,20 National Cash In use
Register Co.

ASYST 21 Miles Hudson In development
AUTOSATE 22,23 Rand Corpo- Inactive

ration
CADIS 24,25 J. Bubenko
CAMIL 26 S. Waters In development
CASCADE 27,25 Arne Solvberg In development
CODIL 28 C. F. Reynolds In development
CORIG Not known
DATAFLOW 29,30,31 National Com- Inactive

puting
Centre

IA 32,33 CODASYL Inactive
Committee

34 H. B. Ladd, Inactive
W.P.
Marcovic

LA 35,36,37 B. Langefors In development
LO 38,39 Lionelle

Lombardi
MINOS CEGOS Not known
PSL 40 ISDOS In development

Project
SCOTT 41 SDI In use

Associates
SYMOB 42 Bull, France Not known
SYNGE Not known Not known
SPEC 43 Englic Inactive

Electric
SSP Robert Brass In development
SYSTEMATICS 44,45,46,47, C. B. B. In development

48,49 Grindley
TAG 50,51 IBM In use

52 Taggart Not known
UCS Phillips In development
YK 53 Young and Inactive

Kent

"analysis" in their title. (Information on omitted
techniques is welcome.)

The basic criteria used for inclusion in Table I were
as follows:

i. The language must be designed to state in
formation needs to the system designer and
programmer, i.e., it must not permit Data
Processing Function statements.

11. There must be some attempt to develop a formal
syntax sufficient to permit analysis by computer
programs if desired.

iii. There must bea reasonably detailed description
of the language available in the published
literature.

These criteria eliminate a number of languages. In
particular, all the languages and techniques mentioned
in the second section of this paper are not considered
further. The second criterion eliminates the (manual)
documentation techniques that are part of most system
building procedures. 1 .2.3 The language developed by
Bosak54 is not included because it is a file processing
language rather than a problem statement language.
The output decompositions method (ODM)55 and
simulators56 .57 are not included because they are pri
marily design techniques though they require a state
ment of requirements in a structured form as input.
Programming languages such as APL,58 Dataless
Programming59 and BCL60 are eliminated under the
first criterion since they require statements describing
data processing functions. Software packages concerned
with only parts of the information needs such as
LEXICON61 for data definition will be analyzed sepa
rately in a later paper.

Previous surveys of some of this literature (and of
other related languages) are given by Young,62 Shaw,63
Head7 and in the discussion and proceedings of two
workshops.64.65,25 Shaw's survey includes Information
Algebra, 32 Lombardi's Algebraic Data System,39
Iverson's language,58 BEST/l as well as Decision
Tables, IDS, LUCID, ADAIVI, COLINGO and ATS,
which are not included in this paper. Young62 surveyed
BEST,l1 Decision Tables, Lombardi's Algebraic Data
System,39 Iverson's language,58 Information Algebra,32
and Young's and Kent's Abstract Formulation. 53
Information Algebra is also discussed by Sammet66 in
the chapter on "Significant Unimplemented Concepts."

All of these techniques have in common the attempt
to bridge the communication gap between the Analysis
and the Design phases shown in Figure 3. However, a
detailed analysis and comparison of all of these pro
posals is clearly not feasible in this paper. Therefore, a
few techniques have been selected for more detailed

Survey of Languages for Computer-Based Information Systems 1211

examination. All these techniques satisfy one or more of
the following: they are in current use, they represent
areas for further improvement and development or
they add to the understanding of the historical de
velopment.

l\10st of the analysis in this section is based on seven
selected techniques. The earliest is the work by Young
and Kent (YK) .53 Information Algebra (IA) is the
result of work by the CODASYL Development Com
mittee.32 Langefors (LA) published several papers in
BIT,35.36 which have been incorporated into a book.37

This work is being continued by a number of projects
in Scandinavia.25 Lombardi's Algebraic Data System
(LO) was published in COl\1MUNICATIONS OF
THE ACl\1.32 Accurately Defined Systems (ADS) was
developed by the National Cash Register Company.19,20
TAG was initially developed by Myers50 and is described
in Reference 51. Grindley has published several papers
describing SYSTEl\1ATICS (SY).44-49

All these seven approaches are concerned with the
problem definition phase of IPS building and hence
satisfy the first criterion:

IA: "The goal of this work is to arrive at a proper
structure for a machine-independent problem
defining language at the systems level of data
processing.' ,

LA: "A formal method for performing systems
analysis of information systems in business and
elsewhere is needed in order to save systems work
and programming and to obtain better systems."

YK: "There are three stages in the application of
high speed digital computers to data processing
problems:

i. Systems analysis-the task of determining
what is to be done.

ii. Programming-a statement of how it is done.
iii. Coding-a translation of this statement into

machine language.
This paper presents a first step in the direction
of automatic programming as well as a tool which
should be useful in systems analysis."

LO: "[The language] relies exclusively on non
procedural representation of processes as sets
(tables) of relations between data and results
(there are no control statements such as GO TO,
etc.) instead of procedure descriptions (which
are one-to-one translations of flow charts)."

ADS: ADS is specifically intended for complete
specifications of problem requirements: "The
completion of ADS forms gives the definer a
well-documented application that includes all of
the information requirements of the problem."

TAG: "The Time Automated Grid (TAG) tech
nique is a computer tool for use in systems
definition, analysis, design and program defini
tion."

SY: "SYSTEMATICS is a language for describing
information systems without considering the
strategy needed to implement them."

YK, ADS and TAG are problem statement tech
niques that use a practical, straightforward approach
without any attempt to develop a "theory" of data
processing. They consist of a systematic way of record
ing the information that an analyst would gather in
any case; any experienced analyst could use either ADS
or TAG with very little instruction. IA is more con
cerned with developing a theory. It uses a terminology
and develops a notation which is not at all natural to
most analysts. LO is more like a non-procedural pro
gramming language than a requirements statement
technique, since in order to use it, the system design
must be completed, i. e., the file processing runs needed
must be known. (The language as described in the
literature applies to batch processing only.) The
approach, however, is relevant because it presents a
"non-procedural" technique for stating processing
requirements once the runs are determined. LA starts
with a precedence relationship among information sets
(files) but does not indicate how these are obtained.
This technique therefore is more relevant to the analysis
of a problem statement and to the design of a system.
However, it does suggest some desirable features of a
problem statement technique.

Comparison of features of selected languages

In his review, Young states his difficulty in comparing
the techniques he considered:

"I wish that I could fit all of the developments
described here into some sort of nice conceptual
framework, but I find it difficult to do so. Each of
these systems is intended for a somewhat different
purpose, and each implementor has had his own
ideas on philosophy and language. Perhaps the
best I can do is state what I feel are some of their
major advantages and leave as an exercise for the
reader any sort of generalization."

These seven approaches, on the surface, appear to
be very different but upon detailed examination, they
have some major similarities.

All of the techniques take essentially the same view
of the problem. The purpose is to describe how to

TABLE II-Comparison of Seven Proposed Problem Statement Techniques
t:,j

Information
t:,j

Algebra Young & Kent Lombardi Langefors Systematics
IA YK LO LA ADS TAG SY ~ e:.

PROBLEM FORM
INPUT INPUT AREAS INPUT DOCU- ORDERED IN- INITIAL IN- INPUT INPUT DOCU- not specifically ~

0

MENTS PUT FILES FORMATION MENTAND identified S·
co+-

SETS FILES 0
OUTPUT OUTPUT AREAS OUTPUT DOCU- ORDERED OUT- TERMINAL REPORT OUTPUT DOCU- 0

MENTS PUT FILES INFORMA- ME NT S
~

TION SETS ~
c0+-

DATA
(1:) ..,

RELATION- 0
SHIPS

0
S.

ENTITY not used not used not used VARIABLE DATA NAME (1:) ..,
PROPERTY ITEM FIELD not used (1:)

I:j

PROPERTY not named not named not used VALIDATION VALUES C':)
_(1:)

VALUE RULES
PROPERTY INFORMATION not used not used 1:.0

-l
VALUE SET SET SETS t:,j

COORDINATE
SET

DATUM POINT
PROPERTY

SPACE
LINES RECORDS
AREAS FILES INFORMATION

SET
(BUNDLE,
GLUMP)

BUNDLE IDENTIFIERS
COMPUTATIONAL

RELATION-
SHIPS

MAPPINGS PRODUCING CONTROL PRECEDENCE LOGIC PERIOD AND not mentioned
RELATION- PREDICATES RELATION- PRIORITY
SHIPS FOR SHIPS
DOCUMENTS AMONG INFOR-

MATION SETS
COORDINATE DEFINING RE- FIELD DEC- not used COMPUTATION not specifically DERIVATION

DEFINITION LATIONSHIPS LARATIONS LOGIC included RULES
FOR OUTPUT
ITEMS

OTHER none mentioned VOLUMES none mentioned SIZE OF FILES VOLUMES VOLUMES none mentioned
INFORMATION ELAPSED TIME PERIOD

PRESENTATION FREE FORMAT GRAPHICAL FREE FORMAT PRECEDENCE FIVE FORMS INPUT/OUTPUT TABLES
MATHEMATI- NOTATION MATHEMATI- GRAPH ANALYSIS
CAL STATE- CAL STATE- FORM
MENTS MENTS

Survey of Languages for Computer-Based Information Systems 1213

produce outputs from inputs. All of the techniques
provide some method for describing data relationships
as the user views them. All provide some way for
stating the computational relationships, i.e., the busi
ness data specification function. Several provide some
method for stating other data such as time and volume.
All are concerned with appropriate methods of re
cording and presentation of requirements.

The techniques are compared in these five areas of
similarity and a summary is given in Table II. Each
line of this table gives the different names used by
different authors. Throughout this section terms that
are used with specific meanings in the techniques are
capitalized.

Form. of the problem.

The first category for comparing the seven approaches
deals with their view of the overall problem. The
following quotes give the authors' definition of data
processing systems and their approach to analysis and
design.

IA: "An information system deals with objects and
events in the real world that are of interest.
These real objects and events, called "entities"
are represented in the system by data. The data
processing system contains information from
which the desired outputs can be extracted
through processing. Information about a particu
lar entity is in the form of "values" which
describe quantitatively or qualitatively a set of
attributes or "properties" that have significance
in the system. Data processing is the activity of
maintaining and processing data to accomplish
certain objectives."

LA: "There are some basic propositions made
here in connection with the systematic approach
advocated, which appear to be in contradiction
to present practices or assumptions. One is the
hypothesis that in most cases it is possible to
isolate and define the relevant organization
functions in a separate operation to be per
formed before the actual design of the system is
attempted. It is thus assumed that these func
tions are defined from the basic goals of the
organization and therefore will not need to await
the detailed construction of the system. The
other hypothesis is that it is possible to define all
input information necessary to produce a desired
output. The basic assumption here is that
actually any information can only be defined in
terms of more elementary information, which
will then occur as input parameters. Therefore,

once a class of information is defined then it is
known what input information is required for its
production. The point here is that it should not
be necessary to work out formulas, or even
computer programs, before it can be determined
what input data are needed. In fact, it is well
possible to work out formulas or programs for an
entity, where important variables are missing,
so that starting by programming is no safeguard
against ignoring important data."

YK: "The content of our analysis is that the
objectives of the data processing system have
been stated in terms of the required outputs;
these outputs are not considered as subject to
revision. On the other hand, although the inputs
may be organized in any desired fashion, it
appears necessary or at least convenient, to
state one of the possible input organizations
from which any equivalent one can be derived.
It should be noted that the input may supply
anyone of a number of equivalent pieces of
information, e.g., either customer's name to be
copied directly onto an output or an identifica
tion number from which the name can be looked
up."

LO: "The common denominator of file processes
is the production of output files as functions of
input files."

ADS: "The starting point is the definition of the
reports-what output information is required.
Once the reports are defined, the next step is to
find out what information is immediately avail
able. This is followed by laying out the informa
tion system in between the output and input.
The origin of all information needs to be speci
fied. The outputs of this system are always
looked at in terms of inputs."

TAG: "The technique requires initially only out
put requirements of a present or future system.
These requirements are analyzed automatically
[by a computer program] and a definition is
provided of what inputs are required at the data
level."

SY: "SYSTEMATICS is a language solely con
cerned with techniques and concepts useful to
systems analysts in designing information models
to meet user's requirements It is a tool for
specifying solutions to information systems
problems. More impo:ctant, it is also a tool for
developing such solutions."

Six of the approaches (all except SYSTEMATICS)
assume that the problem statement starts at output,
e.g., IA: " ... from which the desired outputs ... ";

1214 Fall Joint Computer Conference, 1972

YK: " ... in terms of desired outputs ... " Therefore, a
necessary part of the problem statement should be the
description of the desired output. This requirement is
implied by LA in the definition of TERMINAL SETS

and in YK by the definition of OUTPUT DOCU
l\1ENTS. IA does not mention required output as such
and, in fact, in the example given in the paper says,
"The problem is to create a new pay file from ... "

TABLE III - Description of Documents

FOR WHOLE DOCUMENT

1. NAME
2. TYPES OF DOCUMENTS

3. WHEN PRODUCED

4. MEDIA
5. SEQUENCING CONTROL

MAJOR
INTERMEDIATE
MINOR

6. VOLUME
AVERAGE (A)

MINIMUM (M)
PEAK (P)

7. DESIGNED FOR PEAK,
AVERAGE OR
MINIMUM

8. OTHER DATA

FOR EACH DATA ITEM

1. NAME
2. HOW USED

3. COMPUTATION
FORMULAS

4. SEQUENCING ROLE
5. VALIDATION RULE
6. FORMAT

AorN

SIZE (NO. of CHAR.)
FOR OUTPUT

7. NO. OF TIMES PER DOC.
MINIMUM
AVERAGE
MAXIMUM

YOUNG & KENT

V*
INPUT,OUTPUT

PRODUCING
RELATIONSHIP

NOT MENTIONED
NOT MENTIONED

v
V
V

NOT MENTIONED

YOUNG & KENT

DEFINING RELATION
SHIPS FOR VARIABLES
ON OUTPUT REPORTS

NOT MENTIONED
NOT MENTIONED

IN INFORMATION
SET TABLE

TAG

V
INPUT
OUTPUT
FILE

PERIOD (S,MI,
H;D,W,MO,Q,Y)
PRIORITY (NUMERIC)
FREQUENCY
NOT MENTIONED
NOT MENTIONED

V

V
V

DESIGNER'S CHOICE

REFERENCE AUDIT

TAG

FI-FIXED;
INFORMATIONAL
FF-FIXED; FUNCTIONAL
VF-VARIABLE; FACTOR

VR-VARIABLE; RESULT

NOT INCLUDED
(MAY BE ADDED AS
COMMENTS)

V
NOT MENTIONED

V

V
Ordering number of P
for presence.

RATIO

* A checkmark denotes provision for including the information listed in the left hand column.

ADS

V
INPUT
REPORT
HISTORY

SELECTION
RULES FOR
REPORT

FOR INPUT
SEQUENCES

MAJOR
INTERMEDIATE
MINOR

ARBITRARY NUMBER
EXPECTED VOLUME
FOR HISTORY
AND INPUT
AND REPORT

NOT MENTIONED

MEMOS

ADS

V
MODIFIED BY
- FORMULA
- PARTICULAR

VARIABLE
HOW OFTEN?
- NEVER**
- PARTICULAR CYCLE**
- FIXED TIME**
- LOGICAL CONDITION
** by memo only

COMPUTATION FORM
LOGIC FORM

V
V

V

V

RATIO

Survey of Languages for Computer-Based Information Systems 1215

Data relationships

A requirements statement must have some description
of the data that will be produced. The most exten
sive data description facility is the one used by IA.
This starts with the concept of an ENTITY which has
a connotation of a physical entity in the real world such
as an employee, a paycheck, or an order. Each ENTITY
has PROPERTIES which describe that entity, e.g., an
employee has an employee number, hourly rate, etc.
For any given ENTITY there is a VALUE for each
PROPERTY. The PROPERTY VALUE SET is the
set of all possible VALUES that a PROPERTY can
have in the problem. The COORDINATE SET is the
list of all PROPERTIES that appear in the problem.
A DATUM POINT is a set of values, one for each
PROPERTY in the COORDINATE SET, for a par
ticular ENTITY. The PROPERTY SPACE is the set
of all DATUM POINTS, i.e., all possible points ob
tained by taking the cartesian project of all possible
PROPERTIES. Once this PROPERTY SPACE has
been defined, further definitions deal with subsets of
this space. A LINE is a subset which is roughly equiva
lent to a record and an AREA is a subset roughly
equivalent to a file. Other subsets of the PROPERTY
SPACE are BUNDLES and GLUMPS. The basic
reason for this choice of data description is to use the
concepts of a set theory as the formulation for a theory
of data processing. (The authors of IA reject data
description by arrays as being too limited.)

In YK, the basic units of data are called ITEMS,
which corresponds to PROPERTIES in IA. Their term
INFORl\t{ATION SET is used for the set of all possible
values of a particular item and is, therefore, equivalent
to the PROPERTY VALUE SET in IA. The informa
tion that can be provided for each INFORl\1ATION
SET are: (i) the number of possible values, (ii) the
number of characters or digits, and (iii) relationships.
The following relationships are defined:

Isomorphism

Homomorphic

Cartesian
product

Equal to

Description
-one to one

correspondence
-many to one

correspondence

-PjXPk means
a pair of P j

andPk

Graphic
Symbol Symbol

x

+------.
-------.

-contained in E

The relationships may be used to make statements

such as, there is one employee number for each em
ployee name and address. YK did not want to make any
statements about the file structure and, hence, there are
no terms that correspond to records or files. YK also
provides a graphical notation for showing relationships.

In LO, the definition of data is more conventional
including FIELD (which corresponds to PROPERTY),
RECORDS, FILES, etc. The word BUNDLE is used
to denote a set of files which is merged on a single
input or output unit.

In LA, there is no definition of data corresponding to
data items. The problem definition starts with collec
tions of data which are called INFORMATION SETS.
This corresponds roughly to the notion of a file in
common terminology. LA introduces the concept of an
elementary file in which each record contains a data
value and enough "keys" to identify it uniquely.

ADS provides three forms on which data is described:
REPORT, INPUT, and HISTORY. Each of these
forms provides space for some information describing
the particular report or input: name, media, volume and
sequence and space for each variable. For each variable
the forms provide space for name, how the value of the
variable is obtained (INPUT, C01VIPUTATION,
HISTORY), a cross-reference, how often the variable
appears, and size (number of characters).

TAG provides one form which contains space for data
describing the document (or file) and space for each
variable. Table III shows a detailed comparison of the
data required by YK, TAG and ADS to describe
documents and data items.

SYSTEMATICS does not have any rules for speci
fying structure of data. The major emphasis is on
IDENTIFIERS.

Co:mputational relationships-data definition
by forDlula

When general purpose programming languages are
used, each program, or sub-program, inclqdes state
ments which produce output, statements which test
the conditions under which the output is produced and
statements which compute the values of the variables
that appear in the output. It has been argued by
Lombardi, in particular, that a "non-procedural"
language must separate the statement of what output is
to be produced when, from the statement of the pro
cedure for producing the value of the variables that
appear in the output. All seven approaches follow this
concept.

In IA the basic operation that the problem definer
can use to state his processing requirements is a mapping
of one subset of the PROPERTY SPACE into another

1216 Fall Joint Computer Conference, 1972

subset. Two kinds of mappings are defined. One corre
sponds to operations within a given file. For example,
suppose a tape contains time cards, sorted in order by
employee number, one for each day of the week. A
mapping could be defined which would take the set of
(five) POINTS for each employee into one new POINT
which would contain the total for the week. The second
type of mapping corresponds to the usual file main
tenance operation in which POINTS from a number of
input files are processed to produce new output files.
These two types of mappings are called GLUMPING
and BUNDLING respectively. The actual computation
of the PROPERTY VALUES of the new POINTS
produced by a mapping is specified by a COORDINATE
DEFINITION which must contain a computational
formula for each PROPERTY in the COORDINATE
SET.

In YK the major unit of processing is a PRODUCING
RELATIONSHIP; there must be one PRODUCING
RELATIONSHIP for each output document. This
PRODUCING RELATIONSHIP gives the conditions
under which a document will be produced. This state
ment may contain conditions (Boolean expressions)
that depend on values of data ITEM or on time. For
example, a PRODUCING RELATIONSHIP might be
a "a monthly statement is produced for a customer each
month for all customers with a non-zero balance." A
PRODUCING RELATIONSHIP may also state that
one output Document D2 is produced for each input
Document D1• The values of the data ITEMS which
appear in the output documents are calculated using a
DEFINING RELATIONSHIP. There must be one
defining relationship for each data item which appears
on an output document.

In LO the statements which control whether or not
an output record is produced are called CONTROL
PREDICATES. There must be one control predicate
for each record for each output file. The CONTROL
PREDICATES, in general, are Boolean expressions
which may involve the use of INDICATORS. The
values of the variables which appear on the output
records are produced by FIELD DECLARATIONS
which are evaluated at the end of each PULSE in
a PHASE.

In LA the relationships are given for production of
INFORMATION SETS and, hence, correspond to
PRODUCING RELATIONSHIPS. However, they are
stated only as precedence relationships, e.g., IN
FORMATION SETS a, b, and c are necessary to
produce d. No computational formulas are given. A
problem statement may be represented by a graph as
shown in Figure 4 where circles represent elementary
INFORMATION SETS and rectangles represent
PROCESSES.

Figure 4-Network representation of problem statement in LA

In ADS some basic information is specified about
when reports are to be produced. However, in many
cases this is supplied by written notes. This information
may be regarded as analogous to the PRODUCING
RELATION8.HIPS in YK. ADS requires that each
variable be identified as coming from INPUT, COM
PUTATION or HISTORY. A form is provided for
specifying the computations; this specification is some
what limited. Another form is used to state logical
conditions and these may be used to state when outputs
occur and under what conditions computations are
performed.

TAG provides for stating how often outputs will be
produced by specifying a PERIOD. The available
codes are: second, minute, hour, daily, weekly, monthly,
quarterly, and yearly. A PRIORITY can be assigned to
distinguish a sequence ordering between two documents
with the same period. TAG does provide a means for
stating which data elements are to be computed but it
does not provide for stating the formula for the com
putation. (The formula can be included in the "Com
ments" section of the form but it will not be analyzed
by the program.)

In SYSTEMATICS there are two types of data items,
GIVENS and DERIVED. For each DERIVED item
there is a Derivation rule that states the formula by
which it is computed. Considerable effort is devoted in
SYSTEl\1ATICS to specifying the sets of values over
which the rules hold. Consequently data items may be
IDENTIFIERS and there are a number of different
kinds: PRIMARY, SECONDARY, COMBINED, and
COMl\1:0N.

Other information

IA and LO do not specify any additional informa
tion' LA assumes that the relative size of files is avail
able~ YK, ADS and TAG all provide for specifying
time and volume requirements.

Survey of Languages for Computer-Based Information Systems 1217

YK defines two kinds of time: extrinsic (when an
event occurs) and intrinsic (the time written on a
document). The "operational requirements" consist
of a volume for each document (input and output) and
a time statement for each output document. Volumes
of documents may be expressed in terms of averages
over some time period.

ADS permits specification of average and maximum
volume in INPUT, REPORT, and HISTORY forms.
In addition, each variable in HISTORY is characterized
by how long it is to be retained; this may be a fixed
number or may depend on a computation.

TAG provides for volume information for documents,
size information on data elements and repetition in
formation on data elements within documents. (The
information is apparently not used in the programs
which process TAG statements.)

Presentation

Both ADS and TAG have well-structured forms for
recording the problem statement. They differ in that
ADS has five relatively highly structured forms while
TAG has a single form. The others do not specify any
particular way in which the problem statement must
be made. YK describes a graphical method of presenta
tion and LA uses a precedence graph for illustration
only.

A nalysis, summary and conclusion

Extent of use

Despite extensive recognition of the need for better
ways of stating requirements and despite the avail
ability of basic concepts of problem statement languages
since 1958 (Young and Kent) and 1962 (Information
Algebra) the use in practice of these techniques has not
been extensive. Even now ADS and TAG have a limited
number of users. Young and Kent's and Lombardi's
languages have not been used at all and the develop
ment of SYSTEIVIATICS has not continued after a field
tria1.48 Information Algebra has only been used once,33
and then only for describing requirements for an
assembler.

There is no published evaluation of why the tech
niques are not being used more. There is considerable
evidence that many organizations have recognized a
need and have attempted to develop their own problem
statement techniques but after a while the attempt has
usually been abandoned. Comments from a number of
such organizations are too subjective to be quoted here,
but are incorporated into the following analysis.
Specific comments on the use of TAG are that its

advantages as a requirement statement language in
clude ease of learning and simplicity in use, its provision
of computer processing of requirements data improves
ease of modification of the requirement statement, and
as a systems design procedure it gives machine-printed
copy of program requirements. The disadvantages of
TAG as a requirement statement language are that
documents cannot be related to each other except
through PERIOD, FREQUENCY and PRIORITY
and through data elements, that only a two-level data
structure is permitted, that repeating groups cannot be
handled except through ratios for each variable and
formulas cannot be specified. As a systems design
procedure, a disadvantage is that it requires manual
intervention in the process.

The arguments made against formal problem state
ment languages can be grouped broadly into two
categories: technical problems-the techniques are not
satisfactory for stating requirements-and human
problems-getting analysts to accept and use them. In
practice these two are closely related-an analyst who
does not want to change to formal method can usually
find some technical reason why the proposed method
is not satisfactory. The difficulty here is very similar to
that faced in improving other aspects of the system
building process. 68,65

There are a number of reasons that have been sug
gested for the people problem. One reason is that
preparing a rigorous and complete problem statement
requires (or at least seems to) more time than the
present procedure in which problem statement, systems
analysis and programming are collapsed into one indis
tinguishable process. A second reason is that there has
not been any immediate advantage to an analyst or
programmer to invest additional time in a more sys
tematic problem statement. Such advantage could
come from either or both of the facilities to manipulate
the problem statement symbolically and a computer
processing of the problem statement itself. TAG cur
rently provides such a software package and one is also
available for ADS.67 (Computer-aided analysis of
problem statements will be discussed in a later paper.)

A number of concepts that should be included in a
requirements statement language in order to eliminate
the technical problem (by ensuring that the formal
technique is sufficient to state requirements) are sum
marized here to provide a basis for the enumeration of
desirable objectives of future requirements statement
languages.

Form. of the problem.

There can be no question that the basic purpose of an
IPS is to produce outputs. However, it is not clear that

1218 Fall Joint Computer Conference, 1972

limiting the statement of data processing requirements
to outputs only (as advocated by TAG) is desirable.
Conceptually, one does not want to prejudice the
systems design by stating inputs that may not be
needed. Frequently, however, certain inputs must be
accepted by the IPS and in that case the problem state
ment might as well include the facility for specifying
them. Also the conditions that must be stated (e.g., the
PRODUCING RELATIONSHIPS in YK) in the
absence of specification of inputs can become very
complicated. The statement of problems will probably
be simplified if the problem definer can state his require
ments either in terms of "events" which require action
in the IPS or in terms of outputs required; whichever
is most convenient for him, i.e., either in terms of input
or of output. Providing this convenience may com
plicate the analysis of the problem statement by the
computer, but the additional processing time is prob
ably worth it.

One objection expressed against viewing IPS as
output producers arises from the belief that in the
future IPS will be basically data base storage and
retrieval systems in which a data administrator will
decide what data are to be stored and users will com
municate their requests as inquiries. These two views
are not incompatible since a result of an inquiry is an
output-an output that can be described in the same
way as an outDut that is produced periodically.

Data description

IA is the only approach that, through the use of the
ENTITY concept, attempts to associate data with the
real world. It should be noted, however, that the IA
language in itself does not depend on how the PROP
ERTY SPACE is obtained, i.e., whether it is derived
from real ENTITIES or from a set of abstract concepts.
It is desirable to give the problem definer as much help
as possible in defining his data and the analogy to the
real world through entities is the best method available.
Hence, it might as well be part of a requirement state
ment language as long as it does not restrict the lan
guage in defining data abstractly.

It is important to distinguish between two possible
uses of VALUE SETS. (A VALUE SET consists of all
possible values of a PROPERTY within PROPERTY
SPACE). The first use is for PROPERTIES in which
only one value will be in the machine at anyone time.
For example, the PROPERTY "warehouse number"
may have many values in the memory. at one time
whereas the "quantity" of a particular part number at a
particular warehouse will have only a single value at
any particular time.

In the first case, the VALUE SETS may be used for
validation of input data. ADS, for example, permits
validation rules to be given for each data item. In
practice, validation is a complex process depending on
combination of variables rather than on single variables
and such rules are difficult to state on the ADS forms.
It may be more desirable to specify validation by
defining validation reports as outputs of the system;
these then can include any processing specification
permitted by the language for specifying data items
on output reports.

The second use of VALUE SETS will be in providing
information about how much memory space will be
required. The basic question is how the problem definer
states the role of data items. In COBOL the definition is
through the structure definition in the DATA DIVI
SION and the use of OF and IN; in PL/l nested quali
fiers, separated by periods, are used. In YK the
relationships among INFORMATION SETS are used
to present this information. In future requirement
statement languages it would be desirable to infer as
much of the qualifier-identifier relationship of variables
from the processing statements themselves and only
ask for information that is not included there. It may
be possible to obtain all needed information from
VALUE SETS and the processing requirements.

The information in a problem statement must be
sufficient to infer which data items will have to be
stored in the auxiliary memory or in the main memory.
A value must be stored in the memory if:

1. It appears in an update statement, e.g., of the
form

X(") =X(") + Y

Here X might be "gross pay to date" and Y
"the pay this week."

11. It is used in a statement without its value having
been computed, e.g., "number of exemptions"
in a payroll problem. This data item would
appear as input on a new hire transaction and in
a change transaction and would be used in pay
computation.

ADS permits the problem definer to specify data
items to be available in HISTORY. These may be
either intermediate data items that are used in a number
of places or data items whose values the problem definer
believes will have to be stored.

It is immediately clear from ,the preceding paragraph
that one cannot determine what data items fall into
these categories unless the problem statement contains
information about the time at which processing require
ments occur. In the first case (i), there must be some

Survey of Languages for Computer-Based Information Systems 1219

way of stating that payroll is computed weekly and the
"gross pay to date" is cleared (set to zero) at the end
of each year. Similarly in the second case (ii) it must be
clear that a new hire transaction only occurs once while
the pay computations occur regularly.

Tim.e and voluIlle inforIllation

None of the problem statement languages have a
well-developed syntax for describing the time aspects
of requIrements, though YK, ADS and TAG provide
some capability. Some help in developing an acceptable
"time" language might be obtained by studying the
master time routines in simulation languages such as
SIlVISCRIPT or the executive systems for real-time
systems. In a very general sense, time is just one of a
number of attributes of data items and, hence, could be
included in whatever general data description facility
is provided by the language.

I t may be noted that time specifications are required
not only for determining which data items will be stored
but also for determining feasible and optimal storage
organizations. The criteria used to determine optimality
include both memory space and processing time. One
important factor to be considered is organization of
data to reduce memory space by such techniques as
header-trailer organization as used in hierarchical files
and IDS. In order to do this, one must be able to infer
the header-trailer relationships from such information
as qualifiers and identifiers. Another important factor
is the question of what data should be stored semi
permanently and which need only be held temporarily.
Again, the analogy to simulation may be useful
SIlVISCRIPT, for example, distinguishes between
PERMANENT and TElYIPORARY ENTITIES.

The second part of the criterion is to reduce processing
time. One way this can be done is by reducing the
number of accesses to external memory. Since a number
of different types of processing requirements must be
accomplished, the problem statement must contain
both the values of each type and the time periods over
which they occur so that accesses to auxiliary memories
can be grouped whenever possible.

Both ADS and TAG permit some specification of
volume data. Since information about volumes is
usually the least accurate part of a problem statement,
future languages should have considerably extended
capabilities, for example, statement of time and volume
by symbolic names.

Presentation

Graphical techniques are extremely useful in many
areas of stating specifications, e.g., blueprints for con-

struction specification and flowcharts for algorithms. A
graphical technique for the problem statement was
given in YK and this has since been extended by
Y oung69 under the acronym GRIST. The problem
statement proposed by LA is equivalent to a directed
graph. At the present state of development of problem
statement languages it appears unlikely that graphical
techniques other than flowcharts and graphs will be
very useful. Some experimental work with the proposed
techniques including GRIST appears justified, however.

Future problem statement languages will undoubtedly
depend on forms, probably somewhere between the two
extremes of complete specifications by forms and com
pletely free form. Good forms can be extremely useful
in acting as questionnaires and check lists.

Top-down approach

How much information about a problem should be
collected when? In current practice the analyst will
normally start with the general overall and summary
data and gradually he will become more and more
specific until he has enough detail to be able to write
the programs himself. In contrast, ADS attempts to
have the analyst specify all the details of the problem
statement at one time.

The best procedure may be compromise between
current practice and the ADS approach. Description of
data, for example, could be divided into two levels:

Composition-how the data is made up of smaller
units of data

Representation-hardware related items such as
number of bits, precision, etc.

The composition information clearly is needed as
part of the problem statement. Representation in
formation, on the other hand, may not really be needed
until program construction begins. A similar cate
gorization could be made for processing requirements.
Ideally, a problem statement would require specification
of necessary data (composition information) for data,
for example, and make optional the statement of
information which is not needed until later. This is
because sometimes it is easier to record all relevant
data at one time.

MatheIllatical Illanipulation of the problem.
stateIllent

IA represents an attempt to develop a problem
statement notation that might be manipulated symboli
cally. The use of set notation and the usual set opera-

1220 Fall Joint Computer Conference, 1972

tions appear a reasonable start for a language in which
data processing problems can be expressed. Since to our
knowledge IA has only been used once33 the practical
usefulness of IA remains to be demonstrated. It is also
not clear how one uses a problem statement expressed
in IA in the system design. Both of these questions
(the usefulness of IA for problem statement and the
derivation of a design from such a statement) provide
promising areas for research. Because of the size of data
processing requirements it is unlikely that facilities to
manipulate the requirements manually will be very
helpful. However, there is no reason why such manip
ulation could not be carried out by computer programs
if the language has suitable characteristics.

A REQUIREMENTS STATEIVIENT LANGUAGE

Objectives of a useful requirements statement language

The discussion in the first two sections has established
the need for a better way of stating information needs.
The analysis in the previous section has shown that,
while there have been attempts to develop such lan
guages, they have not been successful in the sense that
they are not in wide use today.

The need for such a language exists even more strongly
today and therefore research, development, experi
mentation and evaluation are needed to develop a
satisfactory medium for communicating requirements.
A set of objectives for a Requirements Statement
Language (RSL) is proposed in this section.

-The language should accommodate the statement
of requirements of the kind that are occurring now
as well as those that will occur in the future. It is
becoming more and more obvious that the cost of
changing from one programming language to
another is very high. Unfortunately, the present
progression from COBOL, to COBOL with exten
sions, to Data Base IVlanagement Systems results
in relatively small incremental improvements.
The RSL should provide a quantum jump to a
completely new generation of capabilities. The
characteristics of the situation to be expected in the
future that must be accommodated are:

1. Hardware features will increase in quality and
reliability. There will be larger hardware with
more parallel capabilities-this implies that
unnecessary precedence constraints should be
avoided whenever possible.

ii. Interrelationship of varying requirements will
increase, e.g., jobs with varying priorities,
inquiries to be answered, status data to be

monitored, outputs required at predetermined
times, data to be gathered and results to be
distributed over geographically dispersed
points, automatic monitoring and control, etc.

HI. The number and type of users with varying
interface requirements will increase, e.g., on
line interaction; data entry such as transaction
recorder; interrogation, e.g., reservation clerk,
users with no programming needed; system
builders; analysts and programmers; data
administrators; operators; etc.

iv. Systems will become larger and larger and
they will become more integrated. This im
plies: common data bases, any given pro
grammer does not know what else is going on,
new functions such as data administrator, etc.

v. Requirements will be more unstructured;
immediate response will be required and
requirements will be changing rapidly; jobs
require more consistency in data and business
data function specifications. This implies that
the "user" must be able to communicate with
the computer system more directly.

VI. The performance of systems will become more
important and hence there will be greater
emphasis on more explicit recognition and
statement of the criteria by which performance
is measured and requirements parameters
which affect performance.

VH. There will be more need to monitor the system
in operation. The systems change over time
either in bhe volume or the capabilities and
consequently there must be provision for
changing the internal structure of the system
without affecting the correct achievement of
the requirements.

-The language should be suitable for use by humans
in the necessary activity of determining and
stating requirements.

1. The language or part of it must be usable by
the manager or his assistants. This is necessary
to eliminate the (computer) systems analyst as
intermediary in order to reduce the chance for
misunderstanding and to reduce the imple
mentation time .. To some, this specification
implies that the language must be a subset of
English. However, the fact that a subset of
English is not English can severely limit the
value of a subset of English as a requirements
language. One of the objections sometimes
raised against anything other than a natural
language as a requirements language is that a

Survey of Languages for Computer-Based Information Systems 1221

manager will never take the time to use what
to him is an unnatural language. It is unlikely
that top managers will ever specify detailed
requirements. The situation here will be
analogous to the current situation in account
ing. When a manager first starts out in his
career, he is very familiar with the details of
accounting and prepares statements for his
immediate superior from the reports furnished
by the accounting department. As he rises in
the organization, he delegates more and more of
this to his assistants but he still understands
the accounting language and procedures. The
career path of the person using the require
ments language will be through the manage;.,
ment ranks rather than the computer ranks.

11. The language must be suitable for the top-down
approach for problem definition. Most large
systems are defined from the top down. The
broad, overall outline is developed first and
then successively more details are filled in.
The language should permit this process and
permit checking the problem statement for
consistency and unambiguity at each level
before proceeding to the succeeding lower
levels. The language should, of course, not
prohibit the bottom-up approach where this is
appropriate.

iii. The language should be suitable for helping in
the determination of requirements. It should
augment the capabilities of the analysts or
teams of analysts who are carrying out the
requirements determination.

IV. The language should facilitate the testing and
"exercising" of requirements. It is extremely
important that statements of requirements be
tested before they are implemented. Tests
should be made for consistency and complete
ness. In addition, the person developing the
requirements should be able to state data and
test conditions that can be used to verify
correctness of the requirements statement.

-The language should be suitable for building the
system to accomplish the requirements.

1. The language should permit the statement of
requirements only and prevent the statement
of data processing procedures. This is absolutely
necessary in order to make the requirements
statement hardware independent and to avoid
reconversion costs when the capabilities of the
equipment change. It is also necessary to
prevent the introduction of restrictions which

may limit the efficient use of hardware re
sources in the later stages of systems building.

ii. The requirements statement must be analyzable
by computer programs. The problem statement
should not only be readable by a computer
program so that the requirements can be stored,
but it should also be analyzable so that the
problem can be restructured for optimum
implementation efficiency without being limited
by the sequence used by the problem definers.
This is also necessary to permit the automatic
construction of the system.

lll. The requirements statement language must
permit statement of details necessary for the
production of object code. This is necessary if
the system is to be constructed automatically.
In accordance with the above specifications,
however, this detail should not have to be
provided all at one time and as much as possible
should be available from a library that is
built up over time.

iv. The language should permit statements to
facilitate the transition process. In most cases,
systems already exist with files and programs
and it is desirable to be able to move from the
present system to the future system in an
organized, controlled fashion to reduce in
convenience to the user and reduce cost.

v. The language should be as independent as
possible of the particular area of application so
that the cost of maintaining separate systems
for a number of different applications is
eliminated.

Outline of a requirement statement language

A language designed to satisfy the above objectives
has been developed and is being tested in the ISDOS
Research Project at The University of Michigan, under
the acronym PSL (Problem Statement Language). A
brief description is given here. A more detailed descrip
tion is given in the language specifications and user
manuals.

The language is used to describe the requirements
that refer to the desired target system as a whole,
as well as the individual units of the total requirements,
i.e., the inputs to and outputs from the target system.

The system requirements include factors such as the
parameters that are used in more than one place in the
system and whose definition is controlled at the system
level; system-wide policies, e.g., the form in which
"data" will be used; system constraints that pertain to
the system as a whole; resources available to the system,

1222 Fall Joint Computer Conference, 1972

such as hardware, software, etc.; and the performance
criterion that is to be used in evaluating the system
and in constructing it.

The description of each input to and output from the
system contains five major types of information:

1. Identification information which relates the
input or output to the external environment. For
example, where the input comes from or where
the output goes to, who has prepared the state
ment, what functional area of the firm it is
related to. This section will also contain, where
necessary, the interface information such as, for
example, if the output has to be accepted both
on cards and by teletype.

11. Timing information which describes the trig
gering of particular input or output in regard to
time and/or other conditions. Time here may be
specified as real time or time related to some
other calendar which would be defined under
system requirements.

iii. Volume parameters which determine the quan
tity of the input or output required.

IV. Data definition showing how the data groups are
related by structure.

v. Data definition by formula which gives the
individual computations which have to be per
formed. Decision tables can be used to specify
complex logical conditions.

The language will be processed by computer programs
where output will be structured to give the analyst as
much aid as possible. An overview of the software
system is given in Teichroew and Sayani.40

CONCLUSION

Since problem statement languages have not been
widely used the comparison and analysis in this paper
have been based primarily on "paper" systems. The
specifications for an ideal requirements statement
language have come from this analysis, personal opinion
and limited reports from users. There are signs that the
situation is changing.

Head forecasts:

"Most of the work described here is still in its
germinative stages, and consequently has had
little impact so far on the day-to-day activities of
systems people. But it is likely that today's systems
analyst, with his still-primitive analytical tools, will
one day become as rare as the machine-oriented
programmer who flourished a decade ago."7

Sammet holds a similar view:

"Ideally, the user would state only the definition
of his problem and the computer system would
develop the solution. While the day of asking the
computer to "C01VIPUTE THE PAYROLL FOR
MY COMPANY" is at least one or two decades in
the future, I believe we will see a large decrease in
the amount of detail a user must provide. More
specifically, I expect more statements about what
is to be done and fewer details on how to do it.
There will be compilers which can effectively
determine which of many alternative algorithms
should be used in a given situation. "70

Hopefully, it will be possible to base the next survey
of this kind on much more user experience.

REFERENCES

1 R I BENJAMIN
Control of the information system development cycle
Wiley N ew York 1971

2 W HARTMAN H MATTHES A PROEME
Management information system handbook
McGraw-Hill New York 1968

3 T B GLANS B GRAD D HOLSTEIN
W E MEYERS R N SCHMIDT
Management systems
Holt Rinehart and Winston Inc 340 pp 1968 [Based on
IBM's Study Organization Plan (C20-8075-0) 1963]

4 D H SUNDEEN
General purpose software
Datamation January 1968 pp 22-27

5 Computerworld June 28 1972 p 5
6 CODASYL SYSTEMS COMMITTEE

A survey of generalized data base management systems
May 1969 (Available from ACM)

7 R V HEAD
A utomated system analysis
Datamation August 15 1971 pp 22-24

8 R T HARRISON
The IBM application customizer services
In 65

9 G W POTTS
Natural language inquiry to an open-ended data library
AFIPS Conference Proc Vol 36 1970 pp 333-342

10 BOEING CORPORATION
MAST: modular application structuring technique
Commercial Airplane Division Seattle Washington no date
58 pp

11 NATIONAL CASH REGISTER COMPANY
BEST manual
1965

12 J R ZIEGLER
A modular approach to business ED P problem solving
Proceedings ACM 20th National Conference 1965
pp 476-484

13 J R ZIEGLER
Computer generated coding
Datamation Vol 10 NolO October 1964 pp 59-61

Survey of Languages for Computer-Based Information Systems 1223

14 R T JONES
Basic commercial data processing functions generalized
approach to analysis, programming and implementation
IBM Systems Research Institute New York 1964

15 W STIEGER
Survey of basic data processing functions and design using
modules
ISDOS Working Paper No 11 August 1968

16 PROCTER & GAMBLE CO
Basic functions manual
Cincinnati Ohio March 1967

17 D TEICHROEW
Computer-aided documentation of user requirements
F Gruenberger ed Information Systems for Management
Prentice-Hall Inc Englewood Cliffs New Jersey 07632 1972
pp 97-112

18 G M WEINBERG
The psychology of computer programming
Van Nostrand Reinhold Company 1971 288 pp

19 NATIONAL CASH REGISTER COMPANY
Accurately defined systems
1967

20 H J LYNCH
ADS: a technique in system documentation
Database Vol 1 No 1 Spring 1969 pp 6-18

21 M H HUDSON
A technique for systems analysis and design
Journal of Systems Management Vol 22 No 5 May 1971
pp 14-19

22 0 T GATTO
Autosate
Communications of the ACM Vol 7 No 7 July 1964
pp 425-432

23 D D BUTLER 0 T GATTO
Event-chain flow charting autosate: a new version
The Rand Corporation Santa Monica California October
1965

24 J BUBENKO 0 KALLHAMMER
CADIS: computer-aided design of information systems
In 25 pp 119-149

25 J BUBENKO JR B LANGEFORS A SOLVBERG
Computer-aided information analysis and design
Studentlitteratur Lund 1971 207 pp

26 S WATERS
The CAM (computer assisted methodology) project
Proc of the NCC Workshop on Approaches to Systems
Design April 11-13 1972

27 P AANSTAD G SKYLSTAD A SOLVBERG
CASCADE-a computer-based documentation system
In 25 pp 93-118

28 C F REYNOLDS
The importance of flexibility
The Computer Journal Vol 14 No 3 March 1971
pp 217-220

29 M CROWTHER-WATSON
DATAFLOW-a tool for the analyst
3 pp no date

30 R BOOT
Computer-assisted methods in systems analysis
International Conference on Practical Experience in
Systems Analyses 18 pp

31 A S LEWIS
File organization for DATAFLOW
File Organization lAG Occasional Publication No 3 Scolts
and Zeitlinger N V Amsterdam 1969 pp 165-177

32 CODASYL DEVELOPMENT COMMITTEE
A n information algebra phase I report
Communications of the ACM 54 Apri11962 pp 190-204

33 J KATZ W C McGEE
An experiement in non-procedural programming
Proceedings Fall Joint Computer Conference 1963 pp 1-13

34 H B LADD W P MARKOVIC
Formalized analysis techniques-aids to computer design and
computer use
RCA Camden New Jersey 19578 pages and illustrations

35 B LANGEFORS
Some approaches to the theory of information systems
BIT 3 1963 pp 229-254

36 B LANGEFORS
Information systems design computations using generalized
matrix algebra
BIT 5 1965 pp 96-121

37 B LANGEFORS
Theoretical analysis of information systems
2 Vol Studentlitteratur Lund 1966 (also available from
National Computing Centre Ltd Quay House Quay Street
Manchester England)

38 L LOMBARDI
Theory of files
Proc Eastern Joint Computer Conference pp 137-141

39 L LOMBARDI
A general business-oriented language based on decision
expressions
Communications of the ACM Vol 7 No 2 February 1964
pp 104-111

40 D TEICHROEW H SAYANI
A utomation of system building
Datamation August 15 1971 pp 25-30

41 G F RENFER
SCOT simplifies ~y8tem design changes and time estimates
Canadian Data Systems June 1970

42 D M CAINER
SYMOB (systeme modulaire bull)
Data Processing March-April 1964 pp 106-108

43 ENGLISH ELECTRIC-LEO-MARCONI
COMPUTERS LIMITED
SPEC: a technique for expressing system requirements
October 1966 20 pages plus appendices

44 C B B GRINDLEY
SYSTEMATICS-a non-programming language for
designing and specifying commercial systems for computers
Computer Journal Vol 9 August 1966 pp 124-128

45 C B B GRINDLEY W G R STEVENS
Principles of the identification of information
File Organization lAG Occasional Publication No 3 Scolts
and Zeitlinger N V Amsterdam 1969 pp 60-68

46 C B B GRINDLEY
Specification and interrogation of formal control systems
Paper presented at TIMS XVII Conference London
July 1-3 1970

47 C B B GRINDLEY
The use of decision tables within SYSTEMATICS
Computer Journal Vol 11 No 2 August 1968 pp 128-133

48 C B B GRINDLEY
SYSTEMATICS field trials project
31 December 1968

49 P J H KING
Some comments on SYSTEMATICS
Computer Journal Vol 10 pp 116

1224 Fall Joint Computer Conference, 1972

50 D H MYERS
A time automated technique for the design of information
systems
IBM Systems Research Institute New York 196250 pp

51 IBM
The time automated grid system (TAG): sales and systems
guide
Publication No Y20-0358-1 (no date approx 1968) 40 pp
(Reprinted in J F Kelly Computerized Management
Information Systems Macmillan 1970 pp 367-400)

52 W M TAGGART JR
A syntactical approach to management information
requirements analysis
PhD Thesis University of Pennsylvania 1971

53 J W YOUNG H KENT
Abstract formulation of data processing problems
Journal of Industrial Engineering November-December
1958 pp 471-479 Reprinted in Ideas for Management
International Systems-Procedures Association 1959

54 R BOZAK
A proposed file processing language
System Development Corporation Santa Monica California
TM 3392/000/00 1967 15 pp

55 M H GROSZ
Systems generation output decomposition method
Standard Oil Company of New Jersey July 1963

56 J W SUTHERLAND
Tackle system selection systematically
Computer Decisions April 1971 pp 14-19

57 D J HERMAN F C IHRER
The use of a computer to evaluate computers
Proceedings AFIPS 1964 SJCC Vol 25 pp 383-395

58 K ElVERSON
A programming language
John Wiley & Sons New York London 1962286 pp

59 R M BALZER
Dataless programming
The Rand Corporation Santa Monica California July 1967

60 R HENDRY
BCL, a new data processing language
Datamation January 1968

61 ARTHUR ANDERSEN & CO
LEXICON: automation concept for business information
systems general description manual
1972

62 J W YOUNG JR
Non-procedural language: a tutorial
7th Annual Tech Meeting South California Chapter ACM
March 23 1965 24 pp

63 C J SHAW
Theory, practice, and trend in business pr.ogramming
AD625-OO3 Systems Development Corporation July 1965
18 pp

64 R STAMPER
Computer aids in systems analysis
Computer Weekly International August 12 1971 p 18

65 NATIONAL COMPUTING CENTRE
A pproaches to systems design
Proceedings of Workshop 11-13 April 1972

66 J E SAMMET
Programming languages: history and future
Communications of the ACM Vol 15 No 7 pp 601-610

67 R THALL
A manual for PSA/ ADS: a machined aided approach to
analysis of ADS
ISDOS Working Paper No 35 October 1970

68 EDP ANALYZER
COBOL aid packages
Vol 10 No 5 1972 Canning Publications

69 J W YOUNG
Graphical notation for information system description,
GRIST
1967

70 J E SAMMET
Programming languages: history and fundamentals .
Prentice-Hall Inc 1969

A benchmark study*

by J. C. STRAUSS

Washington University
Saint Louis, Missouri

INTRODUCTION

Several recent articles1,2 speak to the problems involved
in computer system performance evaluation in general
and performance prediction for system selection in
particular. The interest in this general area is growing in
an almost exponential manner as demonstrated by the
number of references per year for the period 1965 to
1969 listed in a recent bibliography on Computer
Performance Analysis by Miller:3 6,9,28,32,42. How
ever, while there is considerable general discussion in
this referenced literature on the relative merits of
benchmarking as a technique for system evaluation
and selection, there are virtually no documented case
studies of benchmarking for third generation, multi
programming oriented system selection.

This paper partially fills this void by documenting a
recent benchmark study conducted by Washington
University to aid in the selection of a new, central
computer system to replace the current IBM 360/50.
The computer-operating systems under consideration
include the Burroughs 6714-MCP, IBM 370/155-0S,
Univac 1108-EXEC 8,and XDS ~ 9-UTS. The configu
rations tested are batch processing oriented, constrained
to provide certain levels of tape and disk secondary
storage and sufficient primary memory to permit
satisfactory interactive computing. The principal ob
jective for the new system is to provide significantly
increased thruput with equivalent or better tape, disk,
and unit record speed and capacity, for the same or less
money than the current monthly rent of the IBM 360/50
(,-...;$31,000). It was expected that each of the candidate
systems would provide significantly increased capa
bility for interactive computing, better incremental
growth capacity, more flexible job scheduling, and no
more complex operator and job control capability than
that afforded by the 360/50 running under OS. Also of

* This work was supported in part by National Science Founda
tion Grant No. GJ-33764X.

1225

concern was the cost, measured in money, user disrup
tion, and staff energy, of conversion to the new system.

Initially the vendors presented the salient features of
their systems (Burroughs-stack architecture and
segmentation; IBM-no conversion and RAS [Relia
bility, Availability, Service]; Univac-proven number
crunching and good interactive capability; and XDS
virtual memory and proven time sharing). Washington
University, however, had an existing heavy production
oriented batch processing load that virtually saturated
its 360/50. While there were aspirations to become more
involved with terminal oriented computing and the
unique architectural features of the new systems were
intriguing, it was clear that initial conversion to the new
system would be largely mechanical; i. e., make existing
production programs work before optimizing efficiency
on the new system. Given this emphasis plus a monetary
constraint that would not support parallel operation of
old and new systems for an ,indefinite period, it was
imperative that any new system must be able to run the
existing 360/50 oriented workload with a minimum of
conversion. In addition, it was desirable that the new
system provide sufficient excess capacity to support new
applications and methods development.

The net effect of these various considerations was
that despite the vendors insistence that selection deci
sions be based on their sexy new features, the basic
decision had to be strongly influenced by the relative
performance of a proposed new system on the existing
workload. On this basis it was decided to conduct a
benchmark study of the relative performance of various
competing systems on a representative sample of the
current batch oriented workload. Systems were selected
for study based on combinations of past experience,
subjective opinions of suitability, and satisfactory rela
tions with local vendor representatives.

The sequel delineates the objectives of the study and
presents the design of a comprehensive benchmark to
achieve the objectives. The results of the four systems
are tabulated and compared to those obtained on the

1226 Fall Joint Computer Conference, 1972

360/50. Summary comments review the problems en
countered in the design of the benchmark and discuss
the efficacy of the benchmark study in achieving the
objectives. The general description of the benchmark
originally presented to the vendors is included in the
appendix.

BENCHMARK DESIGN

A working definition of benchmark is developed
and the important features of benchmark design are
cited.

In Reference 1, Lucas describes a benchmark as
follows: "A benchmark is an existing program that is
coded in a specific language and executed on the ma
chine being evaluated. A comprehensive series of bench
mark runs can demonstrate differences in machine
organization and evaluate the performance of I/O equip
ment and secondary storage " He indicates that
benchmark testing is one of the most effective methods
for evaluation of both new system hardware and soft
ware for selection purposes. Lucas also makes the
following points concerning benchmark series· design:

1. The benchmark series should be representative
of the current job mix.

2. The proportion of compilation to execution
should be considered for each class of programs.

3. All required equipment should be included and
usage should be in correct proportion.

4. The priority of various runs (order of presenta
tion) must be in correct proportion.

In addition, Lucas stresses· a number of potential prob
lem areas in benchmark testing and provides appro
priate references to the literature where those problems
have been discussed.

The sequel develops Washington University's ap
proach to benchmark series design against a set of
specific objectives.

WASHINGTON UNIVERSITY BENCHMARK
STUDY

The objectives of the Washington University bench
mark study are established and the design of the
benchmarks is reviewed.

Objectives

The principal objective of the benchmark study is to
determine the relative thruput of similarly priced and

TABLE I-Proposed System Configuration and
Price Comparison

Approximate
Computer Configuration Monthly Cost

WUCF 360/50 Processor (256K 2p, 1M 2.5p)
-OS/MFT 484M Bytes 2314,
Six Tapes, Unit Record Com
munications Controller

(1-2 Year Lease) $31,050
B6714 Processor (131K, 1.5p, 48 Bit

Words)-MCP 484M Bytes
Disk, Six 144KB Tapes plus
Swapping Disk Communica
tions Controller

(1 Year Lease) $28, 664
IBM 370/155 Processor (768K)-OS/MFT,

MVT 600M Bytes 3330, Six
Tapes, Unit Record Communi
cations Controller

(1-2 Year Lease) $39,900
UNIVAC 1108 Processor (196K, 36 Bit Words)

-EXEC 880M Words Disk,
Six Tapes, Unit Record and
Drums Communications Con
troller

(5 Year Purchase) $33,000
XDS 2; 9 Processor (512K)-UTS

600M Bytes 2314, Four Tapes,
Unit Record and RAD
Communications Controller

(5 Year Purchase) $30,000

similarly configured computers on a well defined work
load. (Table I presents the configurations proposed by
the vendors and their approximate monthly cost.)
Secondary objectives include determination of:

1. a measure of conversion difficulty (particularly
of the F level COBOL and the sophisticated job
control employed by current administrative data
processing) based on the conversion effort (man
and machine time) required by the various
vendors,

2. the extent and usefulness of the standard ac
counting information collected by the various
operating systems,

3. the sensitivity of system performance to tuning
of the hardware/software configuration, and

4. relative performance of the systems on internal
benchmark characteristics such as: relative CPU
times for COBOL and FORTRAN compilation
compared to execution, relative CPU time for a
series of simple FORTRAN unformatted output
jobs that require an alarming amount of CPU
time on the 360/50, ease and efficiency of conver
sion of the six COBOL F jobs to ANS COBOL,

TABLE II -Operational Rules for Benchmark

1. No optimization by optimizing source code (document any
changes made)

2. Two basic runs (Run 1 and Run 2) are to be made
3. For Run 1 and Run 2:

(a) All jobs remain in given classes (if pertinent)
(b) Degree of multiprogramming is to be less than 5
(c) Given input ordering of jobs is fixed
(d) All jobs to be assigned equal external priority

4. Terminate benchmark run when all jobs, but job 7, are
complete

5. For Run 1, start execution after all jobs have been read in;
record read in, execution and print elapsed time

6. For Run 2, start execution as soon as possible; record total
elapsed time

7. Make other optimizing runs as appropriate; record all
variances with above rules

and the capability of the various systems to
successfully handle the student oriented jobs
currently processed under W ATFIV.

The appendix presents the text of the benchmark
description that was given to the vendors. Included in
this description are detailed run procedures and specifi
cations of expected output. Table II summarizes the
operational rules for the benchmark and Table III
summarizes the output expected from each vendor.

Benchmark jobs

As indicated in the appendix, the benchmark series
consists of 25 jobs: 6 COBOL (IBM COBOL F) compile
and .execute, 13 FORTRAN (IBM FORTRAN G)
compile and execute, and 6 WATFIV jobs. One COBOL
(#6) is designed to test compiler diagnostics, but all
other jobs in the series are executable. An attempt has
been made to distribute benchmark characteristics in
rough proportion to those in the actual Washington
University workload. Table IV presents a comparison
of the distribution of CPU time in the various bench
mark tasks and in appropriate tasks in the actual work
load. Although CPU time is not the only measure of

TABLE III-Expected Output from Benchmark

1. Description of exact hardware and software configuration
2. All printer and console log output
3. Tabulation of CPU, start and stop time for each job step and

job
4. All standard accounting information
5. All necessary source code changes
6. Total man hours and machine time spent initially and by run

on benchmark
7. All intermediate results of optimizing runs

A Benchmark Study 1227

load representativeness, it is a characteristic measure
that is common to all systems in the study. The bench
mark series is restricted to three languages (COBOL,
FORTRAN, and W ATFIV) to facilitate the running of
the benchmark on a wide variety of candidate systems.
In addition, as discussed in the appendix, the bench
mark includes one job the sole function of which is to
expend any available CPU time not employed by the
other benchmark jobs or the operating system, thereby
giving some measure of extra capacity.

As pointed out in Reference 4, representative work
load description is extremely difficult for a single multi
programming operating system; it is virtually impossi
ble across the scope of computer-operating systems

TABLE IV-Benchmark and System CPU Usage
Characteristics

Quantity

COBOL Compile
COBOL GO
FORTRAN Compile
FORTRAN GO
PL/I Compile
PL/I GO
Production ADP

(Execution of COBOL)
Miscellaneous User

Programs
Application Packages
Student Compilers

(WATFIV, PL/C)
Other

(Assembler, Link Edit,
Utilities, etc.)

360/50 CPU
Benchmark

Usage
(CPU sec)

447.8
92.8
82

2311.8

210.9

3063.3

360/50 CPU
FY72 Second

Quarter Usage
(CPU min)*

2996
657

1459
2509
1406
566

8694

2906
3010
1563

3000

28766

* Recording of all job step usage requiring more than .01 minutes
of CPU time

under consideration here. From the comparative CPU
time figures presented in Table IV, one might question
the general representativeness of the benchmark series,
particularly in view of the strong emphasis placed on
this point by Lucas! and others. Based in part on prior
experience and in part on the difficulties pointed out in
Reference 4, it was felt more important that the behav
ior of the benchmarks be well understood and cover a
broad range of important system features than that the
complete benchmark series be representative of the
general workload. In this way, as different models of the
workload are developed, the benchmark results can be
adjusted against the different factors of concern in the
perceived model.

1228 Fall Joint Computer Conference, 1972

Of the five executable COBOL jobs, four are standard
Washington University production administrative data
processing programs and one is a special job to create an
indexed sequential test file for the other four. The
COBOL series makes extensive use of disk (both sequen
tial and indexed sequential) and tape files and is
representative of a large percentage of the production
administrative data processing occurring on the current
system. The heavy emphasis on COBOL compilation
reflects an expectation that student use will place
increasing emphasis on compilation efficiency. It also
makes possible some internal benchmarking on the ease
and efficiency of conversion of the current 300(+)
COBOL F production programs to the ANS COBOL
now standard to most vendors.

The 13 FORTRAN jobs are of three types: (1) job 7
is designed to run throughout the duration of the bench
mark test and use up any CPU time not employed
productively by the other jobs or the operating system;
(2) jobs 8, 17, 18, and 19 are heavy compute jobs that
test machine precision and the accuracy and precision
of standard scientific functions and subroutines; and
(3) jobs 9 through 16 constitute an internal check of the
efficiency of the output section of the FORTRAN
runtime system. Table VIII briefly lists the output
formatting characteristics checked by these programs.

The six WATFIV jobs are representative student jobs
that had previously been selected from the daily work
load to test characteristics of the W A TFIV compiler.
In the benchmark context, they test the ability of the
systems to deal with small, student jobs.

Operational rules

The operational rules are summarized in Table II.
Two basic runs are requested to: (1) measure and
account for different I/O speeds and control strategies,
and (2) determine the ability to conveniently control
job input, execution, and output under the different
operating systems. The rules listed as 3a-d all relate to
attempting to provide a standard, reasonably fair,
execution environment across the tremendous architec
tural breadth of the tested systems. Rule 3a, requiring
that jobs retain the class structure (if pertinent). em
ployed on the 360/50 under OS/MFT, is an attempt to
ensure that rule 3c relating to retaining the given input
ordering of jobs not be violated by IBM when running
the benchmark under MFT. Rule 3b placing an upper
limit of five on the degree of multiprogramming is an
attempt to factor out differences in memory size and
allocation strategy on the systems on which the bench
mark was run. (It was suggested that those vendors who
felt unduly restricted by this rule would make some

additional optimizing runs without this restriction.)
Rules 3c and 3d are attempts to ensure that a priori
knowledge of program behavior is not employed to tune
the execution of the benchmark to the control strategies
of a particular operating system. Rule 4 relates to the
use of job 7 to employ all unused CPU time.

Expected output

The output expected from each vendor is summarized
in Table III. The results obtained from each of the
candidate systems is reviewed in the next section.

BENCHMARK RESULTS

The results of the benchmark series are summarized
and aspects of the performance of the individual systems
are discussed.

Summary of results

Table V presents the reported vendor effort in ma
chine and manpower hours to convert and run the
benchmark series. The Conversion columns list the
machine and man hours required to convert the COBOL
F to ANS, the JCL, and anything else necessary to
achieve a running benchmark. In the case of the 360/50,
the conversion time was the time necessary to organize
and document the benchmark. The Runs columns of
Table V list the time required to run the benchmark
series. This time must be interpreted in light of the

System

WUCF
360/50

B6714
IBM

370/155
UNIVAC

1108
XDS~9

TABLE V-Reported Vendor Effort

Machine Time
(Hours)

Con-
ver-
sion Runs Total

6 1.5 7.5

20 2 22
20* 60t 80

5 5 10

3 4 7

Manpower
(Hours)

Con-
ver-
sion Runs Total

40 4 44

80 30 110
4 396t 400

160 10 170

40 16 56

No. of
Re-

ported
Runs

1

5
30

2

3(+)

* On 370/145 and including conversion to ANS COBOL which was
not required

t Included the generation of several operating systems

A Benchmark Study 1229

TABLE VI-CPU Times (Seconds) of Test Jobs

WUCF BURROUGHS IBM UNIVAC XDS
360/50 6714 370/155 1108 };9

1 26.7 26.0 5.2 11.8 25.8
2 200.2 44.1 45.8 50.4 127.7

COBOL
3 50.9 26.5 11.6 19.4 66.6
4 100.6 36.1 23.8 34.4 70.8
5 146.8 36.9 35.1 35.3 104.9
6 15.4 3.9 3.4 4.2 6.0

7 2000.5 4.2 22.6 196.8 917.3

8 83.3 47.1 16.9 13.0 30.6
9 256.7 153.3 61.1 71.5 25.2f(270

10 156.1 94.4 39.2 19.7§ 28.2f(173
11 543.2 632.6 135.0 229.6 24.6f(768

FORTRAN
12 156.2 131.6 39.2 19.2§ 27.0f(163
13 135.4 110.9 27.9 67.8 27.0f(186
14 33.2 19.0 3.7 34.1§ 29.4f(79
15 416.1 574.9 96.2 228.2 28.8f(720
16 33.3 19.6 3.9 20.0§ 28.2f(74
17 146.0 107.4 37.6 24.5 35.4
18 277.9 205.3 75.9 49.5 58.2
19 74.4 39.4 15.8 11.5 28.2

20 14.7 69.9 8.1 16.9 74.8
21 6.9 4.5 3.6 3.7 4.2

WATFIV
22 6.8 1.8 1.4 1.8 1.2
23 180.4 22.9 12.2 7.9 13.2
24 0.6 1.3 1.1 1.5 1.2
25 1.5 1.6 1.2 1.8 1.8

TOTAL * 3063.3 2411.5 704.9 977.7 869. ot (3083.6)

§ Special FORTRAN Library used to block output (reportedly saves 45%).
t Source code modifications to replace WRITE with CALL BUFFOUT.

Approximate CPU times of unmodified programs are included in parentheses.
* Excluding Job 7.

TABLE VII-CPU Times (Seconds) for Compile and Execute of Different Segments

COBOL FORTRAN

System

WUCF 360/50
B6714
IBM 370/155
UNIVAC 1108
XDS};9

(#1-#6)

540.6
173.5
124.9
155.5
401.8

Compute Bound

(#8, 17, 18, 19)

581.6
399.2
146.2
98.5

152.4

* New FORTRAN Compiler is reputed to reduce this by factor of three.
§ Special FORTRAN Library employed.

I/O Check

(#9-#16)

1730.2
1736.3*
406.2
690.1§
218.4t

(2433.0)

t Source code modifications; approximate CPU time of unmodified programs is in parentheses.

WATFIV

(#20-#25)

210.9
102
27.6
33.6
96.4

Total

3063.3
2411.0
704.9
977.7
869.0t

(3083.6)

1230 Fall Joint Computer Conference, 1972

TABLE VIII-CPU Times (Seconds) of I/O Check Jobs

WUCF BURROUGHS IBM UNIVAC XDS
Program-Characteristics 360/50 6714 370/155 1108 2;9

9-Char., Implied DO,
A Format 256.7 153.3 61.1 71.5 25.2 (270)

1O-Char., Implied DO,
Unformatted 156.1 94.4 39.2 19.7§ 28.2 (173)

ll-Real, Implied DO,
E Format 543.2 632.6 135.0 229.6 24.6 (768)

12-Real, Implied DO,
Unformatted 156.2 131.6 39.2 19.2§ 27.0 (163)

13-Char., Name Only,
A Format 135.4 110.9 27.9 67.8 27.0 (186)

14-Char., Name Only,
Unformatted 33.2 19.0 3.7 34.1§ 29.4 (79)

15-Real, Name Only,
E Format 416.1 574.9 96.2 228.2 28.8 (720)

16-Real, Name Only,
Unformatted 33.3 19.6 3.9 20.0§ 28.2 (74)

TOTAL 1730.2 1736.3* 406.2 690.1§ 218.4t(2433)

§ Special FORTRAN Library used to block output (reportedly saves 45%).
t Source code modifications to replace WRITE with CALL BUFFOUT.

Approximate CPU times of unmodified programs are included in parentheses.
* New FORTRAN Compiler is reputed to reduce this by factor of three.

number of runs listed in the last column of Table V that
were reported by the various vendors.

Table VI summarizes the CPU times of the individual
jobs in the benchmark series when run on the contend
ing systems. Data was obtained on the individual stages
of each job, but relatively little new information is
present in the detailed results. The single most signifi
cant departure of the detailed job step data from ob
served behavior on the 360/50 is that while the ratio of
Burroughs COBOL compile CPU time to that of the
360/50 is .26, the corresponding COBOL execution ratio

is .61. Other anomalous behavior is discussed under the
performance of individual systems. Table VII presents
summarized CPU times for different segments of the
benchmark series. Table VIII presents detailed perform
ance on the I/O check portion of the benchmark series.
It is interesting to note that all systems appear to have
significant problems with explicit use of E Format and A
Format as compared to unformatted I/O and with use
of Implied DO in the WRITE statement for an Array
output as compared to use of Array name only.

Table IX summarizes the thruput performance of the

TABLE IX-Elapsed Times (Minutes) for Execution Portion of Run 1

ELAPS
(Elapsed Execution

System Time of Job 7)

WUCF 360/50 94.9
B6714 * 43.46
IBM 370/155* 14.7
UNIVAC 1108 21.25
XDS2;9 32.4
B6724 * * 25.7

+ CPU' is the total CPU time less Job 7 CPU.
t ELAPS' is ELAPS less Job 7 CPU.

Job 7 CPU CPU'+

33.3 51.05
0.07* 40.2
0.38* 11.75
3.55 16.3

15.3 14.5
5.2 40.2

§ ELAPS" is (ELAPS') (approximate CPU time of unmodified series)/(CPU').
* Adjusted priority so Job 7 was active only when nothing else could run.

** The B6724 is a dual processor B6714.

ELAPS't ELAPS"§

61.6 61.6
43.4 43.4
14.3 14.3
17.7 19.1
18.1 63.7
25.7 25.7

contending systems by presenting the elapsed times for
the execution of the benchmark series. Because different
vendors chose to interpret the rules somewhat differ
ently, it is necessary to make some corrections on the
raw data to arrive at a comparable thruput measure.
The column labeled ELAPS is the repurted time from
start of execution of the first job in the benchmark series
. (#7) until the last job other than #7 terminates and the
operator manually terminates execution. Even if the
different vendors had followed the rules and run all jobs
at equal external priority it would have been necessary
to interpret these results based on the amount of CPU
time that job 7 had received. (Job 7 goes through a tight
calculational loop and prints out an increasing count
every 5000 times through the loop. On the 360/50 there
are approximately 6 CPU seconds between counts.)
Because job 7 received different relative CPU service
due to different internal and external scheduling of the
different systems, it is necessary to factor the effect of
job 7 from the total elapsed times. An estimate of the
upper bound on the elapsed time without job 7 (i.e.,
with a multiprogramming degree limit of four) is ob
tained by subtracting the CPU time recorded for job. 7
from the elapsed time. This figure is recorded in Table
IX in the column labeled ELAPS'. Table IX presents
one other attempt to project the elapsed time of the
various runs on a comparable basis. The column labeled
ELAPS" presents an estimate of the elapsed time that
would have resulted if Univac and XDS had not made
modifications to optimize the I/O check portion of the
benchmark series based on a priori knowledge of bench
mark behavior. As indicated in the footnote of Table
IX, this estimate is obtained by increasing ELAPS' by
the ratio of the estimated CPU time without modifica
tions to that reported with modifications. Table IX also
reports the elapsed time behavior of the benchmark
series on a dual processor Burroughs 6700, the B6724.
Individual job CPU times are not reported for this
configuration because they are identical to those
reported for the single processor B6714.

A Benchmark Study 1231

Individual system performance

WUCF 360/5D-The Washington University Com
puting Facilities 360/50 has been carefully configured
for good (if not optimum) cost/performance on its broad
spectrum administrative, educational, and research
computing load. The performance has been significantly
improved through replacement of one megabyte of IBM
LCS with one megabyte of AMPEX ECM modified
locally to run at a 2.5J.L sec cycle time. Costs have been
significantly decreased by replacing IBM equipment
with Potter tapes, Memorex communication controllers,
CalComp disks, DATA 100 RJE terminals, and Tele
types. The benchmark jobs were ordered and assigned
to classes for MFT scheduling in a way felt to be repre
sentative of the standard workload.

Burroughs 6714-Burroughs ran the benchmark series
on both their B6714 uniprocessor and their B6724 dual
processor systems. Their conversion was good and
apparen tly straightforward. The performance was good
especially considering that the benchmark series was
strongly FORTRAN oriented and that obviously has
not been their forte. Interestingly enough, Burroughs
software engineers have since indicated that new
FORTRAN I/O now in development will reduce the
I/O check jobs (#9-16) from rv1700 to 700 CPU sec
thereby reducing the elapsed time reported in Table IX
from ",43 minutes to 27 minutes or less. Burroughs did
not perform Run 1 as specified because MCP did not
have (Fall 1971) sufficiently flexible operator control to
allow prespooling of the benchmark input. The elapsed
time figures presented in Table IX are for Run 2
measured from start to operator termination of job 7
(the first in the series). Burroughs altered the external
priority of a number of jobs but with the obvious excep
tion of job 7 this appears to have had little impact on
the achieved results. Burroughs also ran several experi
ments on thruput sensitivity to the degree of multi
programming and while the results are not clean (exter
nal priority was also adjusted between the runs), they

TABLE X-Sensitivity of Elapsed Time

System

B6714

B6724

IBM 370/155

XDS~9

Condition : Value

Multiprogramming Degree: 5
:11

Multiprogramming Degree: 5
:11
: 21

MFT Class/Partition : Fixed
: Dynamic

FORTRAN Compiler: FORTRAN
: FLAG

Elapsed Time
(Minutes)

43.46
43.73
27.58
25.73
25.81
14.7
14.1
18.1
21.3

1232 Fall Joint Computer Conference, 1972

are interesting; these results are included in Table X.
It is gratifying to note that the dynamic segmentation
of the B6700 provides real insensitivity of thruput to
the degree of multiprogramming.

IBM 370/155-IBM converted and ran the bench
mark on their 370/155. The 155 performance is certainly
the best of any of the systems tested, but the cost is
definitely the highest as well. Initial conversion work
done on the 370/145 which is in the target price range
indicates that the 145 woUld have performed well, but
it was not tested because it did not allow sufficient
primary memory to provide the desired interactive
environment. The relatively large times reported in the
Runs columns of Table V were due in part to the large
number of optimizing runs and in part to the generation
of several specially tuned operating systems. IBM tried
many combinations of scheduling strategies, memory
sizes, and operating systems types. The general impres
sion from all their presented data is that OS is relatively
insensitive to the performance tuning that they re
ported. Table X presents a representative sensitivity
comparison. For a fixed relationship between job class
and memory partition, the elapsed time was 14.7
minutes. Based on a priori knowledge of job behavior,
the class/partition relationship was changed during the
benchmark series; the resulting elapsed time was 14.1
minutes.

Univac 1108-As indicated in Table IX,' the 1108
performed very well. Table VII establishes that 1108
performance on the compute bound FORTRAN jobs
was the best of those tested and performance on the
COBOL jobs was credible considering that the bench
mark series was run on a system using slower
F ASTRAND II drums in place of disks. Unfortunately,
as might be expected from 36 bit word orientation of
the 1108 and the drum orientation of the EXEC 8 file
system, the conversion effort indicated in Table V is
relatively high as compared to other more IBM oriented
vendors.

XDS ~ 9-Initial reports on the ~ 9 performance
were amazingly good. Tables VII and IX indicate that
before knowing of the implications of their source code
modifications, the XDS overall cost/performance was
better than any other tested system. Later measure
ments, however, established that XDS suffered even
more severely than the other vendors on the I/O check
portion of the benchmark. Use of the FLAG
(FORTRAN LOAD AND GO) compiler in place of the
standard FORTRAN compiler led to the increase in
elapsed time reported in Table X.

CONCLUSIONS

There are two obvious and important conclusions to be
drawn from this study.

1. That the general benchmarks described here
could be run with relatively little effort on such
a wide diversity of machines speaks well for the
standardization of COBOL, FORTRAN, and
general operational procedures.

2. When establishing rules for benchmark opera
tion, it is imperative that the vendors fully
understand the meaning and importance of each
constraint.

Of natural interest is the question of which system did
Washington University select. The answer is none,
which in light of today's troubled economic picture is
probably not surprising. The systems that the Univer
sity could afford on a monthly cost basis require too
large a conversion cost and the one system with minimal
conversion cost (IBM 370/155) is too expensive for the
needs of the University. In addition, while in the process
of conducting and analyzing results of the benchmark,
it became obvious that the concept of a single central
computer had to be carefully reviewed in light of the
rapidly developing technology currently surfacing in
the small machine area. These observations probably
lead to an obvious conclusion/warning for vendors
running benchmarks; i.e., qualify the budgetary and
political position of the prospective customer at the
highest management levels.

REFERENCES

1 H CLUCAS JR
Performance evaluation and monitoring
Computing Surveys Vol 3 No 3 1971

2 M E DRUMMOND JR
A perspective on system performance evaluation
1MB Systems Journal Vol 9 No 41969

3 E F MILLER JR
Bibliography on techniques of computer performance analysis
General Research Corporation Report POBox 3587
Santa Barbara California 93105

4 M D DRAPER R C MILTON
Univac 1108 evaluation plan
Technical Report No 13 University of Wisconsin Computing
Center Madison Wisconsin March 1970

APPENDIX-BENCHMARK DESCRIPTION
GIVEN TO VENDORS*

Washington University Computing Facilities Benchmark
September 10, 1971

Purpose

This document briefly describes the composition, run
procedures, and expected output from a test batch

* The appendices referred to in the text of this appendix are not
included.

stream of 25 jobs, hereafter referred to as the WUCF
Benchmark.

COIDposition

The WUCF Benchmark consists of 6 COBOL jobs,
13 FORTRAN jobs, and 6 W ATFIV jobs. APPENDIX
A describes the 6 COBOL jobs named BMJOBI
through BMJOB6. APPENDIX B describes the
13 FORTRAN jobs named TSTJOB07 through
TSTJOB19 and the 6 WATFIV jobs named JOB20
through JOB25. APPENDIX C lists the order that
these jobs appear on the job input tape marked
JOBSTR which is card image 9 trk, 800 bpi, unlabeled,
unblocked, and LRECL = 80. In addition to the job
input tape, the WUCF Benchmark requires two data
tapes: (1) the gifts file tape marked 000763 which is 9
trk, 800 bpi, IBM standard label (VOL = SER =
000763), one logical file, data set name of GIFTTAPE,
DCB parameters: RECFM = F, BLKSIZE = 290; (2)
the development master tape marked 000720 which is 9
trk, 800 bpi, IBM standard label (VOL = SER =
000720), one logical file, data set name of DRAWOFFD.
EV,DCB parameters: RECFM=F, BLKSIZE=370.

The printer output of the WUCF Benchmark when
run on the WUCF 360/50 is attached as APPENDIX
D and a copy of the corresponding console log is
attached as APPENDIX E.

The first job, TSTJOB07, on the job input tape is
somewhat special in the following sense. This job is
intended to employ any CPU time not used by other
jobs. In this way, the CPU time not used due to our
restrictions on job classes and multiprogramming degree
may be assessed. Due to the scheduling behavior of the
Dynamic Execution Monitor employed by WUCF, this
job actually employs some usable CPU time. Since for
Run 1 and Run 2, you are restricted from changing
relative job execution priorities this will almost as
suredly be the case for your Run 1 and Run 2 as well.

Run procedure

The WUCF Benchmark is to be run at least twice
(Run 1 and Run 2) on your proposed configuration. If
you employ a job class scheduling system, the jobs are
to retain the same class groupings as now. The degree of
multiprogramming is to be no greater than five. For
these first two runs (Run 1 and Run 2), the present
input ordering of the jobs on the'~job input tape (AP-

A Benchmark Study 1233

PEND IX C) is to be preserved and aU jobs are to be
assigned equal external priority.

Run 1 will involve reading all jobs into the input
queue(s) prior to execution, starting execution, termi
nating execution when all jobs but TSTJOB07 have
finished execution (terminating TSTJOB07 from the
console!), and recording elapsed batch reading time,
execution time, and print out time. (The attached out
put from WUCF 360/50 included in APPENDICES D
and E was run in this manner.) Run 2 will involve
starting execution and read in simultaneously, termi
nating execution when all jobs but TSTJOB07 have
finished execution (terminating TSTJOB07 from the
console!), and recording the elapsed time from start of
reading of the first job to termination of print out of the
last job.

Expected output

The WUCF Benchmark documentation is to include
the following for Run 1 and Run 2:

1. description of exact hardware and software
configuration,

2. all printer and console log output,
3. tabulation of CPU, and start and stop times for

each job step and job, and
4. all accounting information accumulated by your

standard operating system for each job step and
job (e.g., records in, lines out, CPU time, disk
space, channel times, device times, etc.).

In addition, you may choose to optimize the bench
mark timings for the proposed system through the use
of different orderings, priorities, job classes, degree of
multiprogramming, etc. If you do, please label these
results as Run 3, Run 4, etc., and describe the altera
tions performed. If for any reason, the configuration
listed in 1 (above) is any different than that proposed,
please describe the reason and the expected performance
differences on the proposed system. Please do not
optimize the benchmark by optimizing the source code
of the test jobs. All necessary source code changes must
be documented.

In order that we may be able to assess the difficulty
of optimizing throughput, please document total man
hours and machine time spent initially and by run on
the benchmark. In addition, we should like to see all
intermediate results of optimizing runs so that we can
determine system throughput sensitivity.

Toward an inclusive information network

by R. R. HENCH and D. F. FOSTER

General Electric Company
Bethesda, Maryland

INTRODUCTION

In the next decade, an increasing proportion of com
puter power will be provided by information service
networks, rather than by the tens of thousands of indi
vidual installations which now exist. This proposition is
made attractive by many economies of scale, of which
"Grosch's Law" is only one. Equally important are:

• The reduced cost of the redundancy which is re
quired for high reliability.

• The drastically reduced cost of nationwide com
munications when provided in large quantities.

• Lower operations costs.
• Better capacity utilization due to more incremental

growth.
• Variable, rather than fixed, costs for the user.

General Electric is committed to providing a viable
service alternative to in-house processing for a wide
variety of computing requirements. This paper describes
the design of the systems currently under development
which addresses that requirement.

DESIGN ALTERNATIVES

In developing a service for the entire DP community,
there is an almost irresistible temptation to say, "Let's
start from scratch and do it right." Under this philos
ophy (which we will call the exclusive alternative),
the designer would develop a new and highly-generalized
combination of hardware and software. Such a system
aims at being all things to all men-it serves time
sharing and remote batch; the on-line user and the mas
sive tape sort; the big LP problem and the inventory
control system. Unfortunately, this alternative ignores
the existent multi-billion-dollar investment in software
and knowledge for current systems. It also ignores the

advantages which may follow from specialized hard
ware and software dedicated to specific kinds of appli
cations or functions.

The other alternative (which we will refer to as the
inclusive alternative) is to take advantage of pre-existing
systems, integrating them into a Network but still
maintaining each as an entity. Thus, advantage may be
taken of the software and knowledge which exist for
such systems, in addition to taking advantage of their
unique capabilities.

The key problem, of course, is in providing meaning
ful integration among these systems. Many major ap
plication areas involve the interaction of diverse kinds

" of computing resources. For example, data may be col
lected on-line from geographically-distributed loca
tions, then submitted for batch processing. If the on
line and batch functions are to be done on separate
systems, a high degree of integration must clearly be
provided between them.

1235

DESIGN STRATEGY

GE has therefore undertaken the development of
what we may refer to as a Technology of Compatibility,
the aim of which is to permit the integration of diverse
kinds of systems. The specific elements of this strategy
are as follows (See Figure 1) :

• Provide a generalized, widely deployed C ommunica
tions Network.

• Provide an On-line Service of the highest possible
quality and efficiency.

• Interface this foreground service with a variety of
existent Background Systems, both GE-owned and
(potentially) customer-owned.

Thus, the user will be provided with a common set of
tools for on-line program development and for geo-

1236 Fall Joint Computer Conference, 1972

REIo«)TE
LOCATIONS

•
• •

Figure I-Conceptual design

BACKGROUND
SYSTEMS OF

TYPE nAn

BACKGROUND
SYSTEMS OF

TYPE "S"

•
•
•

graphically-dispersed data collection and distribution.
At the same time, he will be provided with a choice of
background systems, depending on his specific needs.
Ongoing batch applications may thus continue to
operate in a compatible environment while being pro
vided with an efficient "front-end" for interactive pro
cessing.

The rest of this paper will be devoted to a discussion
in some detail of the elements of this strategy-the
communications network, the online service, and the
foreground-background interface.

COMMUNICATIONS NETWORK

The Network extends to over 250 cities in North
America and Europe. From each of these locations, the
user may reach any of the central systems by typing
an appropriate user number. The Network design per
mits the systems to be located physically anywhere
within the Network.

Topologically, the Network is a polycentric star
(Figure 2). The transmission and distribution paths
throughout the entire Network are store and forward

two-line logic with diversified routing wherever neces
sary. The Network is based on the use of distributed
computers performing specialized functions.

Distribution-remote concentrators (Honeywell 416)

These computers are the outermost nodes of the
grid. Their functions include:

• maintaining awareness of physical terminal char
acteristics (speed, character set, etc.)

• simple editing (line and character deletion)
• context recognition. Res keep track of whether

each terminal is entering data or commands. Thus,
the central system will be interrupted only when
commands (which require immediate central sys
tem action) are entered, and not every time the
terminal user types a line of data.

Transmission-central concentrators (Gepac-4020)

CCs provide the interface between the central sys
tems and the Network, and also between the RCs and
the Network. Their functions include:

• buffering data to and from the terminals. A drum
is provided for this purpose.

• determining to which· central system a user is to
be connected, at logon time.

RC

RC

SC/CC LINKS ARE 4800-14400 bps.

CC/RC LINKS ARE 2400 bps.

CC/HSC LINKS ARE 9600 bps.

RC

FREQUENCY DIVISION MULTIPLEXERS ARE USED BEYOND THE RC LEVEL.

Figure 2-Network structure

• communicating with central systems, remote con
trators, and switching centers .

• maintaining awareness of Network configuration.

Switching-switching centers (Gepac-4020)

The switching centers provide a transparent link be
tween Central Concentrators. At present there are two
SCs, operating independently of each other logically as
well as physically.

Processing-central processors (GE635, 605, 235, HISI
6000)

Central systems provide all user job processing. A
number of central systems may be attached to each
CC. The MARK lIs, accounting for most of the load,
are connected directly via memory-to-memory inter
faces. Any other type of central system may be con
nected with a modified interface (either hard-wired or
remote) which uses a high-speed communications chan
nel on the CC and a standard software interface disci
pline.

Network bandwidth extension

The Network has recently been extended to support
synchronous terminals up to 4800 bits per second. This
has been done consistent with the Network structure
through the introduction of the high-speed concen
trators (Diginet 1600s) interfacing with CCs much as
remote concentrators do now. Message size and queuing
philosophy are the only differences. HSC-CC communi
cation will initially be via dual lines at 9600 bps. The
HSCs will support a variety of terminal types, includ
ing computers. An OS teleprocessing package has been
developed to permit 360 or 370 computers to com
municate with the Network. Through a procedure called
Interprocessing, ® a user may transmit files between his
in-house system and one of the Network's on-line sys
tems. Thus, he may achieve nationwide access to his
data bases for inquiry, updating, and further processing.

THE ON-LINE SERVICE (MARK II)

MARK II was designed and optimized specifically
for interactive use. This includes conventional time
sharing, but more importantly the very different and
demanding area of geographically-distributed, trans
action-oriented processing. The hardware (GE-635)
provides a master/slave concept and automatic hard-

Toward an Inclusive Information Network 1237

ware relocation of p~ograms. The software provides the
following general capabilities:

• a simple, user-oriented command system.
• task string logic. Each command is broken down

into a string of standardized, elemental tasks.
Tasks may schedule other tasks ahead of or behind
themselves.

• heavy use of resident, reentrant code.
• a separate communications processor.
• a completely device-independent logical file sys

tem.
• multichannel swapping, permitting up to three

swaps to be going on simultaneously.
• extensive security and integrity checking.

In addition, a number of capabilities oriented specifi
cally toward the transaction-oriented data collection
and distribution market have been provided. These
include:

• file permissions, by means of which each user may
exercise explicit control over access to his data
base.

• file locking, permitting control over multiple
update situations.

• journalization, providing a common magnetic tape
for the logging activities of multiple users.

• interprocess communication, whereby programs
can signal other programs indicating processing
tasks for them to perform.

• user control. The activities of a terminal user can
be placed under complete program control. When
the user logs on, a specified program may be auto
matically invoked, and escape may be prohibited.
Almost all system functions may be done by means
of CALLS from a high-level language program,
eliminating the necessity for the eventual terminal
user to give system commands.

THE BACKGROUND INTERFACE-MARK III

As discussed earlier, it is our intention to interface
MARK II with a variety of background systems. The
first step in this direction is MARK III, which pro
vides an interface between MARK II and the GECOS
III remote-batch system. Although GECOS runs on
hardware similar to MARK II, it is a completely dif
ferent operating system, optimized for batch and re
mote job entry to the same extent that MARK II is
optimized for on-line activity. The interface permits

. 1238 Fall Joint Computer Conference, 1972

each system to specialize in the kind of work at which
it is best:

• all on-line work is handled by MARK II
• all background work is done by GECOS
• separate file systems are maintained
• a high-bandwidth interface is provided. All back

ground work is submitted by MARK II across the
interface.

Design principles

Although the specific code used to interface MARK II
with GECOS-III is probably not transferable in inter
facing MARK II with other systems, the fundamental
design concepts most certainly are. These are as fol
lows:

• Changes to the MARK II and GECOS-III operat
ing systems must be kept to a minimum. Abso
lutely no changes could be made which would in
any way impact current users of MARK II or
which endanger compatibility with future manu
facturers' releases of GECOS.

• The foreground and b~ckground systems must be
independent of one another. The failure or inten
tional shutdown of one must not affect the other.

• The interface or mailbox protocol must be adapt
able to communications technology and not involve
physical constraints such as distance or storage.

• It mllst be possible to interface multiple MARK II
systems to a single GECOS-III system.

• It must be possible to transfer very large files and
output reports between the systems efficiently.

• Character and file type conversions must be
handled as straightforwardly and as automatically
as possible.

• It must be possible to use the background system
conveniently from either a high-speed or low-speed
terminal.

Physical interface

The initial linkage between the MARK II and
GECOS-III systems is a shared disc device (Figure 3).
This is not in any sense a shared file system; it is simply
used as a high-bandwidth communications channel.
The transmission of messages between the two systems
is completely asynchronous, using what is called a
"passive mailbox scheme." One disc mailbox area is
written only by MARK II and read by GECOS-III.
Another area plays the converse role. All interface

CENTRAL H-635 SHARED H-607C
CONCENTRATOR - MARK II - DISC - GECOS-I

I I
MARK II GECOS-I

FILE SYSTEM FILE SYS

Figure 3-MARK III

status information is maintained on the disc itself, to
facilitate restart in the event of the failure of one of the
systems. It should be understood that the use of the
disc is merely a practical solution and plays no active
role in the logical interface discipline.

Logical interface

A background job may originate from either a high
speed or a low-speed terminal. In either case, the request
will be generated on MARK II and will be transmitted
across the interface to GECOS. Background job initia
tion is via the BACK command. BACK requires a set
of directives describing both the interface work and the
background work to be done. At present these directives
include:

• run a job file,i.e., place it in the background system
input stream.

• transfer given files between foreground and back
ground, with appropriate file format and character
set conversions.

• create and purge background files.

Standard system job output (SYSOUT) is auto
matically returned to the foreground system and placed
in a special library. At the user's option it may be:

• directed to a high-speed terminal.
• scanned by a low-speed terminal, using special

editing features.
• placed in the user's permanent file system.

Conversion disciplines

A variety of character sets coexist in MARK III.
ASCII is primarily used by the foreground system and

by low-speed terminals; BCD is used by the background
system. Both ASCII and EBCDIC are used for com
municating with high-speed terminals. This prolifera
tion of character sets is a fact of life for anyone who
aspires to serve today's and tomorrow's information
society. In order to avoid chaos in dealing with it, it
was necessary to establish a system-wide discipline for
dealing with conversion problems.

All files stored on MARK II have their character set
content (when meaningful) retained in the catalog.
Processes which must perform conversions will utilize
this information. Conversion processes will retain
identity of logical records, and will also maintain special
control information, such as printer slew control charac
ters. The conversion is thus considerably more compli
cated than a simple one-for-one transliteration. By de
fault, all data files transmitted are converted from the
natural conventions of the host machine to those of the
target machine. SYSOUT files are, however, main
tained in original format and with the same record struc
ture which exists on the background system. This is
done for several reasons:

• to avoid unnecessary conversion. Much back
ground output is simply scanned, using the low
speed terminal editing procedures; then thrown
away.

• to save file system space (6 bit BCD characters as
opposed to 9 bit internal ASCII representation).

• to avoid double conversion. If output is eventually
destined to a high-speed terminal, for example, its
character set will probably be EBCDIC. The user,
however, may well not decide whether or not he
wishes to print his output on a high-speed terminal
until he has scanned it.

Software implementation

• BATCHER, a MARK II slave software module,
is invoked whenever the BACKGROUND com
mand is given. It checks validity of the directives
and queues the job for transmission.

• INPUT MONITOR is a continuously-running
slave module which takes jobs from the queue and
writes them to the shared disc. At this point all
files which are to be taken· over to the background
are merged in.

• MARK2 is a GECOS privileged-slave module
which handles all communications with MARK II
via the shared disc. It is written in reentrant code
and can communicate with multiple MARK II
systems simultaneously.

Toward an Inclusive Information Network 1239

• PREP (preprocessor) is a job spawned for each
user ahead of his requested background work. It
handles conversions, file creations, etc.

• OUTPUT MONITOR is a MARK II continu
ously-running slave module which handles all out
put returning from GECOS across the interface.
A variety of other status and editing modules are
also provided.

It is significant to note that the actual changes to the
background system have been minimal. This validates
the design philosophy of truly connecting alien operating
systems without compromising software maintenance
by the hardware vendor.

A pplications programs

GE has always made heavy use of applications pro
grams to provide higher-level interfaces to its systems.
This policy will be continued with MARK III. Several
kinds of application programs which operate across the
interface are being developed:

• control card generators. These programs will in
teractively query a user and will generate for him
the control cards necessary to perform most basic
background functions.

• application initiators. These will exist in connection
with a specific background application program
(for example, linear programming). In addition to
generating the control cards, they will perform
validity checking on the user's input data and
spawn the optimum job relative to resources
needed.

• distributed applications. These are application
packages which make use of both the foreground
and the background, applying each to the tasks it
is best at. For example, an accounts receivable
package might maintain customer credit level in
formation in the foreground, but keep customer
name and address records, purchase records, etc.,
on tape in the background.

THE FUTURE

GE's developments in the Information Services
Business have been based very largely on distributed in
telligence techniques. Future work will largely consist
of extensions of these concepts. Some significant future
developments are discussed below.

1240 Fall Joint Computer Conference, 1972

Multiple background systems

As indicated earlier, the evolution of the MARK III
concept to various and diverse background systems is
planned. As more systems are integrated into the total
service, there will follow closely the natural extension
of remotely-located backgrounds. With time the inter
face will permit background systems owned and
operated by customers to become an integral part of the
product. The implications are obviously very penetrat
ing. It will be possible to procure a highly reliable inter
active foreground service capable of meeting all the de
mands of continuous on-line services, which in turn is
coupled with one's own in-house machine. From the
same terminal one could cause activities to be spawned
back into one's own system.

Shared second-level file system

In any multicomputer configuration it becomes in
creasingly undesirable to require manual intervention
for handling of such removable media as tapes. For this
reason, we are closely following the evolution of massive
storage device technology. When this technology be
comes sufficiently mature, we will implement such a
device, shared among all systems in a given location and
provided with intelligent controllers. This will create a
hierarchical storage structure in which the lower level
of the hierarchy is common to many systems. Informa
tion will move from one level to another at the explicit or
implicit request of users.

Communication of complex data structures

Initially, file transfer across the interface has been
limited to character-oriented sequential files, since these
are common to alt operating systems. It is desirable to
provide transfer of more complex file types, including
random structures and binary data. Clearly the prob
lems involved in converting such files from the con
ventions of one operating system and set of hardware to
those of another are non-trivial, but it is possible that
a reasonable solution can be obtained for some substan
tial subset of all files.

Multiple foreground systems

At present, MARK II provides a high degree of reli
ability through the use of a redundant "swing system".
If a system fails, its users may be transferred to the
swing system by logic in the communications pro-

MARK II BACKGROUND
SYSTEMS

MARK II

Figure 4-Ring system

cessors. Peripheral switches move files logically from
any seriously crippled system to an idling reserve. This
does not address the interruption problems of on-line
services but has made a tremendous stride in availabil
ity.

The next major step to extend the foreground reli
ability will be changing the current processor focus to a
file focus. The current architecture is so structured
that the system topology is a function of processors.
This must change to make the pivotal nodes the file
subsystems. This will be done by having the file and
processor subsystem interlaced in a concentric circle as
shown in Figure 4. Users will be assigned to central
systems dynamically by the communications processors.
If a system fails or is taken off-line, its load will im
mediately be taken up by the two adjacent systems. In
a short time the load of the failed system will be distrib
uted evenly across the ring. A stable ring of n systems
reduced to n-l will re-stabilize within 30 minutes due
to normal log-ons and log-offs.

In addition to its reliability advantages, this con
figuration provides significant economies by balancing
load fluctuations across systems. Preliminary analysis
indicates that these economies may exceed 15 percent
of total capacity.

COMMENTS

The Network described here has grown in a somewhat
organic manner, subject at all times to the hard disci-

pline of commercial viability. It is not our intent to lay
down an inflexible master plan, but rather to develop a
general structure with the ability to adapt to changing
conditions. Inevitably, some aspects will be developed
more intensively than others as experience indicates
their value. The character and scope of those features
which are commercially implemented are therefore sub
ject to alteration. Hopefully, the structure described will
provide sufficient flexibility to accommodate this con
tinuing redesign and to provide for the smooth integra
tion of new technologies into the ongoing operation.

ACKNOWLEDGMENT

The ongoing developments discussed here are imple
mented under very tight schedules and by a surprisingly
small group of people. The authors would like to express
our appreciation to our colleagues since this has been a
group effort from its inception.

REFERENCES

1 On line time share computer services-A telecommunications
industry survey
TELECOMMUNICATIONS Volume Four Number
Eleven November 1970

Toward an Inclusive Information Network 1241

2 G E GAINES JR· J M TAPLIN
The emergence oj national networks-Remote computing
Year VI
TELECOMMUNICATIONS Volume Five Number 12
December 1972

3 R C HAAVIND
The three phases oj shared computing
COMPUTER DECISIONS November 1971

4 G J FEENEY
InJormation network technology
General Electric Company Document No 238010 2/70
Presented at the Congres International d'Informatique
Paris September 231969

5 J C CASTLE
Communication system design in multiple access computer
networks
Memorias de la Conferencia Internacional IEEE
Mexico 1971 Sobre Sistemas Redes y Computadoras
January 19-211971 pp 636-640

6 F D MONTGOMERY JR
Computer resource sharing through communications network
technology
EUROCON 71 Digest IEEE Catalog No 71 C 56-REG 8
October 18-22 1971 Lausanne Switzerland

7 W S HOBGOOD
Evaluation oj an interactive-batch system network
IBM Systems Journal Volume II No 1 1972

8 L G ROBERTS B D WESSLER
Computer network development to achieve resource sharing
SJCC 1970

Computer jobs through training-A final project report

by M. GRANGER MORGAN, NORMAN J. DOWN and ROBERT W. SADLER

University of California at San Diego
La Jolla, California

INTRODUCTION

Two years ago we presented a preliminary report on a
computer-science training program for disadvantaged
high school students and young adults which we had
developed at the University of California at San Diego. l

At that time we had completed the construction of our
mobile classroom facility and had tested our special
hands-on curriculum on several small pilot classes,
but we had not completed any full job-training courses
and had only limited experience upon which to base
conclusions and recommendations about the effective
ness of such training.

Since early 1970, the Computer Jobs Through Train
ing project has offered in-depth counseling and referrals
to roughly 730 disadvantaged young people, excluding
those who have entered our training programs. We have
enrolled roughly 330 students in pre-vocational, in
school, and other training programs and, in addition,
have graduated 24 young adults from extended full
vocational courses. This paper provides a summary of
what we have learned.

PROGRAM OBJECTIVES AND COURSE
PERFORMANCE

Our original work in the field of computers and the
disadvantaged began in the summer of 1968, when we
ran a course for a group of high school students. We
found that the disadvantaged student was somewhat
less disadvantaged in this field than in others because
success depended more upon innate logical abilities and
less upon social and cultural prerequisites than was true
in most other fields. On the basis of this initial experi
ence, we decided to attempt the development of a gen
eral training program for San Diego area students.
Because the disadvantaged population in San Diego is
widely dispersed, and because we felt that there are im
portant psychological advantages to bringing the train-

1243

ing into the students' own community, we undertook
the development of a mobile computer classroom in a
40-foot truck trailer. We initially conceived of the pro
gram as designed for in-school use at the high school
and junior high school levels, but as we became in
creasingly aware of the urgent need for job training in
San Diego and the difficulties of working with the public
schools, we began to think more in terms of vocational
training for young adults who were without college
plans. By the time that we had actually begun the
serious development of our physical facilities, we had
become heavily committed to a vocational program.

Our curriculum was developed to involve student
hands-on participation beginning on the first day. It is
heavily problem oriented, with emphasis on the logical
and algorithmic aspects of the work. An extensive set of
35 mm slides was developed which support the main
course and also offer background on peripherals and
hardware operation, case studies of many different
types of computer applications and systems, and sup
port in areas such as basic math and business"world
interpersonal relations. Finally, a collection of lab
materials and demonstrations were developed in digital
logic and switching circuit theory. A description of our
facilities and curriculum is available in our previous
report.1 Figure 1 shows the classroom interior. .

Figure 2 is a summary of the courses we have operated
since early 1970. We began with a single vocational
course in San Ysidro, which is principally a Chicano,
or Mexican-American, community. Our performance in
that course is summarized in Figure 3.

Because this program was severely underfunded, we
were unable to begin further vocational courses. In
order that the hardware be used at a reasonable level,
we began to talk extensively with people in the San
Diego Unified School District. After having learned the
ropes, we found that working with the public schools
was not the serious problem we had imagined provided
one is willing to let the system proceed in its own way
and at its own pace. Under contract with the District's

1244 Fall Joint Computer Conference, 1972

Figure I-Students in the latter stages of a vocational course work
at debugging a COBOL applications program in the Computer

Jobs Through Training mobile computer classroom

1970 JANt-~~~------~~-----------------------+ ____ ~

1071 JAN

1972 JAN

Figure 2-A summary of the course activities conducted by the
Computer Jobs Through Training project during the period from
1970 to 1972. Frequent uncertainties and discontinuities in the
funding situation resulted in severe restrictions on class recruit
ment and scheduling, particularly in the case of the longer

vocational programs

compensatory education program, arrangements were
made to run three summer school programs, two at
Lincoln Senior High School and one for entering
seventh graders at O'Farrell Junior High School. Both
we and the school system were very impressed by the
results of these courses, particularly with respect to
student motivation. We began once again to seriously
think about making such in-school programs a major
part of our activities.

During the summer and fall of 1970, we began to
sense a shift in the data-processing employment market
in San Diego. We had previously held extensive con
versations with employers in late 1969 before we under-

20 students were conditionally
accepted pending good

perfonnance in the early weeks
of the course

Eight students left during the early
portion of the program:

1 was in a serious auto accident
2 got marri ed
1 left with problems and was subsequently

arrested on felony cilarges
1 had severe transportation problems, and
3 lost interest

...... --""""F====----- 1 of our best San Ysidro students received
a good job promotion and decided to drop out

r-----....t====:::;--- ~u~~~l;S!~~~l~~~d~~tY:~~e~o~~~~:: Subse-

~====:f=====:l.....-_l poorly perfonning student dropped out.

VEA funds became ava il ab 1 e.

Placement totals for this first course by category are nOw:

6 have entered college level training in data processing

3 others have gone for further trai ni ng
3 now have EDP jobs

1 entered employment outside EDP.

Figure 3-A description of performance for the first adult
vocational course run in San Ysidro on the southern edge of

San Diego, just north of Tijuana

took our first vocational course and therefore knew
that appropriate jobs existed. However, as the recession
began to settle in in earnest, we .became seriously con
cerned about the problem of placements, especially for
future courses. As unemployment levels began to rise
in San Diego (see Figure 4), the amount of training and
experience which defined the "entry level" programmer
climbed rapidly. We soon felt that major emphasis in
our future adult courses should be directed toward
preparing students for further study at the junior
college, college, and university levels rather than
toward direct job entry. We argued that it was unrea
sonable for us to duplicate existing training programs
but that instead we should concentrate on the difficult

>-

task of motivation during the early portion of the train
ing and then, once we had students "hooked," rely on
the more conventional college-level programs to com
plete the job.

In late 1970, we received an $85,000 contract from
the California State Office of Vocational Education
(under the Federal Vocational Educational Act PL90-
576 Part A section 102b). In requesting this support, we
proposed a multilevel program which would include
straight vocational courses, heavy emphasis on training
for further education with close coordination between
our project and the local junior colleges, and a sub
stantially expanded in-school pre-vocational and moti
vational program for high school students. Essentially
all of the programs shown in Figure 2 during 1971 were
funded under this contract. Figure 5 shows approximate
performance figures for these courses.

7%

~ 6%

§
Cl

~
0:

::2

~

First
vocational
class
graduates.

~ 5%

~
~

3%

Is tudents recru i ted for
first vocational class.

1970 1971

YEAR

1972

Figure 4-Seasonally adjusted unemployment rates for San Diego
for the period from 1969 to 1972.2 Note the enormous change in
the employment situation which occurred between the time when
the project was. developed and the time when the first course was
graduated. High unemployment in San Diego hit particularly
hard in the lower-level aerospace jobs and among the disadvan
taged, the two population groups with which the CJTT project

was concerned

Computer Jobs Through Training 1245

58 s tudents ~eci rJe
data process i ng is
not "their tiling" or
have financial difficul ties
\'Jhich force them to leave.
Individual counsel iog and
information on non-EOP training
is provided.

·12 drop-outs receive infonnati.on I
on alternative fonns of available
training. Persons who did \'1ell
but were forced to drop out for
personal reasons recieve letters
descri bi n9 accompl i shment in
the course ami are urged to return
to training when it is again
possible. 1----..... --.....

An estimated G students enter
emp1oyr,ler.t liirect1y in EDP
related fields.

3 students transfer to
the Urban League keypunch
training school
1 to welding school
1 to truck driving school

An estil.1ate..i 11 stullents
transfer to Junior College
tab equi pillent courses.

An estil.lateo 24 students
enter programs at area Junior
Co 11 eges t Co 11 eges t anl!
Universities.

Figure 5-Approximate performance figures for courses run
during 1971 under State-administered VEA support. Because of
difficulties in funding continuity, proper follow-up activity was
not possible for most of these students and hence many of the

above numbers are estimates

One of the principal lessons we have learned is the
misleading, or at best incomplete, nature of numerical
performance criteria. We have trained a substantial
number of people, but the intuitive feeling that remains
is that our greatest impact has frequently not been in
the area of formal traIning but rather in shaping the
world views and attitudes of our students. The Com
puter Jobs Through Training staff has come from many
different backgrounds, both culturally and ethnically.
In mid-1971, we were three Anglos, nine Blacks, and
four Chicanos. Nevertheless, the one thing that we held
in common was a high level of professionalism. Nine of
the seventeen employees at that time were experienced
programmers, and all had a very real interest in the
problems and welfare of our students. This combina
tion of professionalism and concern has been the prin
cipal reason for the kind of impact that we have been
able to have on our students. Few of those who entered
our courses had developed any feeling for what the pro
fessional does, how he acts, what he thinks, or why.
When they left, most of our students had some real
understanding of the professional world, an enhanced
image of themselves and their capabilities, and a
greater ability to cope with the system of the dominant
culture. We know of no way in which to adequately
measure such effects without spending more on mea
surement than we spent on the program itself, and yet

1246 Fall Joint Computer Conference 1972

all of the senior staff agree that it was in this area that
we had our greatest impact. Even those students who
have not pursued further work or study in computer
science after leaving our program have gone away with
a different view of themselves and their world-a view
which we feel significantly enhances their potential for
upward mobility.

COMMUNITY AND STUDENT ENVIRONMENT

San Diego's disadvantaged community is geographi
cally dispersed. The climate is balmy and the political
atmosphere relaxed. As a result, there have been no
major political upheavals to coalesce this community
into positive and forceful action. The local offices of the
national organizations that minister to the needs of the
disadvantaged are, in many cases, staffed by an execu
tive officer imported from another city and worried
principally about his own career, and an operational
staff of middle-aged, middle-cl~ss people whose atti
tudes fail to reflect the political developments of the
past ten years. This fact, together with local politics,
and competition for limited federal funding and the
community limelight, have left many of these organiza
tions unresponsive to the needs of their community.

Our project has been crucially dependent upon the
minority undergraduate members of our staff to carry a
heavy portion of the teaching load. And yet, this same
problem that characterizes the San Diego disadvantaged
community as a whole characterizes these students.
Their contribution and dedication is great, but they
have not shown the aggressive leadership that similar
university students might have shown in other larger
cities such as New York and Los Angeles, where the
disadvantaged communities are more politically de
veloped.

Although San Diego has a number of agencies that
counsel the poor and sometimes refer them to appropri
ate training and jobs, it has very few programs that
actually offer training for the disadvantaged. In some
cases, because of the lack of crosstalk between these
agencies, people get referred from one referral agency
to another several times in a row. Our experience, as
one of the programs offering training, is that outside
counselors showed little understanding of what we were
offering and, in many cases, lacked discretion in their
referrals to our program. Our recognition of this prob
lem led us to develop our own counseling staff and a
booklet designed for student use that included details
of the various training and social-service programs of
fered' in San Diego, information on how to apply, who
to see, and directions including bus routes to each facil
ity. Every person who came into contact with us was
given a copy of this booklet as part of our counseling

process and most received individually written followup
letters from our counseling staff.

Student recruitment efforts in this environment
posed several problems. Normal methods of communica
tions such as the newspaper, radio, and television were
used by our program, but proved ineffective against a
widespread and unorganized disadvantaged population.
A half-page ad that we ran in the local Black newspaper
(Figure 6) resulted in two inquiries. Better results were
obtained with an extensive poster campaign. For the
most part, students learned of us "through the grape
vine," and we made efforts to provide frequent input.
This was particularly true in the predominantly
Chicano or Mexican-American neighborhoods. In San
Diego there appears to exist a time lag of about three
months in the effect of this type of recruitment ad
vertising.

Despite an admissions examination and careful in
depth interviews, we found it exceedingly difficult to
assess the background and preparation of many stu
dents. Frequently, we found that students withheld
information on previous educational experience out of
fear that they would be deemed over qualified and be
excluded from the program. The result was that in our
vocational courses we tended to end up with a slightly
better prepared class group than we had anticipated,
representing a group which we have come to charac
terize as "soft core" disadvantaged. In San Diego this is
really not too surprising, since the bulk of the disad
vantaged population falls in this group.

Education for the disadvantaged differs from normal
education in that greater sensitivity must be developed
toward understanding the external forces acting on each
student. It is not enough to have a well-thought-out pro
gram that excites and motivates students. We found
that students who had the most promise and commit
ment often had to leave the course for lack of a way to
support themselves. In California, it is impossible, in
most cases, to be eligible for welfare support and be
enrolled in a program that would lead to eventual em
ployment. At the same time, extensive efforts on the
part of the Computer Jobs Through Training staff to
secure stipended support for our students proved abso
lutely fruitless. We found that, in fact, it was easier to
initiate support for a student who wished to attend the
University of California than it was to enable a person,
through job training, to free himself from the depen
dence upon welfare agencies for subsistence. Indeed, on a
couple of occasions we did precisely this.

FUNDING COMPLICATIONS

The single most overriding problem which has char
acterized this project almost from its beginning has

Computer Jobs Through Training 1247

Big plans .. . that jUlt arell't worklll.- - .or 00 plaos at a,lt
Tired of pushing a bro'om?

Computer Jobs Through Training CD help yeu_ p£t'" ~ •• ., in data pr

We Ire a project oriental to the community tMt CD give yau the traWn, ymi ... to .. 1tartId.
Check the requirements below to .. if you

fREE TRAiNING it fREE TRAINING • fREE TRAINING *" .. FREE TRAINING .. fRE~

Figure 6-Copyof recruitment material used in posters and newspaper advertising. This particular poster was used principally in the
Black community. A similar poster was developed for use in predominantly Chicano communities

1248 Fall Joint Computer Conference 1972

been the inadequacy of funding support. As indicated
in Figure 2, there have been periods of many months
during which meeting even the most basi,c operating
costs required a constant juggling act and the full-time
attention of most of the senior staff members. The piece
meal funding we have experienced is nothing unique to
this one project. We have prepared literally dozens of
proposals for funding agencies at the Federal, State, and
local levels and dealt with hundreds of people in all
phases of the system which ministers to the needs of
the poor in this country. Piecemeal funding, inter
spersed with frequent, but random, periods of no
funding, is the almost universal norm.

Without long-term continuity in program support,
it becomes impossible to perform many functions ef
ficiently ... if at all. Follow-up activities for placement
get interrupted, new courses cannot be started because
one can't see far enough ahead to assure their comple
tion. Funding agencies require detailed numerical per
formance objectives, then fund the program at an en
tirely different level than was requested, or many
months later than anticipated. Follow-on funding re
quired for continuity in student services is interrupted,
delayed, or never materializes. Funding for stipends, if
available, is almost never administered by the same
agency as program funds.

This chaotic situation is of course incredibly frustrat
ing. It is also very expensive. We have conservatively
estimated that between the unproductive fund-raising
activities of our senior staff, the periods of "tooling up"
for major new efforts, and the periods we have operated
at reduced capacity because we could not afford a
larger effort, a full third or more of our total expendi
tures might have been saved. That is to say, that our
total productivity has been only something like 60 per
cent of what it might have been had we had the same
resources available to us in a long-term continuous
manner to expend when and where they were needed
over a two- or three-year period.

We have consequently been forced to the reluctant
conclusion that this kind of funding reflects a funda
mental structural weakness in the manner in which
poverty program activities are funded in this coun
try . . . one which we do not expect will be corrected
within the next few years. Unless they enjoy some very
special financial arrangement, we suspect that future
programs such as ours are doomed to an almost equiva
lent funding experience.

CONCLUSIONS

Three years of experience in developing and running
the Computer Jobs Through Training program have

led us to the following conclusions:

• Computer instruction for the disadvantaged is a
powerful tool for reaching and "turning on"
students who have previously shown only limited
academic interests and capabilities. It appears to
be most successful as a motivational tool with
younger age groups. At the level of vocational
training for young adults, success appears to be
largely restricted to the "soft core" disadvantaged
but this restriction is essentially absent in pre
vocational and motivational courses designed for
younger age groups.

• The technical details of programs in this field, that
is, questions involving specific computer hardware
to be used, programming language used, etc., which
we discussed at great length in our earlier paper,
turn out to be relatively unimportant. Interactive
capability, especially during program execution,
along with the ability to bring computer access
directly into the students' own community or
school, does appear to be a significant factor in the
design of a successful program.

• Success with programs of this nature requires an
unusually high level of staff skill, not just in tech
nical subjects but also in the fields of social and
community -relations. Close community ties, at
the neighborhood level, among spokesmen for the
poverty community, in public agencies, and with
local business are absolutely essential.

• Comprehensive student services are very impor
tant. At the motivational and pre-vocational levels,
these principally include orientation, familiariza
tion, and guidance in further education. At the
vocational level they must include a full range of
counseling services with ties to medical and legal
counseling. Success at this level among truly
hard-core adult populations is essentially impos
sible without some form of income maintenance.
Funds for such income support in this kind of
program are generally not available under current
local, State, or Federal programs.

• Despite the widespread conviction. that serious
and effective training programs offer one of the
most powerful tools for breaking 'the cycle of
poverty, public and private funding for such pro
grams is remarkably scarce. When public funding
does exist, it is frequently used unwisely or in very
conventional programs. Public funding for the
continued operation of innovative programs has,
in our experience, proved almost non-existent.

• Somewhat to our surprise, our greatest impact,
despite good direct training results, has fallen in
the more intangible area of horizon broadening
and attitude change. Unlike most poverty pro
grams, our project staff has been characterized by
a high level of professionalism. The effect of an
extended exposure to the professional environment
together with the increased self confidence and
self value which the project imparted to most
students, has had a substantial positive impact on
their outlook and motivation.

In the spring of 1972 the Computer Jobs Through
Training program ceased to exist at the University of
California at San Diego. Under support from the Cali
fornia Office of Vocational Education, arrangements
were undertaken to transfer the project from the Uni
versity to some other local agency more directly
responsible for the student population involved. After
several false starts with other agencies, a transfer was
finally arranged to the San Diego County Department
of Education where the program will operate in modified
form under their Regional Occupational Program.

Computer Jobs Through Training 1249

ACKNOWLEDGMENTS

We acknowledge with pride the support of Bradley
Rogers, Curtis Bagby, Michel Meza, Lucy Enriquez,
Susan Halfon, Josie Foulks, David MacQuoid, Oneeta
Alexander, Hazel Welborne, Mary Mirabito and Victor
Carranza, of the Computer Jobs Through Training
Staff.

Financial support has come from the Rosenberg
Foundation, from the California Office of Vocational
Education, from the University of California, from
Gulf Energy and Environmental Systems, and from
other business and private supporters.

REFERENCES

1 M G MORGAN M R MIRABITO N J DOWN
Computer jobs through training-A preliminary project report
AFIPS Proceedings of the Fall Joint Computer Conference
Vol 37 p 345 1970

2 CALIFORNIA STATE DEPARTMENT OF HUMAN
RESOURCES DEVELOPMENT
Summary of employment and unemployment-San Diego
metropolitan area part A 1966-1971
California HRD Research and Statistics Section PO Box 923
San Francisco California 94101

Implementation of the systems approach to central EDP
training in the Canadian government

by G. H. PARRETT and A. K. PRAKASH

Government of Canada
Ottawa, Ontario, Canada

INTRODUCTION

This paper describes the approach taken in introducing
a central training program into the federal government
of Canada. The task represented a challenge faced by
all· large, complex and multi-faceted organizations and
the experiences of the Canadian government should be
of interest to all who have a concern for training in
electronic data processing.

To illustrate the nature of the organization being
treated we remind the reader that Canada is second in
geographical size among the nations of the world,
exceeded only by the Republic of China. It extends from
the Atlantic to the Pacific coasts and from the 49th
parallel to the Arctic circle with territory totalling
3,852,000 square miles. The population at latest census
was just at the 22 million mark with the bulk of the
residential centers found in a narrow ribbon just north
of the U.S.A.-Canada border.

To provide the services needed by this population the
Canadian government is organized into several depart
ments and agencies, each of which is autonomous
although they are linked through the medium of the
Public Service Commission, which coordinates most
personnel functions, and a Treasury Board Secretariat
which acts as general manager for the Public Service
and sets the policy for its administration. There are
approximately 55 independent departments and agen
cies and together they employ approximately 203,000
public servants.

The annual expenditure on EDP in the Canadian
government is estimated to be about $50,000,000 with
an annual increase expected to range from 15 to 20
percent. Because of the wide range of services demanded
by people in a democratic nation, there is, throughout
the Canadian government, a multiplicity of computer
configurations, each chosen by the pertinent department

1251

or agency as the best medium for assisting it to fulfil its
role. To provide the personnel to utilize this computer
investment there are 1200 Computer Systems Adminis
trators (systems analysts and/or programmers) and
1800 Data Administrators (operators). In Figure 1 we
have shown 6 sample departments showing their
different needs and the type of configuration each has
installed to meet the demands placed upon it.

We see that the Canadian government consists of a
number of sub-organizations, each possessing consider
able autonomy of action and most having a computer
need different from any other. In such a situation the
inevitable jungle of disjointed and uncoordinated train
ing activities emerged. Those departments with major
computer installations instituted EDP training schools
of their own and tailored their activities to meet the
particular needs of their own department. For training
of management personnel with little technical knowl
edge, departments relied upon courses advertised in the
commercial sector. Much of the training, both for
non-technical personnel and for computer specialists,
was manufacturer oriented and some needed training
was left uncovered because ready-made courses were not
available from commercial suppliers. On the other hand,
there was much duplication of effort as departments
often expended resources on a training activity already
developed and available in another. Despite these
problem areas a great deal of useful training took place
but the positive results were weakened by the fact that
little, if any, standardization existed from department
to department.

The increasing use of computers year by year and the
accompanying demands for ever greater training ex
penditures pointed out the need for coordination and
standardization of the total training activity. To this
end, the Treasury Board Secretariat instituted a study
to develop a comprehensive data processing training

1252 Fall Joint Computer Conference, 1972

DEPT. OF ENERGY
MINES AND RESOURCES

DEPT. OF NATIONAL
REVENUE

DEPT. OF SUPPLY
AND SERVICES

PUBLIC SERVICE
COMMISSION

ROYAL CANADIAN
MOUNTED POLICE

CDC

NCR
UNIVAC

IBM

IBM
PDP

IBM

IBM

Figure I-Representative departments

program for the federal government. The steps involved
in this study and the approach taken in the implementa
tion of such a program are the subject of this paper.

FEASIBILITY STUDY

The Treasury Board initiated its study in 1968 and

set the following as the terms of reference for the desired
central training program.

(a) To raise the general level of competence in all
areas of EDP activity within the government.

(b) To bridge the communication gap between users
and ED P specialists.

(c) To alleviate the recruiting retention and internal
mobility problems in the EDP area.

In organizing their examination and the program
development, four phases were established:

PHASE I-PRELIMINARY DESIGN

The main purpose of this phase was to identify data
processing training needs within the government and
to design the required training program in sufficient
detail that cost and resource estimates for program
implementation and operation could be formulated.

PHASE 2-COST AND IMPLE1V(ENTATION

During this phase estimates of the numbers of
personnel to be trained were developed and the cost,
personnel and other resources required to carry out
detailed program design and program operation and
maintenance were determined.

PHASE 3-DETAILED PROGRAM DESIGN

When authority was granted to proceed with the
program, on the basis of Phases 1 and 2, detailed
program design was carried out. Action was taken to
prepare, or obtain, detailed course contents, teaching
aids, student manuals, instructors' guides and other
course materials for each course in the training
program.

PHASE 4-PROGRAM OPERATION AND
MAINTENANCE

The purpose of this phase was to carry out the
training and to review and revise the training program
as requirements change.

The Treasury Board Secretariat assumed direct respon
sibility for Phase 1 but were careful to ensure that the
initial examination reflected the views of the many
diverse interests in EDP training. Accordingly, the
study team included management consultants experi
enced in computer sciences, trainers, representatives of

Implementation of Systems Approach to Central EDP Training 1253

REQUIRE < EDP ~
TRAINING?

YES NO
D.A.O. COMMUNITY

COURSES
IN

PLANNING
STAGES

PROGRAMMING

PROGRAM
MING
TECHNOLOGY
....... ~

EXECUTIVES ~
>--------MANAGEMENT

CON
TRACTING

FOR
COMPUTE

SERVICES

.. LEVEL?

SENIOR

COMPUTER
CONCEPTS

FOR
EXECUTIVES

MANAGING
COMPUTER

BASED
ACTIVITIES

ADVANCED
COMPUTER
BASED
TECHNIQUE

MIDDLE
INTRO
DUCTION

TO
COMPUTERS

NEW
COMPUTER
TECHNIQUES

AND
DEVELOP-

E

Figure 2-Central EDP program courses

user departments and personnel concerned with the
staffing implications. A report was submitted in March,
1969 and following its acceptance the Treasury Board
authorized the Public Service Commission to proceed
with Phase 2 on cost and implementation.

The Preliminary Design recommended a training
program with three series of courses, each series designed
to meet the particular needs. of a designated group of
personnel. The divisions recommended were a Manage
ment Series for non-ED!> management personnel, a
Systems Series for Computer Systems Administrators
and an Operators Series for Data Administrators. A flow
chart showing the proposed outline training plan is
shown in Figure 2.

CENTRAL EDP TRAINING PROGRAM

When the Public Service Commission was authorized
to proceed with further development it designated the

Bureau of Staff Development arid Training as its
instrument and the Central EDP Training Program was
formed.

The program required personnel who combined
computer science expertise with training experience.
Such a staffing commitment proved to be a difficult
assignment but over a period of time the needed
personnel were recruitedJ some from within the public
service while others came from educational institutions
and commercial houses. To provide an avenue for
personal development for these staff members and to
ensure that the program remained aware of operational
developments, a rotational staffing system was planned.
The recruiting arrangement was for each staff member
to join the program for a minimum of one year and a
maximum of two years, at which time they would
return to the operational element of the computer
community within the government and new staff found
for the program.

1254 Fall Joint Computer Conference, 1972

SYSTEMS APPROACH

The Bureau of Staff Development and Training
adopts a "Systems" approach in developing and con
ducting the indicated training. In this way the desired
terminal behavior is identified in the first instance and
the training needed to effect this behavior is then
introduced. Briefly, the "Systems" approach follows ten
steps:

1. Analyze skills required to carry out job require
ments at each job level for computer systems
personnel.

2. Based on the above analysis, specify learning
objectives in terms of skills required that a
course should achieve.

3. Solicit input and criticism from the computer
personnel of government departments regarding
the proposed objectives.

4. Modify course objectives in harmony with the
requirements of government departments and
develop detailed course standards.

5. Conduct feasibility studies regarding the de
velopment of the course meeting established
standards. If resources within or external to the
government can economically offer a course
meeting Bureau Standards, contracts are let on
an individual course basis.

6. Develop student manuals, instructors' guides and
other materials.

7. Exercise control over any course to ensure that
development meets Bureau standards.

8. Conduct the course with material developed
under the sponsorship of the Bureau.

9. Evaluate the effectiveness of training in the
course.

10. l\rlodify the course where required in order· to
meet objectives and standards.

Many of the advantages of this approach to training
are self evident. In particular, this method allows the
training agency to establish quantified learning objec
tives for each course element. Moreover, it draws the
user of the end product into active participation in
course development through his input and criticism of
the individual learning objectives and the specifications
and standards for each course. Finally, it allows for
continuous improvement and up-dating of courses, to
meet the NEEDS of the users.·

A mechanism to ensure that the central program
remains sensitive to the needs of the community it
serves is provided by an Interdepartmental EDP
Advisory Committee. The members of this group come

TABLE I-Management Series

M1-INTRODUCTION TO COMPUTERS 3 DAYS

M2-COMPUTER CONCEPTS FOR EXECUTIVES 2 DAYS

M3-MANAGING COMPUTER-BASED

ACTIVITIES 3 DAYS

M4-IMPLEMENT ATION OF

COMPUTER-BASED ACTIVITIES

M5-CONTRACTING FOR

COMPUTER SERVICES

M6-ADVANCED COMPUTER-BASED

TECHNIQUES

M7 -NEW COMPUTER TECHNIQUES

AND DEVELOPMENTS

3 DAYS

1 DAY

2 DAYS

1 DAY

from several of the user government departments and
meet regularly to advise the central program on the
ways in which the computer community could best be
served. This committee reviews all proposed course
specifications and standards and in this way the training
objectives are kept tuned to government operations.

For any training to be viable a continuing evaluation
must be made of the effectiveness of the instruction it
provides. The Bureau uses three techniques to help it

TABLE II-Systems Series

S2-COMPUTER SYSTEMS FUNDAMENTALS 5 DAYS

S3-FLOWCHARTING AND DECISION

TABLES 5 DAYS

S4-INTRODUCTION TO COBOL 10 DAYS

S5-PROGRAMMING TECHNOLOGY 10 DAYS

S6-ELEMENTS OF SYSTEMS ANALYSIS

AND DESIGN 10 DAYS

S7 -EDP PROJECT MANAGEMENT

AND CONTROL 5 DAYS

S8-ADV ANCED SYSTEMS CONCEPTS 5 DAYS

S9-DATA BASE AND MANAGEMENT

SYSTEMS 3 DAYS

Implementation of Systems Approach to Central EDP Training 1255

assess the value of its efforts and to contribute to
modification and up-dating of its courses:

(A) COURSE CRITIQUE
At the end of any course each participant is asked
to complete a course critique. This will reflect
whether, in the participant's opinion, the course
met its objectives.

(B) COURSE MONITOR
One or more members of the Interdepartmental
EDP Advisory Committee are asked to attend
the presentation of each course, particularly
during its initial serial. His report will indicate,
through his experienced eyes, whether the course
provided the needed training.

(C) EVALUATION SERVICE
The Bureau of Staff Development and Training
has a formal evaluation service that uses trained
psychologists several months after course com
pletion to evaluate the effectiveness of the
training. Their objective is to determine if there
has been an improvement in the use of skills that
is attributable to the course.

COST RECOVERY

The Bureau operates its programs on a cost recovery
basis. Under this system the cost of developing and
conducting the courses are carefully calculated and
tuition fees established to return offsetting revenue. By
charging for the service and requiring actual payments
to be made a more efficient and effective accountability
for and utilization of this common service is achieved
and greater cost consciousness and identification of total
costs results. The customer departments are made more
aware of the value of the training and are careful to
accurately determine their needs. On the other hand,
the program management is directed toward maximum
efficiency since they must remain competitive with
similar, although non-government oriented courses in
the private sector.

COURSE STRUCTURE

The Management series of courses was designed to
encourage the serious involvement of non EDP manage
ment in the problems, decisions and actions related to
computer projects. In Table I is shown the array of
courses offered.

This series of courses form a continuum of EDP
training for management, all treating with the computer
in a government environment. Although each course

TABLE III-Operators Series

COMPUTER FUNDAMENTALS

DATA PROCESSING TECHNOLOGY

INTRODUCTION TO

PROGRAMMING SYSTEMS

COMPUTER SYSTEMS SUPERVISION

INTRODUCTION TO

COMPUTER SYSTEMS ADMINISTRATION

3 DAYS

3 DAYS

5 DAYS

3 DAYS

2 DAYS

may be enjoyed independently, together they form a
progressive training program. The continuum is shown
in Figure 3, in graph form.

The Systems Series was developed to provide a
mechanism for expanding and up-dating the technical
skills of systems analysts and programmers in the
various elements of computer sciences. Table II lists the
courses making up this series.

The Operators Series is seen to be a two phase
requirement. In the initial phase the theory, principles
and concepts of data processing technology, its super
vision and administration will be covered. This series of
courses will be non-machine oriented with its aim to
allow the operator to identify his position in the total
computer activity and to improve his ability to supervise
and administer computer operations. The courses are
being developed this training year for introduction in
1973/74, and they are listed in Table III.

The second phase of the Operators Series instruction
will be related to individual computer configurations
and problems of implementation. This phase will be
developed after the courses in the initial phase have
been introduced and a thorough study of actual needs
has been carried out.

CONCLUSION

The Central EDP Training Program of the Canadian
government is seen to be a sound program which offers
STANDARDIZED training to meet the NEEDS of the
USERS. It covers a wide range of interests for Mana
gers, Systems Analysts and Programmers and Computer
Operators. The essential value of the program lies in its
system of INVOLVING the end user of the training in
the design, development, evaluation and modification of
the courses offered.

1256 Fall Joint Computer Conference, 1972 .

MANAGERS

.EXECUTIVE
(INVOLVED IN
STRATEGIC
PLANNING)

-SENIOR MANAGERS
(PRIME

OPERATIONAL
OR FUNCTIONAL
RESPONSIBILITY)

OPERATING
MANAGERS

(PROGRAM OR
SUB-DIVISIONAL
FUNCTIONAL
RESPONSIBILITY)

OTHER MANAGERS
(FIRST LINE
RESPONSIBILITY)

PROPOSED CONTINUUM OF MANAGEMENT EDP EDUCATION

POSSIBLE LEVELS
OF MANAGEMENT

DM,ADM
D.G.,DIR.

D.G.,DIR.

DIR.,CHIEFS,
PROGRAM

MGRS.

RECOMMENDED PROGRESSIVE TRAINING

(2 DAYS)
M2 II

COMPUTER
CONCEPTS FOR

EXECUTIVES

(1 DAY) (2 DAYS) (!h -1 DAY)
MS , M6 .. M7

CONTRACTING ADVANCED SEMINARS
FOR COMPUTER COMPUTER AND

SERVICES BASED WORKSHOPS
TECHNIQUES

(2 DAYS) (3 DAYS) (1 DAy) (2 DAYS) (Y2-1 DAY)
M2 , M3 ---~II MS .. M6)I M7

COMPUTER MANAGING CONTRACTING ADVANCED SEMINARS
CONCEPTS FOR COMPUTER FOR COMPUTER COMPUTER AND

EXECUTIVES BASED SERVICES BASED WORKSHOPS
ACTIVITIES TECHNIQUES

(3 DAYs) (3 DAYs) (2 DAYS) (1/2 -1 DAY)
Ml) M4)I M6) M7
OR IMPLEMENTATION ADVANCED SEMINARS
M2 OF COMPUTER COMPUTER AND

BASED SYSTEMS BASED WORKSHOPS
TECHNIQUES

(3 DAYS) (3 DAYS)
D~-DEPUTY MINISTER

SECTION CHIEFS M1 , M4 ADM-ASSISTANT DEPUTY

MINISTER AND INTRODUCTION IMPLEMENTATION
SUPERVISORY TO COMPUTERS OF COMPUTER
PERSONNEL BASED SYSTEMS

Figure 3-Canadian Government Central EDP Training Program

DG-DIRECTOR GENERAL

DIR-DIRECTOR

Evaluations of simulation effects in management training

byH. A. GRACE

University of Southern California
Los Angeles, California

INTRODUCTION

The management laboratory, in which the training and
evaluation reported in this paper takes place, is designed
to accommodate persons in sets of between five and ten.
Persons primarily using the laboratory are undergradu
ate and graduate students, and prospective or practic
ing managers.

The laboratory encourages utilization of many
techniques, including both manual and computer
based simulations, as means for improving trainees'
task accomplishment and team development. Other
techniques include lectures, films, case analyses, and
discussions. Simulations include manual exercises de
signed specifically for the management laboratory,
computer-based games, improvisations employing vid
eotape for immediate feedback, and both trainee
developed and commercial exercises and games.

METHOD AND RESULTS

During the conduct of a commercial game being
played by two sets of trainees, we observed cate
gorically opposite effects on each set. To test our
hunch, we hastily designed, dittoed, and administered
an assessment form which asked the trainees how well
their teams had developed prior to the simulation and
after it; why they had selected that game; and to what
they attributed the game's effects. Table I reports the
effects as perceived by these two sets of trainees.

As we had observed, trainees actually experienced al
most polar differences as a result of playing this com
mercial game, and the effects were primarily a function
of their team's pre-simulation cohesiveness. Some of the
comments made by trainees in the developed team were:
"It produced uneasy feelings; I felt uncertain and vin
dictive; nobody followed the rules; there was deceit and
confusion; I felt let down afterwards; because of the

1257

double-crossing, I couldn't even trust my partner."
Trainees in the underdeveloped team wrote: "I t
opened my mind more to others and made me forget
my inhibitions; I really got involved for the first time;
the decision-making and bargaining helped us; it
brought out a desire to compete and win; people can
really manipulate when it's beneficial." Interestingly
enough, members of the more developed team were so
disturbed by the game's effects that they immediately
replayed it, assuming different roles than before, and
attempted to regain their prior degree of cohesion.
Further investigations of this kind revealed a variety of
reasons for selecting a simulation: "It was a challenge;
we heard it was fun; we wanted something that would
involve everyone; we thought that working with dif
ferent partners would help; it looked like it would help
us make advances on our task." Some of these reasons
expressed expectations about the task, some about one
self, and some about the team.

After a series of iterations, the Event Assessment,
shown as Table II, was generated for use in evaluating
the effects of any simulation by persons engaged in
management training. Our justification for using this
generalized approach is that we experienced disparate
effects from the collecting of such assessments, as well
as from feeding back the results of assessments to train
ees. Because training events occur so fast, often without
their being planned, the Event Assessment uses past,
present, and future tenses in many questions.

Scoring, tabulating, analyzing, and presenting the re
sults of an event assessment can be accomplished man
ually or by a computer program. We have not as yet
explored the effects of immediate versus delayed feed
back of results, nor have we always postponed trainees'
choice of a simulation until its anticipated effects have
been fully explored. Data collection has been both
facilitated and standardized by means of this form.

Results from the Event Assessment Form may be
displayed in various ways in order to facilitate manage-

1258 Fall Joint Computer Conference, 1972

TABLE I-Perceived Effects of a Simulation on
Team Development

TEAM
DEVELOPMENT
PRE- POST-SIMULATION
SIMULATION LITTLE SOME GREAT

GREAT DDDD

SOME

LITTLE

D: trainee in developed team
U: trainee in undeveloped team

D UU

U DUU

UUU UU

ment training objectives. Table III, for instance, indi
cates how one set of trainees perceived a simulation's
effects on the accomplishment of the task assigned to it.
Table IV displays how this same set of trainees experi
enced that simulation's effects on the development of

TABLE II-Event Assessment Form

Assessor: Date: Time : ___ _
Name of Event: _______________ _
PRE-EVENT QUESTIONS
What is/was your task? To ___________ _
How well are/were you accomplishing your task?

VERY
POORLY POORL Y SO-SO WELL

VERY
WELL

How well are/were you developing as a team?

VERY
WELL WELL SO-SO

VERY
POORLY POORLY

ABOUT-THE-EVENT: How much do/did you expect the event
to: Help you make progress on your task?

VERY
MUCH MUCH SOME

Help you all develop as a team?

VERY
LITTLE LITTLE SOME

VERY
LITTLE LITTLE

MUCH
VERY
MUCH

POST-EVENT: In what way and how much will/did the event:
Affect your progress on your task?

VERY
POSI
TIVELY

POSI-
TIVEL Y SO-SO

VERY
NEGA- NEGA-
TIVELY TIVEL Y

Why? Because. ________________ _
Affect your development as a team?

VERY VERY
NEGA- NEGA- POSI- POSI-
TIVEL Y TIVEL Y SO-SO TIVEL Y TIVEL Y

Why? Because _______________ _

TABLE III-Perceived Effects on Task Accomplishment

TASK
ACCOM-
PLISH-
MENT POST-SIMULATION

PRE-SIM- VERY VERY
ULATION LITTLE LITTLE SOME GREAT GREAT

VERY
GREAT B

GREAT A CE K L

SOME

LITTLE J M

VERY
LITTLE DF GH

the team itself. Table V combines task and team infor
mation, and serves also as an indirect sociometric
device. The power of these combinations of data lies in
the trainer's ability to focus trainees' attention on the
various tradeoffs between task accomplishment and
team development which a given simulation or other
event stimulates.

As Table III shows, four of the six people who felt
great or very great pre-simulation task accomplishment,
also felt that the simulation had little or very little ef-

TABLE IV-Perceived Effects on Team Development

TEAM
DEVELOP
MENT POST-SIMULATION

PRE-SIM- VERY VERY
ULATION LITTLE LITTLE SOME GREAT GREAT

VERY
GREAT

GREAT

SOME

LITTLE

VERY
LITTLE

A

D

Be HJK LM

E

F G

Evaluations of Simulation Effects in l\1anagement Training 1259

TABLE V-Perceived Effects on Task Accomplishment
and Team Development

TASK
ACCOM
PLISH
MENT

GAIN
(+2 to +4)

SAME
(-1 to +1)

LOSS
(-2 to -4)

TEAM DEVELOPMENT
SAME LOSS

(-4to -2)
GAIN

(+2 to +4) (-1 to +1)

HJM G

DFKL

ABC E

fect, (ABCE). On the other hand, four of the six who
experienced little or very little pre-simulation task ac
complishment felt that the simulation had great or
very great effect (GHJM).

Table IV indicates that five of the eight persons who
thought their pre-simulation team development was
great or very great also considered the simulation's ef
fect to be great or very great (HJKLM). Only one of
the four persons who experienced little or very little

pre-simulation team development, however, perceived
the simulation as having a great or very great effect
(G).

The data in Table V show how trainees experienced
effects of gain and loss in both task accomplishment
and team development as a result of the simulation.
For the most part, trainees associate task and team ex
periences, as indicated by the linear relationship in
Table V. These data, however, also permit a socio
metric analysis of the participants. By their similar
perceptions, trainees A, B, and C constitute a cluster
which experienced a double loss in both task accomplish
ment and team development, while member G stands
alone, having experienced a double gain. Discussion
about these data centered on whether both effects
might not be an example of regressing toward the mean.
Four members experienced no change as the result of
the simulation, (DFKL), while members H, J, and M
preceived a gain in task accomplishment only, and one
member, E, a loss in task accomplishment.

The display of this information, fed back to manage
ment trainees, gives everyone a better picture of the
array of effects of any event, including a simulation,
on both the task and the team. Regardless of the
simulation's other objectives, these results can be useful
for purposes of management development.

Conceptual design of an eight megabyte
high performance charge-coupled storage device

by B. AUGUSTA and T. V. HARROUN

IBM Components Division
Essex Junction, Vermont

SUMMARY

The design approach suggested to satisfy the conceptual
requirements was the use of self-contained, charge
coupled storage chips with on-chip decoding. In this
approach, the information on the memory chip is stored
in a group of closed-loop shift registers, and random ac
cess is provided to anyone of the registers by an on-chip
dynamic FET decoder. In this way, n-controllines can
select one of 2n shift registers.

Of the many organizations possible in expanding the
on-chip decoding concept into a design for a lOS-bit
memory, a bit-per-chip organization was chosen. This
proposed organization results in reasonable chip power
dissipation and was contained in successively higher
levels of packaging. The operating characteristics are
summarized in Table I.

The models, limited in capacity to that necessary to
show feasibility of the approach used, are intended to
demonstrate the operability of the conceptual design.
The operations necessary to perform the functions of
the storage chip are charge injection, charge transfer
efficiency, sensing, absence of channel cross-talk, turn
around and charge generation.

These are all performed using a silicon self-aligned
gate structure driven by a four-phase electric field, and
are basic to the operation of the shift registers. Decoders
which select one of the 2n shift registers have been
amply explored by industry.

Two small shift register structures were designed,
fabricated and tested to demonstrate these functions
and concepts. One, a 480-bit register demonstrating in
jection, sensing, amplification and turnaround, was
designed using 0.3-milline widths. The second, a 256-
bit shift register demonstrating high density, charge re ...
tention, and absence of cross talk, was designed using
0.15-milline widths. Operation is summarized in Table
II.

1261

The conceptual design and the feasibility models are
described in considerably more detail in the following
sections.

GENERAL CCDMASS STORAGE DESIGN

This section describes the conceptual design of a
lOS-bit charge-coupled device mass storage unit. The
design principles of the chip, module, system, and error
correction and detection are discussed first.

The system is designed to be used in a block-oriented
mode, in which random access is provided to blocks of
information, which are then read out or written in
serially. Physically, this means that the CCD chip is
divided into a number of closed-loop shift registers that
store the blocks of information. Random access to these
shift registers is provided by on-chip FET decoders.
Propagation in the shift registers, which occupy the
major portion of the chip, is accomplished with a two
level interconnection pattern activated by an external
four-phase electric field.

The further organization of such chips into a memory
system depends on a number of design criteria. Since
the application contemplated here was industrial, low
cost and operational life were emphasized. In addition,
the storage system was required to be of small size and
low power and to operate in typical industrial environ
ments without elaborate support. Consequently, the
chip design should give reasonable chip yields, the
package should be reasonably easy to manufacture, and
the means of achieving the reliability should not be pro
hibitively expensive fraction of the total storage. These
topics are considered in the next several sections. The
one remaining task of this section is to specify the ac
cess time and data rate of the storage system. After
examining present and future needs, it was decided to
aim for average access times below 0.5 X 10-3 sec and

1262 Fall Joint Computer Conference, 1972

TABLE I-Characteristics of the Design of a lO8-Bit Memory

Capacity
Shift frequency
Data rate
Access time

Power

1.0 X 106 words of 73 bits each
500 kHz
32 X 106 bits/sec
256 ~sec to a block of 256 words
512 ~~ec to a word
237 watts

data transfer rates of at least 3X106 bytes/sec. The
next few sections describe the influence of these require
ments on the design evolution.

Chip, module and card design

Chip size

It is desirable to have as many bits per chip as pos
sible, consistent with reasonable chip yield. In addition,
high speed and low cost are easier to obtain as the den
sity of information storage (bits/square cm) increases.
These are the primary considerations in choosing the
size of the chip.

Based on fabrication experience and on progress in
the industry, it seems reasonable to assume that lay
out ground rules with 0.15-mil minimum line widths will
be practical for the mid-seventies. Assuming that· a
four-phase structure is used to store a bit of information
and that information flow is reversed between adjacent
parallel channels to close a shift register, topological
considerations yield a storage cell area of 15.4 w2,

where w is the minimum line spacing. This corresponds
to a storage density of "-'2.9 X 106 bits per square inch.
With such densities, a 32,768 bit chip might to be feas
ible.

Chip layout

The chip organizational layout is uniquely determined
by the average access time that the system is to have.
Except for some relatively small decoder delays, the

TABLE II-Measured Operating Characteristics of
Feasibility Models

Material
Structure

Cell size
Phase voltages
Output signal
Charge retention
Minimum shift rate

Silicon, n-type substrate
Modified self-aligned gate, 2-level
interconnection
0.32 mil2

10-12 volts
4-volt amplitude
> 0.25 sec
5kHz

average access time T A is given by

TA=72BsRTS

where BSR is the number of bits per shift register and
Ts is the time period of one shift. The shift frequency is
chosen to be 500 kHz to minimize chip power and allow
variable speed operation. Hence, Ts = 2 X 10-6 sec. It
was stated earlier that T A should be less than 0.5 X 10-3

sec. Therefore, BSR must be less than 500 bits. The
nearest binary number is 256 bits so the proposed chip
design calls for 128 shift registers of 256-bits. This re
sults in an average access time of 256 J.lsec plus a small
amount of decoder and other delays.

The chip layout is shown schematically in Figure 1.
Each of the 128 closed-loop shift registers has an input-

• 3

I
54

,
j

M 20

r
3~
+ 10

PADS
WIRING

ARRAY ADDRESS
DECODE

1/0

cp GATES + BUSSES

ARRAY ADDRESS
DECODE

1/0

ARRAY

ARRAY

---31--
--2~

-~~ 30 -..1_-- 54 -

168

Figure I-Proposed memory chip layout

output amplifier, four restore amplifiers and a select
decoder. These are organized into four nearly square
groups of 32 shift registers, allowing shortened phase
lines to drive from the center of the chip. Each shift
register is folded four times to match I/O amplifier
pitch. A restore amplifier follows each 64-bit register
segment.

The relative· areas occupied by each function on the
chip are defined in the following way. A shift register is
the product of the vertical and horizontal periods of the
cell. The storage section of each array contains 32 shift
registers, occupying an area of

(64X5.3 w) X (32X4X2.89 w) = 12,600 w2

=8192 cells.

Design of Eight Megabyte High Performance Charge-Coupled Storage Device 1263

By comparison, each restore amplifier occupies

16 wX5.8 w=94 w2

= 6 cells and the decoder I/O amplifier
occupies

(84 wX 11.6 w) +2(16 wX2.9 w) = 1064
=69 cells.

Phase gates and bussing occupy a total area on the chip
equivalent to 8200 cells. The resulting chip, including
wiring and pad space, is 168 mils by 154 mils.

Register selection, writing, reading and clearing are
all accomplished with 14 control lines. Phase drive,
reference voltages and supply voltage require 11 lines,
resulting in 25 I/O connections per chip.

Module design

The proposed module is a design extension of IBM's
widely used logic and monolithic memory module. The
proposed module, however, is 35 percent larger than the
standard module (0.580 in. square) and provides an in
creased number of I/O pins. Since only one chip is ac
tive at a time, the module thermal characteristics permit
two chips to be accommodated per module. Conse
quently, the module has two stacked ceramic substrates,
with one chip per substrate (Figure 2), joined by the
IB1V[controlled collapse solder connection.

Figure 2-Basicmemory module

Figure a-Storage card assembly

To keep the number of interconnections per module
down to an acceptable level, the chips are arranged so
that address, phase and voltage connections are shared.
Input-output and select control lines are separate, re
sulting in a total of 28 active module connections.

Card design

Further assembly of the memory proceeds by placing
16 of the modules described above on a card as shown
in Figure 3. This package or card also contains partial
address decode, refresh, control logic, and address inter
face and phase drivers to provide fan-out for the mem
ory modules. The card or memory subunit is actually a
self-sufficient memory in its own right (except for logic
and driving circuits), providing a storage capacity of

1264 Fall Joint Computer Conference, 1972

Figure 4-Functional diagram

106 bits. The 108 bit CCD memory is realized by stack
ing up the appropriate number of these building blocks.
They lend themselves to several different memory
organizations, the exact number depending on the or
ganization chosen. In the "bit-per-card" design, a mem
ory word consists of 64 data bits, 8 check bits, plus a
position synchronization bit, for a total of 73 cards.
The memory is operated in a mode where only one chip
per card is selected at a time, providing a substantial
savings in card power dissipation. Since the cards are
independent sub-memories, serviceability is enhanced.

Summary of chip, module and card designs

Many of the reasons for the particular choice of chip,
module and card design have been given in the preced-

TABLE III-Power Requirements For System
Control Functions

EQUIVALENT POWER
FUNCTION GATE COUNT (mw)

Address register 105 3920
Parity check circuit 56 640
Chip partial address 21 637
Address drivers 57 2570
Timing generator 43 2310
Refresh control counter 188 4030
Read/write control 161 6821
Power switch 147 7120
Storage data buffer 588 9500
Check bit generator 845 18120
Syndrome* generator 76 1440
Syndrome decode 180 3240

2467 60.347 watts

* Syndrome-encoded signals generated as a result of a bit error
from which the incorrect bit can be located.

ing paragraphs. For further discussion, however, it is
necessary to know how the memory will be .organized,
and this requires a knowledge of the electrical circuitry,
packaging and error correction coding p.eeded to imple
ment the possible organizations. Discussion of these
topics, comparisons and tradeoffs, however, will be
based on the above described chip, a module with two
chips and a card with 16 storage modules, logic and
interface drivers as described. The storage array card is
organized in 1024K word by I-bit configuration.

Electrical and mechanical design

Circuit requirements

The circuits designed to implement the functions de
fined in the memory system design are tentative and
have not been optimized. They are only intended to
represent a reasonable estimate of complexity and power
consumption. For the sake of discussion, all the numbers
that follow pertain to the bit-per-card organization.

TABLE IV-Power Requirements (Watts)
For Memory System

System logic
Storage array 73 cards @ 2.185
Storage fan-out drivers

60.5
"'160.0

15.7

236.2

The general functional diagram of the system is
shown in Figure 4. Twelve address lines provide ad
dressing to each of the 4096 2048-byte blocks of stored
data. An eight-byte (64 data bit) parallel interface
data bus provides a high data transfer rate with an ac
ceptable investment in power and error correction cir
cuitry. The power and equivalent gate count for each
function are presented in Table III. The system power
is presented in Table IV.

Packaging design relies upon IBM's standard card
and board concepts .. The technical objectives of this

, design concept are (1) minimization of interconnection
complexities, (2) adequate environmental protection,
(3) sufficient thermaJ efficiencies to employ forced
ambient air cO,oling, (4) modular flexibility features
suitable for expansion, and (5) favorable economic
costs.

The overall packaging configuration of the memory
system is pictured in Figure 5, resulting in a volume of
2.9 cubic feet.

The unit consists of a gate-structure containing four
multilayer circuit boards, covers, interconnecting

Design of Eight Megabyte High Performance Charge-Coupled Storage Device 1265

cables and pluggable modular card subassemblies con
taining logic and memory circuits. This unit design does
not contain power supplies. It is assumed power and
cooling air will be furnished by the host machine.

Power consideration

The CCD cell uses a dynamic charge storage principle
and must be periodically regenerated to account for
the charge "lost" from the storage node. This regenera
tion is accomplished by means of restore amplifiers in
each shift register. Information is stored as charge in
the potential wells, and the ability to differentiate be
tween the amount of charge represents a bit of informa
tion. The minimum operating frequency of the shift
registers is determined by detectable charge difference,
which is a function of time, transfer efficiency and leak
age rate. Careful consideration of these factors results
in a lower shift rate of 5 kHz with a restore amplifier
located every 64 bits. The restore amplifier senses the
charge difference remaining at the end of a register and
restores the charge levels to those corresponding to an

A

CTRL

~7.50"

A
21.25"

A

A - STORAGE ARRAY
BOARD

CTRL - SYSTEM CONTROL
LOGIC BOARD

Figure 5-Eight megabyte storage unit

initial one or zero for the next register segment. At this
frequency, the chip requires a "standby" power of
19.4 mW. In the standby state, information integrity is
maintained but all functions not required to that end
are de-powered using pulse power techniques.

The maximum operating frequency is determined by
the allowable power dissipation of the chip for forced
air cooling. These considerations result in a shift fre
quency of 500 kHz with a selected chip (i.e., all circuits
fully powered) power of 321 mW.

Error detection and correction,

A preparatory phase of formulating a reliable storage
system requires careful consideration of failure modes
for the devices used in the system. Prediction of classes
of device failures for the complete memory system is
used to impose constraints upon both the chip and sys
tem organizations to assure the desired reliability.
These considerations are based primarily upon the rela
tive amount of circuitry used to implement the relia
bility-enhancement features.

To overcome the effects of shift register malfunctions,
the memory system is organized so that each bit from a
shift register is part of a word located on a different
chip.l In this memory system organization, the mem
ory device failure modes manifest themselves as either
single or, with lessor probability, double bit errors.

The widely-used Hamming-type SEC/DEC* codes,
for example, can correct any single-bit error in a mem
ory word, but can only produce an error message in case
of a double or higher-order bit error. Such codes, there
fore, are most effective in systems organized so that as
many failure mechanisms as possible cause only single
bit errors.

The design philosophy leading to the final, recom
mended, bit-per-chip system was as follows:

1. Offer random access to a block of 256 words of
64 bits each, and serial access to a specific word
within that block.

2. Use SEC/DED codes to enhance reliability.
3. Achieve high performance operating character

istics at reduced power by supplying the high
speed shift field to only the chips containing the
desired shift registers, since only 64 shift registers
(representing 0.2 percent of the total memory
capacity) are accessed at anyone time. This is
accomplished by including phase gating logic on
the chip, to be activated only when the chip is
selected. Additional support electronics are

* Single-Error-Correction/Double-Error-Detection.

1266 Fall Joint Computer Conference, 1972

TABLE V -Summary of Chip Design Features

CONCEPTUAL DESIGN
• Self-contained CCD chip with on-chip decoding
• n-type substrate SAG technology
• Closed loop shift registers
• Operating speed of 5 to 500 kHz
• 64-bit shift register segments
• Shift register turnaround and restore amplifiers
• Four-phase operation
• 2.9 X 106 hits/in2
• Operation in a machine environment

OPERATING FEASIBILITY MODEL
High Density Model

• n-type substrate SAG technology
• 256-bit single shift register segment
• 2.1 X 106 hits/in2
• Operating speed of 500 Hz to 5 MHz
• Four-phase operation

Operating Memory Model
• n-type substrate technology
• 480-bit, 10 segment shift registers
• Shift register turnaround and restore amplifier
• Four-phase operation
• Operation in a machine environment
• Operating speed of 500 kHz
• Wide operating parameters
• I/O amplifier

necessary to insure data retention and regenera
tion; however, de driver power dissipation is
reduced.

FEASIBILITY MODELS

This section deals with the feasibility models that
were built to test and demonstrate the major operating
features of the conceptual memory design described
above. The models were to be limited in capacity to
that necessary to prove feasibility of the approach used
in the conceptual design. The essential features of the
conceptual chip design and the models are summarized
in Table V.

The feasibility model chips differ from the conceptual
chip not only in scale but also in that they do not dem
onstrate on-chip decoding or closed-loop operation.
These have been relatively simple functions to ac
complish, as shown by workers in this laboratory and
industry as a whole. Mounting of the conceptual chip
uses techniques well-known to industry.

Critical features of the conceptual design have been
demonstrated by the feasibility models. These include
the storage cell density, operating speed, sensing and
amplification, and sufficient operating parameter toler
ance for actual machine environment.

Device structure

The charge-coupled device uses basically MOS
technology. The described structure consists essentially
of three layers and is a junctionless device except for
small diffused junctions that serve as input and output
nodes of the shift register. The surface of a semiconduc
tor, such as silicon, is oxidized to form a thin insulating
layer. A metal pattern of electrodes is deposited on top
of the insulator. In operation, the" shift register depends
on the transfer of charge from the potential well de
veloped under one electrode to another by application
of suitable voltages to these electrodes.

A cross-sectional view of the overlapped electrode
devices fabricated in this test chip is illustrated in
Figure 6. In the structure shown, each spatial bit has
associated with it four independent electrodes. The
01, 03 electrodes, doped polysilicon, define the storage
potential well (node) locations. The 02, 04 aluminum
electrodes serve as transfer/isolation gates between
storage nodes.

Device size

The proposed CCD storage cell is designed with an
electrode separation of 0.15 mils and 0.05-mil overlap.

ELECTRODES

2 3 4 I'

- - - -, r - - - - - - - - - - - - - -
\ I

;\~~~~j
POTENTIAL WELL
N - TYPE SEMICONDUCTOR

I
I

I a 3 AI
2 a 4 POLY-Si

I CHANNEL

Figure 6-CCD storage cell

· Design of Eight Megabyte High Performance Charge-Coupled Storage Device 1267

Channel width is 0.15 mils with a channel separation of
0.28 mils, resulting in an average area per bit of 0.35
mil. 2 In the high density devices described here,2 the
average area per bit is 0.48 mil2 corresponding to a
channel width and separation of 0.2 and 0.4 mils. Calcu
lations of the potential barrier between channels indi
cate that the channel separation can be reduced to
0.2 mil, while stilll providing adequate isolation in
1-2 ohm-cm material.

Frequency response

In those pulse powered memory applications where
access time minimization and power are important
considerations, the frequency response is an important
parameter. The frequency response curve for the
normalized worst case one/zero difference (~D) of a
typical 128-bit shift register is presented in Figure 7.
Since the one/zero difference is directly related to the
charge transfer efficiency, the data imply that the
transfer efficiency characterizes device operation over an
extremely wide clock frequency range.

The primary mechanism determining the low fre
quency limit of device operation is the thermal charge
generation rate and the tendency of the empty potential
wells to fill with thermally generated minority carrier
charge. The 500-Hz data point indicates that such room

9

temperature leakage is negligible at information dwell
times of at least U second.

The primary parameter affecting the high frequency
limit of device operation is the surface mobility and its
determination of the maximum transfer times needed to
preserve efficient charge transfer between storage nodes.
At a clock frequency of 5 MHz, the nominal transfer
time duration is 60 nsec at which a slight drop in signal
occurs. The signal difference is sufficiently large so that
sensing is not impaired.

~
- 0.8
11.1

~
~ 0.6

It
is 014 ...
ffi .
~ 0.2
~ o

Figure 7-CCD charge transfer characteristics

Figure 8-CCD temperature characteristics

There are two primary ways in which temperature
can impact CeD operation. First, high frequency re
sponse is expected to be lowered with increasing tem
perature due to a decrease in surface mobility and a
consequent decrease in charge transfer efficiency. Sec
ondly, the low frequency response limit is expected to
increase with increasing temperature due to the in
creased rate of thermally generated charge filling an
empty potential well. The observed temperature de
pendence at the three clock frequencies shown in Figure
8 clearly displays the second effect described above.
These data were obtained with the substrate biased at a
relatively high level (BV) , representative of stress
conditions. At more moderate substrate bias potentials
(f'"OowI2V) the curves shown shift to significantly higher
temperatures. This is due to the fact that a reduction
in substrate bias reduces depletion region depth, result
ing in a reduction in the rate of carriers filling the poten
tial wells.

Operational memory

All the proposed circuit design concepts were exer
cised in a fully operational memory system.3 The chosen
memory system used dual 2880-bit shift register mem
ory buffers operating at a fixed clock frequency of
500 kHz. The two 2880-bit shift register buffers were
fabricated from six dual 480-bit open-loop shift register
memory chips, serially connected to form the memory
buffers. Each chip contains two 480-bit shift registers
and is fabricated as previously described. Data flow
proceeds in one direction for 47 72 bits and is then am
plified and launched in the reverse direction by a sensi
tive but simple amplifier that introduces an additional
72-bit delay. The restore amplifier, designed to operate
in so-called fat-zero mode, consists of three FET's as
illustrated in Figure 9. The amplifier inverts the signal
and provides a small signal gain of about 80 from chan
nel to channel. In operation, the signal at the launch

1268 Fall Joint Computer Conference, 1972

Csense node

Cstorage node

Claunch - to- sense

VRI

~ 0.06025 pf

'" 0.12 pf

~ 0.0015 pf

VR2

=

LAUNCH
NODE

Figure 9-Restore amplifier

node is clamped to either VR2 or near ground and the
gain realized is only that necessary to compensate for
the losses in the channels. Input and output support
circuitry for the CCD shift registers interface directly
to machine logic levels. Machine logic is diode-transistor
with logic zero at ground and logic one at plus six volts.

The chip output is capable of driving a minimum of one
logic load (sink 1.7 rnA to ground) and is fully com
patible with both machine logic levels and CCD mem
ory chips.

In summary, the work done in fabricating, testing,
and designing the feasibility chips has demonstrated
that the CCD technology is sufficiently mature and
understood so that design and fabrication of a 108-bit
storage system is possible with an acceptable risk factor.

REFERENCES

1 M Y HSIAO
A class of optimal minimum odd-weight-column SEC-DED
codes
IBM Journal of Research and Development Vol 14 No 4
July 1970

2 N A PATRIN
Performance of very high density CCD structures
1972 Device Research Conference University of Alberta
Edmonton Canada June 21-24 1972

3 N G VOGL T V HARROUN
Operating memory system using charge-coupled devices
1972 IEEE International Solid-State Circuits Conference
February 16-18 1972

Josephson tunneling devices~A new technology
with potential for high-performance computers

by W. ANACKER

IBM Corporation
Yorktown Heights, N ew York

INTRODUCTION

Superconducting thin film devices which exploit the
Josephson effect and Giaever type tunneling have been
observed to switch very fast while dissipating extremely
little power. They show, therefore, good promise for
high-performance computer circuits since the low power
dissipation permits dense packaging with attendant
short intercircuit signal delays, a prerequisite for
effective utilization of fast switching circuits.

The devices are based on two discoveries of the early
60's. B. Josephson! predicted in 1962 that supercurrent
can flow through nonsuperconducting and even in
sulating layers without causing voltage drops if these
layers are/thin enough. 1. Giaever2 discovered in 1960
that the tunnel characteristics of metal-oxide-metal
sandwiches changes markedly when the metal elec
trodes become superconducting.

The possibility of building superconductive com
puters has been of interest ever since D. Buck3 reported
in 1956 on the operation of his "cryotron" switching
device and demonstrated that this device is capable of
performing logic and memory functions.

Efforts in several laboratories over the years to bring
the cryotron technology to fruition have, howev~r, met
with failure. The main reason for the lack of success was
that semiconductor technology has proved itself to be
not only competitive but superior in switching speed and
adaptability to large scale integration, facts which
made it illogical to try to overcome technological
problems of the cryotron technology which were un
solved at the time.

The basic difference between cryotron and Josephson
tunneling circuits is that the latter have been shown to
be orders of magnitude faster in switching operations
than the former. In fact, it appears to date that
Josephson tunneling devices have good potential to

1269

surpass semiconductor circuitry with respect to switch
ing speed and system performance since packaging
limitations due to heat removal problems already en
countered in advanced semiconductor circuit networks
are expected to be absent in Josephson tunneling
circuit networks.

The basic effects underlying this technology are
sketched in the next section before specific and preferred
structures of switching gates, and. their characteristics
are discussed in the third section, and configurations
and operations of memory and logic circuits in the
fourth section. A review of presently known tech
nological aspects is given in the fifth section followed
by a brief summary in the final section.

SUPERCONDUCTIVITY, TUNNELING AND
JOSEPHSON EFFECT

Superconductors are well-known to exhibit specific
properties when they are cooled below a critical tem
perature Te. Their electrical resistance drops to zero,
and they behave like diamagnetic bodies, expelling
magnetic fields. If they are arranged in closed loops,
they can trap magnetic flux and sustain circulating
per~istent electrical current indefinitely.

These properties can be understood by postulating
that superconductors comprise two interpenetrating
electron fluids, a normal fluid of density nn and a super
fluid of density ns. The normal fluid consists of single
conduction electrons and the superfluid is made up of
bound electron (Cooper) pairs which are the product
of a condensation process taking place below the critical
temperature and involving single conduction electrons
with equal and opposite momentum and spin. The
participating electrons occupy energy levels just below
and above the Fermi level of the metals. The depletion

1270 Fall Joint Computer Conference, 1972

..
c

Figure I-Normalized diagram of a superconducting energy gap
AT and superfluid ns(t) dependence on temperature T . .60 and ns(o)

denote values at T = 0.13

of these levels leads to the development of a forbidden
energy band, the so-called superconducting energy gap
2~ (on the order of me V) around the Fermi level.

The Cooper pair system occupies a single energy state
which lies below the Fermi energy by an amount of
energy A (per electron) corresponding to the binding
energy of the Cooper pairs in accordance with the classic
(BCS) theory of superconductivity4 by Bardeen,
Schriefer and Cooper. The Cooper pair system is highly
correlated throughout the superconducting region which
is commonly expressed as the long range order of the
superconducting state. The system can be described in
quantum mechanical terms by a wavefunction if; (r) ,
the phases cp(r) of which are related throughout the
entire superconductor.

The Cooper pair system density ns . and the energy
gap A are related to each other and depend on tem
perature as is shown in Figure 1. ns and ~ are zero for
T> Tc, rise first rapidly, then much more slowly with
decreasing temperature until A is full developed and
only the superfluid ns exists at T = OOK.

The second effect to be reviewed is electron tunneling.
It is well-known that electric currents can be trans
ported through a metal-insulator-metal sandwich with
an attendant voltage drop across the thin insulator by
means of the tunneling process. This process is readily
understood as a consequence of the quantum mechani
cal concept of assigning to electrons in metals wave
functions of the form ei .k •r with r being a space variable
and k being the wave vector. For k imaginary-which
is the case outside of the metal surface-the wave
function decays exponentially. Since the square of the
amplitude of the wavefunction at any point in space is
interpreted as the probability of finding an electron at
that point, it becomes apparent that electrons can be

found with finite probability outside of a metal surface.
These electrons can be captured by a second metal with
available allowed energy states if the second metal is
placed close enough to the first metal surface. The
distance between the metals is not to exceed about
50 A since the probability of finding electrons decreases
rapidly with distance from the metal surface and the
tunnel currents become extremely small.

Holm5 has calculated the electron flux based on a
simple one-dimensional model, from which the tunnel
resistance RNN of a tunnel junction can be deduced for
V«CPw as :

1 e2 41rt
-- = - (2mcp)1/2 exp - - (2mcpw)1I2 (1)
ARNN h2d w h

with t and CPw denoting the potential barrier. thickness
and height, respectively, A the junction area, e and m
the electronic charge and mass, respectively and h
Plank's constant.

Expression (1) indicates the exponential dependence
of the tunnel resistance on the potential barrier height
CPw l / 2 and thickness t and also that the voltage-current
relation is linear.

The latter characteristic was shown by 1. Giaever6

to change when the electrodes become superconducting.
He found that for voltages V< 2~/ e the tunnel current
is suppressed, rises rapidly at V = 2~/ e, and approaches
the linear RNN asymptotically for V»2~/ e.

The discovery of this effect represents a direct con
firmation of the existence of the superconductive energy
gap as postulated in the BCS theory and it has served
as a valuable tool to probe into the electronic structure
of superconductors. As an example, Figure 2 shows

4

T,-K
0···-1.3

b····1.2
c···· 1.1
d····0.9
,····0.8
f· .. • 0.3

'.,I ".2 .3 .4 .5

Voltage (mV)

Figure 2-Current-voltage diagram of superconducting tunneling
(with parameter a tofreferring to decreasing temperature T).22

._. - . _.
A2.

S.2
X Z t

51 A.

---..- . ----.
Figure 3-Geometry of superconductor-insulator-superconductor

structure

by way of tunnel characteristics how the energy
gap develops with decreasing temperature.

The third effect to be reviewed is the Josephson
effect7 itself. It is a property of the Cooper pair system
and manifests itself in regions where superconductivity
is weak, i.e., where the Cooper pair density is (locally)
low. Figure 3 shows two superconductors 81 and 82

separated by a distance t and denotes a coordinate
system in compliance with Equations 2, 3 and 4.

The Josephson effect7 is contained in Equations 2,
3 and 4.

j(z, t) =j1 sin 4> (2)

d4>=2e V
dt n (3)

d4> = 2ed Hz
dz ne2 (4)

with 4>=4>1-4>2; V = V1- V2; and d=A1+A2+t and
n = h/27r. 4>1 and 4>2 denote the phases of the wave
function y;(r) in 8 1 and 8 2 respectively; Vi and V2 the
electrical potential of 8 1 and 8 2 respectively and Al and
A2 the London penetration depths of 8 1 and 82, respec
tively. e, hand e denote the electronic charge, Plank's
constant and the speed of light, respectively.

Equation (2) states that a de Josephson current
j (z, t) 5:j1 can flow between 8 1 and 8 2 for 4> = const
which according to Equation (3) indicates that the
voltage between 8 1 and 8 2 is zero. Equation (3) indi
cates, on the other hand, that 4> changes in time if a
constant voltage V is impressed between 8 1 and 8 2

which, in conjunction with Equation (2) states that

Josephson Tunneling Devices 1271

application of a voltage between 8 1 and 8 2 generates
an ac Josephson current with a frequency which is
proportional to the applied dc voltage. Equations (4)
and (2) indicate that j(z) is modulated in amplitude
and even in direction along the z-coordinate in the
presence of static magnetic fields penetrating the weak
superconducting region. This leads to nonuniform
internal current distributions which reduce the external
current carrying capability of the weak superconducting
region thus permitting one to control the (external) dc
Josephson current threshold by applying magnetic
fields. The experimental demonstration of the magnetic
field dependence of the dc Josephson current threshold
confirmed conclusively the existence of the Josephson
effect.23

The Josephson effect has been observed in a variety
of configurations such as superconductor-normal metal
superconductor sandwiches, point contacts, micron size
constrictions in thin films, whiskers, even wires pressed
together to form point contacts. The most suitable
configuration for computer switching circuits appears,
however, to be the Josephson tunneling gate which is
described in the next section. An excellent and ex
haustive discussion of Josephson devices is given by
Matisoo.s

JOSEPHSON TUNNELING GATES

Figure 4 depicts schematically a Josephson tunneling
switching gate. Two superconducting thin films 8 1 and
8 2 are shown partially overlapping and separated from
each other by an insulating layer of 10 A to 30 A thick
ness, preferably an oxide grown on the bottom film 8 1•

They are overlaid by a third superconducting film
insulated from 8 1 and 8 2 and patterned as a control
line C. The entire structure is deposited on top of a
superconducting and insulated ground plane in order
to minimize circuit inductances.

The tunnel junction length and width are denoted by
Land W, respectively, the oxide thickness by t, the
London penetration depths in 81 and 82 by Al and A2,
respectively. The tunnel resistance RNN of this con
figuration could be calculated from Equation (1) if t and
4>w were known, it can also be measured quite accurately
at T < Teat a voltage V (with2t1/ e < V «4>w/e). (Measure
ments at T < Te are necessary to eliminate dominating
effects of the electrode resistances.)

Once RNN is known, the Josephson current density jl
can be calculated from:

jl=K(7rt1/2eRNN.L.W) tanh (t1/2kT) (5)

with the Boltzman constant k, a correction factor K to
include strong coupling effects9 (e.g., K =0.91 for tin

1272 Fall Joint Computer Conference, 1972

I At I A2
------------------------~

~~--. _.
A,

L

Figure 4-Josephson tunneling in-line gate configuration.13

and K = 0.788 for lead) and the other quantities as
defined before. The temperature dependence of ji is
mainly determined by .c!l (T); thus the functional
relationship of .c!l(T) shown in Figure 2 holds to a very
good approximation also for the Josephson current
density ji'

An important parameter for the control of Josephson
current thresholds which is well defined in Josephson
tunneling junctions is the Josephson penetration depth:

(6)

with d=t+AI+>% the junction "thickness" into which
magnetic fields can penetrate, and all other quantities
as defined before. The Josephson penetration depth Aj
denotes the distance, from the junction edges in which
Josephson currents actually flow (as a consequence of
Meissner effect) as shown in Figure 4.

Since AJ o:jl-I/2 andjl 0: e- t , it is obvious that desirable
current distributions can be readily obtained for a wide

range of junction lengths L by simply changing the
oxide thickness t.

The magnetic field dependence of the dc Josephson
threshold current is strongly influenced by the current
distribution in the junction.

Let us first consider the case of AJ»L. Integration of
Equation (4) with appropriate boundary conditions
results in the expression:

. sin 11"<1>/ <1>0 •
Imax=)IW·L / • SIn cf> (7)

11"<1> <1>0

with <1>0 = hc/2e, the superconducting flux quantum
(2.07.10-15 V sec) and <1>= p,sH ·L·d the total magnetic
flux penetrating the entire junction cross section for
applied magnetic fields H. The dependence of Imax on
<1>/<1>0 is shown in Figure 5. The agreement between
theory and experiment is excellent.

For junctions with nonuniform current distribution
(A/" L) the magnetic field dependence of the threshold
current does not obey Equation (7); a full discussion of
this fact is beyond the scope of this paper. The resultant
dependence of the gate current threshold on the control
current for a junction with Aj""·· .. ·{71o)L is shown in
Figure 6, displaying again the excellent agreement of
the theoretical values (solid lines) and experimental
data (dots). It should be noted that the slope of the line
c-a approaches unity for AJ/L~O while the slope of
the line c-d approaches infinity. The asymmetry. with
respect to the I max axis is introduced in the so-called
in-line configuration by the ground plane, which causes
the magnetic fields of gate current and control current

30

0

25 0

0

0

20 0

;(
0

E
0

...... I~ c·
lal
a
0::
::>
u 10

5

0

0

°

Maximum de Josephson Current
lIS.

Magnetic Field
Sn-Sn

1.2-K

of»oo
o 0 •

o 0 r o
o· 0 0 0

o
GO 0

2 3
MAGNETIC FIELD (gauss)

Figure 5-Normalized diagram of Josephson threshold current
versus magnetic flux for junction with XJ » L.22

H. (Oe)
o

80

2 3 4

Figure 6-Diagram of Josephson gate current Ii versus control
current b with AJ « L.8

I. (mA)

-30 -20 -10 o 10 20 30

It (mA)

Figure 7-Diagram of Josephson gate current Ig versus control
current Ie for window type crosscontrol gate configuration as
shown on upper right (n denotes the ratio of gate line width to

control line width). 10

Josephson Tunneling Devices 1273

I

c R 1m sin cP

Figure 8-Equivalent circuit of Josephson tunneling junction,
driven by current I

to add if currents flow in parallel and to subtract if
currents flow antiparallel.

Symmetry with respect to the I max axis can be re
stored by arranging the control line perpendicular to
the gate lines in the so-called cross-controlled gate
configuration. The Imax vs Ie characteristic of a window
type version of this gate configuration as reported in
Reference 10 is shown in Figure 7. The straight lines in
Figure 7 indicate again a fairly nonuniform current
distribution. It should be noted that this configuration
permits one to raise the slope of the fg vs Ie lines above
unity by increasing the ratio n= W1/W2 which is fre
quently useful for gain considerations.

The dynamic behavior of Josephson tunneling gates

~f
/

/

/
I

/
/

/

---7 --

I
/

/
/

/ Rq

V2 VOLTAGE

Figure 9-Current-voltage diagram of tunnel junction exhibiting
Josephson and Giaever tunneling effects.13

1274 Fall Joint Computer Conference, 1972

is comprised of two aspects. One is the occurrence of
hysteresis in the voltage-current curve, the other the
dynamics during switching from V = 0 to V = 2~/ e and
back to V = O. Both effects are explained by resorting
to the equivalent circuit of a Josephson tunneling
junctionll as shown in Figure 8. Two overlying metal
films separated by a very thin dielectric layer evidently
form a capacitance C, the tunnel resistance is expressed
as a nonlinear resistance R (Giaever tunneling) and
the Josephson effect is represented by a nonlinear
Josephson current source (Imin sin ¢) with 1m being the
maximum Josephson current through the junction. The
differential equation of the equivalent circuit of Figure
8 in conjunction with Equation (3) produces the non
linear equation :

C dv 1 V . I
dt + Ii +Imin sm ¢= (8)

Equation (8) has been solved numerically for linear
resistance Rll and a current source driving the junction
with a dc current. The solutions show that hysteresis
grows for increasing capacitance. Numerical solutions
with nonlinear resistances R, more closely resembling
Giaever type tunneling should reflect the experimental
I-V curve of a Josephson tunneling junction as shown in
Figure 9 rather closely. The hysteresis is of interest for
circuit design since it permits the switching of gate
currents in excess of control currents without requiring
that the I max vs Ie characteristic exceeds a slope of
unity, thus providing for logic gain.

Equation (8) describes the time dependence of the
gate voltage Vet) when either the gate current Ig
exceeds the Josephson current threshold I max or the
Josephson current threshold Imax is reduced below the
gate current Ig (for example by application of a control
current I e). For the voltage rise, the Josephson current
term (Imax sin ¢) can be neglected in Equation (8). The
solution is then given by

Vet) =IgoR(l-e-tIRC) (9)

with R being approximated by the average resistance
of the Giaever tunnel curve for 0 < V < 2~/ e. The
voltage tends to rise to VI = I gO R. It is, however, clipped
at V = 2~/ e because of the small differential resistance
of the Giaever tunnel curve at Vg=2~/e. For IgoR»Vg
one may, therefore, express the rise time approximately
by ~t=IgoC/Vg.

The (I max sin ¢) term cannot be neglected in the
switching operation from V = V g back to V = O. Equa
tion (8) must be solved numerically in this case.
Simulations indicate that the ac Josephson currents

play a role in this case leading to oscillations and
requiring careful device and current design.

The equivalent circuit of a Josephson tunneling gate
driving a superconducting loop is derived by adding a
parallel inductance to the equivalent circuit of Figure 8.
The corresponding differential equation is given by:

dv 1 1 f ;
C dt + R V + L V dt+lmax(sm ¢) =1 (10)

Equation (10) indicates oscillatory behavior even when
the Josephson current term is neglected if care is not
taken to provide sufficient circuit damping. The com
plete Equation (10) must be evaluated numerically for
each case under consideration.

It is, of course, of interest to test the validity of the
equivalent circuit models for Josephson tunneling
circuits. Switching times for voltage rise and current
steering were measured and compared with calculated
switching times on the basis of the equivalent circuits
of Figure 8 without and with inductances.12 Agreement
is very good for voltage risetimes as short as 65 psec
and current steering time of 550 psec. The current and
voltage levels in this experiment were 17 rnA and 2.5
m V, respectively, leading to a switching energy of
1.4 0 10-15 Joule per switching operation or about 10 p,W
in continuous operation with 50 percent duty cycle. The
circuit dimensions in the experimental work were
rather large; a junction with an area of about 20 mil2

and a loop with a length of 410 mil were used. It is
expected that miniaturization with attendant reduc
tion in capacitances and inductances will result in even
shorter voltage rise and current steering times and in
lower power dissipation.

JOSEPHSON TUNNELING CIRCUITS FOR
MEMORY AND LOGIC FUNCTIONS

Some features of cryotron technology such as infinite
resistance ratios of the ON and OFF states, trapping of
magnetic flux, persistent current, etc., will also be ex
ploited in Josephson tunneling circuits. Specific features
of Josephson tunneling gates, such as the I-V hysteresis,
the well defined and relatively large gap voltage V g and
the ease with which Ig vs Ie characteristics can be de
signed will undoubtedly be used to advantage, too.

The basic circuit configuration for register and
memory elements is a superconducting loop comprising
Josephson tunneling gates for steering currents from
one branch into another and changing the direction.
(or amount) of magnetic flux trapped in the loop. The
storage of binary data can, for example, be accom
plished by setting up persistent supercurrents which

I
IIw

------~7~~----~

Figure IO-Memory cell comprising Josephson tunneling gates
for coincidence selection and nondestructive readout.13

flow clockwise ("I") or counterclockwise ("0") as
long as the loop remains superconducting.

As an example of a practical memory circuit13 Figure
10 shows a super conducting loop comprising two
Josephson tunneling gates for writing and controlling a
third Josephson tunneling gate for nondestructive
reading. The memory loop is in the selection line w;
the control line b overlaying both write gates serves
as a second selection line during writing; the interrogate
line i, which comprises the sense gate S acts as a
selection line during read out. The operation of the loop
as a bit organized memory cell is described next under
the assumption that there exists already a counter
clockwise circulating current Iw/2 in the loop which
represents a stored "0". First, a current pulse Iw is
applied to line w, causing currents of amount Iw/2 to
flow downwards through each branch of the loop.
(Both branches are assumed to be equal inductance.)
The applied and circulating currents superimpose,
leaving the right branch without current and causing a
total of I w to flow in the left branch. The write gates are
of the in-line configuration and their I max vs Ie char
acteristic is assumed to be asymmetric (Aj<L). A
coincident current pulse IBis then applied to the control
line b. If IB is directed from left to right (representing
a write "0" signal) it increases I max of the left write
gate and decreases Imax of the right write gate. None of
the gates will switch, however, since the actual gate
currents-Iw in the left gate and 0 in the right gate-are
smaller than the actual Imax values. If IB is, however,
directed from right to left (representing a write "I"
signal), I max of the left gate is decreased and I max of the
right gate is increased. With appropriate design
I w> (I max) left, the left gate switches and develops a

Josephson Tunneling Devices 1275

finite voltage, initiating transfer of the current Iw to
the right branch until the current through the left gate
falls below I min'-;O. This causes the left gate to return
to V = O. The current I w is now flowing through the
right branch, and the loop has again become super
conducting. Conservation of magnetic flux causes now a
clockwise circulating current Iw/2 to flow in the loop
representing a stored binary "I" upon termination of
Iw in line w.

For reading of stored information, I w is applied to w
in coincidence with an interrogate current Ii flowing
from right to left through line i. Superposition of Iw
with a clockwise or counterclockwise circulating current
subjects the sense gate underneath the right branch to
a control current of Ie=Iw and Ie=O, respectively, thus
rendering Imax<I i in the sense gate in case of a stored
"1", and I max> Iiin case of a stored "0". In consequence,
a finite voltage will be developed across the sense gate
only for a stored "1" but not for a stored "0".

The current steering mode can be applied as well to
larger loops comprising, for example, as branches
selection lines w, band i of memory arrays. It can be
argued that array lines w, band i in small memory
arrays may be of about the same length as the loop
(410 mil) of the high speed experiment mentioned in
the third section. Hence, one may project memory
cycle times in such arrays on the order of a nanosecond
since usually the selection of array lines represents the
major portion of the cycle time.

A drawback of the current steering mode in super
conducting loops of extended length in high speed
operation is the fact that the loops act as pairs of trans
mission lines above ground plane with a virtual short
opposite the switching gate, thus causing multiple
voltage and current reflections to travel along the lines
and slowing the current steering operation. This be
havior, especially undesirable in high speed logic cir
cuits may be remedied. In Figure 11, the Josephson
tunneling gate on the left drives a pair of striplines on
top of a ground plane with a characteristic impedance
Zoo The strip lines which serve as control lines for other
Josephson tunneling gates are terminated at the right

I,;, z() fR
•

2Z
•

~

Zo

10

Figure II-Schematic of high speed logic curcuit with terminated
striplines

1276 Fall Joint Computer Conference, 1972

end by a resistor of resistance R = 2Zo• If the Josephson
tunneling gate on the left switches from V =0 to V = Vg ,

two waveforms, one of amplitude + Vg/2 and the other
of amplitude - V g/2, will travel along the striplines;
they will find a matched termination condition at the
right end and be thus absorbed. Then the current
10= Vg/R will be established in the striplines right after
the wavefront has propagated along the line. This
current is a function of the (well defined) gap voltage
Vg and the resistor R only.

Logic functions can be performed in different ways,
for example, by overlaying several control lines on top
of a Josephson tunneling junction or by interconnection
of Josephson tunneling gates. If the 410 mil long loop
in the high speed experiment had been properly ter
minated, the loop current would have been fully
established in about 170 psec. (This assumes a 65 psec
risetime and a phase velocity of 1010 cm/sec in the
stripline.) In this case also, miniaturization is likely to
reduce risetime and propagation delay.

TECHNOLOGICAL ASPECTS

An important question is, of course, whether useful
devices and circuits can be made reproducibly, reliably
and economically. A full assessment can only be made
on the basis of a fairly extensive technological study;
short of that, one must be content with collecting what
ever data is available to date.

Following a recent review14 it can be stated that
Josephson tunneling junctions have been prepared
using a variety of superconducting metals, tunnel
barriers and preparation methods. A selection of super
conductors, along with their critical temperatures Tc
and energy gap 2.1, which have reportedly been used
for Josephson tunneling junctions are listed in Table 1.
Since operation at T~72Tc is preferred because of the
weak temperature dependence of a andjl in this range,
niobium and lead electrodes are desirable candidates
for this technology since they permit operation at

TABLE I-Superconducting Electrodes for
Josephson Tunneling Junctions

Electrodes Tc eK) 2~o (meV)

Nb 9.2 2.9
Pb 7.2 2.5
Sn 3.7 1
In 3.4 1
AI 1.26 0.38

T T-T~~~r'

1400~. ~

~

'\

~ 390 Ii
a. rr
~ 380·· ~
. ..: 370~ \

... I
360 ~- 0

i I
35°t:._l

22

~
~

~ \

r \
i DEPENDENCE OF JOSEPHSON

I -T----;
RUN

o 2
+ 3
o 5
6. 9

L
24

10
1 r· LOW BIAS CURRENT DENSITY I + I •

- ON OXIDE BARRIER THICKNESS \

\
\

100 ..L _ ._ L _ -L._ L . ..L __ ..L----l._ - .l.. __ .1-_ .1._ J. _.1
18 20 22 24 26 28 30

dpbO. A

Figure 12-Diagram of Josephson current density versus oxide
thickness in Pb-PbQz,-Pb junctions with indication (insert on
upper right) of run to run reproducibility of barrier thickness and

current density.u;

about 4.2°K, the boiling point of liquid helium at
atmospheric pressure.

Native oxides grown on the base electrode are pref
erable as suitable tunnel barriers for Josephson
tunneling junctions. Successful attempts of barrier
preparation by deposition of semiconductor films such
as CdS,15 tellurium16 have also been reported. However,
pinholes in the thin semiconductor films appear to
pose a problem which is usually overcome by a sub
sequent oxidation step which fills the pinholes in the
semiconductor films again by a native oxide. Hence, it
appears to date, that native oxides grown on the bottom
film electrode SI provide the best chance of getting
shortfree tunnel barriers which are sufficiently thin to
provide usable Josephson current densities for com
puter circuits.

Of major importance is the question of whether it is
possible to control the growth of a thin oxide film with a
thickness on the order of 20 A to 30 A sufficiently

80 Pb-PbxOy-Pb 4.zoK
00000000000000000.000000000000000,:)000000':>

o 0 00 0'"

______ oo~.<")_c_o_o.)-OJJ-o..S'..!}..2.':; ::..~~_o_o_o ____ ~
60000000co ------- 2MllS --

I Jmax _------- --3MllS
(mA) _--- -- ------ 4 MilS

40e-=-=~~~~~;;;6MILS

200r~-----==I=======~'=_===_'=_~====_='~~=~=======O'0
o 20 '40 60 80 . I

TIME (DAYS)

Figure 13-Diagram of Pb-PbOx-Pb junction stability over
extended period of time. I9

uniformly and reproducibly to obtain reasonably
reproducible Josephson current densities j1. Figure 12
depicts the results of a thermal oxidation experiment17
to produce Pb-PbOx-Pb junctions in a well controlled
oxygen atmosphere. The spread of current density j1
is about ±6 percent between independent oxidation
runs and even less on the same samples.

Dc-glow discharge experiments have been reported18
to result in a logarithmic time dependence of the oxide
thickness from which one can conclude that the re
producibility is reasonable here, too.

Another interesting variation of the dc glow dis
charge oxidation has been reported19 in which an rf
source is used rather than a dc supply and the sample
is affixed to the cathode. Two competing processes,
oxide growth and removal of oxide by rf-sputtering are
apparently at work leading to a simultaneous process
of surface cleaning and oxide formation. The inherent
surface cleaning aspect makes this method attractive
for large scale circuit integration where the electrodes
are being subjected to photoresist process steps prior
to the formation of the oxide tunnel barriers.

Another technological aspect concerns the stability of
the junction characteristics when they are thermally
cycled between cryogenic and room temperatures and
during shelf life. It was found that niobium junctions20

are excellent in this aspect. Figure 13 shows that lead
lead oxide-lead junctions21 can also be kept for an
extended time at room temperature and can be ther
mally cycled a number of times without undue change
of characteristics.

To date, the technological issues related to Josephson
tunneling circuits may be described as having yielded

Josephson Tunneling Devices 1277

some encouraging results; they can, however, not yet
be considered as being solved. More effort will have to
be invested to assess the feasibility and bring the
technology to fruition.

SUMMARY

Relevant basic physical and computer circuit aspects of
Josephson devices have been reviewed. I t has been
shown that Josephson tunneling devices are well char
acterized and perform in very good agreement with
numerical calculations on the basis of simple models.
They are potentially useful for high performance
computer applications since they possess the necessary
attributes of extremely high switching properties, and
of extremely little power dissipation; they adapt
readily to miniaturized LSI fabrication processes.

They do not suffer from basic switching speed
limitations of cryotron circuits caused by super
conducting-normal conduction phase changes and
low voltages. On the contrary, they promise to surpass
semiconductor circuit networks in operational speed,
and provide memory functions with zero standby
power.

Some technological aspects appear favorable, how
ever, much more work is required in order to demon
strate feasibility. The potential, however, appears to
warrant effort to address and solve technological
problems.

REFERENCES

1 B D JOSEPHSON
Possible new effects in superconductive tunneling
Physics Letters Vol 1 Page 251 1962

2 I GIAEVER
Energy gap in superconductors measured by electron tunneling
Physical Review Letters Vol 5 No 4 1960

3 D A BUCK
The cryotron-a superconductive computer component
Proceedings of the IRE April 1956

4 J BARDEEN L N COOPER J R SCHRIEFER
Theory oj superconductivity
Physical Review Vol 108 No 5 1957

5 R HOLM
The electric tunnel effect across thin insulator films in contacts
Journal of Applied Physics Vol 22 No 5 1951

6 I GIAEVER K MEGERLE
Study oj superconductors by electron tunneling
Physical Review Vol 122 May 1961

7 B D JOSEPHSON
Coupled superconductors
Advances in Physics Vol 14 Page 419 1965

8 J MATISOO
Josephson-type superconductive tunnel junctions and
applications
IEEE Transactions on Magnetics Vol MAG-5 1969

1278 Fall Joint Computer Conference, 1972

9 T A FULTON DE McCUMBER
de Josephson effect for strong-coupling superconductors
Physical Review Vol 175 No 2 1968

10 J P PRITCHARD JR W H SCHROEN
Superconductive tunneling device characteristics for array
application
IEEE Transactions on Magnetics Vol MAG-4 No 3 1968

11 W C STUART
Current-voltage characteristics of Josephson junctions
Applied Physics Letters Vol 12 Page 277 1968 and
D E McCUMBER
Effect of ac impedance on dc voltage-current characteristics of
superconductor weak-link junctions
Journal of Applied Physics Vol 39 Page 3113 1968

12 H H ZAPPE K R GREBE
Ultra-high-speed operation of Josephson tunneling devices
IBM Journal of Research and Development Vol 15 No 5
1971

13 W ANACKER
Potential of superconductive Josephson tunneling technology
for ultrahigh performance memories and processors
IEEE Transactions on Magnetics Vol MAG-5 No 4 1969

14 J MATISOO
Josephson tunnel junctions
Conference Digest 1972 Applied Superconductivity
Conference (to be published)

15 I GIAEVER
Photosensitive tunneling and superconductivity
Physical Review Letters Vol 20 No 23 1968

16 J SETO T VAN DUZER

Supercurrent tunneling junctions with tellurium barriers
Applied Physics Letters Vol 19 No 11 1971

17 J M ELDRIDGE J MATISOO
Measurement of tunnel current density in a metal-oxide-metal
system as a function of oxide thickness
Proceedings of the 12th International Conference on Low
Temperature Physics September 1970

18 J L MILES P H SMITH
The formation of metal oxide films using gaseous and solid
electrolytes
Journal of Electrochemical Society Vol 110 Page 1240 1963

19 J H GREINER
Josephson tunneling barriers by rf sputter etching in an
oxygen plasma
Journal of Applied Physics Vol 42 No 12 1971

20 L S HOEL W H KELLER J E NORDMAN
A C SCOTT
Niobium superconductive tunnel diode integrated circuit
arrays
Solid State Electronics (to be published)

21 W SCHROEN
Physics of preparation of Josephson barriers
Journal of Applied Physics Vol 39 No 6 1968

22 D N LANGENBERG D J SCALAPINO
B N TAYLOR
J osephsQn-type superconducting tunnel junctions generators
of microwave and submillimeter wave radiation
Proceedings of the IEEE Vol 54 No 4 1966

23 J M ROWELL
Magnetic field dependence of the Josephson tunnel current
Physical Review Letters Vol 11 No 5 1963

Magnetic bubble computer systems

by R. C. MINNICK

Rice University and Consultant to the Monsanto Company
Houston, Texas

P. T. BAILEY and R. M. SANDFORT

The Monsanto Company
St. Louis, Missouri

and

W. L. SEMON

Syracuse University and Consultant to the Monsanto Company
Syracuse, New York

INTRODUCTION

The purpose of this paper is to extend the work
presented earlier! on the methods for performing logic on
magnetic bubble chips, and to illustrate these techniques
by presenting the outline of a design for a general
purpose digital computer.

Magnetic bubble materials have received extensive
treatment in the literature during the past few years,2-9*
and numerous memories have been designed and tested

(A) PERMALLOY CIRCUIT ELEMENTS

x /\ _F 23=XY+XZ+YZ==MAJ(X,Y,Z)

Y -0- F1 =XYZ

Z F127 =X+Y+Z

(B) SYMBOLIC CIRCUIT

Figure 1-Primitive realization for class 1

* Only a few of the more important materials papers are cited.

1279

X~F23=XY+XZ+YZ X~F23=XY+YZ+XZ

Y 0 F43 =XY+YZ'+xz' Y-yFlO5 =XE!7Y$Z

Z FS5=Z "Z_o --F23=XY+YZ+XZ
(A) CLASS 29 (8) CLASS 25

x~r7 =X(V+Z)

Y D F17=YZ

Z---F127=X+V+Z
(C) CLASS 3

x 0 F31=X+YZ

V D F1=XYZ

Z---F1l9=Y+Z
(E) CLASS 2

Z---FS5=Z

(I) CLASS 8

x F31=X+YZ v-B- F33 =y(xEBz')

Z FS7=Z+XV

(K) CLASS 19

x & F7 =X(V+Z)

Y W F123 =Y+(X$Z)

Z---F2i =Z(X+Y)
(D) CLASS 9

X--zs:-F23 =XY+XZ+VZ

Y-U-F41 =Xyz+z'(x$V

Z---FS7=Z+XY
(F) CLASS 28

x M-F7=X(V+Z)

V ---\}- F 121 = X'(Y+Z)+X(YEBz')

z-- -- F23=XY+XZ+VZ=MAJ(X,Y,Z)

(J) CLASS 10

X--- ------ F31 =X+YZ

Y 0 F35 =Y(X+ Z')
o

Z FS5 = Z

(L) CLASS 21

Figure 2-Additional primitive realizations

1280 Fall Joint Computer Conference, 1972

INPUT PERMUTATION

CLASS/
1 2 3 4 5

ZXY
6

ZYX XYZ XZY YXZ YZX

1 23 1 127
2 31 1 119
3 7 17 127
4 3 125 23
5 3 29 119
6 115 5 31
7 3 61 87
8 3 63 85
9 7 123 21

10 7 121 23
11 63 67 21
12 59 71 21
13 43 21 87
14 35 21 95
15 7 59 85
16 29 103 19
17 7 57 87
18 63 65 23
19 31 33 87
20 35 29 87
21 31 35 85
22 35 93 23
23 15 51 85
24 71 29 51
25 23 105 23
26 61 67 23
27 23 99 29
28 23 41 87
29 23 43 85
30 71 25 55
31 83 29 39

Figure 3-Table of the 3-3 circuits

using this medium. However, only a small amount of
logic research has been reported for magnetic bubbles. 4-22

It is conjectured that the relatively slow data rates in
bubble materials (105 to 107 bits per second in garnets)
account for this: designers anticipate performing the
memory functions (perhaps including the address
decoders) on bubble chips, and the logical functions on
silicon.

This approach, while it may be satisfactory in certain
cases, appears to be inadequate if the number of data
channels between the memory and the logic is large.
This is because most~cceptable bubble readout methods
require a large area in order to obtain reasonable
signal-to-noise ratios. Furthermore, by having logic
separate from the memory, numerous opportunities are
missed for useful intermixtures of the two. Therefore, it
is expected that there will be a significlmt need for logic
accomplished in the bubble medium.

SUMMARY OF CONSERVATIVE BUBBLE
LOGIC

Magnetic bubble circuits that are memory-free and do
not create or destroy bubbles are termed conservative,20

and a conservative magnetic bubble circuit having n
input variables and k output combinational switching
functions of these variables is called an n-k circuit. The
2-2, 2-3, 3-3, 3-4, and 3-5 circuits have been treated
earlier!,20 and these results will be briefly summarized.

One of the 3-3 circuits is shown as Figure 1, first in
terms of the permalloy circuit elements, and then in a
symbolic form. It is observed in Figure 1 (A) that a
gradient is established in the field of the circuit elements
because of the varying heights of the chevrons: a single
bubble which enters on any track is moved downward to
exit on the bottom track. However, if two bubbles enter
on any pair of tracks, the mutual repulsion forces them
to the top and bottom output tracks. The decimal
subscripts on the output functions, F231 FI and F127
indicate, when they are converted to binary, the
truth-table form for the functions.

Twelve other 3-3 circuits are shown in symbolic form
as Figure 2. In this figure, the rectangle represents a
field of circuit elements with no gradient, the circled
triangle is a strongly graded field of elements, and the
small circle represents two bubble tracks sufficiently
close together that bubble repulsion is effective.

There are 729 3-3 circuits;1 for the convenience of
presentation, these are arranged into 31 equivalence
classes under all permutations of the three inputs and
three outputs. These equivalence classes and the six
corresponding input permutations are given as Figure 3.
One member of each equivalence class is realized in
terms of the thirteen primitive realizations in Figure 4.
By permuting the inputs and outputs of the magnetic
bubble circuits in Figure 4 in accord with the table of
Figure 3, all 729 3-3 circuits may be formed.

NON-CONSERVATIVE BUBBLE LOGIC

It is possible to create a bubble with a device called
a generator, to destroy one with an annihilator and to
split a bubble on one track into a bubble on each of two
tracks with a splitter. These devices, along with several
others that are used in this paper, are symbolized as
shown in Figure 5. If generators, annihilators, splitters
or similar devices are used in bubble circuits, the circuits
are termed non-conservative. In this section several
non-conservative bubble circuits will be developed.

The class 24 conservative 3-3 bubble circuit in
Figure 4 is of some interest, because it is a controlled
permutation.23 This circuit is drawn with a different
output permutation in Figure 6(A), and symbolically in
terms of the Kautz-Levitt-Waksman notation as
Figure 6(B). Because this cell has useful logical
properties, it is of some advantage to reduce the
number of bubble-track crossings. By introducing two
generators and four annihilators, it is possible to
eliminate all such crossings for this cell; the resulting
non-conservative circuit is shown as Figure 6(C). If one
uses bubble splitters, an improved circuit can be found:
it is shown as Figure 6(D).

A slight variation of the circuit of Figure 6(D) yields
a circuit for performing a crossing of two bubble tracks
without actually having them physically cross. This
circuit is drawn as Figure 7(A). In Figure 7(B) is a
conservative bubble circuit which converts a non-dis
joint crossover into a disjoint one (see Figure 5). The
advantage of this latter circuit is that the operating
margins for a disjoint crossover are wider than for a
non-disjoint one.

In order to obtain fan-out, some means for replicating
a bubble is needed. A bubble splitter is a well-known
example of such a replicator. A logical bubble splitter can
be formed with a non-conservative bubble circuit as
shown in Figure 8(A). If one has need for a larger
number of bubbles, the bubble multiplier of Figure 8(B)
can be used, or a tree of these can be assembled as
shown in Figure 8(C). If this tree of multipliers has n

C N

1 6

2 18

Magnetic Bubble Computer Systems 1281

REPRESENTATIVE
CIRCUIT

x ____ ~----_ XV+XZ+VZ

V ~ XVZ

Z z=:s x+V+Z

X ___ --:= _____ x+VZ

V D XVZ

Z L V+Z

X ___ ---::--____ X(v+Z)
{}

3 18 V ~ VZ

Z 6 X+V+Z

X __ ~ ____________ xv

1\ 0
4 18 V_--=Lj.=-____ ---- Z+(X$V)

z \l XV+XZ+VZ

5 36

==~ _________ XV

x ___ D=-__ ----....
V 0 >-XV'+VZ

Z 6. V+Z

6 36

x ____ ,-____ V+X'Z

V o:X XZ

Z __ ~ __________ ~~~_X+VZ

7 18

X ---:---_______ XV

V 6 0 XZ+(X$V)

Z 0 Z+XV

X ________ ~--------_XV

8 18
V X+V

Z Z

9 18

X----~---_X(V+Z)

V £ V+(X$Z)

Z W Z(X+V)

10 18

x ________ X(V+Z)-

V &. X' (V+Z)+X(V$Z')

Z V XV+XZ+VZ

Figure 4-Realizations for all 3-3 circuits

1282 Fall Joint Computer Conference, 1972

X+Y C N X 0 X Y(X+-Z') c N X L V 0
Z+XY' 22 36 Y 11 18 Y > XV+X'V'Z 0 V 0 XY+XZ+YZ Z Z

D Z(X+Y)
X X

X y+XZ'
23

y Y
& Y(0 6

12 36 Y XV+Y'Z Z Z

Z 0 W Z(X+Y)
XV+Y'Z

X XV+XZ'+VZ' X D
Y ~ K Z(X+Y) Y 0 XY'+YZ 13 18 24 18
Z 0 Z+XV Z 0

Y(X+Z') 0 y X

14 36 Y OK Z(X+V) X Xy+xZ+YZ

Z
0 ~ x+z 6 XEBY~Z 25 3 Y

X X(V+Z) Z \J XY+XZ+VZ

15 36 Y & Y+XZ'

Z
0 Z X xz+(XEBY)

6 Jt y 0 0
XY+X'Y'Z 26 18

X

&~
·XY'+YZ 0 '\1 XV+XZ+YZ Z

16 36 0 0
V

W Xo W
XY+(YEBZ)

Z Y(X+Z) XV+XZ+YZ

X D 0
X X(V+Z) 0b.>-X °

XV+X'(YEBZ)

&. 27 36 Y
17 y VZ+Z'(xEBV) XY'+YZ 36

D Z
z Z+XV

X XY+XZ+YZ
X X+Y 28 18 Y 6 XYZ+Z'(X$Y) \l 0 D 18 18 Y Z(xEBV') Z Z+XY
Z \l XY+XZ+YZ

X XV+XZ+VZ
X X+YZ 29 18 Y L XV+YZ'+XZ'

19 18 Y B Y(X$Z/) Z 0
Z

z Z+XV
X 0)(XY +Y'Z X Y(X+Z/) 0 0

0 X 0 30 I 36 Y VZ+XV/Z'
20 36 Y XV'+YZ oX 0 0 0 0 Z Y+XZ Z Z+XV

X X+YZ
XY+X'Z 0 21 36 Y V(X+Z')

Z 0
Z 0 X

31 12 0 XY'+YZ
Y

C= CLASS NUMBER

N = NUMBER OF CIRCUITS IN THIS CLASS 729
Z XZ+VZ'

Figure 4-(continued)

)

)

1)

-+-) ----rgJ

CURRENT CONDUCTOR

BUBBLE TRACK

GENERATOR

ANNIHILATOR

SPLITTER

NON-DISJOINT CROSSOVER

Xy$O

DISJOINT CROSSOVER

XY=O

OR of DISJOINT VARIABLES

XY=O

BUBBLE DETECTOR

CURRENT--CONTROLLED
BUBBLE GENERATOR

~ AUTONOMOUS BUBBLE GENERATOR

Figure 5-Symbols for bubble circuits

Magnetic Bubble Computer Systems 1283

x 0

~
Xy+Y'Z

Y
0

Y
0

XY'+YZ Z
0
(A) CLASS 24 3-3 CIRCUIT

*
XY+Y'Z

Y Y

Z XY'+YZ *
___ x X~Z_o

1 . ___ 1 o~

Z Z Z X

(8) CLASS 24 AS A PERMUTATION CELL

x 0

~\ 0 0 rzI
0 XY+Y'Z

Y
0 B Y
0

XY'-!-YZ
0 t8J ~j 0 0

Z
0

(C) CLASS 24 NON-CONSERVATIVE CIRCUIT WITH NO CROSSOVERS

X~ XY+Y'Z

Y 0 D Y

z ~/XY'+YZ
(0) IMPROVED CLASS 24 NON-CONSERVATIVE CIRCUIT USING SPLITIERS

Figure 6-Non-conservative circuits for class 24

levels, there are (5n + 1)/2 bubbles produced at the
output for a single input bubble.

Bubble flip-flops are essential to any digital system,
and both trigger (T) flip-flops and reset-set (R-S)
flip-flops have been reported.12 Both of these flip-flops
depend on a trapped bubble in an idler loop. It is
instructive, however, to display alternative flip-flops
based on the 3-3 circuits of Figure 4. Two of these are
shown as Figure 9. While these flip-flops are based on the
circuit for equivalence class 9, several other circuits
would do as well.

DECODERS

The bubble circuits that have been described can be
assembled into decoders. For instance, Figure 10 shows

1284 Fall Joint Computer Conference, 1972

~ 0

~7
x----~~~ __ --~--
Y--r=~~~----~---

AL TERNA TlVE

y

i\

x
v

sf 0 ~

~
y

x

(A) NON·CONSERVATIVE

~Y x
V 7 x

xv'
(B) CONSERVATIVE

Figure 7-Logical crossover circuits

=o=------X
--.,;=---IZ!

o X----------------_X
(A) BUBBLE SPLITTER

x

1---------------1
1 ! O~----r----X
: l------;----X'
1 0

x~:--------T----X

x

X'

X

X'

X

t 0
X' i 1 0

1 ------~I----X
1 1 I _______________ !

(B) BUBBLE MULTIPLIER

r---..---X
X'
X
X'

'----.L--X
r---..--- X'

X
X'
X

'-------'--- X'
.-----.---X

X'
X
X'

-----L--X
r---..--- X'

X
X'
X

~--.L--X'

,---r---X
X'
X
X'

'----'---x

(C) TREE OF MULTIPLIERS

Figure 8-Logical bubble multipliers

(A) T FLIP-FLOP

~STORAGE LOOP

R 0 ~
S--__ /

x

(8) R-S FLIP-FLOP

Figure 9-Bubble flip-flops

a four-variable decoder based on the circuit for class 21;
it has 11 bubble-track crossings, one generator and four
annihilators. An alternative version is shown as
Figure 11; in this case the number of crossings is the
same, while four splitters and four additional annihila
tors are inserted to make the layout simpler.

w w w w w w 1/':
X' x' x' x x x x

yl Y Y yl yl Y Y
Z Z· Z z· Z z· Z

Figure 1Q-Decoder using class 21

W-------,loo

:;;; :;;; :;;; :;;; ::;; ::;; ::;; ::;;
x x x x >< >< >< >< >< >< >< >< ><
-< -< -< -< -< -< -< -< -< -< -< -< -< -< -< -<
N "::! ~ N N ~ ":' N N ":' ~ N N ~ "::! N

Figure ll-Alternative decoder using class 21

Figure 12(A) illustrates a two-variable decoder with
no crossovers. In order to assemble decoders which
handle high numbers of variables from this two-variable
decoder, the planar crosspoint circuit shown in Figure
12(B) is useful. By putting the circuits of Figure 12(A)
and (B) together as shown in Figure 12(C), a four
variable decoder results. It should be emphasized that
this decoder has no physical bubble-track crossovers. If
it is desired to matrix the 16 outputs of two decoders
similar to the one in Figure 12(C) in order to form an
eight-variable decoder and still to retain planarity, it
will be necessary to use logical crossover circuits similar
to the one shown in Figure 7(A) in order to bring the 16
outputs of Figure 12(C) into a row so that they can be
matrixed.

MAGNETIC BUBBLE COMPUTER

Assumptions

It is the belief of the authors that a sufficient variety
of bubble logic has been described so that any digital
system can be efficiently designed. To illustrate this
conviction, a sketch for the design of a magnetic bubble
computer will be given. Such a design exercise will
additionally show the structure of various bubble digital
subsystems and expose those areas in which further
work needs to be done.

Magnetic Bubble Computer Systems 1285

Since the speed of propagation in magnetic bubble
circuits is presently in the range of 5 to 300 meters/sec.,
which is several orders of magnitude slower than the
propagation speed for electrical signals in wire, one
design criterion is that the over-all operating speeds of
the bubble computer be realistic. For similar reasons,
the memory size must be realistic. On the other hand,
no useful purpose is served in this design exercise by
including an input-output system or an interrupt
structure.

Specifications

The memory for this computer consists of 16 serial
shift registers which are designed to incorporate a small
amount of logic. These shift registers are called mark
time lines. Each shift register holds 256 words of 16 bits
each, and the address capability is provided to lengthen
each shift register to 65,536 words. Therefore, the
memory size ranges from the 4,096 words shown in the
figures that follow, to 1,048,576 words.

The number system is two's complement with the sign
bit inverted. This number system is particularly suitable
for asynchronous operations because all valid words
have at least one binary l.

There are 32 logical sub-systems in the bubble
computer: they are called modules. Sixteen of these

a
x
x'v

x X'Y'
1 A

XY

Y X~

Y

(A) PLANAR TWO·VARIABI E DECODf R AND SYMBOl

(B) PI ANAII CliOSSI'OIN) ANIl SYW301

Figure 12-Planar decoders

1286 Fall Joint Computer Conference, 1972

y 1 z

A

B B B B

w W'X Y'Z W'X Y'Z'

B B B B

1 A
W'X'Y'Z W'X'Y Z

B B B B

x WX Y'Z

B B B B

(C) PLANAR FOUR-VARIABLE DECODER

Figure 12-(continued)

modules constitute logical interfaces between the 16
shift registers and the arithmetic portions of the
computer. The other 16 modules are specialized to
various arithmetic, logical and control functions. Some
of these contain one or several storage registers as
appropriate. The modules are interconnected by a
closed buss called a daisy chain.

The instruction format is shown as Figure 13. All

DC DA SC

SA: Address of Source Module
SC: Source Module Control Field
DA: Address of Destination Module
DC: Destination Module Control Field

Figure 13-Instruction format

W'X Y Z'

W'X'Y Z'

SA

Magnetic Bubble Computer Systems 1287

NATURAL PARTITIONS
AMONG CHIPS

"" ,........
00t-4-4

W W W
Z Z Z
::::iJ ::::i
W W W
I~I I~' '~I
I i=' I-I I-I r- I-
~ ~ ~
0::: 0::: 0::: « « «
~ ~ ~

\ /' ""I '-_/ --- _--

................ _-- ---
~

+
""-4

W
'2' l::::i l

W

••• ~
i=
~
0:::
«
~

Figure 14-Bubble computer block diagram

"

'1
I
l

" , ,

/
/'

./

,
\

/
/

\
\

\
\
\
\ ,
I ,
I
I
/,

I "
/

....-4
('Y')

W
I Z,
I ::::i I

w
~

••• i=
~
0:::
«
~

,----~

1288 Fall Joint Computer Conference, 1972

255 16-BIT LOOPS

BUBBLE
DETECTOR

Figure I5-Schematic of mark-time line

I
I
I

LEGEND

--- BUBBLE TRACK

--- CONDUCTOR

I BONDING PAD ---

O CURRENT-CONTROLLED
BUBBLE GENERATOR

o BUBBLE DETECTOR

CONDUCTOR
SHIFT

CONTROL

instructions consist of designating a transfer from one
of the 32 modules to another module, or of initiating a
search for a word location in a mark-time line. Further
more, each of the source and destination modules
receives a three-bit control which is used to designate
the specific module actions during the transfer.

The computer control utilizes two of the modules for
designating the line from which instructions presently
are being delivered, and for buffering the instruction
which is being executed.

A block diagram for this bubble computer is given as
Figure 14.

M ark-time lines

Magnetic bubble shift registers have been extensively
studied, and their design is well-known. Therefore, a
modified shift register storage has been chosen; it is
shown schematically in Figure 15. There are both
bubble tracks and current conductors in this figure; in
order to avoid confusion, bubble tracks appear as
narrow lines.

In the absence of a current applied to the conductor
shift control in Figure 15, the bubbles in the memory
move around the 255 closed 16-bit loops. At the end of
one word time, the whole memory is in the same
condition it was in the previous word time. Thus, even
though the drive is continually applied, the words are
effectively marking time: therefore, the name. On the

\
\
L

/

STORAGE LOOP OF LENGTH w+ K 1
W = WORD LENGTH
Kl = UNUSED STORAGE

T
W =16
Kl=1
K2=15

STORAGE W
EFFICIENCY = W+K 1+K2 0.5

t
I -,

~ TRANSFER PATH OF LENGTH K,

]'igure 16-Schematic of loop length and transfer path length

Magnetic Bubble Computer Systems 1289

Figure 17-Realization for the mark-time line

other hand, if a current is applied to the conductor shift
control in Figure 15, information advances from the
output paths of each 16-bit loop into the next loop.
Therefore, the conductor shift control current deter
mines whether the words advance around the delay line
or mark time. The principle of the weak S-curve1 is used
in the mark-time line.

Figure 16 shows some of the design parameters in this
storage device, and Figure 17 is a multi-chevron layout
for two loops.

Line modules

It is seen from Figure 14 that each of the 16 mark-time
lines is connected to one of modules 16 through 31.
These memory-interface modules are termed line
modules.

Each line module contains one word of the mark-time
line: it is called the datum register, or DR. In addition,
there are two serial one-word registers associated with
each line module, the present address register (PAR) and

1290 Fall Joint Computer Conference, 1972

IN OUT .. CONTROL

.0 .0 :0
<J) <J)

~ ~

~~ ~

IDID
I I I a. a. a.

~ 0 0 0 I IJJJ
~ ~ ~

0:0:
<!<! a. a. a. (/)0. :::J ::::i ::::i

~ ~ I..i....

N >- x

x y

0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

~

x

t d 1
c e f g p s b w x

:0
......

I LINE MODULE >-
0:
0:
0:(
u

C E F G P S B R T H

I I
I I

z OUTPUT

0 IN -OUT
1 0 --OUT
0 DR --OUT
1 SAR--OUT
0 0 --OUT
1 0 --OUT
0 PAR-OUT
1 DR -OUT

E = XP29 + e(cP2S)'
F = XP30 + f(cP2S)'
G = XP 31 + g(cP2S)'

,
RUN

(A) BLOCK DIAGRAM

PAR SAR

Recirculate Recirculate
Recirculate Write
Recir cula te Match PAR
Recirculate Read
Write Recirculate
Recirculate Recirculate
Read Recirculate
Count Count

(B) CONTROL CODES

T = e' f' g' w + e' f g s + e f g' p + f (e EB g') b
p = p [e' +(f EEl g)] + f' g' w + e f g [p EEl c EB (x z)]

I

H D

LtL-
""""--

D

L

DR

Recirculate
Recirculate
Read
Recircula te
Recirculate
Write
Recirculate
Recirculate

S = s [f' g' + (e EB f EB g)'] + e' f' w + e f g [p EEl c EB (x z)]
c = [e f g Maj (p, c, x z) + f' (e EB g) (w + c) + e f' g c (p EEl s)] P2S'
R = f (e EEl g')
D = [f + C (e + g)] P2S
H=e+f+g
B = (e' + f + g') b + e f' g w

(C) LOGICAL EQUATIONS

Figure· 18-Line module

~

the search address register (SAR). The present address
register contains the address of the word currently in the
datum register. Because each mark-time line is started
and stopped under control of its line module, the
nc rementing of the present address register is similarly
controlled in order to keep track of the present memory
address.

It is well-known that even though random-access
memories are in common use today, memory accesses
iare frequently too sequentially organized items. That is,
the program often is stored in segments, each of which

is in contiguous memory locations. Similarly, related
data such as matrices often are stored adjacently in
memory. For these reasons, it is believed that the
mark-time lines will be accessed for the next word in
sequence much of the time, and only occasionally for a
word at a random location.

In order to provide for the occasional random access
to a word in a line, the address of the desired word is
loaded into the search address register of its line module,
and it in turn provides the conductor shift control called
the run signal to the mark-time line. When the present
address register equals the search address register, the
desired word is located in the datum register of the line
module and the run signal is automatically removed.

Because this searching process for the head of a new
set of contiguous data or program segment may take a
significant amount of time, the line modules are
organized such that this operation may proceed
autonomously of other operations on the daisy chain.
Therefore, the programmer may arrange to have such
sets of data or program in separate mark-time lines, and
start the search procedure for the head of any such set
sufficiently prior to its need.

Some of the details of the line module are shown as
Figure 18. In addition to the three one-word registers
DR, SAR, and PAR, there are three flip-flops which
buffer the three-bit sequential control field x. Depending
on the control code, the module is arranged to perform
one of eight actions as detailed in Figure 18(B). It
should be noted that the absence of a control code
corresponds to x = (0, 0, 0); in this case, the input is
transferred to the output and the various registers are
recirculated. The logical equations appear as Figure
18(C).

All flip-flops are reset at bit time P22• The control
system initiates the action in a line module by delivering
the three sequential control bits x at times P22, P ao, and
p 31, as shown in Figure 18. If a given line module is a
receiving module, then when it has received any word
destined for it on the daisy chain, a signal D is sent back
to the control system. Therefore, the D signal indicates
that the daisy chain is clear, and the eontrol system may

Magnetic Bubble Computer Systems 1291

proceed with the next operation. However, if a search
of a mark-time line is under way, an H signal is made
true so as to delay any further control signals destined
for the given module.

Special modules

The remaining 16 modules on the daisy chain in
Figure 14 serve various functions as shown in Figure 19.
Module 0 holds a pointer to the mark-time line from
which instructions presently are being obtained, while
the fetched instruction is buffered in module 4. Modules
1, 2, and 3 are index registers which index instructions
as they pass through on the daisy chain. Modules 5
through 8 are four identical arithmetic registers: each
performs additions and subtractions. Modules 9 and 10
are used together for the purpose of shifting numbers
that pass through. It is necessary to use two modules for
shifting because of the limited number of control bits,
and modules 12 through 15 are simple buffer registers
which store intermediate results.

The block diagram for a general register module is
shown as Figure 20(A). Only two of the three control
bits are needed for this module, as shown in Figure
20(B), because four operations are sufficient for the
desired actions. The logical equations for this module
are given in Figure 20(C), and they are shown as bubble
logic realizations in Figure 21.

Analogous details for the accumulator modules appear
as Figure 22.

Module Abbreviation Name

MO LNR Line Number Register

MI BRI Index Register Number I

M2 BR2 Index Register Number 2

1\13 BR3 Index Register Number 3

M4 lR Instruction Register

1\15 ARI Accumulator Register Number I

M6 AR2 Accumulator Register Number 2

M7 AR3 Accumulator Register Number 3

MS AR4 Accumulator Register Number 4

M9 SRI Shift Register Number I

MIO SR2 Shift Register Number 2

Mll MR Immediate Register

Ml2 GRI General Register Number I

Ml3 GR2 General Register Number 2

Ml4 GR3 General Register Number 3

Ml5 GR4 General Register Number 4

Figure 19-5pecial modules

1292 Fall Joint Computer Conference, 1972

IN

L1..
L1..

~
W (])

L1.. L1..
~ C L1..
Cf) 0 L1..

(!)
-0 N >.

W ~ +-' ."t::
~ .Q :0 .Q

..- ~ ..-i ~ :0
I..D
~

z
0 0
0 1
1 0
1 1

CONTROL
, -"'-' x t ~

--.l (

r s q b w x

GENERAL REGISTER MODULE

R S QB T H D

LJI I I

(A) BLOCK DIAGRAM

OUTPUT REGISTER
IN ~ OUT Recirculate
IN ~ OUT Erase
0 ~ OUT Write

REGISTER~ OUT Recirculate (Read)

(B) CONTROL CODES

R = xP30+ r(qP28)'

S = XP31+ S·(qP28)'

Q = (w + q) P28 '

B = (r EB s') b + r s' w
T = r' w + r s b
D = (qr + r's) P28

H = 0

(C) LOGICAL EQUATIONS

Figure 2D-General Register module

OUT

Magnetic Bubble Computer Systems 1293

w ~~--------~D=L--~--------~r-----------~T o

o
1-D--~

>-----~--------------------------~D

q

D
~ P30

,.
0

x ,. ~
0

P
31

.. [gI
D

Figure 21-Bubble logic realization for the general register module

1294 Fall Joint Computer Conference, 1972

IN

"-
<l> lL. lL.
(/)

tlD lL. u.. >I
<l> lL. "-

0::: I.L. I.L. I.L. "-
co

N >. >< u
......

c e f g s w

ACCUMULATOR

C E F G S

CONTROL
~

x + ~
L

x

MODULE

T H D

----..... ~ OUT

:.a ~ :.a :c :.aU I 1.0
.c I L

i.....t-I-I-I ~

X Y z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

E = XP29 + e(cP2S)'
F = xP30+ f(cP2S)'
G = XP31 + g(cP2S)'

(A) BLOCK DIAGRAM

OUTPUT REGISTER

IN~ OUT Recirculate
0---.. OUT Erase
0---" OUT Write Input
0---" OUT Negative Write
S ---.. OUT Recirculate
-S---" OUT Recirculate
0---.. OUT Add Input
0---.. OUT Subtract Input

(B) CONTROL CODES

T = e' f' g' w + ef' g' s + eft g (s' (B x)

OPERATION

IDLE
ERASE
WRITE
NEG. WRITE
READ
NEG. READ
ADD
SUBTRACT

S = f' s (e + g') + e' fg' w + e' fg (w' EB y) + efg' (s EB w EB c EB P 2S)

+ efg (s $ w' EEl c EB z EEl P2S)
C = [efg' Maj(8, w, c) + ef~(Maj (8, w', c, z) + f' (e + g') + e' f (w + c)] P'2S
D = P 2Sc
H = 0

(C) LOGICAL EQUATIONS

Figure 22-Accumulator module

Control circuits

The magnetic bubble computer operates on a
conventional fetch-execute cycle. During the fetch
phase the address of the line module from which the
instruction is to be fetched is obtained from module 0
and decoded. Module 0 always· designates module 4 as
the destination for the instruction fetch; therefore, two
decoding circuits serve to steer the source and destina
tion control fields to the appropriate modules. Once
module 4 has received its new instruction, it sends a D
signal back to the control, indicating that the daisy
chain buss is clear. This D signal switches the control
system into the execute phase.

In the execute phase, the source and destination
address fields from the instruction control the decoder to
steer the source and destination control bits to the
correct modules. When the destination module signals
that the daisy chain buss is clear by sending a D signal
back to the control circuits, the fetch phase is reentered.

The circuits associated with the control are shown in
Figure 23. In Figure 23 (A) is a trigger flip-flop similar to
the one in Figure 9(A) which alternately steers the
control of module 0 (the x signal) and of module 4 (the y
signal) to the output X in accordance with the returned
buss-clear control signal d (D at its sources). This
accomplishes the fetch-execute control. In Figure 23(B)
is a block diagram for a five-stage serial parallel
converter, which converts the x signal (X of Figure
23(A)) into a five-bit parallel word. A bubble design for
one stage of this converter is shown in Figure 23(C).

Each bubble output from the serial-parallel converter
is converted into a sequence of three bubbles using the
bubble tripler of Figure 23(D). This tripler is derived
from the circuit of Figure 8(B); it causes the decoder to
be held at its value for three bit times so that the control
field can be steered to the correct module. Finally, the
outputs of the five bubble triplers feed the Ti3 inputs
of the 32-output decoder in Figure 23(E). The C input
of that figure is the three-bit control field.

Bubble chip area and speed considerations

It is estimated that this computer would fit onto
between six and 20 bubble chips. For the portions of the
computer exclusive of the mark-time lines, the assump
tion is made that a logical circuit is approximately four
circuit periods long and three high. Using several
designs as samples, it appears that when all auxilary
items such as generators; annihilators, bubble tracks,
etc., are taken into account, the average area occupied
by one gate is between 50 and 150 periods.2 Conserva-

Magnetic Bubble Computer Systems 1295

tively assuming 50 gates per module with 100 periods2

per gate, approximately 100,000 periods2 are needed for
all the modules. An additional 20,000 periods2 for the
control circuits would be generous.' As a result, 180,000
periods2 are needed for the CPU; at the present-day
capabilities of bubble chip sizes and circuits this would
require two to four chips.

The area taken by one 256-word mark-time line is
approximately 23,000 periods,2 therefore, one to four
storage lines can be constructed on one chip using the
technology available today.

In order to estimate the time for a complete fetch
execute cycle, it is assumed that each module presents a
delay of 32 periods and that an additional 32 periods are
needed for the control circuits. If reasonably good
programming practice is used, then either the program
or the data are stored in lines fairly near modules 0 and
4. The assumption is that the instructions are 'stored
four modules away and the data 16 modules away. From
these assumptions it follows that a fetch-execute cycle
takes slightly less than 900 periods. At a 106-bit per
second rate, this corresponds to 103 instructions
executed per second.

SUMMARY AND CONCLUSIONS

Several new bubble logic and memory circuits have been
shown. As an exercise a magnetic bubble computer has
been designed which should fit onto between six and 20
bubble chips. That such a design can be made demon-

x
o

__ ------~--- X

L
Y--+-------~----------~

~1 BIT DELAY

d -~------___

(A) BUBBLE REALIZATION FOR FETCH-EXECUTE CONTROL

Figure 23-Control circuits

1296 Fall Joint Computer Conference, 1972

x b e

e
1 bit 1 bit - - - 1 bit

TO

(B) FIVE-STAGE SERIAL-PARALLEL CONVERTER

B=b

S=b+se' '" b----~--~--------~--~~~ _________ ~ ______ 1 bit delay

s _~ __________ --'

e------+-----------------------~ E=e

o
x------------------T=xs'

....;.D~ ___________ X= xs

(C) BUBBLE REALIZATION FOR ONE STAGE OF THE SERIAL-PARALLEL CONVERTER

l ____ ---..;D=----:......jrgJ
o

tj---------------4
1 0 [gJ

D

(D) BUBBLE TRIPLER

Figure 23-(continued)

Magnetic Bubble Computer Systems 1297

mO

D
mi

m 2
0 m3

m4

m5

0 m6

m7

m g

m9

mlO

mll

m 12
m 13

0 m I4

0
0 m I5

m I6
0 m I7

m I8
m I9

m20

m2I

m22
m 23
m24

m25

m 26

m 27

m28

m29

m 30
m 31

C T~

(E) THIRTY-TWO OUTPUT DECODER

Figure 23-(continued)

1298 Fall Joint Computer Conference, 1972

strates the completeness of the bubble logic that has
been shown.

ACKNOWLEDGMENTS

The authors wish to acknowledge the continuing support
and encouragement provided by Dr. Remo A. Pellin and
Mr. George M. MacLeod, the laboratory work of Mr.
Jerry W. Moody and Dr. Roger W. Shaw, the typing of
Ms. Sandra S. Johnson, and the drafting of Mr. Ray
Nehman and Mr. William B. Bierman.

Without the advice, suggestions, encouragement, and
most importantly the drive supplied by Dr. Howard H.
Aiken, this work would never have been begun or
pursued Qr finished.

REFERENCES

1 R C MINNICK· P T BAILEY R M SANDFORT
W L SEMON
Magnetic bubble logic
WESCON Proceedings 1972

2 G S ALMASI et al
Fabrication and operation of a self-contained
bubble-domain memory chip
American Institute of Physics Proceedings No 5 1972

3 A H BOBECK
Properties and device applications of magnetic domains in
in orthoferrites
Bell System Technical Journal Vol 46 1967

4 A H BOBECK R F FISHER A J PERNESKI
A new approach to memory and logic-cylindrical domain
devices
Proceedings of the Fall Joint Computer Conference 1969

5A H BOBECK et al
Application of orthoferrites to domain-wall devices
IEEE Transactions on Magnetics Vol MAG-5 1969

6 A HBOBECK H E D SCOVIL
Magnetic bubbles
Scientific American June 1971

7 A H BOBECK R F FISHER J L SMITH
An overview of magnetic bubble domains-Material device
interface
American Institute of Physics Conference Proceedings
No.51972

8 E A GIESS et al
Rare-earth-yttrium iron-gallium garnet epitaxial films for
magnetic-bubble domain applications
Materials Research Bulletin Vol 6 1971

9 A A THIELE
A theory of cylindrical magnetic domains
Bell System Technical Journal Vol 48 1969

10 A H BOBECK
Recent developments in magnetic bubble technology
Electrochemical Society Meeting Houston 1972

11 P I BONYHARD et al
Applications of bubble devices
IEEE Transactions on Magnetics VoIMAG-6 1970

12 H N CARLSON et al
Field access bubble to bubble logic operations
Intermag Conference Proceedings 1972

13 J A COPELAND
U.S. patents 3641518 and 3653010

14 A D FRIEDMAN P R MENON
Mathematical models of computation using magnetic bubble
interactions
Bell System Technical Journal 1971

15 M R CAREY
Resident-bubble cellular logic using magnetic domains
IEEE Transactions on Computers 1972

16 R M GOLDSTEIN M SHOJI
Functional bubble domain circuits employing bubble-bubble
iteraction
American Institute of Physics Proceedings No.5 1972

17 R L GRAHAM
A mathematical study of a model of magnetic domain
iteractions
Bell System Technical Journal 1970

18 R P KURSHAN
All terminal bubbles programs yield the elementary
symmetric polynomials
Bell System Technical Journal 1970

19 A J PERNESKI
Propagation of cylindrical magnetic domains in orthoferrites
IEEE Transactions on Magnetics Vol MAG-5 1969

20 R M SANDFORT E R BURKE
Logic functions for magnetic bubble devices
IEEE Transactions on Magnetics 1971

21 M SHOJI
Magnetic bubble counting circuits
IEEE Transactions on Magnetics Vol MAG-8 1972

22 J H SPENCER
CD npublished)

23 W H KAUTZ K N LEVITT A WAKSMAN
Cellular interconnection arrays
IEEE Transactions on Computers Vol C-17 1968

Numerical solution of ill-posed problems
using interactive graphics

by J. M. VARAH

University of British Columbia
Vancouver, B. C., Canada

I~TRODUCTION

The problems we consider can aU· be expressed as
integral equations of the first kind: i.e., given K(s, t),
g(s), solve

g(s) = fb K(s, t)J(t) dt.
a

(1)

Such problems are ill-posed in general. because small
changes in g(s) can cause large changes in the high
order "modes" of J(t)" (This is explained below.)
Examples of such problems are:

(i) harmonic continuation in a circle [a=O, b=21r,
K(s, t) = Poisson kernel]

(ii) inversion of Laplace transforms [a=O, b= 00,

K(s, t) =exp(-st)]
(iii) the backwards heat equation [a = - 00, b = 00 ,

K(s, t) =exp(- (s~t)2/4T) Iv 411"T]

For. K (s, t) a compact operator (e.g., a, b finite,
K{s, t) bounded), we can express the solution to (1)
in: terms of the eigenfunctions of K (s, t) jf K is sym
metric, or more generally in terms of the adjoint orthog
onal system of K: i. e. {cf>i (s), t/li (s)} such that

f K(s, t)t/li(t) dt= Aicf>i(S)

The eigenvalues Ai~O, and if "Ii = fg(S)cf>i(S) ds, then
the solution to (I) is

(2)

Notice that if g (s) is changed by a small function 1] (s)
with f[1](S)]2 dS=E2, each "Ii may be changed by as

1299

much as E. But since Ai~, this means for i large enough
the component of ti(t) in (2) (the high order modes of
J(t» can become arbitrarily large.

I t is well-known that a solution to (1) exists in l2 if
and only if ~'Yi2/Ai2< 00 (see e.g., Courant and Hil
bert,! pg. 159ff for details). It is clear that some kind of
restriction like this on g (s) is necessary to have a well
posed problem. In the next section we will see how to
enforce this restriction numerically.

NUMERICAL APPROXIMATION

Similar work has been done on this problem by Baker
et. al. 2 and Hanson.3 Using the quadrature rule

we approximate (1) at a discrete set of points {Sd1m,
giving a set of linear algebraic equations:

11

g(Si)= 2:WjK(Si,tj)h, i=l, . .. ,m (3)
j=1

If m=n and the matrix is nonsingular, this has a unique
solution J whose components h are approximations to
J(Xj). We can then interpolate this data (for example
with a cubic spline) to give an approximate solution
throughout [a, b].

However by its very nature the linear system AJ = g
in (3) is ill-conditioned and if we solve by the usual
Gaussian elimination routine, we will have

errort'.-'111/ 0"11+ (truncation error) .

Here 1]1 is the machine roundoff level and 1 = 0"1 ~

0"2 ~ ••• ~ 0"11 > 0 are the singular values of A, . with 0" n

very small, especially if n is large. It seems clear that
Gaussian elimination is not the natural way to solve
this problem computationally, since it can be viewed

1300 Fall Joint Computer Conference, 1972

as finding the exact solution to a slightly different
problem, where the perturbation is essentially random.
As we say earlier, such a small change in the data can
cause a large, unwanted change in the high-order modes
of the solution.

A much more natural method of solution is via the
singular value decomposition; this factors the matrix
into A = UDVT, where U and V are orthogonal and
D = diag(U i). Moreover this can be done in a reasonable
amount of time, roughly four times that of a Gaussian
elimination routine, using the algorithm of Golub.4

Thus Af = g becomes the uncoupled equations

D(VTf) = (UTg)

m

or, if g= L PiUi, (ui=columns of U, Vi = columns of V)
1

n

f= E (Pi/Ui)Vi (4)

Now because of the relationships K:A, cPi:Ui, 1fi:Vi,
'Yi:Pi, Ai:Ui, restricting our problem to make it well
posed (in the sense of the last section) is equivalent to
requiring P/ U i~ as i increases. This means f is closely
approximated by

k

f (k) = " (f.I /) £.J tJi Ui Vi.

In fact
n

II f_J<k) 1122 = L (Pi/ Ui)2,
k+l

and moreover5 the roundoff error in computing f(k)
depends only on 1/1/ Uk, not Un. Hence

total error"" (truncation error)

(5)

giving some optimal solution J<k), 1 ~ k ~ n.

INTERACTIVE SOLUTION

How do we find the optimal k? We can estimate it
by minimizing over k a bound for the last two terms of
(5), but a more fruitful approach is to plot the solutions
for various values of k using an interactive graphics
terminal. Then the user can choose visually among these
solutions f<>~ the best one. This of course may involve
some rather subjective decisions, but we assume the
user has some a priori idea of what his solution looks
like.

There are many other ways of varying parameters in

Figure 1

this problem: the choice of points {sd and the quad
rature rule for example. Since it is very complex to
,decide analytically which choice is best, the user may
wish to experiment with various schemes and data
points to optimize his solution.

Suchan interactive program has been written for the

Figure 2

Numerical Solution of Ill-Posed Problems using Interactive Graphics 1301

Figure 3

Adage model 10 graphics terminal coupled with the
IBM 360/67 under MTS at U.B.C.We give one ex
ample here, that of Laplace transform inversion:

g(s) = 1~ e-stj(t) dt.
o

The kernel here is not compact, so wehaveca continuous
spectrum and the analysis of the first. section does not
hold. However, the solution J(t) can sti~,l be well

approximated by a linear combination (4). of approxi
mations to the eigenfunctions corresponding to the
low-order part of the spectrum.

For the particular case of g(s)=I/(s+I)2, with
known solution J(t) =te-t , and using Gauss-Lagueurre
20-point quadrature in (3), best results were obtained
with the {sd equally spaced in (0, 5). Choosing J<6) as
our solution (i.e., using 6 equations) gave a maximum
error I J_J<6) I =5.10-4• Displayed here are the graphs

,;'fi'j.(3), J<6), and J<9) produced on the graphics terminal.
., Cubic spline interpolation is used to define the functions

between the Gauss-Lagueurre abscissas. Other numeri
cal examples are given in another paper.5

REFERENCES

1 COURANT HILBERT
Methods of mathematical physics Vol I
Interscience New York 1953

2 C T H BAKER L FOX D F MAYERS
K WRIGHT
Numerical solution of Fredholm integral equations of first
kind
Computer Journal Vol 7 No 1964

3 R J HANSON
A numerical method for solving Fredholm integral equations
of first kind using singular values
Siam Journal of Numerical Analysis Vol 8 No 41971

4 G H GOLUB C REINSCH
Singular value decomposition and least squares solutions
Numerische Mathematik Vol 14 No 1970

5 J M VARAH
On the numerical solution of ill-conditioned linear systems
with applications to ill-posed problems
Siam Journal of Numerical Analysis Vol 10 No 11973

Iterative solution of elliptic difference
equations using fast direct methods *

by PAUL CONCUS

University of California
Berkeley, California

INTRODUCTION

In recent years, fast direct methods have been de
veloped for the numerical solution of the Poisson
equation on a rectangle.1 •2 By taking advantage of the
special block structure of the approximating discrete
equation on a uniform rectangular mesh, these methods
obtain the solution with striking efficiency and accu
racy. A comparison of fast direct methods with other
methods can be found in Reference 3, and the extension
to more general separable elliptic equations in Ref
erence 4.

Here, a technique is discussed for using fast direct
methods to solve iteratively certain more' general
formally self-adjoint strongly elliptic equations £u = I,
which are not necessarily separable. Dirichlet condi
tions on the boundary of the rectangle are considered,
although the technique applies with slight alteration to
other boundary conditions for which fast methods are
suitable. The approach is to utilize a modified form of
the iterative procedure

-aun+l= -aun-T(£Un-f) , a=82/8x2+82/8y2 (1)

proposed for numerical computation in conjunction
with alternating-direction methods by D'yakonov5

and discussed recently by Widlund.6 This procedure,
in addition to being of a form suitable for fast direct
methods, has the desirable feature that for well-behaved
problems its convergence rate is essentially independent
of mesh size.

As it stands, however, iteration (1) ·may be too slowly
convergent to be of practical importance, even when
optimal values of the parameter T are used. The means
employed in this paper for improving its convergence
rate are: (i) scaling the original problem £u=1 and

* This work was supported in part by the U.S. Atomic Energy
Commission.

1303

iterating instead with the scaled problem mrw = q;
(ii) using, instead of (1), the shifted iteration

(-a+K)wn+l= (-a+K)wn-r(mrwn-q), (2)

where K is a suitably chosen constant; (iii) applying
Chebyshev acceleration. Algorithms for the fast direct
solution of the discrete Poisson equation in a rectangle
can handle iteration (2), which requires the repeated
solution of a Helmholtz equation, with the same rapidity
as they can (1).

Related iterative techniques for elliptic equations are
studied in References 7 and 8 in connection with
alternating-direction methods and in References 9 and
10 in connection with Stone's sparse factorization
method. This latter method is formally similar to the
one here; however, the present technique has the
desirable property of being based on a more natural
splitting of the operator.

ITERATIVE PROCEDURE

Description

In its simplest form, the iterative procedure con
sidered here solves numerically on a uniform rectangular
mesh the problem

£u=-V.[a(x,y)Vu]=/(x,y) onffi. (3)

u(x, y) =g(x, y) on 8ffi., (4)

where ffi. is the rectangle O<x<c, O<y<d and a(x, y)
is strictly positive on ffi. and its boundary 8ffi.. [It is
assumed that a(x, y), I(x, y), and g(x, y) are such that
the solution u(x, y) is sufficiently well behaved near the
corners of ffi. so that special numerical methods are not
required there.] The positivity of a(x, y) implies that £
is positive definite.

1304 Fall Joint Computer Conference, 1972

If a (x, y) has bounded second derivatives on the
closed rectangle, which is the case of principal interest
for use of the procedure, the change of variable is
performed.

W(x, y) = [a (x, y)J/2U(X, y). (5)

Then, after division by a1l2, (3) becomes

a-1I2cCu=~w== -ilw+p(x, y)w=q(x, y) on CR, (6)

where p(x, y) = a-1I2A (aIl2) and q(x, y) =a-1/2j. The
effect of this scaling is to transform the operator cC into
one whose differential part is - A. Note that the change
of variable (5) does not alter the positive definiteness
of cC, so that ~ is positive definite as well.

Substitution of (6) into (2) then yields as the
iteration

(-A+K)wn+l= (-A+K)wn-r(-A+p)wn+rq on CR.

(7)
The boundary condition is

wn+l=H(x, y) on aCR, (8)

where H(x, y) =aI/2g.
In an attempt to make the operator - A + K on the

left of (7) agree closely with ~, the constant K is
chosen to approximate p(x, y). The choice of central
interest in this study is the minimax value,

K = ({3+B)/2, (9)

where (3 is the minimum and B the maximum value of
p(x, y) on the closed rectangle. As will be shown in the
next section, this choice leads t9 an estimate that the
optimal value of the single parameter r to give most
rapid convergence in (7) is

r=1. (10)

For this value of r, (7) becomes simply

(-A+K)wn+1= (K-p)wn+q on CR. (11)

The discrete form of the iterative procedure (8, 9, 11)
is obtained by placing a uniform rectangular mesh on CR
with spacing h in the x-direction and k in the y-direction
and letting W ij correspond to w (x, y) at the mesh
points x = ih, y = jk. Using the standard five point
approximation for the operator - A with Dirichlet
boundary conditions

-AhW ij==h-2(- Wi-1,i+2Wij- Wi+1,j)

+k-2(- WU-l+2Wij- W U+1) , (12)

. c. d 1
't=1,2'''''h- 1; J=I,2""'k-'

one then obtains for (8, 11)

(-Ah+Kl)W(n+I) = (Kl -P) W(n) +Q, (13)

where P is a diagonal matrix with elements P ij =

p(ih, jk), Q is a vector with elements Qij=q(ih, jk), and
I is the identity matrix. The solution of (13) is carried
out in each iteration by using a fast direct method.

Finally, under the assumption that the eigenvalues of
(-ilh+Kl)-I(Kl-P) lie in the interval [-p,p],
Chebyshev acceleration is applied:11

W(n+l) =Wn+l(W(n+I)- W(n-l)) + W(n-l) , (14)

where wo=l, wl=2/(2- p2), wn+I=(I- p2Wn/4)-1 for
n = 1, 2, ... , and W(n+l) is the improved value of
W(n+l) , where now W(n+l) satisfies (13) with W(n)
replaced by W(n) on the righthand side. This is equiv
alent to the use in (7) of a sequence {rn}, rather than
a single value of r, in a manner that is numerically
stable and does not require the total number of param
eters in the sequence to be specified in advance. If
in some cases memory limitations preclude the use of
(14), then a fixed sequence {Tn} could be used instead,
ordered in the manner recommended in Reference 12
for numerical stability.

Convergence properties

The convergence properties of the iterative technique
can be examined by standard methods in terms of the
eigenvalues of the Laplace operator, which are known
explicitly for the rectangle. Consider the discrete form
of the iteration (7, 8),

(- Ah + Kl) W(n+l)

= (-Ah+Kl)W(n)-r[(-ilh+p)W(n)_Q], (15)

in which K and r are not yet specified to be the values
(9) and (10). Assume that K> - Am, where Am is the
smallest eigenvalue of - Ah, so that (- Ah + Kl) is
positive definite. Assume also that the discretization of
~ to M == - Ah + P maintains the positive definiteness.
Then one obtains, denoting by Pm and PM the minimum
and maximum eigenvalues of the generalized eigenvalue
problem

Mcf>=p(-Ah+Kl)cf>,

that the spectral radius p for iteration (15) is given by

p(l -r[-Ah+Kl]-IM) =Max(ll-rpm I, II-rPM I).

(16)

Since vm>O, there follows the well-known result13 that
iteration (15) converges for any initial approximation
W(O) if and only ifO<T<2/vM, and,for a single parameter
T, the optimal choice

T=TO=2/(vm+VM) (17)

yields the smallest spectral radius

The values of Vm and VM can be estimated from the
Rayleigh quotient for v,

<J?T M <J? <J?T (P - KI) <J?

<J?T(_ Ah+KI) <J? = 1 + <J?T(_ Ah+KI)<J? . (19)

One obtains

(
B-K B-K)

::S;vm::S;vM::S;I+max Am+K' AM+K ' (20)

where AM is the largest eigenvalue of - Ah.
The estimate for p obtained from (16) and (20) is

least when a choiceJor K is made such that

(21)

assuming f3 > - Am holds. There results that for the
corresponding optimal choice

there holds

< = B-f3
p_pu- 2Am+B+f3

(22)

(23)

The upper bound (23) on the spectral radius is
essentially independent of mesh size, since Am is approxi
mately equal to its limiting continuous equivalent of
1r2 (c-2+d-2) to order of the square of the mesh length.
I t is a simple matter to place a rigorous lower bound on
Am and obtain from (23) the result that pu < 1 and hence
that convergence is guaranteed, for f3 > - Am.

It is of interest to compare (23) with the analogous
spectral radius estimate for the iteration, without
scaling and shifting, based on (1). For the latter case
one obtains that for the optimal choice T=2/(a+A)
there holds

p::S; (A-a)/(A+a), (24)

where a= min a(x, y) and A = Max a(x, y) on the

Iterative Solution of Elliptic Difference Equations 1305

closed rectangle. The estimate (24) is independent of
the mesh size and is the sharpest such one possible.

The presence of the 2Am term in the denominator of
(23) can have the effect of there resulting a considerably
smaller bound on p for the scaled and shifted iteration
than results from (24) for iteration (1). Since (24) is
essentially sharp such a smaller bound would imply a
faster convergence rate. Thus one concludes that scaling
and shifting are most effective when A/a is not espe
cially close to one and a does not vary with excessive
rapidity over the rectangle, in which case the resulting
improvement in convergence rate could be substantial.

Remarks

Lower bound on ~

It is required above that (3, the minimum of p(x, y)
on the rectangle, satisfy f3 > - Am. In the case for which
(3::S; - Am (the positive definiteness of M does not pre
clude P dipping below - Am over a portion of the
rectangle) the estimate (20) no longer yields an upper
bound on p that is less than one, hence it does not
guarantee convergence. In the numerical experiments
performed on such cases, iteration (15) usually con
verged, but at a relatively slower rate. In general, the
best candidates for the iterative procedure are those
cases for which (3 > - Am.

Shift paraDleter

The choice of the particular value (9) for K out of
the possible ones (21) yielding the best convergence
rate estimate (23), corresponding to (22), is made for
two reasons. One is that for the corresponding value
T=I, which is obtained from (22) for the shift (9), the
resulting discrete Picard iteration (13) requires fewer
computer operations than does the one for general
T (15). The other is that for this shift the actual con
vergence rate observed in numerical experiments is
somewhat more rapid than it is for shifts near the end
points of the interval [(3, B], at least for those problems
for which p(x, y) varies smoothly without rapid changes
(see NUMERICAL EXAMPLES).

Calculation of P

In practice, an alternative to the analytic calculation
of p(x, y) =a-1/2A(al/2) and its subsequent numerical
evaluation to obtain the elements of P in (13) may be
desirable. One could, instead, difference al/2 (x, y)

1306 Fall Joint Computer Conference, 1972

TABLE I-Results after 5 iterations

a (x,Y) K

0
0

(a) [1 + HX4+y4)]2 3
3
3

0
0

(b) [1 +sin!lr(x+y)]2 -7r2/8
-7r2/8
-7r2/8

0
0

(c) [2+tanh4(x+y-1)]2 4.07
4.07
4.07

directly to obtain approximate elements Pijh of P,
Pijh=f1had/2/aiiI2, where ad /2 =[a(ih,jk)J1I2. The dis
cretization error introduced by using Pil instead of
P (ih, jk) would be of the same order as that already
introduced by (12).

Spectral radius estiInate

In applying Chebyshev acceleration (14) to iteration
(13), one can either use the estimate (23) for the
spectral radius or else obtain an estimate by observing
the convergence rate when solving the problem first on
a coarse grid. This latter procedure is often worth the
small extra expenditure of computing effort, because
the estimate (23) may be pessimistic and, since p is
essentially independent of mesh size, the observed
value usually is more accurate.

NUMERICAL EXAMPLES

Well-suited cases

The ideal case for the basic technique (13, 9) is one
in which p=a-1I2f1(a1l2) is constant on the rectangle
[e.g., a=cos2(x+y), a=Jo2([x2+y2J1I2), etc.]. Then
from (23) one obtains that the optimal spectral radius
is p=O, hence the problem is solved completely (to
round-off accuracy) in only one iteration. This result
corresponds to the fact that in each iteration a Helm
holtz equation (13) is solved directly.

Chebyshev Maximum
T Acceleration Pe Error

0.868 none 0.13 3.7(-5)
0.868 using pu 2.4(-6)
1 none 0.039 3.9(-8)
1 usingpu 1.1(-6)
1 using Pe 4.3(-9)

16/15 none 0.066 1.2(-6)
16/15 using Pu 7.2(-8)
1 none 0.061 2.3(-7)
1 using pu 3.2(-8)
1 using pe 2.3(-8)

0.829 none 0.31 3.4(-4)
0.829 using pu 5.9(-3)
1 none 0.26 2.6(-4)
1 using Pu 1.5(-3)
1 using Pe 3.4(-5)

Other highly suitable cases for the technique are
those not departing strongly from the ideal one. The
experimental results for two such cases are summarized
in Table la, b. Both cases were solved numerically by
using (15) on the unit square O<x<l, O<y<1 with
uniform mesh spacing h=k=2l , for the values l=4, 5,
and 6. (The number of rows of interior mesh points
should be 2l-1, l an integer, in at least one direction
for fast direct methods to apply efficiently.)

The entries in Table I are the rounded values for a
mesh with 64X64 interior points; for the other mesh
sizes the values differed from these only slightly, if at
all. A value of K equal to 0 or to ((3+ B) /2 was used,
along with the corresponding value (22) for r. When
Chebyshev acceleration was included, either the
estimate pu from (23) or the experimentally observed
estimate Pe was used to approximate the spectral radius
P in (14) of (I-r[-f1h+KIJ-l[-f1h+PJ). The
entries for the value of pe are the observed approximate
limiting values of the ratio

II Wen) - Wen-I) 11.1/11 Wen-I) - W(n-2) 11.1,

where II W fl.1=[WT(-f1h+KI)WJ/2. The maximum
error, which is listed in the last column, is the maximum
of the differences at the mesh points between W(5) and
the solution. The initial maximum error had the value
of approximately 1.

For the example in Table la, (3 = 0 and B = 6. Thus
the estimate (23) for the optimal spectral radius is
P :::;Pu ~O.132 (using 21r2 for Am), and the shift (9) is
K = 3. For the example in Table lb, one has (3 = ;-1r2/ 4,

B = 0, and pu ~ 1/15. In this case, the improvement
obtained by using the shift K = (j3+ B) /2, instead of
K = 0, is not so great as it is for example Ia.

The effect of scaling and shifting can be found by
comparing the results for these two examples with the
estimate (24). For both there holds a = 1 and A = 4, so
that the spectral radius estimate without scaling and
shifting in each case is 0.6.

Less well-suited cases

For the example summarized in Table Ic, p(x, y)
deviates more strongly from the ideal case. The task of
calculating the actual extremal values of p (x, y) on <R
was not carried out for this example;. instead, the dis
crete equivalents j3=j3h=min Pij, B=Bh=max Pijwere
used. For the 64X64 mesh, j3h~ -9.62 and Bh~17.77,
for whichPu~0.575. Note that here K =0 does not
correspond to an end point of the interval [j3, B].

An investigation of the possible non-sharpness of
estimate (20) and non-optimality of (9) and (10),
which are more important here than in a nearly ideal
case, was carried out by fixing 7 at the value one and
observing the change in pe as K was varied. A local
minimum was found at approximately K = 3.0, for which
Pe is approximately 0.23.

For the more extreme case

a(x, y) = [2 + tanh 10(x+y-l) J2,
in whicb the change in the value of a in crossing the
line x+y= 1 is very abrupt, j3h and Bh becomes approxi
mately -60 and 111, respectively. In this case f1< -Am;
hence, the estimate (23) yields merely that p~pu> l.
The iteration did converge, however, with the observed
spectral radius Pe~0.63 and a maximum error of
2.5 X 10-2 after five iterations for the usual test problem,
with K= (f1h+Bh)/2 and 7=1. With the inclusion of
Chebyshev acceleration based on this value of Pe, the
maximum error after five iterations was reduced to
6.3 X 10-3• The value of pe can be decreased in this case,
with 7 fixed at 1, to a locally minimum value of approxi
mately 0.54 at approximately K = 14.

Computational requirements

All the above experiments were carried out using the
subroutine BUXYDY, written by B. L. Buzbee at
Los Alamos Scientific Laboratory, which solves the
Helmholtz equation on a rectangle using Buneman's
algorithm for odd-even reduction.4 The subroutine
requires approximately 0.06 seconds on the CDC 7600
computer to solve a problem on a 64 X 64 mesh.

Iterative Solution of Elliptic Difference Equations 1307

Qualitative comparison of the computational require
ments of the technique with those of other methods ,can
be made using the operation-count table given in
Reference 3. One finds, for example, that for a 64 X 64
mesh the operations required for one iteration of (13)
are equivalent to those required for about 4 or 4% SOR
iterations, and that about 85 SOR iterations are required
to reduce the initial error by a factor N-2 ~ 2.5 X 10-4

(discretization error order) in the numerical solution
of the Poisson equation when optimal parameters are
used. The solution of (3) or (6) by SOR would generally
require even more iterations.

The memory requirements of (13, 14) exceed those of
SOR by about 3N2 locations if both P - KI and W(n-l)
are stored. This value can be reduced to N2, however,
in exchange for recomputing P - KI at each iteration
and using a form of Chebyshev acceleration that
requires, instead of W(n-l), a sequence of parameters
{7n} .

One concludes that for well-suited cases, such as
those in Table la, b, the basic technique is an extremely
efficient one and compares very favorably with standard
iterative and elimination methods. Its advantages are
especially striking for problems with a large number of
mesh points. For less well-suited problems, the tech
nique may be very satisfactory in some cases, but
further study would be helpful to clarify the best means
for estimating the parameters.

EXTENSIONS

The iterative technique can be modified to handle
more general equations and boundary conditions than
those discussed here and to solve problems that are
discretized on a mesh with non-uniform spacing.14

ACKNOWLEDGMENTS

This study was performed in collaboration with Gene
H. Golub and is reported under our joint authorship
in a larger paper, which includes further elaboration of
many of the points discussed here.14

REFERENCES

1 0 BUNEMAN
A compact non-iterative Poisson solver
Report 294 Stanford University Institute for Plasma Re
search Stanford California 1969

2 R W HOCKNEY
The potential calculation and some applications
Methods in Computational Physics vol 9 B Adler S Fernbach
and M Rotenberg eds Academic Press N ew York and
London 1969 pp 136-211

1308 Fall Joint Computer Conference, 1972

3 F W DORR
The direct solution of the discrete Poisson equation on a
rectangle
SIAM Rev 12 1970 pp 248-263

4 B L BUZBEE G H GOLUB C W NIELSON
On direct methods for solving Poisson's equations
SIAM J Numer Anal 71970 pp 627-656

5 E G D'YAKONOV
On an iterative method for the solution of finite difference
equations
Dokl Akad Nauk SSSR 138 1961 pp 522-525

60 B WIDLUND
On the use of fast methods for separable finite difference
equations for the solution of general elliptic problems
Sparse Matrices and Applications D J Rose and R A
Willoughbyeds Plenum Press New York 1972 pp 121-134

7 J E GUNN
The numerical soZution of VaVu = f by a semiexplicit
alternating direction iterative method
Numer Math 6 1964 pp 181-184

8 J E GUNN
The solution of elliptic difference equations by semiexplicit
iterative techniques
SIAM J Numer Anal11965 pp 24-25

9 H L STONE
Iterative solution of implicit approximations of multi-

dimensional partial differential equations
SIAM J Numer Anal 5 1968 pp 530-558

10 T DUPONT R P KENDALL H H RACHFORD JR
An approximate factorization procedure for solving
self-adjoint elliptic difference equations
SIAM J Numeral Anal 5 1968 pp 559-573

11 R S VARGA
Matrix iterative analysis
Prentice-Hall Englewood Cliffs New Jersey 1962 p 141
prob 8

12 V I LEBEDEV S A FINOGENOV
On the order of choice of the iteration parameters in the
Chebyshev cyclic iteration method
Zhur Vych M.at i Mat Fiz 11 1971 pp 425-438 English
translation in Report CS72-304 Computer Science Depart
ment Stanford University Stanford California 1972

13 E L STIEFEL
Uber einige methoden der relaxationsrechnung
Z angew Math Phys 31952 pp 1-33

14 P CONCUS G H GOLUB
Use of fast direct methods for the e.fficient numerical solution
of nonseparable elliptic equations
To appear. Also available as Report 72-278
Computer Science Dept Stanford University
Stanford California 1972

Computer oriented methods for fitting
tabular data in the linear and nonlinear
least s·quares sense*

by K. M. BROWN**

University of Minnesota
Minneapolis, Minnesota

INTRODUCTION

Let the tabular data (ti, Yi), i = 1, ... , m be given
along with a function (form), say g (al, ... , an; t) , which
is to be used to fit the data. We wish to determine the
parameters ai in such a way as to

m

minimize cp(al' ... , an) == :E [g(al' ... , an; t i) -Yi]2
i=l

(1)

This type of approach is called fitting the data in the
least squares sense. If g is a linear (nonlinear) function
of the parameters ai, we speak of (1) as a linear (non
linear) least squares problem.

LINEAR LEAST SQUARES PROBLEMS

In this section we will discuss three techniques for
determining the ai which appear in (1) when these
parameters enter g in a linear fashion. Let

X==(Xl,X2, ... ,XN)T

and

For linear problems (1) can be written as

minimize \I Ma-y 1\2 (2)

where M is a matrix which can depend on t but does
not depend on a.

* This work was supported in part by the National Science
Foundation under Grant GJ-32552.
** This paper is dedicated to the memories of George E. Forsythe
and Hirondo Kuki.

1309

Example. When fitting tabular data with a polynomial
function

g(al' ... , an; t) = antn-l+an_ltn-2+ ••• +a2t+al,

the ith row of the matrix M is simply

The first technique: The classical, but wrong way to
proceed-unfortunately enjoying wide usage today!

Relying on a well-known theorem from the calculus
which states that the points which minimize cp in (1)
must be contained among the zeros of the partial deriva
tive system iJcp/iJai=O, i= 1, ... ,n, it follows that the
minimum of cp in the linear case (2) is obtained by solv
ing the linear system of equations (the normal equa
tions)

(3)

Example. With reference to the previous example of
polynomial fitting, the ith, Jth' element of the coeffi
cient matrix MTM in (3) is given by :Ek:l tk i+ i-2 and
the ith element of the right hand side MTy of (3) is
simply :Ek-:l tki-1Yk. The difficulty with this seemingly
natural (and mathematically exact!) approach is that
the system of equations (3) can be highly ill-condi
tioned. This means that slight changes in the coefficient
matrix MT M produce enormous changes in the solution
a. In 1957 George Forsythe! showed that by using
orthogonal polynomials for the polynomial fitting
problem, the amount of ill-conditioning associated with
(3) could be reduced considerably. The Gram-Schmidt
process is usually used to generate the orthogonal
polynomials. This process has the advan.tage of not
having to start from scratch when going from a poly
nomial fit of degree n - 1 to one of degree n. A number

1310 Fall Joint Computer Conference, 1972

of the better subroutine libraries contain a data fitting
program using Gram-Schmidt produced orthogonal
polynomials. Unfortunately this procedure does date
back to 1957 and still requires the explicit formation of
the coefficient matrix MTM of (3).
Example. The formation of MT M can result in a loss of
numerical accuracy or even introduce an artificial
singularity. Let (Golub and Reinsch2)

then

If e2 < t, the machine tolerance, then MT M appears as
the singular matrix consisting of all ones in the com
puter and it is impossible to solve the normal equations
(3) .

On the other hand, as we shall see in the next two
sections, recent techniques actually permit us to solve
the minimization problem (2) without explicitly having
to form the matrix MTM of (3)!

The second technique: The Businger-Golub procedure
for matrices with rank n

If the mXn matrix M of (2) is such that m'?:.n and
rank (M) = n, a very efficient procedure due to Businger
and Golub3 can be used to solve (2) without ever hav
ing to form MT M explicitly. The procedure makes use
of the fact that the euclidean norm II· .. II is invariant
under unitary transformations, so that

II Ma-y II = II UMa-Z II
where Z=Uy and UTU=I. Now U can be chosen so
that

UM=T=[.]. (4)

where T is an n X n upper triangular matrix and the
matrix 0 is of size (m-n) Xn. The point a* which
minimizes (2) is then given by a*= r-1z, where Z
denotes the first n components of Z. The procedure
uses Householder transformations to carry out the de
composition (4). These transformations are extremely
stable and the computations necessitated are quite

efficient. A bonus provided by the decomposition (4)
is the ease of calculating (MTM)-l and det(MTM) ,
quantities necessary in many statistical calculations.
As pointed out by Businger and Golub3 page 274, since
(MTM) = TTT, then (MTM)-l= r-1(TT)-1; moreover,
det (MTM) = (det T)2= (tll -t22 ... tnn)2.

The FORTRAN IV subroutine LSTSQ which imple
ments this procedure was obtained from Dr. P. A.
Businger, Bell Telephone Labs., Murray Hill, New
Jersey 07974. I tested the routine on a number of ex
amples and the behavior was excellent (as long as
rank (A) =n). Probably the outstanding feature of the
program (i.e., of the method) is its compactness:
LSTSQ has only 40 FORTRAN statements!

Users of APL may be interested in knowing that
whenever they invoke the "domino" function (an
APL primitive operator) to solve a linear least squares
problem, they are using the Businger-Golub procedure3

as modified by Jenkins4 to include the interchange and
scaling strategies suggested by Powell and Reid.6

Remark. Another excellent (competitive) method is due
to Bjorck6 and we are in the process of testing it vs.
LSTSQ.

The third technique: The singular value decomposition
approach of Golub and Reinsch which applies whether
or not M has full rank

In a number of important problems it can happen
that M does not have full rank; i.e., rank (M) <no
The techniques of the previous sections break down in
this case; however, Golub and Reinsch2 in 1970 gave
an effective numerical procedure for this problem.
Again,their technique avoids the explicit formation of
MTM. Their approach is based on the fact that an mXn
matrix M with m '?:. n can be decomposed

as M= U'2VT (5)

where UTU = VTV = VVT=In and '2 = diag (U11 ••• ,Un).
The matrix U is made up of the (orthonormalized)
eigenvectors associated with the n largest eigenvalues of
MMT, and the matrix V is made up of the (ortho
normalized) eigenvectors of MTM. The Ui are the non
negative square roots of the eigenvalues of]}fTM and
are called singular values. The decomposition (5) is
called the singular value decomposition (SVD) of ,M.
It can be shown that the point a* which minimizes (2)
is given by

a*= V'2+UTy

whether or not the rank of M is less than n; of course if
rank (M) < n the solution a* is not unique. Here '2+ is
the pseudoinverse of the matrix '2 and is given ex-

Methods for Fitting Tabular Data in Linear and Nonlinear Least Squares Sense 1311

plicitly by

~+=diag (O"i+)

O"i+= {1/o"i for O"i>O

o forO"i=O.
where

In order to produce the singular value decomposition
of M, the Golub-Reinsch2 technique uses Householder
transformations to reduce M to a bidiagonal form and
then uses the QR algorithm to solve for the singular
values of the resulting bidiagonal matrix.

As Golub has pointed out to us in private communica
tion, there is again no difficulty in obtaining from (5)
the quantity (MTAf)-l (of interest in statistical work),
when it exists, since

where

A single precision FORTRAN IV subroutine SVD was
obtained from Dr. P. A. Businger (address given
above) ; its double precision analog DSVDwas ob
tained from Professor Gene H. Golub, Department of
Computer Science, Stanford University, Stanford, Cali
fornia 94305. A complex-arithmetic FORTRAN IV
version CSVD has appeared as a CACM algorithm.7

I have tested SVD extensively and am happy to report
that it gave excellent results. Unfortunately one has
to pay a price to implement an algorithm that does
not require M to have full rank, namely, the price of
length of program: SVD consists of approximately 230
FORTRAN statements vs. only 40 for LSTSQ. Of
course SVD furnishes much more information about
the problem than LSTSQ does; thus SVD calculates
the rank of M and the eigenvalues and eigenvectors of
ATA, etc.

Some conclusions about linear least squares data fitting

If one is only trying to solve (2) and the matrix M is
known to be of rank n, then LSTSQ should be used.
On the other hand if the rank of M is unknown, or
rank (M) <n, or additional information such as eigen
values and eigenvectors are sought SVD should be used.
It is of interest to note that for problems having full
rank no difference in accuracy was noted between
LSTSQ and SVD.

NONLINEAR LEAST SQUARES PROBLEMS

We now return to the consideration of problem (1)
for the case when the fitting function (form) g is a non-

linear function of its parameters ai. Let us write

h=g(a1, ' .. , an; t~:) -Yi, i= 1, ' , , , m,

and let F= (f1, ... ,fm)T, so that we wish to minimize
L:i:1, fl or minimize II F 11

2,
Until the late 1960's, I believed along with many of

my colleagues that the Uavidon-Fletcher-Powe1l8 ,9 al
gorithm was the soundest computational approach to
this problem. It was a great eye-opener, then, to see
Y onathan Bard's paperlO in the spring of 1970, which
concluded after a very careful and exhaustive set of
tests that modifications of.the Gauss methodll (includ
ing the Levenberg-Marquardt method) 12,13 performed
best in practice, followed by variable metric rank one
methods, followed by Davidon-Fletcher-Powe1l8 ,9 meth
ods. Bard raised the question of how the finite-difference
(derivative-free) analogs of methods like the Leven
berg-Marquardt algorithm12 would perform. We will
examine some newer algorithms for the nonlinear least
squares problem and report the results of recent compu
tational experience with these methods. One of these
methods provides an answer (in the affirmative) to the
question raised by Bard. Finally we will look at a most
interesting new class of methods for nonlinear problems
whose variables separate.

The general strategy: Find the zeros of the gradient
system

I t is known from the calculus of functions of several
variables that the points which are relative minima of
II F 112 are contained among the zeros of the gradient of
cp, written Vcp(a). The gradient is a vector of length n
whose ith component is acp/ aai. It is easy to verify that

V cp (a) = 2J FT (a) • F (a) ,

where JF(a) denotes the mXn Jacobian matrix of F.
Define G(a) =J FT (a) • F(a). We seek the zeros of G(a).

Newton's method as a model

Since Newton's method (or a Newton-like method)
is so effective in solving nonlinear systems of equations,
it seems natural to try to solve G(a) =0 by Newton's
method. The iteration (given a starting guess aO) is
given by

a l+1=a l -JG(a l) ·G(a l), l=O, 1,2,

Now JG(a) is given by
m

JG(a) = L: fk(a) .Hk(a) +JF(a) TJ F(a),
k=l

where Hk(a) is the Hessian matrix of fk at a; i.e., the

1312 Fall Joint Computer Conference, 1972

ith, jth element of Hk (a) is given by iJ2fk(a) /iJaj iJai.
Thus Newton's method, applied to solving G(a) =0 is
given by the following

a 1+1 = a l
- [E !.(al

) oH.(al) +JF (al
) TJF(al) r'
JF(a1)TF(a1) (6)

The latter formula requires (assuming continuous sec
ond partial derivatives of cf» the calculation of M· N •
(N + 1) /2 second partial derivatives per iteration. For
even mildly complicated functions, fk' this can be a hor
rendous and error-ridden calculation. The Gaussll and
Levenberg-Marquardt12 ,13 methods are two frequently
used approaches to avoid the calculation of the Hessians.
Gauss' method simply drops the matrix L;:=1 fkH k in
(6) whereas the Levenberg-Marquardt algorithm ap
proximates that matrix by a scalar matrix p,lI. Our ex
perience is that both of these methods behave well local
toa zero, a*, of G, provided that 1/ F(a*) 1/ is very small
relative to the magnitudes of 1/ Hk 1/, k= 1, ... , m and
1/ JFT(a*) ·JF(a*) 1/. The following methods address
Bard's question.

Derivative free analogs of the Levenberg-Marquardt and
Gauss algorithms for nonlinear least squares ap
proximation

Recently Brown and Dennis14 have shown that there
is no degradation in the theoretical or actual behavior
of the Gauss and Levenberg-Marquardt algorithms
when these algorithms are discretized (actual deriva
tives being replaced by first differences) in a particular
manner. We detail the algorithm as follows:
Given aO, form successively

al+1 =a1+Aa1, l=O, 1, 2, ... ,

where Aa1 is obtained by using Cholesky's method to
solve the positive-definite symmetric linear system

[p,1] +J1TJ1J- Aal=JlTF(al). (7)

Here the ith, jth element of J1 is given by

fi(al+h/uj) -heal)

hi
where Uj denotes the jth unit column vector and

where

and

and where

1
IO-,g

0.1-

J - .001xl all

if I all < 10-.8H

with 2 X{3 being the machine tolerance.
Finally if in (7) p, 1 = 0 for alll, we have the derivative

free Gauss' method, whereas if p,l = c·1/ F (a 1) 1/ any, we
have the derivative-free Levenberg-Marquardt method.
The techniques are derivative-free in the . full sense of
that phrase: the only things that the scientist has to
provide are his functions fk. He doesn't even have to
furnish initial estimates to any of the derivatives.

Remark. We note that if in (7) p,L·~oo we have a pure
gradient (or descent) method, whereas if p,1--70 and J is
square we get exactly the discrete Newton's method.
This is why the Levenberg-Marquardt method has been
called "Marquardt's compromise." Now Levenberg12

has shown that his method is always norm-reducing,
i:e., II F(al+1) 1/ < 1/ F(al) 1/, provided that p,1 is chosen
sufficiently large. Thus the Levenberg-Marquardt
algorithm has global stability properties not held by
Gauss' method. On the other hand, close to a root
Gauss' method can converge quite rapidly-as N ew
ton's method does. This makes the strategy clear when
choosing c above to define p, l: when one is far away from
the solution, choose c large so as to weight the descent
part of the correction and keep the iteration stable. As
the solution is approached, i.e., as 1/ G(a) 1/ becomes
small, decrease c so as to enhance the Gauss part of the
correction and produce more rapid convergence. In 14
we have proven that the derivative-free Levenberg
Marquardt and Gauss methods converge locally and
that the convergence rate is second order (quadratic)
whenever 1/ F (a*) 1/ = O. We give a number of numerical
results, all of which show that the derivative-free
methods behave almost identically to their original
analytic counterparts: when convergence occurred both
techniques converged at the same rate. As an example
consider the norm of the error vectors produced by two
of the methods.14 , page 296

Derivative Free
Levenberg-Marquardt

7.70 E-Dl
7.07 E-Dl
3.16 E-ol
2.76 E-D2
2.03 E-D4
1.27 E-DS

Levenberg-Marquardt
7.71 E-Dl
7.0S E-Ol
3.17 E-Ol
2.7S E-D2
2.10 E-04
1.43 E-oS

Qualitatively the methods behaved the same. This
example also showed the quadratic convergence rate
predicted by the theory.

Methods for Fitting Tabular Data in Linear and Nonlinear Least Squares Sense 1313

A FORTRAN IV subroutine FDLM is available from
the author. This technique is also included in IMSL's
Library 1 as subroutine ZXMARQ. Information about
this truly excellent (commercial) library of over 200
mathematical and statistical FORTRAN routines can
be obtained from Dr. Olin G. Johnson, Director of
Mathematics, International Mathematical and Statis
tical Libraries, Inc., 6200 Hillcroft, Houston, Texas
77036.

Reminder. As we indicated just before this section,
these techniques work well only when II F(a*) \I is suf
ficiently small; translation: these are good techniques
to use if your form, g, can (by proper parameter estima
tion-which these algorithms do automatically) be
made to provide a good fit to your data.

The large residual problem and an algorithm
/ or attacking it

In a multitude of real world problems II F(a) \I turns
out to be large even at the minimum a*. In that case
dropping the term "2/kH k in (6) or replacing it with just
a diagonal matrix yields a poor approximation to the
true J G (a). Hence, Brown and Dennis15 proposed an
algorithm which approximates the initial Hessians and
then uses a Powell16 updating technique to continue
the approximations forl= 1,2, This is not a deriva
tive-free technique: the scientist must furnish his func
tions /k and all first partial derivatives, a/k/ aah of those
functions. The technique does not require that the scien
tist furnish any second partial derivatives since these
are automatically approximated and updated by the
method. We detail the algorithm below.

Algorithm. Let al, JF(al) and F(a l) be given along
with M matrices B l • l , ••• , Bm • l each of size nXn.
(Initially the B i •O may be chosen to approximate the
Hi(aO) by, say, using first forward differences on the
entries of J F (a) ; this technique was used in the numer
ical experiments reported below.) Obtain

al+1= a l
- L~ f.(al)B •. I+JFT(al) oJF(al) T'G(al) (8)

and compute J F (a l+1) and F(al+1). Now update the
Bi by means of Powell's16 symmetric form of Broyden's17
"single-rank" updating technique

B i •l+l =Bi •l+[V/i (a l+1)T - V/i(al)T

..1al
-Bi,l..1a

l
]..1a

lT/1\ ..1al 1\2+ II ..1a l 1\2

X [V/i(al+1)T - V/i (a7;)T - Bi.lVal]T (9)

- ..1al[V/i(a l+1)T - V/i(al) T -Bi.z..1al]T

..1alT

X..1a
l

II ..1a l 1\4'

Here ..1al=al+1-a l and V/i(a) is just the ith row of
J F (a). Note that the algorithm (8) - (9) requires no
more function and derivative evaluations per iterative
step than do the Gauss and Levenberg-Marquardt
methods. Obviously, more storage is required and there
is the extra arithmetic necessary to update the Bi.z's.
It is necessary that the initial Bi.O's be symmetric in
order to effect the storage savings possible when using
the Powell symmetric update procedure. Convergence
theorems for this method are given by Brown and
Dennis15 and the authors have recently established the
superlinear convergence of the method.

Numerical results

We wish to minimize It F (a) 112 where a = (aI, a2, as,
a4) and F is given by

flea) =a12X (a2-1)2+50
12(a) = (a2-1) Xas
/3(a) = (as-5) Xa4
h(a) = (a4-10)2+50
/5(a) =a12+ (a2-1)2+ (as-5)2+10
/6(a) = (a4-10)2+ (as-5) X (az-l).

The minimum a*= (0, 1, 5, 10) and the residual at the
minimum is large, \I F(a*) \12=5100. As a first experi
ment aO was chosen very close to the root to check out
the local convergence properties of the method; aO =
(.01, 1.01, 5.01, 10.01). The Brown-Dennis algorithm15

converged after two iterations to an accuracy of
II a2-a* II = 1.47 X 10-8 and II G(a2

) 1\2=9.9X10-14. The
number of evaluations used was 31; however, 16 of
these 31 evaluations were used to approximate the ini
tial Hessians.

The Levenberg-Marquardt12.13 algorithm failed to
converge on this example in 200 iterations when started
from that same (rather good) starting guess. The dif
ficulty was in getting the fourth component a4 to settle
down. The best value produced ga-ve \I a97-a* \I =
2.68X1Q-3.

For the guess aO= (2.5, 4.5, 10.75, 21), the Brown
Dennis method15 produced convergence in 30 iterations
(171 evaluations) to an accuracy of \I a30-a* \I =
4.16X10-7 with II G(a30) 11 2= 3.05X 10-11• Again the
Levenberg-Marquardt12.13 method did not converge in
200 iterations.

When a starting guess quite far from the solution was
tried, aO= (7.5, 14.5, 35.75, 71), a strange thing hap
pened. Even though a34 = (.80, 2.97, 4.12, 8.51) which
was well within the sphere centered at the root and con
taining the second starting guess, the method failed to
improve very much during the next 160 iterations! The

1314 Fall Joint Computer Conference, 1972

reason for this is that the approximate Hessians never
have a chance to recover from their initial values which
were so far removed from Hk(a*). An examination of
the updating formula (9) reveals that even B i ,200 con
tains information propagated from Bi,o. Thus the Bi,l
should be restarted (perhaps periodically) from scratch,
say whenever II a l+I_ alII < 10-p , where p is incremented
from 0 to 1, etc.

A copy of the FORTRAN IV subroutine NLSQ
which implements the Brown-Dennis aigorithmI5 is
available from the author.

A hybrid procedure

Testing is currently being conducted on a hybrid
technique which uses the Levenberg __ MarquardtI2 ,13
algorithm until two successive iterates agree to within
one significant digit and then a switchover is effected
to the Brown-Dennis method.I5 Initial results look
encouraging.

Spline regression

For the scientist who wishes to curve fit for purposes
of prediction or interpolation and who does not have a
specific form (model), g, in mind as dictated by, say,
natural physical or biological laws, cubic splines are
an excellent choice· to use as the fitting functions.
Greville,I8 Nilson19 or Schultz20 have defined and given
properties of these functions and GrevilleI8 and NiisonI9

include some specific computer oriented algorithms for
spline computations. Based upon some recent compu
tational experience, this author recommends specifically
the piecewise cubic Hermite polynomials as the fitting
functions.

Again the IMSL Library (see above) contains a
number of routines for data fitting using cubic splines.

Nonlinear least squares problems whose variables separate

Example. In most of the nonlinear least squares prob
lems I have been asked to look at, the scientist has a
form, g, in mind like the following .

g(aI' ... , a6; 't) =al+a2t+a3e-a4t+a5 sin a6t,

the point being that about half of his parameters enter
the form in a linear fashion. Now we can certainly solve
this problem (viewed strictly as a six parameter non
linear problem) using the techniques of the previous
sections; however, something tells us intuitively that
there should be some way of isolating the linear param
eters aI, a2, as and a5 from this problem. More generally

consider the function, g, of (1) to have the form

n

g(a, «;t) = L: hj(a)if;j(«; t),
j=l

where a = (aI, ... , as) and «== (<<1, ••• , ak). Scolnik2l

has shown that indeed it is possible to optimize first
with respect to some of the parameters and then later
with respect to the rest. More recently . Golub and
Pereyra22 have generalized Scolnik's results. Their
paper22 contains FORTRAN programs for this Im
portant class of nonlinear least squares problems.

SUMMARY

We have tried to present some of the best computer
oriented techniques for the linear and nonlinear least
squares problems. For the linear problem we have rec
ommended reduction by Householder transformations
in the full rank case and using the singular value de
composition in other cases. For nonlinear problems we
recommended the derivative free Levenberg-Mar
quardt method for problems having small residuals
and'the Brown-Dennis technique (with restarts made
periodically to the approximate Hessians). For non
linear problems whose variables separate, there is an
important new approach due to Scolnik, Golub and
Pereyra. Finally when· no model is known, a priori,
spline regression was recommended.

ACKNOWLEDGMENTS

The author is grateful to Dr. Peter A. Businger and
Professor Gene H. Golub for their helpful discussion
relative to portions of this paper and for their furnish
ing the FORTRAN programs LSTSQ, SVD, DSVD
and CSVD.

REFERENCES

1 G E FORSYTHE
Generation and use of orthogonal polynomials for fitting data
with a digital computer
J Soc Indust Appl Math 5 pp 74-88 1957

2 G H GOLUB C REINSCH
Singular value decomposition and least squares solutions
Numer Math 14 pp 403-420 1970

3 P A BUSINGER G H GOLUB
Linear least squares solutions by Householder transformations
Numer Math 7 pp 269-276 1965

4 M A JENKINS
The solution of linear systems of equations and linear least
squares problems in AP L
IBM N ew York Scientific Center Technical Report
No 320-2989 1970

Methods for Fitting Tabular Data in Linear and Nonlinear Least Squares Sense 1315

5 M J D POWELL J K REID
On applying Householder transformations to linear least
squares problems
Proceedings of the IFIP Congress in Edinburgh 1968

6 A BJORCK
Solving least squares problems by Gram-Schmidt
orthogonalization
BIT 7 pp 1-21 1967

7 P A BUSINGER G H GOLUB
Algorithm 358-Singular value decomposition of a complex
matrix
CACM 12 pp 564-565 1969

8 W C DAVIDON
Variable metric method for minimization
AEC Research and Development Report ANL-5990 (Rev)
1959

9 R FLETCHER M J D POWELL
A rapidly convergent descent method for minimization
Comput J 6 pp 163-168 1963

10 Y BARD
Comparison of gradient methods for the solution of nonlinear
parameter estimation problems
SIAM J on Num Anal 7 pp 157-186 1970

11 K F GAUSS
Theoria Motus Corporum Coelistiam
Werke 7 pp 240-254 1809

12 K LEVENBERG
A method for the solution of certain nonlinear problems in
least squares
Quart Appl Math 2 pp 164-168 1944

13 D W MARQUARDT
An algorithm for least squares estimation of nonlinear
parameters
SIAM Jon Num Anal 2 pp 431-441 1963

14 K M BROWN J E DENNIS JR

Derivative free analogues of the Levenberg-Marquardt and
Gauss algorithms for nonlinear least squares approximation
Numer Math 18 pp 289-297 1972

15 K M BROWN J E DENNIS JR
New computational algorithms for minimizing a sum of squares
of nonlinear functions
Yale University Dept of Computer Science Res Rpt No 71-6
1971

16 M J D POWELL
A new algorithm for unconstrained optimization
Nonlinear programming J B Rosen 0 L Mangasarian and
K Ritter (eds) Academic Press New York pp 31-65 1970

17 C G BROYDEN
The convergence of single-rank Quasi-Newton methods
Math Comp 24 pp 365-382 1970

18 T N E GREVILLE
Spline functions, interpolation and numerical quadrature
Mathematical Methods for Digital Computers Vol 2
A Ralston and H S Wilf (eds) Wiley New York pp 156-168
1967

19 E N NILSON
Cubic splines on uniform meshes
CACM 13 pp 255-258 1970

20 M H SCHULTZ
Multivariate spline functions and elliptic problems
Approximations with Special Emphasis on Spline Functions
Academic Press New York pp 279-347 1969

21 H D SCOLNIK
On the solution of nonlinear least squares problems
Proc IFIP-71 pp 18-23 1971

22 G H GOLUB V PEREYRA
The differentiation of pseudoinverses and nonlinear least
squares problems whose variables separate
Stanford University Computer Science Department Tech
Rpt STAN-CS-72-261 1972

An efficient hand-oriented scheme for
solving n hy n grid prohlems

by ALAN GEORGE

University of Waterloo
Waterloo, Ontario, Canada

INTRODUCTION

Let N = n2 for some positive integer n, and consider a
square n by n grid consisting of (n-1)2 small squares
and having a node at each of the n2 grid points. In this
paper we consider the problem of directly solving the
class of N by N symmetric positive definite linear
systems of equations

Ax=b, (1)

where each Xi is associated with a grid point and A has
the property that A ij ~ 0 only if Xi and Xj are associated
with nodes belonging to the same small square. We
must specify how the unknowns are to be numbered if
the above remark is to precisely determine the structure
of A.

Our method of solution is to factor A into LLT,
where L is lower triangular, and then to solve Ly = b
followed by the solution of LTX=Y.* The algorithm is
essentially the well-known Cholesky (or square root)
method, which has the agreeable property that it is
numerically stable when applied to P APT, where P is
any N by N permutation matrix.14 Thus, we are free to
permute the rows and columns of A to achieve other
objectives, such as reduced computation and/or storage
requirements, or convenient storage management.
These objectives often compete with each other, and
their relative importance depends upon the problem
being solved, the characteristics of the computing system
available, and programming expertise. The "best"
way to number the equations depends upon which of
the objectives we consider to be most important.

Certain members of our problem class which arise in
connection with difference discretizations of Poisson's

* For sparse matrix calculations, the LDLT factorization may
be more efficient, where L is unit lower triangular and D is a
positive diagonal matrix. The scheme we propose works equally
well for either factorization.

1317

equation on a rectangular domain can be solved using
special fast direct methods which require only
O(n210g2 n) arithmetic operations and O(n2) storage
locations. 1 ,s

For any system in our class, it is possible to number
the equations (1) so that A can be factored in 0 (nS)

arithmetic operations, and the number of non-zero
components in L is only O(n210g2 n).5 Unfortunately,
these latter numbering schemes are somewhat com
plicated, and yieldL's having their non-zero components
scattered throughout the lower triangle. In order to
achieve the above bounds on storage and computation,
general sparse matrix techniques must be used. Their
programming is relatively complicated, and their per
formance and efficiency is sensitive to hardware and
software characteristics. See Gustavson6 for a careful
discussion of these methods.

On the other hand, if we number the equations in the
natural row by row fashion, and employ a standard
band linear equation solver,S the programming and
data management are straightforward and convenient.
Unfortunately, the computation and storage require
ments are O(n4) and O(nS) respectively.

In this paper we describe a computational scheme for
solving (1) which requires no sparse matrix techniques;
only dense or band linear systems must be solved.
Furthermore, we show that the computation and
storage requirements for our scheme are respectively
O(nSvn) andO(n2yn).

Our method and results apply with little modification
to more general situations where there are nodes on the
sides of the small squares, and where there is more than
one unknown associated with each node.4,15 Our scheme
also applies to matrix problems which arise in connec
tion with the use of spline bases to solve elliptic bound
ary value problems.12 In this case unknowns associated
with nonadj acent squares may be connected. We
discuss these generalizations in our concluding remarks,
but since the extensions are straightforward, for clarity

1318 Fal1 Joint Computer Conference, 1972

we present the simplest case. We shall not, therefore, dis
tinguish between "node" and "unknown" in the sequel.

DESCRIPTION OF THE COIVIPUTATIONAL
SCHEME

For some positive integer a«n, choose a-I horizontal
lines of our n by n grid which divide the mesh into a
approximately equal parts, each part containing
approximately n2/ a nodes. These sets of nodes (un
knowns) are independent in the sense that if Xi and Xj
lie in different sets, thenAij=O.

Consider Figure 1 below, where for definiteness we
choose a=3.

@
I'i:\
\::/

@
(.;\,
\.::I

CD

Figure I-The n by n mesh divided into 3 parts. Circled numbers
indicate the order in which node sets are to be numbered.

The lines ® and ® each consist of n nodes, and follow
ing Rose,1O we refer to them as separators. The node sets
designated by CD, ® and CD will be referred to as the
independent blocks. In general, we have a independent
blocks separated by a -1 separators.

We number the unknowns in CD followed by those in
®. column by column, followed by the unknowns in ®
in any order. We then number the unknowns in CD
column by column followed finally by those in ® in
any order.

In block form, the coefficient matrix A has the
structure below

Al CIT

A2 B2T C2T

A= C1 B2 A3

A4 B4T

C2 B4 A5

Factoring A into LLT, we obtain

where

F3T= -La-lB2A 2-1C2T,

Ai=LiL?, i = 1,2, 4,

A3 = A a-B2A 2-1B2T - CIA 1-1 CIT = LaL3T,

and

A5 = A5 - B~rlB4T - FaFaT - C2A 2-1C2T = L5L5T. (2)

Note that for a>3, the structure of the last two columns
and rows of A and L would simply repeat.

Using the important observation of Rose and Bunchll

that the matrices BiLi-T and CiLi-T will be fuller than
Bi or Ci, we propose only to store the L/s and F/s.
Having them available, the solution of our example
would proceed as follows, where X and yare partitioned
corresponding to A. Parentheses indicate the order in
which computations are performed. Note that only
triangular systems of equations are solved. For example,
in 1 (c) below the vector L4-TY4 is obtained by solving
a triangular system.

1. (a) Solve LiYi = bi, i = 1, 2, 4. These can be
solved in any order, or simultaneously.

(b) Compute ba' =ba-B2(L2-TY2) -C1(LCTYl)
and then solve LaYa = ba'.

(c) Compute
bo' =b5-B4(L4-TY4) -FaYa-C2(L2-TY2)

and then solve L5Y5 = b5'.
2. (a) Solve L5TX5 = Y5.

(b) Compute Y4' = Y4-Lr1 (B4TX5) and solve
L4TX4 =yl.

(c) Compute ya' = Ya - FaT X5 and solve LaT Xa = Ya'.
(d) Compute yl =Y2-L2-1(C2TX5) -L2-1(B2TXa)

and solve L2TX2 = Y2'.
(e) Compute Y/ =YI-LC1 (C1TXa) and solve

LITXI =Yl'.

The scheme for a> 3 is obvious.
Before proceeding to the next section, the· reader

should verify that our storage needs in the example
above are only na/3+0(n2) , rather than the na+O(n2)
required for the usual row by row numbering scheme.

We assume throughout that the so-called diagonal
storage scheme8 is used to store the band matrices.

Storage requirements and operation counts

Following Cuthill and l\1:cKee,2 we define the band
width m of a symmetric matrix W by

m= max \ i-j\
Wii~O

Using the notation = to mean "approximately," and
assuming a«n, we observe that the dimension· of the
A/s and L/s corresponding to the independent blocks
will be =n2/a. The A's corresponding to the separators
are of dimension n, and although they are sparse, their
corresponding L/s are in general full lower triangular
matrices. The F/s are in general full matrices. Recalling
that there are a independent blocks, a-I separators,
and a-2 F/s, and adding several more n2 words of
storage for x, b and temporary space, we obtain the
following estimate S (a) of our storage requirements:

Sea) =n3/a+3an2/2.

We ignore the storage required for the Bi and Ci, since
their requirements are only 0 (an) .

The above is minimized when a=a=y2n/3, and

Sea) =V6n5/2.

Table 1 demonstrates the rather significant reduction
in storage requirements over the usual row by row
ordering scheme.

TABLE 1-Storage Requirements for our Block Scheme
Compared to the Row by Row Ordering

n N '\1'6 n5/2 n3

10 100 775 1,000
20 400 4,380 8,000
30 900 12,075 27,000
40 1,600 24,800 64,000
50 2,500 43,250 125,000

100 10,000 244,950 1,000,000

We now obtain a crude estimate for the number of
multiplicative operations required for our scheme. We
use Yzm2N as an estimate for the cost of factoring an
N by N symmetric positive definite matrix having
bandwidth m.

First observe that the calculation of the L/s corre
sponding to the independent blocks requires about
a(Yz) (n/a) 2 (n2/a) = (n4/a2)/2 multiplicative opera
tions. The calculation of the L/s corresponding to the
separators (once we have computed the A/s) requires
approximately (a-2)n3/6=an3/6 operations.

Scheme for Solving n by n Grid Problems 1319

Now consider the calculation of the A/s from for
mulas of the type (2). An example is

Ai = A i-Bi-1A i_l-1 Bi_1T - F i-2F i_2T - C i-3A i-3 -lCi-3T .

Normally, we would compute Bi_lAi_l-lBi_lT by
first calculating W = Li_c1Bi_1T and then computing
WWT. However, using the structure of L i - 1 and as
suming exact numerical cancellation does not occur, **
it is easy to show that W is about half full. We require
at least n4/ (3a) multiplications to compute WWT, and
about n3/ (2a) auxiliary storage locations are required
forW.

However, if we instead compute W = Ai_c1Bi_1T and
then utilize the fact that B has fewer than 3n nonzero
components when computing B i - 1 W, we perform only
about 2n4

/ a 2 operations. Furthermore, we can compute
Bi_lAi_l-IBi_lT column by column, and only n2/a tem
porary storage locations are required.

Using this crucial observation, the calculation of the
A/s requires about (a-I) (4n4/a2+n3) =4n4/a+an3

multiplications. Utilizing the sparsity of the B/s and
C/s in the same way, the calculation of the F/s requires
about (a-2) (2n4/a2+n3/2) =2n4/a+an3/2 operations.

Collecting terms, we obtain the estimate M (a) for
the number of multiplications required to produce L:

M (a) = 6n4
/ a+5an3/3+n4

/ (2a2
).

Assuming a» 1, M (a) is approximately minimized
for a= a= y18n/5, yielding

M(a) =2VW n3 yn+5n3/36.

Thus, M(a) >n4/2 unless N is very large indeed
(= 25,000) , although M (a) < n4 if N is larger than about
1,600. Thus, unless N is very large we will pay a modest
premium in arithmetic operations if we use our block
scheme. In exchange we obtain a substantial decrease
in storage requirements. It is interesting to note that if
we do not make use of our observation in computing
A/s, the operation count is 0 (n4).

CONCLUDING REMARKS

1. The procedure represents a considerable improve
ment over the standard row by. row scheme;
whether its comparative simplicity renders it
competitive or . superior to the use of more
sophisticated orderings depend upon our particu
lar computing environment and programming
expertise. An attempt to at least partially
answer this question is a topic of further re
search.

** This is a reasonable assumption in the presence of rounding
error.

1320 Fall Joint Computer Conference, 1972

2. As we stated in the introduction, similar results
hold for more general grid problems. When edge
or interior nodes occur, one should use "profile"
or "envelope" methods4 •7 •9 rather than band
schemes for best results. Problems arising
through the use of splines have the property
that unknowns associated with grid points p and
q are connected provided the maximum differ
ence in their x or y grid coordinates is bounded
by some number d, which depends upon the
degree of the spline. To apply our scheme we
simply choose sets of d adjacent parallel grid
lines as separators and proceed as before.

3. For matrix problems arising from the 3-dimen
sional unit cube grid having n3 nodes, we can
choose separators consisting of planes of grid
points and again apply the same techniques. The
computation and storage estimates achieved are
respectively 0 (n6 vn) and 0 (n4 vn), compared
to O(n7) and O(nS) for the standard plane-by
plane numbering scheme.

4. It seems fairly obvious that similar ideas can be
applied to less regular problems, but it is difficult
to obtain quantitative estimates of how much
might be gained. Intuitively, we want to choose
small separators, yielding independent blocks of
nodes which can be numbered so as to have a
small band or profile. The study of automatic
schemes for doing this is another topic for future
research.

ACKNOWLEDGMENT

Part of this research was performed while the author
was visiting the IBM Watson Research Center, York
town Heights, N ew York. Several helpful conversations
with Dr. Fred Gustavson of the research center are
gratefully acknowledged. This work was supported in
part by Canadian National Research Grant A8111.

REFERENCES

1 B L BUZBEE G H GOLUB C W NIELSON
On direct methods for solving Poisson's equations
SIAM Journal for Numerical Analysis 11970 pp 627-656

2 E CUTHILL J McKEE
Reducing the bandwidth of sparse symmetric matrices
Proc 24th National Conference Association Computer
Machinery ACM Publication P 69 1122 Avenue of the
Americas New York New York 1969

3 F W DORR
The direct solution of the discrete Poisson equation on a
rectangle
SIAM Review 12 1970 pp 248-263

4 J A GEORGE
Computer implementation of the finite element method
Stanford Computer Science Department Technical Report
STAN-CS-71-208 Stanford California 1971

5 J A GEORGE
Nested dissection of-a regular finite element mesh
To appear in SIAM Journal for Numerical Analysis

6 F G GUSTAVSON
Some basic techniques for solving sparse systems of linear
equations in Sparse Matrices and Their Applications
(D J Rose and R A Willoughby Editors) Plenum Press 1972

7 A JENNINGS
A compact storage scheme for the solution of symmetric linear
simultaneous equations
Computer Journal 9 (1966) pp 281-285

8 R S MARTIN J H WILKINSON
Symmetric decomposition of positive definite band matrices
Handbook series Linear Algebra Numerische Mathematik 7
(1965) pp 355-361

9 R J MELOSH R M BAMFORD
Efficient solution of load-deflection equations
Journal of the American Society of Civil Engineers
Structural Division 95 (proc paper #6510) pp 661-676

10 D J ROSE
A graph-theoretic study of the numerical solution of sparse
positive definite systems of linear equations
In Graph Theory and Computing (R C Read Editor)
Academic Press N ew York 1972

11 D J ROSE J R BUNCH
The role of partitioning in the numerical solution of sparse
systems
In Sparse Matrices and Their Applications (D J Rose and
R A Willoughby Editors) Plenum Press New York 1972

12 M H SCHULTZ
Elliptic spline functions and the Rayleigh-Ritz-Galerkin
Mathematics of Computation 24 1970 pp 65-80

13 K L STEWART J BATY
Dissection of structures
Journal of the American Society of Civil Engineers
Structural Division (Proc Paper #6502) 93 pp 217-232

14 J H WILKINSON
The algebraic eigenvalue problem
Clarendon Press Oxford England 1965

15 0 C ZIENKIEWICZ
The finite element method in engineering science
McGraw-Hill London 1971

AMERICAN FEDERATION OF INFORMATION
PROCESSING SOCIETIES, INC. (AFIPS)

AFIPS OFFICERS and BOARD OF DIRECTORS

President

Mr . Walter L. Anderson
General Kinetics, Inc.
12300 Parklawn Drive

Rockville, Maryland 20852

Secretary

Mr. Richard B. Blue, Sr.
TRW Systems Group

Scientific Data Processing Lab.
One Space Park-R3/1098

Redondo Beach, California 90278

Executive Director

Dr. Bruce Gilchrist
AFIPS

V ice President

D. Robert A. Kudlich
Raytheon Co., Equipment Division

Wayland Laboratory
Boston Post Road

Wayland, Massachusetts 01778

Treasurer

Mr. George Glaser
McKinsey and Company, Inc.

3000 Sand Hill Road
Menlo Park, California 94025

210 Summit Avenue
Montvale, New Jersey 07645

Dr. Anthony Ralston
SUNY at Buffalo

Computer Science Department
4226 Ridge Lea Road

Amherst, N ew York 14226

AC M Directors

Mr. Donn B. Parker
Stanford Research Institute

333 Ravenswood Avenue
Menlo Park, California 94025

Mr. Herbert S. Bright
Computation Planning, Inc.

5401 Westbard Avenue, Suite 520
Washington, D.C.

Dr. A. S. Hoagland
IBM Corporation

Dept. 29A-Building 021
P.O. Box 1900

Boulder, Colorado 80302

IEEE Directors

Professor Edward J. McCluskey
Stanford University

Department of Electrical Engineering
Palo Alto, California 94305

Dr. S. S. Yau
Department of Electrical Engineering

Stanford University

Simulations Council Director

Mr. Frank C. Rieman
Electronic Associates, Inc.

P.O. Box 7242
Hampton, Virginia 23366

Palo Alto, California 94305

Association for Computation Linguistics Director

Dr. A. Hood Roberts
Center for Applied Linguistics

1717 Massachusetts Avenue, N.W.
Washlllgton, D.C. 20036

A merican Institute of Aeronautics and
Astronautics Director

Mr. Frank Riley , Jr.
Auerbach Corporation
1501 Wilson Boulevard

Arlington, Virginia 22209

A merican Statistical Association Director

Dr. Mervin E. Muller
5303 Mohican Road

Mohican Hills
Washington, D.C. 20016

Instrument Society of A merica Director

Mr. Theodore J. Williams
Purdue Laboratory for Applied Industrial Control

Purdue University
Lafayette, Indiana 47907

Society for Information Display Director

Mr. William Bethke
Rome Air Development Center

RADC (IS, W. Bethke)
Griffiss AFB, New York 13440

A merican Institute of Certified Public
A ccounts Director

Mr. Noel Zakin
AICPA

666 Fifth Avenue
New York, New York 10019

American Society for Information Science Director

Mr. Herbert Koller
ASIS

1140 Connecticut Avenue, N.W., Suite 804
Washington, D.C. 20036

Society for Industrial and Applied
Mathematics Director

Dr. D. L. Thomsen
IBM Corporation

Armonk, N ew York 10504

Special Libraries A ssoC'iation Director

Mr. Herbert S. White
Institute for Scientific Information

325 Chestnut Street
Philadelphia, Pennsylvania 19105

Association for Educational Data Systems Director

Dr. Sylvia Charp
Director of Instructional Systems

The Sc,hool District of Philadelphia
Board of Education

5th and Luzerne Streets
Philadelphia, Pennsylvania

JOINT COMPUTER CONFERENCE BOARD

President

Mr. Walter L. Anderson
General Kinetics, Incorporat~d

12300 Parklawn Drive
Rockville, Maryland 20852

V ice President

Dr. Robert A. Kudlich
Raytheon Company, Equipment Division

Wayland Laboratory
Boston Post Road

Wayland, Massachusetts 01778

Treasurer

Mr. George Glaser
McKinsey and Company, Iuc.

3000 Sand Hill Road
Menlo Park, California 94025

A C M Representative

Dr. Herbert R. J. Grosch
National Bureau of Standards
Center for Computer Science

Washington, D.C. 20234

IEEE Representative

Dr. S. S. Yau
Department of Electrical Engineering

The Technological Institute
N orthwestern University

Evanston, Illinois 60201

se I Representative

Mr. Paul W. Berthiaume
Electronic Associates, Inc.

185 Monmouth Park Highway
West Long Branch, New Jersey 07764

JOINT COMPUTER CONFERENCE
COMMITTEE

Mr. Jerry L. Koory, Chairman
H-W Systems

525 South Virgil
Los Angeles, California 90005

JOINT COMPUTER CONFERENCE TECHNICAL
PROGRAM COMMITTEE

Mr. Henry S. MacDonald, Chairman
Bell Laboratories

Murray Hill, New Jersey 07971

1973 NATIONAL COMPUTER CONFERENCE CHAIRMAN

Dr. Harvey Garner
Director

Moore School of Electrical Engineering
University of Pennsylvania

Philadelphia, Pennsylvania 17104

1972 FJCC STEERING COMMITTEE

Chairman

Robert Spinrad
Xerox Corporation

Technical Program

Donald A. Meier
National Cash Register

Secretary

Harold Sarkissian
Major Data Corp.

Controller

Howard Verne
Hughes Aircraft Co.

Registration

Patricia Riley
TRW Systems

Chairman

Mr. Donal A. Meier
National Cash Register

Vice-Chairman

Dr. Harold Petersen
RAND Corporation

Local Arrangements

Antonia Schuman
Litton Industries

Printing and Mailing

Katherine Jamerson
Computer Sciences Corp.

Exhibits

A. Luke Ward
San/Bar Electronics Corp.

Public Relations

Allen T. LeAnce
LeAnce and Associates

Special Activities

Fred Gruenberger
San Fernando Valley State College

TECHNICAL PROGRAM COMMITTEE

Publication Director

Mr. Russell Bennett
Burroughs Corporation

Speaker Arrangements Director

Mr. Lynn Maxson
IBM Corporation

Liaison & Review Coordinator

Mr . Wolfgang G. Pfeiffer
National Cash Register

SESSION DIRECTORS

Analysis and Simulation Director

Dr. Ray Nilsen
Users and Applications Director

Mr. Ross F. Penne
University of California, Los Angeles University of Southern California

Interdisciplinary Director

Mr. Lowell Amdahl
Compata, Inc.

Software Director

Dr. Richard R. Muntz

Users and Applications Assoc. Dir.

Dr. Arnold F. Goodman
McDonnell-Douglas Astronautics

Hardware Director

University of California, Los Angeles
Mr. Jack Pariser
Hughes Aircraft Co.

Systems and A rchitecture Director

Mr. Harut Barsamian
National Cash Register

SESSION CHAIRMEN, REVIEWERS AND PANELISTS

Baker, Frank
Balzer, Robert M.
Barsamian, Harut
Bekey, George
Boehm, Barry
Chen, T. C.
Chu, Wesley W.
Denning, Peter J.
Farber, David J.
Fetter, William A.
Flynn, Michael J.
Gaines, Eugene C., Jr.
Gentile, Richard B.
Golub, Eugene
Goodman, Arnold

Alberts, A.
Alrich, J. C.
Anderson, H. M.
Anderson, R.
Arndt, F.
Arnovick, G.
Astrahan, M.
Augustin, D. C.
Avizienis, A.
Ball, N.
Barlow, A. E.
Becker, P.
Bell, T. E.
Bernstein, W. A.
Biener, J. W.
Bloomfield, J.
Boehm, B. W.
Borgsahl, R.
Bork, A.
Branch, R.
Branin, F.
Brereton, T. B.
Brown, A. B.
Calhoon, D.
Canova, G.
Cardwell, D.
Carlson, G.
Carroll, J.
Carter, W. C.
Chen, T. C.
Chernak, J.
Cheydler, B. F.
Choma, J. Jr.
Chu, W. W.

SESSION CHAIRMEN

Hamming, Richard W.
Hollander, G.
Hunter, Kenneth
Husson, Samir
Juncosa, M. L.
Kimbleton, Stephen
Kiviat, Philip J.
Lyon, John K.
McCluskey, E. J.
McManus, Jack
McN amee, Laurence
Mason, Maughn
Mills, Harlan
Mitchell, Gordon

REVIEWERS

Climenson, W. D.
Copp, D. H.
Courtney, R.
Cowell, W.
Critchlow, A.
Csuri, C.
Dale, A.
Dalrymple, S. H.
Darms, D.
Dittberner, D.
Dorr, F. W.
Duggan, M.
Dumey, A. I.
Eccles, W.
Edwin, L.
Eisenstark, R.
Farmer, N. A.
Feurzeig, W.
Feustel, E. A.
Fiefant, R.
Firschein, O.
Fletcher, J.
Frank, H.
Freilich, A.
Frost, C. R.
Fuches, E.
Fulton, L. M.
Gardner, R.
Gentile, R.
Gillette, G.
Gilliland, B.
Gold, M.
Goodman, A. F.
Gosden, J.

Montgomery, Christine
Morgan, Howard
Newport, Christopher
Patrick, Robert
Penne, Ross F.
Phister, Montgomery, Jr.
Pinkerton, Tad
Reinstedt, Robert
Stefferud, Einar
Taplin, Janet M.
Turn, Rein
Waxman, Ronald
Weissman, Clark
Wilson, Jon C.

Gotterer, M.
Grandmaison, J.
Grau, A.
Grobstein, D.
Gulick, L. R. Jr.
Hagenstad, M. T.
Hamilton, D. C.
Hammer, C.
Hamming, R. W.
Hammond, F.
Hanson, R. J.
Harper, S.
Harrison, R. L.
Hartwick, R.
Hendrie, G.
Herr, W. B.
Heterick, R. Jr.
Hixon, J.
Hoffman, L.
Hootman, J. T.
Humphrey, R.
Hunt, E.
Hunter, K. W.
Hutt, A. E.
Hyman, M.
Isaksen, L.
Ito, R. A.
Jackson, H. L.
Jeffrey, S.
J ellinek, I.
Jenkins, J. M.
Joseph, E.
Kaltman, A.
Karplus, W. J.

Kay,A. Moler, C. B. Schechter, J.
Keenan, T. Morterana Short, G. E.
Kernighan, B. W. Myers, R. Silvern, L.
Kerr, D. V. Nance, R. E. Singh, S.
Kimbleton, S. R. Nicols, A. J. Skelly, P. G.
Klein, E. Niedrauer, R. V. Small, D. L.
Kleinrock, L. Nielsen, R. Smith, C.
Klinger, A. O'Brien, J. Smith, R. A.
Klotz, D. A. Ofek, H. Southworth, R. W.
Knight, K. Oliver, P. Steenbergen, H.
Koory, J. Onovec Stefferud, E.
Kosinski, W. Onyshkevych Stephenson, J. W.
Kurasch, C. Opderbeck, H. Stewart, R. M.
Kuhns, J. L. Ostapko, D. Sturm, W.
Lange, L. Owens, J. Su, S. Y. H.
Larkin, R. Pariser, J. Summit, R.
Larson, K. Parker, D. Sutherland, W.
Lasser, D. J. Patel, A. Svoboda, A.
Ledley, R. Patrick, R. L. Sykes, D.
Leffler, N. Penne, R. Taylor, R.
Leichner, G. H. Petersen, H. Thomas, R. T.
Levine, L. Phillips, T. D. Tseng, C.
Lewis, W. Pohm, A. Tucker, S.
Lindloon, E. Pomerene, S. Uhlig, R. H.
Linville Postel, J. Uttal, W.
Liskov, B. Price Van Tassel, D.
Loewe, R. T. Prokop, J. Walker, D. E.
Logan, R. S. Rajaraman, A. S. Watson, R. A.
Losleben, P. Ramamoorthy, C. Watt, W. C.
Luderer, G. W. R. Ray, L. Weeg, G. P.
Lum, V. Reynolds, C. Wegbreit, B.
Madden, J. Rhodes Weiss, E.
Markel, R. Rick, J. W. Weissman, C.
Marks, H. Rigney, J. Werner, J. J. Jr.
Martin, W. Ripley, G. Wersan, S.
Mathison, S. Robinson, J. Whitney, D.
Mathur, F. Robinson, L. Wiederhold, G.
Mayper, V. Rodriguez, R. Wigington, R.
McCracken, D. Rosenbaum, S. Wiggins
McGovern, W. Rosenberg, A. M. Wilkov, R. S.
McIssac, D. Rosenthal, M. Williams, J. G.
McMurran, M. N. Rutman, R. Williams, L.
Meier, D. Saal, H. Williams, T. J.
Mekota, J. St. John, D. Wilner, W.
Mergenweck, Schafer, E. Wilson, J.
Meuller, M. Schell, R. Wolf, E. W.
MichIe, M. Schichman, H. Wright, K.
Miller, S. Schieldge, J. Wyllys, R.
Miller, W. G.

Schischa, E. Yakowitz, S. Mills, H.
Minker, J. Schneidewind, N. Yelvington, S.

Mitchell Schultz, M. H. Young, J.
Mittman, B. Sedelow, W. Zelkovitz, M.

PANELISTS AND SPEAKERS

Donald Aufenkamp, N.S.F.
A. Avizienis, University of Southern California
John Bacon, United California Bank
Max Beere, Tymshare
Barry Boehm, RAND Corporation
Robert Brass, Xerox
Barry Brotman, Allied Chemical Corporation
Gary Carlson, Brigham Young University
Leo Cohen, Consultant
David Copp, Bell Telephone Laboratories
Stephen Crocker, Department of Defense
John Davis, TESDATA Systems Corp.
Lt. Col. Phillip Enslow Jr., Office of Telecommunica-

tions Policy, Executive Office of the President
David Evans, Evans and Sutherland
John Farquhar, RAND Corporation
Nick Finamore, Western Electric
H. Fleisher, IBM Corporation
L. Garrett, Motorola
Robert Gordon, Consultant
P. F. Gudenschwager, Honeywell
Richard Hamming, Bell Telephone Laboratories
Cdr. Grace Murray Hopper USNR
Richard Johnson, Stanford University Computation

Center
Robert Johnson, Burroughs Corporation
V. Kahan, University of California at Berkeley
Robert Kahn, Bolt, Beranek and Newman, Inc.
E. Mahoney, United States General Accounting Office

C. H. Mays, Fairchild
John McCarthy, Stanford University
M. Douglas McIlroy, Bell Telephone Laboratories
Harry Mergler, Case Western Reserve University
Capt. M. Morris, Federal ADP Simulation Center
Mervin Muller, International Bank for -Reconstruction

and Development
Peter Newcombe, Brigham Young University
Nils Nilsson, Stanford Research Institute
A. Patel, IBM Corporation
Alan Perlis; Yale University
Charles Perry, McDonnel-Douglas Astronautics
Tom Poole, United Computer Systems
C. Ramamoorthy, University of Texas
Louis Robinson, IBM Corporation
Arthur Rosenberg, Informatics
Capt. Paul Roth, Fleet Combat Direction Systems

Support Activity
Stephen Y. Su, University of Southern California
Lee Talbert, Packet Communications, Inc.
L. C. Thomas, Bell Telephone Laboratories
D. E. Walker, S.R.I.
P. Weber, Lane County
Mark Wells, Los Alamos Scientific Laboratory
James Williams, United States General Accounting

Office
Joe Wineke, Compress, Inc.
M. Worthy, Operating Systems
Gordon Zeller, Los Angeles Times

PRELIMINARY LIST OF EXHIBITORS

Addison-Wesley Publishing Company, Inc.
Addmaster Corporation
Addressograph Multigraph Corporation
AFIPS Press
American Elsevier Publishing Company
American Telephone & Telegraph
Ampex Corporation
Anaheim Publishing Company
Ansul Company
Basic Timesharing, Inc.
Beehive Terminal
Bridge Data Products, Inc.
Burroughs Corporation
Caelus Memories, Inc.
Centronics
Century Electronics and Instruments
Cipher Data Products
Codex Corporation
Collins Radio Company
ComData Corporation
Computer Access Systems, Inc.
Computer Automation, Inc.
Computer Copies Corporation
Computer Design Publishing Corporation
Computer Machinery Corporation
Controls Research Corporation
Courier Terminal Systems, Inc.
Data Disc, Inc.
Data General Corporation
Datamation
Data Printer Corporation
Datapro Research Corporation
Data Products Corporation
Dataram Corporation
Datawest Corporation
Datum, Inc.
Diablo Systems, Inc.
Digital Computer Controls, Inc.
Digital De~elopment Corporation
Documation, Inc.
DuPont Company
Eastman Kodak Company
Electronic Engineering Company of California
Electronic News, Fairchild Publications
Facit-Odhner, Inc.
Federal Screw Works

Floating Point Systems, Inc.
General Automation, Inc.
GTE Lenkurt
G-V Controls
Hayden Publishing Company, Inc.
Hewlett-Packard Company
Honeywell Computer Journal
Houston Instrument
IMSL
Inforex, Inc.
Information Data Systems, Inc.
Infosystems
Infoton, Inc.
Intel Corporation
International Communications Corporation
International Computer Products, Inc.
Kennedy Company
Kybe Corporation
Lipps, Inc.
Litton ABS OEM Products
Lorain Products Corporation
Marubeni America Corporation
Microdata Corporation
Micro Switch
Milgo Electronic Corporation
Miratel Division-Ball Brothers Research Corp.
Modern Data
Mohawk Data Sciences Corporation
Northern Electric Company, Ltd.
N ortronics Company, Inc.
Olympia USA, Inc.
Ovonic Memories, Inc.
Panasonic
Paradyne Corporation
Pertec Corporation
Pioneer Electronics Corporation
Pioneer Magnetics, Inc.
Potter Instrument Company, Inc.
Prentice Hall, Inc.
Printer Technology, Inc.
Producers Service Corporation
Radley Associates Limited
Randomex, Inc.
Raymond Engineering, Inc.
Raytheon Service Company
Redactron Corporation

Remex, A unit of Ex-Cell-O Corporation
Sangama Electric Company
Signal Galaxies, Inc.
The Singer Company
Sycor, Inc.
Sykes
Systems Furniture Company
Tally Corporation
Techtran Industries, Inc.
Tekronix, Inc.
Tele-Dynamics

Teleprocessing Industries, Inc.
Teletype Corporation
Texas Instruments, Inc.
Toko, Inc.
Tri-Data Corporation
Van San Corporation
Vector General, Inc.
Velo-Bind
Wangco, Inc.
John Wiley and Sons, Inc.
Xerox Corporation

Albus, J. S., 1095
Alexandridis, N., 1057
Altshuler, G. P., 1133
Anacker, W., 1269
Anderson, J. A., 703
Atwood, J. W., 331
Augusta, B., 1261
A vizienis, A., 1057
Bailey, P. T., 1279
Baird, G., 819
Baker, F. B., 661
Baker, L. H., 147
Baker, F. T., 339
Barr, W. J., 755
Baskett, F., 13
Bauer, W. F., 993
Bell, C. G., 765, 779
Bell, T. E., 287
Beltz, G. E., 1009
Bernhart, W. D., 169
Berra, P. B., 867
Blaskovics, T. L., 611
Boehn, B. W., 1141
Booth, G. M., 1025
Borgerson, B. R., 89
Boruch, R. F., 425
Bowdon, E. K., Sr., 755
Brown, J. R., 181
Brown, K. M., 1309
Browne, J. C., 13
Buckner, D. C., 153
Bullen, R. H., Jr., 479
Burk, J. M., 263
Burns, R. S., 153
Calahan, D. A., 885
Carroll, J. M., 445
Casasent, D., 709
Chandy, K. M., 55
Chang, S. K., 461
Chen, T. C., 1045
Christensen, G., 561
Chu, Vii. W., 597
Clarke, L. C., 393
Cofer, R. H., 135
Cohen, G. H., 407
Concus, P., 1303
Conn, R. B., 1057
Cosell, B. P., 741
Cowan, A., 55
Cronin, H. F., 1037
Crowther, W. R., 741
Cureton, H., 965
Curtice, R. M., 1105

AUTHOR INDEX

Cutts, R., 473
Dana, C., 1111
De Cegama, A., 299
De Mercado, J., 553
Denning, P. J., 611
Derksen, J., 1181
Di Palma, R., 537
Dmytryshak, C. A., 525
Doty, K. L., 691
Down, N. J., 1243
Ellis, M. E., 1117
Feldman, J. A., 1193
Fichten, J. A., 1017
Fitzsimons, R. M., 255
Foster, D. F., 1235
Freedy, A., 1089
Freeman, P., 779
George, A., 1317
Glaser, E. L., 1045
Goodman, A., 669, 1163
Grace, H. A., 1257
Grampp, F. T., 105
Grobstein, D. L., 889
Grushcow, M. S., 331
Haney; F. M., 173
Hansler, E., 49
Harris, B., 415
Harroun, T. V., 1261
Haynes, H., 473
Healey, L. D., 691
Heart, F. E., 741
Hench, R. R., 1235
Hice, G. F., 537
Hoagland, A. S., 985
Holt, R. C., 331
Holt, R. M., 1069
Hoover, L. R., 375
Horning, J. J., 331
Hsiau, M. Y., 83
Hull, F., 1089
Huskey, H., 473
Jensen, E., 719
Jones, W. C., 545
Jones, P. D., 561
Jung, D. C., 123
Karplus, W. J., 385
Katke, W., 1117
Katzenelson, J., 515
Kaubisch, J., 473
Kesel, P. G., 393
Kimbleton, S., 1163
Kossiakoff, A., 923
Kreitzberg, C. B., 115

Kuck, D. J., 213
Kutsch, J. A., Jr., 611
Laitinen, L., 473
Lan, J., 13
Levitt, K. N., 33
Linden, T. A., .201
Lipovski, G. J., 691
Lippey, G., 633
Liskov, B. H., 191
Lou, J. R., 1089
Low, J. R., 1193
Lyman, J., 1089
Lynch, J. P., 161
McAuliffe, G., 49
McDermott, D. V., 1171
McQuillan, J. M., 741
Maestri, G. H., 273
Mandell, R. L., 453
Martins, G. R., 801
Mathur, F. P., 65
Merten, A., 849
Milgrom, E., 515
Millen, J. K., 479
Minnick, R. C., 1279
Minsky, N., 587
Mommens, J. H., 461
Moe, M. L., 1081
Morenoff, E., 393
Morgan, M. G., 1243
Mori, R., 353
Murphy, D. L., 23
Naito, S., 345
Nakhnikian, J., 641
Nanya, T., 345
Needham, R. M., 571
N ezu, K., 345
Nutt, G. J., 279
Ohmori, K., 345
Olson, J., 1117
Opderbeck, H., 597
Orlandea, N., 885
Orlando, V. A., 859
Parhami, B., 681
Parnas, D. L., 325
Parrett, G. H., 1251
Patel, A. M., 83
Pendray, J. J., 97
Plagman, B. K., 1133
Pomerene, J. H., 977
Presser, L., 1111
Prosser, F., 641
Raamot, J., 867
Ramamoorthy, C. V., 55

Roland, R. D., 161
Rose, C. W., 311
Rosenberg, A. M., 993
Rothman, S., 423
Rudolph, J. A., 229
Rulifson, J. F., 1181
Ruud, R., 949
Sadler, R. W., 1243
Sager, N., 791
Sandfort, R. M., 1279
Schneidewind, N. F., 837
Schoonover, J. E., 263
Schultz, G. W., 1069
Schwartz, J. T., 1081
Semon, W. L., 1279
Sevick, K. C., 331
Shapiro, N. Z., 435
Singh, S., 367
Sleight, T. P., 923
Spirn, J. R., 611
Sterling, W., 709
Stone, P. J., 811

Strauss, J. C., 1225
Stucki, L. G., 829
Sussman, G. J., 1171
Swinehart, C., 1193
Szygenda, S. A., 875
Taylor, R. H., 1193
Teichroew, D., 1203
Teitelman, W., 917
Teorey, T. J., 1
Thompson, E. W., 875
Thurber, K., 719
Tobias, M. J., 1025
Tollkuhn, G., 473
Tou, J. T., 135
Tracey, J. H., 375
Tsiang, S. H., 545
Tsichritzis, D., 331
Tucker, E. K., 147
Turn, R., 435
Uhlig, R. P., 889
Varah, J. M., 1299
Vickers, F. D., 649

Walden, D. C., 741
Waldinger, R. J., 1181
Walter, C. N., 407
Warner, C. D., 959
Watson, J., 229
Watson, R. A., 1141
Waxman, R., 367
Way, F., III, 1045
Webb, J. H., 115
Wegbreit, B., 905
Weltman, G., 1089
Wensley, J. H., 243
Wesley, M. A., 461
Wilkes, M. V., 971
Wilkov, R., 49
Williams, L. H., 899
Williams, T. G., 499
Wilner, W. T., 489, 579
Wolman, B. L., 507
Wulf, W. A., 943
Yang, S. C., 1117
Yarwood, E., 473

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	0649
	0650
	0651
	0652
	0653
	0654
	0655
	0656
	0657
	0658
	0659
	0660
	0661
	0662
	0663
	0664
	0665
	0666
	0667
	0668
	0669
	0670
	0671
	0672
	0673
	0674
	0675
	0676
	0677
	0678
	0679
	0680
	0681
	0682
	0683
	0684
	0685
	0686
	0687
	0688
	0689
	0690
	0691
	0692
	0693
	0694
	0695
	0696
	0697
	0698
	0699
	0700
	0701
	0702
	0703
	0704
	0705
	0706
	0707
	0708
	0709
	0710
	0711
	0712
	0713
	0714
	0715
	0716
	0717
	0718
	0719
	0720
	0721
	0722
	0723
	0724
	0725
	0726
	0727
	0728
	0729
	0730
	0731
	0732
	0733
	0734
	0735
	0736
	0737
	0738
	0739
	0740
	0741
	0742
	0743
	0744
	0745
	0746
	0747
	0748
	0749
	0750
	0751
	0752
	0753
	0754
	0755
	0756
	0757
	0758
	0759
	0760
	0761
	0762
	0763
	0764
	0765
	0766
	0767
	0768
	0769
	0770
	0771
	0772
	0773
	0774
	0775
	0776
	0777
	0778
	0779
	0780
	0781
	0782
	0783
	0784
	0785
	0786
	0787
	0788
	0789
	0790
	0791
	0792
	0793
	0794
	0795
	0796
	0797
	0798
	0799
	0800
	0801
	0802
	0803
	0804
	0805
	0806
	0807
	0808
	0809
	0810
	0811
	0812
	0813
	0814
	0815
	0816
	0817
	0818
	0819
	0820
	0821
	0822
	0823
	0824
	0825
	0826
	0827
	0828
	0829
	0830
	0831
	0832
	0833
	0834
	0835
	0836
	0837
	0838
	0839
	0840
	0841
	0842
	0843
	0844
	0845
	0846
	0847
	0848
	0849
	0850
	0851
	0852
	0853
	0854
	0855
	0856
	0857
	0858
	0859
	0860
	0861
	0862
	0863
	0864
	0865
	0866
	0867
	0868
	0869
	0870
	0871
	0872
	0873
	0874
	0875
	0876
	0877
	0878
	0879
	0880
	0881
	0882
	0883
	0884
	0885
	0886
	0887
	0888
	0889
	0890
	0891
	0892
	0893
	0894
	0895
	0896
	0897
	0898
	0899
	0900
	0901
	0902
	0903
	0904
	0905
	0906
	0907
	0908
	0909
	0910
	0911
	0912
	0913
	0914
	0915
	0916
	0917
	0918
	0919
	0920
	0921
	0922
	0923
	0924
	0925
	0926
	0927
	0928
	0929
	0930
	0931
	0932
	0933
	0934
	0935
	0936
	0937
	0938
	0939
	0940
	0941
	0942a
	0942
	0943
	0944
	0945
	0946
	0947
	0948
	0949
	0950
	0951
	0952
	0953
	0954
	0955
	0956
	0957
	0958
	0959
	0960
	0961
	0962
	0963
	0964
	0965
	0966
	0967
	0968
	0969
	0970
	0971
	0972
	0973
	0974
	0975
	0976
	0977
	0978
	0979
	0980
	0981
	0982
	0983
	0984
	0985
	0986
	0987
	0988
	0989
	0990
	0991
	0992
	0993
	0994
	0995
	0996
	0997
	0998
	0999
	1000
	1001
	1002
	1003
	1004
	1005
	1006
	1007
	1008
	1009
	1010
	1011
	1012
	1013
	1014
	1015
	1016
	1017
	1018
	1019
	1020
	1021
	1022
	1023
	1024
	1025
	1026
	1027
	1028
	1029
	1030
	1031
	1032
	1033
	1034
	1035
	1036
	1037
	1038
	1039
	1040
	1041
	1042
	1043
	1044
	1045
	1046
	1047
	1048
	1049
	1050
	1051
	1052
	1053
	1054
	1055
	1056
	1057
	1058
	1059
	1060
	1061
	1062
	1063
	1064
	1065
	1066
	1067
	1068
	1069
	1070
	1071
	1072
	1073
	1074
	1075
	1076
	1077
	1078
	1079
	1080
	1081
	1082
	1083
	1084
	1085
	1086
	1087
	1088
	1089
	1090
	1091
	1092
	1093
	1094
	1095
	1096
	1097
	1098
	1099
	1100
	1101
	1102
	1103
	1104
	1105
	1106
	1107
	1108
	1109
	1110
	1111
	1112
	1113
	1114
	1115
	1116
	1117
	1118
	1119
	1120
	1121
	1122
	1123
	1124
	1125
	1126
	1127
	1128
	1129
	1130
	1131
	1132
	1133
	1134
	1135
	1136
	1137
	1138
	1139
	1140
	1141
	1142
	1143
	1144
	1145
	1146
	1147
	1148
	1149
	1150
	1151
	1152
	1153
	1154
	1155
	1156
	1157
	1158
	1159
	1160
	1161
	1162
	1163
	1164
	1165
	1166
	1167
	1168
	1169
	1170
	1171
	1172
	1173
	1174
	1175
	1176
	1177
	1178
	1179
	1180
	1181
	1182
	1183
	1184
	1185
	1186
	1187
	1188
	1189
	1190
	1191
	1192
	1193
	1194
	1195
	1196
	1197
	1198
	1199
	1200
	1201
	1202
	1203
	1204
	1205
	1206
	1207
	1208
	1209
	1210
	1211
	1212
	1213
	1214
	1215
	1216
	1217
	1218
	1219
	1220
	1221
	1222
	1223
	1224
	1225
	1226
	1227
	1228
	1229
	1230
	1231
	1232
	1233
	1234
	1235
	1236
	1237
	1238
	1239
	1240
	1241
	1242
	1243
	1244
	1245
	1246
	1247
	1248
	1249
	1250
	1251
	1252
	1253
	1254
	1255
	1256
	1257
	1258
	1259
	1260
	1261
	1262
	1263
	1264
	1265
	1266
	1267
	1268
	1269
	1270
	1271
	1272
	1273
	1274
	1275
	1276
	1277
	1278
	1279
	1280
	1281
	1282
	1283
	1284
	1285
	1286
	1287
	1288
	1289
	1290
	1291
	1292
	1293
	1294
	1295
	1296
	1297
	1298
	1299
	1300
	1301
	1302
	1303
	1304
	1305
	1306
	1307
	1308
	1309
	1310
	1311
	1312
	1313
	1314
	1315
	1316
	1317
	1318
	1319
	1320
	1321
	1322
	1323
	1324
	1325
	1326
	1327
	1328
	1329
	1330
	1331

