
AFIPS 
CONFERENCE 
PROCEEDINGS 

VOLUME 39 

1971 
FALL JOINT 
COMPUTER 

CONFERENCE 

November 16- 18. 1971 

Las Vegas. Nevada 



The ideas and opinions expressed herein are solely those of the authors and are not 
necessarily representative of or endorsed by the 1971 Fall Joint Computer Con
ference Committee or the American Federation of Information Processing Societies, 
Inc. 

Library of Congress Catalog Card Number 55-44701 

AFIPS PRESS 
210 Summit Avenue 

Montvale, New Jersey 07645 

@1971 by the American Federation of Information Processing Societies, Inc., 
Montvale,New Jersey 07645. All rights reserved. This book, or parts thereof, may 
not be reproduced in any form without permission of the publisher. 

Printed in the United States of America 



CONTENTS 

DATA COMMUNICATIONS 

A universal cyclic division circuit .................................... . 

Cyclic redundancy checking by program .............................. . 

APPLICATIONS OF COMPUTERS IN EMERGING NATIONS 

Development of computer applications in emerging nations ............. . 
Notions about installing and maintaining a population register in Brazil .. . 

OPERATING SYSTEMS-SOME MODELS AND MEASURES 

The neutron monitor system ........................................ . 

A simple thruput and response model of EXEC 8 under swapping 
saturation ...................................................... . 

Throughput measurement using a synthetic job stream .............. '" .. 

A feedback queueing model for an interactive computer system ......... . 

TERMINALS 

Alcoa picturephone remote information system (APRIS) ............... . 

Computer support for an experimental PICTUREPHONE® computer 
system at Bell Telephone Laboratories Incorporated ................. . 

Proposed braille computer terminal offers expanded world to the blind ... . 

SIMULATION OF ENVIRONMENTAL DYNAMICS 

Numerical simulation of subsurface environment ......... ' ............. . 

Digital simulation of the general atmospheric circulation using a very dense 
grid ............................................................ . 

Simulation of the dynamics of air and water pollution .................. . 
Programming the war against water pollution ......................... . 
Application of a large scale nonlinear programming problem to pollution 

control ......................................................... . 

1 

9 

17 
27 

31 

39 
51 

57 

65 

71 
79 

89 

97 
105 
115 

123 

A. W. Maholick 
R. B. Freeman 
P. E. Boudreau 
R. F. Steen 

A. B. Kamman 
A. L. Mesquita 

R. Aschenbrenner 
L. Amiot 
N. K. N atarajan 

J. C. Strauss 
D. C. Wood 
E. H. Forman 
G. Nakamura 

M. L. Coleman 
K. W. Hinkelman 
W. J. Kolechta 

E. J. Rodriguez 
N. C. Loeber 

B. L. Bateman 
D. D. Drew 
P. B. Crawford 

W. E. Langlois 
L. W. Ross 
D. J. Olsen 

G. Graves 
D. Pingry 
A. Whinston 



IMAGES AND PATTERNS 

Parametric font and image definition and generation ................... . 
A syntax-directed approach to pattern recognition and description ....... . 
Computer pattern recognition of printed music ........................ . 

LARGE SCALE INTEGRATION (LSI) 

A storage cell reduction technique for ROS design ..................... . 
A new approach to implementing high-density shift registers ............ . 
Universal logic modules implemented using LSI memory techniques ..... . 

COMPUTERS IN MEDICINE-PROBLEMS AND PERSPECTIVES 
(PANEL SESSION) 

Position paper .................................................... . 
Position paper .................................................... . 
Position paper .................................................... . 

THE USER INTERFACE FOR INTERACTIVE SEARCH 
(PANEL SESSION) 

Chairman's Note .... " ............................................ . 

STATE OF THE COMPUTER ART IN BIOLOGY (PANEL SESSION) 

Position paper .................................................... . 
Position paper .................................................... . 
Position paper ................................... : ................. . 
Position paper .................................................... . 
Position paper .................................................... . 

SIMULATION OF AEROSPACE SYSTEMS 

Introduction to training simulator programming ....................... . 
The handling qualities simulation program for the augmentor wing jet 

STOL research aircraft ........................................... . 
Software validation·of the Titan IIlC digital flight control system utilizing 

a hybrid computer ............................................... . 

r Multivariable function generation for simulations ...................... . 

PROGRAMMING LANGUAGES AND LANGUAGE PROCESSORS 

Problems in, and a pragmatic approach to, programming language measure-
ment ........................................................... . 

The ECL programming system ...................................... . 
The "single-assignment" approach to parallel processing ................ . 
MEANINGEX-A computer-based semantic parse approach to the analysis 

of meaning ................................................ , .... . 

135 
145 
153 

163 
171 
177 

195 
195 
196 

197 

199 
199 
200 
201 
201 

203 

213 

225 

233 

243 
253 
263 

271 

A. J. Frank 
L. D. Menninga 
D. S. Prerau 

C. K. Tang 
T. S. Jen 
K. J. Thurber 
R. O. Berg 

B. G. Lamson 
C. T. Post, Jr. 
E. E. Van Brundt 

J. L. Bennett 

C. Levinthal 
N. E. Morton 
R. Nathan 
W. F. Raub 
W. S. Yamamato 

D. G. O'Connor 

W. B. Cleveland 

R. S. Jackson 
S. A. Bravdica 
P. Chew 
J. E. Sanford 
E. Z. Asman 

J. E. Sammet 
B. Wegbreit 
D. D. Chamberlin 

D. J. Mishelevich 



APPLICATION OF COMPUTERS TO LAW ENFORCEMENT AND 
CRIMINAL JUSTICE 

Law enforcement communications and inquiry systems ................. . 
The Long Beach public safety information subsystem .................. . 

State criminal justice information system ............................. . 
Automated court system ........................................... . 

EXPERIMENTS IN ON-LINE DELPHI RESEARCH 

Delphi and its potential impact on information systems ................ . 
Technology for group dialogue and social choice ....................... . 
Structuring information for a computer-based communications medium ... . 

INTERACTIVE CONTINUOUS-SYSTEM SIMULATION IN 
RESEARCH AND EDUCATION 

INSIGHT-An interactive graphic instructional aid for systems analysis .. 

An interactive class-oriented dynamic graphic display system using a hybrid 
computer ..................................................... . 

Hybrid terminal system for simulation in science education ............. . 
BIOMOD-An interactive computer graphics system for modeling ...... . 

The future of on-line continuous-system simulation .................... . 

COMPUTER STRUCTURES-PAST PRESENT AND FUTURE 
(PANEL SESSION) 

Position paper .................................................... . 

Position paper .................................................... . 
Position paper .................................................... . 
Position paper. . .................................................. . 

COMPUTERS IN SPORTS (PANEL SESSION) 

Position paper .................................................... . 
Position paper. . .................................................. . 
Position paper .................................................... . 
Position paper .................................................... . 
Position paper .................................................... . 
Position paper ............................... ' ..................... . 

TWENTY YEARS IN PASSING (PANEL SESSION) 

(No papers in this volume) 

281 
295 

303 
309 

317 
327 
337 

351 

357 
361 
369 

379 

387 

395 
395 
395 

397 
397 
398 
399 
399 
400 

J. D. Hodges, Jr. 
G. Medak 
P. Whisenand 
G. Gack 
R. Gallati 
R. Baca 
M. Chambers 
W. Pringle 
S. Boehm 

M. Turoff 
T. B. Sheridan 
S. Umpleby 

M. J. Merritt 
R. Sinclair 

A. Frank 
D. C. Martin 
G. F. Groner 
R. L. Clark 
R. A. Bermam 
E. C. DeLand 
H. M. Aus 
G. A. Korn 

C. G. Bell 
A. Newell 
F. P. Brooks, Jr. 
D. B. G. Edwards 
A. Kay 

G. Brandt 
L. Eppele 
A. Lalchandani 
K. Mitchell 
K. G. Purdy 
F. B. Ryan 



DATA SECURITY IN DATA BASE SYSTEMS 

Multi-dimensional security programs for a generalized information retrieval 
system ......................................................... . 

for statistical purposes ........................................... . 
The formulary model for flexible privacy and access controls ............ . 
Insuring confidentiality of individual records in data storage and retrieval 

THE APPLICATION OF COMPUTERS TO URBAN PLANNING 
AND DEVELOPMENT 

Integrated municipal information systems: Benefits for cities--Require-
ments for vendors ............................................... . 

Geocoding techniques developed by the census use study ............... . 

Urban COGO-A geographic-based land information system ................ . 

SELECTED PAPERS IN DISCRETE SIMULATION 

Understanding urban dynamics. . . . ................................. . 
Bankmod-An interactive decision aid for banks ...................... . 

Simulation of large asynchronous logic circuits using an ambiguous gate 
model .......................................................... . 

Adaptive memory trackers .......................................... . 

PLANNING COJVIMUNITY INFORMATION UTILITIES 
(PANEL SESSION) 

Position paper .................................................... . 
Position paper .................................................... . 
Position paper .................................................... . 
Position paper .................................................... . 
Position paper .................................................... . 

COMPUTERS AND THE PROBLEMS OF SOCIETY 
(PANEL SESSION) 

Position paper ..................................................... . 
Position paper .................................................... . 
Position paper .................................................... . 
Position paper .................................................... . 
Position paper .................................................. . 

571 

579 
587 

603 
609 

619 

631 
639 

651 
663 

669 
670 
671 
671 
672 

675 
675 
676 
677 
677 

J. M. Carroll 
R. Martin 
L. McHardy 
H. Moravec 
M. H. Hansen 
L. J. Hoffman 

S. E. Gottlieb 
C. C. Smith 
lV1. S. White, Jr. 
B. Schumaker 

G. O. Barney 
W. P. Hoenhenwarter 
K. E. Reich 

S. G. Chappell 
G. Epstein 

B. W. Boehm 
N. D. Cohen 
B. Nanus 
N. R. Nielsen 
E. B. Parker 

P. Kamnitzer 
N. F. Kristy 
J. McLeod 
E. W. Paxson 
R. Weinberg 



NUMERICAL METHODS 

On the hybrid computer solution of partial differential equations with two 
spatial dimensions ............................................. . 

Numerical solution of partial differential equations by associative processing 
Consistency tests for elementary functions ............................ . 

LABORATORY AUTOMATION 

Laboratory automation at General Electric corporate research and develop-

401 

411 
419 

ment.......................................................... 423 

1\1ulticomputer processing in laboratory automation. . . . . . . . . . . . . . . . . . . . 435 

Enhancement of chemical measurement techniques by real-time computer. 
interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 

The television/computer system-Acquisition and processing of cardiac 
catherization data u~ing a small computer. . . . . . . . . . . . . . . . . . . . . . .. . . . 455 

Cost benefits analysis in the design and evaluation of information systems. . 469 
Factors to be considered in computerizing a clinical chemistry department 

of a large city hospital. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 

DATA BASE SYSTEMS DESIGN 

Integrated information system ...................................... . 
A machine independent FORTRAN data management software system for 

scientific and engineering applications .............................. . 
Requirements for a generalized data base management system .......... . 

INTERACTIVE TEXT EDITING SYSTEMS 

User engineering principles for interactive systems ..................... . 
Computer assisted tracing of text evolution ........................... . 

PLANNING AND DESIGNING OF HIGH PERFORMANCE SYSTEMS 

Planning computer services for a complex environment ................. . 
A high performance computing system for time critical applications ...... . 

Effective corporate networking, organization, and standardization ....... . 

491 

501 
515 

523 
533 

541 
549 

561 

G. A. Bekey 
M. T. Ung 
P. A. Gilmore 
A. C. R. Newbery 

P. R. Kennicott 
V. P. Scavullo 
J. S. Sicko 
E. F. Lifshin 
C. E. Klopfenstein 
C. L. Wilkins 

S. P. Perone 

H. J. Covvey 
A. G. Adelman 
C. H. Felderhof 
P. Mendler 
E. D. Wigle 
K. W. Taylor 
I. Learnman 

R. L. Morey 
M. C. Adams 
E. Laga 

J. C. Pendleton 

I. Hirschsohn 
A. C. Patterson IV 

W. J. Hansen 
W. D. Elliott 
A. Van Dam 
W. A. Potas 

J. E. Austin 
T. J. Gracon 
R. A. Nolby 
F. J. Sansom 
P. L. Peck 





A universal cyclic division circuit 

by ANDREW W. MAHOLICK and RICHARD B. FREEMAN 

IBM Corporation 
Research Triangle Park, North Carolina 

INTRODUCTION 

Recent innovations in circuit technology have allowed 
design alternatives that previously would have been 
economically unsound. LSI technology permits the use 
of generalized systems containing more logic than the 
specialized systems used in the past, implemented in 
unit logic, and at even lower cost. Five years ago an 
engineer would not have even considered using a cyclic 
redundancy checking circuit in the manner described 
here. 

Cyclic Redundancy Checking (CRC) is a relatively 
old technique for use in error detection. W. W. Peterson 
and D. T. Brown1 wrote a fundamental paper pointing 
out the great potentialities for cyclic codes in error 
detection and the requirements for implementing such 
error detection systems. The specialized serial case, 
i.e., with one input channel and one output channel, 
has been extensively studied and is contained in the 
Peterson2 text. Many related papers, including pioneer
ing efforts on this subject, are contained in a book 
edited by Kautz.3 Hsiao and Sih,4 Hsiao,5 and Patel6 

have concentrated on the generalized case of CRC cir
cuits with parallel multiple-channel inputs and outputs. 

The above articles emphasize the use of fixed wiring 
patterns to implement the error-detection capabilities 
of cyclic redundancy codes. The hardware would re
quire a complete rewiring to change the polynomial for 
the cyclic redundancy check. This, in turn, would 
mean that the circuitry itself would have a limited 
usefulness because only one type of polynomial could 
be used within a system at anyone time. 

Conventional CRC circuits for a given polynomial 
and data character size consist of a serial-by-bit shift 
register with EXCLUSIVE OR feedback circuits in 
those bit positions which represent a term in the CRC 
polynomial. Figure 1 shows an implementation for the 
polynomial, X16+X15+X2+ 1. In a digital data com
munication system, this bit-synchronous scheme must 
usually be duplicated for each communication line. In 

1 

communication line multiplexers the logic is sometimes 
shared, but it is limited to those communication lines 
using the same CRC checking polynomial. 

We shall describe a generalized method for updating 
cyclic redundancy checking logic at the character level 
which is capable of operating upon any data character 
size in conjunction with any checking polynomial of a 
given length. 

RECEIVED OR TRANSMITTED CHARACTER BITS 
TO BE INCLUDED. IN eRe ACCUMULATION 

2 ),EEDBACK DATA 

FIGURE 1 - SIMPLIFIED SERIAllMPlEMfNTATION OF THE POLYNOMIAL, Xf6 • xl5 + x2 + I 

Figure 1-Simplified serial implementation of the polynomial 
X16 +X15 +X2+1 

We shall describe the device from the point of view 
of its application in a digital data communication line 
multiplexer where a variety of CRC polynomials might 
be employed to service multiple communication lines. 
However, it should be noted that this device can be used 
by future terminals as well as by the increasing number 
of I/O devices (tapes, discs, et al.) which are employing 
CRC checking. 

THE EVOLUTION FROM SERIAL TO 
PARALLEL 

In this section we shall trace the evolution of the 
polynomial, X 8+X5+X3+X+l, from its serial-by-bit 
implementation as shown in Figure 2 to its parallel-by
character implementation as shown in Figure 7. This 
will provide the background necessary to understand 



2 Fall Joint Computer Conference, 1971 

INPUT DATA SHIFT REGISTER 

Figure 2-8implified serial implementation of the polynomial 
X8+X5+X3+X +1 

the generalized method described later that can process 
f bits in parallel for any arbitrary checking polynomial 
to generate the CRC character or the syndrome. 

From Patel,6 we have the required theoretical rela
tionship between the serial-by-bit and parallel-by
character cases. A brief section is reproduced for the 
convenience of the reader in Appendix A. 

Figure 2 shows the conventional serial-by-bit imple
mentation for the polynomial, X8+X5+X3+X+1, to 
be used in conjunction with a four-bit data character. 

Figure 3 shows an equivalent circuit in which re
dundant EXCLUSIVE-OR circuits have been added , 
such that there is one at the input of each stage of the 
shift register. Those EXCLUSIVE-ORS not required 
to implement the polynomial have one input connected 
to a "logical 0" voltage level. Thus, the input coming 
from a previous shift register stage will pass through as 
if the EXCLUSIVE-OR circuit were not there, i.e., 
O+X=X. 

Figure 4 shows another functionally equivalent cir
cuit. Some flexibility is obtained by the addition of an 
AND circuit, which controls one input of the EX
CLUSIVE-OR circuit. One input of each AND circuit 
is connected in common to the feedback path. The other 
input of each AND circuit may be connected to either a 
logical 1 or 0 voltage level according to whether or not 
the corresponding term exists in the polynomial. 

Figure 5 shows another step in the evolutionary 
process. The data is entered parallel-by-character rather 

Figure 3-Equivalent implementation # 1 for the polynomial 
X8+X5+X3+X +1 

Figure 4-Equivalent implementation #2 for the polynomial 
X8+X5+X3+X +1 

than serial-by-bit. This is accomplished by EXCLU
SIVE-ORing the data character with the corresponding 
low order bits of the shift register prior to shifting. This 
may be done since the contents of the shift register will 
be the same after f-bit shifts on a serial-by-bit basis or 
if the f-bits are EXCLUSIVE-ORed with the low order 
stages of the shift register and then allowing the f-bit 
shifts to occur. 

Figure 6 shows the next step in the evolutionary 
process. Here one row of shift registers has been ~dded 
for each data bit. For all rows except the first, the input 
of an EXCLUSIVE-OR circuit in cell position Cn,m is 
connected to the output of cell Cn - i , m-i, where n is the 
row number and m is the column number. It is connected 
there rather than to the cell on its immediate left, 
Cn,m-i. We shall shift each row from 1 t04 on a mutually 
exclusive basis. When the last row has been shifted, the 
output of row 4 will be identical to the serial-by-bit 
implementation after four bit shifts. 

In the final equivalent circuit every shift register 
state is deleted such that all that remains is the com
binational logic as shown in Figure 7. In this version, 
the only time delay that will be encountered is the 
propagation delay of the logic elements. 

We still need some memory elements, however. We 
require an OLD CRC REGISTER, a NEW CHAR
ACTER REGISTER, and a NEW CRC REGISTER. 
The NEW CHARACTER REGISTER and the low 

Figure 5-Equivalent implementation # 3 for the polynomial 
X8+X5+X3+X +1 



Figure 6-Equivalent implementation #4 for the polynomial 
X8+X5+X3+X +1 

order position of the OLD CRC REGISTER are EX
CLUSIVE-ORed together. The outputs of the exclusive 
or circuits plus the high order positions of the OLD CRC 
REGISTER are connected to appropriate positions in 
the first row of the array. The updated CRC remainder 
will appear at the output of the bottom row and will be 
set in the NEW CRC REGISTER. The contents of 
the NEW CRC REGISTER can then be transferred 
to the OLD CRC REGISTER in preparation for the 
next iteration. 

A POLYNOMIAL REGISTER set to the required 
bit configuration is used in lieu of fixed wiring to select 
the polynomial. It offers more than is required for the 
single polynomial implemented since it will provide for 
any polynomial of the eighth degree. 

THE UNIVERSAL CRC REGISTER 

For a practical implementation in a communication 
multiplexer, the system (Figure 8) uses a memory de-

Figure 7-Equivalent implementation # 5 for the polynomial 
X8+X5+X3+X +1 

Universal Cyclic Division Circuit 3 

Figure 8-Functional block diagram of universal CRC logic 

vice which is addressable via a communication line 
scanner. The location accessed in the memory for a 
particular line contains unique line control information 
including the current CRC value, data character 
length, and a binary representation of the polynomial 
associated with that line. Subsequent to the receipt of 
the transmission line address, the memory will be ac
cessed to obtain specific parameters associated with 
that address to set the CODE LENGTH SELECTOR 
(6, 7, or 8 bits), POLYNOMIAL, and OLD CRC 
registers. The old CRC is the cyclic redundancy check 
remainder calculated for the previous data characters 
received or transmitted during the current transmission 
on the line. 

At the same time that the transmission line address 
is made available to memory, the new data character 
to be serviced from this line is stored in the NEW 
CHARACTER register. 

When all the parameters associated with the trans
mission line address have been set, the CODE 
LENGTH SELECTOR, POLYNOMIAL, OLD CRC 
and NEW CHARACTER registers are gated to the 
inputs of an array calculator. 

The array calculator is an asynchronous device 
which will continually calculate a cyclic redundancy 
check upon the data contained within the POLY
NOMIAL register, the OLD CRC register, the NEW 
CHARACTER register, and the CODE LENGTH 
SELECTOR register. The output of the array calcu
lator, after a sufficient amount of propagation delay 
time within the array calculator, is the new CRC value 
and it is stored in the NEW CRC register. The new 
CRC contained in the NEW CRC register is then 
stored in memory at the same location as the old CRC 



4 Fall Joint Computer Conference, 1971 

was previously stored. On the next iteration, this data 
will be the old CRC remainder. 

CRC calculation continues in a multiplexed fashion. 
Each communication adapter invokes the CRC param
eters associated with it by presenting a unique memory 
address to access the memory. This insures that the 
proper old CRC, code length, and polynomial are com
bined with the new data character to generate the new 
cyclic redundancy check remainder. 

An alternate approach will be to transmit the cyclic 
redundancy check following the stop character and 
allow the cyclic redundancy check and the stop char
acter to pass through the universal cyclic redundancy 
check generator. The result of this operation would be 
a data word as an output from the array calculator 
which represents the syndrome. A non-zero syndrome 
indicates an error in the received data. However, if the 
syndrome is zero we know only that the received bit 
stream is one of the allowable set of transmitted bit 
streams. It may not be the actual transmitted bit 
stream. That is, an undetectable error may have oc
curred. 

OPERATIONAL CHARACTERISTICS 

Figure 9 is a detailed presentation of the input logic 
of the rectangular array calculator which provides for 
6-, 7-, or 8-bit data characters and polynomials of order 
16 or less. The POLYNOMIAL and OLD CRC registers 
are 16-bit registers labeled from 0 to 15 and the NEW 
CHARACTER register is an 8-bit register labeled 0 to 
7. Only the first two rows of the rectangular array are 
shown in Figure 9. 

Each of the registers is always filled from data busses 
entering these registers such that the right-most binary
bit positions in each of these registers represent data 
corresponding to the particular polynomial terms, the 

Figure 9-Input logic for the rectangular array 

old CRC value, and the new data character which is 
required to update the CRC value. In cases where this 
data does not fill the entire register, the higher order or 
left-most bit positions are forced to a binary 0 condition 
as is shown above each of the registers in Figure 9. 

While the logic for the array shown in Figure 9 looks 
very extensive, it should be noted that this is deceptive, 
since the logic has intentionally been designed as an 
iterative structure to make it attractive for large scale 
integration (LSI). The array could be packaged on one 
chip, making the large amount of logic involved of 
little consequence. 

The logic shown in Figure 9 performs a relatively 
complicated mathematical function upon the various 
register inputs to the array, initially, a modulo-two 
addition (half summing) occurs between the old CRC 
and new data character. The result of that addition is 
then applied to the array calculator. The array calcu
lator operates in a manner so as to duplicate mathe
matically the results which might be obtained by serial 
feedback approaches to CRC generation as previously 
shown. 

The circuitry within the array has its various anal
ogies to serial feedback shift register implementation. 
For example, the vertical lines such as line 1 in Figure 9 
represents a single feedback point in an analogous 
serial feedback approach to CRC generation (Line 1 in 
Figure 1). The vertical line represents the presence 
("I") or absence ("0") of a term in the chosen cyclic 
check polynomial. For instance, the polynomial 
X16+X15+X2+1 used in Binary Synchronous Communi
cation would be represented with "I's" in positions 15, 
2, and 0 (1 =Xo) of the POLYNOMIAL register. In 
effect, there is always a high order term (16 in this 
case) which necessitates the initial modulo-two 
addition. 

To determine the right-justified positions in the 
POL YNOMIAL register for polynomials of degree less 
than 16, it is necessary to multiply the polynomial by 
x raised to the power (16-(degree of polynomial)). For 
instance, the polynomial X6+X5+ 1 would be im
plemented as though it were X(16-6) (X6+X5+ 1) = 

X16+X15+XlO and "ones" would be placed in positions 10 
and 15 with position 16 implied. LRC for 8 b t codes 
(x8+1) would te implemented as X (16-8) (x8+1) = 

X16+X8 with a "one" in position 8. 
The horizontal line or intermediate feedback line, 

such as line 2 of Figure 9, represents for each bit shift 
the state of the feedback network in the serial feedback 
approach to ORC generation (Line 2 of Figure 1). The 
horizontal line is always the output of the right-most 
position in the row above in the rectangular array. The 
concurrence of a feedback path and the proper data 
bit in the feedback path would cause a change in the 



data within the serial shifting network. A similar 
changing of data occurs in the transmission between one 
cell element and another if the data on the intermediate 
feedback line and the line from the polynomial register 
are of the proper values. The output ("I" or "0") of a 
given cell is equal to the output of the cell diagonally 
above and to the left of it unless it is reversed by the 
coincidence of a logical "one" on both the vertical line, 
and on the horizontal line associated with the position. 

THE ARRAY AND ITS OPERATION 

Certain machines might interface the array in a dif
ferent fashion than shmvll in Figure 9, i.e., the CRC 
polynomial select register might be replaced by perma
nent wiring in a terminal application, or the output 
assembler (described later) might be reduced or elimi
nated if only one data character length exists. 

The array consists of replicas of the simple circuit 
shown in Figure 10. The cell is shown enclosed in the 
dotted line labeled cell Cn,m on Figure 9. Each cell ele
ment has three inputs. The first, 1, is connected to a 
line 4 carrying signals representing the binary value for 
the intermediate feedback within the array calculator. 
The second input, 2, is connected to a line 5 which has 

FROM CELL 
C 

n-l, m-I 

5 POLYNOMIAL POSITION 

4 INTERMEDIATE FEEDBACK 

,------1 
I . CELL n, m I 
11 

AND 
I 
I 
I 
I I TO CELL 

C n+1, m+l 
EX OR 

I I 
L ______ ~ 

Figure H}-Logic diagram for a standard cell of the array 

Universal Cyclic Division Circuit 5 

binary information representing the binary value of a 
given single bit position within the polynomial, and is 
connected directly to the POLYNOMIAL REGISTER. 
A third input, 3, is a connection to a cell which is diag
onally upward to the left of the array. Specifically, 
Cell Cn,m has its third input connected to the output of 
cell Cn-I,m-I, where n designates the row number and 
m the column number. 

For the cells in the leftmost column, there are no 
positions diagonally upward to the left. Therefore, the 
third input to the cell is wired permanently to a voltage 
source having a binary value of O. 

The cell elements along the first row of the array 
have a slightly different characteristic than the other 
cells of the array because the third input to each cell 
cannot be connected to the cell element diagonally up
ward to the left within the array since no such element 
exists for those in the first row. For cell element Co,o, 
cell element row 0 and column 0, the third input is 
wired to a binary 0 voltage level. For cell element CO,I, 

the cell element in row 0 and column 1, the third input 
is connected to bit position 0 of the OLD CRC register. 
Subsequent cells in row 0 have their third input con
nected directly to the OLD CRC register up to and 
including cell CO,7. 

For cells CO,g to cell CO,IS, the third input to each cell 
is wired in a different manner than for the other cells 
within the row. Cell CO,IS provides a good example. 
The third input to this cell is connected to EXCLU
SIVE OR circuit 6. The inputs to EXCLUSIVE OR 6 
are connected to bit position 6 of the NEW CHAR
ACTER register and to bit position 14 of the OLD 
CRC register. Similar wiring exists for the other array 
elements CO,8 through CO,I4. 

The intermediate feedback signal from EXCLU
SIVE OR 7 is connected to the first input to each of 
the cell elements in row o. The intermediate feedback 
signal is generated by EXCLUSIVE OR circuit 7. The 
inputs to EXCLUSIVE OR circuit 7 are connected to 
bit position 7 of the NEW CHARACTER register and 
tobit position 15 of the OLD CRC register. 

PROVISION FOR VARIOUS CODE LENGTHS 

Although the concept is general enough to accom
modate other code lengths, it is assumed that 6-, 7-, 
and 8-bit codes may be used and that the polynomials 
associated with these code lengths can be of degree 6 or 
12, 7 or 14, and 8 and 16, respectively. The same array 
may be used to accomplish this by "right justifying" it. 
For example, a 7 -bit code of polynomial degree 14, 
would extend from 2 to 15 in the POLYNOMIAL 
register. Positions 0 and 1 would be set to zero. A 7-bit 



6 Fall Joint Computer Conference, 1971 

POLY POSO POLY POS I POLY POS 7 POLY POS 8 POLY POS 14 POLY POS IS 

10 II 12 13 14 IS 

+-- NEW eRe REGISTER 

6 Ie - 0000 XXXX XXXX XXXX 
7 Ie - OOXX XXXX XXXX XXXX 
8 Ie - XXXX XXXX XXXX XXXX 

Figure ll-Output logic for the array 

code of degree 7 would extend from positions 9 to 15 in 
the POLYNOMIAL register. Positions 0 to 8 would be 
set to zero. This method appropriately tr~cates the 
"width" of the array. 

However, the "depth" of the array must also be 
truncated in accordance with the character length. 
Each row of the array represents a serial shift of one 
bit. Thus, for a 6-bit code, using an array designed for 
eight bits, the desired answer is present and properly 
aligned at the outputs of the sixth row. However, be
cause of chip layout limitations, it is not practical to 
bring out indeplmdent outputs from each of several 
rows. 

Thus, a compromise is struck by degating the inter
mediate feedback path to lower rows, which results in 
a single right shift of the answer for each such row. 
Note that the right-most bits wrap around the bottom 
right side, appearing as the outputs of the right-hand 
positions of the second row up (for a 7 -bit code) or 
subsequent rows for shorter codes. Thus for multi
length systems it will be necessary to assemble for 
proper alignment some time before the NEW CRC be
comes the next OLD CRC. See Figure 11. The resultant 

alignment is as shown at the bottom of Figure 11 for 
6-, 7-, and 8-bit code lengths and 12-, 14-, and 16·degree 
polynomials, respectively. 

The output of the array calculator must be taken 
from the proper cells within the array and this is de
pendent upon the particular bit length of the character 
for which the cyclic redundancy check is being calcu
lated. For example, should the character upon which 
the CRC is being calculated be of a length of only 
six bit positions, the output should be taken from 
the output of row number 5, (the first row being identi
fied by a 0). This is accomplished through various cir
cuit elements within the array calculator as shown in 
Figure 11. Specifically, OR circuits 1 and 3 are activated 
by a signal indicating that the new character is of a 
6-bit code type. The outputs of the OR circuits are 
inverted and then propagated along the intermediate 
feedback signal paths to disable the AND circuits in 
each of the cell elements in rows 6 and 7. As a conse
quence, the cell elements in rows 6 and 7 will not 
modify the data received from the outputs of the cell 
elements within row number 5, and they can be used to 
propagate the output from the cell elements in row 5. 



POLY 0 

0 

0 

0 

6 B1T CODE 
7 B1T COQE 

8 B1T CODE 

FROM C. 0 FROM C. 1 

l POLY 1 l POLY 2 

~ C5,0 ~ ~ C5,1 

--

L L 
~ C 6,0 --- ~ C 6,1 

L L 
- C 7,0 - C 7,1 

A QQ 
I OR 

+ 
TO NEW 
CRC 0 

I I 

FROM C. 2 

L POLY 3 

f--- ~ C5,2 

-

A 

'-I--

L 
~ C6,2 

- ..-

L 
- C 7,2 

oa 
OR 

+ 
TO NEW 
CRe 1 

I I 

Universal Cyclic Division Circuit 7 

FROM C 

I POLY. POLY 5 4,15 

- I--- C5,3 -
'- -

FROM C 

l L 
5,15 

- ..-- C 6,3 - ~ C 6,4 

- ~ r-

l L L 
FROM C 

6,15 

- C 7,3 t- - C7,4 t- '--- C 7,5 

'---4~ - ~ 

A OQ A QQ MMo 
OR 

+ 
TO NEW 

CRC 2 

1 I OR 

+ 
TO NEW 
CRe 3 

I I OR 

+ TO NEW 
CRC 4 

I 

Figure 12-Alternate output logic for the array 

The output of Cell GS,IS is propagated to AND circuit 5. 
When a 6-bit code is selected, a positive voltage will 
appear on the second input to AND circuit 5. The 
data appearing on the output of cell Gus would then 
be transmitted via AND circuit 5 or OR circuit 8 and 
on to bit position 15 of the NEW CRC register. 

Bit position 14 of the output is gated from cell ele
ment G6,IS to AND circuit 9 when a 6-bit code is indi
cated. AND circuit 9 has an output connected to OR 
circuit 12 whose output is connected to bit position 14 
of the NEW CRC register. 

Cell element Gus provides the output for bit posi
tion 13 of the NEW CRC register when a 6-bit code is 
being operated upon. This is accomplished by gating 
circuitry not shown. The other bit positions of the 
NEW CRC REGISTER would be filled from data from 
cell elements in row 7 of the array in a similar manner 
to that described for bit position 13 in the NEW CRC 
REGISTER when a 6-bit code was being transmitted. 
Inthe case where the new character contains eight data 
bits, each of the outputs of the eighth row of the array 
calculator would be connected directly to the NEW 
CRC register via appropriate switching circuits and no 
compensation for the shift in the array network would 
be necessary. 

The gating circuitry above-mentioned in connection 

with Figure 11, is particularly adapted to LSI cir
cuitry because the output gating occurs from elements 
of the network which are on the peripheries of the rec
tangular array calculator. With the above scheme, the 
array could easily be placed in a single chip and all 
wiring connections can be made to points within the 
array without crossing any internal connections. 

The advantage to the above-shown output gating is 
that additional wires from the outside of the array are 
not necessary to connect to interior points within the 
array. Where such wiring problems do not exist, a 
simpler approach to the outputting is shown in Figure 
12. This logic is a simple AND-OR assembler where 
row 5,6, or 7 is selected for gating into the NEW CRC 
register, depending on whether the code length is 6, 7, 
or 8 bits, respectively. This assembly function can be 
considered as part of the array element and can there
fore be extended throughout the array to provide for 
any code length. 

ACKNOWLEDGMENT 

The authors wish to acknowledge the hardware imple
mentation contribution of M. T. Kawalec and S. R. 
Stager, III. 



8 Fall Joint Computer Conference, 1971 

REFERENCES 

1 W W PETERSON D T BROWN 
Cyclic codes .for error detection 
Proceedings of the IRE pp 228-235 January 1961 

2 W W PETERSON 
Error correcting codes 
MIT Press 1961 

3 W H KAUTZ 
Linear sequential switching circuits 
Holden-Day Inc 1965 

4 M Y HSIAO K Y SIH 
Serial-to-parallel transformations of feedback shift 
reg1:.'1ter circuits 
IEEE Transactions on Electronic Computers 
VOL EC-13 pp 738-740 December 1964 

5 M Y HSIAO 
Theories and applications of parallel linear feedback shift 
register 
IBM TR 1708 SDn Poughkeepsie March 1968 

6 A M PATEL 
A multi-channel eRC register 
AFIPS Conference Proceedings Vol 38 pp 11-14 Spring 
1971 

APPENDIX A 

The following is reproduced from Pate16 : 

In this section, we develop the mathematics for ob
taining a multi-channel CRe register that can process 
1 bits in parallel to generate the eRe character or the 
syndrome. One shift in the parallel circuit is equivalent 
to 1 shifts in the corresponding serial eRe register. 
The number 1 is a positive integer, smaller than the 
degree r of the checking polynomial. 

G (x) denotes the checking polynomial, often called 
the generator polynomial. We use the following no
tation: 

The state vector Xt=(xo, Xl, ... Xr-l)t denotes the con
tents of the eRe register at time t. T denotes the 
companion matrix of.the polynomial G(x), correspond
ing to the serial eRC register connections. Let Zt denote 
the data bit entering the serial eRe register at time t. 
Then the shifting operation of the serial eRe register 
is given by the (mod-2)_ matrix equation 

Xt+1=XtTEBztG (2) 

where G is the vector (Go, GI , G2 . . . Gr- 1), and T is 

given by: 

0 1 

0 1 

T= 1 (3) 

0 1 

Go G1 G2 Gr- 1 

Suppose that Zt, Zt+l, ... Zt+f-l are the f data bits 
(a byte) entering successively into the serial eRe 
register during the f consecutive shifting operations. 
The contents of the eRe register at the end of 1 shifts 
is denoted by the vector X t+f . Using Equation 2 itera
tively, 1 times, one can obtain: 

Xt+!=XtTfEBZtGTf-lEBZt+1GTf-2EB . . . Zt+f-lG (4) 

Here Ti is the jth power of the matrix T. Let Z t denote 
the input data sequence, as follows: 

Zt= (Zt+!-l, Zt+f-2, ... , zt+1, Zt) 

Let D denote the following partitioned matrix: 

G 

GT 

D= GT2 

GTf-1 

(5) 

Note that the vectors G, GT, GT2, ... GTf-1 repre
sent the contents of the serial eRe register a.s the 
vector G is shifted 1-1 times. 
Then, Equation 4 can be rewritten as: 

Xt+!=XtTfEBZtD (6) 

The sequential circuit realizing Equation 6 has the 
property that with the input byte Zt (1 bits in parallel), 
it changes from state X t toXt+! in a single shift. This 
is the equivalent operation to 1 shifts of the corre
sponding serial eRe register with the same input data 
entered serially. 



Cyclic redundancy checking by program 

by P. E. BOUDREAU and R. F. STEEN 

IBM Corporation 
Research Triangle Park, N.C. 

INTRODUCTION 

Recent advances in the use of mini-computers as 
control elements of a computer complex and as in
telligent terminals! are indicative of a trend toward 
relocation of certain hardware functions to micro
program or machine level program. One such function 
which is a particularly good candidate, for various 
reasons, has already been moved into program in 
several machines (e.g., IBM System 360/25 Integrated 
Communication Adapter2 and the IBM 11303). This 
function is error control using an error detection Cyclic 
Redundancy Check (CRC). A CRC is a variable 
length shortened cyclic code in which a message is a 
code word if, and only if, the message polynomial 
M(x) is divisible by the generator polynomial G(x). 

Error detection and correction codes have been 
studied extensively for more than 15 years. The most 
comprehensive references,4,5 as well as the majority of 
papers written in the area, measure the encoding and 
decoding complexity in terms of the cost of hardware 
and the time for decoding. With some notable excep
tions,6,7 very little attention is given to the problem of 
encoding and decoding using machine level or micro
instructions. However, in some cases such as the 
Berlekamp algorithm3 for BCH codes, it may very 
possibly be easier to write a program for certain steps 
of the decoding procedure than to design hardware. 
Programmed error correction is especially· appealing for 
use with high rate codes when error probabilities are 
low, since, in this case, a major portion of the correction 
process need only be performed when errors actually 
occur. Allocation of a significant amount of hardware for 
these relatively infrequent events is expensive. Further
more, rapidly advancing memory technology helps to 
make program-controlled devices not only economically 
feasible but attractive. 

9 

One part of the problem is addressed in this paper. 
It is the problem of encoding or generating check bits. 
The solution, however, also applies to the decoding 
problem for error detection codes of this type. A similar 
approach, based on the properties of the companion 
matrix, has been used for parallel hardware devices. 8,9 

With this approach, efficient and attractive programs 
can be developed for software or firmware. Subroutines 
developed here require as few as six instructions with 
sequential instruction execution to update a 16-bit 
remainder for eight new information bits. A program 
directly simulating a shift register would require at 
least three instructions (EXCLUSIVE OR, SHIFT, 
and BRANCH) per bit, or 24 instructions for an eight
bit update. 

MATRIX APPROACH TO CYCLIC CODES 

In this section, we review the relationship between 
multiplication by the companion matrix and poly
nomial division used to generate a code word. We then 
generalize the operation to an m-bit character-by
character operation developing a matrix equation to 
update the calculated redundancy m bits at a time. The 
appendix will be helpful to those familiar with the shift 
register in order to further justify the connection be
tween the shift register operation and the matrix 
multiplication. 

Generally, the check bit generation process is one of 
determining R(x) =xhl(x) mod G(x) where lex) is the 
polynomial whose coefficients are the information bits 
and h is the number of check bits. We can next let the 
coefficients of R(x) be an h bit vector, R, and let G be 
the h by h companion matrix shown below. The binary 
digits, gi, i = 1,2,3 ... h-l, are the coefficients of the 
generator polynomial. 



10 Fall Joint Computer Conference, 1971 

o 1 ° o 

o 0 1 ° 
G= 

o 0 ° 1 

Then, if we let b(l) =ik- I be the first information bit 
(the k-lth coefficient of l(x» and b(k) =io be the 
last information bit, it is clear (see the appendix or 
Reference 7) that the remainder R can be calculated 
iteratively using the following formula: 

A (t+ 1) ={A (t) +[0,0, ... ,0, b(t+ 1)]}·G (1) 

and setting R=A(k). It should be noted that A(t) 
represents the remainder of xhlt(x) divided by G(x) 
which is the calculated redundancy after the first t 
information bits, It(x), have been taken into account. 

We now define B(t+ 1) = [0, 0, ... , 0, b(t+ 1)] and 
rewrite Equation (lor A2) as 

A(t+l) =[A(t)+B(t+l)]G. (2) 

Equation (2) is the basic matrix description of the 
polynomial division process (circuit function) on a 
bit-by-bit basis. The advantage of the matrix approach 
is realized when one extends it to a multibit or char
acter level. We can do this for m bits-per-character as 
follows, assuming m ~ h. Repeated use of Equation 
(2) yields: 

A(t+m) =[A(t+m-l)+B(t+m)J·G 

= {[A(t+m-2)+B(t+m-l)}G 

+B(t+m)} ·G 

m 

=A (t) ·Gm+ :E B(t+j) • Gm-i+l. (3) 
i=1 

Equation (3) expresses the remainder at time t+m in 
terms of the remainder at time t and the next m input 
bits b(t+l), b(t+2), ... , b(t+m). This equation can 
be put into a better form by using the "shifting" 
property of the companion matrix G. 

A (t+m) =A (t) ·Gm 

+[0,0, ... ,0, b(t+m), b(t+m-l), ... , b(t+l)}Gm. 

(4) 

If indeed we are operating with m bits per character and 
A (t) is the remainder after some character has been 
sent, then A(t+m), given by Equation (4), is the 
remainder after the next character has been sent and 
b(t+m), b(t+m-l), ... , b(t+l) is the bit string of 
length m representing that next character, where 
b(t+l) is the first bit sent. 

Since we will be using this from now on, it is con
venient to make a slight change of notation. We define 

as the remainder after the jth character, and 

as an h component vector where 

Co.h CI.h C2.i· .. Cm-l.i 

is the bit string of length m representing the jth char
acter and Cm-I.i is the first bit of the character trans
mitted. That is 

and 

for i=O, 1, ... , h-l 

Co.i=b(t+m) 

CI.i=b(t+m-l) 

Cm-I.i=b(t+ 1). 

With this notation Equation (5) becomes the char
acter-by-character version of Equation (2) 

(5) 

This equation expresses the remainder after j + 1 
characters as a function of the remainder after j char
acters and the j + 1st character for m ~ h bits per 
character. It is the fundamental result which we apply 
below. 

MATRIX IMPLEMENTATION OF CYCLIC 
CODES 

This matrix description of cyclic checking leads 
directly and intuitively to several different programmed 
checking implementations. It is this feature which 
makes the approach valuable. Since instruction sets, 
core availability, and instruction execution times vary 
widely, three approaches will be described. 

It is very convenient to describe these subroutines in 
APLIO with a single line of APL representing a single 
machine language instruction. For those interested in 
the exact operation of the simulated machine language 
instruction, a knowledge of basic APL is required; 
otherwise, the marginal machine instructions and 



comments should clearly indicate the general nature of 
the operation on each line of code. It is assumed that 
there are four 16-bit registers which are available to 
the programmer. These are represented by the APL 
vector variables RA, RB, and RC with the fourth being 
the base register which is used for the return branch to 
the main program. In APL, RA[1 ;J represents the high 
order byte of register RA and RA[2;J represents the 
low-order byte of the same register. The storage area 
for tables is represented by the matrix SA which is as 
large as necessary. 

Although we have assumed a 16-bit data path for the 
three examples, it is easy to write similar subroutines 
for an eight-bit ALU by partitioning the G8 matrix 
in a different manner. We will use the terms, "byte" 
and "halfword" to mean eight and 16 bits respectively. 

In general, our methods below are iterative schemes 
for finding the remainder using the recurrence relation
ship 

AHI = [Ai+Ci+lJGm. 

For simplicity we define what we call a "working 
remainder" W i+l, 

= [aO,h •.. , ah-m-l,h (ah-m,iEBCO,i+l) , 

••• , (ah-l,i EB Cm-l,Hl) J 

Basically, our problem is to find AHI given WJ+l and 
Gmusing 

A H1 = Wi+1Gm. 

Since WH1 is a binary vector of length h, it can take 
no more than 2h values. The following methods, called 
the "one-256-halfword-table look-up," the "two-32-
halfword-table look-up," and the "binary summation" 
method, are various ways to perform this job. 

Purely for ease of notation, we now fix the values of 
hand m. We will let the number of parity bits be 
16(h = 16) and the number of bits per character be 
eight (m=8). Substitution in (5) gives us the funda
mental equation 

where 

Wi+! = Ai+Ci+l 

Ao= [0,0,0, ... ,0, OJ 

Ci=[O, 0, ... ,0,CO,hCl,h ••• ,C7,iJ 

are all 16-bit vectors, and 

(6) 

G8 = the companion matrix raised to the 8th power. 

Cyclic Redundancy Checking by Program 11 

We note again for emphasis that C7,j is the first bit of 
the jth character while the j = 1st character is the first 
character transmitted or received. 

One-256-halfword-table look-up method 

This is a simple one-table look-up method which 
requires a significant amount of storage and frequently 
will be impractical for codes with more than eight 
bits-per-character. However, it embodies most of the 
basic ideas of the matrix approach and is a good starting 
place. In an instruction set with the logical EXCLUSIVE 
OR operation, the forming of WH1 is trivial. The next 
stepjs to find Ai+! which can be found by multiplying 
Wj +1 by G8. This can be done very rapidly by table 
look-up. Rather than blindly storing all 216 halfwords 
which can result from this operation, we notice that G8 

has the form 

0'= [OiT 
Thus WH1G8 can be written 

Wi+l(L)XEBWH1(H)[0 I I] 

where Wi+1(H) is an eight-bit vector comprising the 
high-order eight bits of W H1 and Wi+l(L) represents the 
low-order eight bits of WH1. If byte operations are 
available, the product WH1(H). [0 I I] is simply moving 
the byte from the high-order half of a 16-bit register to 
the low-order half. The second instruction in Table I 
performs this operation. The second product above 
requires a table look-up for one of 256 halfwords 
representing all possible values of WH1(L) ·X. This is 
done in instruction four after the program has shifted 
the address left one bit in order to force the address to 
a halfword boundary. The table is assumed to be 
located on a 512 byte boundary. Its address is stored in 
the seven low-order bits of the high-order byte of the 
RB register. The two results are EXCLUSIVE ORed 
together in the fifth instruction and the table address is 
restored in the last instruction before the return branch. 
Table I shows the program which will update the CRC 
for a full eight-bit character. 

This is called the one-table, one-step look-up method. 
It is very fast but may be impractical because of the 
quantity of core required. 

Two-32-halfword-table look-up method 

A more practical subroutine for CRC character 
update relative to core storage requirements is the two
table method. In. this method, we further partition the 
matrix X above into two matrices Y and Z. Thus we 



12 Fall Joint Computer Conference, 1971 

TABLE I-Subroutine Using One-256-Halfword Look-up 

Initial conditions for all subroutines: 
Register RA contains the old CRC, Ai 

Register RB2 contains the new character, Ci+1• 

Final conditions for all subroutines: 
Register RA contains the new CRC~ Ai +1' 

V CRC1 

EXCLUSIVE OR RB2, RA2 
MOVE RB2, RA1 

[1] RB[2;] ~ RB[2;] ~ RA[2;] Form Wi +1 (L) 

Form Wi +1(H)[0 I I] 
Form address SHIFT LEFT RB, 1 

LOAD RA, RB 
EXCLUSIVE OR RA, RC 
ROTATE LEFT RB, 15 
BRANCH RETURN 

write G8 as 

[2] RC[2;] ~ RA[l;] 
[3] RB ~ ((15p1), 0) /\ 1cf>(l6pRB) 
[4] RA ~ 28 p(16p2) T SA[2 J.. RB] 
[5] RA[2;] ~ RA[2;] ~ RC[2;] 
[6] RB ~ 2 8 p(15cf>RB) 

V 

Load Wi+1(L)X 

Form Ai+l 

Reset address 
Return 

G8= [~] 
YIZ 

called PTYRC, the even parity of register RC. Looking 
back to the defining equation 

Aj+l= [Cj+l+A j ]-G8= Wj+l-G8. 

Here, the Y and Z matrices are four by 16 binary 
matrices and Wj+l(L) is broken into two four-bit vectors 
Wj+l(LL) and Wj+l(LH). Thus, the new calculation 
becomes 

Aj+l= Wj+1(LH) - YEe Wj+l(LL) -ZEe Wj+1(H) - [0 I J]. 

Each of the products is a 16-bit row vector. The program 
now requires two look-up operations for the first two 
terms and a byte move for the last term. All three 
terms must then be EXCLUSIVE ORed together. The 
program is shown in Table II. 

Binary summation method 

Finally, it is possible to perform this whole operation 
without tables. This is done by performing the matrix 
multiplication by program rather than by table look-up. 
This requires a parity test as a condition on the branch 
instruction, however. This branching condition will be 

Let Dk = [dO,k' d1,k, ••• , d l5 ,k] be the kth column of 
G8. Then the high-order position of the new remainder 
Aj+l is given by 

15 

aO,j+l = L: d i ,l-Wi,j+l 
i=O 

which is operationally the same as ANDing the first 
column of the matrix G8 with the working remainder 
W j +! and finding the even parity of the result. This 
parity is the value of aO,j+l. Similarly, we can find 
the remaining bits by ANDing Wj+l with each 
column D k+1 and find the even parity to determine 
ak,j+l 0 ~ k ~ 15. 

15 

ak,j+l = L: d i ,k+l-W i,j+l 
i=O 

This operation can be carried out in a program as 
illustrated in Table III. 

The program shown here requires more than 80 words 

TABLE II-Subroutine Using Two-32-Halfword Look-up 

V CRC2 

EXCLUSIVE OR RB2, RA2 
MOVE RA2, RB2 
AND RB2, H'FO' 
ROTATE LEFT RB2 
LOAD RC, RB 
EXCLUSIVE OR RC2, RA1 
MOVE RB2, RA2 
AND RB2, H'OF' 
EXCLUSIVE OR RB2,H'1O' 
ROTATE LEFT RB, 1 
LOAD RA, RB 
EXCLUSIVE OR RA, RC 
BRANCH RETURN 

[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 

[10] 
[11] 
[12] 

V 

RB[2 ;]~ RB[2;] ~RA(2;] 
RA[2 ;]~ RB[2;] 
RB[2;]~RB[2;]/\ 1 1 1 1 0 0 0 0 
RB[2 ;]~ cf>RB[2;] 
RC~2 8 p(16p2) TSA[2+2J.. 16pRB] 
RC[2 ;]~ RC[2;] ~RA[l;] 
RB[2;]~ RA[2;] 
RB[2;]~RB[2;]/\O 0 0 0 1 1 1 1 
RB[2;]~RB[2;]~0 0 0 1 0 0 0 0 
RB[2 ;]~ 1cf>RB[2 i] 
RA~2 8 p(16p2) TSA[2+2J.. 16pRB] 
RA~RA~RC 

Form Wi+1 (L) 

Save Wi +1(L) 

Mask address 
Form address 
Load Wi+1(LH)Y 

W i +1(H)[O I]E9 Wi+1(LH)Y 

Get Wi+1(L) 

Form address 
Form address 
Form address 
Load W i +1(LL)Z 

Form Ai+l 

Return 



Cyclic Redundancy Checking by Program 13 

TABLE III-Subroutine for Binary Summation Method 

V CRC3 

EXCLUSIVE OR RB, RA 
LOAD RA, ZERO 

[1] RB~2 8 p(16pRB) ~(16pRA) 
[2] RA~2 8pO 

Form W i +1 

Set Ai+1 to zero 
Load Dl LOAD RC, Dl [3] RC~SA[1 i] 

AND RC, RB [4] RC~2 8 pRC/\(16pRB) Calculate D1Wi+l 

Branch if aO.i+l =0 
Set aO.i+l = 1 

BRANCH [7], PTRC 
EXCLUSIVE OR RA, H'8000' 
LOAD RC, D2 

[5] ~(~/(1, 16pRC»/SECONDBIT 
[6] RA[li]~RA[li]~1 000 0 0 0 0 
[7] SECONDBIT:RC~SA[2;] Load D2 

ANDRC, RB [8] RC~2 8 pRC/\ (16pRB) Calculate D 2Wi +1 

Branch if al.i+l =0 
Set al.i+l = 1 

BRANCH Ill], PTRC 
EXCLUSIVE OR RA, H'4000' 

[9] ~(~/(1, 16pRC»/THIRDBIT 
[10] RA[li]~RA[li]~O 1 0 0 0 0 0 0 

And so on for the third through the 15th bits. 

LOAD RC, D16 
AND RC, RB 

[12] SIXTEENTHBIT:RC~SA[16i] 
[13] RC~2 8 pRC/\(16pRB) 

Load Dl6 

Calculate D16Wi+1 

Branch if a15.i+1 =0 
Set aI5.i+l = 1 
Return 

BRANCH [16], PTRC 
EXCLUSIVE OR RA, H'OOOI' 
BRANCH RETURN 

[14] ~(~/(1, 16pRC»/OUT 
[15] RA[2;]~RA[2i]~0 0 000 0 0 1 
[16] OUT:~O 

of storage. However, a reduction in the storage require
ment is possible by forming a loop to calculate the 16 
binary sums. Further reduction is also possible when a 
specific polynomial is chosen and a combination of this 
and other schemes is used. For example, using G(x) = 
X16+X15,+X2+ 1, the number of instructions can be 
reduced to less than 20, making this method com
petitive with the other two given here. The key to this 
method is the branch instruction which tests the 
condition of the parity of the 16 bits in the accumulator. 
This is the last of the three matrix-oriented methods to 
be discussed and generally requires less core storage and 
more execution time than the previous two. 

Other methods which partition the G8 matrix in 
other ways are possible and may be better in specific 
cases. 

SUMMARY 

Using a matrix description of the operations required 
to generate the check bits in a cyclic redundancy error
detection scheme leads to new approaches to the soft
ware implementation problem. Certain variations are 
in use today and have proven to be superior to direct 
shift register simulation programs in most cases. With 
an apparent increase in programmable terminals and 
multiplexers, such approaches are likely to become even 
more important in the future. 

REFERENCES 

1 W L SCHILLER R L ABRAHAM R M FOX 
A VAN DAM 
A microprogrammed intelligent graphics terminal 
IEEE Transactions on Computers Vol C20 No 7 1971 

2 A W MAHOLIC H H SCHWARZELL 
Integrated microprogrammed communications control 
Computer Design November 1969 

3 IBM 1130 synchronous communications adapter subroutine 
SRL File 1130-30 Form C26-3706-4 IBM Corporation 
White Plains New York 

4 W W PETERSON 
Error-correcting codes 
The M.LT. Press Cambridge Mass 1961 

5 E R BERLEKAMP 
Algebraic coding theory 
McGraw-Hill Book Company New York 1968 

6 I B OLDHAM R T CHIEN D T TANG 
Error detection and correction in a photo-digital 
storage system 
IBM Journal of Research and Development Vol 12 
No 6 1968 

7 R T CHIEN 
Burst-correcting codes with high-speed decoding 
IEEE Transactions on Information Theory Vol IT-IS 
No 1 January 1969 

8 M Y HSIAO K Y SIH 
Serial to parallel transformation of feedback shift 
register circuits 
IEEE Transactions on Electronic Computers 
Vol EC-13 pp 738-740 December 1964 

9 A M PATEL 
A multi-channel CRC register 
AFIPS Conference Proceedings Vol 38 pp 11-14 
Spring 1971 

10 K E IVERSON 
A Programming Language 
Wiley New York 1962 

APPENDIX 

Here, we will show how a shift register is used to 
perform the functions required to generate or verify a 
code word (calculate the proper h bits of redundancy) . 
Then it can be shown that the operation of a shift 



14 Fall Joint Computer Conference, 1971 

o 
1 
o 
o 
o 
o 

o 
o 
J 
o 
o 
J 

o 
o 
o 
J 
o 
J 

o 
o 
o 
o 
J 
o 

Figure Al-An elementary shift register 

INITAL STATE 
STATE 1 
STATE 2 
STATE 3 
STATE .. 
STATE 5 

register on a bit-by-bit basis can be written in terms of 
matrix operations on vectors. Using this approach, it is 
possible to justify the several table look-up software 
schemes which are developed in the main text. 

A feedback shift register is a device which stores 
bits in a serial string and is capable of shifting the string 
one bit at a time. There may be EXCLUSIVE OR and 
AND gates associated with the shift register which will 
operate when a shift takes place. The structure of a 
shift register is shown in Figure AI. The bit storage 
positions are indicated by a box (D) and the EX
CLUSIVE OR gates are indicated by the "E9." If 
the storage positions are denoted as shown, we can 
illustrate the operation by assuming that bit positions 
1, 2, and 3 contain zero and that a one bit is placed on 
the "IN" lead. A single shift of the register by a clock 
pulse (not shown) will cause the "IN" to be EXCLU
SIVE ORed with the feedback from position 3 ~nd 
placed in position 1. Thus position 1 = 1 (1 E9 0 = 1) . 
Now, let us assume that "IN" is set to zero and then 
another clock pulse occurs. Position 3 E9 "IN" = 0 is 
placed in position 1. Position 1 E9 position 3 (1 E9 0 = 1) is 
placed in position 2. 

A general shift register which performs division by 

is shown schematically in Figure A2. The AND gates 
are represented by the" 0." Although the output does 
represent the quotient, of major interest to us is the 

Figure A2-A general division shift register 

contents of the shift register which is the h bit remainder 

R(x) =rO+rlx+··· +rh_Ixh- 1 

of the bits shifted in at any time. Thus, if we shift 
information bits 

lex) =io+ilx+·· ·ik_IXk- 1 

into the shift register, highest degree coefficient first, 
we will have the remainder of lex) after all k bits have 
been entered. However, we would prefer to have the 
remainder of xhl(x) rather than the remainder of lex) 
so that we may append the remainder bits directly to 
the information. One way to do this would be to shift 
the shift register h times after I (x) has been entered. 
However, this represents wasted time since we can wire 
the shift register differently in order· to cause it to 
"pre-multiply" by Xh. This shift register is shown in 
Figure A3, and the remainder at time l will be denoted 
by the polynomial A(x, l). After shifting lex) into this 
circuit, the remainder R(x) of xhl(x) divided by G(x) 
will be contained without further shifts; that is, 
A(x, k) =R(x). If R(x) is appended to xhl(x) , a code 
word will be formed (R(x) +xhl(x». At the receiver, 
exactly the same circuit or program may be used to 
determine whether the received block is a code word. 

In order to further illustrate the operation of the 
shift register, it is possible to develop a set of functional 
relationships between the bits that have entered the 
shift register and the contents of the register. These 
are the circuit equations for the shift register. 

Let the bits in the shift register (Figure A3) at time 
t be represented by 

ao(l), al(l), a2(l), ... , ah-l(t) 

where ao(t) is the leftmost bit in )the shift register. 
We will also denote the bits which are shifted into the 
shift register as b(l). That is, the contents of the shift 
register at time T include the effects of all b (t) for 
1 < t ~ T. Since the bits come at discrete times, both 

I (x) 

Figure A3-A shift register for pre-multiplication by Xh and 
division by G(x) 



b(t+!) 

o 
x position x 1 position h-2 

x position x
h

-
J 

position 

Figure A4-Development of circuit equations from the 
pre-multiply shift register 

t and T are integers. Figure A4 may help the reader 
visualize this operation. From the figure, we can write 
the circuit equations directly. 

ao(t+l) =b(t+l) EBah-l(t) 

al(t+l) =ao(t) EBgI[b(t+l) EBah-l(t)] 

a2(t+l) =al(t) EBg2[b(t+l) EBah-l(t)] 

ah-2(t+l) =ah-3(t) EBgh-2[b(t+1) EBah-l(t)] 

ah-l(t+l) =ah-2(t) EBgh-l[b(t+l) EBah-l(t)] 

(AI) 

Since we set the register to zero before beginning to 
calculate the remainder, we have the initial conditions 

Cyclic Redundancy Checking by Program 15 

With these we can calculate any ai (T) given the 
b (t) (0 < t::::; T) and the generator polynomial 

G(x) = 1 +gIX+g2X2+ ••• +gh_IXh-I+Xh. 

These circuit equations will be used in the development 
of the matrix equations which are the subject of the 
main section. 

In order to develop a matrix approach to the genera
tion of a set of parity or check bits, we define a vector 
which consists of h binary components and represents 
the bits in the shift register at time t as defined above: 

N ext, we define G to be the companion matrix of the 
polynomial G (x) as shown in the main text. 
. From the circuit equations (AI), it is apparent that 

A (t + I) = [ao (t + I ) , al ( t + I ) , a2 (t + I ), 0 0 0, ah-l (t + I) ] 

=[0, ao(t), al(t) , 000, ah-2(t)] 

+[0,0,000,0, b(t+l) EBah-l(t)].G. 

Equation (A2) below follows immediately if one merely 
observes that 

[ao(t), al(t), 000, ah-2(t) , O}G 

=[0, ao(l), al(t), 000, ah-2(t)]. 

A(t+1)={A(t)+[0, 0, ooo,O,b(t+I)]}·G. (A2) 

This is equation (1) of the main text. 





Development of computer applications in emerging nations 

by ALAN B. KAMMAN 

Arthur D. Little, Inc. 
Cambridge, Massachusetts 

INTRODUCTION 

The purpose of this paper is to explore a series of 
guidelines which will help identify attractive computer 
applications in emerging countries. We will examine 
areas of development from the standpoints of natural 
resources, labor intensive industries, public and private 
services. Then we shall explore levels of development in 
communications, education, high technology and the 
financial commitment of a nation. We shall examine the 
computer applications from a cost versus benefits view
point, and finally discuss a feasibility planning study. 

A basic assumption throughout this paper, is that 
there is no such thing as a "model" or "average" 
developing country. Nor is there such a thing as an 
Haverage" computer application. Each emerging nation 
and each application must be explored and related as a 
separate case. 

AREAS OF DEVELOPMENT 

Natural resources 

Developing countries can often be placed into one of 
two major categories; those that primarily depend on 
natural resources for their economy, and those which 
depend on labor intensive industries. From the stand
point of natural resources, the subcategories include 
applications such as agriculture, fuels, minerals, water 
and power. South American copper and coffee coun
tries, West Indian fruit companies, Near East oil 
producing countries provide relevant examples. 

Computers often enter first into natural resource 
countries with high technology industries (to be dis
cussed in more detail later) such as in oil producing 
lands. Aruba, whose main economy is based on the 
Lago oil refinery, an) affiliate of Standard Oil of New 
Jersey, shows such an application. The oil company 
purchased the island's first computer in 1961, and used 

17 

it for both accounting and engineering applications such 
as the critical path method, plant loading and blending, 
and standard accounting functions. The hardware 
served until late 1967, when it was replaced by a third 
generation machine. Antigua also saw its first computer 
installed at the West Indies Oil Company doing 
applications on profit/output relationships and linear 
programming. 

The need for computers in agriculture is often over
looked by industrialists who are not familiar with the 
economic needs of countries depending on this natural 
resource. Greece, a predominantly agricultural country, 
provides an example. Almost half of the population 
derives a living from farming or farm-related activities. 
The farm population is about 4 million people dis
tributed among some 1.1 million farm holdings. Farm 
sizes are very small, and often not enough to support a 
family adequately. About 60 percent of the farms range 
from one to ten acres in size, and most of these are not 
irrigated. The large-scale farm does not really exist 
in Greece. 

Major farm management decisions in planning by 
the Government for the effective use of a country's 
agricultural resources depend on determining the 
optimum use of their scarce agricultural resources; 
primarily land, labor and capital. Traditionally, by this 
is meant planning the land use or cropping systems; 
planning the livestock enterprises compatible with that 
cropping system, and third, adjusting other resources 
in order to realize optimum returns for the total bundle 
of resources. Proper solutions to the resource allocation 
problems are vital to realizing optimum returns from 
the farming operation, the planned development of a 
country's agricultural sector, and the overall develop
ment of the country. The use of operations research 
techniques in analyzing the optimum combinations· of 
the scarce agricultural resources for the individual farm, 
firm or government planner is both feasible, practical 
and valuable as a decision-making aid. The computer 
greatly facilitates this research .. 



18 Fall Joint Computer Conference, 1971 

In 1964, the computer presented to the Indian 
Agricultural Research Institute in New Delhi helped 
scientists to develop new seeds of wheat and sorghum, 
and a· formula for the best conditions of sowing, 
fertilizing and irrigating. 

These scientists had to go through thousands of 
"crossings" before hitting upon the correct genetic 
combination. The combination had to have a high yield, 
while being resistant to pests, diseases and climatic 
variations. This time-consuming process would have 
been practically impossible without a computer. 1 

Other computer applications for the natural resource 
countries include the projection of . fuel and mineral 
reserves, including geophysical exploration and de
velopment. The distribution of power and water by 
computer has already been undertaken by Russia, and 
is in need of implementation in such water-scarce 
countries as East Pakistan and parts of India. 

Labor intensive industries 

For countries with few natural resources to export, 
the key to their success is labor intensive industries. 
Examples include manufacturing companies and works 
programs. 

Computers in labor intensive countries have generally 
followed or replaced conventional punch card equip
ment, with government taking the lead in their intro
duction. It is quite noticeable that the private sector 
has been slow to take the plunge, and most frequently 
it is those corporations with international connections 
that have installed the first computing equipment. 
Initial applications include inventory control, dis
bursement and revenue accounting applications. More 
creative programs in existence in developing countries 
include the pert-charting of major construction jobs, 
and the programming of construction logistics such as 
stress analysis, cut/fill balances and operations research. 
The most sophisticated step in these manufacturing 
operations is the use of small computers for numerical 
control applications. Here there is a danger of in
creasing unemployment unless the country itself is in a 
rising economy where displaced persons can find jobs. 

In Romania, EDP was introduced in the early 
sixties, directly as a result of the fact that large-scale 
automation was introduced in production processes. 
Since that time, automation has increased by a factor 
of two, and a 450 percent expansion is envisioned during 
the 1971-1975 period. 

Applications for this labor-intensive country include 
centralized control equipment for supervising the 
extraction and transportation of gas and oil, and the 
automation of hydroelectric stations. In Romania's 

iron and steel industry, more than 90 percent of 1970 
products were turned out by automated systems. The 
machine-building sector also has witnessed com
puterized control, with the truck works of Brasov and 
the Heavy Machine Works of Bucharest (UMGB) 
leading the way. 

A priority control program exists for placing numeri
cal control applications into this machine tool industry. 
Cement works, glass factories, weaving mills, footwear 
factories and the food industry (bakeries, breweries, 
sugar refineries, slaughterhouses) all provide relevant 
examples in Romania.2 

In Finland, also, process control computers are 
expected to be in high demand from the rapidly ex
panding metal, engineering and chemical industries. 
EDP imports, estimated at $9,000,000 in 1969, are 
expected to reach a level of $21,600,000 annually 
by 1974.3 

Public and private services 

While countries fall easily into one of two categories 
(natural resources or labor intensive) for categorization 
of their export possibilities, a third major sector in each 
type of country can make use of computers to good 
advantage. Examples of the public and private services 
sectors include administrative government, military 
applications, transportation, communications, trade 
and commerce applications, financing and banking, 
libraries and education, health, social welfare and law 
enforcement, and finally, computer service bureaus. 

Computers will choose people to fill 35,000 job 
vacancies in Ceylon, Colombo's public service this year. 
Furthermore, the hardest working computer in the 
country belongs to the Department of Census and 
Statistics. It processes data for the Registrar General, 
Police, Department of Education and the Customs 
Department. The Inland Revenue Department has 
undertaken a study to see how to utilize a computer in 
the most optimum manner when its new "pay-as-you
earn" tax reform goes into service.4 

Needless to say, computer applications in these areas 
of priority development run a large gamut, including the 
standard disbursement and revenue accounting ap
plications. One must remember, however, that in many 
developing countries in their early stages, the entire 
payroll is done in cash since a creditless society exists. 
Therefore, basic applications such as payroll, check 
servicing, etc., are not applicable. Banking applica
tions, however, excluding check processing, still 
represent a formidable way of beginning. First, the 
statistical and numerical applications must be done 
accurately and in large volume. Furthermore, com-



munications between a main bank and its branches, can 
help in its own way to develop a communications system 
within the country. 

The use of computers for a theoretical, rather than a 
mass production application is not common in de
veloping countries but could prove to be immensely 
helpful. For example, many nations in their formative 
stages depend heavily on a series of strategies including 
alternatives based on a several-year plan. Pakistan has 
gone through four five-year plans and Algeria is in the 
midst of a four-year plan. The need for this is heightened 
by the fact that in a developing country, internal 
currency is usually worthless outside that nation's 
boundaries. Therefore, the nation must husband its 
foreign currency (such as dollars, pounds and francs) 
so that the exchange is spent on the most essential items 
for each nation. 

It is common knowledge to people who have worked 
in developing countries that often the purchase of an 
automobile from outside is considered extremely 
wasteful and in some cases illegal. Penalties are placed 
on luxuries such as imported foods or alcohol, and in 
one country that I visited it was impossible to get a 
battery for my dictation unit because the batteries 
were considered to be luxury items. 

To these countries, the strategies and alternatives to 
combine all the vast financial and human requirements 
of the entire nation require a synthesis, combination 
and analysis almost impossible by manual means. One 
of the greatest contributions to a developing country 
who is basing its entire economy on a plan, would be to 
set up and train the government officials in the use of 
simulation models directed at these planning ap
plications. 

To be practical, one must also recognize that several 
countries, far from a state of complete development, 
are using their government computers for defense 
applications. The use of EDP for military inventory 
and for war gaming is not limited to the developed 
nations of this world. 

Of more practical use, is Nigeria's application where 
computers help them quickly recognize trends for 
epidemics that might be starting in geographical sectors 
of the nation. Furthermore, in 1969 approximately 14 
computers existed in that country. '.fbirteen were being 
used in normal, industrial and commercial operations 
like payroll, billing and research connected with the oil 
industry. The fourteenth served the West African 
Examinations Council. 

As its name implies, the Council's main function is 
to provide and administer examinations all over 
Nigeria. It is West African because the Lagos office is 
only a branch of the international organization whose 
headquarters are located in Accra, Ghana, and which 

Development of Computer Applications 19 

was set up jointly by the governments of Gambia, 
Ghana, Nigeria and Sierra Leone to conduct examina
tions in their countries. Besides conducting examina
tions, the Council was also a pioneer in the field of 
educational development. 

To carry out its functions the Council makes use of 
two computers, one based in Accra and one in Lagos. 
The second computer would probably not be necessary 
were it not for the great distances and loss of time that 
would be involved in shuttling data from one country to 
the other. Source data comes chiefly in the form of 
candidates' entry forms. From these documents are 
produced lists which are required before an examination 
can be conducted, such as a packing list to enable 
officials to determine what quantity of materials and 
examination forms in each subject must be sent to the 
Center, a candidate list which can be used as an 
attendance sheet, individual timetables, and admission 
notices to enable candidates to know where they should 
report for the examination. 

After the examination, source data comprise marked 
scripts and marked sheets from which marks for each 
candidate are punched. From these, mark distributions 
are made to determine the level of overall performance. 
The grades of each candidate and each subject are 
computed and the final test rate is determined by the 
machine. Eventually the results are listed and the 
certificates are printed by the computer from summary 
cards. 

Computer growth in South Korea has risen from 20 
to 30 in the past year. Back in 1967, the first two com
puters were imported by the Productivity Center and 
the Economic Planning Board. Furthermore, the 
Ministry of Science and Technology, set up in the same 
year, organized the National Computer Center to help 
facilitate usage. Currently, 32 percent of the computers 
are in operation in Government offices, 32 percent by 
the Universities, and 25 percent by special agencies. 
Industry and banks shared the remainder. 

As of the end of 1970, Taiwan had installed 28 
computers, of which 11 are used by Universities. The 
first was installed in 1964 at National Chlaotung 
University. An additional seven machines are used by 
the Government, including the Army, Navy and Air 
Force Logistics Commands.4 

LEVELS OF DEVELOPMENT 

Communications 

Now that we have discussed priority areas of develop
ment, we should come down one step to talk about 
general levels of development within the nation under 



20 Fall Joint Computer Conference, 1971 

study. Four major guidelines should be observed and 
the first of these is the field of communications. This 
includes the state of development of the telegraph and 
telephone system and the post office. 

Any country, developed or undeveloped, will tell you 
quite quickly the state of their telephone or telegraph 
lines. As soon as the first computer system utilizing 
communications links· is placed in service, the review 
will become much more critical. In general, the govern
ment or an airline becomes the primary group to 
experience problems. As discussed in the Nigeria case, 
two computers were .necessary only because com
munications between two principal cities was virtually 
impossible within a reasonable length of time. 

Not only, therefore, is instantaneous communication 
a problem for real-time systems, but the post office (or 
other means of carrying documents) often determines 
the application. It becomes almost useless to save time 
through using a computer in the central branch of a 
bank, if it takes three days to get documents to that 
center from one of the branches and another three days 
to return them. 

In Algeria there is a major problem in communicating 
from the southern part of the country across the Sahara 
to the northern industrial cities. Many of the oil 
installations sit in the Sahara with very few links out
ward. Furthermore, the PTT has no immediate plans to 
extend major relief to the southern sector because of the 
problems involved and the lack of major usage. Here, a 
developing country finds itself in a chicken/egg relation
ship. Would the usage increase if the facilities were 
there? The answer in one case was a resounding yes! 

The Telephone Department of the Government of 
Pakistan installed a direct dial cable between Lahore 
and Karachi to relieve the operator circuits between 
those two cities. They designed the size of the cable 
based on what they felt was necessary for traffic relief. 
They never anticipated that so many people just did 
not make calls because they found the service impossible. 
When the new link was opened, circuits were com
pletely busy from four to six hours each day, and the 
public, if anything, became more frustrated with the 
addition of those new facilities· because they were not 
able to get through on them. 

Waiting time for telephone installations ranges from 
three to five years in some countries, and businesses are 
often required to buy their own switchboards and resell 
them to the Government Telephone Department at 
partial cost, then pay a monthly maintenance charge to 
keep them in service. Such conditions do not facilitate 
any type of computer usage where either source docu
mentsor output must travel great distances. 

On the brighter side, reports from Taipei indicate 

that a U.S. Air Force satellite program is being installed 
at the Linkou Air Station, where 18,000 punched cards 
record 6,000 supply items needed by Air Force per
sonnel. A remote-batch computer at Linkou will use 
private line circuits to talk with the main computer at 
Ching Chuan Kang Air Base in Taichung. If an item is 
out of stock at Linkou, it will interrogate the larger 
supply base at Taichung. If the latter cannot supply it, 
the computer automatically orders it from the United 
States.4 

Education 

The need for education and a proper level of develop
ment during the initial introduction of computers 
within developing countries is essential. First, the vast 
majority of computer failures in developing countries 
occur because of a "love 'em and leave 'em" attitude. 
It would be embarrassing to tell you how much com
puter consulting work is done in developing nations 
because vendors have raced through the land selling 
systems, and then left the users with support ranging 
from inadequate to nonexistent. A program to provide 
computer hardware without provisions for training the 
necessary software and maintenance . personnel creates 
more problems than it solves. 

Furthermore, it almost appears necessary for a 
person who wants to keep up with the data processing 
profession to be able to read English, French or German. 
Since U.S. business executives primarily deal with heads 
of industry and top-level managers in foreign lands who 
have this capability, they neglect to realize that a vast 
majority of the technical workers or lower-level 
management employees cannot read with facility, 
technical literature in any of these three languages. 

The Brazilian growth rate for EDP will probably be 
20 percent from 1970 through 1974. (1970 base was 
approximately $14,000,000.) Medium- and small-scale 
computers are in greatest demand. Computer room 
peripheral equipment is also forecast at the same high 
growth. These include printers, MICR equipment, 
memory systems and, outside the computer center, a 
wide variety of terminals.s 

In Brazil, the Society of Users of Electronic Com
puters have predicted that 200 additional computers 
would be installed and an additional 1200 qualified 
compute:r programmers and systems analysts would be 
necessary within a year. The government has attempted 
to deal with the situation by providing Fortran lessons, 
and classes in general concepts of data processing at the 
Universities, without charge, to members of the 
Mathematics, Engineering, Social Science, and Science 



Departments. Also, a post graduate course in computer 
science, leading to a masters degree is available from 
the federal university. 

Singapore has a different method of education. The 
Singapore Computer Society, with over one hundred 
members, has been extremely active in promoting DP 
activities. The computer firms support this society 
activity in large measure by encouraging their own 
employees to lead discussions and classes in systems 
analysis and programming. 

Of course, in any country with computer potential, 
the vendors give a wide array of courses. Although only 
30 computers are installed in Taiwan, one vendor offers 
training in basic concepts, computer systems, program
ming, operations and special applications programming 
courses range up to three months in duration.4 

The United States has recently tried some low-key 
training during an EDP mission to Taipei, Djakarta and 
Singapore. Anticipating that questions would come 
from businessmen who were only beginning to learn 
about EDP, the Commerce Department, acting through 
the· U.S. Trade Center in Bangkok, arranged for local 
speakers to participate along with the mission members. 
The synergistic reaction among the two groups proved 
immensely successful. 6 

Conversely, an eastern nation with whom I have 
worked, has training facilities only through an inter
national agency and has made no attempt whatsoever 
to implement computer training in the universities or 
technical trade schools. First, of course, schools must 
exist in reasonable quantity. For example, a recent 
census showed the population of another country at 
roughly 94 million. Education statistics indicated that 
approximately 3,800 students were enrolled in engi
neering courses at the universities, while approximately 
200 additional students were attending technical or 
trade schools.· In other words, only .004 percent of the 
population was involved in higher technical training. 

There is no doubt that basic computer courses can 
be introduced early in a student's career to expose him 
to concepts and give him interest in the subject. 
Detailed courses could be set up on the same basis as 
the ITU /UN communications schools so successful in 
emerging nations. Once again, however, the chicken/egg 
relationship must be observed. If the training produces 
a large group of people who, upon graduation, have 
absolutely no possibility to use their talents because of 
the lack of hardware developments, the courses almost 
become senseless. 

Finally, there has to be a technological flair on the 
part of the young people growing up, or no courses of 
this type .will be popular. Surprisingly, a government 
official in one developing nation stated that students are 

Development of Computer Applications 21 

growing up with neither the desire nor the qualifications 
to use their hands. Although technical and trade 
schools exist in that country, enrollments are dropping, 
even as the population increases. 

Existence of high technology industries 

Often a small number of high technology industries 
within a nation can provide the nucleus around which 
computer development can grow. This is most obvious, 
although not limited to, oil producing countries. For 
example, many of the smaller· airlines have justified 
reservation system computers on a combination 
cost/ country-training basis. To speak to a previous 
point, in many of these cases it was necessary to advise 
the airlines to wait until the communications facilities 
within their own country could support a reservations 
system. 

Banks often serve as the computer nucleus of a 
nation. Many Managing Directors of these institutions, 
however, will tell you the sad stories of training pro
grammers, only to have them leave for higher paying 
positions as that nation's manufacturing group started 
to install machines. 

Although not falling strictly within this category, 
computers depend on high technology industires for 
their daily operation. For example, the power require
ments of computers are quite stringent. Voltage varia
tions due to inadequate federal power service will 
cause malfunctions if they exceed allowable limits. 
It's clear that anything that stops the supply of power 
(a prevalent malady in developing countries) also will 
halt completely computer production.7 

Financial commitment of a nation 

Most important to the growth of computers is the 
financial climate under which they can be installed. 
Once again, the worthlessness of currency outside the 
nation's boundaries is critical. In one country, com
puter equipment was first priced internationally, then 
subject to a doubling factor as a penalty for using 
foreign exchange (since the vendor would not accept 
local currency) and finally, subject to alOO percent tax 
on the original amount. Users who wanted hardware 
paid triple price. 

On top of that, a vendor was maintaining a certain 
number of machine models in that country. When asked 
to supply a higher model in the series, the company 
requested the equivalent of. several hundred thousand 
dollars extra to staff a special maintenance force and 
carry spare parts. 



22 Fall Joint Computer Conference, 1971 

Computers need a complete stock of parts close by. 
Often they cannot be flown in from another country 
because the ensuing red tape caused by "purchasing" 
in foreign exchange rears its head. The charge by the 
previously named vendor was probably justified 
because the company knew that a week-to-month delay 
in getting the machine "up" would not be tolerated by 
the customer even though it was the customer's own 
governmental regulations which caused the bottleneck. 

Conversely, that same vendor is well known for 
selling its obsolete models to emerging nations for their 
local currency. This policy has a great many advan
tages. First, the hardware has proven itself over the 
years and maintenance problems have been identified 
and categorized. Second, a great many standard soft
ware packages exist for such models and with adequate 
planning, an emerging nation can get much more than 
its money's worth by buying such a computer with 
available utility and application software. Third, of 
course, those nations can get equipment by spending 
their unrecognized currency, thus saving their des
perately insufficient dollars, pounds or francs. 

While Singapore has had a mixed series of reactions 
with computers, one factor strongly contributes to 
their growth in the country; it's a free port and no duty 
is charged on EDP devices. However, until recently a 
duty was levied on carbon paper according to the area 
of the paper, rather than by the sheet. Until this was 
changed, printer-paper was a first class luxury item, 
rather than a negligible cost supply as it is in the U.S.4 

COSTS VERSUS BENEFITS 

Items to consider 

Such discussions lead to the next category; cost 
versus benefits. First, a number of United States 
industries lose money on computer applications and a 
developing country can't afford to do that. One reason 
for the loss is that these U.S. corporations spread their 
applications thinly. Any country can concentrate on 
one, two or perhaps up to 5 percent of standard ap
plications and do an excellent job in terms of technical 
and economic measurements. The United States proved 
this when they used the first generation of computer 
equipment. The problem comes when countries try to 
expand too rapidly, or add too much at one time. 
Therefore, "limitation" is the initial secret to having 
benefits exceed the liabilities. 

Next, it is important to recognize exactly why com
puters are introduced in various locations. If one wants 
to lose money he should recognize in advance that he is 

going to do so. For example, the use of a computer as a 
status symbol in an emerging nation is quite common, 
although its justification is hidden under the guise of 
"competitive necessary." We have seen this particularly 
in the case of airlines, where the only thing they have to 
sell is service, and while the computer won't reduce 
costs in a country where wages are low and unemploy
ment is high, the appearance to the public of a mech
anized reservations systems is important to them. No 
doubt, status might be a very good reason in a very few 
cases for installing a computer. The key is to recognize 
it and admit it. 

In early development stages, as discussed previously, 
usually no credit system exists. Payrolls are constantly 
paid in the cash of the land, and checks are virtually 
unknown. Therefore, the most basic system installed in 
the United States becomes useless for a number of years 
in this emerging "checkless society." 

Inventory control is another basic United States 
package, which begins to become valuable in developing 
countries. Most particularly, the control of high unit
priced items will tend to save dispersion of foreign 
funds. Inventory control isn't necessary if the items are 
relatively inexpensive, and a large unemployed labor 
force exists. If, however, the items are high volume and 
expensive, such as drugs, inventory control could 
payoff in making sure that proper utilization limits the 
need for foreign currency to purchase additional 
amounts until they are really needed. 

One of the largest engineering organizations in India, 
the Tata Engineering and Locomotive Company in 
Jamshedpur, stated that as early as 1969 it was able to 
save $8,000,000 in its inventory control by using com
puterized programs. In addition, in a different type of 
inventory control computers helped the Indian Railways 
locate hundreds of "lost" freight cars and coaches.! 

Earlier we. discussed the obvious benefits where a 
vendor will sell his older equipment in local currency, 
and probably accept that same local currency for 
maintenance. Along the same line, we do not under
estimate the impact of the mini-computer market. For 
initial applications, no longer is the $100,Ooo-on-up 
computer necessary. For reasons of staffing and finances, 
very few mini-computer manufacturers have entered 
emerging nations. We feel that the loss is primarily 
theirs, and that intelligent marketing combined with 
support would yield them a much higher profit than that 
accruing to major manufacturers who maintain large 
facilities in these remote locations. 

Conversely, the mini forces must not follow in the 
footsteps of the Hlove 'em and leave 'em" salesmen. 
That trend is now well recognized, and new companies 
entering the field will be questioned in great detail 



concerning their method of supporting.the .software as 
well as the hardware, and means of training the national 
personnel. The problems will be greater because emer
ging nations are becoming smarter, but the profits for 
the vendor and savings for the customer exist in this 
low-priced computer field. 

One of the great danger' areas where costs can exceed 
benefits is, of course, where people are displaced in an 
economy which already has a high unemployment rate. 
One must be careful not to overstate the situation 
because the masses of unemployed in many nations 
might be incapable of performing even the clerical 
functions which are considered replaceable by a com
puter. Therefore, the "replaceable" labor force may 
be a small percentage of those masses. 

In an emerging country, especially one that is now 
considering computers, it is quite possible that the types 
of jobs handled by the "replaceable" clerks are multi
plying in other sectors. While it may not appear so at 
first glance, a detailed study may indeed show that for 
the clerical level and above, there is a rising economy 
and jobs can be found. 

However, trade unions in India have complained of 
the use of computers, contending that with the vast 
manpower available, there is no justification for 
automation. The Government of India has been 
responsive to these arguments, and has adopted a policy 
of a "gradual switch to automation." 

Conversely, India's computer growth (there are 
about 150 machines in the country in 1971) has opened 
a new line of jobs. IBM states they have trained nearly 
125,000 Indian technicians in programming and other 
computer disciplines. These graduates have found 
jobs in India, Canada, Australia, the U.S. and other 
locations. l 

Furthermore, a salary inflation can happen which 
throws wages askew. This occurred in the United States 
with engineers, then with high technology experts and 
finally with computer programmers. The crafts de
veloped so quickly that people to perform needed 
technical functions were scarce. Fairly soon the salaries 
necessary to attract such employees placed them in 
much higher salary brackets than their peers in the 
same company. Dissatisfaction was the minimum 
condition which resulted. 

Conversely, the wage structures in many government 
institutions have been guided by long-standing financial 
instructions and general orders. These were drawn up 
before computers came on the scene, and before new 
skills and techniques connected with automatic data 
processing were developed. It isn't surprising that such 
a wage structure becomes unrealistic, since such 
regulations regard programmers and machine operators 

Development of Computer Applications 23 

as just another set of clerical staff. Therefore, where the 
choice exists, these people migrate to private industry. 
Case after case has occurred where government and 
banks lose programmers ~to the airlines, oil companies 
and private institutions. 

One must determine the true social costs of computer 
personnel, ranging from the ones who are paid higher 
than normal to the unemployed. Most generally in an 
emerging nation it is important to get people working, 
and this objective is diametrically opposed to the 
United States commercial computer installation where 
its primary objective is to reduce high labor costs. 

One cannot stress enough the advantages from a 
cost/benefit basis of standardized software applications. 
An emerging country rarely has enough personnel to 
maintain and run their system; no less to design it. 
In one case, we had a difficult time advising an airline 

, to use either the Univac or IBM reservations system, 
since these were the only industry standards. U.S. 
airlines can testify to the horrors of developing such a 
complicated process with a vendor who has never done 
it before. 

To give another example, so many common inventory 
control packages exist that it is shear foolishness to 
invoke the Not Invented Here (NIH) factor and design 
a new one. The first concern of an implementation 
manager in a developing nation should be to collect all 
the available packages capable of being run on the 
computer for the application that he wishes to place. 
These should be stated when performing a feasibility 
planning study prior to either approving the application 
or ordering the hardware. As a matter of fact, in some 
cases the available packages might even dictate the 
hardware to be acquired. 

Finally, we stress again that the use of computers for 
planning purposes is almost always considered a cost 
and rarely a benefit. This just simply isn't true if it can 
be utilized properly to develop strategies and alterna
tives for projects as important as national five-year 
plans. Operations research, simulation and modeling 
techniques have a definite purpose on a mechanized 
basis for a developing country. It would be well worth' 
the investment to train the ministerial levels and their 
subordinates in the acceptance and use of such tech
niques. 

Finally, the NIH factor often comes into play to 
prevent cooperation in developing EDP expertise. 
Perhaps because of the administrative functions in
volved there is very little coordination between users. 
In Nigeria, for example, when 14 computers existed 
( 1969) there was no coordination or any centralized 
services in any way. Basic information was scanty and 
everyone thought they w~re developing their own 



24 Fall Joint Computer Conference, 1971 

technique first. Hence redundancy in this labor-critical 
area occurred with all of its resulting waste. 

The use of service bureaus gives an opportunity to 
many government departments and industries to trade 
valuable information and to "cut their teeth" on data 
processing techniques. It also provides an excellent 
training ground and a transition system while de
veloping one's own in-house equipment. Sometimes the 
first industry to get a computer will make it available to 
others. ICL has been one of the leaders in convincing its 
customers to do this in emerging nations. 

However, service bureaus on an independent basis 
could provide one of the best ways to start a country on 
the EDP path. Expertise in terms of both software and 
hardware would be centralized, and a systems design 
force could exist to be made available to all companies 
using the services. In general, the service bureau would 
operate on a batch basis, but it could be available to aid 
the telephone department in establishing initial in
stallations of data processing lines. 

Even developing countries must be allowed the use of 
a computer for pure pleasure. A computerized totalizor 
("Tote Board") has been placed in operation at 
Djakarta, Indonesia's racetrack. It accepts data from 
up to 64 ticket issuing machines, and instantly cal
culates the odds. The "core" consists of three mini
computers and several multiplexors handling the 
input lines.s 

The feasibility planning study 

Since it is virtually impossible to develop one formula 
to relate areas of development, levels of development 
and costs versus benefits, the use of a feasibility plan
ning study before hardware or software commitments 
are made is mandatory. At Arthur D. Little, Inc., a 
procedure has been developed by Thorpe E. Wright, 
and used quite successfully in emerging nations by this 
author. The process involves the formulation of an 
initial framework, then systematic expansion and 
recalibration to produce a finished document. 

It is necessary to make sets of assumptions, see what 
results they yield, modify the original assumptions 
when appropriate, then see how this affects the results. 
Each of the six basic sections of the study may be 
developed independently, based on the sections which 
precede it. In a real sense, therefore, each section 
provides the foundation ,upon which the subsequent 
section is built, and therefore major additions or 
changes to anyone section may affect any of the other 
sections. 

The basic document, which is, at different stages of 

its development, both a working document and a 
finished systems plan, comprises six basic parts. 

Introduction 

The primary. importance of this section is that it 
establishes the need for the system. It should contain 
information concerning the history or background 
leading to and stating the need for the system. It may 
also include definitions of any terms used throughout 
the document. 

Objectives 

This section specifies the objectives to be achieved 
by the new system; It may also specify the manner or 
style of operation to be achieved or preserved by the 
new system. These objectives play a vital role in 
systems design since they provide the context within 
which various systems alternatives may be evaluated. 
Without them it is often not possible to resolve systems 
dilemmas. 

Functional descriptions 

This section contains statements of what the system 
is to do and the services to be provided to various classes 
of users. It also indicates in a general way the general 
response time requirements to be met, such as on-line 
response, daily processing cycle, etc. This section is 
wholly "what" oriented, with little or no consideration 
of how this is to be accomplished, and it is stated in 
non-technical terms. 

Perfor:rnance specifications 

This section contains statements of the amount of 
work the proposed system must do. It includes such 
things as estimated numbers of key items to be pro
cessed) response time requirements for processing each 
of these key items, and the required reliability and 
operating performance for the system. Where the system 
has on-line terminals, it also includes estimates of the 
numbers of such terminals. 

Design specifications 

This section contains a proposed system of hardware 
and software capable of meeting the requirements 
stated in the previous three sections. The primary 



purposes of this section are to assure that the system is 
technically feasible, and to design a realistic configura
tion to derive cost estimates for the system. Specifically, 
it contains rough estimates of overall system cost and 
time to complete the system. It is the most technically
oriented section of the six. 

Feasibility analysis 

This section contains statements of the four types of 
feasibility of a proposed system: technical, economic, 
acceptability to users, and legal acceptability. Technical 
feasibility is primarily comprised of statements con
cerned with whether the proposed system is workable 
and capable of meeting the specified performance 
requirements within the required time frame. It is also 
concerned with aspects of continuity of system per
formance where this is implied or stated in the per
formance specifications. 

Economic feasibility is primarily comprised of 
various analyses and statements concerning the net 
savings (revenues or gross savings minus start-up and 
operating costs) and other tangible and intangible net 
benefits (advantages minus disadvantages) associated 
with the proposed system. 

The third part is concerned with the acceptability of 
the proposed system services to users at various levels 
including the management level and the operator level. 
Where system users are outside the company, this might' 
also involve marketing research studies. It also should 
involve a comparison of the final system design back to 
its objectives (Section 2) to assure that the objectives 
have been adequately satisfied. 

This final category is primarily concerned with 
possible legal implications of providing the proposed 
system services. The government regulations of de
veloping countries are often so rigid that system changes 
must be implemented to conform to them. 

The feasibility planning process requires the close 
collaboration of two groups: user-management and the 
project study team. The user management is responsible 
for the content of certain parts of the study (specifically, 
Sections 2 and 3), while the project study team is 
responsible for the others, and may assist in the prepa-
ration of Sections 2 and 3. ' 

The basic functions of the proj ect study team are to 
make suggestions to the user management group, to do 
the staff work required to develop certain basic data 
about the system, and to determine the implications of 
various assumptions about what the system might do. 
The basic functions of the user management group is 
to assume the responsibility for the content of Sections 

Development of Computer Applications 25 

2 and 3 (Objectives and Functional Descriptions), 
and to make decisions concerning various system 
alternatives based on information presented to them by 
the project study team. Each group requires the other. 
The user management group is not normally capable of 
doing the required technical staff work whereas the 
project study team must carefully avoid making the 
required top management decisions or approving its 
own study results. 

A key feature of the feasibility planning process is 
that it is only necessary that anyone who is not a data 
processing specialist, understand Sections 1, 2, 3, and 6 
in order to understand fully what the system is and 
what its implications are. Since these key sections are 
written in non-technical language, it is easy for a person 
who is not trained in the EDP-related technologies to 
understand the system at any point in its development. 

CONCLUSIONS 

The purpose of this report has been to set out a series of 
guidelines on which to judge the most attractive com
puter applications in developing countries. It viewed 
the problem from three areas; priority development, 
levels of ov~rall development and cost versus benefits. 
It discussed the primary division of countries into 
either natural resources or labor intensive categories, 
and added in a general sense the public and private 
services sector. 

Under levels of development, it discussed four major 
categories: communications, education, high technology 
industries, and the financial commitment of the nation. 
Cost versus benefits were reviewed by setting forth a 
number of items to take into consideration, stressing 
that their applicability depended entirely on the nation 
and on the process under consideration. Finally, this 
paper gave a suggested method for performing a 
feasibility study before an emerging nation commits 
itself to hardware or other costs. 

Key to the entire application of these ideas is the 
need to get away from generalities when discussing 
each problem. It has been the author's experience that 
no such thing as an average nation at an average state 
of development exists. It is extremely difficult to judge 
development on an overall basis since a country might 
be extremely well developed in one or two areas and 
backward in others. 

Finally, and most emphatically, the paper stresses 
that computer applications should each be considered 
on their own merits; that standardized equipment and 
software must be used in the early stages and that 
maintenance of both the hardware and software must 



26 Fall Joint Computer Conference, 1971 

be assured by the vendor before implementation begins. 
To this end, a feasibility study is essential both from a 
standpoint of justifying dollars and applications and 
from the standpoint of forcing its originators to set 
down in specific terms, the objectives, the approach, 
and ways of measuring the accomplishments. 

REFERENCES 

1 The New York Times 
July 31970 

2 Journal of Commerce 
April261971 

3 Iron Age 
October 1 1970 

4 Far Eastern Economic Review 
January 16 1971 

5 Computerworld 
November 4 1970 

6 International Commerce 
July 13 1970 

7 Finance and Development 
March 1970 

8 Computer Digest 
August 18 1970 



Notions about installing and maintaining 
a population register in Brazil 

by ANTONIO LUIZ DE MESQUITA 

SERPRO jR. Eduardo Guinle 61 
Rio, Brazil 

INTRODUCTION 

The problem of implementing and maintaining a cen
tralized population register in a country as large as Brazil 
is a complex undertaking. This paper presents some 
facts and ideas underlying the work under way for the 
automation of the clerical and bureaucratic tasks of our 
government. A reliable Population Register system 
will undoubtedly be one of its cornerstones. 

ENVIRONMENT 

Status of data processing in government 

Brazil is a Federative Republic of twenty two states 
comprising more than 4000 municipalities. At the fed
eral level, most of the data processing is performed by 
SERPRO, a public company owned by the Treasury 
Department. It was founded in December 1964 by re
commendation of the Administrative Reform Commis
sion, in such a way as to encompass all of the data 
processing equipment and know-how then existing at 
that Department, including two 1401s and two 
UNIVAC 1004s, and employed approximately 40 pro
fessionals. SERPRO today has offices throughout 
Brazil and employs some 3000 people, dedicated to 
data processing. Its data processing equipment monthly 
bill is now of the order of 300,000 US dollars. 

At the state level, only six out of twenty two state 
governments run their own data processing agencies, 
~ost of them organized as public companies, sometimes 
with the participation of private owners. Most of the 
state governments do not use data processing at all. The 
same is true for all but ten of the municipalities. 

There is little use of data processing for defense. 
Computers are used by the military mostly for clerical 
purposes. 

27 

For federal and state government the two main appli
cations developed are tax collection and payroll. The 
biggest success is in the area of income tax collection, 
controlled at the federal level. 

From 1965 to 1970 the number of income tax payers 
grew more than twentyfold. In 1969, for the first 
time, the Treasury Department mailed back income 
tax refund checks, about 400,000 of them. This has in
creased to 900,000 in 1970. SERPRO has had prime 
responsibility for this breakthrough. There has also 
been a continuing effort toward the improvement of 
the quality of information by convincing public officials 
of its value. 

No major advances have been introduced in the areas 
of data storage and data utilization. In the field of 
data processing, tape oriented and straightforward re
port generation techniques are still used. 

The database concept, as well as some of the most 
recent tools of data utilization for management and 
planning, are now under study, on an experimental 
basis only. 

Communications network development 

In this area our federal government set up a special 
fund in 1967 to finance the improvement of the eoun
try's long distance communication network. A new 
company has been formed and it supervises the instal
lation of about five million usable voice channel-kil
ometers in microwave linkages. 

The program, costing some fifty billion dollars, is 
planned to become operational in mid-1972. The first 
benefits are however already here. A new breeze is blow
ing over our local telephone companies. New regulations 
have allowed them to he funded directly from the sub
scriber. Also the quality of long distance calls has im
proved and is exerting pressure on local services. The 
telephone system is thus becoming a reality in Brazil. 



28 Fall Joint Computer Conference, 1971 

The mail system however has not kept pace. Only 
now are the first automatic letter dispatchers going 
into operation. The Post Office has been turned into a 
public company, and this will certainly help to improve 
future services. One third of the city of S. Paulo, the 
Brazilian huge industrial metropolis, still lacks the serv
ices of a postman. 

Use of identification cards 

Identification cards are sometimes not used in con
nection \vith Population Register. In ~olland the Popu
lation Register does not inform the individual of his 
identification number. 

In Brazil, despite the non-existence of a centralized 
register system, identification cards are used and citi
zens are required to display them often. Partly for this 
reason, there exists a reasonable number of public 
agencies legally empowered to deliver identification 
documents, though each has a well defined and dis
tinctive prime objective in mind. Driver licenses, 
labor cards, income tax cards duplicate in many as
pects the regular identification cards. Even the latter 
are not issued by a single agency. 

If this number were unique and were carried on an 
identification card together with other identification 
information, it would assure local auditing of the num
ber's use and a permanent feedback system through 
the individual's reporting to the government. The use 
of magnetic character printing for the identification 
number in the card would also avoid its misuse. 

Our basic problem in this respect is therefore to unify 
all of the existing identification documents into a single, 
multipurpose standard identification card. The legal 
support for this matter has already been established 
and requires as of now just small changes. 

The Population Register under study 

A Population Register is, in my understanding, a 
system which basically allows substitution of a non
unique alphabetic person identifier (i.e., person names), 
by a non-ambiguous code number. The principal prop
erties of this number are uniqueness, ease of use and 
universality. Uniqueness is its most important prop
erty and requires the sustaining services of sophisti
cated computer systems. 

Computer hardware is so powerful nowadays it re
quires no longer code numbers to carry particular 
meaning, such as a digit for sex, two for birth date, 
etc .... This may have been a must for systems of some 

years ago where the code had to play the role of ad
dresses and retrieval keys. Today, sequential coding 
provides the necessary flexibility to management, and 
a measure of protection against privacy disclosures. 

The ultimate goals of a Population Register are: 

(i) the simplification of administrative routines; 
(ii) the control of population on an individual basis 

and the full use of social legislation; and 
(iii) the reduction of the burden of the government 

over society. 

To meet these objectives the Population Register has 
to assure: 

(i) uniqueness; 
(ii) universality; 

(iii) minimum delay between the actual event that 
generates data and its incorporation into the 
files; and 

(iv) suitable response time for a broad class of users. 

Two types of information have to be maintained in 
the Population Register files: 

(i) the identification information; 
(ii) general purpose information, i.e., non-identifi

cation information interesting to a large num
ber of users (such as address, education level, 
etc.). 

There is a large spectrum of identification data about 
individuals. These data differ in their frequency of up
dating and change, easiness of collection and number 
of possible values. The selection of the identification 
data is a vital point in the design of the control system. 
For each selected identification set there is a measurable 
probability of identifying a unique person. This proba
bility has to be as high as possible, provided: 

(i) the update and response times are not substan
tially degraded; and 

(ii) the system's cost and complexity are kept under 
reasonable limits. 

The solution proposed for the Brazilian Population 
Register Control System incorporates the use of Master 
and Complementary Files. The latter serves the pur
pose of resolving indeterminacy questions which may 
occur when searching the Master File. Taking advan
tage of modern hardware (specifically direct access 
storage) the system is being conceived with the Master 



Installing and IVlaintaining a Population Register in Brazil 29 

File permanently on-line, and the Complementary File 
scheduled on-line. 

The objective of the Master File with entries by 
name and identification number, is to maintain per
manently a cross-reference between these two person 
identifiers. Sex, date and place of birth are the other 
identification data items maintained on-line. Compress
ing techinques for data compactation are necessary be
cause the premium on secondary storage space is 
greater than in processing time. Names have to be 
normalized and sometimes shortened, in which case a 
name's complement is recorded in the Complementary 
File. 

Database/Data Communication philosophy is em
ployed all along the system's design, as we will enforce 
the use of file handlers and transaction oriented soft
ware. However, the system is planned to start operat
ing in batch. Future transition to an integrated data 
processing system, requiring an on-line communication 
environment, will probably be attained without too 
large an effort. 

The role of the Population Register Control System 
at that time will be to exercise control over population 
decentralized databases, both functionally and geo
graphically. Among these databases we may count on 
having the Social Security Pension Plan, the Medic 
Care, the Income Tax, Labor Funds, and Popular 
Savings Bank, to mention just a few. The Central Con
trol System will avoid redundant and contradictory 
data collection and storage, having it centrally con
trolled and maintained. Local databases will supply 
detailed information where needed. Centralized pro
cessing will consolidate data into higher levels of aggre
gation. The exchange of information among the local 
databases will also be assured and disciplined by the 
Central Control System. 

SERPRO, being the largest data processing agency 
for the federal government, is the natural vehicle to 
pursue these plans and to turn them into reality in the 
next 4 or 5 years. Other government data processing 
facilities will make use of SERPRO's services via 
terminals. The system will become a nation-wide gov
ernment information system. 

IMPLEMENTATION 

The usefulness of a Population Register is related to 
the frequency people need to report their identification. 
The quality of information, viz., its level of updating, 
accuracy, etc., depends on the pressures exerted over 
the system by its users. The larger the universe of 
users, the better we think the system will work and in 

general, the higher the quality of the information it will 
provide. 

To implement the system, a new identification has to 
be provided for every citizen. This must be done as 
much as possible in accordance with the existing body 
of laws and regulations. 

A practical way of issuing to a significant amount 
of citizens their new identification in a relatively short 
period of time is to make use of a simple sequential 
coding system. A census like campaign can achieve this 
goal. Pre-numbered identification forms will be dis
tributed to the population thus tying the data collected 
about a person with the code number which has been 
assigned to him. During this phase it is not recom
mended to centralize geographically the assignment of 
identification numbers to persons, for this would slow 
down the impetus of the campaign. 

Checks for code duplicates and for data validation 
would have to be carried out at file creation time. Also, 
provisions have to be taken to convert files containing 
the existing and varied identification information. Cor
respondence files will have to be established and main
tained between the new and the old identification sys
tem throughout the duration of this phase. 

At its end we will switch to a centralized code assign
ment operation. From this moment all data validation 
will have to be performed before a person is admitted 
to the Register. At this time the system may be fully 
operational, although expansions and adjustments will 
have to be expected. 

Databases are fragile. Checkpoint and recovery pro
cedures must be carefully thought out. Tape copies of 
the disk files have to be produced periodically. This is 
better justified if it takes place when exhaustive file 
searches become necessary to satisfy new requests. 

There must also exist a single responsible institution 
for reporting updated information about each data 
item in the Population Register files. This is a key 
point in the updating process, where, once more, turn 
around time has to be very short. 

CONCLUSION 

Emerging nations must take advantage of their late 
start in many technological areas. In this regard, data 
processing in Brazil has to follow the steps we took in 
developing our long distance communication network. 
We started late, from scratch, and are making use of 
the most recent technology. 

This must happen too in the field of data processing, 
mostly inside the government. In data processing the 
principal problem which must be solved is that of 



30 Fall Joint Computer Conference, 1971 

manning the new technology in order to reconcile the 
requirements for software and hardware. This was not 
necessary in communications and in this respect im
plementation of the two technologies differ. One ap
proach to solving the data processing problem is 
through local computer vendors. They must begin to 

rely on local talents not only for marketing and manu
facturing, but also for product development. This 
change in the rules of investment policy followed today 
will guarantee the catalytic element that will bring 
forth a locally developed technological society in this 
branch of activity. 

" 



The neurotron monitor system* 

by RICHARD A. ASCHENBRENNER, LAWRENCE AMIOT and N. K. NATARAJAN 

Argonne National Laboratory 
Argonne, Illinois 

INTRODUCTION 

The subject of performance monitoring and measure
ment has grown from infancy to childhood, and with 
this growth came substantial performance improve
ments even with superficial monitoring analysis. The 
recent increased interest in applying measurement 
techniques by manufacturers and users of large systems 
stems mainly from the high cost of development, pur
chase, and use of such systems. This cost obligates 
each to obtain quantitative information on the dynamic 
behavior of proposed or purchased equipment and soft
ware. This quantitative information is necessary when 
a determination is to be made of the difference between 
potential and actual performance of hardware and 
software.1 •2•3 

In addition, the particular areas of interest at 
Argonne National Laboratory which have· benefited 
from the development of hardware and software 
monitoring techniques are: ( 1) configuration analysis 
and optimization; (2) "large" program profile analysis; 
(3) simulation analysis; and (4) computer architecture 
studies. Each area requires a parametric description of 
the system for solution. Most important, and even 
more elementary,. is selection and quantification of the 
independent parameters or variables, rather than just of 
the measures which indicate performance for a particular 
situation. The methods used to evaluate and predict 
system performance must provide insight into how 
complex systems function; they must provide insight 
into the most important parameters and measures of 
the system; and they must also provide quantitative 
information on the sensitivity of these measures. 
System software monitors, program analyzers, and 
hardware monitors have each made their contributions 
in performance evaluation and prediction. 

* Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

31 

HARDWARE MONITORING 

Hardware monitoring offers the ability to obtain 
information on system performance by directly at
taching probes on a host system. Microevent analysis 
which would take inordinate time by means of timer 
trace simulation or gross statistics gathering can best be 
obtained by hardware monitors where event measure
ments can easily be selected and varied to minimize 
voluminous amounts of data recording. 

Hardware monitoring has the obvious advantage of 
measuring systems which have no easily implemented 
means of software monitoring, or where the introduction 
of such artifact would cause system degradation. This is 
true especially in the computer-automated experiments 
and real-time or communications-oriented systems. 
Similarly} it is advantageous when the software artifact 
introduced affects the measurement statistics. 

Previous studies using available hardware monitors 
demonstrated the need to obtain information directly 
at a more primitive level, greater in quantity, at higher 
bandwidths, and with more convenient and accessible 
output facilities. To this end, a hardware monitor 
project was initiated at Argonne National Laboratory 
to achieve a more creditable means of system measure
ment and evaluation. 

This monitor has demonstrated its ability to interact 
with the monitoring process and to provide analysis 
and display concurrent with measurements. This 
monitor development has· also aided . in solving the 
problem of information loss due to sampling while 
reducing the data collection rates and raw data storage 
and processing requirements. 

"N eUTQtron" monitor 

The design of the Argonne "N eurotron" monitor 
overcomes the previously stated deficiencies. in many 
hardware monitors, and in addition provides inter-



32 Fall Joint Computer Conference, 1971 

Figure I-Photograph of the 'Neurotron' monitor 

action by operator or program with the data accumula
tion, analysis, and display. This interactive (rather than 
passive) monitor is based around a minicomputer, 
storage display, tape unit, and specialized computer
controlled logic and data accumulation hardware. 
This interactive ability has also been the basis of design 
for the future communications between the hardware 
and software monitor processes. 

The goals of the monitor development were as follows: 

1. Capability of high bandwidth in logic and data 
accumulation facilities. 

2. Program-controlled logic for selecting or filtering 
events based on current experiment or recently 
collected data. . 

3. Capability of obtaining data at subinstruction or 
instruction level as well as gross operating 
statistics. 

4. Capability of response to events or interrupts ()f 
interest within a reasonable interval or to 
"automatically" select monitoring periods during 
events of interest. 

5. Capability of recording. and analyzing events or 
sequences with short (nullisec) perturbations as 
occurs in many "real-time" systems as well as 
presenting statistics on long-term variations. 

6. Graphic output for providing messages and 
snapshots of the monitoring process to operators 
or experimenters. 

7. Capability of obtaining information felt neces
sary for examining the highest performance 
processor locally available (360/MOD 75). 

8. Inexpensive and portable as possible in order 

that remotely located computer systems could 
utilize the equipment. 

9. Relative ease in adapting hardware to new 
experiments or expanding the equipment as 
monitoring experience evolves. 

10. Form a basis for a combination hardware
software monitoring process when further under
standing of this process is available. 

Figure 1 is a photograph of the equipment, and 
Figure 2 is a functional description. 

The mini-CPU is used as the monitor control element. 
The computer coordinates the operation ~f the I/O, 
logic selection, algorithm selection for the Random 
Access Memory and arithmetic unit, programmed 
logic, counters and sequencers. This coordination is 
performed under a multiprogramming-priority system. 
Display programs, data acquisition programs, and 
analysis programs individually have priorities attached 
in addition to the priorities normally associated with 
I/O and probe interrupts. 

Monitor elements 

The basis for monitor data acquisition is the pro
grammed . selection and control of the elements in the 
monitor. In addition to the computer program selection 
of elements and paths, a 36 X 24 patchboard programmer 
is included to aid in the I/O selection. 

Control elements 

Programmable logic and registers which can be set 
and read. by either the CPU or the external environ
ment, form the main communication link. These 

Figure 2-Functional description of the 'Neurotron' system 



registers control the selection of input probes, logic 
selection, start/stop control, sequence configuration, 
transmission paths, and other control functions de
pending on the particular experiment in progress. 

Logical elements 

More typical of conventional monitors are com
binatorial logic elements, decoders, comparators, and 
pulse generators. These devices are used in performing 
logical processing on the input signals. Thirty-two 40 
MHertz counters are available for event counting or 
timing. Each counter or group of counters can be 
selected by program for start/stop, read, or read and 
clear. In this manner, sampling intervals are com
pletely at program discretion. 

Sequencers 

Sequencers are logical devices used in the deter
mination of event occurrences relative to previous or 
subsequent events. Events may be addresses, instruc
tions, device movements, encoded signals, etc. Each 
sequencer is designed to accept pulses representing an 
event and to track subsequent events. If a break in the 
defined series of events occurs, an output is enabled 
which can control other sequences, logical changes, or 
be used for counting or timing. Each physical device can 
be used for the sequencing of three events; however, 
sequencers can be chained to much longer lengths. 
Sequence detection experiments typically use from 
2 to 16 events. 

Random access memory (RAM) 

A key element in the acquisition of data is a Random 
Access Memory and associated arithmetic unit. The 
RAM consists of 60 nanosecond access monolithic chips 
organized in a basic configuration of 256 words by 
16 bits. Depending on the selection of the experiment, 
however, it can be used in configurations of 512X8, 
256X16, or 128X32 bits. The CPU and external 
system can access this memory in several modes; e.g., 
write, read only, increment, and read/clear. In addition, 
control over external access is maintained by the CPU. 

Data processing 

Data processing is performed by combining and 
controlling the physical elements in the "N eurotron" 
monitor, accessing the contents of these elements by 

Neurotron Monitor System 33 

CPU UTILIZATION 6er. 
CPU TI"E~ I/O OVERLAP 4e~ 
TOTAL TI"E~ I/O ONLY 48r. 
SUPERVISOR STATE 5e~ 
SUPERVISOR ACTIVE 25~ 
WAIT PENDING, 2301 3e~ 
2391 ACTIVE (I/O TOTAL) 2e~ 
eTC WAIT 8~ 
"DC ~e USE OF SHARED FILE 85~ 
59 "UX USE BY RE"OTE BATCH 8~ 
59 "UX USE 2821-V 85~ 

Figure 3-Text display of an activity interval 

the CPU, and analyzing, recording, and displaying the 
effects of the monitored events. 

Text displays 

A typical output display is shown in Figure 3. The 
interval for sampling and the information displayed is 
selected by the operator or experimenter, constrained, 
obviously, by the monitored entities. Information can 
be presented in bar graph form if desired rather than in 
the text form illustrated. 

Similar display and recording can be accomplished 
by encoding of events such as interrupts, device ac
cesses, and channel use, limited generally only by the 
ingenuity of the experimenter. 

Instruction analysis 

In gathering statistics on instruction distributions 
correlated with I/O activity, time, program keys, or 
other events, the RAM is used as a 256X 16 bit ac
cumulator. That is, the instruction format (up to 8 
bits) is used as the address field in accessing the 
memory. On each instruction execution (or instruction 
issuance depending on the host system architecture or 
statistic of interest) the RAM is accessed at the location 
specified by the address, updated by a count of 1, and 
restored to memory. The unit was designed to perform 
the update in less than 200 ns (sufficient for current 
equipment at the Laboratory). The sampling interval 
can be controlled by a CPU data collection program 
driven by a programmable clock, or can be determined 
by externally triggered or internally calculated events. 
By sampling interval is meant the time during which 
every instruction is monitored, counted, and totals are 
read into the CPU memory. Normally, at the end of 
each interval the data collection program can read or 
read/ clear all locations of inter~st in the RAM as well 
as counters, communication registers, and other devices 
in preparation for the next interval while event counting 



34 Fall Joint Computer Conference, 1971 

i 
..J 

1 
-i 

j I 

] 1 

I 1,1 , I 
, 

Figure 4-Distribution of instructions during sample interval 

continues. The program may start and stop the collec
tion of data during this interval, depending on the 
allowable skew between the reading of all data and 
continued accumulation (the degree of correlation). 

Multiple samples can be retrieved, accumulated, 
recorded, and displayed. An example of an instruction 
distribution display for a sampled interval is shown in 

TABLE I-Instruction Type Distribution During 
Successive Intervals 

TYPE INTERVAL I INTERVAL ]I INTERVAL m 

SPECIAL. 
DECIMAL. 4.13% 2.82% 2.26% 

EDIT 

CONTROL, 
.37% 

IO .38% .45% 

LO AD .. STORE, 
37.13% 41.13% 45.36 % 

INTEGER 

INTEGER 
10.24% 

ARITH. 
9.72% 7.76% 

LOAD-STORE 
2.42% 

FLOAT. PT. 
1.94% 1.45% 

FLOAT. 
.83% ARITH. .82% ~09% 

BRANCH 27.86% 26.04% 24.69 % 

LOGICAL, 
TEST, 17.02% 17.15 % 17.94% 

COMPARE 

Figure 5-Memory activity display-interval 1 

Figure 4. Selected portions or a condensation into 
major categories can be displayed if desired. A con
densation for a time period including the displayed 
sample interval is shown in Table I. 

Memory utilization 

A similar approach is taken in monitoring address 
streams. Since the current size of the RAM is 256 
words, only 8 bits of an address stream are utilized. In 
a one-million byte system, the -host memory is parti
tioned therefore into 4K byte blocks. Any memory 
access of the host system increments the corresponding 
location in the RAM. Concurrently this absolute 
memory activity during a sampling interval can be 
retrieved, recorded, or displayed. Examples of a 
memory activity display for two consecutive sampled 
intervals are shown in Figures 5 and 6. Each division on 
the horizontal axis represents a 4K block of core, and 
the vertical displacement (full scale = 106 accesses) 

1 

v 

"" v 
v 
\oJ .... 

: 
: 

'-cr 

8-

-

2- ~ 1. i ttL!, 
4K BLOCK ADDRESS 

Figure 6-Memory activity display-interval 2 



Neurotron Monitor System 35 

represents the absolute number of accesses made to 
that block in the sampled interval. The build-up and I 
decay of utilization is quite obvious from these suc- -l 

cessive displays. Since the displays are under program 1 
control, scale changes and interval selections are avail-
able to the operator while absolute counts and corre-
lated information from counters or sequencers are also ~ 
displayed and recorded. 

MeDlory accessing 

In analyzing memory accessing in various systems, it 
may be more important to know the read/write char
acteristics and the relative magnitude of accesses than 
the absolute memory utilization. In this type of experi
ment the RAM is used as a 512 X 8 bit memory with 
even locations used for 'read' counting and odd locations 
used for 'write' counting. Thus, 255 counts may be 
accumulated in any sampling interval with counting 
inhibited after 255 is reached. While these counts are 
being retrieved and recorded, an operator display is 
generated, as shown in Figure 7, in which each block 
corresponds to a 4K byte segment of a one-million byte 
memory. This display indicates those regions active for 
read, write, or both, during the preceding interval and 
also indicates those regions with no memory activity. 
These latter regions may be allocated but are not 
active. Similar displays can illustrate channel and/or 
CPU access in each region. 

Activity graphs 

While statistics on memory or instructions are being 
collected, other information can be recorded in high
speed counters during the corresponding interval. 

FI ,,! R II 
[I, ,,; 

R .. R 

It W It W It It 

80 II It 

AtI ,,; '" " R 

!/l' II: "1 , 

ee, .. " .. "I" "w " .. IW Iw ItW IW RW ItW I ItW IW IW " ... 

WIW"WI IWRW"W"WIWIWItW" ... 

28 

111:, .. ~"T .. ~,--r-;--rW-I~If--I~W~R~W~R~W-I+-~-+~~+-~~ 

•• 1 .. It W "If "W I W " .. R If " .. I It , It If It If It If " .. "If , 
H ~ ~ v ~ ~ N V M H _ _ K • • w 

Figure 7-Memory access display-read/write activity 

Figure 8-Device activity history 

Updated activity graphs can be generated by the 
data acquisition programs indicating the most recent 
history of the device or event of interest. Display;; 
similar to Figure 8 (indicating device activity in this 
case, for the last 32 seconds) can be most interesting 
and useful to operators and experimenters alike, 
especially during periods of high activity. 

Buffer analysis 

Since the RAM can be loaded from either the CPU 
or an external system, the memory and associated 
arithmetic unit may be used as a large quantity of 
comparators. 

An example of this type of operation is in the analysis 
of buffer type memories and their appropriate 
algorithms.4 •5 It is anticipated that hierarchy memories 
will be usefully implemented in a variety of design 
situations and it is necessary to determine their effects 
on a range of applications and environments. One useful 
technique currently implemented is called "congruence 
mapping." This technique has advantages both in ease 
of implementation and access time relative to mapping 
techniques necessitating a full associative search. 
Buffer configurations are N X M blocks of B bytes 
capacity each. The "N eurotron" allows the simulation 
of buffers up to 4 X 128 blocks. The selection of the 
address bits monitored determines the block capacity. 
The Random Access Memory is organized into a 
128X32 bit memory, each word divided into four fields 
of up to 8 bits each. Obviously, any submultiple of each 
dimension can be used also. The number of successes 
(buffer hits), the class level of the match (or replace
ment) and other information is available for recording 
for the currently implemented algorithms of least 
recently used (LRU) , first in-first out (FIFO), and 
random replacement. Again, the sampling interval can 



36 Fall Joint Computer Conference, 1971 

N x MX B 
REPLACEMENT TYPICAL 

ALGORITHM SUCCESS RATIO 

4 x 128 x 64 LRU 97ett. - 99% 

2 x 128 x 64 LRU 94%- 98°4 

4 x 128 x 32 LRU 97°4- 99% 

2 x 128 x 32 LRU 91 %- 98°/. 

4 x 128 x 64 FIFO 95%-99% 

2 x 128 x 64 FIFO 94%-97% 

4 x 128 x 32 FIFO 92%- 96% 

2 x 128)( 32 FIFO 89%- 95% 

TABLE II-Typical Results Obtained by Address Stream 
Monitoring, with 'Neurotron' Used as a Simulated 

Buffer Memory 

be determined by program, clock, interrupts, events, 
etc. 

By monitoring the various address-generating 
mechanisms in a system without buffer capabilities, 
the effects of buffer size and replacement algorithm on 
such equipment can be determined. Table II indicates 
results of a few randomly sampled intervals on a 
S/360/MOD 75 with 1M byte of fast core. Similar 
experiments have been performed on computer control 
equipment, communications concentrators, and time
sharing systems. Variations of this experiment are used 
in analyzing use of distributed and read-only memory. 

Data recording and display 

Once data has been retrieved from counters, RAM or 
communication registers, information buffers may be 
updated, recorded, or displays generated. By use of 
rotating buffers, double buffering and other techniques, 
statistics with a resolution of a few milliseconds can be 
recorded, or significant filtering and compression of 
data can be performed before display or recording. 

The interactive display· has provided a means of 
pre-acquisition probe adjustment, judging the reason
ableness of the on-line data acquisition and reduction 
programs, and snapshots of the performance statistics 
during data collection. It also provides information to 
inquiries by means of messages, histograms, bar charts, 
time plots, etc. This interactive capability has effected 

a time savings not only during monitoring, but is 
useful also in observations during post monitoring 
analysis which may be performed in the monitor itself. 

As anyone familiar with hardware monitoring tech
niques can verify, the probing of a large number of 
unfamiliar systems can be difficult. A display of the 
information currently being processed has proved 
useful in determining that probes have been properly 
placed and are in working order. Similarly, since the 
data acquisition programs are usually time or interrupt 
dependent, the display can provide a means of judging 
the necessary sampling intervals or buffering techniques 
for the proper display and recording of data before final 
monitor results are obtained. 

Snapshot displays of the statistics are useful to 
experimenters and operators interested in more imme
diate information before postmonitoring analysis. This 
information usually relates to device utilization, 
interrupt activity and associated core utilization, and 
channel activity. 

This immediate data reduction can also potentially 
provide feedback to software monitors executing in the 
host system. Currently being designed is a channel 
interface to IBM 360 equipment. It is felt that this 
interface between our existing monitors will provide a 
means for a more optimum collection of information for 
both system and user programs. Our experience thus 
far, however, has demonstrated the usefulness of inter
active hardware monitors in several environments in 
which no software monitors are available, or in which 
the event bandwidth is outside the capability of those 
monitors. 

Software developIllent 

An on-line operating system for the "N eurotron" 
was developed6 to service the diverse applications 
anticipated. This operating system establishes an 
environment for allowing a versatile priority structure 
to be defined by the user programs. Although physical 
interrupts and devices within the system are assigned 
separate priorities, each program or module may have 
separately assigned execution priorities. This allows 
users to have dynamically varying priorities for various 
modules based on current data rates, event occurrences, 
program type, etc. The actual scheduling of programs 
and interrupt connect/disconnect can occur by means 
of keyboard input, interrupt occurrence, or from another 
routine. A rigid modular structure allowed the operating 
system to be highly interruptable and greatly decreased 
the development time. With the operating system is 
provided a set of routines to aid users in the develop-



ment of their applications. Programs for display, dump, 
trace, interrupt connect, breakpoint, etc., are available 
for debug and on-line use. 

CONCLUSION 

The development of the N eurotron has provided the 
engineers and system programmers at Argonne with a 
convenient means of monitoring the operation of a 
variety of computing facilities. The monitor organization 
and acquisition hardware have allowed the recording 
of data whose collection heretofore was prohibitive, 
expensive, or time-consuming. The interactive and 
display capabilities of the system have provided the 
user with the necessary facility for immediate inter
rogation and presentation of data. It is estimated that 
similar monitors could be made commercially available 
for $35,000 to $65,000 depending on software provided, 
logical features, etc. 

Data of the type previously shown is continually 
available to the user to provide the necessary operating 
picture of the system. The monitoring work that has 
been accomplished to date suggests the usefulness of a 

Neurotron Monitor System 37 

real-time interaction between system monitoring (hard
ware and software) and system programs such that 
dynamic system adjustment is both possible and 

I useful. 

REFERENCES 

1 G ESTRIN et al 
SNUPER computer 
AFIPS Spring Joint Computer Conference 1967 

2 P CALINGAERT 
System performance evaluation: survey and appraisal 
Comm ACM Vol 10 No 1 January 1967 

3 D HOPKINS G ESTRIN 
An interfering instrumentation computer 
UCLA 10P14 57 

4 L A BELADY 
A study of replacement algorithms for a virtual storage 
computer 
IBM Systems Journal Vol 5 No 2 1966 

5 R L MATTSEN et al 
Evaluation techniques for storage hierarchies 
IBM Systems Journal Vol 9 No 2 1970 

6 L AMIOT R ASCHENBRENNER 
The 'Neurotron' operating system 
Argonne National Laboratory Applied Mathematics 
Division Technical Memorandum No 223 unpublished 





A simple thruput and response model 
of EXEC 8 under swapping saturation 

by J. C. STRAUSS 

Washington University 
Saint Louis, Missouri 

INTRODUCTION 

EXEC 8 is the multiprogramming, time sharing 
operating system for the Univac 1100 computer 
systems. EXEC 8 attempts to provide satisfactory 
concurrent batch, demand (interactive), and real time 
processing through complicated priority scheduling 
schemes for both real memory and CPU time allocation. 
Basically, the scheduling schemes allow real time 
service to have whatever resources it requires and 
demand and batch service requests share the remainder. 
The sharing algorithm is quite complicated; in essence, 
however, it dynamically limits the time average impact 
of demand service on the system performance to an 
installation set limit function of the number of active 
demand users. Within the demand and batch type 
categories, time and core are allocated by exponential 
scheduling algorithms biased to favor small jobs, but 
constrained to service all jobs eventually. In addition, 
EXEC 8 provides all the I/O control, file handling, 
diagnostic error testing, user support systems, etc., 
normally associated with third generation operating 
systems. 

This paper presents a simple deterministic steady
state model developed to help understand the gross 
scheduling and resource allocation problems in the 
operation and (particularly) the performance tuning of 
EXEC 8. The model is concerned solely with the long
term balance of demand and batch services; as such, it 
does not concern itself with real time services and need 
not concern itself with the standard operating system 
user services. 

This is but one of a number of attemptsl- 7 to model 
significant behavioral aspects of very complex com
puting systems by simple models. Most of the referenced 
papers present justification for the philosophy. To 
avoid repetition here, suffice it to say that the problem 
is basically no different than any complex system 
modeling problem; i.e., groupings of interesting and 

39 

significant behavioral aspects are isolated to preserve, 
in some sense, a homomorphic mapping between the 
original system and the reduced model. The verification 
and interpretation problem is also similar to other 
modeling and simulation situations; i.e., the model is 
verified for measured behavior and employed to 
predict unmeasured and/or unmeasurable behavior. 
Here, too, the significant problem is to limit the aspira
tions of the study and not attempt to employ the model 
in situations that do not preserve the original homo
morphic mapping. 

This work on the performance model presented here 
developed out of a larger system performance evaluation 
and timing study concerning the 1108 operated by 
SINTEF (a non-profit engineering research foundation) 
for the Technical University of Norway (NTH), 
Trondheim, Norway. This study was prompted by the 
circumstance of upgrading from a very satisfactory 
Univac 1107 to an 1108 and experiencing an increase in 
the installation cost/performance ratio. This was 
subsequently explained by a number of factors such as 
lower discount percentage on the 1108, minimum 
EXEC 8 configuration, workload tuned to the 1107 
EXEC 2, etc. However, this post facto analysis did 
little to soften the blow. Also, in trying to analyze the 
behavior of EXEC 8 with a view to tuning the system 
control parameters for "optimum" performance with 
the local workload and configuration, it was determined 
that Univac (at least in Europe) did not understand 
EXEC 8 very well. Thus before initiating more am
bitious measurement, analysis, and simulation projects 
aimed at performance tuning, it was necessary to obtain 
simple conceptual and analytic models of significant 
behavioral aspects of the system. 

The model developed is based on the not unreasonable 
assumption that under heavy pressure for demand 
service the single channel swapping device of the 
NTH 1108 configuration will saturate and thereby 
become the limiting resource to system performance. 



40 Fall Joint Computer Conference, 1971 

Most other simple models are based on limiting re
source assumptions of one sort or another. For example, 
in Reference 7 Kimbleton and Moore develop a simple 
model of IBM 360/67 performance based on the 
assumption that the CPU is the limiting resource. 
While limiting resource models are certainly con
ceptually and often analytically simple, their usefulness 
is very much dependent on the validity of the original 
limiting resource assumption. The validity of the 
swapping saturation assumption underlying the current 
model is investigated here in concept, by measurement, 
and finally directly in terms of the model parameters. 

The extent to which the model is a success has to be 
measured against its initial goals; i.e.: (1) to follow and 
predict steady-state EXEC 8 performance as a function 
of configuration and workload, and (2) to serve as a 
focus for detailed study of EXEC 8 design, construc
tion, and behavior. Both these points are discussed in 
the sequel in light of presented results. 

This paper is organized as follows: the next section 
describes the manner in which the load is characterized 
and presents those features of the EXEC 8 core and 
CPU time scheduling algorithms that significantly 
affect the average behavior of the system. The BASIC 
MODEL section develops the basic model and the 
VERIFICATION section attempts to verify this model 
against behavior observed at NTH. The AUG
MENTED MODEL section analyzes the. shortcomings 
of the basic model and proposes and verifies an aug
mented model designed to correct problems due to 
limited core space. The final section analyzes the region 
of significance of the swapping saturation assumption 
underlying both basic and augmented models. In 
addition, some simple extensions involving queueing 
theory are indicated. 

LOAD AND SYSTEM CHARACTERISTICS 

The manner in which the system load is characterized 
is described and important features of EXEC 8 opera
tion and behavior are presented. 

Load 

The model is intended to describe the steady-state 
performance of the system under average loading 
conditions. Such performance is almost assuredly not 
the same as the performance under a uniform average 
load characterized by the means of various distributions 
describing the average load. However, for sake of 
simplicity, a uniform average load is employed in the 
subsequent model development. This is a place to start 
and perhaps as pointed out in References 2 and 4 some 

interesting gross performance statistics can be obtained. 
(While very interesting, it would be extremely expensive 
to investigate the effects of this assumption experi
mentally in a meaningful way. It certainly should be 
pointed out, however, that the resulting model pre
dictions will be optimistic at best. At NTH, it is hoped 
to look at this question in detail with the aid of a 
complete simulation model of EXEC 8 now under 
development. ) 

Table I presents the average characteristics notation 
employed to describe the load: 

Core quanta 

The core-time impact of a task in EXEC 8 is mea
sured by its core quantum, 'iF, which is related to the 
core quantum time, Q, of a task requiring C blocks of 
core as follows: 

(1) 

where: 

'iF8 is an installation specified value. (The NTH 
EXEC 8 employs 'iF8=512 block.ms) 

Pc is the core priority level of the task. (In EXEC 8, 
the core priority level of a batch task is fixed at its 
run priority level [typically 6J while the core priority 
level of a demand task starts at level 2 and increases 
with each successive level of the exponential CPU 
time scheduling algorithm that the task experiences 
[actual core and CPU priority is in inverse order of 
level number; typically, the priority level of an 
interactive task remains at level 2J) . 

Unfortunately for ease of analysis, the core quantum 
time, Q, of a task is not elapsed time in core, but rather 

TABLE I-Load Characteristics Notation 

Average core requirements including 
non-resident executive functions that 

Batch Demand 

must be loaded Cb 
(in units of 512 word blocks) 

Average CPU time per task core residence 
(i.e., per swap) tb 

Number of open/active jobs Nb 
(N b is an installation parameter and 
constant under heavy load while nd 
describes demand load with the 
installation fixing an upper bound) 

Average total CPU time per job Tb 



is measured in terms of CPU time and channel time 
charged to the task (concurrent usage is only charged 
once) . 

Demand impact control philosophy 

EXEC 8 attempts to limit the impact of demand 
service on system performance by dynamically ad
justing system behavior to maintain a statistic referred 
to here as the demand service ratio~ DSR, at an in
stallation specified limit function of the number of 
active demand users, nd. The value of this statistic is 
computed at six second intervals and averaged over the 
last several minutes of operation. If necessary, EXEC 8 
temporarily raises the core priority of the next batch 
task to insure loading and increases its core quantum, 
'!Fb , to correct the measured DSR to the desired DSR 
during the next six second interval. The DSR is defined 
as: 

DSR= (Core quanta charged to demand+core-time 
product of total swap activity) / (Core quanta 
charged to both batch and demand+core
time product of total swap activity) (2) 

To further quantify this relation, it is necessary to 
develop more precise terminology. 

EXEC 8 core scheduling algorithm 

In terms of core quanta, the EXEC 8 core scheduling 
algorithm exhibits the following behavior: 

(1) When core conditions change, the highest core 
priority task ready for load-in is checked for 
ability to fit in the available space. If possible, 
space is reserved and a swap-in is initiated. If 
not, the task type is checked; if a batch task, the 
next lower priority ready task is checked, etc.; 
if . a demand task, the core scheduler is dis
engaged until the next core status change. In 
order to prevent excessive delays, wait times are 
accumulated on each of the waiting tasks and 
after too long a wait, core entry is forced by 
temporarily raising the core priority. 

(2) Once in core, a task is guaranteed of remaining 
for its full core quantum or until it voluntarily 
relinquishes core control by entering a terminal 
I/O or long wait state or unless exceptional 
system conditions such as I/O buffer full state 
occur. 

(3) Upon completing its core quantum, a task is 
considered swappable by a higher core priority 

Thruput and Response Model of EXEC 8 41 

demand task. In the absence of demand task 
pressure, the system does relatively little swap
ping. The main cause of swapping in a pure 
batch environment is dynamic facilities con
flicts caused generally by two core resident jobs 
employing the same system processor (e.g., 
FORTRAN) resulting in a long wait state which 
may lead to swapping. 

From a uniform load, steady",:,state modeling view
point, the problem is to abstract the important aspects 
of the fairly complicated core scheduling algorithm and 
ignore fine structure details such as the controls to deal 
with excessive waits by tasks with large core require
ments. 

CPU time scheduling algorithm 

Once a task has received core, it is subject to a com
plex multilevel exponential CPU scheduling algorithm. 
Fortunately, from a steady-state modeling viewpoint 
for a limited core configuration such as that of NTH, 
CPU scheduling has smaller impact on system per
formance and therefore need not be given as much 
attention here as core scheduling. For sake of complete
ness though, the essence of the algorithm is as follows: 

(1) A queue of queues is maintained for both batch 
and demand type tasks. Each successive queue 
is a higher level and has associated with it a lower 
CPU priority and a larger CPU time quantum. 

(2) Both batch and demand tasks start their core 
quanta at level 2 CPU priority (their interrupt 
activities are processed at levelland they are 
forced if necessary at level 0). If a task at level 2 
relinquishes control of the CPU prior to com
pletion of its CPU time quantum, it is queued 
for service at level 2 upon completion of what
ever I/O action caused it to relinquish control. 
So long as the task remains at level 2, it receives 
a new level 2 CPU time quantum each time it 
receives CPU service. If, however, a task does 
not relinquish control and runs to the end of its 
CPU time quantum, it is queued for service at 
the end of the queue at the next level with a 
CPU time quantum that is twice as large as it 
had previously. 

(3) So long as the task remains compute bound 
(i.e., it does not voluntarily release the CPU), 
it moves up the priority levels each move 
resulting in a doubling of CPU time quantum 
until it reaches level 7. As soon, however, as it 
voluntarily relinquishes control it is requem:,d for 



42 Fall Joint Computer Conference, 1971 

service at the end of the level 2 queue with the 
original level 2 CPU time quantum. 

All this of course is subject to the constraints of the 
core quanta scheduling scheme described previously. 

Demand cycle 

The definition of the demand cycle is needed to 
quantify the relationships just described. The demand 
cycle is artificial; i.e., it has no physical counterpart in 
the system. However, it provides a way of introducing a 
cyclic time frame into an otherwise steady-state model. 
If there are nd average active demand tasks competing 
for system resources, all other things equal, they will 
be serviced in cyclic order. The sequential execution of 
these nd tasks in combination with sufficient batch 
tasks to maintain the DSR is termed a demand cycle. 
The number of batch tasks that are swapped into core 
and executed during a demand cycle is denoted as nbd. 

Demand batch ratio 

It will be convenient to parameterize the relationship 
between nbd and nd by the concept of a demand batch 
ratio denoted by DBR. The DBR like nbd is an artificial 
quantity; these quantities do not appear physically in 
EXEC 8, but appear implicitly as a direct function of 
DSR. The DBR is the average ratio of CPU time 
allocated to demand tasks to that allocated to batch 
tasks. In view of the definitions, the DBR can be 
computed over a demand cycle as: 

(3) 

In terms of defined quantities, DSR defined in (2) 
can be quantified as: 

DSR= (ndwd+2(ndCdSd+nbdCbSb» (4) 
(ndwd+ (nbdWb) SF+2 (ndCdSd+nbdCbSb) ) 

where: 

SF is an installation-set scale factor. (The value 
employed by Univac in the NTH EXEC 8 is %.) 
Sb and Sd denote the times to swap the average batch 

and demand tasks into (or out of) core and are respec
tively: 

where: 

Sb=TA+CbTp 

Sd=TA+CdTp (5) 

TA is the average access time to locate a swap file 

and/ or system processor on the swapping drum (for 
the FH 432, T A = 4.3ms) . 
Tp is the flow time per 512 word block of information 
from (or to) the swapping drum (for the FH 432, 
T p = 2.13ms). 

Substituting relations from (1) and (3) into (4) and 
solving for DBR yields: 

DBR= (~:) [(C~~~R) 
X (~) SF-2 (~)) / ((~:) +2(:))] (6) 

which corroborates the previous assertion that DBR is 
a direct function of DSR. For simplicity, DBR is 
employed in the following formulation to represent the 
effect of the system control actions. These actions are 
mechanized in EXEC 8 in terms of DSR, but (6) 
establishes that the effect can be described in terms 
ofDBR. 

BASIC MODEL 

The underlying assumptions are justified and a basic 
model is developed. 

Simplifying arguments 

In Reference 5, Hellerman and Smith present a 
simple, but elegant, model for throughput analysis of 
record processing EDP applications for various physical 
and logical overlap configurations. Their simplifying 
assumptions exclude a number of important EDP 
applications, but interestingly enough cover the case 
of full swap, buffered time sharing systems. Now 
EXEC 8 introduces additional complexity through its 
batch multiprogramming features, but Reference. 5 
provides interesting insights that serve as the basis of 
the current model. 

In particular, computing the batch and demand swap 
times from (5) for the NTH average core requirements 
of: Cb=50 blocks, Cd=25 blocks; yields: Sb=111ms, 
Sd=58ms. The NTH observed compute time per swap 
for batch and demand of: tb= 160ms, td=20ms, plus the 
observation that swapped in tasks must also be swapped 
out, suggests that under heavy demand load the single 
swapping channel on an 1108 configuration such as 
that of NTH will be very busy. With the exception of 
some cycle stealing conflicts, the tasks' compute 
activity can be overlapped completely by swap activity 
and with sufficient core buffer space available, the 



swapping channel might saturate under heavy demand 
load. Under swapping saturation, the difference 
between compute times and swap times would appear to 
provide more than half of the total possible CPU time 
per demand cycle to handle EXEC 8 functions. 

These simplifying arguments lead to the following 
assumptions for the basic model: 

Basic assumptions 

(1) The swapping channel is saturated. 
(2) All compute time on both batch and demand is 

completely overlapped by swap time. 
(3) All system overhead is also completely over

lapped by the swap time. 
(4) There is sufficient core available for buffering so 

that the above assumptions are reasonable. 

Performance calculations 

Assumptions 1, 2, and 3 above allow the total elapsed 
time for the demand cycle, Tde, to be quantified as the 
sum of the total demand and batch swap time: 

Tde= 2 (ndSd+nbdSb) 

T de provides an upper bound to Rd, the system 
response time to demand users, assuming cyclic service 
to the nd users; i.e., Rd< T de. 

T de can also be employed to compute the elapsed 
processing time for a batch job, ETb which serves as a 
lower bound on the expected turnaround time, Rb, for 
the average batch job. Rb also includes the time spent 
waiting in the system backlog queue and depending on 
definition may also include waiting time in a system 
input queue prior to the backlog queue, a printer queue, 
and one or more output handling queues prior to 
delivery back to the user. If there are Nb open batch 
jobs receiving equal service, the amount of CPU time 
allocated to a single batch job during a demand cycle is 
(nbd/Nb)tb. If the requisite CPU time for batch job 
execution is Tb, the total elapsed time for an average 
batch job is: 

(8) 

The total CPU time used during the demand cycle is: 

(9) 

The average CPU utilization can be computed over the 

Thruput and Response Model of EXEC 8 43 

demand cycle as: 

CPUde 
CPU percent = -- ·100 

Tde 

(I+DBR-l) ·100 
(10) 

Interestingly, (7) and (8) predict that after swapping 
saturation, demand response time and batch turn
around time will increase linearly with increasing 
number of demand users nd. Also, (10) indicates that 
with swapping saturation in a system controlled to a 
fixed demand service ratio, the CPU utilization is 
independent of nd. 

VERIFICATION 

The basic model is adjusted to the NTH load and 
system characteristics and an attempt is made to verify 
the model against observed system behavior. 

System conditions 

The load and system parameters presented in Table 
II have been directly observed in the NTH environment 
as a part of a detailed measurement study. 

TABLE II-NTH Load and System Parameters 

Cb = 50 blocks 
Nb = 5 
Tb = 25 sec 
Wb = 16000 block.ms 

Cd = 25 blocks 
nd = 6 

Wd = 1000 block.ms 
ttl = 20ms 

DSR = .35 

The average batch load characteristics of Table II also 
agree with those observed by the University of Wisconsin 
in a recently reported measurement study. 8 

From the values of Table II and (1) and (5), it is 
possible to compute the intermediate model parameters 
of Table III: 

TABLE III-Intermediate Model Parameters 

Sb ~ 111 ms 
Qb ~ 320 ms 



44 Fall Joint' Computer Conference, 1971 

TABLE IV-DBR Versus DSR 

DBR DSR 
.01 .30 
.05 .35 
. 15 .40 

In order to verify the basic model, it only remains to 
obtain a realistic value for tb, the CPU time per swap-in 
(or equivalently per core quantum) for a batch task. 
The td of 20ms reported in Table II is measured directly. 
There are two pieces of experimental data that permit 
estimation of tb: 

(1) The observed ratio of Qd/td is 2, and 
(2) Wisconsin reports in Reference 8, that the 

average total channel time per batch job is 
twice the average CPU time. No overlap of 
individual channel time or CPU time would, as 
described in the LOAD AND SYSTEM CHAR
ACTERISTICS section, yield a Qb/tb of 3 and 
complete overlap of two channels and the CPU 
will yield a Qb/tb of 1. 

For a university environment with its heavy use of 
system processors that make good use of overlap 
possibilities it is not unreasonable to expect that the 
Qb/tb ratio will be the same as the experimentally 
observed Qd/td ratio of 2. 

On the basis of this argument, a tb of 160ms is em
ployed in the sequel. 

Performance predictions 

Solution of (6) for the given parameter values yields 
a DBR of .05 for a DSR of .35. In experimental studies 
at NTH, DBR values lower than .01 have been observed 
with an nd of 6, but, as is later developed, appreciably 
larger DBRs are necessary to support the swapping 
saturation assumption. Thus in the sequel, calculations 
are performed for DBR values given in Table IV with 
corresponding DSR values. 

Solution of Equations (7), (8) ,and (10) as a function 
of DBR for the parameter values of Tables II and III 
yields Table V: 

DBR 

.01 

.05 

.15 

TABLE V-Performance of Basic Model 

Tdc(sec) 

(nd = 10) 

29 181 
7 210 
3 282 

CPU Percent 

70 
63 
51 

Measurements at NTH for the average load char
acteristics of Table II and with a DBR of less than .01 
at an nd of6 indicated an average CPU utilization of 
50 percent, an average batch turnaround of 5 min., 
and an average demand response time of 38 seconds . 
The basic model predictions of Table V indicate an 
appreciably lower Tde which causes a lower ETb and a 
higher CPU percent than that measured. Moreover 
other measurements indicated that the swapping 
channel was approximately 60 percent busy rather than 
the 100 percent assumed by the model under similar 
loading conditions. This lack of agreement prompts 
investigation of the validity of the assumptions sup
porting this basic model. 

AUGMENTED MODEL 

The swapping saturation assumption itself is subject 
to question, but analysis of this is presented in the next 
section. This section explores the question of available 
core, modifies the basic model, and predicts system 
performance from the resulting augmented model. 

Required core 

One approach to understanding the effect of available 
core on model performance is to analyze the amount of 
core necessary to maintain swapping saturation. This is 
done by first considering the integrated core-time 
demand over a demand cycle, CTDde . If EQd and EQb 
are respectively the effective elapsed times demand and 
batch tasks remain in core when swapped in for their 
core quanta, then average demand and batch jobs tie 
up Cd and Cb blocks of core for: 2Sd+EQd and 
2Sb + EQbms respectively. Thus in one demand cycle the 
integrated core-time demand is: 

block-ms, and the minimum average core requirement 
to maintain a demand cycle of T de is: 

Cd[2(~)+(~)]+ rfjfu [2(~)+(~)] 

2 [(~:) + DBR-l (~)] 
(12) 

The problem in analyzing (12) lies in the deter
mination of EQd and EQb. As explained previously, 



TABLE VI-Cmin for Varying DBR and EQ/Q 

(Units of 512 Word Blocks) 

EQd/Qd 1 3/2 2 
DBR\ 

EQb/Qb 1 2 3 
.01 119 188 257 
.05 107 167 227 
.15 87 134 180 

Qa and Qb are well defined quantities for average demand 
and batch jobs. Unfortunately, it is non-trivial to relate 
the elapsed core time, EQ, to the core quantum time, 
Q, which is counted only when CPU and/or channel 
activity is occurring for that task. The following argu
ments are pertinent: 

(1) For all batch task swap-ins, but the swap-in 
where the task terminates, EQb>Qb. The elapsed 
residence time of the last swap-in may be less 
than Qb because the task will voluntarily give up 
core control upon terminating. Inasmuch as 
Tb/tb, the number of swap-ins for the average 
batch job, is greater than 100 and this job will 
involve approximately three sequential tasks 
(compilation, collection, and execution), these 
end effects will have little effect on average 
behavior. Hence EQb>Qb. 

(2) For the average demand task swap-in, there are 
end effects more frequently because the inter
active tasks will voluntarily give up core control 
upon entering terminal wait state. In the EXEC 
8 environment however, the average user 
employs batch oriented processors (compilers 
and the collector) for a large proportion of the 
swap-ins. Also because the demand CPU time 
quantum is more closely related to the demand 
core quantum time than for the case of batch, 
the relation in (13) is almost certainly true on 
the average: 

(3) 

(13) 

In order to estimate the magnitude of the ratios 
in (13), it should be noted that each time the 
task is eligible to receive CPU or channel 
attention it will on the average have to wait 
Y2 (in the case of one competitor) or more of the 
length of time it needs to employ the resource. 
For these reasons EQa/Qa is probably greater 
than % and EQb/ Qb, because of the increased 
employment of channel resources by batch tasks, 
is almost assuredly greater than that. 

Thruput and Response Model of EXEC 8 45 

Since these ratios appear to be very much a function 
of what is happening in the model, they are carried as 
parameters in the augmented model development and 
verification. 

Equation (12) is solved to yield the values in Table 
VI as a function of DBR and the EQ/Q ratios. 

For certain parameter combinations, the Cmin re
quired to sustain saturated swapping is greater than 
C A, the actual number of core blocks available for user 
tasks at a particular installation. In practice, Cmin must 
be in multiples of Ca (or Cb) blocks. Thus the numbers in 
Table VI must be increased at least to C A or the next 
higher multiple of Ca (whichever is larger). This 
modified Cmin is denoted as C'min. 

There is one other usage of core that must be taken 
into account. For each possible active demand user, 
space must be reserved for line buffers, switch list 
information, etc., in the executive buffer pool area 
(EXPOOL). Each possible user requires the reservation 
of approximately 0.8 of a 512 word block of core store. 
Thus the C A employed to represent the number of 
available user blocks is really a function of na: 

(14) 

(In the NTH configuration, there are a total of 256 
blocks of which C AO = 130 and typically the system has 
been generated for a maximum na of 6 yielding an 
effective C A of 125 blocks for user tasks.) In the follow
ing model performance predictions, the NTH C AO of 
130 is used. 

As with Cmin, when postulating an average model, 
CA only has meaning as a multiple of Cd (or Cb) blocks. 
Thus all use of C A must be in terms of C' A where C' A is 
the C A defined in ( 14) reduced to the next lower 
multiple of Ca. 

Model development 

The minimum effect of having too little core to buffer 
the tasks under swapping saturation will be to increase 
T ae by an amount proportional to the ratio between 
C'min and C' A. Such an increase in Tae will cause a 
reduction in CPU percent by the inverse ratio. 

Thus for the case of swapping saturation limited by 
available core, the basic model Equations (7), (8), and 
(10) are augmented as follows: 

T'ae= (C'min/C'A)Tdc (15) 

ET'b= (C'min/C'A)ETb (16) 

CPU' percent = (C' A/ C' min) CPU percent (17) 



46 Fall Joint Computer Conference, 1971 

/' 

10 20 30 

Figure I-Response Time Upper Bound (T'de) 
vs. 

Number of Demand Users (nd) 
DBR=.lO, EQd/Qd=3/2, EQb/Qb=2 

Model performance predictions 

40 

The ratio of C' AI C' min can also be employed to 
predict the percentage of time that the swapping 
channel will be busy for the core limited case. 

Solutions of (15) and (17) for varying DBR, nd, 
and EQIQ yields the results in Tables VIII and IX. 
The nd values of 6, 20, and 30 are selected because NTH 
currently has an nd of 6, plans to expand to an nd of 20 
before acquiring more core, and is interested in the 
impact of an even greater number of terminals. DBR 
values in the range .01 to .15 are employed to in
vestigate the effect of a DSR in the range .30 to .40 
as in Table IV. 

For ease of sensitivity analysis, Figures 1 and 2 

TABLE VII-C'A/C'~in (for Two EQ/Q Couplets)* 

Swapping Channel Busy Percentage Varying DBR and nil 

DBR\nd 

.01 

.05 

.15 

(63,46) 
(72, 50) 
(84, 63) 

6<nd537 

(50, 36) 
(57, 40) 
(67, 50) 

395nd<69 

(38,27) 
(43, 30) 
(50, 38) 

* In each table entry (A, B), A is computed for the {EQd/Qd, 
EQb/Qb} of {3/2, 2} and B for {2,3}. 

TABLE VIII-T'de (for Two EQ/Q Couplets)* 

Varying DBR and nd 

DBR\nd 

.01 

.05 

.15 

6 

(28, 38) 
(6, 8) 
(2, 3) 

(Units of Seconds) 

20 

(116, 159) 
(23, 34) 
( 9, 12) 

30 

(173,239) 
(35, 50) 
(14, 18) 

present plots of T'de and CPU' percent respectively for 
an EQIQ couplet of L%,2} and a DBR of .10 as a 
function of nd. 

Model verification 

At first analysis the performance predictions in 
Tables VIII and IX and Figures 1 and 2 appear to 
agree reasonably well with NTH experience. For 
example on December 16, 1970, in approximately 10 
hours of EXEC 8 operation there were 725 batch jobs 
involving 3325 batch tasks; six demand terminals were 
available and a total of 58 demand user sessions were 
conducted involving 1437 demand service requests. For 
the average job characteristics reported in Table II, 
the average CPU utilization was 50 percent, average 

10 20 30 

Figure 2-CPU Utilization (CPU' Percent) 
vs. 

Numberof Demand Users (nd) 
DBR=.10, EQd/Qd=3/2, EQb/Qb=2 

40 



batch turnaround (last card in to job terminate) was 
5 min., and average demand response time was 38 
seconds. 

This amount of demand usage corresponds to an 
average DBR of less than .01 for which the model 
predicts (assuming an EQ/Q couplet of {~'2, 2}) : 
CPU' percent = 44, T'dc=28 sec., ET'b=3 min. During 
one hour of heavier demand usage, there were 285 
demand service requests with an average td of 50ms 
corresponding to an average DBR of .01 and the 
observed CPU utilization was 40 percent. Moreover 
the previously reported swapping channel busy per
centage of 60 percent under similar conditions agrees 
well with the prediction of 63 percent reported in Table 
VII for an EQ/ Q couplet of {~'2, 2}. 

On an absolute basis, considering the gross simplifica
tion of the model, this sort of agreement must be 
considered to be quite good. It isn't until the swapping 
saturation analysis presented in the next section is 
reviewed, that it becomes apparent that this agreement 
is probably due more to system and model inse~sitivity 
than to true representation. 

What can be said with some certainty, however, is 
that the relative predictions as a function of nd and 
DBR are realistic. The relative sensitivity of T'de to nd 
is not particularly surprising, but the sensitivity of the 
CPU' percent to nd is of some real concern. It has 
already been reported in Reference 8 and observed 
experimentally at NTH that each new demand user 
subtracts approximately .04 from CPU utilization prior 
to swapping saturation. Table IX and Figure 2 indicate 
that, even after swapping saturation, allowing addition 
of new demand users can cause significant reduction of 
system thruput due to reduction of available user core. 

ANALYSIS AND EXTENSIONS 

The augmented model of the preceding section is a 
direct result of analyzing the basic assumption con
cerning sufficient core. The relative success of this 

TABLE IX-CPU' Percent (for Two EQ/Q Couplets)* 

Varying DBR and nd 

DBR\nd nd~6 6<nd~37 38~nd<69 

.01 (44, 32) (35, 25) (26, 19) 

.05 (45, 31) (36, 25) (27, 19) 

.15 (42, 32) (34, 25) (25, 19) 

* See Table VII. 

Thruput and Response Model of EXEC 8 47 

analysis suggests that the swapping saturation assump
tion should also be investigated. Simple queueing theory 
extensions are indicated and conclusions are drawn. 

Swapping saturation 

As indicated previously, in the absence of demand 
usage there is relatively little swapping. (How little is 
indicated by results presented in Reference 8, where 
during one day's all batch operation under EXEC 8 
involving 1249 batch jobs, there were 10935 extra 
swap-ins from the swap-file or approximately 8 swap-ins 
per average job.) 

If this ratio is preserved in the batch/demand 
environment, of the Tb/tb( = 156) swap-ins per batch 
job suggested by the model, more than 90 percent would 
have to be caused by pressure from waiting higher 
priority demand tasks. During a demand cycle then, the 
ratio of nd/ nbd must be greater than. 9 to force swap-out 
of batch tasks thereby causing swapping saturation. 
Combined with the NTH tb/td ratio of 8, (3) suggests 
that DBR must be greater than .10 independent of 
nd to cause swapping saturation. 

nd enters into the analysis in terms of the number of 
users necessary to have a realistically large response 
time at this relatively large DBR. If for example, an 
average user can maintain an effective demand rate of 
2 interactions/minute requiring tdms of CPU time and 
having EQdms of elapsed core time impact, then (15) 
shows that swapping saturation can only be maintained 
by approximately 38 users for an EQ/Q couplet of 
(~'2, 2} and 33 users for a couplet of {2, 3}. . 

Thus the model cannot really be verified on the baSIS 
of NTH experience with its nd of 6. 

Configuration sensitivity 

What can be ascertained for the NTH 1108 con
figuration however, is the potential effect of making a 
planned move to twenty demand terminals. 

For example, currently one day's usage with light 
demand activity from 6 possible users and without 
swapping saturation yields a CPU utilization of 50 
percent and a batch turnaround of 5 minutes. Figure 2 
indicates that heavy usage from 30 or more demand 
users could cause swapping saturation with a CPU' 
percent reduction of twenty to fifty percent. Certainly 
the results of Table VI suggest that NTH could obtain 
a significant performance increase through the addition 
of more core. 

The dependence of EXEC 8 performance on core had, 
of course, been suspected prior to the model develop-



48 Fall Joint Computer Conference, 1971 

ment reported here. What this work does however, is to 
give a means of quantifying the cost/benefit analysis. 
Moreover because of the nature of the uniform average 
load assumption, it is safe to assert that the absolute 
model performance predictions are optimistic; i.e., the 
CPU' percent is high and T'de is low. It is asserted 
however, that with the exception of the unspecified 
EQ/ Q load dependence, the relative model performance 
predictions are reasonable. 

Extensions 

There are a number of possibilities for improving the 
existing model; for example, the EQ/Q ratio could be 
related to other characteristics describing the system, 
load, and, in particular, potential conflict situations on 
the channels. In light of other problems inherent in the 
uniform load and swapping saturation assumptions 
however, such modifications do not appear to be 
particularly fruitful at this time. 

The upper bound relation of T'de to Rd , the system 
response time for demand users, and the lower bound 
relation of ET'b to Rb, the processing turnaround time 
for batch users, suggests that some simple queueing 
theory additions could make the nature of these in
equalities much better understood. As pointed out in 
Reference 3, one of the biggest problems in applying 
queueing theory to general multiprogramming-time 
sharing systems such as EXEC 8 is to determine 
effective mean service rates (and, of course, service 
time distributions) for the various types of service 
offered by the system. 

Interestingly, the model developed here provides 
mean service rates for demand interactions and batch 
job service requests. For example, a rough first approxi
mation to determining improved estimates for Rd 
follows directly from Reference 3 for a finite population 
model with nd sources with Poisson service request dis
tributions about some mean rate X. The service model 
could be single server with an exponential service time 
distribution with effective rate J..Lde. Since each service 
request requires 2Sdms of swapping service, J..Lde is: 

(18) 
where: 

P d is the probability that the swapping drum is 
serving demand users. 
Pd is computed in (19) from the relations of the 
model: 

(19) 

The prediction of Rb could also be improved by a 

simple queueing model with the service rate determined 
in a similar manner. Completion of the queueing theory 
analysis is best deferred until better experimental data 
is available for verification. 

CONCLUSIONS 

As indicated in the INTRODUCTION, the initial 
goals for this model development were twofold; namely: 
(1) to predict steady-state performance as a function of 
configuration and workload, and (2) to serve as a focus 
for detailed study of EXEC 8 design and behavior. 

Most of the discussion to this point has concentrated 
on the first of these goals. A concluding summary of 
this discussion is that the presented model gives sur
prisingly accurate predictions of system behavior out
side its designed range. There are at present no 
measurements available for verification of model 
validity under swapping saturation. However, the 
trend predictions of the model are interesting and 
certainly could be useful if an EXEC 8 configuration 
causing swapping saturation were being studied. From a 
more general modeling viewpoint, perhaps the greatest 
value of this work is as a well documented example of a 
limiting resource modeling situation. 

The model and associated study are perhaps most 
significant in relation to the second goal. That is, the 
model served as a focus for more general study and 
measurement of EXEC 8 and provided a means for 
quantifying completely undocumented, yet very impor
tant, topics such as core quanta and DSR control. 

REFERENCES 

1 A L SCHERR 
Analysis of time shared computer systems-simUlation 
ofTSS 
MIT Research Monograph No 36 MIT Press 1967 

2 R R FENICHEL A J GROSSMAN 
An analytic model of multiprogrammed computing 
AFIPS Proceedings 1969 SJCC Vol 34 pp 717-721 

3 J E SHEMER D W HEYING 
Performance modeling and empirical measurements in a 
system designed for batch and time sharing users 
AFIPS Proceedings 1969 FJCC Vol 36 pp 17-26 

4 B WARDEN D BOETTNER 
Measurement and performance of a multiprogramming 
system 
Proceedings of the ACM 2nd Symposium on Operating 
System Principles ACM October 1969 pp 130-146 

5 H HELLERMAN H J SMITH 
Throughput analysis of some idealized input, output, and 
compute overlap configurations 
Computing Surveys Vol 2 No 2 June 1970 pp 111-118 



6 G ESTRIN L KLEINROCK 
Measures, models, and measurements for time shared 
computer utilities 
Proceedings of ACM National Conference 1967 Vol 22 
pp 85-96 

7 S R KIMBLETON C G MOORE 
A probabilistic framework for system performance 
evaluation 

Thruput and Response Model of EXEC 8 49 

Proceedings of the ACM SIGOPS Workshop on System 
Performance Evaluation Harvard University Cambridge 
Massachusetts April 5-7 1971 

8 M DRAPER 
1108 EXEC-8 performance evaluation and scheduling 
Presented to Fall 1970 Univac Users Association (USE) 
Meeting University of Wisconsin Computing Center 
Madison Wisconsin October 1970 





Throughput measurement using a synthetic job stream* 

by DAVID C. WOOD and ERNEST H. FORMAN 

The MITRE Corporation 
McLean, Virginia 

INTRODUCTION 

IVlanagers of computer facilities frequently need to be 
able to measure the throughput of their installations. 
Throughput is based on the amount of work a system 
can perform in a given time in a particular environment, 
and is usually measured as the reciprocal of the running 
time of selected jobs. The throughput of a computer 
system is a function of the hardware configuration, the 
operating system software and the workload char
acteristics. Once the characteristics of the workload 
are identified, the configuration and operating system 
can be optimized in terms of throughput for that 
environment. Improvements resulting from system 
changes can be evaluated using throughput measure
ments. 

With a given workload and system configuration, 
CPU utilization is a crude measure of relative through
put. More accurate results are obtainable by careful 
experimentation with benchmarks which are repre
sentative of the workload. A benchmark usually refers 
to a single job, such as a matrix inversion which may be 
typical of certain scientific applications. Benchmarks 
are frequently used to evaluate different computer 
systems prior to their selection. 1 With a multiprogram
ming computer system, the throughput depends on the 
job mix, the scheduling algorithm, and many param
eters in the operating system. A job stream is a collection 
of independent jobs which can be used to determine the 
relative throughput of a multiprogramming system 
based on the time taken to execute all the jobs. 

A job stream could be gathered from the actual 
workload by using a sampling procedure and verifying 
the resulting job stream by comparing features with a 
total workload. Such a study at the University of Iowa 
has been reported.2 This is not feasible in all installa-

* This work was carried out by the MITRE Corporation under 
contract to the Defense Communications Agency (Contract 
Number F19628-71-C-0002). 

51 

tions. The following difficulties have been experienced 
in assembling and using a job stream composed of 
actual jobs: 

• users of a service facility are reluctant to supply 
programs, data bases and operating instructions 

• security considerations prevent many jobs from 
being included in the job stream 

• it is difficult to closely match the overall char
acteristics of the jobstream to the workload 
characteristics without being able to select from a 
large number of jobs since the characteristics of 
each job are fixed 

• it is extravagent on storage space to duplicate 
large data bases 

• new releases of the operating system and changes in 
catalogued procedures make it difficult to keep 
complex jobs viable. 

An alternative is to create synthetic jobs reflecting 
characteristics of the workload. This paper describes 
experience in defining the characteristics of a workload 
and generating a synthetic job stream based on the 
workload characteristics. There is little published work 
in either of these areas, and there are many practical 
difficulties to be solved. The synthetic job stream has 
been validated by comparison with a job stream com
prised of actual jobs, and with the use of a hardware 
monitor. It has been used to measure the throughput 
of alternative hardware configurations and alternative 
software options. 

CHARACTERIZATION OF WORKLOAD 

There are no established standards for describing 
characteristics of a workload. Characteristics which are 
defined must be obtainable quantitatively for the 
workload, and since they are to be used as a basis for 
assembling a job stream, they should be easily trans-



52 Fall Joint Computer Conference, 1971 

latable into components of the job stream. The char
acteristics introduced in this paper relate to the IBM 
360 series operating under OS /MVT; similar terms 
could be defined for other machines. Most of the 
characteristics can be obtained by an analysis of 
system accounting data. 

Characteristics of the workload are defined in terms 
of the resource requirements imposed on the system. 
Resources considered are: 

• Core requirement 
• CPU utilization 
• I/O channel activity 
• Peripheral device utilization 

Core requirement is easily measured for a real memory, 
in contrast to a. virtual memory machine. . The dis
tribution of time spent in various region sizes can be 
calculated. CPU utilization can be expressed as the 
percentage of time the CPU is active. Accounting 
statistics almost always give a measure of I/O activity, 
but in some machines, such as the IBM 360, the measure 
may be inadequate for throughput studies. The measure 
given with the Systems Management Facility (SMF) 
of OS is the number of data transfers, not the quantity 
of data transferred. To resolve this deficiency, a hard
ware monitor has been used to measure the average 
channel activity per data transfer. 

Although CPU and I/O channel utilization are 
important, they are not easily translated into jobs 
which will produce this activity. This can best be 
achieved by considering the ratio of I/O channel time 
to CPU time, both as a total for the workload, and as 
a distribution. For example, in a particular installation, 
short jobs may generally be dominated by I/O time, 
whereas long jobs are more often CPU bound. The 
utilization of tape units and exchangeable disk units 
can be measured in terms of the percentage of time 
these units are assigned to some job. The amount of 
activity while these units are assigned toa job and of 
public devices such as work disk packs is already 
included in the I/O channel utilization. The demand on 
printers, card readers and punches is easily calculated 
in terms of lines of print or number of cards. 

DESIGN OF JOB STREAM SPECIFICATIONS 

The process of translating the workload characteristics 
into a synthetic job stream has two steps. First, the 
specifications of the individual jobs are determined so 
that they match the workload. Second, the synthetic 
jobs themselves are generated with the specifications 
determined previously. 

Designing the job stream specifications based on the 
workload characteristics is the more difficult task. The 
required running time of the job stream is determined 
from the average job time and the accuracy desired. 
The number of jobs required can then be deduced. 
Several different types of synthetic jobs may be used; 
for example, jobs requiring tape or disk or neither. 
Core size, CPU times, and I/O times can be defined for 
each job in order to match the overall workload dis
tributions for each characteristic, but it is not obvious 
how the various characteristics should be correlated for 
individual jobs. For example, although the probability 
of larger I/O time increases as the CPU time of a job 
increases, this is not always the case. 

An approach to the correlation problem is to base the 
specifications of the synthetic jobs on actual jobs. A 
sampling technique can be used to select jobs in the 
actual workload, and the sampling procedure can be 
verified by comparing the characteristics identified 
previously. However, instead of obtaining the actual 
jobs, with the attendant· practical difficulties noted 
earlier, only their characteristics are used. The core 
requirement, CPU and I/O time, peripheral require
ments, printer output, et cetera, of each job can be used 
as the specifications for creating a synthetic job which 
looks identical. 

GENERATION OF SYNTHETIC JOB STREAM 

The synthetic job used in this study is based on the 
type of program suggested by Buchholz.3 A listing of 
the program, which is written in PL/I, appears in the 
Appendix. Parameters in the program are adjusted to 
vary the CPU time, I/O time and number of lines of 
printer output. Region size and tape and disk require
ments of each job are determined by suitable specifica
tion of the job control language (JCL). Most synthetic 
jobs consist of compile, link edit and go steps of the 
PL/I program, but in those cases where a small region 
size or short CPU time is required, only the go step of a 
previously compiled and link edited program is executed. 

The PL/I program performs the following tasks: 

(a) Creates a data set of master records (data set 
DD name is MASGEN) 

(b) Processes records from this data set (data set 
DD name is MASTER) 

(c) Exercises a compute kernel a number of times for 
each record processed 

(d) Outputs from one to three data sets after each 
record has been processed (data set DD names 
are OUT1, OUT2, OUT3. If less than three 
output data sets are required, OUT2 and/or 
OUT3 may be declared "DUMMY") 



( e) Prints some number of lines after each record 
is processed. 

The content of the master records, the type of 
calculations within the· compute kernel, the content of 
the output records and the content of the printed lines 
are to a large extent arbitrarily selected. Some effort 
was made in these selections to include a variety of 
operations. The execution time of the compute kernel is 
approximately 30 milliseconds on a 360/50. 

There are five input parameters to the synthetic 
PL/I job; 

(a) NMASTER: The number of master records to 
be created. 

(b) R: The number of records to be processed from 
the master file (R~NMASTER). 

(c) N: The number of times the compute kernel is 
to be executed. 

(d) L: The number of lines to be printed. 
( e) LPR: The number of lines to be printed out for 

each record processed until the total number of 
lines of printed output is equal to L. 

The four data sets in the PL/I program (MASGEN
MASTER, OUTl, OUT2, OUT3) are assigned unit and 
volume designations in the JCL according to the tape 
and user-disk requirements for the job. Blocking factors 
for these data sets are also specified in the JCL. 

The I/O time reported by the System Management 
Facility (SMF) routine under OS/MVT (release 18) 
is based on the number of execute channel programs 
(EXCPs). The larger the blocking factor, the smaller 
the number of job EXCPs for a given number of 
records processed. By increasing both the number of 
records processed and the blocking factors, it is possible 
to keep the number of EXCPs for a job constant while 
increasing the amount of actual I/O taking place. There 
are many variations that can be applied tothe synthetic 
job. For example, the amount of CPU time used 
between each I/O operation can, instead of being fixed, 
be made a random variable subject to the constraint 
that the total job CPU time is as specified. The degree 
of sophistication of the synthetic job must be weighed 
against the resulting complexity of the experiments and 
the effect on the validity of the results. 

MEASUREMENT PROCESS 

The running time of the job stream has been cal
culated as the elapsed time from starting the card 
reader until all processing is completed. The order in 
which the jobs are arranged may have some effect on 

Throughput Measurement 53 

TABLE I-Activity Monitored with Hardware Monitor 
(Minutes) 

CPU Active 
Supervisor (OS/HASP) Time 
Selector Channel 1 Busy 
Selector Channel 2 Busy 
Selector Channel 4 Busy 

Synthetic 

32.4 
22.7 
12.4 
13.5 
14.6 

Representative 

34.2 
19.0 
26.6 
30.4 
35.1 

the running time. It is preferable to avoid having a long 
job running last when there are no other jobs to multi
program with it. The job stream should be run in two or 
three different orders and the average time calculated. 
If the job stream is long enough, the variations will be 
relatively small. Maximum differences rarely exceeding 
seven percent have been experienced with a three hour 
job stream where the average running time of a job is 
seven minutes. 

I t is important to start each run with a clean system 
to ensure consistency; for example, work disk packs 
should be scratched. Any delays which may be caused 
by operator intervention, such as mounting user disk 
packs, should be avoided as far as possible. 

COMPARISON OF ACTUAL AND SYNTHETIC 
JOB STREAMS 

A potential disadvantage of a synthetic job stream is 
that it may not be representative of the actual work
load because of the lack of characteristics not explicitly 
designed into it. The validity of using a synthetic- job 
stream to measure throughput has been confirmed by 
comparison with a representative job stream. The 
representative job stream, running for about three 
hours on a 360/50, was comprised of actual jobs selected 
from the workload so as to reflect the workload char
acteristics defined previously. A synthetic job stream 
was created with each job having the same characteris
tics (CPU time, I/O time, region size, lines of output, 
and tape and disk requirements) as the corresponding 
representative job. 

Both job streams have been run on a 360/50 and 
360/65, both with and without HASP. The elapsed time 
for the synthetic job stream runs varied between 71 
and 76 percent of the elapsed time for the corresponding 
representative job stream. Table I shows the activity 
data obtained with a COMRESS DYNAPROBE 
hardware monitor. The percentage of time the selector 
channels were busy with the synthetic job stream 
running was approximately half that for the repre
sentative job stream. This is because the synthetic job 



54 Fall Joint Computer Conference, 1971 

TABLE II-HASP Performance 

360/501 360/65J 

Synthetic Representative Synthetic Representative 

Time with 126 166 54 76 
HASP 

Time with- 141 194 82 109 
out 
HASP 

% (HASP/ 89.4 85.6 65.8 69.7 
Non-
HASP) 

stream was tuned with the number of EXCPs used to 
represent I/O activity. More data must be transferred 
per EXCP in order that the selector channels are kept 
suitably busy. This can be done by using larger blocking 
factors in the synthetic jobs. The other activities 
recorded by the hardware monitor showed close agree
ment between the two job streams, as can be seen from 
the figures given in Table I. 

Both job streams have been used to determine the 
relative throughput of a 360/65 with 1024K bytes of 
core in relation to a 360/50 with 512K bytes of core. 
The performance of HASP on each of these configura
tions has also been evaluated using both job streams. 

The throughput factor for the 360/65 in terms of the 
360/50 was measured with the representative job stream 
to be 2.18. The throughput factor measured with the 
synthetic job stream was 2.33. This difference can be 
attributed to the fact that the synthetic job stream is 
less I/O bound and was therefore able to make better 
use of the faster CPU of the 360/65. 

The improvement in performance obtained with 
HASP on each of the two machines as me-asured by the 
representative and synthetic job streams is shown in 
Table II. These measures are in quite close agreement. 
The deficiency of I/O in the synthetic job stream had 
little effect in this case since the major performance 
benefit of HASP is derived from "SYSIN" and 
"SYSOUT": I/O which did not differ substantially 
between the two jobs streams. 

SUBSEQUENT RESULTS WITH A 
SYNTHETIC JOB STREAM 

Further use has been made of a synthetic job stream 
to determine throughput factors of three different IBM 
360 configurations, to determine relative CPU speeds 
(as reported by the accounting routine) of these 
configurations, and to evaluate the effect of a hardware 
and operating system change on one of these con-

figurations. In order to equitably charge users for 
attended time on each of the three different configura
tions, a 360/50-1 (512K bytes of core), a 360/65-1 
(512K bytes of core), and a 360/65-J (1024K bytes of 
core), a measure of the relative throughput of these 
machines was needed. A synthetic job stream was used 
to obtain this measure. In order to assure a true repre
sentation of the I/O activity in the synthetic job stream, 
hardware monitor measurements were made of actual 
workload channel activity for a two week period and 
the I/O of the synthetic job stream was made to 
accurately reflect the true workload I/O. The resulting 
synthetic job stream had more I/O than the original 
synthetic job stream and more even than the repre
sentative job stream. This indicates that the repre
sentative job stream itself had too little actual I/O 
as compared to the workload. The throughput factor of 
the 360/65-J in terms of the 360/50-1 as measured with 
the new synthetic job stream was 1.75. This decrease 
from the throughput factors measured with the repre
sentative and original synthetic job streams clearly 
illustrates the strong dependence of computer per
formance on the I/O workload characteristics. 

The CPU times reported by the accounting routine 
for synthetic job stream runs on each configuration 
were compared and CPU factors derived using the 
360/50-1 as a reference. Table III contains the CPU 
time for runs on each machine and the CPU factors. 
It is interesting to note that the CPU of the model 65 
with the smaller core appears to be faster than the 65 
with the megabyte core. Although it is known that CPU 
time for a given job does vary from run to run on a 
given 360, it is statistically significant that all 25 jobs 
of the synthetic job stream were charged with less 
CPU time on the 360/65-1 than on the 360/65-J. Two 
primary factors why the 360 accounting time varies are 
improper distribution of CPU time for I/O interrupt 
processing and cycle stealing. These factors are directly 
proportional to the amount of multiprogramming and 
I/O activity respectively, both of which are greater on 
the 360/ 65-J machine. 

The managers of the computer installation felt that 
the throughput of one of the machines had decreased 
following a hardware change and a transition to a 
newer release of the operating system. The hardware 

TABLE III-CPU Times and Factors 

Machine 

360/50-1 
360/65-J 
360/65-1 

CPU Time 

3334 
1070 
823 

CPU Factor 

1.00 
3.12 
4.05 



change involved the replacement of a selector channel 
which was used for tape I/O, by multiplexor sub
channels. Data from the hardware monitor had shown 
that the selector channel that was removed and the 
multiplexor channel had very little usage so that a cost 
savings could be realized with no predicted degradation 
in performance. 

The synthetic job stream previously run on this 
machine was run in the new environment. Contrary to 
there being a degradation in performance, the synthetic 
job stream ran in less time thus showing an increase in 
throughput for the same workload characteristics. 

CONCLUSIONS 

The PL/I synthetic program described can be used as 
the basis for a job stream reflecting the workload 
characteristics which are considered important in 
affecting throughput: CPU utilization, I/O channel 
activity, core requirement, printer output, and tape and 
disk requirements. Experimentation with a synthetic 
job stream designed with these characteristics matching 
those of a job stream comprised of actual jobs has 
shown comparable results. This supports the choice of 

Throughput Measurement 55 

characteristics on which the synthetic job stream is 
based. A hardware monitor is invaluable in determining 
I/O channel activity in the absence of such a measure 
for 360 computers. 

A synthetic job stream is a more practical tool than a 
job stream composed of actual jobs for measuring 
throughput. The synthetic job stream is easier to 
assemble and does not require extensive data bases. 
It is particularly advantageous where the regular 
workload is classified. Synthetic jobs are not dependent 
on compilers or data management systems and therefore 
do not require maintenance because of system changes 
in those areas. 

REFERENCES 

1 E 0 JOSLIN 
Computer selection 
Addison-Wesley 1968 

2 W L SHOPE K L KASHMARAK 
J W INGHRAM W F DECKER 
System performance study 
Proceedings SHARE XXIV March 1970 pp 568-659 

3 W BUCHHOLZ 
A synthetic job for measuring system performance 
IBM Systems Journal Vol 8 No 4 1969 



56 Fall Joint Computer . Conference, 1971 

APPENDIX 

PL/I LISTING OF SYNTHETIC PROGRAM 

SYNl: PROC~OURE CPTIONS (MAIN); 
OECLAKE 1 MASTE~ REC ALIGNfU STATIC, 

2 MASiER_KEY CHARACTE~(12), 
2 ·MASTER SUM BINAKY ~IX~D(3l), 
2 MASTER-CHECK aINARY FIXEO(3l), 
2 MASTfR:OATA (5) CHARACTER(12}, 

INTKEY PICTURE'(6)9', 
CHECK BINAKY fIXED(31) 1~lrIhL(O), 

PARMS FILE INrUT, 
MASGEN FILE RfCOKD U0TP0T, 

MASTER FIL~ K~CORD INPUT, 
OUTI FILE KECO~O ~UTPUTt 
OUl2 FILE kECURu OuTPUT, 
OUT3 fiLE KLeUKD OUTPUT, 

LIN~S UINARY fIXED']l) INITIAL(l), 
NRtPS 0INAKY fIXEO(31) INIIIAL(0), 
N bINARY fIXED'31), 
l BINARY ~lxEU(3l), 
NMASTER tlINAKY fIXED(3l), 
LPK BINARY FIXfO(311, 
R tllNARY FIXED(3l); 

1* GET R, N, L, NMASTER ANO LPR *1 
GET FILE (PAK~St DATA; 
PUT D'AIA(R,N,L,NMAST(R,LPR); PUT SKIP(S); 

1* CREATE NMASTER MASTER RECORDS *1 
OPEN FILE(MASGEN); DO J=l TO NMASTER; 

CHECK = CHECK + J ; 
INTKEY = J; 
MASTEK_KEY='QOOOOO'JIINTKEV; 
MASTER_DATA ='ooo000'IJINTKEY; 
MASTER_CHECK = CHECK ; 
MASTER_SUM = 0 ; 

WRITE fILEIMASGEN) FROM (HASTER_REC); 

OPEN FILE (MASTER); 
OPEN FILE (OUTl); 
OPEN FILE (OUT2); 
OPEN FILE (OUT3t; 

END; CLOSE FILE (MASGEN); 

DO L 1 = 1 TO R; 
READ: READ FILE (MASTER) INTO (HASTER_REC); 

1* EXECUTE KERNEL NIR + 1 TIMES PER RECORD OR 1 TIME PER RECORD UNTIL 
N TOTAL REPETITIONS *1 

DO L2 = 1 TO «N-Rt/R + 1 + 1 ) wHILE (NREPS<N); 
DECLARE IX BINARY FIXED(31) INITIAL(13S71), 

IY BINARY FIXEO(31},RN DECIMAL FLOAT; 

END; 

ON FIXEOOVERFLOW; 
IV = IX*6S539; 
If IV < a THEN IV=IY +2147483647+1; 
RN IV; 
RN = RN * .4656613E-9; 
RN = RN * 10.; 
IX = IV; 

INTKEV=SQRT(RN);MASTER_OATAll)='OOOOryl'll1NTKEY; 
INTKEY=EXP(RNl ;MASTER_OATA(2)='000002'J IINTKfY; 
I NTKEV = (1+ 3*3.14) ILOG( RN) ;MA~ TER_OATAl 3)= 

'000003'llINTKEV; 
INTKFY =Ll; MASTER_OATA(4)='000004'IIINTKEY; 
IN~KEY =L2; HASTER_DATA(5)='OOOOO5" JINTKEY; 
MASTER_SUM=MASTER_SUM+li 
MASTER_CHECK = LI; 
NREPS = NREPS + 1; 

WRITE: WRITE fILE (OUTl) FROM (HASTER_REC); 
wRITE FILE (OUT2) FROM (MASTER_~EC); 
WRITE FILE (OUT3) FROM (HASTER_R~C); 

1* PRINT LINES LPR LINES PER RECORD WHilE LINES <=L *1 
uO K=1 TD LPR WHILE(LINES<=L); 
PUT SKIP DATA(Ll,L2,LINES,NREPS); 
Ll N E S = LI NES +l; f NU; 

EHD; 
END SVN1; 



A feedback queueing model for 
an interactive computer system 

by GISAKU NAKAMURA 

M usashino Electrical Communication Laboratory, NTT 
Musashinoshi, Tokyo, Japan 

INTRODUCTION 

Recently considerable effort has been directed to the 
development of computer systems that are able to serve 
a large number of users in an interactive manner. The 
model of interactive computer system is described by 
stating what a single user does during an elementary 
operation at his console, the "interaction." Roughly 
stated, an interaction consists of the user requesting and 
then receiving service from the computer system. The 
events usually forming an interaction are: the user's 
thinking, typing at his remote console, waiting for a 
response from the computer system, and finally 
watching output. ThesB interactions are repeated until 
the user finds the desired output. The number of inter
actions depends on the contents of a job which is 
processed by the computer system and on the goodness 
of program which is processed by the user in each 
interaction. Since this number fluctuates stochastically, 
it may be considered as a random variable. 

The turnaround time is defined as the time interval 
between the generation of the first request and the 
reception of the final service from the computer system. 
Thus, the complete service for a job is made during the 
turnaround time. For users the turnaround time is one 
of the most important characteristics of the computer 
system. There are some characteristics of the interactive 
computer system which are of operational importance. 
These characteristics are: 

(a) The service time, which is the duration of time 
required to complete the service for a request in 
an interaction; 

(b) The response time, which is the time interval 
between the generation of a request in an inter
action and the reception of service from the 
computer system in the same interaction; 

(c) The think time, which is the time interval 
between the reception of service in an interaction 

57 

and the generation of a request in the next 
interaction; and 

(d) The interaction time, which is the time interval 
during which an interaction is completed, that 
is, the sum of the response time and the think 
time. 

In this paper, a simple mathematical model of the 
operation is proposed for an interactive computer 
system, and some analyses are made for the turnaround 
time, the response time, the interaction time, and the 
number of jobs in the computer system. 

MOTIVATION OF THE ANALYSIS 

There are various analytical models for time sharing 
computer systems, which are extensively surveyed by 
J. M. McKinney.! Most of the models have been con
structed for the purpose of estimating the response 
characteristics in each interaction. Some typical models 
are the round-robin model, the multi-level foreground 
background model, and the external priority model. 
The analyses of the models have well explained the 
servicing behavior for requests in each interaction, and 
the probability distribution of response time and 
related characteristics have usually been obtained in 
postulated time sharing environments. These models, 
however, are not suitable to explain the servicing 
behavior for jobs through the complete turnaround 
time, namely, the models are too complex to be used in 
estimating the characteristics in connection with the 
entire sequence of interactions between users and the 
computer. 

Unfortunately, little work has been carried out in 
analyzing the overall servicing behavior of interactive 
computer systems from a mathematical point of view, 
at least to the author's knowledge. The motivation for 
lack of the analysis is directed toward constructing an 



58 Fall Joint Computer Conference, 1971 

analytical model by which entire interactions between 
users and the computer are described in a suitable way. 

ANALYTICAL MODEL 

Assumptions 

To construct an analytical model for the interactive 
computer system, we will make some assumptions on 
the arrival to the system, on the stochastic behavior of 
the service times and the think times, and on the 
number of interactions during the turnaround time. 
First, it is natural to assume that the sequence of job 
arrivals constitutes a Poisson process with a constant 
arrival rate, because jobs arrive at the computer system 
independently each other. In fact, this assumption has 
been empirically justified in various situations, and 
has been adopted in almost all queueing models of time 
sharing systems.1 Second, the service times should 
depend on a scheduling algorithm by which requests in 
each interaction are processed. But, in a very rough 
estimation, it may be considered that they are mutually 
independent and identically distributed. We assume 
the exponential distribution of service times in the usual 
way. This is also demonstrated by practical data 
observed by A. L. Scherr2 with compatible time sharing 
systems. Similar considerations can be made on the 
think times. It is evident that a user's think time in an 
interaction is independent from his think time in 
another interaction as well as from another user's think 
time. Scherr's observation also supports this assumption 
as an approximation. Here, it is noted that the ex
ponential distribution assumptions of the service times 
and the think times make the model tractable. Finally, 
the number of interactions between a user and the 
computer fluctuates stochastically and may be con
sidered as a random variable. We assume that the 
probability of having another interaction of a job is 
independent of the number of interactions preceding it. 

Description of the model 

Suppose that jobs arrive at the computer system in 
accordance with a Poisson process with density A. 
Denote by Tn (n= 1, 2, 3, ... ) the arrival epoch of the 
nth job. Then, the interarrival times Tn+l-Tn (n= 1,2, 
3, ... ) are identically distributed, mutually independent 
random variables with distribution function 

{

l-e->.t 
A(t) = 

o 

if t~O, 

if t<O. 

The jobs are served by a single processor in order of 

arrival. The processor is idle if and only if there is no 
job in the computer system. The service times are 
supposed to be identically distributed, mutually 
independent random variables with exponential dis
tribution function 

{

1-e-J.lt 
H(t) = 

o 

{

1-e-vt 

G(t) = 
o 

if t~O, 

if t<O. 

if t<O. 

It is supposed that the newly arrived jobs and the 
returned jobs are equally treated in the computer 
system. Thus, all jobs are served in order of arrival. 
The distribution function of service times for the 
returned jobs is supposed to be equal to that for the 
newly arrived jobs. 

The model described is a kind of single-server 
queueing model with feedback. A single-server queueing 
model with feedback has been investigated by L. 
Takacs.3 In his model, the Poisson arrival is assumed 
and the feedback rate 'Y is defined in the same way. 
The service times are supposed to be identically dis
tributed, mutually independent random variables with 
general distribution function. From this point of view, 

whole system 
r-------------------, 
1 I 
I 

thinking I 
I 

J I 
t ""'" system I 
I 1 
I I 
t 

'If I 
I t r- I 
I I 
I I I I computer td 

" 
arriva eparture 

.. ., 
system 

-ill 

" l 
I 1 

I I 

L------ _____________ J 

Figure 1-The queueing model with feedback 



Takacs' model is more general than ours. However, 
immediate returns are required when jobs join the 
queue again, while some delay is involved in our model. 

The model is well described by introducing a virtual 
thinking system in which infinitely many servers are 
furnished. Let the whole system consist of the computer 
system and the thinking system, as is shown in Figure 1. 
Jobs that arrive at the whole system enter the computer 
system and join the queue. The jobs are served by a 
single processor in order of arrival. After being served, 
each job either immediately enters the thinking system 
with probability I' or departs from the whole system 
with probability I-I'. Since infinitely many servers are 
furnished in the thinking system, there is no queue in it. 
Therefore, the service in the thinking system is imme
diately commenced when a job enters the thinking 
system. The distribution function of service times in the 
thinking system is given by G (t). After being served, 
each job immediately enters the computer system and 
joins the queue. The cycles from computer system to 
thinking system are repeated until the job departs from 
the whole system. Then, the probability with which a 
job has n returns is given by 

r n = 'Yn ( 1 - I' ) , n=O, 1,2, .... (1) 

ANALYSIS 

The mean number of jobs in the system 

Assume that the whole system is in statistical 
equilibrium. Let ~ be the random variable representing 
the number of jobs in the computer system, and let 1] 

be the random variable representing the number of jobs 
in the thinking system. Denote by P (i, j) the proba
bility with which ~=i and 1]=j. Then, it is obtained that 

(2) 

(X+jv) P (0, j) = JL (1-'Y)p (1, j) +JL'YP(I, j-I), 
j>O (3) 

(X+JL)p(i, 0) =Xp(i-I, O)+JL(I-'Y)p(i+I, 0) 

+vp(i-I,I), i>O, (4) 

(X+JL+jv )p(i, j) = Xp (i-I, j) +JL(1-'Y )p(i+I, j) 

+ JL'YP ( i + 1, j - 1) + ( j + 1) vp ( i-I, j + 1) , 

i>O,}>O. (5) 

The probability generating function of ~ and 1] is 
defined by 

00 00 

P(x, y) =E[x~y'lJ= L: L: p(i,j)Xiyi, 
i=O i=O 

where E represents the mathematical expectation. 

Feedback Queueing Model 59 

Multiplying (2), (3), (4), and (5) by 1, yi, Xi, and 
xiyi respectively and summing them, it is derived that 

v(y-x)Py(x, y) +[X(I-x) 

+JL{ 1- (1-1') /x-'YY/x} JP(x, y) 

= JL {l- (1- 'Y) / x - 'YY / x} P (0, y) , ( 6) 

where we put 

Py(x, y) =dP(x, y)/dy. 

Let L2 be the mean number of jobs in the thinking 
system. Then, 

L2 is easily found in the following way. Putting X= 1 in 
(6), it is obtained that 

v(y-I)Py(I, y) +JL'Y(I-y)P(I, y) 

=JL'Y(I-y)P(O,y). (8) 

Then, by differentiating both sides of (8) with respect 
to y and then putting y= 1, it is obtained that 

vPy(l, 1) =JL'Y{P(I, 1) -P(O, I)}. (9) 

Substituting (7) and P(I, 1) = 1 in (9), it is obtained 
that 

(10) 

Here,P(O, 1) isfoundasfollows.Puty=xin (6). Then, 

(I-x) {JL(1-'Y) - Xx}P(x, x) 

= (I-x)JL(I-'Y)P(O, x). (11) 

By differentiating both sides of (11) with respect to x 
and then putting X= 1, it is obtained that 

(12) 

Hence, by substituting (12) in (10), it is obtained that 

(13) 

Next, let Ll be the mean number of jobs in the 
computer system. Then, 

(14) 

where we put 

Px(I, 1) =Px(x, y) !x=l,y=l =dP(x, y) /dx !X=I,y=l. 

Since 

dP(x, x)/dx=Px(x, x) +Py(x, x), 

it is derived that 

(15) 



60 Fall Joint Computer Conference, 1971 

Differentiating both sides of (11) two times with 
respect to x and then putting X= 1, it is obtained that 

Here, it is noted that 

dP(O, x)ldx=Py(O, x). 

Thus, (16) yields 

L 1+L2 = pi (l-p) +Py(O, 1) I (l-p), (17) 

where we put 

p is the utilization factor of the computer system, 
because 

is the arrival rate and II}! is the mean service time.4 

The second term in the right hand side of (17) is the 
mean number of jobs in the thinking system, under the 
condition that there is no job in the computer system. 
Then, if the state in the thinking system is stochasti
cally independent of that in the computer system, L2 
may be given by 

L 2=Py(1, 1) =Py(O, l)/(1-p). 

Under the assumption of this stochastic independence, 
L1 may be given by 

Ll =p/ (l-p). (18) 

In the following section we will prove the stochastic 
independence between the states in the computer 
system and in the thinking system. 

Method of finding P(x, y) 

Assume that the states in the computer system and in 
the thinking system are stochastically independent. 
Then, tl\e probability generating function P(x, y) is 
factorized as 

P(x, y) =P(x, l)P(l, y). (19) 

We will show that P(x, y) given by (19) becomes the 
solution of (6) if P(x, 1) and P(l, y) are suitably 
chosen. 

Denote by MIMll the single-server queueing system 
with a Poisson arrival and exponential service times.5 

It is known that the mean number of jobs in the system 
MIMll is given by pi (1- p L where p is the utilization 
factor of the system. This formula coincides with the 
first term in the right hand side of (17). Thus, it is 
suspected that the computer system forms the system 
MIMII from the queueing point of view. Since the 

probability generating function of the number of jobs in 
the system MjlVI/1 is given by (1- p) I (1- px) ,4 we put 

P (x, 1) = (1- p) I ( 1-px) . (20) 

Next, denote by MIMloo the infinitely many-server 
queueing system with a Poisson arrival and exponential 
service times.5 It is also known that the mean number of 
jobs in the system MIMloo is given by t..' I v, where t..' 
is the arrival rate and 1/v is the mean service time. Now, 
under the assumption of the stochastic independence, 
the second term in the right hand side of (17) is 
written as 

where 

t..' = t.. ')' I ( 1-')') = t.. ( 'Y + ')'2 + ')'3 + ... ) 
is the arrival rate of the thinking system. Thus, it is 
suspected that the thinking system forms the system 
MIMloo from the queueing point of view. Since the 
probability generating function of the number of jobs in 
the system MIMI 00 is given by exp{ - (t..'lv) (1-x)},4 
we put 

P(l, y) =e-(3(l-y) (21) 

where 

{J=t..')'/(1-'Y)v. 

Substituting (20) and (21) in (19), it is obtained that 

(1- p) e-(3(l-y) 

P(x, y) =P(x, l)P(I, y) = (22) 
1-px 

To show that P(x, y) given by (22) is the solution of 
(6), put 

Al = v(y-x)Py(x, y), 

A 2 = [t..(I-x) +}!{ 1- (1-,),) IX-'Yylx} ]P(x, y), 

A 3 =}!{ 1- (1-,),) Ix-')'ylx}P(O, y). 

Then, it is sufficient to prove that 

A 1+A2-A3 =0. 

Since Al and A3 are calculated as 

Al = v{J(y-x)P(x, y), 

A 3 = }! { 1- (1- ')' ) I x - 'YY I x} (1- px) P (x, y) , 

it is derived that 

(A 1+A2-A3)IP(x, y) =t..,),(y-x)/(I-'Y)+t..(I-x) 

+ t.. { x - (1- ')') - ')'y } / ( 1-')' ) 

=0. 



Thus, (22) becomes the solution of (6) and our con
jecture that the states in the computer system and in 
the thinking system are stochastically independent is 
justified. 

In the above analysis, it is shown that the computer 
system and the thinking system form the systems 
M/M/1 and MIMloo respectively. This fact can be 
intuitively explained in the following way. Assume that 
the computer system forms the system M/l\1:/1 from 
the queueing point of view. It is known that the output 
process of the system M/M/1 is a Poisson process.6 

It is also known that the probabilistic selection of jobs 
from a Poisson process results in a Poisson process.7 

Hence, the input process of the thinking system becomes 
a Poisson process and then the thinking system forms 
the system MIMloo from the queueing point of view. 
Since the output process of the system MIMloo is a 
Poisson process,6 and the aggregation of several in
dependent Poisson processes results in a Poisson 
process,7 the input process of the computer system 
becomes a Poisson process. Thus, the computer system 
forms the system M/M/1 from the queueing point of 
view, which is our first assumption. Therefore, no 
contradiction is derived, and our assumption is justified. 
This intuitive argument will be used later. 

The mean turnaround time 

The turnaround time is defined as the time interval 
between the generation of the first request and the 
reception of the final service from the computer system. 
In other words, the turnaround time is the time interval 
during which a job stays in the whole system. The mean 
turnaround time is one of the most important char
acteristics for users. 

Denote by T(n), (n= 0, 1,2, ... ), the mean turn
around time for jobs with n returns. Since the proba
bility with which a job has n returns is given by (1), 
the arrival rate for jobs with n returns is written as 

n= 0, 1, 2, . . .. (23) 

Let Ll(n) be the mean number of jobs with n returns 
in the computer system, and let L 2 (n) be that in the 
thinking system. Then, by applying Little's theorem to 
the whole system,8 it is obtained that 

T(n) = {L1(n) +L2(n) }jX(n), n=O, 1,2, . . .. (24) 

We will find L1(n) and L2(n). 
Let L1(n, k) be the mean number of jobs with n 

returns in the computer system, under the condition 
that those jobs already have k(k~n) returns. And let 
L2 (n, k) be that in the thinking system under the same 

Feedback Queueing Model 61 

thinking 
.L 

"' system 

\ A¥/(1 -1) 
Ar/(1 - 'I) 

arriva I computer de 
--" 

parture 
A A.I«( - 'I) system A/(1 -~) {. 

Figure 2-The aspect of flows in the system 

condition. Then, it is evident that 

n 

LI(n) = L L1(n, k), (25) 
k=O 

n-l 

L2(n) = L L 2(n, k). (26) 
k=O 

In statistical equilibrium, the input rate in any system 
is equal to the output rate in the same system. Now, 
define 

UI(n, k) =L1(n, k)IL1, 

U2(n, k) =L2(n, k)IL2. 

Then, by equating the input rate of jobs with n returns 
in the computer system and the output rate, it is 
obtained that 

X'Y n (1-'Y) = {X/(1-'Y) }uI(n, n), (27) 

{A'Y/(I-'Y) }u2(n, k-l) 

n~k~ 1. (28) 

Here, it is noted that the input rates in the computer 
system and in the thinking system are AI (1- "I) and 
Al'l (1- "I) respectively, as is shown in Figure 2. From 
(27) and (28), it is derived that 

UI(n, n) ='Yn (1-'Y)2, 

'Yu2(n, k-1) =uI(n, k), 

(29) 

(30) 

Similarly, by equating the input rate of jobs with n 
returns in the thinking system and the output rate, it 
is obtained that 

{XI (1-"1) }UI (n, k) = {XI'I (1-"1) }u2(n, k), n> k ~ O. 

From (31), it is derived that 

UI (n, k) = 'YU2 (n, k) , n>k~O. 

(31) 

(32) 

Using (29), (30), and (32), uI(n, k) and u2(n, k) are 



62 Fall Joint Computer Conference, 1971 

5 

4 

3 
R 

2 

o 

given by 

0·2 0·4 0·6 0·8 
p 

Figure 3-The mean response time R 

U1 (n, k) = 'Yn (1- 'Y) 2, 

u2(n, k) ='Yn- 1 (1-'Y)2, 

n~k~O, 

n>k~O. 

1·0 

Then, by the definitions of u1(n, k) and u2(n, k), it is 
obtained that 

L1(n, k) ='Yn(1-'Y)2L1, 

L2(n, k) = 'Yn- I (1-'Y)2L2. 

(33) 

(34) 

Here, it is noted that LI(n, k) and L2(n, k) do not 
depend on k. By substituting (33), (34) in (25), (26) 
respectively, it is obtained that 

LI(n) = (n+l)'Yn(1-'Y)2LI, (35) 

L2(n) =n'Yn- 1(1-'Y)2L2. (36) 

Then, by using (23), (24), (35), and (36), the mean 
turnaround time T(n) for jobs with nreturns is given by 

(37) 

system, 

L2 
K= A'Y/(l-'Y) =l/v. (39) 

Hence, (37) is written as 

T(n) =R+n(R+K). (40) 

Here, (R+K) is the mean interaction time for the 
interactive computer system. Thus, the mean turn
around time for jobs with n returns is the sum of the 
mean response time and n times the mean interaction 
time. R, K, and T(n) are shown in Figures 3,4, and 5 
respectively. In the case that a job has· no return, of 
course, the mean turnaround time coincides with the 
mean response time. 

Finally, the mean turnaround time for any job, 
regardless of the number of its returns, is given by 

~ ~ 

T= :E rnT(n) =R+ (1-'Y) (R+K) :E n'Yn 
n=O 

= R + { 'Y / ( 1- 'Y) } (R + K) , 

which coincides with (L1 + L2) /A. 

n=l 

Extension to the interactive computer system 
with multiple processors 

(41) 

I t is easy to extend the previous analysis to the 
interactive computer system with multiple processors. 
Suppose that there are s processors in the computer 
system. Then, the computer system forms the system 

5 

4 

Now, we will consider the meaning of (37). Let R be K 3 
the mean response time of the interactive computer 
system, and let K be the mean think time. It is shown 
that the input rate in the computer system is A/(l-'Y), 2 
and the mean number of jobs in that system is denoted 
by L 1• Then, by applying Little's theorem to the com-
puter system,8 it is obtained that 

R= L1 
A/(l-'Y) 

(38) 

Similarly, the input rate in the thinking system is 
A'Y/(l-'Y) and the mean number of jobs in that system 
is L 2, then, by applying Little's theorem to the thinking 

o 2 3 4 5 
l/V 

Figure 4-The mean think time K 



5 

4 

T{n) 
3 

2 

o 

: i 
1 (R + K) 

: 1 
- - - - - - -1- - - - - - --t 1 

R I 
.J. 1 

2 3 4 
n 

Figure 5-The mean turnaround time T(n) 

5 

M/MI8 from the queueing point of view, where M/MI8 
means the 8 servers queueing system with a Poisson 
arrival and exponential service times.5 It is known that 
the output process of the system M/MI8 is a Poisson 
process.6 Then, the intuitive argument given for the 
analysis of the computer system with a single processor 
is entirely applied to the analysis of the computer 
system with 8 processors. The probability generating 
function of the number of jobs in the system MIMI s 
is given by4 

po C~ (px)kjk!+ t: (PX)'jS!s"-') , 

where po is the probability with which there is no job 
in the system M/Mls. po is calculated by 

Po= 1 / C~ p'jk!+p'j(s-l) !(S-p)). (42) 

Then, if we use 

P(X, 1) =Po C~ (pX)'jk!+ t: (PX)'jS!S!>-') (43) 

instead of (20), the probability generating function 
P(x, y) is factorized as 

P(x, y) =P(x, l)P(l, y) 

where pel, y) is given by (21). In this case, the mean 

Feedback Queueing Model 63 

number of jobs in the computer system is given by4 

ps+l 
L 1 = -------8--~------------- (44) 

(8-1)! L: (pklkf) {(S-k)2_k} 
k=O 

Then, the previous results (37)-(41) still hold for the 
interactive computer system with s processors. 

DISCUSSION 

As an analytical model for the interactive computer 
system, the paper has proposed a feedback queueing 
model in which some delay is required before jobs join 
the queue again. From the analysis of the model, the 
mean turnaround time is related to the mean response 
time and the mean think time in a very simple way. 
Although the validity of this simple relation largely 
depends on the exponential distribution assumptions 
for the service times and the think times, it is con
sidered that the result obtained is a good approximation 
of actual behavior. In fact, Equation (40) which gives 
the relation can be intuitively justified and can be 
empirically recognized. 

The exponential distribution assumption for the 
service times is frequently adopted in various queueing 
models. This is due to the tractability of models as well 
as to the reasonability of the assumption. Sometimes 
we may be interested in queueing models with non
exponential distribution assumption. These models 
usually become hardly tractable in a theoretical way, 
when they are slightly complicated. However, it is well 
known that the adoption of the exponential distribution 
assumption causes results to be on the safe side. 

SUMMARY 

The paper has proposed a simple mathematical model 
of the operation for an interactive computer system with 
a single processor, and has presented some characteris
tics of the system, such as the mean turnaround time, 
the mean interaction time, etc. From the queueing 
point of view, the proposed model is a kind of single
server queueing model with feedback. But, unlike the 
usual queueing models with feedback, the proposed 
model requires some delay when a job returns the 
queueing system. This delay represents the user's think 
time in the interactive computer system. 

The model is well described by introducing a virtual 
thinking system in which infinitely many servers are 
furnished. Thus, the whole system consists of the 
computer system and the thinking system. Here, the 
user's thinking is represented by the service ill the 
thinking system. The analysis is first made for the 



64 Fall Joint Computer Conference, 1971 

mean number of jobs in the thinking system and for 
that in the computer system, under the assumptions 
of a Poisson arrival and exponential service times. Then, 
the probability generating function of the number of 
jobs is derived by solving a differential equation. It is 
shown that the states in the computer system and in 
the thinking system are stochastically independent, and 
the computer system and the thinking system form the 
systems M/M/1, MIMloo respectively. 

ACKNOWLEDGMENTS 

The author would like to thank Dr. N. Ikeno, Mr. K. 
Naemura, and Mr. Y. Yoshida for numerous dis
cussions and suggestions which aided in the preparation 
of this paper. 

REFERENCES 

1 J M MC KINNEY 
A survey of analytical time-sharing models 
Computing Surveys Vol 1 No 2 1969 

2 A L SCHERR 
An analysis of time-shared computer systems 
Research Monograph No 36 MIT Cambridge 
Massach usetts 

3 L TAKACS 
A single-server queue with feedback 
Bell System Technical Journal Vol 42 No 2 1963 

4 T L SAATY 
Elements of queueing theory 
McGraw-Hill New York Toronto London 1961 

5 D G KENDALL 
Stochastic processes occurring in the theory of queues and 
their analysis by the method of the imbedded Markov chain 
Annals of Mathematical Statistics Vol 24 No 3 1953 

6 P J BURKE 
The output of a queuing system 
Operations Research Vol 4 No 6 1956 

7 R W CONWAY W L MAXWELL L W MILLER 
Theory of scheduling Chap 8 
Addison-Wesley Reading Massachusetts Palo Alto 
London Don Mills Ontario 1967 

8 J D C LITTLE 
A proof for the queuing formula: L =A W 
Operations Research Vol 9 No 3 1961 



Alcoa Picturephone Remote Information System (APRIS) 

by M. L. COLEMAN, K. W. HINKELMAN, and W. J. KOLECHTA 

Aluminum Company of America 
Pittsburgh, Pennsylvania 

OBJECTIVES AND DESIGN PHILOSOPHY 

The objective of the Alcoa Picturephone* Remote 
Information System (APRIS) is to give to Alcoa execu
tives the capability of using their Picturephones to 
retrieve information from the corporate computer 
data base. 

The primary design criterion was ease of use. Other 
management information systems, in an effort to be as 
powerful as possible, sacrificed simplicity and thus made 
themselves unsuitable for the personal use of the 
executive. Experience with these systems has shown 
that it is unreasonable to expect a busy executive to 
learn the complex procedures necessary to operate 
them. In fact it is undesirable, since the job of an 
executive is to make decisions; anything which inter
feres with this process, no matter how technologically 
intriguing, cannot be tolerated. 

APRIS's solution to the conflict between ease of use 
and power was to provide an information center to 
interpret and respond to the executive's requests for 
information. Rather than provide just a tool, the goal 
was to provide a service: the service of better access to 
information. 

APRIS does not require, or even allow, the executive 
to make retrievals based on complex boolean functions. 
Rather, by having him press buttons on his Touch-Tone 
phone, it lets him step through pages of display, one at 
a time, displaying an index whenever it is necessary to 
choose between several alternatives. (The complete 
user guide for the system is shown in Figure 1.) The 
information center has the responsibility for creating 
these display pages in response to the executive's 
demands for information. They can use any techniques 
available to gather information: existing management 
information systems (with their complex and powerful 
logic), independent programs to extract and format the 
data from the data base used in the daily data pro
cessing applications, or manual entry using hardcopy 
sources. 

* Picturephone and Touch-Tone are registered trademarks of the 
Bell System. 

65 

User Guide 
Alcoa Picturephone Remote Information System (APR IS) 

User Guide for _____________ _ 

Your password is . Please do not disclose 
it to anyone else. 
To use the system call #xxx-xxxx on your Picturephone. 
Push the Touch- Tone buttons to go from page to page. 
Normally, button 1 will display the next page in a series 
of displays and button 0 will display the previous page. 
To graph numerical data that is being displayed pres s the 
three buttons: '~l ~'. 

If you have any questions, call #xxx-xxxx. 

Figure I-User guide for APRIS 

In addition, the information center has a monitor 
which displays the pages that the executive is seeing and 
provides audio contact so that the executive can make 
requests of the information center pertaining to the 
current data base and the information center can 
manipulate the display if the executive so desires. 

HARDWARE 

The current hardware configuration necessary to 
support Picturephone access at Alcoa is shown in Figure 
2. Two lines are presently installed. One, an "intercom" 
line, allows access from the information center. The 
other line is connected to the general exchange to allow 
access from any Picturephonein the calling area. 

Each of the lines is connected through a Bell 305 Data 
Display Set to a 2701 attached to an IBM 360/65 
computer. The 305 data set converts Touch-Tone 
signals from the user to digital codes which are inter
pretable by the computer and also converts digital 
codes produced by the computer into video scan lines 
which are displayable on the Picturephone. The total 
cost for this configuration, including the 2701 is ap
proximately $1600 per month. Each additional Picture
phone display station costs $189 a month with exchange 
service or $70 a month on the intercom line. A break-



66 Fall Joint Computer Conference, 1971 

Exchange Line 

Figure 2-Hardware to support Picturephone access 

down of these costs is contained in Figure 3. (These 
rates are based upon Bell of Pennsylvania tariffs and 
will vary in other states.) 

SECURITY 

A tight, multi-level security system is integral to 
APRIS. To gain access, the proper password must be 
entered. Each display page is tagged as being public, 
private, or semi-private giving the capability to restrict 
the dissemination of confidential data. Data is main-

Basic System 

QTY ITEM MONTHLY COSTS~' 

2701 with 2 Type III adapters $ 550. 

305 Data Display Sets 550. 

Picturephone Intercom Circuit 35. 

Picture phones 210. 

2 Business lines with Picturephone service 238. 

Key service control unit 12.50 

Total $1595.50 

Additional Terminals 

Picture phone Display Set $ 70. 

Business line with Picturephone service 119. 

Total $ 189. 

':'Costs are based on Bell of Pennsylvania tariffs and will vary from 

state to state. 

Figure 3-Monthly costs 

tained on disk storage in an encrypted form and is not 
decrypted for display unless all security access require
ments are met. 

SYSTEM PROGRAMMING 

In designing the system it was desired that it be 
flexible and easy to code. This required the use of a high 
level language. However, it was also necessary that the 
system occupy as small an amount of core as possible 
since it would be resident in the computer the entire 
day. This required the use of assembly language coding. 
Both objectives were satisfied by writing and debugging 
the system in PL/I and. then, when the program logic 
was correct, recoding it in BAL using the PL/I coding 
as a guide. 

Both systems are still in use, the BAL for general 
use and the PL/I to develop and check out modifica
tions and expansions to the system. Both make use of 
reentrant code and support multiple, simultaneous 
Picture phone access. 

DATA STRUCTURE 

Each display page is stored on the disk as a 534 byte 
record consisting of a 50 byte header followed by the 
484 character display page, 22 lines of 22 characters 
each. 

The format of the header is shown in Figure 4. 

GRAPHICS 

A limited graphic capability has been provided. By 
pressing a three button code, an executive can have 

Bytes 

PGNUM 

PRGST 

CHGFLG 

RDAUTH 

WTAUTH 

is the number of the page. 

is a code which tells the system how to graph the data 
appearing on that page. 

is used a 5 a flag during alteration of the page. 

is the read authorization field. The first four bits 
indicate whether the page is public, private, serni
private. Or inforrrlation center. The remainder is 
a code specifying the access number of the owner 
if the page is private, Or a pOinter to a list of access 
numbers if the page is semi-private. 

is the write authorization field. 

BUTTON 0 - BUTTON 9 

are 10 fields each of which contain the page number 
of the page which will be displayed after the cOrre
sponding Touch-Tone button is pressed. A 1 in a 
field means that the user's initial page (as defined 
in a table) is displayed when that button is pressed. 
A zerO in a field means that that button is undefined. 

Figure 4-Header format 



numerical data displayed as a bar graph. Both positive 
and negative values can be graphed. The system labels 
the x-axis but there is no room on the screen to indicate 
values for the y-axis. A push of a button, however, 
returns the corresponding numerical display. While 
austere, the graphics serve to effectively highlight 
trends and thus significantly improve the usefulness of 
the system. 

PICTUREPHONE vs. CRTs 

The display capabilities of the Picture phone are 22 
lines of 22 characters with the first and last lines non
useable. Many system analysts feel this is too small to 
display useful information and thus would prefer to 
design systems which use CRTs with their larger 
screens. The problems of 20 X 22 character display are 
those of scale. The limited display size restricts the 
analyst in his design of system output formats. On the 
Picture phone it may take a bit more effort to produce 
useful output and may possibly require the division of 
related information onto several display pages but the 
data can be displayed and the executive can read and 
use it quickly. We feel that the problem of limited 
display size is more than offset by the fact that the 
Picturephone may be used both as a face-to-face 
communication device and as a remote terminal. 
Thus, its cost is essentially shared over both capa
bilities. In addition, the executive's desk is not cluttered 
with an additional screen and keyboard. 

DATA BASE 

For the initial presentation of APRIS to the top 
executives of Alcoa a sample of the type of information 
that could be efficiently and effectively displayed on the 
Picturephone was needed. The data had to be real and 
useful to the executives. It 'was felt that it would be a 
mistake to provide data that was either "dummied up" 
for the presentation, was of no use in the decision 
making process, or could be better presented by having 
it typed on a piece of paper. 

There are two types of data which meet these criteria. 
The first is massive historical data which in hardcopy 
form is too bulky to allow convenient access. The second 
is data which changes more rapidly than can be rou
tinely handled with current reporting methods. 

For an example of the first, an existing consumer 
research data file was used. This file consisted of 40,000 
data entries recording monthly shipment and produc
tion figures for aluminum and various consumer 
products ranging from vacuum cleaners to automobiles. 
The file was passed against a program which sum-

APRIS 67 

marized the data by year, quarter, and month and 
formatted it into approximately 4000 pages suitable for 
display. Another program created a series of index 
pages which allow any desired item to be located. An 
example of a typical inquiry, the yearly production of 
aluminum vans and the net change by year, with their 
associated graphs, is shown in the Appendix, Figure 5 
through Figure 17. 

As an example of the second type of data a daily 
report called the Forward Load Report was chosen. 
This consists of order information of various aluminum 
products produced by Alcoa plants. A program trans
forms the report into a displayable format and builds 
the indices necessary to access it. No example of this 
report is given here due to the confidential nature of 
the data. 

CONCLUSIONS 

The Picturephone has proven to be an effective and an 
efficient means of allowing executives to directly access 
a computer data base. However, Picturephone access, 
as an isolated capability, is of little use to a busy 
executive. Only when it is made one arm of an efficient 
information center does it serve to provide the executive 
with useful information for his decision making process. 

APPENDIX 

Example of a typical inquiry 

Figure 5-Welcome message 



68 Fall Joint Computer Conference, 1971 

Figure 6-Mter entering password Figure 8-After pressing button 2 

Figure 7-After pressing button 1 Figure 9-Mter pressing button 6 



APRIS 69 

Figure lO-After pressing button 4 
Figure l2-Mter pressing button 6 

Figure ll-After pressing button 1 Figure l3-After pressing button 4 



70 Fall Joint Computer Conference, 1971 

Figure 14-After pressing the code for graph: *1* Figure 16-Mter pressing button 9 

Figure 15-Mter pressing button 0 Figure 17-Mter pressing the code for graph: *1* 



Computer support for an experimental 
PICTUREPHONE®/computer system at 
Bell Telephone Laboratories, Incorporated 

by ERNESTO J. RODRIGUEZ 

Bell Telephone Laboratories, Incorporated 
Holmdel, New Jersey 

INTRODUCTION 

This paper describes the computer support of an ex
perimental PICTUREPHONEjComputer system im
plemented at Bell Laboratories. The system provides 
Bell Laboratories and AT&T executives with the capa
bility of using their PICTUREPHONE station sets to 
display information retrieved from a computer. Its 
primary purpose is to demonstrate the technical feasi
bility of accessing a computer from standard PIC
TUREPHONE stations and to help in the evaluation 
of the service. 

Methods of operation in PICTUREPHONEjCom
puter systems can vary; they depend on the system 
objectives, types of users, and information to be re
trieved. The information provided in this paper may 
serve as a general guide for those faced with the task of 
providing software andj or hardware to support PIC
TUREPHONEjComputer systems. The hardware and 
software used in the Bell Laboratories system are func
tions of the type of operation chosen and the particular 
computer facilities which were available. However, some 
of the concepts employed and techniques of overcoming 
implementation problems should be applicable to any 
PICTUREPHONEjComputer system and to a smaller 
degree, to the implementation of other systems which 
include terminals not supported by readily available 
hardware and software. 

In the Bell Laboratories system, users gain access to 
the computer by dialing a PICTUREPHONE number 
associated with the computer. Thereafter, the user 
communicates with the computer using his station's 
TOUCH-TONE® dial. The computer's responses are 
displayed on the PICTUREPHONE station screen. A 
Display Data Set is used to interface the PICTURE
PHONE network and station with the computer (see 
Figure 1). The Display Data Set translates TOUCH-

71 

TONE signals into ASCII characters for the computer; 
it stores ASCII information from the computer and 
translates the information to an appropriate video sig
nal for refreshing the display on the PICTUREPHONE 
screen. Thus, the computer is relieved of the task of 
repetitively transmitting the message to be viewed. 

OPTIONAL VOICEBAND 
PRIV ATE LINE 

COMPUTER 

PICTUREPHONE 
STATIlN 

STANDARD 
PICTUREPHONE 

LOOP 

PICTUREPHONE 
SWITCH 

Figure I-Computer access for PICTUREPHONE Service 

Further information on the Display Data Set can be 
found in its Technical Reference* and in the February, 
1971 issue of the Bell System Technical Journal. This 
paper is concerned with the software implementation 
and general operational characteristics of the Bell 
Laboratories experimental PICTUREPHONEjCom
puter system. 

* Technical Reference Information for the Display Data Set 
Used to Provide Computer Access Service for PICTUREPHONE 
Stations-available from Engineering Director, Data Communi
cations, American Telephone and Telegraph Company. 



72 Fall Joint Computer Conference, 1971 

SYSTEM OBJECTIVES AND PROGRAMMING 
CONSTRAINTS 

Man/ computer dialogue in the Bell Laboratories ex
perimental PICTUREPHONE/Computer system is 
constrained by certain physical considerations and 
human factors. The following physical considerations 
imposed general constraints on the system and conse
quently on the software implementation: 

• The system is designed to be accessible from a 
standard PICTUREPHONE station set without 
requiring auxiliary input devices, such as key
boards, light pens, etc.; that is, only the TOUCH
TONE dial is required for input. 

• Display size is limited to 440 characters, 22 char
acters per line, 20 lines per display. 

Human factor considerations are particularly im
portant when implementing this type of system. Basic 
assumptions in the design of the experimental system, 
which also imposed some constraints on the software 
implementation were: 

• Users of the system would not, in general, have 
any knowledge of computer programming nor 
would they be willing to use a reference manual of 
interaction codes. 

• User inputs should be as short as possible, without 
any intercharacter input time constraint and with
out the need for an "end of message" character. 

• Each display should contain sufficient instructions 
to enable the user to select the next display, one 
of a few possible new displays, or return to a 
familiar point in the program. 

In the experimental system, displays always contain 
enough instructions so that even the most inexperi
enced user may proceed from display to display with 
confidence. However, the more experienced users can 
use the system more efficiently, since more options are 
allowed at a particular point in the interaction than are 
enumerated on the screen. Once a user becomes familiar 
with the codes for selecting the system's various abili
ties, he often can choose them directly rather than 
being led step-by-step through a sequence of decisions. 
If a user makes a selection which is not allowed at a 
particular point in the interaction, he is presented an 
appropriate error display. This display tells the user the 
particular error he has made and gives him the option 
of returning to the point at which he made the error, 
reviewing a particular set of instructions, or using 
another code. 

INPUT/OUTPUT HARDWARE AND 
SOFTWARE SUPPORT 

General 

The computer used in the Bell Laboratories experi
mental PICTUREPHONE/Computer system is an 
IBM 360/50 computer operated with the System/360 
Operating System and under a multiprogrammed en
vironment with a variable number of tasks (MVT) . The 
computer is connected to the experimental PICTURE
PHONE network via two Display Data Sets (DDSs). 
The DDSs are connected to the computer through an 
IBJ\1 2701 Telecommunications Control Unit (here
after referred to as the control unit) with two Terminal 
Adapters Type III. Since, in this system, the DDSs are 
remotely located from the computer, voiceband facili
ties equipped with 202D-series data sets are required 
on the transmission facility between the DDSs and the 
computer. Transmission is half-duplex at 1200 bauds. 

Because the operational characteristics of the DDS 
are different than those of existing terminals and since 
the Bell Laboratories system represented the first use 
of PICTUREPHONE stations for computer access, it 
was not expected that standard computer hardware and 
software would support the system operation. Minor 
modifications were required in the input/output hard
ware and software to support the experimental system. 

The terminal Adapter Type III (hereafter referred 
to as the adapter) normally permits the attachment to 
the computer of remotely located IBM 2260/2848 dis
play complexes. 

Operation with these devices involves polling and 
framing of messages, both of which require recognition 
of control characters by the adapter. However, the 
experimental PICTUREPHONE/Computer system 
uses simple Read only/Write only operations, without 
hardware recognition of line control characters, so that 
minor hardware and software modifications were 
necessary. 

Hardware modifications 

Two modifications to the adapter hardware were 
made to provide for the experimental PICTURE
PHONE/Computer access system operation. These 
were to delete the two-second timeout period for the 
Read command and to delete the line-control character 
(EOT, STX, ETX, SOH, CAN, ACK, NAK) recogni
tion. The first modification was made by grounding 
pin 01A-B2-C3-B09 and the second was made by 
grounding the "search latch" pin 01A-B2-G3-D06 in 
the adapter. 



Computer Support for an Experimental Picturephone/Computer System 73 

The two-second timeout was deleted in order to avoid 
the termination of the Read command if a character is 
not received within a two-second period. Although not 
an essential modification, the deletion of the two-second 
timeout would avoid the need to continually reestablish 
the Read command and thereby permit a more efficient 
computer operation. 

The line-control character recognition was deleted 
because the associated polling mode of operation and 
associated message framing are not compatible with 
the PICTUREPHONE/Computer access system. Since 
only one PICTUREPHONE station is connected 
through a Display Data Set to the computer at one 
time, polling is not appropriate. Message framing 
would require the dedication of one of the 12 TOUCH
TONE input characters as an "end of message" char
acter. This would restrict the user input capabilities 
and require users to remember to terminate inputs 
with a special character. This latter requirement was 
judged undesirable since the users are primarily mem
bers of upper management. The absence of message 
framing implies that the experimental software knows 
at all times how many characters it should expect and 
requires CPU intervention for each character received. 
Once a character is received, several validity checks 
are made and then a new Read command is issued; 
this process takes approximately 9 ms of CPU time and 
it repeats until the experimental software count is 
completed. Since the system was implemented a new 
"Read Clear" command has been made available which 
disables the "search latch" function. 

Software modifications 

The control unit operations are supported by two 
IBM data management access methods. One of these 
access methods, Basic Telecommunication Access 
Method (BTAM), which controls data transmission, 
was used to support the teleprocessing operations in the 
experimental PICTUREPHONE/Computer system. 

BTAM is most helpful for implementing programs 
for telecommunications applications. It presently sup
ports the following· terminal devices: IBM 1030, 1050, 
1060, 2260 and 2740 terminals, Bell System 83B3 and 
TWX stations and Western Union 115A stations. How
ever, the use of BTAM to control transmission of com
puter messages to and from an unsupported terminal 
device not in the above list, such as the Display Data 
Set, requires special attention particularly when con
sidering the use of the BTAM provided device input/ 
output (I/O) modules. 

A device I/O module contains the control informa
tion for the generation of channel programs for a given 

terminal device. The terminal device supported by the 
adapter is represented by the device I/O module 
IGG019l\13. However, since the experimental PIC
TUREPHONE/Computer system requires simple Read 
only/Write only operations, without line-control char
acter recognition, and the module IGG019M3 did not 
provide for this type of operation, it was necessary for 
it to be expanded. 

The following actions were taken to incorporate into 
the device I/O module the ability to support the ex
perimen tal system: 

• Two unassigned operation types representing Read 
and Write options in the 32-byte table of offsets 
were selected. 

• Two entries in the channel program offsets for the 
operations were added. Each of these entries have 
a count of one for either a Read or Write operation 
and a pointer to a channel command word (CCW). 
A count greater than one is not necessary since 
there is no need for polling or acknowledgment of 
responses from the Display Data Set. 

• Two channel command words for the Read and 
Write operations were added. They are: 
01 04 00 00 20 11 04 00 for Write operations 
02 04 00 00 20 11 04 00 for Read operations 
In the above CCWs, the area address and count 
fields are obtained from the data event control 
block (DECB) associated with the Write or Read 
macro instruction. 

PICTUREPHONE SOFTWARE 

General 

Software for the Bell Laboratories experimental 
PICTUREPHONE/Computer system operates in its 
own region of the computer. The PICTUREPHONE 
software handles several computer ports simultane
ously, operates under an overlay structure, and consists 
of three self-contained but interrelated modules: 

• Input/Output Telecommunications 
• Executive Module 
• Interactive Abilities 

A region size of about 22,000 bytes is required by the 
Input/Output Telecommunications Module, which re
sides in core at all times and occupies the highest 
priority task. Because it occupies the highest priority 
task, jobs running in lower tasks are interrupted when
ever the Input/Output Telecommunications Module 



74 Fall Joint Computer Conference, 1971 

requires CPU attention. Whenever a call is received by 
the computer, a lower priority task is created by issuing 
an ATTACH macro instruction. This new task, having 
a maximum size of 18,000 bytes, contains the Executive 
Module and Interactive Abilities, which reside on 
disk. ** When the call is completed, this task is removed 
from the system and its main storage area is released. 
The following sections will discuss some characteristics 
of the modules used in the experimental PICTURE
PHONE/Computer system. 

I nput/ output telecommunications module 

This module is written in Basic Assembler Language 
(BAL) and in BTAM. It provides the program inter
face between the control unit, the Operating System, 
and the Executive Module for the PICTUREPHONE/ 
Computer system. It controls the transmission and re
ception of messages between the computer and the 
PICTUREPHONE user by having the Operating 
System instruct the control unit to pass data to the 
Display Data Set and to receive data from the Display 
Data Set. 

The Input/Output Telecommunications Module per
forms the following functions: 

• Reads (i.e., Receives) characters from the Dis
play Data Set via the control unit. 

• Checks for the following ASCII 'control characters 
sent by the DDS: 

• EN Q-start of call 
• EOT -end of call 
• DC1-start of keyboard mode. In this mode, an 

optional adjunct alphanumeric keyboard can be 
used at the PICTUREPHONE station for 
input. 

• DC3-end of keyboard mode 
• SUB-start of edit mode. In this mode the user 

can modify the contents of the DDS buffer 
without interaction with the computer. 

• DC2-end of edit mode. This signals the com
puter that the user is finished modifying the 
DDS buffer contents. At this point the computer 
stores the modified display on disk or takes 
other appropriate action. 

• Translates ASCII characters into numeric format. 
• Stores numeric characters in common area ac

cessed by Executive Module. 

** If two simultaneous calls are placed to the computer, two new 
tasks of 18,000 bytes each are created. 

TABLE I-Typical Abilities Provided in the Bell 

Laboratories PICTUREPHONE@ /Computer System 

1. AT&T Stock Report 
2. Stock Market Report 
3. Personnel Information 
4. Bell System News 
5. System Description (describes the system configuration and 

operation) 
6. Calculator Routine (addition, subtraction, multiplication, 

division, square root functions are available) 
7. Keyboard Routine (allows user to input information from an 

alphanumeric keyboard by means of the functions described 
in the Display Data Set Technical Reference) 

8. Personal Files (files with personal information for a single 
user or a group of users) 

• Creates new task by means of ATTACH macro 
instruction. 

• Writes (i.e., Transmits) characters to Display 
Data Set via the control unit. 

• Pending the receipt of an incoming input, or dur
ing the transmission of messages, causes the soft
ware package to enter a "wait state," i.e., it gives 
control to the Operating System to service pro
grams in lower priority tasks. 

Figure 2-Hello message display 



Computer Support for an Experimental Picturephone/Computer SysteIlfl 75 

Executive module 

The Executive Module is written in FORTRAN 
and it provides the logic for the selection of the abilities 
(see Table I). Basically, the Executive Module keeps 
an account of which display is being shown to the user 
and what course should be taken on the basis of his 
input. This module will handle the response itself 
when the response is a simple information retrieval 
application, e.g., AT&T Stock Report, or give control 
to one of the Interactive Abilities when the response 
requires additional processing, e.g., Calculator Ability. 
The Executive module scans every input from the user 
before handling any responses. The Executive's primary 
function for the user is the provision of general guid
ance to what information retrieval and other services 
the computer can provide. 

Abilities 

There are eight separate abilities (all written in 
FORTRAN) implemented in the experimental system. 

Figure 3-Thank you message display 

Figure 4-INDEX list 

They are briefly described in Table 1. An ability, when 
selected, will either handle subsequent dialogue itself 
until the user decides to leave it, or return control to a 
special section of the Executive which will interact 
with the user. This interaction is determined by certain 
choices, set by the ability, which are allowed to the 
user. Most of the abilities provide information re
trieval functions and some of them require some degree 
of interaction. All information retrieval displays are 
stored on disk in fixed 440-character records. The abili
ties fit into a wide range of programming sophistication, 
from extremely simple to quite complicated. For ex
ample, the Calculator Ability allows the user to use his 
PICTUREPHONE station set as a desk calculator. Ad
dition, subtraction, multiplication, division and square 
root operations, as well as memory, recall, start, and 
cancel features are provided. Obviously, the number of 
operations available is a function of the software design 
and is not limited by the DDS operational require
ments. As in most of the other abilities, user-computer 
interaction is accomplished with the use of the TOUCH
TONE dial. A keyboard ability which allows the usp 



76 Fall Joint Computer Conference, 1971 

Figure 5-Stock market report display 

of an adjunct alphanumeric keyboard to update in
formation stored in the computer and which permits a 
greater input repertoire is also available in the experi
mental system. This ability allows the user to retrieve 
displays, modify them, and store the modified display 
on disk. 

METHOD OF PROGRAM OPERATION 

To use the experimental system, a user dials the 
PICTUREPHONE number associated ,vith the com
puter and a connection is established. The Input/ 
Output Telecommunications module recognizes the in
coming call, gives control to the Executive Module, and 
provides a "Hello" message which is displayed with a 
request for the user's extension number (Figure 2). 
When the user inputs his four-digit extension number, 
the Executive Routine compares the extension number 
inputted with a list 0 C valid user numbers. If a match 
is found, the name of the user associated with the ex
tension number is displayed in a "Thank You" display 
(Figure 3). If an invalid extension number has been 

inputted, the Executive Module will make the fact 
known and request the extension number again. After 
three illegal extension numbers, the user is instructed 
to hang up and get some help. At this point, the com
puter will not accept any more inputs from the user 
until a new call is made. 

After a user gains access to the system successfully, 
he may request an INDEX of available abilities or he 
may go directly to any ability for which he knows the 
code. An INDEX display is simply a list of available 
abilities with their selection code numbers. From this 
INDEX any ability may be reached. The inexperienced 
user would naturally make use of these lists frequently. 
Figure 4 illustrates the INDEX list. 

Most of the selection codes consist of two charac
ters, with the INDEX pages and various abilities hav
ing permanently assigned codes. For example, the 
INDEX has code *1, Stock Market Report has code 
12, etc. Figure 5 shows the format of the Stock Market 
Report display. Whenever the system is expecting a 
two character input, the user may select any ability, 
even in the middle of another ability. However, be
cause of display size limitation, many of these choices 

Figure 6-0peration codes in calculator ability 



Computer Support for an Experimental Picturephone/Computer System 77 

are not enumerated for him. Even in special routines, 
where an input of more than two characters is expected, 
the user may always opt for any of the *-plus-a-digit 
codes, which are legal at any time in the system. Thus, 
the user can always leave an ability at any point if he 
is somewhat familiar with the system. In any event, 
each display of an ability includes the code to return to 
the INDEX page. Within abilities, operation codes 
directed to the specific ability itself, are always O-plus-a
digit. For example, an input of 01 may display the next 
page of a list. 

Employing the various codes which the program dis
plays, the user can command the computer's calculating 
ability. This is accomplished through the use of two
character operation codes. Figure 6 illustrates the set 
of TOUCH-TONE codes in the Calculator Ability. 

CONCLUSION 

General characteristics of an experimental PICTURE
PHONE/Computer system at Bell Laboratories have 
been described. 

The system has been operational on the Bell Labora
tories corporate PICTUREPHONE network for about 
three years. It has resided in the same computer that 
serves other time-sharing applications, such as Con-

versational Programming System (CPS) and Admin
istrative Terminal System (ATS). Although the ex
perimental system is not at present part of a vital 
corporate information system, it is demonstrative of 
potentially useful PICTUREPHONE/Computer capa
bilities. In this system, the typical call holding time is 
about five minutes, the average number of retrieved 
displays is ten, and the approximate processing time is 
one second per call. 

The method of operation described in this paper is 
simply one of several methods that could be used in 
implementing PICTUREPHONE/Computer systems. 
However, the information on the hardware and soft
ware used in the Bell Laboratories system may help 
those implementing systems in a similar environment. 
In addition, the techniques used to provide computer 
access to PICTUREPHONE terminals and the method 
of interaction employed at Bell Laboratories may be 
useful in designing PICTUREPHONE/Computer sys
tems in different environments. 

ACKNOWLEDGMENT 

Mr. J. J. Mansell was initially responsible for the im
plementation of the experimental system. His guidance 
and technical advice are very much appreciated. 





Proposed Braille computer terminal offers 
expanded world to the blind 

by N. C. LOEBER 

IBM Corporation 
San Jose, California 

INTRODUCTION 

As professional people-engineers, scientists, pro
grammers and managers-most of us make frequent use 
of the library. We keep abreast of recent developments 
by reading books or technical journals. If we have 
developed our reading skills, we can zip through a 
document at the rate of 1000 words per minute. But 
what would happen to us and our interests if we no 
longer had access to the library or if our supply of 
reading material was suddenly cut off because we 
became blind? 

The end of the world you say! No, not quite, but it 
might seem so if this fate befell us. Unfortunately, more 
than 30,000 individuals lose their sight each year. The 
world hastily closes in on them. Books and magazines 
are practically out of reach. What alternative do they 
have to keep informed? 

Thanks to Louis Braille and others, the Braille 
system of raised dots on paper provides an opportunity 
for written communication. Transcribing and embossing 
of Braille is difficult, so there is a limited amount of 
literary works available. This situation need not remain 
static. It can be improved by applying computers and 
programs to help translate Braille and to develop 
equipment for embossing Braille. 

A brief tutorial on the raised-dot language of Braille 
is presented to illustrate some of its complexities. This 
is followed by an explanation of the methods used in 
producing Braille material. Finally, the proposed 
Braille computer terminal will be described and some 
experimental results from a feasibility model will be 
discussed. 

THE BRAILLE SYSTEM 

Braille was developed more than a century ago by 
Louis Braille, a French teacher of the blind, to provide 

79 

some means of communication for his students. It 
employs a system of embossed dots on the surface of the 
paper, which are felt and read with the fingertips. 

Braille is read from left to right, top to bottom, 
exactly as a sighted person reads conventional printing. 
The average speed of reading is about 100 words per 
minute. Figure 1 shows the basic cell configuration for a 
Braille symbol. Up to six dots (two vertical columns of 
three dots each) are used. The dots of the cell are 
numbered as shown. Sixty-three dot patterns or Braille 
characters can be formed by arranging the dots in 
different positions and combinations. One other 
configuration, that of no dots, is used for spacing 
between words. 

1 •• 4 
2 •• 5 
3 •• 6 

Figure I-Braille cell dot identification 

Figure 2 shows representative cell dimensions. The 
distance between the center of each dot is approxi
mately ~o inch. There are 4 cells per inch horizontally, 
and 272 lines per inch vertically. Dot height is about 
.020 inch. 

Braille as officially approved in the United States 
includes several levels or grades, each level increasing in 
complexity with a corresponding reduction in the 
number of cells required. Grade I Braille provides full 
spelling of words and consists of the letters of the 
alphabet, punctuation, and a number of composition 
signs which are special to Braille. Figure 3 shows the 
basic Braille alphabet. Grade II Braille consists of· 
Grade I plus 189 contractions in short form words and 
is officially known as English Braille. Grade II Braille is 
often compared to shorthand. 



80 Fall Joint Computer Conference, 1971 

I 
GE\.l .•••.•. W 

I 

GE\.I.·.> \d../ 

I 

Figure 2-Braille cell dimensions 

8B\ w 

8B\ w 

In between Grades I and II is another level of Braille 
which employs only 44 one-cell contractions. It is 
known as Grade I~. Grade III Braille is an extension 
of Grade II, using additional contractions and short 
form words and by the use of outlining (the omission 
of vowels). Grade III contains more than 500 con
tracted forms and is used mainly by individuals for 
their personal convenience. Several other Braille codes 
exist for special applications such as the writing of 
music and mathematics. 

The majority of experienced blind readers use Grade 
I I Braille. This is also used for most text printing 
because of the advantage of space saving (up to 
30 percent), faster reading, and faster writing. 

• 0 • 0 •• •• • 0 •• •• • 0 o. 
.0 o. o .. 0 ••••• 0 

a b c d e 9 h 

0 • • 0 • 0 
•• •• • 0 •• •• • 0 

•• 
• 0 

0 • o • • 0 •• •• 
• 0 • 0 • 0 

• 0 • 0 • 0 • 0 • 0 

k I m n 0 p q 

o • o • 

• 0 • 0 

o • •• •• • 0 

• 0 
•• 

• 0 
•• o • o • 

• 0 • 0 
•• •• o • •• •• •• 

u v w x y 

Figure 3-The English Braille alphabet 

Grade I 

Grade II 

• 0 

a 

• 0 

• 0 

b 

•• 
• 0 •• 
and 

•• 
0 • 

• 0 

n 

• 0 0 • 
e 

•• 
0 • 
0 0 

d 

•• 
• 0 

• 0 • 0 •• 

• 0 o. . 0 

before 

• 0 • 0 • 0 

o • •• 0 • 
• 0 • 0 

0 e 

Figure 4-Word samples written in Braille 

Grade I· Braille utilizes a character-to-cell relation
ship. That is, each letter of a word would be reproduced 
as a Braille cell. This is slow reading and results in a 
bulky transcript. However, it is necessary to use this 
level of Braille for writing programs and statistics. 
As a point of information, there are now approximately 
400 individuals who have been trained as programmers. 
Although handicapped, these programmers are active 
and productive workers in our society. 

Conventional spelling is perfectly feasible in Braille 
and is used in some applications such as computer 
programming, but the more frequently used contrac
tions are assigned their own dot configurations. Some 
cell combinations are used either as a whole word or 
part of a word or possible letter groups. In English 
Braille, for example, the letter "f" when alone ( or 
adjacent to a punctuation mark, the capital sign or the 
italic indicator) stands for the word "from." The "ch" 
sign under these same conditions means "child." This 
method of writing is known as contracted Braille, and 
the characters used in this way are called Braille con
tractions. The method differs from regular shorthand 
in that by assigning actual letter group values to most 

• 0 • 0 •• 
• 0 

a b c 

o • 

• 0 • 0 
•• o • 

• 0 •• 
# 2 3 

Figure 5-Use of number sign 



of the contractions, conventional spelling is significantly 
retained in spite of the contractions. 

Figure 4 gives a comparison of Grade I and Grade II 
Braille. Because of the many contractions used and the 
particular rules that apply to the hyphenation of words, 
the capitalizing of letters, and the displaying of numbers, 
it is best to consider Braille as a foreign language. It 
requires training, skill and practice to be a good tran
scriber or to write and read Braille. 

Numbers are represented by using the first 10 letters 
of the alphabet. Figure 5 shows the "number sign" 
preceding the letters, the scheme for converting them 
to numbers. Figure 6 shows how the "capital sign" is 
used. A single capital sign tells the reader that the 
following letter is capitalized. Two consecutive capital 
signs indicate the entire word is capitalized. Thus, we 
see that interpretation of Braille is based on adjacent 
cells as well as the cell being read. 

BRAILLE PRODUCTION 

Braille documents have been produced by using a 
variety of devices. Some of these are reviewed here. 

Braille slates 

Figure 7 shows a typical Braille slate, guide and 
stylus. Individual cells or dot patterns are manually 
and singly embossed with a stylus which is guided 
across the writing line by a metal strip or guide. Braille 
embossed on a slate must be the mirrored image of the 
actual embossing desired, because the dots are formed 
on the back side of the paper. Reading the dots neces
sitates reversal of the paper. This is essential since the 
depressions cannot be felt. To make a correction, the 
paper is removed from the slate, and the dots are 
flattened with a blunt instrument or correcting tool. 

o • • 0 •• • 0 •• 
o • 

• 0 

c s J a c k a i 
p 9 

n 

• • 0 •• 
• 0 • 0 

o • o • 
• 0 

c s c s B M a i a i 
p 9 P 9 

n n 

Figure 6-Use of capital sign 

Proposed Braille Computer Terminal 81 

Figure 7-Braille slate 

Braillewriter s 

These are similar to small portable typewriters. 
Figure 8 shows a Perkins Braillewritermade by the 
Howe Press Company. There is a key for each of the six 
possible dots. From 1 to 6 keys must be depressed 

Figure 8-Perkins Braillewriter 



82 Fall Joint Computer Conference, 1971 

Figure 9-IBM Braille electric typewriter 

simultaneously to· emboss a Braille cell. The embossing 
usually occurs from the back of the paper so that the 
norma!' left-to-right reading is possible and the tran
scriber may check his work as he goes along. 

Braille typewriter 

Figure 9 shows an IBM Electric Braille Typewriter 
with a full alphabetic keyboard. The usual type faces 
have been replaced with dot configurations. Embossing 
is from the front into a rubber platen. This typewriter 
is easy to use because only one key is depressed at a 
time for any particular cell combination rather than 
multiple keys as on the Braillewriter. 

PreS8 braille 

Where large quantities of the same material are 
needed, metal master plates are made on a stereotype 
machine such as the one shown in Figure 10, built by 
American Printing House for the Blind (APH). These 
master plates are then used on various types of presses 
for embossing Braille. An example of this might be the 
Braille edition of various magazines, periodicals, or 
religious books; Figure 11 shows a typical book of 
interpointed press Braille. 

Unfortunately, due to the wide variety of textbooks 
used not only throughout the United States but even 
within one state or within a school district, it is not 

feasible to produce textbooks in "press" Braille. Most 
textbooks, school materials and the like. are produced 
by volunteers utilizing hand or manual embossing 
devices. There are several Braille printing houses which 
attempt to fulfill the need of general-interest Braille 
material. The cost of producing this Braille is partially 
defrayed by Government agencies. Some books, 
magazines, and other publications are generally avail
able from the Library of Congress. 

Computer braille 

Some progress has been made in the production of 
Braille on high-speed printers coupled to computers. 
Generally, a single copy is produced and has limited 
life, depending on the paper used and the method of 
embossing. (Properly embossed Braille on special paper 
usually lasts for 50 readings.) Embossing by impacting 
against a rubber platen does not produce as well a 
defined dot as when a metal die is used. The rubber 
platen tends to mushroom the dot base and limit dot 
height. 

During the past few years, several organizations 
have written programs for various computers. Some of 
these are used regularly to produce Braille output for 
the blind. Printouts may be computer translated 
Braille from English input or conversion of computer 
output to simple Braille as might be used by a blind 
programmer. 

Figure to-A Braille stereotype machine built by American 
Printing House for the Blind 



Proposed Braille Computer Terminal 83 

Figure 11-Braille book 

PROPOSED ON-LINE BRAILLE TERMINAL 
SYSTEM 

Description 

Figure 12 shows a typical on-line terminal. Such 
terminals are attached by communications lines to a 
system to provide real-time response to various inquiries 
and computer assistance with mathematical problems. 
This capability is available now. It's a matter of using 
existing technologies to develop a system that will 
greatly improve communications and facilitate the 
availability of information in Braille. 

The key to the proposed on-line Braille terminal 
system is the embossing terminal printer. This system, 
supported by some programming, would open 
"Pandora's Box" to the blind. 

The terminal system should be versatile enough to 
operate in two modes, first as a local typewriter unit 
and second on-line to a computer. In the local mode 
the input terminal keyboard would be modified to 
provide the Braille function keys such as the number 
sign, capital sign, etc. A possible keyboard layout is 
shown in Figure 13. This keyboard includes all the 
Braille function keys, as well as the English Braille 

contractions. The configuration shown is used by the 
Lutheran Braille Workers, Inc., on their modified IBM 
keypunches. These automatic Braille transcribing key
boards have been used since 1956 and have proven very 
satisfactory. 

Figure 12-0n-line terminal 



84 Fall Joint Computer Conference, 1971 

@ND@OR@F@HE MULTIPLE 

PUNCH DOT 45 DOT 5 DOT 46 DOT 456 

SPACE 

Figure I3-Automatic Braille keyboard as used on IBM keypunch 

Figure 14 shows a diagram for a possible terminal 
system in the local mode, with the ink-print in/out 
terminal, encoder and a second unit for embossing 
Braille. Ink-print copy can be made available for the 
sighted and embossed copy for the blind. The embossing 
mechanism, having been carefully designed from a 
human factors standpoint, allows reading of the dots 
immediately after embossing without need of moving 
the paper. This is especially helpful to the blind person 
if he is interrupted while typing. It means that he can 

ENCODER 
EMBOSSED 
BRAILLE 
OUTPUT 

(SIMPLE 
GRADEl 
BRAILLE) 

Figure I4-Proposed Braille t~rminal system with embosser 
(local mode) 

read the embossed copy to review what he has written. 
A metal die is used to ensure a good quality dot. 

Figure 15 shows the on-line operation. When the 
embossing terminal is used on-line to a computer, 

__ D_;_E~_A_---I~ COMPUTER I 
EMBOSSED 
BRAILLE 
OUTPUT 

(ALL LEVELS 
OF BRAILLE 
DEPENDING 
ON 
COMPUTER 
PROGRAM) 

Figure I5-Proposed Braille terminal system with embosser 
(on-line mode) 



various conversion or translating programs resident in 
the computer would assist the individual. These 
programs would convert information in various refer
ence banks to the Braille codes. 

Examples of possible system operation 

Many sighted programmers use on-line terminals to 
write their programs and communicate directly with 
the computer. This speeds up the process of writing 
and debugging programs. The sightless programmer 
does not have this advantage. He does not have two-way 
communication with the computer. He must depend on 
Braille output from a high-speed printer which is 
usually run only once a day because certain modifica
tions and special setups are required to print Braille. 
If we could provide the sightless programmer with his 
own embossing terminal, it would greatly increase his 
communication ability. To bring this about, it is 
necessary to take the programs that are used to provide 
Braille output on a high-speed printer and modify them 
for use on a Braille printout terminal. Providing this 
capability would mean many additional job opportuni
ties for the blind. 

Let us consider another example. Many school 
districts are now training sightless children in the class
room along with the sighted. This is an excellent 
arrangement in that it does not separate the handi
capped child, but rather places him in society where he 
can participate and learn to get along with others. 
However, it is not an easy arrangement for the teachers, 
the school, or the students. Text material, handouts, 
and test papers must be provided in Braille for the 
child. The production of these various documents can 
at times be very awkward, inconvenient, and almost 
impossible. 

At present it is necessary for the teacher either to 
know Braille and transcribe and emboss a document into 
Braille for that student or to enlist the aid of a volunteer 
to do this for,him. Often there is a lack of time or avail
ability of a trained transcriber to do this. A school 
district utilizing a central information bank could have 
much of this information available on tapes or on-line 
storage. When the teacher needed a copy of a particular 
examination, he could request it by phone and it would 
be provided to him, perhaps hundreds of miles away, 
by means of the on-line embossing terminal. 

In cases where a document is not on file, the teacher 
could enter the text by typing. it into the computer. 
The computer would then translate this and provide the 
embossed Braille on a real-time quick turnaround basis. 
If a terminal was used to prepare the ink-print master 
copy of the test, it could also be transmitted to the 

Proposed Braille Computer Terminal 85 

computer for translating. The Braille copy would then 
be available simultaneously with the master copy of the 
test for the sighted individuals. Such an arrangement 
would greatly aid the educational process and give the 
handicapped child many of the advantages and oppor
tunities provided to the sighted. 

A third example is the blind child who is limited by 
the number of reference books that are available for him 
to do his homework. He really can't afford to own a 
personal copy of some books. Besides being expensive, 
the books are voluminous, requiring much storage 
space. For example, a 30-volume encyclopedia used by 
a sighted person would equal 145 volumes of 4- to 5-inch 
books in Braille. 

The use of a remote terminal and various data banks 
or information systems could solve the problem nicely. 
It is not hard to realize or project that a blind student 
could have a terminal in his home and proceed to do his 
homework by dialing into a data bank and inquiring 
about the particular subject of interest to him. Imagine 
the benefits to this individual if he could dial into a 
dictionary or an encyclopedia. What a tremendous 
boon to him to be able to inquire on a particular subject 
and have the computer respond by embossing on his 
remote terminal the information he is seeking. 

Projecting even further we can see where a low-cost 
embossing terminal could be installed in the home of a 
sightless person for daily communication. Major 
newspaper items and magazine articles could all be 
made available from the central information bank. 
Individuals could receive these by means of their 
telephone and the Braille terminal. They could have 
access to many of the same articles that you and I are 
privileged to read. 

Our last example covers handicapped individuals who 
have other problems in addition to blindness. They too 
could benefit by having a terminal in the home. Specifi
cally, this arrangement could provide an opportunity 
for a new productive life. The individual, although 
afflicted with immobility or other difficulties, could 
work in his home and contribute to society. He could be 
employed as a programmer, communicating with the 
computer, developing programs, receiving his response 
from the computer, and enjoying two-way com
munication. 

RESULTS OF EXPERIMENTAL MODEL 

An experimental model of the proposed system was 
built and used for various feasibility tests. Figure 16 
shows the model which consists of an ink-print terminal 
with an attached Braille embossing unit. Special atten
tion was given to the human factors requirements 



86 Fall Joint Computer Conference, 1971 

Figure 16-Feasibility !U0del of on-line terminal with Braille embosser 



during the design stage. On the basis of this study, the 
unit was designed and built to emboss from the rear, 
with the data appearing on the front side of the paper. 
A metal die was used to mate with the selected pins to 
provide positive control in forming the raised dots. 

Results of the feasibility tests have been favorable. 
Quality of the Braille dots is good, making the symbols 
easy to read. Front embossing offers added convenience 
to the blind operator in that fingertip reading and 
checking are possible while the paper is in the terminal. 
Braille printout for the blind and conventional printout 
for the sighted, both from the same terminal system, 
allow improved speed in communicating between each 
other. 

Our investigation and experimentation with the 
Braille terminal will continue. We hope to define a prac
tical, easy-to-use, general-purpose embossing terminal. 
To accomplish this, we are continuing to discuss and 

Proposed Braille Computer Terminal 87 

explore the actual use of such a terminal with additional 
blind individuals. 

BIBLIOGRAPHY 

1 R B STEWART JR 
Suggestions for curriculum and ancillary services in training 
the blind to program computers 
System Development Corporation Publication 
No. PB-176-8411968 

2 N C LOEBER 
A utomatic Braille keyboard 
IBM Corporation San Jose California Publication 
No TM 02 138 1960 

3 AMERICAN FOUNDATION FOR THE BLIND 
Understanding Braille 
New York New York 

4 AMERICAN PRINTING HOUSE FOR THE BLIND 
General catalog of Braille publications 
Louisville Kentucky 1969 





Numerical simulation of subsurface environment 

by BARRY L. BATEMAN 

University of Southwestern Louisiana 
Lafayette, Louisiana 

and 

PAUL B. CRAWFORD and DAN D. DREW 

Texas A&M University 
College Station, Texas 

INTRODUCTION 

Subsurface environments are heterogeneous. The 
permeability and porosity varies from point to point and 
permeability is only approximately related to porosity. 
To construct a numerical model that is useful in the 
analysis of the flow of oil, gas or water in the stratum 
one must simulate the porous media. 

When permeability and porosity values have been 
assigned for each sector of the strata, they may be used 
to calculate the fluid saturation at geological equilib
rium. 

In this paper emphasis has been placed on simulating 
realistic rock properties throughout the reservoir. 

Advances in reservoir engineering were being ac
complished at a rate comparable to those in numerical 
techniques. Most early work assumed a homogeneous 
rock matrix. It was generally accepted that the reservoir 
had one permeability, porosity, initial water saturation, 
and one capillary pressure curve that was constant 
through the reservoir .1,2 The error of this concept was 
well-known, but solutions to more realistic approaches 
were too difficult. Instead of a completely homogeneous 
reservoir, heterogeneous reservoirs consisting of two 
homogeneous layers have been studied.3,4 This corre
sponds to stratified or layered systems. Porous rock 
that is normally considered homogeneous will have 
small to large variations in its porosity and permeability 
when sampled at different areas. Although these 
variations exist, these properties will have a maximum, 
minimum and an average value. Analysis of field data 
indicates that these values are not predictable, but can 
be represented by a distribution about some mean 
value. 

89 

One of the basic prerequisites in performing a 
simulation is the availability of easily attainable random 
numbers. In this study, uniformly distributed random 
numbers between zero and one were generated by a 
modified version of IBM's RANDU routine. 5 Several 
methods are available for generating various statistical 
distributions from uniform random numbers.6 The use 
of the cumulative distribution form of the desired dis
tribution is among these methods. This method utilizes 
the fact that the range of both the uniform distribution 
and the cumulative function is between zero and one. 
Using this fact and the limiting parameters on the 
second distribution, it is convenient to randomly 
generate numbers from the desired distribution. 

PERMEABILITY 

Measurements of permeability are given in darcys. 
A rock of one darcy permeability is one in which a 
fluid of one centipoise viscosity will move at a rate of 
one cubic centimeter per second under a pressure 
gradient of one atmosphere per centimeter and a cross
section of one square centimeter.7 Since this is a fairly 
large unit for most producing rocks, permeabilities are 
commonly expressed in units one thousandth as large, 
the millidarcy. 

The permeability of an oil-bearing and commercially 
productive sandstone formation is normally between ten 
and five hundred millidarcys. The actual permeability 
range, as well as the distribution of permeability values, 
is determined from core data of the formation to be 
simulated. The distribution of permeability values is 
ordinarily not uniform. In a typical rock formation 



90 Fall Joint Computer Conference, 1971 

1001

.---------------------------------------. 

• INTERMEDIA'I'E ~OUS M£OI.A , 

INTERMEDIATE POROUS MEDIA 

10 10 100 

PERMEABILITY IN MILLIDARCYS 

Figure I-Porosities and per me abilities of 2200 
sandstone specimens 

1000 

there will be a number of values within the range that 
will be points of concentration for the measured values. 
These values are called cluster points. The cluster 
points need not be well defined and the distribution of 
values around the points can be irregular, but this 
concept is quite useful in representation of geological 
strata. Figure 1 is an illustration of this distribution.8 

I t gives a plot of the porosity versus permeability values 
. of 2200 sandstone specimens of two types: intermediate 
porous media and intergranular porous media. We are 
concerned with the area between the two curves which 
represents the intergranular porous media. Considering 
only the permeability values and not the porosity 
values, one can detect several poorly defined cluster 
points. 

This clustering effect can be generated using the 
following procedure: 

1. Assume a permeability range Xo to X n • 

2. Choose values of Xi such that X O<X1 <X2 < 
... X n- 1<Xn • 

3. Assign percentage values, ki , to each of the 
segments, X i- 1 to Xi, of the permeability range. 
These percentages determine the number of 
permeability values which will be generated for 
each of the segments. This allows the clustering 
effect to be simulated. 

4. Calculate 
i 

Ai= L k j 

j=1 

where Ao=O. 

i=1,2, ... n 

5. Generate a random number Z such that 

O<Z <100. 

6. Find m such that A m- 1 <Z <Am 
7. Set the permeability value equal to 

(Am-z)/(Am-Am-1) (Xm-Xm- 1) +Xm- 1 

After the calculations for the first four steps have been 
completed, steps 5, 6, and 7 are performed repeatedly 
until a permeability value has been calculated for each 
computational module. The sequence in which these 
values are assigned to the modules is not important. 

The 1225 permeability values were generated in this 
manner. The permeability range was 10 to 500 milli
darcys. In this instance n = 10 and 

Xo= 10 

X 1= 59 k1 = 15 percent 
X2 =108 k2 =10 

X3=157 k3=10 

X 4 =206 k4 =10 

Xs=255 ks=10 

X 6=304 k6=10 

X7=353 k7=10 

Xs=402 ks=10 
X 9=451 k9=10 

X1o =500 klO= 5 

It can be seen that more permeability values are 
found in the 10 to 59 millidarcy section of the range 
than in the 451 to 500 millidarcy section of the range. 
The other values are relatively uniformly distributed. 

The permeability values shown in Figure 2 were 
assigned to the modules of the eight by eight grid 
system illustrated in Figure 3. The shaded area of each 
module is proportional to the permeability value 
assigned. For example, the permeability value of the 
upper left-hand· module is 105 millidarcys. 

0 
0 

~ 
AGURE 2 RAI\OOM SAMPLE OF 100 PERMEABILITY 

'15. POROSITY VALUES 
0 
0 

+ 
I-

g 
-t- 1- + 

Z + 
lIJ + + -\-U o + 

+ + O::q t + + +t+ 
~ ..t+- ;- +-+ lIJl!) + + t ++ .f-a.. N 

+ + + + + + 
+ + t-

~ -t + +- +- +-.t + +-

:t t-
+ + + + 

>-0 + + ++ t + + + ~ 
I-~ + + ++ -+ + wi +. + + + 

+ + 0 + 'I-
0:: 

fl. .. ++ 0 
a..~ + + + 

!e + 

+ 
0 q 
0 
-10.00 80.00 1110.00 220.00 290.00 380.00 430.00 ~o.oo 

PERMEABILITY IN MILLIDARCYS 

Figure 2-Random sample of 100 permea~ility vs. porosity values 



POROSITY 

From the reservoir engineering standpoint, one of the 
most important rock properties is porosity, a measure 
of the space available for storage of water and oil. 
Porosity is defined as the ratio of the void space in a 
rock to the bulk volume of that rock expressed in 
percent.9 The porosities of oil-bearing and commercially 
productive sandstone formations generally lie between 
ten and thirty-five percent.8 

The nature of the relationship between permeability 
and porosity is illustrated in Figure 1. The porosity and 
permeability in 2200 specimens of sandstone was 
measured and this plot was made of porosity versus 
permeability. It can be seen that there is an approxi
mate linear relationship between the two properties; 
however, for a given permeability value there is a 
corresponding range of porosity values. The porosity 
values within this range are normally distributed about 
a mean value with a small variance. Porosity values 
having this relationship to permeability, as shown by 
Muskat,8 can be calculated readily from a function of 
the form: 

Porosity=j(A, B, Sigma, Permeability) 

where A and B are coefficients of the linear relation 
between the average value of porosity and the permea
bility value, and Sigma is the prescribed standard 
deviation. 

The porosity values illustrated in Figure 4 for an 
8 X 8 grid system were assigned using the function 
described previously. Like Figure 3, the shaded area in 
each block is proportional to the porosity value assigned 
to the module. For example, the module in the upper 

Figure 3-Typical reservoir permeability by blocks 
(10 to 500 md) 

Numerical Simulation of Subsurface Environment 91 

',o:,'",';',',;'J;' 

I;i/'!.:,.',/:;,.:,." ::;!.:';~i:!:!,!;;;I:;'::'/j:':;/:I; 1~<;:S::;~:: ;';;:'~::'::::;;; -:';::;!';>'>:'.;',; ';~':t!;.)~: :;;~};:U/i:\~ 

li:/~,/~::<,,: 'YI;>2~') ;:~:~t~};':;;;I;';"S:;::~:-:;:; :->', '.",:1;/:,: :',~X~: :{L:~;~~< ',::;:/y;;,; 

Figure 4-Typical reservoir porosity by blocks (10% to 35%) 

left corner of Figure 4 represents a porosity value of 
fifteen percent. 

The algorithms for porosity and permeability values 
were programmed for a digital computer. This program 
was used to generate 1225 points. The distribution of 
these points reasonably duplicates the actual sample 
values presented in Figure 1. Having A, B, and Sigma 
as input parameters to the algorithms, as well as the 
ranges for permeability and porosity, enables one to 
easily duplicate results obtained from actual measure
ments of samples for a given formation. It should be 
noted here that particular measurements made in a 
rock formation are not duplicated. The method dupli
cates the general rock properties of the strata. 

CAPILLARY PRESSURE 

Because oil-bearing reservoirs universally contain 
more than one fluid phase, interfacial forces and 
pressures are continually influencing both static and 
dynamical states of equilibrium.8 The pressure differ
ence across an interface between two fluid phases is the 
capillary pressure in dynes per square centimeter. When 
this is expressed in oil-field terms, the equilibrium 
capillary pressure in pounds per square inch can be 
stated as: 

P c=h/144(PI-P2) * 
Since h is the height above the water table it can be seen 
that the initial values of capillary pressure vary verti
cally but not horizontally. 

The relationship between capillary pressure and 
water saturation has been experimentally determined by 

* Symbols are defined in the appendix 



92 

3.0 

2.5 

on 
'0 2.0 

z 
!:? 1.5 
t-
u 
z 
:::> 
u.. 1.0 
..., 

0.5 

o 
30 

Fall Joint Computer Conference, 1971 

r-IO MO 

f+- r- 50 MO 

100MO 

250 MO 

500 MO 

\ \ \ \ 

\ \\ ~ 
"- ~ ~""'--

40 50 60 70 80 90 

WATER SATURATION IN PERCENT 

Figure 5-Effect of permeability on the J-fwlCtion 

100 

Rose and Bruce.10 This relationship is given by the 
equation proposed by Leverett.ll 

J(Sw) = (Pc/u) (K/</» 112 

Since K is permeability and </> is porosity, the quantity 
(K/</» 112 may be different for each computational 
module, but it will not vary with time. u is interfacial 
tension between the liquids which does not vary. 

Experimental values for the function J (Sic) exist 
in the form: 

where i and j are indexes corresponding to a particular 
computational module. Ai,h Bi,h and Ci,j are given for 
each computational module, since they depend on rock 
properties. To obtain a value of J (Sw) it is only neces
sary to substitute a value of Sw into the relationship. 

Pc= (J (Sw) u) / (K/</> )112 

Rose and Bruce10 illustrated the nature of the capillary 
retention curves, referred to as J (Sw) functions. It is 
evident that there is no universal curve, but even though 
the curves vary with rock type, they each have the 
general shape of a hyperbola. The coefficients Ai,h 

Bi,h and Ci,h control the shape of the hyperbola. These 
coefficients are determined from porosity, permeability 
and the type of rock formation. Since there are signifi
cant differences in the correlation of the J-function with 
water saturation from formation to formation no 
universal curve can be obtained. Correlation of the 
J-function with water saturation for a number of 
different materials is shown in Figures 5 and 6. The 
effects of permeability when all other parameters are 
held constant is sho"TI in Figure 5. Figure 6 illustrates 
the effects of the other parameters when permeability 

is held constant. These curves compare favorably with 
those of Rose and Bruce.10 

RELATIVE PERMEABILITY 

In the discussion of permeability the concept was 
restricted to rock property. This assumes that the pore 
space of the rock is completely saturated with a single 
fluid. This is called the absolute permeability of the 
rock. When more than one liquid is present in the pore 
space of a rock there is an effective permeability 
associated with each liquid present. 

The relative permeability is calculated from the 
Corey equations.12 For oil the equation is 

Krn= [1- ((Sw- SLR) /(Sm-SLR)) J2 
X [1- ( (Sw - S LR) / (1- S LR) ) 2J 

The equation for water is 

where Sm is a 'constant which varies with formation 
type and is supplied as an input parameter, SLR is the 
minimum water saturation and is a property of each 
computational module. Its value is the ordinate inter
cept of the 'asymptote' of the J-function. 

The product of the absolute and relative permea
bilities is called the effective permeability. This product 
divided by viscosity of the liquid is the transmissibility 
of the liquid. 

Figure 7 shows a typical plot of oil and water relative 
permeability curves for a particular rock as a function 
of water saturation. 

z o 
i= 
u z 
:::> 
u. 

I ..., 

Starting at complete water saturation, the curves 

.. , 
v 

Jmax 
\ 

4. 
0 
r<i 

3. 

I 
2. 

~ 

I. l~ 
\~ t::::::-

o 
~ ~ ~ ro ro W 00 

WATER SATURATION IN PERCENT 

Figure 6-Effect of J-function asymptote on capillary 
pressure curves 

100 



show there is a decrease of eighty-five percent down to 
fifty-five percent. 

At seventeen percent oil saturation, the relative per
meability to oil is essentially zero. This value of oil 
saturation, seventeen percent in this case, is called the 
critical saturation. This is the saturation at which oil 
will first begin to flow as the oil saturation increases. It 
is also called the residual saturation, the value below 
which the saturation cannot be reduced in an oil-water 
system. This is why all of the oil in a formation cannot 
be recovered. When the water saturation in the pro
duction module is increased above its residual water 
saturation water begins to flow. 

ANALYSIS OF RESERVOIRS 

No matter how complete the coring and precise the 
data, one is still limited to an examination and study of 
rock samples which can constitute at the most an 
extremely small fraction of the total reservoir volume. 
This sample may be of the order of one ten-thousandth 
of one percent of the total reservoir;8 This small areal 
sampling of a reservoir could suffice for a description of 
the gross average properties of the producing formation. 
On the other hand, the ultimate limitation imposed 
thereby on the quantitative applicability of core
analysis data cannot be ignored. The basic fact is that 
all the features of the rock which are measured in core 
analyses are often so variable in passing from sample to 
sample along the well bore that the exact numerical 
data for a single sample are of little importance. What 
are significant are the average values for a set of 
neighboring samples or the large differences between 

9 
RGURE 7 TYPICAL OIL AND WAfER RELATIVE 

0 

~ PERMEABILITY CURVES 

~~ 0 
~o Q) 

<t 
0 OIL WATER 
a::1J) 

) ~ 
!il:: o P 
~~ 0) 

~ 

d 
~~ p 
~o ~ 

a:: 
~ 
We:\! P > 0 I\) 

i= « 
..J 
W a:: 

0 
0.00 14.23 28.57 42.86 57.14 71.43 5.71 100.00 

WATER SATURATION 

Figure 7-Typical oil and water relative permeability curve.:; 

Numerical Simulation of Subsurface Environment 93 

... 
co 

o 10 2D 40 60 70 80 90 100 

WATER SATURATION IN PERCENT 

Figure 8-Minimum, average, and maximum water saturations 
from 70 wells-Ten feet of sand 

adjacent groups of samples, which may indicate changes 
in type of strata or transition zones with respect to 
fluid content. 

An appreciation of the concepts of porosity, permea
bility, and fluid saturations may be crystallized in 
terms of the numerical values associated with these 
terms. Unfortunately, however, no well-defined set of 
"typical" magnitudes can be given for these quantities. 
These quantities not only vary from formation to 
formation, but also from well to well in the same 
geologic stratum. Even in a single well, while pene
trating a particular zone, the variations in the actual 
core-analysis data from sample to sample may be so 
large that simple averaging over the whole section may 
be unjustified and the supposedly single stratum must 
be considered as a composite of several distinct rock 
layers.8 Indeed, it is much easier to exhibit the varia
bility in core analysis data than to provide average 
results of any significance. 

This paper takes cognizance of the variability in rock 
properties from point to point. This is accomplished by 
combining rock simulation, capillary pressure, fluid 
properties, and physical laws to yield a representation 
of geologic strata which illustrates a typical reservoir. 

Three of the properties which have been analyzed 
are water saturation, permeability and porosity. These 
properties were generated from samples on seventy 
consecutive wells using the procedures described 
previously. The samples were analyzed in one-foot 
increments for a sand thickness of ten feet located fifty 
feet above the water table. 

Data pertaining to the water saturation is shown in 
Figure 8. This figure shows the minimum, average, and 
maximum water saturations for the odd numbered 



94 Fall Joint Computer Conference, 1971 

15 
11 

1 

:: 
JI 
» 

'" >1 

3' ., 
" .. 
5' .. 
" 51 
S ., 6, 
os 

o 100 

.. 

.. 
.. 

200 500 400 

PERMEABILITY I N MD. 

-

Figure 9-Minimum, average, and maximum permeabilities from 
70 wells-Ten feet of sand 

wells. The minimum water saturations are distributed 
between thirty-five and forty-five percent while the 
maximum water saturation observed in at least one 
sample from a single well was one hundred percent for 
more than eighty-five percent of the wells. It should be 
noted, however, that one well has a minimum value of 
approximately thirty-eight percent water saturation 
while its maximum value is only fifty-three percent. 
This fact, combined with the realization that the average 
water saturation is between forty-eight and eighty-two 
percent, reasserts the futility of utilizing an average 
core sample to represent an entireJeservoir. 

Figure 9 illustrates the variability of permeability in 
a sample of the previous seventy wells. As shown, the 
minimum permeability in a single well can range from 
a minimum of ten millidarcys to one hundred and ten 
millidarcys while the maximum values vary between 
three hundred and sixty and five hundred millidarcys. 
More interesting, perhaps, is the range of the average 
permeability. It varies from one hundred and fifty to 
three hundred and fifty millidarcys. Again, the fallacy 
of using average values from core analysis of one well is 
graphically illustrated. 

Concluding this study of the core analysis of seventy 
wells is the display of fraction porosity values shown in 
Figure 10. This figure seems to display a tighter dis
tribution of values than Figures 8 and 9, but it should 
be remembered that the range of the porosity is between 
0.1 and 0.35. Since the :-ange is smaller, minimum values 
between 0.14 and 0.202 contrasted with maximum 
values between 0.25 and 0.32 are not as clearly defined 
as one might expect. The average values seem to fill in 

.;; .. .-
. • .. .. - -.. -. • 

W .. . ... 
E 
L . .. 
L 

N . .. -
A ---

U 
M' - .. 

£ . ~ -.. 
.- -

B" 
E 
R" s: 

5' .. 
'1 -
<0' -~. <.. ~ -::; 

0 ~ 4 

FRACTIONAL POROSITY 

Figure 1Q-Minimum, average, and maximum porosities from 
70 wells-Ten feet of sand 

the gap as they range from 0.21 to 0.31. These values 
seem especially appropriate to illustrate that an 
average value in one well may be a maximum or a 
minimum for another well in the same reservoir. 

CONCLUSIONS 

This paper demonstrates the feasibility of simulating 
heterogeneous permeable strata for numerical study on 
high speed computers. The method uses the actual core 
data for permeability and porosity. The porosity is 
related to the permeability by a distribution curve 
utilizing a random number generator. The resulting 
fluid saturations for each foot of rock may then be 
computed by using a relation between capillary pres
sure, rock properties and fluid saturations when 
drilling and coring permeable strata. 

REFERENCES 

1 J E BRIGGS T N DIXON 
Some practical considerations in the numerical solution of 
two-dimensional reservoir problems ' 
Soc of Pet Engrs Jour June 1968 

2 J DOUGLAS JR D W PEACEMAN 
H H RACHFORD 
A method for calculating multi-dimensional immiscible 
displacement 
Trans AIME 1959 Vol 216 297 

3 J BJORDAMMEN K H COATS 
Comparison of alternating direction and successive 
overrelaxation techniques in simulation of reservoir 
fluid flow 
Soc of Pet Engrs Jour March 1969 



Numerical Simulation· of Subsurface Environment 95 

4 J BJORDAMMEN 
Comparison of three methods for simulating two- and 
three-dimensional flow in reservoirs 
Master Thesis The University of Texas at Austin January 
1968 

5 IBM 
System/360 scientific subroutine package 
Version III Programmers Manual NoH 20-0205-3 
New York 1968 

6 K D TOCHER 
The art of simulation 
The English Universities Press LTD London 1963 

7 B C CRAFT M F HAWKINS 
A pplied petroleum reservoir engineering 
Prentice Hall Inc New Jersey 1959 

8 MORRIS MUSKAT 
Physical principles of oil production 
McGraw Hill Book Co Inc New York 1948 

9 J W AMYX D M BASS JR R L WHITING 
Petroleum reservoir engineering 

APPENDIX 

Symbol 

K 
Kr 
Sigma 
p 
(J' 

Subscripts 

McGraw-Hill Book Company New York New York 1960 c 
10 W ROSE W A BRUCE i 

Evaluation of capillary character in petroleum reservoir rock 
Trans AI ME 1949 Vol 186 127 j 

11 M C LEVERETT 
Capillary behavior in porous solids 
Trans AIME 1941 Vol 142 152-169 

12 C E JOHNSON JR 
Graphical determination of the constants in the Corey 
equation for gas-oil relative permeability ratio 
Journal of Petroleum Technology October 1968 

LR 
rw 
rn 
n 
w 

Nomenclature 

Definition 

Capillary Pressure, psi 
Saturation 
Verticle Position Measured 
Positively Downward, feet 
Absolute permeability, darcy 
Relative permeability 
Standard Deviation for Porosity 
Density, psi/ft. 
Interfacial tension, dynes/ cm. 
Porosity 

Capillary 
Index for numbering blocks 

X-direction 
Index for numbering blocks 

Z-direction 
Minimum water saturation 
Relative to wetting phase 
Relative to non-wetting phase 
N on-wetting phase 
Wetting phase 

III 

III 

the 

the 





Digital simulation of the genera] atnlospheric 
circulation using a very dense grid 

by W. E. LANGLOIS* 

Notre Dame University 
Notre Dame, Indiana 

INTRODUCTION 

The dynamics of the weather represents, in its full 
generality, a computational problem which far exceeds 
the capability of any computer presently foreseeable. 
Fortunately, however, specific aspects of the weather 
problem can be profitably attacked with computers al
ready in existence. 

The large-scale motion of the atmosphere, usually 
termed the general circulation, is one such aspect. Com
putationally, it is a digital simulation problem based 
on a spatial finite-difference grid which, from an an
thropocentric point of view, is rather coarse. A general 
circulation research model with a grid-spacing of 1° of 
longi tude by 1 ° of latitude ( 110 kilometers by 110 
kilometers at the equator) would be regarded as having 
extremely high resolution-unrealistically high for 
present-day computers. 

One must bear in mind, however, that even the 272° 
by 2° coverage used in the present investigation dis
tributes 12816 grid points over the surface of the earth. 
Thus the large-scale wind systems, which have hori
zontallength scales of 1000 kilometers or more, are not 
grossly underresolved. Sub-grade-scale ·effects are im
portant, to be sure, but their details are only weakly 
coupled to the large-scale motion. For example, the 
grid is far too coarse to resolve the dynamics of a single 
cumulus cloud, but the net effect of cumulus activity 
in a grid cell can be reasonably well parameterized in 
terms of the grid-scale quantities. 

Because of the complexity of general circulation cal
culations, 272° by 2° global coverage is feasible only 
with computers in the class of the IBM 360/91 or the 
CDC 7600. During the 1960s, general circulation re
search was carried out with much coarser resolution, 
5° X 4° being typically considered a "fine grid" (hence 
we have termed 272° by 2° resolution the "hyperfine 

* Visiting Professor of Mathematics 

97 

grid"). Nevertheless the 1960s produced significant 
advances in understanding the general circulation. As 
the decade progressed, the various models (summarily 
described by Kolskyl) began to simulate the main 
features of the circulation rather well. Certain impor
tant details, to be discussed below, do require high 
resolution, and of course these are the focus of current 
interest, but the principal permanent and semi-perma
nent circulation systems can be realistically modeled 
with a 5°X4° grid. 

The above discussion pertains only to research models 
of the general circulation, not to forecast models-for 
which the resolution problem is quite different. This 
may seem paradoxical since, after all, there is only one 
general circulation. Presumably it is governed by the 
same dynamical system, whether we are trying to un
derstand its behavior or to forecast its evolution from 
an observed initial state. If an infinitely fast computer 
were available (actually a million MIPS might be 
enough) there would in fact be no distinction between 
a research model and a forecast model. Realistically, 
however, each type of model must leave off certain 
features of the other type in order to retain those 
features essential to its intended purpose. A research 
model requires global (or at least hemispherical) cover
age, representation of the non-adiabatic atmospheric 
processes, and very-long-term simulation. A forecast 
model requires dense coverage, initialization from ob
served data, and near-real-time operation. The incom
patibility of these requirements is illustrated by the fact 
that the 272° X 2° simulation reported here requires 
272 hours of CPU time (about 6 hours of real time) per 
simulated day with the program running in a 1000 
kilobyte partition of an IBM 360/91, even though the 
vertical resolution is quite coarse (2 vertical levels) . 

TWO SPECIAL ACKNOWLEDGMENTS 

The general circulation model used in the present 
study is a version of that developed at UCLA by A. 



98 Fall Joint Computer Conference, 1971 

Arakawa and Y. Mintz, with the collaboration of A. 
Katayama. It was at Professor Arakawa's suggestion, 
and under his guidance, that the hyperfine grid simula
tion was undertaken. Working from the UCLA listings, 
H. C. W. Kwok and the author reprogrammed the 
model to run efficiently on a "pipeline" computer. A 
few minor thermodynamic modifications were incor
porated but most of the model's physics remains as out
lined by Arakawa, Mintz, and Katayama in their 
Tokyo paper.2 A detailed description of the physics, 
and of our final code, is available in the series of reports 
by Langlois and K wok. 3 

Since preparation of the paper in which we used the 
5° X 4° version of the model to study air contaminant 
transport,4 Kwok has transferred to projects not con
cerned with general circulation research. Fortunately 
for the present author, however, he had already solved 
most of the formidable data-management problems as
sociated with hyperfine grid simulation. 

DESCRIPTION OF THE MODEL 

What follows is a reasonably complete, but entirely 
verbal, description of the general circulation model. The 
mathematical details are available in our reports,3 ex
cept for certain aspects of the radiation model and 
cumulus parameterization which are described in the 
appendices of the paper by Arakawa, Mintz and 
Katayama.2 

The model troposphere is divided into two quasi
horizontal layers of equal mass. Specifically "(J coordi
nates" are used, i.e., the vertical coordinate is 

where P8 is the surface pressure and Pt is the tropopause 
pressure which is taken to be a constant 200 millibars. 
Thus the upper tropospheric layer corresponds to 
o ~ (J ~ Y2 and the lower layer to Y2 ~ (J ~ 1. The earth's 
surface, which follows the elevation of the large-scale 
mountain systems, corresponds to (J = 1. Vertical differ
encing is carried out in a way which con'3erves the 
first and second moments of potential temperature, as 
well as other physical quantities obeying integral con
servation laws. 

Horizontal differencing is carried out in the longitude
latitude plane. In this plane the image of the earth's 
surface is a rectangle of height 7r and width 27r. Except 
in the immediate vicinity of the poles, the finite-differ
ence grid is constructed by subdividing this rectangle 
into a network of congruent rectangular cells measuring 
2Y2° of longitude by 2° of latitude. Near each pole, one 
row of grid points is skipped. Thus the grid cells along 
the 90° N or S latitude lines correspond, on the surface 

of the earth, to 272° wedges extending from the pole to 
87° latitude. The motivation for skipping points near 
the poles is linear stability: At 89° latitude the 272° 
longitudinal spacing corresponds to only 5 kilometers, 
which would require far too short a time step. The 
convergence of meridians near the poles is further miti
gated by an averaging procedure which tends to damp 
out short waves moving in the longitudinal direction. 
Except for these details, the space-differencing is based 
on Arakawa's conservative differencing scheme, de
rived from the dynamical equations written in flux form. 

A time step of 2>i simulated minutes is used. The 
time differencing scheme is a variation of the Matsuno 
two-stage scheme, which approximates backward dif
ferencing. It differs from IVlatsuno's original scheme in 
two particulars: 

(1) The non-adiabatic processes are not calculated 
at every time step, since they are relatively 
slowly varying (time scale about one hour) ; to 
over-resolve them would greatly slow up the 
simulation. 

(2) The fluxes are not estimated the same way at all 
time steps, nor at both stages of the same time 
step. "Checkerboard instability" is avoided by 
alternating between centered and uncentered 
estimates. 

The surface underlying each grid cell is specified as 
being ice-free ocean, sea ice, ice-free land, glacier, or 
snow-covered land. Grid cells corresponding to ice-free 
ocean are assigned surface temperatures appropriate 
for the season; since the present paper describes a simu
lation of northern hemisphere winter, the observed 
January values are used. Land surface is regarded as a 
thermal in'3ulator with no capacity to store heat; its 
temperature is determined by balancing incoming and 
outgoing thermal fluxes. If the land is ice or snow 
covered, this temperature is constrained not to exceed 
the melting point of ice. Sea ice is treated like ice
covered land, except that there is some heat conduction 
thru the ice. The ice distribution is specified for northern 
hemisphere winter; the snow distribution is estimated 
as a function of calender date. 

The dependent variables are the surface pressure, the 
temperatures and horizontal wind velocities of the two 
layers (the vertical differencing scheme represents 
these as carried at (J = >i and (J = %), and the mixing 
ratio of the lower layer. Since the moisture-carrying 
capacity of the air diminishes rapidly with decreasing 
temperature, and hence with increasing altitude, the 
mixing ratio is carried rather low, viz, at (J= %. The 
moisture content of the relatively cold upper layer is 
neglected. However, in the final section we present some 



Digital Simulation of General Atmospheric Circulation 99 

evidence that this approximation should really be modi
fied at hyperfine grid resolution. 

The model accounts for four contributions to the 
non-adiabatic heating and cooling: incoming solar 
radiation, mostly visible and near infra-red, which de
pends on latitude, season, and local time of day; long
wave infra-red radiation (usually a heat sink) ; sensible 
heat transfer between the lower layer and the under
lying surface; release of latent heat during precipitation. 

Radiative heating and cooling of the air in a grid cell 
depend on the mixing ratio and on the nature and ex
tent of the cloud cover. Three types of clouds are dis
tinguished: stratus deck, which results from large-scale 
condensation occurring when the mixing ratio exceeds 
its saturation value; cumulus towers, which result 
either from convection in the middle portion of the 
troposphere or from penetrating convection originating 
in the planetary boundary layer; low-level cumulus 
clouds, which result from boundary layer convection 
that is too weak to penetrate into the middle tropo
sphere, and which produce no rain. 

The moisture source in the model is evaporation 
from the open sea, from ice or snow covered surfaces, 
and from ice-free land that has previously been moist
ened by rain. The evaporation rate depends on the sur
face wind speed and on the vapor pressure difference 
between the air and the surface. For ocean, ice, and 
snow, the surface vapor pressure is the saturation value 
for the surface temperature; for ice-free land it depends 
on the history of precipitation, evaporation, and runoff. 

lVIOTIVATION FOR HYPERFINE GRID 
SIMULATION 

As indicated in the introduction, the main features 
of the general circulation can be simulated without re
sort to hyperfine grid resolution. This can be seen, for 
example, from the pressure maps in the GARP study,5 
which employed a 5° X 4° version of the UCLA model 
(the "fine grid" version described in our reports.3 How
ever, certain aspects of weather development are not 
well simulated with a 5°X4° grid. For example: 

1. The west to east progression of cyclonic storms 
is too slow-about 5° per day, whereas 10°, or 
slightly more, is typical of the real atmosphere. 

2. The development of storms is likewise too slow. 
3. The subtropical highs are 5 to 10 millibars too 

weak. This is related to the previous two items: 
cyclonic eddies form the principal mechanism 
for removing heat from the subtropics and, with 
this process slowed down, thermal lows tend to 
weaken the highs. 

Manabe, Smagorinsky, Holloway, and Stone6 de
scribed a high-resolution simulation using the hemi
spherical general circulation model developed at the 
Geophysical Fluid Dynamics Laboratory of the En
vironmental Sciences Services Administration. Their 
horizontal differencing uses a uniformly spaced grid on 
a stereographic projection centered at the pole, with 40 
grid points between pole and equator. On the average, 
this yields horizontal resolution roughly comparable 
with that of the present study. 

The GFDL group compared the results of their high
resolution simulation with those of a previous study in 
which they used 20 grid points between pole and equa
tor (roughly comparable to our 5°X4° grid). They 
reported that the system of fronts and the associated 
cyclone families in the high resolution model are much 
more realistic than those of the low-resolution model. 
Moreover, they analyzed the energetics of the simula
tion in some detail, finding that the general magnitude 
and the spectral distribution of kinetic energy are in 
better agreement with the actual atmosphere as a result 

lof the improvement in resolution. These findings offer 
further incentives for hyperfine grid resolution with the 
UCLA model. It must be borne in mind that the two 
models accept computer limitations in entirely different 
ways. For example, the GFDL model assumes a fea
tureless earth, but uses nine levels of vertical resolu
tion. However, the improvements reported by the 
GFDL group appear to result from better horizontal 
resolution of the major transport mechanisms essen
tially common to both models. 

THE SIMULATION 

As implied in the introduction, research models of 
the general circulation are not usually initialized from 
real data. Rather, the model generates its own data 
which, in present day models, is statistically reasonable 
but which does not correspond in detail to the weather 
on any actual day. 

When a model is run for the first time, its "cold 
start" is taken from an artificial initial state. For ex
ample, we use a neutrally-stable and completely dry 
atmosphere at rest with a uniform sea-level air temper
ature of 0° centigrade. This choice is easily pro
grammed even for a model with mountains, and it 
offers the additional advantage that realistic patterns 
evolve after only two simulated weeks (cold start from 
an isothermal atmosphere requires about three times 
as long to achieve realism because of the extreme 
stability). Subsequent runs are initialized from a his
tory tape whose records are generated at specified up
date intervals (usually 6 simulated hours). There is 



100 Fall Joint Computer Conference, 1971 

Figure lA-Zonal mean westerlies after 30 days of fine-grid 
simulation 

also provision for generating a history tape record at 
the end of a run which is interrupted between regular 
updates. 

To save computer time, we did not run the hyperfine 
grid simulation from cold start. Instead, we generated 
a history tape by interpolating the final state of a 20 
day simulation with the 5°X4° grid. This preparatory 
simulation began from cold start with climatic data 
appropriate to Nov. 1. 

The first 10 days of hyperfine grid simulation were 
carried out with the non-adiabatic processes calculated 
every twenty time steps (45 simulated minutes). At 
this point we compared the static features of the simu
lation with those of a 30 day run with the 5°X4° grid. 

The distributions of the mean zonal temperatures 
for the two cases were substantially the same. The 
permanent and semi-permanent features of the sea
level pressure maps differed primarily in that the Azores 
and Siberian highs were about 10 millibars more in
tense with the hyperfine grid. Changes in the wind pat
tern are more pronounced; Figure 1 compares the mean 
zonal westerlies for the two cases. The vertical structure 
was obtained by linear interpolation in u from the 
computed values at u= ~ and u=~. The most notice-

Figure lB-Zonal mean westerlies after 20 days of fine-grid 
simulation followed by 10 days of hyperfine grid simulation 

able features of the hyperfine grid result are the in
tensification of the northern hemisphere jet stream and 
the appearance of a core of weak westerlies in the inter
tropical convergence zone. 

These first ten days of hyperfine grid simulation re
vealed that carrying all the moisture in the lower layer 
is not fully acceptable at 2Y2°X2° resolution. The 
problem arises when a grid cell undergoes low-level 
convergence and high-level divergence in a region of 
high relative humidity. In nature this produces dy
namically forced convective rain over the grid cell, 
with the released latent heat being divided between the 
u-layers, and with some outward water vapor trans
port in the upper layer. In the model, however, the 
upper layer is incapable of carrying moisture. Hence 
the model sees large amounts of water vapor advected 
into the lower layer of the grid cell, but none carried 
upward in spite of the pronounced lifting. This leaves 
the lower layer grossly supersaturated. Intense large
scale condensation then takes place and the concomi
tant release of latent heat-all in the lower layer
unrealistically destabilizes the atmosphere. 

This effect was discovered because of an oversight in 
setting up the hyperfine-grid run. Passing to higher 
resolution involves changing the continental outlines. 
As illustrated in Figure 2, certain areas which repre-

; [ ~ : I 

L __ - ---- - -- n __ --1--+--=--i 
i I I 

I I L _________ .J 

I L ________________ _ 
--1 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
L __________ --, 

I 

Figure 2-Resolution of the Coral Sea shorelines: dotted line, 
fine grid; solid line, hyperfine grid 



Digital Simulation of General Atmospheric Circulation 101 

Figure 3-The simulated sea-level pressure 
A. Day 29 

sented coastal regions of Australia or New Guinea with 
5° X 4° resolution represent parts of the Coral Sea when 
the grid is refined to 27'2° X 2°. The hyperfine-grid his
tory tape was generated by interpolating data from the 
fine-grid tape at midnite Gl\1T of "November 20", i.e., 
at 10 A.l\1. Brisbane time during southern hemisphere 
summer. Consequently the surface temperatures of 
New Guinea and Queensland were rather high (35 to 
45 degrees centigrade). Thus some of the Coral Sea 
hyperfine-grid cells were assigned surface temperatures 
far too high for ocean. Prodigious evaporation immedi
ately took place. A center of convergence just off the 
Queensland coast completed the requirements for 
runaway precipitation, causing a local hot spot. The 
simulation was continued with the ocean temperatures 
cooled off to a maximum of 304° Kelvin, which relieved 
the Coral Sea problem. However, unrealistically high 
supersaturation at a few grid points continued to result 
from the model's inability to simulate dynamically 
forced convection. Since the algorithm for computing 
the large-scale condensation is a second-order N ewton-

B. Day 30 

C. Day 31 

Raphson procedure it appeared advisable to avoid 
trouble by artificially removing moisture in excess of 
140 percent relative humidity. Since this grossly un
realistic supersaturation typically occurs at only 1 to 7 
grid points out of nearly 13 thousand, the artificial dis
ruption of the model's moisture balance is insignificant. 

During the final 10 days of the simulation, the inter
val for calculating the non-adiabatic processes was re
duced to ten time steps (227'2 simulated minutes). The 
objective of this was to eliminate more smoothly the 
unrealistic results of the sea-temperature error. In 
retrospect, however, this was probably unnecessary: 
short comparison runs reveal that changing this inter
val from 20 to 10 time steps produces hardly any dis
cernible effect. 

The sequence of simulated events during the last 
twelve days of the simulation is depicted in Figures 3A 
thru 3L. These are maps of the surface pressure reduced 
to sea level. The contour interval is 7.5 millibars and 

D. Day 32 



102 Fall Joint Computer Conference, 1971 

E. Day 33 

H. Day 36 

F. Day 34 I. Day 37 

G. Day 35 J. Day 38 



Digital Simulation of General Atmospheric Circulation 103 

the numerical data indicate pressure excess over 1000 
millibars. In each case the simulated time is 00:00 
GMT of the indicated day. The thermal low over the 
Coral Sea should be ignored because it resulted from 
the runaway precipitation described above. 

The success of hyperfine grid resolution in simulating 
the motion and development of cyclonic storms is best 
seen from this sequence by examining the activity over 
North America and the eastern North Atlantic. The 
history of four separate storms can easily be followed 
from the twelve maps in Figure 3. 

On Day 29 a broad 1006 mb low was situated off the 
New England coast. A day later it had intensified to 
989 mb and moved 15° east. By Day 31 it had moved 
10° more and merged with the Icelandic low. 

Also on Day 31, a 992 mb low appeared over Hudson 
Bay. It rapidly intensified to 884 and one day later it 
was 16° to the east over northern Quebec. Its rate of 
progression then slowed to 9° per day and on Day 34 
its merger with the Icelandic low was in progress. 

On Day 35 a 995 mb low appeared over the Macken
zie district. This one intensified only slightly (to 993 
mb), then weakened as it passed across Hudson Bay 
and over the Hudson Strait. During its three-day life 
span it moved eastward 29°. 

The last three maps depict rather complicated cy
clonic activity over the United States. The movement 
and development seem to be heavily influenced by the 

K. Day 39 

L. Day 40 

blocking effect of a pair of high pressure regions over 
southern Canada. 

REFERENCES 

1 H G KOLSKY 
Some computer aspects of meteorology 
IBM Journal of Research and Development 11 5841967 

2 A ARAKAWA Y MINTZ A KATAYAMA 
Numerical simulation of the general circulation of the 
atmosphere 
Proc of the WMO JIUGG Symposium on Numerical 
Weather Prediction Tokyo Sect IV p 7 1968 

3 W E LANGLOIS H C W KWOK 
Numerical simulation of weather and climate 
A series of reports of the Large-Scale Scientific 
Computations Department IBM Research Laboratory 
San Jose California 

I. Physical description of the model 1969 
II. Computational aspects 1969 

III. Hyperfine grid with improved hydrological cycle 1970 
4 H C W KWOK W E LANGLOIS R A ELLEFSEN 

Digital simulation of the global transport of carbon monoxide 
IBM Journal of Research and Development 15 p 2 1971 

5 R JASTROW M HALEM 
Simulation studies related to GARP 
Bulletin American Meteorological Society 51 p 490 1970 

6 S MANABE J SMAGORINSKY 
J L HOLLOWAY JR H M STONE 
Simulated climatology of a general circulation model with a 
hydrologic cycle III. Effects of increased horizontal 
computational resolution 
Monthly Weather Review 98 p 175 1970 





Simulation of the dynamics of air and water pollution 

by LAURENCE W. ROSS 

University of Denver 
Denver, Colorado 

INTRODUCTION 

Simulation of the dynamics of air and water pollution 
rests firmly on the diffusion equation, which in simplest 
form is known as Fick's second law. The problem of dis
persion of solutes and suspensoids is much older than 
the pollution crisis, and in fact the development of the 
first useful solutions of the diffusion equation came in 
response to a need for predicting the spread of poison 
gas. 

Between the World Wars, a small group of English 
investigators pressed forward steadily with this develop
ment. The first really useful result came in 1923, and 
in 1932 Sutton developed the three-parameter formula 
that is still the most widely used in the regulations of 
several states, and in the gas dispersion correlations of 
the U.S. Army Chemical Corps. The state of develop
ment up till about 1950 is admirably summarized in 
Sutton's text.1 

The decade of the 1960s witnessed a very strong 
upsurge in the development of dynamic models for dis
persion of air and water pollution. The opening of the 
1970s finds the federal government committed to the 
rational management of all our natural resources, and 
thus we see a strong upsurge in development of air 
pollution models for urban environments, especially. 
In the realm of water pollution, thermal pollution poses 
an immediate threat that has defied realistic simulation, 
so far, and here we also observe a great upsurge in 
activity. The problem of solid waste pollution is a 
problem in systems engineering, not simulation, and 
we must neglect it here even though it has strong 
potential for environmental crisis in the 1970s. 

Despite the massive efforts, we observe very few 
fundamental advances. There are good reasons for the 
paucity of really useful, successful simulation models of 
air and water transport, and that is the subject of 
this paper. 

105 

AIR POLLUTION 

General theory 

The transport of particulates and gases in the lower 
atmosphere is influenced by all the natural mechanisms 
that give rise to motion. In general, therefore, the 
correct mathematical description of the atmospheric 
environment must include the rate expressions that 
govern the three conserved quantities of the physical 
world: momentum, energy, and mass. These general 
rate equations are shown in Table 1. 

In air pollution, the equations of energy do not enter 
the mathematical description except at definite points 
(e.g., stacks) where energy is added to the system. 
Therefore, the energy equation of Table I may reason
ably be neglected on the large scale; it will reappear 
when we consider behavior of smoke plumes. 

Therefore, the usual set of equations for description 
of air pollution dynamics is the following: 

Equation of continuity 

Equations of motion 

Equation of diffusion. 

The diffusion equation is obviously coupled to the 
equations of motion by the velocity terms. The set is 
usually further simplified by assigning 

u=u(z) 

v=O or w=O. 

It will be observed that if v = w = 0, then u = 
{constant}. Therefore, one other velocity besides the 
horizontal must be retained if the altitude dependence 
of u is to be retained. 

On a large scale, it is often convenient to retain v and 
permit the wind to possess two components parallel to 



106 Fall Joint Computer Conference, 1971 

TABLE I-The Equations of Transport 

Momentum 

(
a.u au au au) aP (aTXX aTyX aTZX) x-direction: p -+u-+v-+w- =--- -+-+-at ax ay az ax ax ay az 

y-direction: (
av av av av) aP (aTXY aTyy aTZY) 

p -+u-+v--;-+w- =--- -+-+-at ax ay az ay ax ay az 

(
aw aw aw aw) aP (aTXZ aTyZ aTZZ) + 

p -+u-+v-+w- =--- -+-+- P(jz at ax ay az az ax ay az z-direction: 

Energy: 

Mass: 

Continuity: 

(
aT aT aT aT) (a2T a2T a2T) pCp -+u -+v -+w - =k -+-+-at ax ay ax ax2 ay2 az2 

aC aC ae aC (a2c a2c a2C) -+u-+v-+w-= Dx-+Dy-+Dz -at ax ay az ax2 ay2 az2 

au av aw -+-+-=0 ax ay az 

Assumptions: Constant density (P), thermal diffusivity (k/pC p), and mass diffusivity (Di), and absence of viscous dissipation contri
butions to energy. 

the earth. This is the procedure adopted by Hino.2 

On an intermediate scale (,-....;miles), the coordinate 
system is often defined such that w = v = 0, and a mean 
horizontal wind velocity u is used. On the very smallest 
scale ( ,-....; 1 000 yards), a velocity profile is assumed 
a priori; the theory of turbulent flow usually leads to 
adoption of the Prandtl mixing-length model (see for 
example Randerson3) : 

J<.u/u* = In (z/zo) +const. 

Alternatively, a power-law approximation is sometimes 
used for convenience in computation, or in similarity 
solutions. 

The diffusion coefficients present a different sort of 
theoretical problem, because they must always be 
modeled. Quite often D,; is neglected in view of the 
assumption 

u(ac /ax»>Dx (a2C /ax2). 

The lateral and vertical diffusion coefficients, Dy and 
D z, have therefore received principal attention, espe
cially D z• However, the best results are still quite 
empirical (see Pasquill) .4 

At this point, it is convenient to mention the 
Richardson number, which is defined as 

Ri = (g/To) [(dT /dz) + r] . 
(du/dz) 2 

The Richardson number may be regarded as the ratio 
of the thermal driving force for vertical air motion to the 
vertical force arising from turbulent shear. It is the 
basic parameter for micro meteorological motion, in the 

same sense that the Reynolds' number is basic to 
confined fluid motion. For example, the vertical diffu
sion coefficient Dz is often expressed as a function of 
Ri as follows: 

Dz = J<.2Z2(du/dz) (l-o-Ri){J 

where {j is usually taken as 72. On a small or inter
mediate scale, where the diffusion coefficient cannot be 
averaged, the Richardson number may have to be 
known. * 

At this point, we have reduced the diffusion equation 
to the form: 

aC = ~ (Dy ac) + ~ (Dz ac) -u aC -R. (1) 
at ay ay az az ax 

The transient equation is practically never of interest, 
and R is rarely considered (of this, more below), and 
the remaining equation has the following general 
solution (for a point source of emission) : 

Q [1 (y2 Z2)] C=-_-exp -- -2+2 . 
7rUo-yO-z 2 0-Y 0-z 

(2) 

Particular solutions, based upon particular choices of 
the form of o-y and O-z, are shown in Table II. The 
Bosanquet-Pearson solution, for example, carries the 
implicit assumption that5 

D1I cx:ux 

DzCX:uz. 

* Note that, in general, Ri=Ri(z). 



Modeling urban air pollution 

Equation (2) is the basis of most current air pollution 
models for urban areas. There have been numerous 
applications (see Tikvart6 and Stern7), differing mainly 
in the treatment of the source field, assignment of U'JI 

and u z, and whether or not short-range wind structure 
is analyzed. It should be noted that the scale of air 
pollution dispersion suggests the use of the asymptotic 
form of equation (2), viz., 

(3) 

Miller and Holzworth8 are the principal exponents of 
this approach. Bowne9 has reported a digital simulation 
of air pollution patterns over the State of Connecticut, 
based on Equation (2). Hino2 solved a coupled system 
involving the two-dimensional diffusion equation and 
the equations of motion (N a vier-Stokes) in two dimen
sions to handle the problem of topographical variations. 
Interestingly, the grid square dimensions are usually 
either 1 mile or 1 km in all investigations. 

The basis of the urban modeling method, when using 
Equations (2) or (3), is to employ experimental data as a 

TABLE II-Practical Solutions of the Diffusion 
Equation for Air Pollution 

(Case of Continuous Point Source in a Wind) 

1. Sutton equation 

O"y/x=(1/V2) CyX-n/2, O"z/x = (1/V2) CzX-n12 

C = (2Q/7rCyCZUXx2-n) 

X exp {-xn- 2[(y2/Cy2)+(Z2/Cy2)]} (II.l) 

Note: n = :!i for neutral atmosphere, ~~ for strong lapse, 

7:2 for strong inversion 

2. Calder equation 

O"y/x=V2 (aku*)/ux , u z=V2 (ku*)/ux 

C = (Qux/2k2au*2x2) exp {- (JLx/ku*x) [(y/a) -zll (II.2) 

Note: Not Gaussian! 

3. Bosanquet-Pearson equation 

U'y/x=q, O"z/X=V2 p 

C = (Q/2 3/27ruxpq X2) exp [- (y2/2q2X2) - (h/px)] (II.3) 

4. Modified Sutton equation 

ny-l nz-l 

U'y/X=V2 Cyx ,U'z/x=V2 Czx 

C = (Q/27rC yCZuxX ny+nz) exp [_7:2(y2/C y2X2nz)] (II A) 

Simulation of Dynamics of Air and Wate!' Pollution 107 

Emission 
strength, 
Ib/day/sq mi 

Highest level • 

I ntermediate level ~ 

Lowest level 0 

Figure I-Typical pattern of pollution emission strengths. 
Typical grid dimension is 1 mile square 

means of assigning each grid square as a point source of 
given emission strength (Figure 1). It is wasteful of 
computer storage to maintain more than a few levels of 
emission strength in the model (e.g., three levels in 
Figure 1). Then the mean wind speed at a given direc
tion is applied, together with assignments of U'y and U z 

based upon the model chosen, and concentration in a 
given cell is computed as the resultant of the con
tributions from other cells, above some predetermined 
lower limit of concentration. Figure 2 illustrates the 
principle. 

Day-to-day 'pollution control requires a somewhat 
different approach. Here the problem is to produce the 
pollution pattern (as in Figure 1) from moment-to
moment measured data, then to apply (2) or other 
predictor relation to obtain estimates of pollution 
levels. Figure 3 shows the situation with respect to data 
monitoring stations. With distance and position of 
emission sources established with respect to wind 
direction, it is feasible to estimate the concentration of 



108 Fall Joint Computer Conference, 1971 

o 

/ 
Wind 
direction 

Figure 2-Pollution isopleths resulting from applying dispersion 
model to measured emission patterns 

~_--+-_----.:.. The perfect 
mixing zone 

Figure 3-Features of an emission monitoring system for air 
pollution control. It should be noted that individual sources are 

identified 

a given pollutant at any position, if its stoichiometry is 
known. For example, the use of fuel of known sulfur 
content will produce a given amount of 802. This is the 
model described by Takamatsu et al., 10 for air pollution 
control in Osaka. Furthermore, Takamatsu's model 
considers a smaller scale than that of Bowne9 or 
Randerson,3 and recognizes that the region near ground 
level is subject to different meteorological patterns 
than higher regions. This leads to consideration of a 
separate layer, the "complete mixing zone," where the 
diffusion equation applies, the zone above being assumed 
a perfect sink for pollutants. This also resembles the 
"box model" of Lettau.u 

The so-called complete mixing zone has not been 
identified formally with the famous "inversion layer," 
nor is the APCO definition of "mixing depth" the same 
as the depth of this zone, necessarily. Indeed, the failure 
to simulate inversion effects is one of the principal 
embarrassments of simulation efforts to date. By 
whatever definition, it is clear that a criterion for a 
layer of finite depth is required. The only theoretical 
basis for such a finite depth is the stability height of 
Monin and Obukhov,I2 formalized in 1954 as 

(4) 

This is essentially equivalent to a normalization of 
height against a Richardson-number criterion. It 
requires a knowledge of friction velocity u* and heat 
flux q, but this is not excessively demanding and the 
present author believes that the stability height 
deserves more use. 

Special cases 

Although "special," these may be the cases of more 
intense public interest. For example, the simulation of 
smog dynamics is obviously unsatisfactory, for other
wise the means of smog control would have found their 
way into legislation instantly. The reaction kinetics of 
smog processes has been deciphered with reasonable 
confidence, but the physical influences-diurnal tem
peratures and winds, air-water interactions, etc.-are 
still mysteries. For example: What is the ultimate fate 
of smog? Noone knows. 

The dynamics of smoke plumes has received intensive 
study, and seems to be well understood (see for example 
References 13, 14). This case is especially interesting 
because it requires simultaneous consideration of the 
equations of momentum, energy, and mass (Table I). 
Practically no simplifications are available in the 
general case, and this becomes a demanding exercise in 



Simulation of Dynamics of Air and Water Pollution 109 

computer simulation. Another feature of the smoke 
plume problem is that it is a natural convection problem, 
which fact invites the application of two-dimensional 
analysis by combination of variables and computation 
of stream functions; this approach has not been applied, 
to date. 

Future directions for air pollution simulation 

The basic missing ingredient in air pollution simula
tion is meteorological measurement. Emission measure
ments, on the other hand, are fairly well advanced, 
except that we still have not had the political courage 
to pinpoint individual sources of strong emissions. * 
This lack of measurement is surprising, because it 
would be simple, and a series of brilliant experiments by 
English scientists have provided ample verification of 
the theory. The quantities that require measurement 
are not in doubt. 

The current programs in various cities provide masses 
of data for regression analysis. However, these obviously 
have application only locally, and only then for limited 
periods of time. Thus, they cannot be used for predic
tion except in a statistical sense, and they are useless 
for control. To rectify this situation, it is merely 
necessary to obtain data on the same basis that the 
theoretical models are constructed. This calls for wind 
speed and direction (at other points than just the local 
airport !), and the wind and temperature profiles in 
vertical direction. The "stability depth" must also be 
established, but the other measurements will probably 
make this automatic. 

Chemical change in the atmosphere has received very 
little consideration up to the present. Most simulation 
experimen ts have been based on sulfur dioxide, over
looking the fact that about three-fourths of the S02 
emitted to the atmosphere is converted to H2S04 which 
is rapidly removed by condensation. Thus (for example) , 
a downwind variation will probably yield inaccurate 
conclusions about the diffusion coefficients, because 
reaction is also a significant mechanism of pollutant 
elimination. Smog pollution has prompted some impor
tant studies of reaction kinetics, but the complexity of 
smog reactions and the physical influences on smog 
(moisture, sunlight, mountain barriers, etc.) make this 
a very difficult subject. Thus, we are in the unfortunate 
position of lumping chemical changes into diffusion 
coefficients, which leads us to conclude that we must 
obtain diffusion coefficients for each separate polluting 
species. Most important of all, mechanistic models of 
diffusion coefficients become meaningless. 

* The Japanese, to their credit, have done this. 

Reaction in the atmosphere should logically be 
simulated by supplying a functional form for R, the 
reaction rate. In the case of S02 and CO, this form may 
be satisfied by a first-order assumption, i.e., 

R=-kR·C. 

The literature contains a few values for kso2' but they 
vary over two orders of magnitude, which probably 
points to the influence of moisture, associated fly ash, 
sunlight, and possibly ozone. There is practically 
nothing available for other gases. Alternatively, the 
disappearance of gaseous species may be simulated by a 
sink term (constant) in the diffusion equation, but no 
investigators have reported this method. 

In the case of particulates, there is loss by deposition. 
This generally calls for inclusion of v (aC / az) in the 
diffusion equation, and a suitable boundary condition 
at the earth's surface, e.g., 

lim C(x, z) = (Q/u)o(z) 

as suggested by Calder .15 

Smoke plume simulation is seldom the subject of 
computer simulation. Nevertheless, plumes have been 
studied extensively, because of their importance in 
prediction of pollution from stacks. The situation is 
very complex, combining the influences of fluid motion, 
energy, and diffusion, so that analytical solutions are 
not reasonable to seek. Csanadyl3.14 is the outstanding 
investigator in the field; there is a useful review of the 
subject by Brummage.16 A typical mathematical 
formulation of this situation for the case of vertical 
plumes is given by 

a a 
- (prw) + - (pru) =0 
az ar 

a a (()') a - (prw2)+ - (pruw) =r - pg+ - (rr) 
ar ar ()e ar 

a a 1 a 
- (prw() + - (pru() = - - - (rF) (5) 
az ar Cp ar 

When written in cylindrical coordinates, which is 
natural for vertical plumes, the use of analog computer 
techniques is possible (see for example Reference 17). 

SIMULATION OF WATER POLLUTION 
DYNAMICS 

General theory 

The dispersion of pollutants in water is identical to 
dispersion in air, at least in principle. The general 
equations of transport (Table I) still apply. 



110 Fall Joint Computer Conference, 1971 

~ 3 
Cl. 

Z 
~ 
l-
e:( 2 
a: 
I-
Z 
lJ.J 
U 
Z 
0 I U 

0 
0 10 

" \i 

Measured data 

\h,.' r Correlation (u = 0.8, D = 5.0, 

"',"\1 MIA 4n = 0.325) 

'\\ 
'2\ '\.. ~ Co~relation ~s above, corrected for 
'(" dally advectlve variation 

'''>,'''- ..... 
, "'-
~'tl..... " 

-n,. '-~~ 

20 30 
TIME, DAYS 

40 

Figure 4-Dispersion of pollutant in the Potomac River as 
function of time, 2.3 miles downstream of injection point17 

However, measurements in waterways are somewhat 
more difficult to obtain than measurements in air, and 
we find that the diffusion equation is universally written 
as 

(6) 

O'Connor18 seems to be the only investigator who has 
applied two-dimensional modeling, although numerous 
authors have recognized that the general model must 
be multi-dimensional. The usual one-dimensional 
expression obviously lumps lateral and vertical dis
persion effects into the longitudinal parameters D and 
u. Furthermore, the velocity u is usually assigned as 
the overall average, 

u=Q/A 

so that the burden on D is all the greater. 
Despite the theoretical reservations that must 

surround such a simplified model, it has been remark
ably successful. The advantages of the model-two 
parameters plus Gaussian form-are considerable, 
because waterways do exhibit this form of behavior 
(Figure 4) .19 

The model according to Equation (6) may describe 
either pollutant, expressed as BOD or COD, or dis
solved oxygen (DO). In the case of DO, a suitable 
boundary condition is required, usually 

{dC/dz=kL(C*-C) }z=o. 

Sometimes, the right side of this expression is added to 
Equation (6), implying that aeration of the waterway 
is a homogeneous process; this is incorrect. 

Equatiori (6) often requires addition of a reaction 
term R. This may describe either reactive decay of the 
dissolved pollutant or "dead zones" describing imperfect 
mixing, as defined by Krenkel. 20 

Lumped-parameter simulation 

The simulation of real streams presents several 
problems, especially those of tributary influx and the 
mainstream velocity variation (meander). This has 
led several investigators to consider that simulation by 
lumped-parameter formulations is required, in order to 
absorb all the distorting influences. The method has 
been used for many years by individual industries to 
describe dispersion of their pollutant discharges, but the 
definitive formulation is given by Thomann21 in the 
following form: 

Vi(aci/ at) = Qi[~iCi-1 + (1-~i) Ci]-Qi+1[~u+1Ci 
+ (1-~i+1) Ci+1]+Ei ( Ci- 1-Ci ) 

+Ei+1(Ci-Ci+1) +kViCi+Pi . (7) 

A good example of the application of this method is 
reported by Hetling.22 The method is obviously suitable 
for analog simulation if the parameters are available, 
or if the data are sufficient to permit extraction of the 
parameters by potentiometer twiddling or formal 
methods.23 

The lumped-parameter method of simulation can 
always be made to succeed if (and only if) the data 
supply is sufficient to permit evaluation of the param
eters. This is the great virtue of the lumped-parameter 
method. On the other hand, the method contributes 
nothing to theory, and the parameters cannot be 
extended to other waterways or even to different 
situations on the same waterway. 

Simulation of thermal pollution 

Thermal pollution has emerged as a major problem 
because our waterways will soon be saturated with heat, 
if the present rate of growth is maintained. Nuclear 
power plants are especially serious offenders in terms 
of waste heat. 

The dispersion of waste heat in waterways requires 
consideration of the energy equation (Table I). In lakes 
or ponds, or in well-behaved waterways, the simulation 
may be based on straightforward application of the 
energy equation, viz., 

aT /at= \72·DT-u(aT lax) (8) 

However, the boundary conditions of thermal pollution 
are difficult, because they must include the effects of 
radiation, conduction, and evaporation at the waterway 
surface: 

{-D(aT laz) =hr(T04- T4) 

+hc(To- T) +ke(p*- p) } z=O. 



Simulation of Dynamics of Air and Water Pollution 111 

The difficulty of defining waterway velocity, in all but 
the simplest situations, has discouraged the use of this 
formulation. Edinger24 has used a linearized version, 
lumping all boundary effects into a single coefficient of 
exchange, for the case of a cooling pond. The nonlinear 
radiation term may be avoided by simply specifying 
the radiative flux, which may be taken as constant over 
a given period. 

Simulation is usually achieved by lumped parameters. 
Jaske25 has the principal body of work here, but 
Yearsley's work26 best represents the current thinking 
of the federal water establishment. The federal govern
ment has published a manual that suggests modeling of 
thermal pollution by a simple first-order decay law. 

Modeling of thermal pollution by two-layer repre
sentations had some early success, but has been 
neglected in recent years. The principle, obviously, is 
based on considering a hot layer atop a cold layer; 
this is a very reasonable model, as we have observed in 
the laboratory. The only basic difficulty with the con
cept is the necessity to describe the shear stress at the 
two-laver interface, but this should be capable of 
extraction by well-known methods if sufficient data are 
available. 

Estuarine salinity models 

The dynamics of salinity exchange in estuaries is not 
exactly water pollution dynamics, but is interesting 
because (1) salinity exchange is a problem of differ
ential densities, similar to thermal pollution, and (2) 
some very fine work has been performed in this field 
probably foreshadowing future developments in water 
pollution. 

For example, the development that Rattray27 uses in 
describing steady-state circulation in fjords is as 
follows: 

au au 1 a a ( au) u- +w- =- ~- (P+Y2puo2) + - A-
ax az p ax az az 

a a 
- (ub) + - (wb) =0 
ax az 

u as +w as = ~ (Dz as) 
ax az az az 

(9) 

Still required is a relation between density and salinity, 
p(S) usually taken as a linear function. Then intro
duction of stream functions and combined variables 
yields (as usual) a nonlinear set that can readily be 

resolved by computer methods. The number of param
eters is formidable, but the results are promising. 

Future directions for water pollution simulation 

Techniques of water pollution simulation are essen
tially at a standstill. This fact reflects the rapidly 
improving water pollution situation, and the difficulty 
of improving upon existing two- and three-parameter 
models. 

Thermal pollution is the one major area where the 
problems are growing rapidly, and this is where simula
tion will probably be needed soonest. The available 
correlations are not adequate, and recourse to methods 
based upon the energy equation seems certain, sooner 
or later. 

We should probably expect no improvement in the 
theory, in the foreseeable future. In contrast to the 
atmosphere, which is vast enough to be described by 
more or less general theory, waterways are highly 
individualistic. The problem of meander is fundamental, 
and it will resist simulation for some time to come, until 
the need for understanding of our crowded waterways 
on a short-range scale provides the stimulus. 

CONCLUSIONS 

Simulation of air and water pollution dynamics has 
developed rapidly, but will probably experience no 
outstanding developments in the 1970s. The theoretical 
basis is satisfactory, and the current generation of 
computers is entirely adequate for the task of simula
tion. 

The chief restrictions on the development of this field 
are those of measurement. N either air pollution nor 
water pollution measurement programs, as presently 
implemented in the U.S., provide sufficient data for 
control or for generalizations that may be applied to 
the nation's urban areas. 

In air pollution, the simulation of urban pollution 
patterns (especially smog patterns) is moving steadily 
forward. However, the present author is convinced that 
several basic considerations are being neglected, which 
could easily be repaired by attention to the theory so 
painstakingly developed by foreign investigators. It is 
difficult to resist the conclusion that political con
siderations outweigh the scientific considerations. 

In water pollution, the theory ends with two
parameter Gaussian dispersion models. All efforts past 
this point have resort to linear, lumped-parameter 
models. There is room for breakthroughs here, but there 
is no particular impetus for them, so we should not 
expect them in the 1970s. The one possible exception is 



112 Fall Joint Computer Conference, 1971 

thermal pollution, which may become a crisis item in 
the 1970s. 

Since Japanese cities have long since resorted to fue'l 
consumption regulation based upon modeling of air 
pollution dynamics, it seems very logical to expect 
similar considerations to be applied in the U.S. in the 
foreseeable future, in both air and water pollution. 

REFERENCES 

1 0 G SUTTON 
Micrometeorology 
McGraw-Hill New York 1953 

2 M HI NO 
Atmos Environment 
2541 1968 

3 D RANDERSON 
Atmos Environment 
4615 1970 

4 F PASQUILL 
Atmospheric diffusion 
Van Nostrand New York 1962 

5 A I DENISOV 
Izvest Akad N auk SSSR S.;r Goefix 
6834 1957 

6 J A TIKVART 
Computer simulation and air quality control 
Paper Published by NAPCA 1970 

7 A C STERN Ed. 
Proceedings of Symposium on Multiple-Source Urban 
Diffusion Models US Environmental Protection 
Agency APCO Publ No AP-86 1970 

8 M E MILLER G C HOLZWORTH 
Journal Air Pollution Control Assoc 
17 46 1967 ibid 232 

9 N E BOWNE 
Journal Air Pollution Control Assoc 
19570 1969 

10 T T AKAMATSU et al 
Computer control system for air pollution 
Published by Kyoto University and the Osaka 
Prefectural Govt 1967 

11 H H LETTAU 
Physical and meterological basis for mathematical models 
of urban diffusion processes 
In Stern, ACed. Proceedings on Symposium on 
Multiple-Source Urban Diffusion Models US EPA APCO 
Publ No AP-86 pp 2-1 through 2-26 1970 

12 A S MONIN A M OBUKHOV 
Trudy Geofiz In-ta AN SSSR No 24 p 1511954 

13 G T CSANADY 
Journal Applied Meterology 10 36 1971 

14 P R SLAWSON G T CSANADY 
Journal Fluid Mech 47 33 1971 

15 K L CALDER 
Journal Meterology 18 413 1961 

16 K G BRUMMAGE 
Atmos Environment 2 197 1968 

17 M P MURGAI H W EMMONS 
Journal Fluid Mech 8 611 1960 

18 D J O'CONNOR 
Journal San Eng Div ASCE 91 23 1965 

19 L W ROSS 
Simulation 14 95 1970 
T SAVILLE 
Bulletin No 125 Florida Eng and Ind Exp Sta 
August 1966 

20 J R HAYS P A KRENKEL 
Advances in water quality improvement 
Vol 1 p 111 Univ of Texas Press Austin 1968 

21 R V THOMANN 
Journal San Eng Div ASCE 89 No SA5 1 1963 

22 L J HETLING R L O'CONNELL 
Water Resources Research 2 825 1966 

23 E S LEE I WANG 
Journal Water Pollution Control Fed 43 306 1971 

24 J E EDINGER J C GEYER 
Journal San Eng Div ASCE 94 611 1968 

25 R T JASKE J L SPURGEON 
Water Research 2 777 1968 

26 J YEARSLEY 
A mathematical model for predicting temperatures in rivers 
and river-run reservoirs 
Working Paper No 65 US Dept of Interior FWPCA 
March 1969 

APPENDIX 

SYMBOLS 

a 
A 

b 
C 
Ci 

D 

Parameter of Calder's equation (Table II) 
Area of waterway cross section; vertical 

coefficient of turbulent velocity 
Width of waterway 
Concentration of pollutant species 
Concentration of pollutant species in seg-

ment i (Equation (7)) 
Oxygen saturation concentration in water 
Heat capacity 
Diffusion-related coefficients of Sutton's 

equation (Table II) 
Diffusion coefficient of energy or mass in 

water (x-direction) 
Diffusion coefficients in respective directions 
Turbulent exchange coefficient (Equation 

(7) ) 
Heat flux function 
Gravitational acceleration 
Film coefficient of conduction 
Film coefficient of radiation 
Rate constant (Equation (7) only) 
Evaporation film coefficient 
Oxygenation film coefficient 
Reaction rate constant 
Monin-Obukhov stability height 



n 

p 

r 
R 
Ri 
S 
t 
T 
To 
u 
Uo 

U* 

Parameter (Table II) 
Parameters (Table II) 
Partial pressure of water vapor; static hy

draulic pressure; parameter of Bosanquet
Pearson (Table II) 

Vapor pressure of water 
Source term, segment i (Equation (7)) 
Heat flux (Equation (4)); parameter of 

Bosanquet-Pearson equation (Table II) 
Rate of pollutant emission 
Pollutant flux in segment i (Equation (7)) 
Radial dimension 
Reaction rate 
Richardson number 
Salinity of waterway 
Time 
Temperature 
Surface temperature 
Velocity in horizontal (x) direction 
Mean velocity 
Friction velocity, vi TO/ P 

Simulation of Dynamics of Air and Water Pollution 113 

u 
v 
w 
Vi 

x,Y,z 
Zo 

{3 
r 
o 
K 

P 

T 

TO 

Mean velocity in horizontal direction 
Velocity in lateral (y) direction 
Velocity in vertical (z) direction 
Volume of segment i (Equation (7)) 
Cartesian coordinates 
Roughness height 
Parameter 
Adiabatic lapse rate 
Dirac delta function 
Karman constant 
Potential temperature 
Reference potential temperature 
Equilibrium potential temperature 
Correction for flow in segment i (Equation 

(7)) 
Density 
Parameter 
Standard deviations ill the respective 

directions 
Shear stress 
Shear stress at ground level 





Programming the war against water pollution 

by DEXTER J. OLSEN 

International Business Machines Corporation 
Kingston, New York 

INTRODUCTION 

In every communications medium, today, including 
newspapers and magazines, television and radio, and 
even in personal conversations, we are constantly 
alerted to the problems of pollution. More often than 
not, we are asked to do something about these problems. 
Most of us are learning of little things we can do 
individually, in our personal lives, to help reduce 
pollution. 

As for the bigger things, we tend to sit back and say 
"'they' should do something about them," and in 
saying "they," we are attempting to shift the burden to 
either our legislators or the proverbial "George." It is 
the intent of this paper to explore what we in the com
puter programming profession can do to assist in the 
alleviation of our water pollution problems. 

Many of those who have entered the programming 
profession during the last few years, have frequently 
come directly from the college environment and 
increasingly are the products of specialized computer
science curricula. Our older colleagues, on the other 
hand, usually entered into programming as an out
growth of, or even as an alternative to, other vocational 
backgrounds. They represent various degrees of experi
ence in mathematics, chemistry, finance, business, 
physics, biology, engineering-the list is almost endless. 
It is this group of people that I especially want to 
address, because many of these disciplines that are 
represented among us can be applied in some manner to 
programming the war on water pollution. 

It is not my intent to go very deeply into particular 
phases of the problem at hand, but rather, to cover the 
topic in a general way, talking about some of the things 
that have been done to date, and pointing out some of 
the things that have yet to be done, both in the way of 
technical items, and in bringing the computer closer to 
the engineer. It is hoped that in pointing out some of the 
problems involved, that a few sparks may ignite in some 
of your minds as to how your particular expertise, even 

115 

though seemingly not associated with water pollution, 
might be put to use, or at least combined with the 
expertise of others, to assist in this battle. 

BACKGROUND 

For years a few dedicated souls and a very few 
professions have been waging an uphill battle to try to 
interest the legislators and the general public in the 
need for action on this front. One of these professions 
has been civil engineering and, more particularly, the 
little known field of sanitary engineering. It is these 
engineers who are responsible, through their training, 
for the research and design of the facilities and struc
tures which make the water we use fit for human needs, 
and to cleanse our waste waters to an acceptable 
tolerance before discharging them into a nearby river, 
stream or lake. 

With all the importance being attached to this subject 
today and, after taking a look at the immense job that 
lies ahead, it is discouraging to find how little the 
electronic computer is being used in this battle. 

Civil engineers were among the early users of com
puters for the more mathematized disciplines, such as: 
surveying, and the design of highways, bridges, and 
buildings. Only recently, however, have they begun to 
use computers in the areas requiring engineering 
judgment and decision-making. Even at that, many 
civil (and, especially, sanitary) engineers have been 
slow in utilizing computers. To a large extent this may 
be attributed to the fact that, unlike all too many 
federal projects, where large amounts of taxpayers' 
money always seem to be available, the sanitary 
engineer, until recently, has had to work with the 
rather limited funds from the local municipality, and, 
therefore, has felt that he must stay with the tried and 
proven methods of construction, treatment techniques 
and methods of design, rather than take chances with 
unproven innovations. 



116 Fall Joint Computer Conference, 1971 

TABLE I -Volume of Construction Contracts (in millions of dollars)* 

ACTUAL 

ITEM 1967 1968 1969 

Sewerage 1,179 1,386 1,415 
Waterworks 970 887 980 

TOTALS 2,149 2,273 2,395 

Another feeling still prevalent today among many of 
these engineers is that by turning their design problems 
over to a computer they will lose control of their designs 
and they will no longer bear their individualistic style. 
In spite of our daily exposure to it the computer is 
something that many others still cannot understand 
and many are afraid of. \ Fortunately these fears are 
being overcome slowly as the more adventurous 
engineering firms begin to use computers. 

In this country there are approximately 70,000 civil 
engineers and only about 12,000 sanitary engineers. 
Many of these people work within very small con
sulting engineering firms that cannot afford the cost of 
any but the smallest of computers, or must resort to 
some form of time-shared computer use. Thus, the 
economic circumstances have also contributed to this 
slow acceptance of the computer. The advent of time
sharing systems is helping to alleviate this problem. 

SIZING THE JOB AHEAD 

Weare all aware by now that one of the principal 
enemies of our country is pollution, and, according to 
some, we have barely begun to scratch the surface as to 
cleaning it up. But just how big is the job? The ultimate 
costs are difficult to determine and at best are educated 
guesses. It is a fact, however, that the volume of con
struction for public water and sewerage facilities, 
combined, in 1967 amounted to approximately $2 
billion and by 1970 had reached about $3 billion. By 
1980, this figure is expected to triple. At the beginning 
of 1971, the backlog of new construction planning for 
water and sewerage facilities was over $16 billion (see 
Tables I and II). This latter figure represents in the 
neighborhood of $400 million worth of actual design 
work, of which 50-60 percent could be done on com
puters if the proper programs were available. 

This year the federal government, as well as many of 
the states, has taken action to make even more money 
available to local municipalities and sanitary districts. 
The construction trade journal Engineering N eW8-

ESTIMATED 

1970 1971 1972 1975 1980 

2,050 2,500 3,250 3,950 6,125 
1,090 1,200 1,350 2,125 2,750 

3,140 3,700 4,600 6,075 8,875 

Record* states that "for the next two years, sewerage 
construction will set the pace for gains in water use and 
control. The projected volume for 1972 is more than 
double 1969's dollar volume, and three and one-half 
times 1966's volume, yet it won't be nearly enough to 
bring river and stream pollution under control. Annual 
volume will have to redouble later in this decade to 
accomplish that goal." 

TABLE II-Backlog of New Construction Planning 
(in millions of dollars)* as of December 31 

ITEM 

Sewage 
Waterworks 

TOTALS 

1967 

7,635 
4,152 

11,787 

1968 

8,029 
3,983 

12,012 

1969 

9,487 
4,077 

13,564 

1970 

12,399 
4,019 

16,418 

* As compiled by Engineering News-Record, see bibliography. 

One segment of the economy that has not been 
affected adversely during the recent recession has been 
the design and planning of anti-pollution facilities. All 
indications are that the volume of construction and the 
necessary design and planning in this area will be main
tained at even higher levels over the foreseeable future. 

DISSECTING THE JOB 

Before we look at what the unprogrammed needs of 
the sanitary engineer are, we might do well to look over 
his shoulder to see what he is doing now. The range of 
problems he encounters might be categorized as follows: 

1. Collection of data 
2. Analyzation of the collected data 
3. Population studies 
4. Hydraulic studies 

* "EN-R's 96th Annual Survey," Engineering News-Record, 
vol. 186, no. 3, page 23, January 21 1971. 



5. Analyzation of existing facilities 
6. Biological and chemical studies 
7. Modeling of existing and proposed facilities 
8. Hydrologic and water basin monitoring 
9. Modeling of the body of water that will receive 

the treatment plant effluent 
10. Implementing of design concepts 
11. Structural design implementation 
12. Selection of equipment to meet the various 

design criteria 
13. Determination of operating costs 
14. Process control 
15. Planning and monitoring construction progress 
16. Development of specifications 
17. Estimating of construction costs 
18. Development of detailed construction plans 
19. Researching new treatment techniques. 

Collecting and analyzing data 

The data available in many instances today consists 
primarily of operating records of existing treatment 
plants. This data is adequate to meet the requirements 
of the state health departments, but is not suitable for 
providing meaningful information for use in designing 
new facilities or adding to existing plants. More frequent 
sampling and metering of incoming sewage and of 
effluent discharges, as well as more adequate sampling 
and metering of the receiving waters, are only some of 
the additional data required. Of course, with more data 
to collect and more data to analyze, adequate metering 
and telemetering systems must be made available, as 
well as sample-analysis systems. Means for adequately 
analyzing this increased volume of data must also be 
developed. 

Population studies 

Before analytical or design studies for any particular 
community can be started, population studies must be 
made. With all the census information available today, 
the problem of population studies is still quite a head
ache. In any given community, population figures must 
be broken down into quite a variety of districts for 
numerous functions, such as: school districts, voting 
districts, electric power districts, water districts, sewer 
districts, park districts, tax districts, and land zoning 
districts. In many instances, the boundaries of each of 
these types of districts do not coincide with any of the 
others. A population model or analyzation system would 
be much appreciated by the planners concerned with 
each of these endeavors. 

Programming War Against Water Pollution 117 

Armed with the proper tools and information to 
establish the existing population within a given type of 
district, the analyst may then merge information per
taining to projected land use and other demographic 
data to determine the population totals for which he 
must design. 

Modeling and simulation 

A bare beginning has been made in the way of 
modeling existing and proposed treatment facilities. A 
look at some of the modeling attempts may suggest 
extensions that need to be done. Perhaps some of the 
modeling and simulation work that has been done in 
some other fields, such as chemical processes, might be 
adapted for use with water and waste treatment 
facilities. 

Modeling of waterways 

Models of flow in open channels, such as rivers, 
irrigation waterways, and flood control channels have 
principally concentrated on the flow, or even the dis
persion of a pollutant, being distributed evenly over the 
cross section of the channel. Two-dimensional or even 
three-dimensional models need to be developed to help 
understand the mixing action of pollutants. What 
happens when these same pollutants are discharged into 
a river emptying into a tidal water or directly into salt 
water? There is known to be a "salinity wedge" that 
moves in and out of the mouth of a river with the tides 
and with the density of the constituents of the river 
water. What effects will this salinity wedge have on the 
dispersion of river water and its pollutants? 

Little, if any, modeling or analysis has been done on 
the so-called "conservative" pollutants (chlorides, non
biodegradables, etc.) and their reactions, both biologi
cally and chemically, and their mixing characteristics 
in a receiving body of water. Models of the biological 
and chemical reactions coupled in some manner with 
hydraulic models need to be developed. In addition, 
models may tell us what effect thermal pollution has on 
the biological, chemical and mixing characteristics of 
the river, lake or ocean. To make these models work, 
more and better data must be collected, which em
phasizes once more the need for adequate data acquisi
tion systems. 

Another area in which models can be useful is as a 
guide in determining what data to collect, as well as 
where and how much to collect. In this way the value of 
the data may be determined prior to the collection 
effort and detailed modeling studies. 



118 Fall Joint Computer Conference, 1971 

Modeling of treatment facilities 

A start has been made in the modeling of waste 
treatment facilities which will help a consultant in 
determining the size and cost of certain treatment units. 
Much more needs to be done to cover the spectrum of 
possible treatment methods. Models to allow a con
sultant to determine the best and least costly type of 
treatment facilities for a particular municipality need 
to be developed. 

A . comprehensive computer model can assist the 
engineer in determining not only the best type of 
treatment facilities for a given situation, but can also 
help determine the environmental costs and benefits to 
the affected geographical region. For instance, many 
rivers serve as both a water supply source and a 
dumping ground for waste disposal for a series of 
communities. A model can assist engineers in studying 
the effects the water usage has on the various com
munities the river services, e.g., the costs, effects, and 
recreational benefits on farmland, lakes, streams, air, 
parks and general land use. 

Models of the operating characteristics of a particular 
plant would be helpful not only during the design stages, 
but in helping to keep. the plant operating efficiently 
d.uring later years. Such model studies could be tied in 
to process control systems to run the plants. One of the 
first computer-controlled municipal sewage treatment 
plants is scheduled to go into operation in Nassau 
County New York, during the fourth quarter of this , . 
year. Another is scheduled later for San Jose, Cah-
fornia. 

However, as with most "firsts," these probably will 
be rudimentary compared with those that will be 
constructed in the future. But two out of the thousands 

. of possibilities across the country make it apparent that 
many more, with many more variations, must be 
devised. 

Many communities have either no treatment facilities 
or have what is called "primary treatment" (gravita
tional the removal of only the readily settleable solids). 
As the various states establish more stringent anti
pollution requirements, more and more communities 
will be forced to go to more complex secondary or even 
tertiary treatment (processes providing different degrees 
of oxidation of the effluent resulting from the prior 
treatment), which becomes mucl). more critical in their 
operating procedures. Computer control of these plants 
will soon become a must, and some say it is already a 
must. 

Modeling of pipelines 

With the ever increasing demands for more water, 
many of the larger cities arehaving to go greater dis-

tances than ever before to obtain adequate supplies. 
This means that long water transmission lines must be 
built to transport the water. Such a pipeline may 
require a number of pumping stations placed at intervals 
along its length. The designer must determine the 
number, frequency, and location of these pumping 
stations along with determining the size (diameter) of 
the pipeline. A computer model could combine these 
variables with the possible variation in the number of 
pumps on the line, the variable hourly demand for 
water, and the storage facilities at the city to determine 
the best arrangement of pumping stations and sizes of 
pipeline. Optimizing the design could save the tax
payers a lot of money. After completion of construction, 
computer control of the pumping stations could be 
employed to maintain operating efficiencies. I have been 
informed that very little programming has been done 
in this area. 

The problem of "water hammer", or hydraulic 
transients is of immense concern on large pipelines. A '. . sudden surge of pressure IS created by the sudden closmg 
of a valve in the pipeline. In large pipes this surge of 
pressure against the valve and the pipe walls can reach 
amazing proportions. Being of a fluid nature, this 
pressure wave bounces from end to end of the pipe until 
it dampens out. The analysis of the water hammer 
problem is a highly complex and specialized field of 
study. As a result, "rule of thumb" designs often prevail 
and the pipeline is overdesigned. A computerized 
simulation of this phenomenon that could be used by 
the design engineer without a high degree of specialized 
training would be of great benefit. This could lead to 
better designs of pipelines, and less cost to the taxpayer. 

Hydrologic monitoring 

The monitoring of hydrologic and stream data for 
entire water basins is still in its infancy. The Tennessee 
Valley Authority and the Chicago Sanitary District 
have both established programs of telemetering this 
information in their respective watersheds. These data, 
when combined with meterological data will enable us to 
design better and more adequate flood control facilities 
and may provide the basis for automatic control of the 
facilities themselves. 

Problem-oriented languages-Structural and 
hydraulic design 

Many programs have been written for structural 
analysis and design of bridges and buildings using 
structural steel shapes, but only a limited amount of 
programming has been done for underground structures 



built of reinforced concrete, which is necessary for water 
and sewage treatment facilities. The designers need a 
problem-oriented language suitable for the non
computer-oriented engineer to design beams, columns, 
walls, cantilevered walls, troughs and a myriad of other 
shapes that are possible with poured concrete. All these 
must be coupled with application of various types of 
loadings, such as: water pressure, earth pressure, weight 
of equipment, etc. Ideally, design of reinforced concrete 
structures by computer should be done in an interactive 
mode on remote terminals. This would give the designer 
the most flexibility in combining the many shapes to 
fit the design criteria. Better yet, would be to allow the 
designer to do his work on graphical display devices. 

Civil engineers at the Carnegie-Mellon University 
have recognized a need for a problem-oriented language 
in the field of water resources technology. A pilot 
language, HYDRO, has been made operational for a 
segment of this field. A language, such as this, should be 
developed more extensively and made available to the 
engineering community. 

Equipment selection and cost estimating 

Today the designer of treatment plants makes a 
selection of possible equipment to suit his given criteria 
from a handful of possibilities that he is familiar with, 
possibly neglecting other equipment more suited to his 
conditions. A data bank of performance characteristics 
and other information pertinent to the full range of 
equipment used in treatment plants and pertaining to a 
large number of manufacturers could assist these 
designers. This information could also be used in 
determining projected operating costs under a variety 
of conditions. 

Some progress has been made in assisting the engineer 
in making construction cost estimates, but much more 
could be done. One problem is the quantifying of the 
numerous items that go into the construction of these 
facilities. Another major problem is that of making 
reasonable estimates of unit costs for each of these 
items. With the costs varying from contractor to 
contractor, with the fluctuations in the cost of labor, 
with the general inflationary trend, and all of these 
varying in the different sections of the country, a 
consultant has a difficult time in keeping track of the 
latest and most reasonable unit prices. This is especially 
true when one considers that a consultant rarely has the 
same type of job in the same section of the country with 
a frequency such that the prices hold true from one 
job to another. A national data base could be established 
and be updated on a regular basis with latest prices as 
bid by contractors on various types of jobs throughout 

Programming War Against Water Pollution 119 

the country. This data base could be accessed by 
consultants through the use of remote terminals. 

Drafting systems 

A number of papers have already been written on 
establishing automated drafting systems and some of 
the leading large companies are now working with the 
first of such systems. Suffice it to say here that such 
systems are also needed in the fields of civil and sanitary 
engineering. However, due to the size of the companies 
involved, these systems must be available at much 
lower prices, and in a time-sharing mode, before these 
consultants can make use of them. 

Making application programs useful 

Simply automating these problems for the engineer is 
not enough. In the development of programs the 
usability factor must always be kept in mind. A pro
gram is almost worthless if the user finds the input 
requirements too cumbersome or the output strange and 
illogically presented. Under such conditions the 
engineer will probably, and has been known to, revert 
to his familiar manual methods. 

In any printed output which the engineer must 
utilize in his design work, the results must be in terms 
that he will be able to readily use and understand. This 
may seem elemental, but non-computer-oriented friends 
have told me that more than a few times, when people 
outside the profession (such as programmers who are 
more oriented to other disciplines, mathematicians, etc.) 
have produced analytical programs, the output is 
presented in an academic or even unfamiliar manner. 
Often the output does not reflect the way things are 
normally done within the profession, and it causes 
problems in understanding, together with creating a 
distrust in the program as well as the programmer. 

Similarly, I know that when a mathematician was 
outlining the requirements of a study of the Ohio River, 
he insisted that data concerning certain flow char
acteristics of the river had to exist or the program could 
not be written. In actuality, records which had been 
kept did not contain such data because of the impracti
cality of obtaining them. The practicing engineer had to 
either do without it, or analyze around it. The mathe
matician was so involved with theory that he could not 
accept the impure practicalities of the situation. 

In other instances, certain proprietary programs have 
been obtained that output only part of the data required 
for fully understanding the printed results. 

What I am trying to say is this: learn to speak the 
language and fully understand the problems and 



120 Fall Joint Computer Conference, 1971 

idiosyncrasies of the job to be done. Simply automating 
the procedure is not enough. This has been painfully 
clear and exasperating to many housewives when they 
receive their monthly billing from many department 
stores. All they see on the bill is an amount of a purchase 
and a department number. This information may be 
fully adequate for the store, but the housewife (and 
many of us husbands, for that matter) could care less 
what the department number is. What is needed is the 
date and a recognizable name of the purchased item, 
as well as the price. While the programmer or systems 
analyst planned the output for the accounting depart
ment, he did not plan sufficiently for all the expected 
end-users of that output. Again, simply automating the 
procedure is not enough. A presentation meaningful to 
the end-user must always be kept in mind. Merely 
understanding the problem from a data processing 
standpoint is not sufficient; we must strive to under
stand more fully the language and the ramifications of 
the problem at hand. 

I have mentioned the difficulty that is generated 
when inadequate or insufficient data is printed out or 
displayed for the end-user. In many technical problems 
there is much data that could be included on the output 
forms and often there is not enough space to show it all 
conveniently. The programmer may select the data he 
thinks is most important for the output. However, an 
engineer may desire different data or a different output 
format. Other engineers may desire still other data or 
formats. A means should be developed to enable a user 
of a program to tailor the data and formats to his own 
requirements without having to reprogram the output 
routines. This is especially true where the user is not a 
programmer, or does not own the source code of a 
leased program. 

SUMMARY 

I have discussed a number of specific areas, along with 
some more general areas in which programming work 
needs to be done to help get some of our pollution 
problems solved. All of them have one overriding 
premise, h<:1Wever. And that is that the use of com
puters be made more practical for the non-computer
oriented professional engineer, and that programs be 
available at a reasonable cost. This means that terminal
oriented time-sharing systems must be made easier to 
use by the layman, and that libraries of these specialized 
programs be made available, probably on a royalty-per
use basis. Also, a carefully planned method of making 
such programs available, as well as the means of 
obtaining them, should be familiar to all concerned. 

With some $400 million worth of design effort ($16 

billion worth of water and sewerage treatment projects) 
already backlogged and much more to come, the need 
is now here for concerned people in the programming 
profession to lend assistance to the battle against water 
pollution in this country. A great many of us have 
come to programming from other previous vocations, 
and many of these vocations can have a bearing on 
some facet of the problems facing the sanitary engineer. 
I t behooves us all to give serious thought to how our 
various backgrounds can be applied to these problems. 
By joining forces, we may be able to hasten the day 
when we can hear that the water pollution problems are 
under control. 

ACKNOWLEDGMENTS 

The author would like to express his gratitude to the 
following persons for their valuable ideas and sug
gestions, many of which have been incorporated in this 
paper: Mr. Frank Perkins, Professor of Civil Engineering 
at the Massachusetts Institute of Technology; Mr. 
Richard Foerster, and Mr. Paul E. Langdon, Jr., both 
of Greeley and Hansen, Engineers, in Chicago, Illinois; 
and Mr. Rodney Dabe, of Consoer, Townsend & 
Associates, Consulting Engineers in Chicago, Illinois. 

BIBLIOGRAPHY 

1 ENR's 93rd annual report and forecast 
Engineering News-Record Vol 180 no 4 pp 60 & 74 
Jan 2519 8 

2 ENR's 94th annual report and forecast 
Engineering News-Record Vol 182 no 4 p 64 Jan 23 1969 

3 Construction scoreboard 
Engineering News-Record Vol 182 no 4 p 146 Jan 23 1969 

4 95th annual report and forecast 
Engineering News-Record Vol 184 no 4 p 56 Jan 22, 1970 

5 Construction scoreboard 
Engineering News-Record Vol 184 no 4 p 130 Jan 22 1970 

6 96th annual report and forecast 
Engineering News-Record Vol 186 no 3 p 23 Jan 211971 

7 Construction scoreboard 
Engineering News-Record Vol 186 no 3 p 91 Jan 211971 

8 Display helps fight pollution 
Battelle Memorial Institute 
Electro-Technology p 18 June 1969 

9 New York uses computer to monitor pollution 
Datamation pp 63-64 Sept 1970 

10 E S MUSKIE US Senate 
Computers environmental planning, and the quality of life 
Proceedings of IBM Scientific Computing Symposium on 
Water and Air Resource Management May 1968 

11 V L HOBERECHT 
Computer aided design and drafting 
IBM Technical Report 21.244 March 1967 

12 D P LOUCKS C S REVELLE W R LYNN 
Linear programming models for water pollution 
Management Science p B166-B181 Dec 1967 



13 A GOTTLIEB 
The computer and the job undone 
Computers and Automation pp 16-23 Nov 1970 

14 Integrated civil engineering system (ICES) for programming 
Computers and Automation pp 10-11 April 1968 

15 G BUGLIARELLO 
Programming needs in the water resources field and the 
role of a problem oriented language (Hydro) 
IBM Scientific Computing Symposium on Environmental 
Sciences pp 165-184 Sept 1967 

Programming War Against Water Pollution 121 

16 P R DECICCO H F SOEHNGEN J TAKAGI 
Use of computers in design of sanitary f!ewer systems 
Journal of Water Pollution Control Federation 
Vol 40 no 2 part 1 pp 269-284 Feb 1968 

17 Proceedings of IBM Scientific Computing Symposium on 
Water and Air Resource Management 392 pp May 1968 

18 R SMITH 
Preliminary design and simulation of conventional 
wastewater renovation systems using the digital computer 
U S Environmental Protection Agency Water Quality 
Office 3-1968 WP-2Q-9 





Application of a large scale nonlinear programming 
problem to pollution control* 

by GLEN W. GRAVES 

University of California 
Los Angeles, California 

and 

DA VID E. PINGRY and ANDREW WHINSTON 

Purdue University 
Lafayette, Indiana 

INTRODUCTION 

In recent years it has been recognized by several ob
servers that the. techniques of mathematical program
ming can be used to select a least-cost solution to the 
problem of river quality maintenance. In general these 
models have used the solution technique of linear pro
gramming and considered one treatment alternative, 
such as on site treatment or by-pass piping. Examples 
of these models can be seen in Deininger, 1 Louchs, 
ReVelle and Lynn2 and Graves, Hatfield and Whin
ston.3 The use of these techniques has allowed, in a 
theoretical context, large reductions in total treatment 
costs in a river basin. 

The procedure used in constructing river basin 
models has been to divide the river into small sections 
and place constraints on the water quality at the end 
of these sections. In all cases the water quality criteria 
used is the level of dissolved oxygen concentration. 
The level of dissolved oxygen at the end of the river 
sections is calculated using the Streeter-Phelps equa
tions or some later variation. Cost functions are then 
estimated and a mathematical programming problem 
of the following form is solved: 

Minimize: The total cost of pollution abatement 
structures 

Subject to: Water quality in each section of river 
better than some given set of quality goals 

* This research has been sponsored by the Office of Water 
Resources Research under Contract 14-31-0001-3080. The 
authors are responsible for all possible errors. 

123 

It is the purpose of this paper to present a model of 
a river basin of the form suggested. We will consider 
simultaneously the following treatment methods: 

(1) Flow augmentation 
(2) By-pass piping 
(3) Treatment plants (regional and at polluter) 

We also show that linear constraints, consistent 
with the linear programming technique, are not appro
priate when these treatment alternatives are considered. 
Therefore, a nonlinear programming algorithm must 
be used. Some details of this algorithm are discussed 
and the model is applied to the White River Basin in 
Indiana. 

WATER QUALITY MEASURES 

Water quality can be measured in a variety of ways. 
The appropriate parameter or set of parameters mea
sured depends on the intended use of the water. 

Traditionally, water quality in rivers has been mea
sured by looking at the level of dissolved oxygen con
centration. This parameter has been used because of its 
direct relationship with the type and quantity of living 
organisms in a body of water. If the level of dissolved 
oxygen should drop to zero the river is said to be 
"septic." In this condition only anaerobic organisms 
can exist. These types of organisms rely on oxygen 
which is in compounds rather than free oxygen which, 
in the case of a septic river, is not available. In the 
process of freeing the oxygen from compounds the 



124 Fall Joint Computer Conference, 1971 

anaerobic organisms produce by-products which often 
cause the obnoxious odors and colors which appear in 
polluted waters. 

When effluent, such as common sewage, is dumped 
into a river it creates additional demand for oxygen 
over and above the demands of the existing living or
ganisms. If this additional load is moderate then the 
river can recover using the oxygen entering at the sur
face. If the additional load is low enough it is possible 
that the reduction in the dissolved oxygen concentra
tion level will be acceptable. However, if the additional 
load is high the river may become septic before it can 
recover, and if additional heavy loads are dumped into 
the river as it proceeds downstream, it may never re
cover, and in fact remain septic for its entire length. 

The oxygen required for the oxidation of organic 
matter is called biological oxygen demand or (BOD). 
The dissolved oxygen concentration level is often 
measured relative to the dissolved oxygen saturation 
level of the water and is called the dissolved oxygen 
deficit (DOD). 

The level of the dissolved oxygen concentration in a 
body of water is a function of the amount of oxygen 
being absorbed at the surface from the air and the 
amount being consumed in the water by the biochemi
cal oxidation of organic material. Since, both the con
sumption of the oxygen by organic material and the 
absorption at the surface are not instantaneous reac
tions, a sophisticated method of predicting the effect 
of an organic material on the level of DOD after a 
given period of time is necessary. The first successful 
attempt to mathematically describe this relationship 
was by Streeter and Phelps.4 Their work has only been 
slightly modified to this date. The model used was a set 
of differential equations, given in (1) and (2). 

Assume: 
dbk/ dt = Klkbk 

ddk/ dt = Klkbk - K 2kdk 

(1) 

(2) 

The terms used in (1) and (2) are defined as follows: 

t = time of reaction (days) 
K1k=rate of oxidation reaction (days-I) 

( deoxygena tion rate) 
K2k = rate of absorption of oxygen (days-I) 

(reaeration rate) 
bk = BOD concentration (mg/ t) 
dk = BOD concentration (mg/ t) 

Equations (1) and (2) are integrated to yield equations 
(3) and (4). 

bk=bkBClk 

dk = KkbkB[Clk- C2kJ+dkBC2k 

(3) 

(4) 

The terms K k, Clk and C2k are defined in (5)-(7). 

Kk=Klk/ (K2k -Klk ) 

Clk == exp (-Klkt) 

C2k =exp (-K2kt) 

(5) 

(6) 

(7) 

bk
B and dk

B are the values of BOD and DOD when 
t=O. 

This now enables one to predict the value of DOD at 
some point in time after the introduction of a extra 
load of BOD. If the body of water with which we are 
concerned is a river, and if over a small segment of a 
river the velocity of flow is assumed constant, then the 
length of time that the reaeration and reoxygenation 
reactions take place in that segment is a linear trans
formation of the length of the segment. This is ex
pressed in Equation (8). 

(8) 

X k is the length of the river segment and V k is the 
velocity of flow assumed in that section. 

Using the assumption of constant velocity, the values 
of bk and dk can be interpreted as the values of BOD 
and DOD at the end of river segment k. In equations 
(3) and (4) they are written as a function of the initial 
values of BOD and DOD, bk

B and dk
B , given values of 

the parameters K lk, K 2k, Vk and X k for that section. 
The use of the dissolved oxygen theory in the context 

of river basin programming models has been influenced 
by the desire of the researchers to maintain a set of 
linear quality constraints. This linearity has been 
maintained by two procedures. The first is to assume 
the parameters K 1k, K2k and V k constant for a given 
segment of the river.2 

A second procedure used to maintain linearity is the 
method first proposed by Thoman.s This approach 
views the river as a black box where effluent is dumped 
and dissolved oxygen levels are changed in some man
ner unknown to the researcher. A matrix of so called 
transfer coefficients is generated in which each element, 
ai;i, is the marginal effect of a change in the BOD level 
in section j on the DOD in section i. This concept is 
used in the programming models constructed by 
Graves, Hatfield and Whinston3 and Schaumburg.6 

Both of these linear representations are fairly accu
rate as long as the flow is not allowed to vary to a 
significant degree. The reason for this restriction is 
that it has been found that the level of the flow affects 
the reaeration rate and the velocity of the flow in a 
particular river segment. If this is indeed the case, and 
the level of effluent flow is large relative to the river 
flow, then the effect of the flow on the reaeration co
efficient is not negligible as assumed in most program
ming models. If we assume that the values of K2k and 



V k are a function of flow, then from Equations (3) and 
(4) we see that the values of dk and bk can no longer 
be represented as a linear combination of bk

B and dk
B • 

This in turn implies that any quality constraint formed 
for use in a programming model will be nonlinear in 
nature. 

We also note that if flow augmentation is to be used 
as a treatment alternative, the level of flow will not 
only affect the BOD and DOD concentration by dilu
tion, but also by altering the value of K 2k • This points 
to the necessity of having a programming algorithm 
which can properly handle nonlinear constraints. 

Equations (9) and (10) give the relationship be
tween flow and velocity, and between flow and the re
aeration rate assumed in our model. 

(9) 

(10) 

The parameters gk, hk' Yk and Zk must be estimated for 
each river section for a particular application of the 
Streeter-Phelps equations. 

It is important to note that the selection of dissolved 
oxygen as the measure of water quality for the applica
tion of our model does not imply that this is the only 
standard which could easily be used. 
RIVER BASIN MODEL 

We will now formulate a simulation model of a river 
basin which can be used in combination with the qual
ity model discussed in the previous section to predict 
the level of DOD at a finite number of points along a 
rIver. 

In order to construct the model the river is divided 
into n sections. A new section begins where one of the 
following occurs: 

1. Effluent flow enters the river. 
2. Incremental flow enters the river. (Ground 

water, tributary flow, etc.) 
3. The flow in the main channel is augmented or 

diverted. 
4. The parameters describing the particular river 

change. 

Assume that there are 8 polluters and m treatment 
plants in the river basin. Each polluter is able to pipe 
efHuent either directly into any segment of the river or 
to any of the m treatment plants. Each treatment 
plant can in turn pipe to any of the n sections. 

The system of pipes described allows for the possi
bility of by-pass piping and regional treatment plants. 
The importance of by-pass piping as a treatment al
ternative was demonstrated in the study of the Dela
ware River done by Graves, Hatfield and Whinston.3 

Large Scale Nonlinear Programming Problem 125 

Fig. 1 

The purpose of this method of treatment is to transport 
waste from densely populated or industrialized regions 
to low use areas to take advantage of the natural 
treatment capabilities of the river. Regional plants 
would be constructed to combine the wastes of two or 
more polluters to take advantage of economies of scale 
which exist in the production of treated wastes. 

The water quality model, as discussed above, can 
now be used in the form of Equations (3) and (4) to 
calculate the value of DOD at the end of each of the 
n river segments. 

In order to use Equations (3) and (4) we must know 
the values of BOD and DOD at the head of each sec
tion. The concentrations, bk

B and dk
B , are a weighted 

average of the concentrations of the flow of section 
k-I and all of the efHuent, incremental and augmenta
tion flows entering section k. These relationships are 
expressed in Equations (11) and (12). 

bkB = [bk_lFk_l+bkAFkA+ bkEFkE+b/F/J/Fk (11) 

dkB = [dk_lFk_l+dkAFkA+dkEFkE+d/FkIJ/Fk (12) 

The terms Fk- 1, FkA, FkE and F/ represent, respec
tively, the flow from section k-I, augmentation flow in 
section k, efHuent flow in section k and incremental 
flow in section k. The b terms represent the associated 
BOD concentrations and the d terms the associated 
DOD concentrations. See Figure 1 for an illustration 
of a typical section. 



126 Fall Joint Computer Conference, 1971 

The effluent flow entering each river section will be 
the sum of the flows coming from polluters directly 
and from treatment plants. The BOD and DOD con
centrations of these flows will be the weighted average 
of the concentrations of all the flows. In turn, the BOD 
and DOD concentrations of the flows from treatment 
plants will be a weighted average of all the flows enter
ing that plant times the treatment levels. 

Given the values of the BOD and DOD concentra
tions at the polluters, the percentage of BOD removal 
at each treatment plant and the values of the various 
pipe flows the values of bk

B and dk
B can be calculated 

for any k. If k> 1 the Streeter-Phelps equations must 
be applied sequentially to all sections i, for which i<k 
to obtain bk - 1 , dk - 1 and Fk - 1• 

The values of the incremental and augmentation 
flows and their associated concentrations must also be 
known. The value of F/ will be some fixed constant 
which will account for groundwater, small tributaries, 
diversions for water supplies or industrial use or any 
other fixed inflow or outflow. The augmentation flow 
will be some functions of the size of the reservoir which 
provides the necessary storage. In our model the aug
mentation flow will be a variable flow available at the 
sites of potential reservoirs in the basin. The cost asso
ciated with the different levels of flow will depend on 
the particular site. . 

The river simulation model developed above will 
now be integrated into a nonlinear programming model 
which will provide, by means of the objective function, 
a decision-making criteria to select least-cost treat
ment abatement program for a given set of quality 
goals. The simulation model is used, in the context of 
the programming problem, to evaluate the water qual
ity constraints. These constraints will be of the follow
ingform: 

k=l, n (13) 

The value of dk is the DOD concentration at the end 
of reach k and dk is the DOD concentration before any 
structures other than existing structures are con
structed. The values of Ildk contain the information 
concerning the water quality goals of the society or 
governmental unit who must decide which of the in
finitely possible water quality standards is the "right" 
one. For example, the values of Ildk could be set so 
that 5 mg/ t of dissolved oxygen must be maintained at 
every section on the river. This is known as a uniform 
river standard. Perhaps the river could be divided into 
zones or regions, each having a different water quality 
standard. An example of this, would be to maintain 
higher water quality around cities for recreational use 
and allow the river to deteriorate to a lower level of 

dissolved oxygen in rural low use areas. The pattern of 
quality demanded by any of these alternate schemes 
can be reflected in the values chosen for adk • Many ex
amples of these types of schemes can be seen in the 
papers by Schaumburg6 and Graves, Hatfield and 
Whinston.7 

A programming problem of the form discussed above 
is formalized: 

Minimize: TC = CP +CTP +CR 

where, 

CP = Total cost of all pipelines constructed in 
river basin. 

CTP=Total cost of all treatment plants con
structed in river basin. 

CR = Total cost of all reservoirs constructed III 

river basin. 
Subject to: dk -dk 5:adk k=l,n 

In order to keep the mathematical representation 
consistent with the physical reality two more sets of 
constraints must be added to the programming model. 
The first of these is to keep the total flow leaving a 
polluter in pipes to treatment plants and river sections 
equal to the total flow of effluent available at that 
polluter. Another set of necessary constraints main
tains consistent flow entering and leaving a particular 
treatment plant. 

The first n quality constraints are nonlinear in
equality constraints. The flow conservation constraints 
are linear and are equality constraints. The objective 
function, which will be detailed in a later section, is 
also nonlinear. This type of problem requires a general 
nonlinear algorithm to obtain a solution. The algorithm 
required will be discussed in.the next section. 

NONLINEAR ALGORITHM 

The algorithm employed for solving the nonlinear 
programming problem of this paper is a general purpose 
algorithm which solves problems of the form: 

Subject to: gi(y) 5:0 

Minimize: gm(y) 

i=l,m-l (14) 

where y is a vector in E'n and gi(y), i=l, m, are con
tinuous functions with continuous partial derivatives 
defined on some open set. The vector y is assumed to 
be bounded from above and below. 

The method· to be discussed here was originally de
scribed by Graves.s The method can also be used as a 



second order procedure as presented by Graves and 
Whinston.9 This paper will be limited to the discussion 
of the algorithm as it was used to solve the large scale 
water pollution problem described in the previous sec
tions. A theoretical proof of convergence will be pre
sented elsewhere. 

The algorithm to be described is stepwise in nature. 
Starting with some point yi in the domain of the func
tions, a direction llyi and a scalar k are determined and 
a new point yi+1 is calculated. 

(15) 

The vector flyi is also a vector in En. 
The object of making the step to yi+l is to either re

duce the value of the objective function, if yi is a 
feasible solution to the nonlinear programming prob
lem, or obtain a "more feasible" solution to the non
linear pboblem, if yi is an infeasible solution. The 
phrase "more feasible" is interpreted in terms of the 
algorithm to mean "reduce the value of SUPG", where 
SUPG is defined to be: 

SUPG=Max{gi(yi) I gi(yi) ~O} 
i 

or alternatively stated: 

SUPG=gw(yi) 

where w is the index of the most infeasible constraint. 
If yi is a feasible solution to (14), then SUPG = O. 

The completion of the determination of llyi and k, 
and the calculation of yi+1 will complete what will be 
known in the paper as the j+lth nonlinear iteration. 
Each nonlinear iteration will consist of several local 
linear programming problems to determine flyi. The 
solution of each one of these linear programming prob
lems will complete what will be known as a linear 
iteration. 

For the purpose of our exposition the nonlinear itera
tion will be divided into two major parts. The first is 
the determination of llyi as a solution to a parametric 
linear programming problem. The second is the deter
mination of k. 

Since we have assumed that the functions gi(yi) , 
i= 1, m, are continuous,and have continuous partial 
derivatives on some open set D, the following approxi
mation theorem can be used: 

Let Vgi(yi) be the gradient of gi(yi) at the point yi, 
where yi is a member of a closed bounded subset E of 
the open set D. 

Then, 

Large Scale Nonlinear Programming Problem 127 

where 

limit Ri(flyi)j I flyi I =0 
tl.yi... .. o 

uniformly for yi E E. 
The direction of improvement for nonlinear iteration 

j+ 1 is obtained from the function above by estimating 
the term Ri(llyi) , and solving the associated local 
linear programming problem. 

Subject to: 

(16) 

Minimize: 

The rii term is the estimated error for the ith equa
tion during thej+lth nonlinear iteration. The value of 
rii is determined during the nonlinear iteration using 
Equation (17) 

where k is implicitly assumed to be one. The absolute 
value of rii is used for.the linear programming problem. 
This is required for the purpose of the convergence 
theorem. 

The parameter k will be adjusted in the course of the 
nonlinear iteration. The value of k is greater than, or 
equal to zero, and is estimated from the length of the 
previous step. The role of k in the linear and nonlinear 
problem will be discussed in detail later in this~section. 
as will the estimating procedures used to obtain k. 

The linear programming problem (16) can be treated 
as a parametric programming problem with kas the 
modifying parameter and can be written in tableau 
form as illustrated in Tableau I. 

Tableau I 

A'; {VBV)p (BV)p 

-,. vlC-/J)T - i(;) - ir1j zl 

-X
m

_
l 

Vgm-l(yj)T _ gm-l (yj) _ itrm-l,j 
zm_l 

(VBV)d Vgm(yj)T _ gm(yj) _ it rmj - t 
P 

(BV)d - v - id 



128 Fall Joint Computer Conference, 1971 

The vectors t::..yi and v are nxl. The members of vector 
t::..yi are the primal variables, and the members of vector 
v are the slack variables of the dual problem. The vector 
of the dual variables is 

XT = [Xl, ... , Xm-l] 

and the vector of the primal slack variables is 

ZT = [Zl, ... , Zm-l] 

4>p is the value of the primal objective function and 4>d 
is the value of the dual objective function. The labels 
(VBV)p and (VBV)d are respectively the values of the 
current basic primal variables and the basic dual vari
ables. The labels (BV) p and (BV)d are the basic vari
ables associated with the given values. 

From the duality theorem of linear programming 
there are three possible termination conditions to the 
local linear programming problem. 

(A) There exists an optimal feasible solution to the 
primal and dual problems. 

(B) The constraints for the primal problem are in
feasible and the dual problem is unbounded or 
the constraints of the dual problem are in
consistent. 

(0) The primal problem is unbounded and the dual 
problem is infeasible. 

The initial solution in the domain of the functions 
gi(yi) , i = 1, m, is not required to be a feasible solution 
to the nonlinear problem stated in (14). As was dis
cussed above, if yi is not a feasible solution to (14), 
then SUPG> O. If yi is a feasible solution to (14), then 
SUPG=O. The goal of each nonlinear iteration is either 
to reduce the value of the objective function gm(yi) , or 
move closer to feasibility, which is interpreted to mean 
reduce the value of SUPG. 

The case of nonlinear infeasibility will usually imply 
that the local linear problem (16) will be infeasible for 
~ny t::..yi in the E region around yi. In this case Vg(yi) T t::..tfji 
IS chosen as the objective function and a linear pro
gramming problem such as (18) will be constructed. 

Subject to: 

Vgp(yi)T t::..yiS: _gp(yi) -krPi 

Minimize: 

where 

P EH 

(18) 

H = {i I Vgi(yi) Tt::..yS: _gi(yi) -krii for some t::..yi} 

Since this problem is consistent and bounded it can 
only terminate in condition (A). However, it is still 
possible that the entire linear problem (42) is infeasible, 

or in other words terminates in condition (B). In this 
case the nonlinear problem will also be infeasible at the 
new point, yi+1, ignoring errors. Mathematically this 
would mean that 

t::..g i (yi) T t::..yi> _ gi (yi) - krii 

for some i, i= 1, m-l. (19) 

However, if a gain has been made in SUPG then the . ' algOrIthm proceeds through the nonlinear iteration 
with the determination of k. 

Of course if the gain is large enough feasibility may 
be reached and the local linear problem would termi
nate in condition (A). 

If the local linear programming problem (16) termi
nates with condition (B) holding and no gain has 
been made in SUPG, then it is assumed that the non
linear problem is inconsistent and the algorithm termi
nates unless k can be adjusted as will be discussed later. 

The other possible termination condition (A) implies 
that a feasible solution to the entire linear problem 
(16) has been obtained, and ignoring errors, yi+1 is a 
feasible solution to the nonlinear problem. The algo
rithm at this point will check for a gain in gm(y). If at 
the new yi+1 =yi+t::..yi, there is no gain in gm(y), then 
we assume that the local minimum has been reached. 
If there is a gain in gm(y), then another nonlinear step 
is taken. 

At this point it is necessary to explain in some detail 
the role that the parameter k plays in the final deter
mination of t::..yi. In order to see the role k plays more 
clearly, it is necessary to write mathematical expres
sions for the statements, "gain in gm(y) ," and "gain in 
SUPG." If the local linear problem terminates in con
dition (A), then 

m-l m-l 

Vgm(yi)Tt::..yi= L (-Xi)gi(yi) +kL (-xi)rii (20) 
i=l i=l 

In order for a gain to be made in the nonlinear ob
jective function, the following inequality must hold: 

Vgm(yi)T t::..yi< -E (21) 

Using Equations (20) and (21), the condition for a 
gain in gm(yi) is 

m-l m-l 

L (-Xi)gi(yi) +k L (-Xi)rii< -E. (22) 
i=l i=l 

At this point, the dual variables are less than, or 
equal to zero. The rii are assumed greater than or 
equal to zero, and since the nonlinear problem is feasible 
gi (yi) > O. This information implies that: 

m-l 

L (-Xi)gi(yi) <0 (23) 
i=l 



and 

m-l 

k L: (-xi)rij>O (24) 
i=l 

From (22) and (24), it is clear that as k approaches 
zero, the gain in gm(yj) would be greater. Therefore, if 
the linear problem terminates in condition (A) and 
there is no gain in gm (y), then k can be adjusted down
wards, which effectively is relaxing the linear con
straints. As k goes to zero, condition (22) becomes 

m-l 

L: (-Xi)gi(yi) <-e (25) 
i=l 

The same sort of condition can be derived in the ease 
when the linear programming problem terminates in 
condition (B). Condition (26) is for a gain in SUPG. 

L: (-xp)gp(yi) < -e peH (26) 
p 

Using these results, the criteria that the algorithm 
uses for nonlinear optimality and nonlinear infeasi
bility can be written as follows: 

Optimality: 

If k is adjusted as low as possible, the linear pro
gram terminates in condition (A) and 

m-l 

L: (Xi)gi(yi)~e 
i=l 

then yj is assumed to be the optimal solution to 
the nonlinear problem. 

Infeasibility: 

If k is adjusted as low as possible, the linear pro
gram terminates in condition (B), and 

L: (-xp)gp(yi) ~ -e peH 
p 

then the constraints of the nonlinear problem are 
assumed to be inconsistent. 

Before the steps of the actual program are discussed 
one additional feature of this algorithm must be men
tioned. It is possible to divide the n variables in the 
nonlinear problem into IPRN priority classes. For ex
ample, assume that IPRN = 2. This implies that every 
variable is either in priority class one or two. All of 'the 
variables in priority class one would be used to try and 
obtain a gain in SUPG or gm(y). The second priority 
class variables would not be considered unless no gain 
could be made using the priority one variables with k 
adjusted to zero. The number of priority classes is 
unlimited. 

Large Scale Nonlinear Programming Problem 129 

Using the criteria described above for optimality and 
infeasibility, the steps actually taken in the computer 
program are described in sequence: 

1. The variables, ~yj, which are currently not in 
the basis of the linear programming problem, are 
scanned for possible entry. All of the variables 
will be out of the basis at the outset of each 
nonlinear iteration. The scanning is accom
plished by updating the element associated with 
the current linear objective function. If priority 
classes are used, then only those variables which 
have a priority level less than or equal to the 
current level, IPRC, are checked. 

2. The variable associated with the updated ele
ment of highest absolute value is selected to 
enter the linear tableau. This criteria is used be
cause this variable locally affects the objective 
function more than the other variables. 

3. The element with the largest absolute value is 
tested to see if it is significantly different from 
zero. If it is, the algorithm proceeds to step 4 
and the solution of the linear programming 
problem. If not, it is assumed that the addition 
of the variable associated with the largest ele
ment would not affect the objective function 
significantly, since the appropriate coefficient is 
so small. In this case, k is adjusted downwards, 
or if k=O, the number of priority classes con
sidered is expanded. If the current priority class 
is the last one available, then the algorithm will 
terminate. The termination will mean one of two 
things; the nonlinear problem is infeasible since 
no gain can be made in SUPG=gw(y) >0, or the 
local minimum to the nonlinear problem has 
been attained and no gain can be made in gm(y). 

4. After selecting the variable column to be added 
to the linear programming problem, the linear 
programming tableau is augmented by the new 
column and if a gain was made in the linear 
objective function on the previous linear itera
tion, the columns associated with the variables 
rejected from the basis are removed from the 
linear tableau. 

5. The linear programming algorithm now takes 
over and solves the local problem set up in the 
previous steps. The linear programming problem 
will terminate in one of the three terminal con
ditions discussed above. If terminal condition 
(A) is reached, linear feasibility, then the ob
jective function gm(y) is tested to see if a gain 
greater than some tolerance level was made. If 
terminal condition (B) is attained, then the 
algorithm tests for a sufficient gain in SUPG. 



130 Fall Joint Computer Conference, 1971 

If either of these gains are successfully made, the 
algorithm leaves the linear programming sub
problem. If the gains are not made, then the 
algorithm returns to selecting variables to enter 
the linear tableau. If terminal condition (C) is 
reached, the algorithm again returns to selecting 
variables in order to bound the primal problem. 

The first step after the successful conclusion of the 
local linear problem is to select the "best" value of k. 
This calculation is called the post-optimal adjustment 
and proceeds in two different manners, depending on 
the value of SUPG. 

If the value of SUPG is zero, or we have nonlinear 
feasibility, then the value of the objective function is 
written as a function of k, and this function is solved 
for the value of k, which will minimize gm(y). 

In the case where SUPG>O, or we have nonlinear 
infeasibility, k is approximated by choosing a trial 
value such that G is zero, where G is defined to be 

G= (ll.yi-l)T(ll.yi-l) - (ll.yi)T(ll.yi) (27) 

In either case, SUPG = 0, or SUPG > 0, the value of 
k must be tested to see that it does not violate bounds 
which are implied by the bounds on y. If the value of 
k determined in the post optimal adjustment violates 
the greatest lower bound on k, or results, in the case of 
SUPG=O, in no gain in gm(y), the value of k is adjusted 
downwards. The control of the problem is then passed 
back to the linear programming part of the algorithm. 

It is at this point the new estimates of the error 
terms rijare calculated. This is done by evaluating the 
functions gi(yi+ Il.yi), i = 1, m-l, and using Equation 
(17). The new values of rii are used for the rest of the 
j + I-th nonlinear iteration and the absolute values are 
used for the local linear problems in nonlinear iteration 
j+2. 

The next step in the algorithm is to calculate the 
range of values for k which will maintain a feasible 
solution or give the best gain in SUPG. After a range 
of values is determined, the optimal value of k is chosen 
from the range determined. 

The range is calculated by using the following 
equation: 

gi(y) = gi(yi) +gi(yj) ll.yjk+k2rii~D(SUPG) (28) 

If SUPG=O then Equation (28) just says that the 
new values of gi(y), i= 1, m-l, must be feasible. If 
SUPG>O, then D is initially set equal to zero. The 
quadratic functions in k are then solved. 

gi(yi) - D SUPG+gi(yj) Il.yjk + k2rii = 0, 

i= 1, m-1 (29) 

This will give the value or values of k where the con
straints gi(y) will go infeasible. If the lower bound on 
k is greater than the upper bound, then the value of 
D is increased and the quadratic problem is again 
solved. If as D approaches one, the upper bound con
tinues to be lower than the lower bound, then we say 
that the interval determination failed and no k can be 
found which will improve SUPG. In this case the algo
rithm terminates. 

If SUPG=O, the algorithm determines the interval 
which will maintain the feasibility of y. After the inter
val is determined, the best value of k is found by evalu
ating the function gm(yi+kll.yi) for different k's in the 
range given. The gain in the objective function is 
checked to see if it exceeds some preset tolerance level. 
If not, then it is assumed that we are within the length 
of that tolerance level of a local optimal solution and 
the algorithm terminates. 

If a gain in SUPG is made, or a reduction in gm(y), 
the algorithm takes another nonlinear iteration. This 
procedure is repeated until either a local minimum or 
infeasibility is encountered. 

APPLICATION OF RIVER BASIN MODEL 

The model as proposed has been applied to the West 
Fork White River in Indiana. The West Fork White 
River has its source near the Indiana-Ohio border. The 
general direction of flow is southwesterly for 371 miles 
through the State of Indiana. The major city on the 
river is Indianapolis, which is 234 miles from the 
mouth. Two minor cities, Anderson and Muncie, are 
upstream from Indianapolis. The concentration of pop
ulation and industry around these three cities causes the 
major portion of the pollution problem in the West 
Fork. 

For the purpose of this paper we have chosen a 
length of the West Fork White River, which runs from 
the headwaters above Muncie to just south of Indi
anapolis. The portion described is 133.2 miles long. It 
has been divided into 46 sections based on information 
about polluters, incremental flow, and river parameters. 
The sections range in length from .1 mile to 12.2 
miles, with most sections in the 2.0 to 5.0 range. 

In the implementation of the model, some altera
tions were made which were not explicit in the exposi
tion of the model in the previous sections of the paper. 

The first of these alterations is that the number of 
river sections, number of polluters and the number of 
treatment plants are assumed to be equal, and a po
tential polluter and treatment plant are located at the 
beginning of each river section. In terms of the model 



presented above, this assumption can be written as 
n=m=s. In any given problem the flow from some of 
the polluters will be zero (i.e., no polluter exists cur
rently at that point on the river). The treatment plants 
in those sections are potential regional treatment 
plants. In the section where polluters do exist, the 
treatment plants are the on-site treatment plants for 
the associated polluter, and can also act as potential 
regional treatment plant sites. Regional treatment 
plants can be located anywhere along the river by 
creating a new river section. It is not at all necessary 
to make this alteration, but it does allow for the easy 
addition of polluters at a later date, and permits easy 
calculation of the incremental cost of these additional 
polluters. 

The second of these alterations makes it possible to 
reduce the number of variables in the system. The de
sirability of this can be seen by calculating the number 
of variables in the entire model, as described for 46 
sections. If we assume that each polluter can pipe its 
effluent to every potential treatment plant and to every 
river section, and each treatment plant can pipe to 
every river section, the number of piping variables 
alone would be 3 (46) 2 or 6348 variables. Since it seems 
reasonable from knowledge of the nature of the problem 
that certain of these pipes would not enter the solution, 
it is desirable that the nonlinear algorithm does not 
have to consider the flow variables associated with 
these pipes. 

The last alteration is that our particular implementa
tion of the model allows for tributaries. They are limited 
to a length of one section. This allows for polluters 
dumping into small tributaries some distance from the 
main stream. The model could easily be expanded to 
encompass tributaries of any number of sections in 
length, and even tributaries with tributaries. However, 
since it was not necessary for our application we limited 
the length of the tributaries to one section. 

For the purpose of illustration of the river basin 
model described, we have applied the model to the 
West Fork White River Basin with the following 
restrictions: 

1. All effluent must be treated at a level of at least 
85 percent removal. This corresponds to re
quired secondary treatment, which is required as 
a matter of policy in the West Fork White River 
Basin. The implication of this assumption is 
that no effluent can be dumped directly into the 
river without treatment. 

2. All treatment plants must dump their effluent 
into the nearest river section. Since each polluter 
is allowed to pipe to any treatment plant, it 

Large Scale Nonlinear Programming Problem 131 

River 
Section 

4 
6 

11 
16 
23 
31 
32 
33 
36 
37 
41 

TABLE I-Effluent Flow 

Effluent 
Flow c.f.s. 

.2700 
20.0829 

.300 
24.400 

.7800 
13.2000 

.9300 
13.0000 

185.0000 
10.0000 

185.0000 

BOD 
mg/f 

40.0 
322.0 
298.0 
200.0 
270.0 
20.5 
19.0 
20.0 

450.0 
20.0 

450.0 

DOD* 
mg/f 

4.66 
5.66 
8.66 
6.66 
6.66 
2.16 

.36 
6.36 
6.06 
6.66 
4.76 

The DOD is calculated using a saturation level of dissolved 
oxygen of 8.66 mg/ f determined for a temperature of 210 C. 

seems unnecessary to allow treatment plants to 
pipe to other sections. 

3. An individual polluter can pipe his effluent no 
more than 25 river sections up or down the 
river. This allows for the reduction of piping 
variables as explained above, and since it is un
likely that piping costs will be less than gains 
from economies of scale over a long distance, the 
best possible solution will not be eliminated 
from consideration. 

4. One potential reservoir exists at the headwaters 
of the river. This is not the only potential site, 
but was chosen for this application. 

5. The quality requirement in all sections is 5 mg/ ,e 
of dissolved oxygen. This is a State of Indiana 
policy and is, for that reason, appropriate for 
our problem. 

The sub-model described by this set of assumptions 
has 1880 variables and 138 constraints. The large num
ber of variables indicates that the appropriate use of 
the priority classes described in the last section of the 
paper is necessary. The smaller the number of variables 
the algorithm must examine for possible change, the 
faster a nonlinear iteration can take place. Therefore, 
the priority classes can be used to great advantage by 
selecting in advance the variables which appear to be 
the most important. This is, of course, very tricky, but 
the priority classes can be altered as information is ob
tained from the iterations of the nonlinear algorithm. 
In our application of the model, we selected around 250 
first priority variables from our knowledge of the nature 
of the river problem. 

The necessary data to apply the programming model 
to the West Fork White River is in Tables I through 



132 Fall Joint. Computer Conference, 1971 

TABLE II-Incremental Flow pipe has the form: 

River Incremental BOD DOD Ci /= 1.865 dij(qij) .598 (31) 

Section Flow c.f.s. mg/.t mg/.t The term d ij is the length of the pipe segment and 
qij is the flow through that segment. If we were con-

I 1.0 4.0 2.36 sidering a section of pipe from polluter j to treatment 
4 -21.2 plant i, the qij term would be replaced by Pij. Both 5 1.0 214.0 7.66 
9 4.0 23.2 3.06 equations, (30) and (31), are in terms of $1000 per 

10 6.4 13.2 6.26 
15 72.0 7.7 3.26 
18 -35.0 TABLE IV-River Parameters 
19 23.0 12.1 3.06 
25 13.0 5.0 2.16 Section hk Klk Xk 
26 14.0 5.0 2.76 

gk Yk Zk 

28 -214.0 
29 28.0 5.0 .76 1 6.579 -.249 .0445 .55 .115 5.6 
31 5.8 12.4 2.06 2 6.579 - .249 .0445 .55 .1 .1 
35 5.0 9.3 1.26 3 6.579 -.249 .0445 .55 .103 6.2 
40 8.0 13.9 2.66 4 6.579 -.249 .0445 .55 .1 1.9 
41 8.0 5.0 4.76 5 6.579 -.249 .0445 .55 .1 3.6 
42 9.0 5.0 2.66 6 6.579 -.249 .0445 .55 .6 3.7 
43 10.0 23.2 7.66 7 6.579 -.249 .0445 .55 .115 .1 
44 21.0 16.7 7.06 8 6.579 -.249 .0445 .55 .. 63 3.2 

9 6.579 -.249 .0445 .55 .63 2.8 
10 6.579 -.249 .0445 .55 .63 3.0 

IV. This is information about effluent flows, incre- 11 6.579 -.249 .0445 .55 .623 4.3 
12 .040596 .538 .0125 .728 .308 1.9 

mental flows, tributary flows and other required river 13 2.8152 -.117 .065 .471 .308 1.0 
parameters. 14 6.579 - 249 .0445 .55 .102 .1 

The cost functions used for the treatment plants and 15 2.8152 -.117 .065 .471 .304 2.4 

pipelines were obtained from the literature. The total 16 2.9152 -.117 .065 .471 .805 12.4 

cost function for treatment plants was obtained from 17 6.579 - .249 .0445 .55 .104 .1 
18 2.8152 -.117 .065 .471 .600 5.5 

Frankepo and has the following form for the kth treat- 19 2.8152 -.117 .065 .471 .100 .5 
ment plant: 20 .037944 .403 .0045 .715 .100 3.3 

3/4 21 3.3354 -.14 .064 .448 .100 5.1 

C.TP = 49.22( f. P.i) [8.0(r.-.5)'+IJ (30) 22 3.3558 -.14 .014 .685 .~75 1.2 
23 3.3558 -.14 .014 .685 .300 .8 
24 6.579 -.249 .0445 .55 .103 .1 

The value of Pki is the flow from polluter i to treat- 25 3.3558 - .14 .014 .685 .300 8.7 
ment plant k and the value of rk is the level of BOD 26 3.3558 -.14 .014 .685 .100 5.0 

removal at treatment plant k. 27 .14382 .183 .0056 .715 .100 4.8 

The total cost function for piping was obtained from 28 .14382 .183 .0056 .715 .095 5.4 
29 .003468 .645 .0023 .78 .091 5.0 

Linaweaver and Clarkll and for a particular section of 30 6.579 - .249 .0445 .55 .096 .1 
31 .0034 .645 .0023 .78 .093 1.8 

TABLE III -Tributary Flow 32 .0034 .645 .0023 .78 .093 .5 
33 .0034 .645 .0023 .78 .093 .3 
34 .0034 .619 .0007 .935 .092 1.8 

River Effluent BOD DOD* 35 .0034 .619 .0007 .935 .092 .7 
Section Flow c.f.s. mg/.t mg/.t 36 .0034 .619 .0007 .935 .201 .7 

37 .0034 .619 .0007 .935 .201 .2 
1 51.0 2.92 .7993 38 6.579 -.249 .0445 .55 .094 .1 
2 6.1 2.63 1.9073 39 .3374 .619 .(007 .935 .201 .8 
7 30.3 9.80 4.9465 40 3.621 - .197 .0050 .765 .213 5.7 

14 3.0 5.50 3.4587 41 3.621 - .197 .0050 .765 .225 3.9 
17 44.0 7.18 2.7736 42 3.621 - .197 .0050 .765 .308 7.3 
24 16.10 6.91 2.2540 43 3.621 - .197 .0050 .765 .308 8.4 
30 21.00 10.62 2.4544 44 3.621 - .197 .0050 .765 .308 2.6 
38 61.00 30.44 4.5948 45 3.621 - .197 .0050 .765 .1 .1 
45 33.7 8.00 .3462 46 3.621 - .197 .0050 .765 .310 1.2 



year and include both construction cost and operation 
and maintenance cost. 

The reservoir costs were obtained for the particular 
site along with the expected flow augmentation yield. 
Any flow less than the expected yield is assumed to 
cost a percentage of the total cost equal to the per
centage of total flow. The annual total cost for the con
struction and maintenance of a dam at the chosen site 
is $807,000. The amount of expected flow in cubic feet 
per second is 100. 

The sum of all of these cost functions for each po
tential structure in the river basin is the objective 
function of the programming model with one adjust
ment. The cost of every polluter treating on-site at a 
85 percent removal level is subtracted from the afore
mentioned sum. This implies that the cost given by the 
objective function is the cost over and above the cost 
of required treatment at the· 85 percent level at the 
polluters. We note that the required treatment level of 
85 percent does not maintain the water quality at the 
required level of 5 mg/ t. 

The solution obtained to the West Fork White River 
problem described has the following features: 

1. The effluent of the polluters in section 4 and 6 
are combined and dumped into section 6. 

2. The effluent to the polluters in sections 31, 32 
and 33 are combined and dumped in section 31. 

3. Part of the effluent of section 36, 30 cfs, is com
bined with the effluent of section 37 and dumped 
in section 39. There is a regional plane con
structed at section 39 to handle the combined 
effluent. 

4. The reservoir at the headwaters site is con
structed and provides 100 cfs. of augmentation. 

The rest of the polluters dump their effluent into the 
nearest sections after treating at the level given in 
Table V. The location of the polluters in the West 
Fork White River basin can be seen in Figure 2. 

TABLE V-Treatment Levels of Treatment Plants 
in the Typical Solution 

Section Treatment Level 

6* .85 
11 .85 
16 . 85 
23 .85 
31* .85 
36 .986 
39* .85 
41 .910 

*The plants in sections 6, 31 and 39 are regional plants. 

Large Scale Nonlinear Programming Problem 133 

Fig. 2 

The total cost of the solution obtained is $3,571,799. 
This cost is over and above the cost of required 85 per
cent removal at all polluters. The cost of required uni
form treatment of 98 percent removal over and above 
the cost of 85 percent removal is $4,063,074. The re
quired uniform treatment of 98 percent does not give a 
feasible solution. By combining certain effluents and 
using flow augmentation, the cost is reduced a half a 
million dollars and the river meets the water quality 
standards. 

The solution given above to the West Fork White 
River pollution problem appears to be reasonable. 
Effluent from polluters which are close together is com
bined to take advantage of the economies of scale in the 
production of clean water. In the case of the polluter 
in section 36, it is necessary to transport some of the 
effluent downstream in order to gain feasibility. This 
points out a heretofore undiscussed role that piping 
effluent can play in solving river basin pollution prob
lems. In the paper by Graves, Hatfield and Whinston3 

on by-pass piping we see that piping replaces the treat
ment plant to take advantage of the natural treatment 
ability of the river. In our example, it is mandatory to 
pipe in order to meet the required quality goals, unless 
one can treat at a level of removal of almost 100 per
cent. This is practically speaking almost impossible . 

ACKNOWLEDGMENTS 

The development of the river simulation model in this 
paper owes much to the DOCAL computer program of 



134 Fall Joint Computer Conference, 1971 

the Environmental Protection Agency. This program 
was applied on the West Fork White River by the 
Evansville Office of E.P.A. We are especially grateful to 
Max Noecker and Stanley Smith of the Evansville 
office who kindly made their data and experience avail
able for our use. Discussions with our colleague J. 
Hamelink of the Forestry department were helpful. 
The authors are responsible for all possible errors. 

REFERENCES 

1 R A DEININGER 
Water quality management economically optimal 
pollution control system 
Unpublished PhD Dissertation Northwestern University 
Evanston Illinois 1961 

2 D P LOUCHS C S REVELLE W R LYNN 
Linear programming models for water pollution control 
Management Science Vol 14 No 4 Dec 1967 

3 G W GRAVES G B HATFIELD 
A WHINSTON 
Water pollution control using by pass piping 
Water Resources Research Vol 5 No 1 Feb 1969 

4 H W STREETER E B PHELPS 
A study of the pollution and natural purification of the 
Ohio River 
US Public Health Bulletin No 146 Feb 1925 

5 R V THOMANN 
Mathematical model for dissolved oxygen 
Proc Amer Soc Civil Engr 89 No SA5 Oct 1963 

6 G W SCHAUMBURG 
Water pollution control in the Delaware estuary 
Harvard University Water Program Harvard University 
Cambridge Massachusetts May 1967 

7 G W GRAVES G B HATFIELD 
A WHINSTON 
Water pollution control with regional treatment 
Technical Report Federal Water Pollution Control 
Administration Forthcoming 

8 G GRAVES 
Development and testing of a nonlinear programming 
algorithm 
Aerospace Corporation June 1964 

9 G W GRAVES A B WHINSTON 
The application of a nonlinear algorithm to a second 
order representation of the problem 
Centre d' Etudes de Recherche Operationnelle Volume 11 
No 21969 

10 R J FRANKEL 
Economic evaluation of water quality-an engineering 
economic model for water quality management 
SERL Report No 65 3 University of California Berkeley 
Calif Jan 1965 

11 F P LIN AWEAVER C S CLARK 
Cost of water transmission 
Journal of American Water Works Association 1549 1560 
December 1964 



Parametric font and image definition and generation 

by AMALIE J. FRANK 

Bell Telephone Laboratories 
Murray Hill, New Jersey 

INTRODUCTION 

The demand for high graphic arts quality publications 
particularly in the areas of education and technology 
increases steadily. The associated use of computer con
trolled photocomposition systems can be likewise ex
pected to accelerate. Considering the high cost of cur
rently available systems, we were motivated to investi
gate alternative approaches, both from a hardware and 
a software point of view. We conducted experiments 
with a high resolution electron beam recorder controlled 
by a small computer containing 8K words of 16 bits 
each, and running at about 500K cycles per second. 
The recorder can address a raster grid 16,384 square, 
and can draw both horizontal and vertical vectors, but 
the vectors must be no greater than four rasters apart 
to obtain proper shading. This paper concerns itself 
primarily with the software implementation, as con
strained by the given hardware configuration. 

Focusing on the software implementation, the means 
of defining and generating repeated images and fonts 
is a prime factor in determining the economics of a 
computer photocomposition system. For high quality 
publications, a variety of symbols and fonts with 
multiple sizes in each font is a necessary feature. There 
is, of course, a philosophic question concerning the de
sign of new fonts oriented specifically for computer 
generation as opposed to the use of traditional styles, 
originally designed for manual stylus, woodblock, or 
hot metal techniques. Reserving aesthetic judgment 
for the time being, we concentrated on developing an 
efficient process for defining and generating any font or 
set of images, following the given lines as exactly as 
possible. In designing a system for this purpose, three 
factors must be considered: the manual operations re
quired to arrive at the image definitions, the computer· 
storage required to hold the definitions, and the process
ing time required to draw the images. For the given 
hardware, the computer storage condition assumes 
first priority. Previous software systems are found to 

135 

require excessive storage and fairly extensive manual 
labor to define the images. Described herein is a new 
method for defining and generating images in para
metric form. This method decreases storage require
ments and simplifies the manual operations con
siderably. 

PREVIOUS METHODS 

In most existing systems, the font definition consists 
of either a list of coordinates of the endpoints of the 
strokes comprising the images, including any internal 
shading strokes, or a list of the coordinates of points 
defining the contours of the characters. Such lists oc
cupy a considerable amount of storage. This is further 
aggravated as technological advances drive the mini
mum line width down, thus requiring many more 
strokes to shade the same areas. This, of course, can be 
offset to some extent by including hardware to defocus 
the beam for larger size characters, and thus increase 
the beam width, but at the expense of a sharp, clear 
image. Another important disadvantage of existing sys
tems is that different sizes of the same font require 
separate and distinct lists, themselves varying in size. 
For each size in a desired font, the manual operations to 
define the font must be repeated, and the resulting 
definitions stored individually. 

For an example, consider a simple sans-serif font in 
8 point size, and assume an average of 75 strokes per 
character. If the strokes all are vertical and are specified 
in series, then the simplest storage scheme requires for 
each stroke 8 bits for the starting position of the stroke 
relative to a local origin, and 8 bits for the length of 
the stroke. On this basis, a font of 128 characters re
quires 9,600 words of storage. This increases propor
tionately for larger-sized characters, and also for more 
complex fonts. 

Some improvement to the simple encoding scheme 
indicated above may be made by incorporating variable 
length fields, or by encoding differences between suc-



136 Fall Joint Computer Conference, 1971 

Figure 1-Patch configurations 

cessive values. Other techniques arISIng principally 
from research in pattern recognition may also be con
sidered. In one of these schemes, the boundaries of the 
image are "chain" encoded. Here, the position of a 
point is given relative to the previous point in the list, 
usually as a value from 0 to 7 which indicates one of 
the 8 raster positions immediately surrounding the 
previous point. Another approach introduces the con
cept of the "skeleton" of an image. This scheme is use-

ful in applications such as chromosome analysis where 
reduction of the image to a skeletal graph is an objec
tive. However, for photocomposition, it offers no par
ticular advantage over the other encoding schemes 
mentioned. 

In fact none of these schemes reduces the storage 
requirements to a feasible level for the experimental 
equipment indicated previously. A new scheme which 
proves to be highly effective is described below. 



Parametric Font and Image Definition and Generation 137 

RECTANGLE 

i 
LENGTII 

l 
---.t 14--

NO. OF 
STROUS 

---.t #1 14--

#2 

TRAPEZOID 

~ 14--

BOTTOM 
LENGTII 

CURVE 

f 
#1 

i 

Figure 2-Types of patches 

NEW IMAGE DEFINITION 

I 
NO. OF 

STROUS 

) 
#2 

j 

This scheme uses the concept of breaking up an 
image into patches. The contours of each patch are 
then described by a set of parameters. The parameters 
are chosen such that a simple manipulation yields vary
ing sizes of an image. 

There are various ways in which an image can be 
divided up into patches, and correspondingly various 
ways of defining the patch parameters. One such con
struction was proposed by Mathews and Miller in 
1965.1 Their construction, which was designed for hard
ware implementation, assumed that curved portions of 
an image would be broken up into patches, each one of 
which had two curved sides and two other sides which 
are straight parallel lines. Each patch requires eight 

parameters: the initial width, the height, the coordi
nates of one corner, and the curvature and slope of 
each curved side. Rectangles and trapezoids are treated 
as special cases. 

The design described herein also uses the three 
types of patches: rectangles, trapezoids, and patches 
with curved boundaries. The curved patch definition is 
somewhat freer than that used in the Mathews and 
Miller construction, in the sense that it is not con
strained to have two sides which are straight parallel 
lines. Figure 1 shows some sample patch configurations. 
These are described in detail further below. Of greater 
significance is the difference in methods used to arrive 
at the parameters for a particular image or set of 
images. :l\1athews and Miller used trial and error, 
which results in considerable effort to divide an image 
into patches and to determine the necessary param
eters. It is particularly difficult to choose the slopes and 
curvatures in such a way that successive patches match 
well at their points of juncture, i.e., to insure against 
the appearance of cusps at these points. Clearly, a 
faster, more analytical method is necessary for produc
ing image definitions in any quantity. This paper de
scribes both a curved patch construction and an associ
ated algorithm for arriving at the necessary parameters 
directly. The three types of patches are illustrated in 
Figure 2. Rectangles and trapezoids are handled in a 
straightforward manner. For a rectangle, the stored 
parameters are the width or the height, whichever is 
larger, and the number of strokes to be drawn. Vertical 
strokes are drawn if the height is greater than the 
width, and horizontal strokes otherwise. For a trape
zoid, four parameters are stored: the bottom length, 
the number of strokes to be drawn, the change in 
abscissa of the left hand end of each successive stroke, 
and the change in line length for each successive stroke. 
These last two parameters are related, of course, to the 
angles A and B made by the sides of the trapezoid as 
shown in Figure 2. 

A curved patch is a somewhat more complicated 
matter. We consider a curved patch to consist of two 
curved members. Vertical strokes are drawn where the 
curved members are considered as functions of X, and 
horizontal strokes are drawn where the curved members 
are considered as functions of Y. The two curved mem
bers mayor may not meet each other at their end 
points. Where they do not meet, straight lines are as
sumed to connect the ends. Each curved member is 
described by at least one mathematical function. In 
some cases, a curved member is broken up into a num
ber of segments, and each segment is described by a 
separate function. First, we must decide what kind of 
function is to be used. Second, for a given image or set 
of images such as the characters of a particular font, 



138 Fall Joint Computer Conference, 1971 

14 14 

16 

12 

18 10 
Figure 3-Steps in defining an image 

we find a suitable method for determining the param
eters of the function for each segment. 

Two factors govern the type of function to be used: 
storage and execution time. A more complicated func
tion spans a larger segment and carries through more 
inflections of the curve, thus requiring a smaller num
ber of segments, and consequently less storage than a 
simple function. However, it takes longer to compute. 
Since our experiment concentrated on font production 
on a rather small computer, we opted to minimize exe
cution time. For this reason, we ruled out superellipses, 
as suggested by Mergler and Vargo in their experiments 
in font design.2 

We decided initially to experiment with parabolas 
of the type: y=ax2+bx+c or, x= ay2+by+c. The 
principal axes of these parabolas are parallel to the Y 
and X axes respectively. Roughly speaking, we use the 
form y=f(x) for parts of a curve that are U or n 
shaped, and the form x=f(y) for parts that are ( or ) 
shaped. To determine optimally which form to use 
where, we follow the steps illustrated in Figure 3. The 
upper left corner of this figure shows a donut shaped 
image we wish to define. We actually start the process 
with the donut shown in the upper right corner. Here 
we mark all the points where 450 and 1350 lines are 
exactly tangent to the donut. There are eight of them. 



Parametric Font and Image Definition and Generation 139 

Figure 4-Equalizing the angle error 

We then connect corresponding points on the inside 
and outside curves with dotted lines. For example, 
point 1 is connected to point 11, point 3 is connected 
to point 13, etc. This carves up the donut into four 
patches. For the top and bottom patches we will fit 
parabolas of the form y=f(x), and fill the patches with 
vertical strokes. For the left and right patches we will 
fit parabolas of the form x=f(y) and fill the patches 
with horizontal strokes. 

N ext we go to the lower left corner of the figure. 
Here we add 9 more points where 0° and 90° lines are 
exactly tangent to the donut. Finally, we find the 
parabolas which fit between successive points. We fit 
one parabola between points 1 and 2, another parabola 
between points 2 and 3, etc. The donut in the lower 
right corner of the figure shows two of the parabolas 
that have been found. Between points 14 and 15 we 
fit a parabola of the form y=f(x), and between points 
6 and 7 a parabola of the form x=f(y). 

GETTING A GOOD FIT 

In our experiment we discovered that the process of 
finding the actual parameters for the parabolas to be 

fit to each particular patch is not a trivial matter. We 
took the capital letters of the U nivers font, and ac
tually programmed a number of algorithms before we 
arrived at one which yields consistently good results 
with a minimum of manual labor . First we tried enter
ing the coordinates of various points along the given 
curve. Taking the first four points, we forced the para
bola to pass through the two middle points, and be a 
least squares fit to the two surrounding points. The re
sulting parabola was then used for the segment be
tween the two middle points. We then deleted the first 
point, added the fifth point in sequence, and repeated 
the fitting process. This continued until we ran out of 
points. The resulting segments were fair fits, but they 
did not include either end segment. These could be 
generated by increasing the initial list by two points 
lying someplace on an extrapolation of the given curve 
member. Pinpointing that someplace proved often to 
be like finding a needle in a haystack. 

In successive trials, we loosened up the input format 
by specifying for each segment separately two "fixed" 
points through which the parabola had to pass, and two 
"floating" points for the least square fit. This enabled 
us to place the two floating points inside or outside 
the two fixed points. With sufficient fishing this ap-



140 Fall Joint Computer Conference, 1971 

proach resulted in much better fits, but we were often 
bothered by noticeable cusps at the junction of seg
ments. This led us to concentrate on the tangent lines 
of a fitted parabola at the end points. From this evolved 
our final algorithm, which "equalizes the angle error," 
i.e., makes the angle between the tangent line of the 
fitted parabola at one end point and the tangent line 
of the given curve at that point equal to the corre
spondingly defined angle at the other end point. This is 
illustrated in Figure 4 and is stated more formally as 
follows. Given points A and B, and their derivatives 
A' and B', to fit a parabola: 

1. Compute the parabola P A which passes through 
A and B and has the derivative A' at A. Com
pute the derivative BA ' of P A at B. 

2. Compute the parabola P B which passes through 
A and B and has the derivative B' at B. Com
pute the derivative AB' of PB at A. 

3. The tangent lines corresponding to the two de
rivatives A' and AB' at A form some angle a. 
Similarly, the tangent lines corresponding to the 
two derivatives B' and BA ' at B form some angle 
{j. There exists a family of parabolas which pass 
through A and B, and which have derivatives 
AF' and BF', whose respective tangent lines lie 
somewhere within the angles a and {j respec
tively. Within this family, choose that parabola 
whose tangent lines at A and B "equalize the 
angle error," i.e., where the angle (8) made by 
the tangent lines corresponding to the deriva
tives A' and AF' is equal to the angle (8) made 
by the tangent lines corresponding to the de
rivatives B' and B/. 

This algorithm proved highly successful. We did note, 
however, that points on the curve where the tangent 
line is exactly horizontal or exactly vertical were par
ticularly sensitive. Accordingly, all such points are 
made end points of curve segments. In this case alone, 
we do not equalize the angle error, but force the de
rivative of the curve at such a point to be exactly zero. 
In most cases this procedure gives the visual effect of 
continuous curvature at the juncture of adjacent seg
ments, even though the angle made by the tangents of 
the two segments at the juncture differs by as much as 
10 degrees. Beyond this threshold however, the con
tour appears disjoint. Where this occurs, the addition 
of one more segment normally removes this condition. 

The parameters stored for a curved patch consist 
essentially of the coordinates of the starting and ending 
points of the two curved members relative to a local 
origin of the entire letter or image, and a set of three 
parameters required for each curve segment in the 

patch. Various encoding economies are made, as, for 
example, where a patch is preceded by a contiguous 
patch, the end points of the previous patch are used as 
the starting points of the current patch. We have also 
incorporated a mirroring procedure so that patches 
which are mirror images of each other share a common 
set of parameters. 

The curve fitting algorithm to equalize the angle 
error computes the coefficients a and b of the parabola 
as functions of the coordinates of the end points of the 
segment and of the tangent of the given curve at those 
points. The actual generation of an image, however, is 
not done by evaluating the function y=ax2+bx+c or 
X= ay2+by+c successively. Since the distance between 
strokes is constant, the computation of the functional 
values lends itself readily to implementation with dif
ference equations. Classically, this approach consists 
of starting with an initial value of the independent 
variable (xo for vertical and Yo for horizontal curved 
patches) and an initial functional value (Yo for vertical 
and Xo for horizontal curved patches). We then con
struct each successive functional value from the previ
ous functional value by applying the difference equa
tion coefficients do and k, as shown below for a vertical 
curved patch: 

Yl=yo+do 

Y2=Yl+d1 

YN=YN-l+dN- 1 

d1=do+k 

d2 =d1+k 

The difference equation constants are easily derived 
from the coefficients a and b, the initial functional 
value Yo, and the inter-stroke distance h: 

do=ah2+2ahYo+bh 

k=2ah2 

Use of difference equations results in less execution 
time since additions replace multiplications, and it re
sults in less storage required since only two difference 
equation constants are required rather than the three 
coefficients a, b, and c. An auxiliary advantage is that 
the range of the difference equation constants is con
siderably smaller than that of the coefficients. The 
difference equation constants each fit within one word 
as fixed points numbers whereas the coefficients would 
probably require a floating point representation or 
double precision storage. 

In summary, the parameters required for each curved 
segment are the coordinates of the starting point, the 
two difference equation constants, and the number of 
strokes spanning the segment. Figure 5 and Tables I 
and II contain a complete example of a parametric 



Parametric Font and Image Definition and Generation 141 

TABLE I-Input Data for Image in Figure 5 

ANGLE OF 
POINT X Y TANGENT 

1 799 744 90 
2 744 890 135 
3 594 981 165 
4 440 1000 0 
5 126 868 45 
6 21 669 75 
7 0 500 90 
8 440 0 0 
9 799 56 

10 799 135 
11 799 524 
12 664 524 
13 453 524 
14 652 744 90 
15 598 850 135 
16 524 885 165 
17 440 894 0 
18 245 814 45 
19 152 654 75 
20 139 500 90 
21 440 106 0 
22 664 135 
23 664 418 
24 453 418 

definition. In Figure 5 the types of patches are coded 
as follows: R = rectangle, T = trapezoid, V = vertical 
curve patch, H = horizontal curve patch, M = mirror 
image of other patches. Figure 6 shows an exploded 
view of the image generated from this definition. This 
same definition may be used to generate the image in 
any other size, larger or smaller. Excessive size changes 
result in some degradation to the image. See Figure 7 

4 3 

1 

13 12 
7 

11 20 
R 

24 23 
R 

10 

+-ORIGIN 

9 

8 

Figure 5-Example of parametric definition 

for a few examples of sizing. In these cases, the sizing 
was done in a strictly proportional manner. The patches 
may also be individually sized by varying algorithms 
to obtain thinning or thickening of different parts of 
an image. 

The various images in Figures 1, 2, 3, 5, 6, and 7 are 

TABLE II -Computed Parameters for Image in Figure 5 

End points Difference Equation 
of segment Parabolic Coefficients Constants 

a b c k do 

1-2 - .00256 3.80424 -615.17606 - .08181 -0.04091 
2-3 - .00240 2.62036 273.29839 - .07694 3.79026 
3-4 - .00078 0.68705 848.84937 - .02498 0.96187 
4-5 - .00136 1.19329 737.47536 - .04339 -0.02170 
5-6 .00169 -2.06229 644.06991 .05411 -3.46570 
6-7 .00074 -0.74405 186.01190 .02381 -0.98810 
8-9 .00043 -0.38025 83.65432 .01383 0.00691 

14-15 - .00446 6.63375 -1815.75331 - .14266 -0.07133 
15-16 - .00414 4.21743 -188.60866 - .13243 2.92872 
16-17 - .00156 1.37188 594.18601 - .04989 1.02268 
17-18 - .00208 1.83257 492.83464 - .06664 -0.03332 
18-19 .00218 -2.63984 943.88245 .06989 -3.66281 
19-20 .00049 -0.49310 263.27415 .01578 -0.60750 
21-22 .00064 -0.56122 227.46939 .02041 0.01020 



142 Fall Joint Computer Conference, 1971 

Figure 6-Exploded view of an image defined and generated by the patch method 

actual computer output and were all made using this 
new method. The output device used for this purpose 
was a Stromberg-Carlson 4060 microfilm recorder. 

SUMMARY AND EVALUATION 

We may now evaluate the method described with re
spect to the manual operations, computer storage, and 
processing time. 

The curve fitting implementation for this study was 

initially done on a non-interactive basis. In this case, 
the manual operations consist of measuring and key
punching the coordinates of the significant points, i.e., 
all terminal points, inflection points, and points of 
tangency with 0, 45, 90, and 135 degree lines, and any 
additional points required for smoothing, along with 
the angle of the tangent line at these points. Almost all 
of these points are chosen to be points of tangency 
with 0, 45, 90, and 135 degree lines, so that it is not 
actually required to measure the angle in these cases. 
Even these manual operations are a decided itnprove-



Parametric Font and Image Definition and Generation 143 

~1111111""II""llllm~ 
~lllllllllInlllllllUl!!.. 

=. 
= == 

~IIIIIIIIIIIIIIII ~IIIIIIIIIIIIIIIIIIIIIII 

Figure 7-Exploded views of various sized images derived from image shown in Figure 5 



144 Fall Joint Computer Conference, 1971 

ment over previous methods, where many more points 
must be specified, and redone for each separate size. 

This method has also been implemented in an inter
active program designed by Miss Joan E. Miller of Bell 
Telephone Laboratories. This interactive procedure 
saves substantial time by replacing the measuring and 
keyboarding of the various coordinates and tangents 
by the faster physical and visual processes of drawing 
and manipulating various knobs, pushbuttons and 
switches and also by providing a means of immediate 
feedback and correction for the curve fitting processes. 
In this procedure, we draw the boundaries of the image 
by hand on a RAND tablet. This results in a stack of 
coordinates in storage, which are then subjected to a 
smoothing algorithm, and displayed on a scope. The 
next step is to find the significant points of tangency. 
This is done by means of a novel feature of this pro
gram, which is a tracking dot under knob control. This 
dot is not permitted to course the entire scope, but is 
constrained to follow the path of the input curve. As it 
does so, the tangent of the curve is continuously com
puted and displayed numerically on the scope. The user 
may thus position the tracking dot to any desired point 
and register it by pushing a button. After all these 
significant points are captured the curve fitting algo
rithms described previously are applied and the fitted 
parabolas immediately displayed. Additional segments 
are added as needed. Finally, the parameters describing 
the entire image are organized and outputted for use 
in the photocomposition phase. 

The image definitions for this experiment were stored 
and executed as procedures in an interpretive language. 
While this adds some overhead to both the storage and 
processing, it affords a great degree of flexibility. For 
this implementation, the storage required for the 26 
capital letters is approximately 700 words. Extending 
this to 128 characters, adjusted for smaller characters, 
we arrive at a conservative estimate of 3,200 words, 
representing a % reduction over the 9,600 indicated 
previously. Moreover, we note that font definitions in 
parametric form are easily sized. This can be done in 
the definition process by transforming the coordinates 
of the defining points prior to computing the param
eters, or it can be done dynamically at drawing time 
by maintaining a "master" set of definitions in one 
size and deriving other sizes as required from the 
master set. All sized versions of the same image require 
the same amount of storage, a valuable feature for 
efficient storage management. 

Volume timing tests are currently being constructed. 
Initial results indicate a through-put rate in the 
neighborhood of 100 characters per second. This is sat
isfactory for many applications where graphic arts 
quality output is required using a general purpose com
puter system, and where economy of operation is a 
prime consideration. The speed may be increased, of 
course, by microprogramming or hard-wiring or by 
using computation equipment with a higher cycling 
rate. 

We conclude that the method described of defining 
images in parametric form has a number of distinct ad
vantages, and while it is particularly desirable in a 
minimum equipment configuration, it is generally ap
plicable to a variety of hardware configurations. 

REFERENCES 

1 M V MATHEWS J E MILLER 
Computer editing, typesetting and image generation 
Proceedings Fall Joint Computer Conference 1965 
pp 389-398 

2 H W MERGLER P M VARGO 
One approach to computer assisted letter design 
The Journal of Typographic Research Volume II 
Number 4 October 1968 pp 299-322 

3 J S WHOLEY 
The coding of pictorial data 
IRE Transactions on Information Theory Volume IT-7 
Number 2 April 1961 pp 99-104 

4 H FREEMAN 
On the encoding of arbitrary geometric configurations 
IRE Transactions on Electronic Computers EC-lO 
Volume 2 June 1961 pp 260-268 

5 C T ZAHN 
A formal description for two-dimensional patterns 
Proceedings of the International Joint Conference on 
Artificial Intelligence May 7-9 1969 Washington DC 
Gordon and Breach NY 1969 

6 U MONTANARI 
A note on minimal length polygonal approximation to a 
digitized contour 
Communications of the ACM Volume 13 Number 1 
January 1970 pp 41-47 

7 J L PF ALTZ A ROSENFELD 
Computer representation of planar regions by their skeletons 
Communications of the ACM Volume 10 Number 2 
February 1967 pp 119-125 

8 U MONTANARI 
Continuous skeletons from digitized images 
Journal of the ACM Volume 16 Number 4 October 1969 
pp 534-549 



A syntax-directed approach to 
pattern recognition and description 

by LARRY D. MENNINGA 

Western Washington State College 
Bellingham, Washington 

INTRODUCTION 

Pattern recognition has held the attention of researchers 
for quite some time. Early efforts were in optical 
character recognition and were intended to provide 
easier and more rapid communication from man to 
machine. In more recent years, this research has ex
panded to include the processing of pictorial information, 
such as that from high energy physics or medical 
research. 

Until recently, most of the work and associated 
theory has treated pattern recognition as a classification 
or categorization problem. The methods used can be 
broadly characterized as follows: Each sample pattern 
is represented by an n-dimensional vector whose com
ponents are the values of the individual features, or 
properties, which have been selected for measurement. 
The classification is done by partitioning n-space, 
referred to as the feature space, into subspaces. Each 
subspace represents a class, and a sample pattern is 
considered to be a member of the class corresponding 
to the subspace of which the pattern vector is a member. 
The members of each class must be clustered in the 
feature space to achieve successful recognition. The use 
of weight vectors, proper selection of features, adaptive 
systems, and other techniques for improvement have 
been investigated. A survey of this work is given 
by Nagy.! 

The most significant shortcoming of the above 
method is that the result of such a recognition process 
yields only a classification, a class name Dr number. 
What is often desired is a structural description of the 
pattern or an analysis of the relationships existing 
between certain substructures within the pattern. This 
is especially true of more complex patterns. Of course, 
it is possible to divide the feature space into classes, 
with each one corresponding to a different structural 
description. However, complex patterns would neces
sitate an extremely large number of classes and would 
result in unmanageable problems. 

145 

Such classification methods are also essentially one
level. The features selected for measurement must be 
able to detect any structural relationships which are 
significant. As the patterns become more complex, the 
selection of a suitable set of features becomes more 
difficult. 

Finally, the vector representation of a pattern is not 
the most natural for people. To make use of the potential 
for powerful recognition systems using interactive 
computing, the human being must be able to com
municate with the computer using representations 
which he can grasp rapidly. 

The linguistic approach 

In recent years, research has been done using lin
guistic methDds to overcome the failures of the classifica
tion methods. The linguistic methods are aimed 
specifically at producing structural descriptions of 
patterns. Miller and Shaw2 give a survey of much of 
this work. 

In the linguistic approach, the pattern, or picture, is 
considered to be a sentence in a language generated 
by a given grammar. This grammar is defined either 
explicitly or implicitly, and it is used to analyze each 
sample pattern. In such a grammar, the nonterminal 
symbols are phrases descriptive of a subpattern and 
the terminal symbols (called primitives) are the basic 
elements which are given a priori, and they are recog
nized by some method outside of the linguistic model. 

A given sample pattern is then described, or recog
nized, by using the grammar to analyze it. A derivation 
tree gives a description of the sample in terms of sub
structures and the relationships which they satisfy
insofar as these are included in the grammar. Thus, in 
addition to being the desired result of an analysis, the 
description, as expressed in the rules for the grammar, 
can also direct the recognition process by defining the 
sequence of algorithms to be used. 



146 Fall Joint Computer Conference, 1971 

<pattern rule>: :=<object> ~<description> 

<description>::=<compound object> <predicate list> 

<compound object>::=<basic description>!<basic descrip-

tion> <compound object> 

<basic description>::=<basic object>!<basic object> 

<relator> < basic object> 

<basic object>::=<object>! «description» 

<object>::=<object type>«object label>:<constituent 

list» 

<object type>::=<identifier> 

<object label>::=<identifier> 

<constituent list>::=<object label>!<object label>, 

<constituent list> 

<relator>::=<predicate name>!<predicate name> <relator> 

<predicate list>::=NULL!<predicate>!<predicate> <predicate 

list> 

<predicate>::=<predicate name>[<constituent list>] 

<predicate name>: :=below! above !leftof! rightof! parallel! 

~!skew!egual!tangent!intersect! 

~!far!eguallength! 

Figure I-Syntax for the pattern rules 

A SYNTAX-DIRECTED SYSTEM 

A system called PARSE, which uses the linguistic 
approach to pattern' description, will be described here. 
PARSE is an acronym for Pattern Analysis and 
Recognition by Syntax Evaluation. It is a system in 
which the user must supply the metalanguage to be 
used to analyze and describe patterns. 

Str1.Jcture of grammar for PARSE 

The formal syntax for a user-supplied grammar rule 
is shown in Figure 1. Each rule in the grammar is called 
a pattern rule and gives the definition of an object. A set 
of pattern rules is a pattern grammar. The left side of 
each rule begins with an identifier. This identifier is 
called an object type and is a nonterminal symbol in the 
vocabulary of the pattern grammar. In addition, the 
left side of each rule includes a list of labels. 

The right side of each rule consists of a list of object 
types, with associated labels, and predicates. There 
are two special object types, POINT and LINE, which 
are terminal symbols in the vocabulary. These are the 
primitives, that is, they are object types which have 
been defined a priori. They are the basic elements in 
the language (or in the patterns), and they are recog
nized outside of the PARSE system. The list of predi
cates in Figure 1 is not intended to be exhaustive, but 
rather to represent a typical set. 

More than one pattern rule is allowed for any object 
type. This makes it possible to give alternate definitions 
for an object type. By using more than one pattern rule, 
it is possible to construct recursive definitions. Each 

object type must be defined by a pattern rule, or be a 
primitive, if it is to appear on the right side of a pattern 
rule. 

As an example, consider the grammar rules given in 
Figure 2. In the example, the object type HOUSE is 
defined in terms of the object types TRIANGLE and 
RECTANGLE and the relationships are specified by 
the predicates above, parallel, perp, and skew. The labels 
are used to identify object types, and they may be used 
to specify a correspondence between substructures. The 
relationship of identity is given implicitly by repeating 
an object label more than once in a pattern rule. In the 
rule for HOUSE, the object label X is associated with 
both TRIANGLE and RECTANGLE to indicate that 
the same instance of the line X must be a part of each 
of these objects. 

Although the user may specify the grammar which 
he wants to be used, this specification is subject to 
certain restrictions imposed by the syntax rules of 
Figure 1. In each pattern rule, the labels and predicates 
specify semantic information for the rule, and so these 
elements can be treated separately. Ignoring this 
semantic information, the "underlying" grammar can 

y 

x 

w u 

v 

HOUSE(H:T,S) .... TRIAHGLE(T:X, Y,Z) above RECT1'8GLE(S:X,U, V,W) 

TRIAn"GLE (T:X,Y,Z) ~LiINE(X:P,Q) LINE(Y:Q,R) LINE(Z:R,P) 

skew[x,Y] 

RECTlL~GLE(R:X,y,Z,W)~ LINE(X:P,Q) parallel LINE(Z:U,V) 

LINE(Y:Q,U) parallel LINE(W:V,P) 

~[x,y] 

Figure 2-Sample pattern grammar 



Syntax-Directed Approach to Pattern Recognition and Description 147 

easily be seen to be a context-free phrase structure 
grammar, as defined by Chomsky, 3 since only one 
nonterminal symbol is allowed to appear on the left 
side of a pattern rule. Note that the empty string 
cannot be generated by any of the allowable rules and 
that all rules are length preserving. For such a context
free grammar, there is a derivation for every sentence in 
the language which is generated by that grammar.4 

Thus it is possible to define an algorithm to determine a 
description (structure) for a given pattern (string) ill 

the language. 

Semantics used by PARSE 

Knowing the structure of a pattern is not enough. 
Semantics are also involved in the descriptions of 
patterns. The semantics give meaning (principally 
spatial relationships) to a particular structure. Semantic 
information is given primarily by the predicates and the 
object labels in the pattern rules. The meaning supplied 
by these elements of the language will be formalized 
in a manner similar to that suggested by Knuth.5 

The seman tics will be supplied by the values of certain 
attributes, or properties, that the symbols of the 
language will have. The attributes selected can be 
divided into two areas: geometric properties and labels. 
The value of each attribute is assigned by evaluating a 
function. The same name will be used for an attribute 
and its corresponding function. 

Each pattern rule has semantics associated with it. 
Thus it is necessary to have a function for each attribute 
of each symbol in the rule. The value assigned to an 
attribute of a given symbol depends on the values of 
some of the attributes of the other symbols in the rule 
and on some of the other attributes of the same symbol. 

Consider the underlying grammar given by a set of 
pattern rules. Rules in the underlying grammar will be 
called syntax rules. Let G be such a context-free gram
mar, G= (VT, VN,P, S), where VT= {terminal symbols} , 
V N = {non terminal symbols}, P = {syntax rules}, and 
S = the start symbol. For each symbol X in V TU V N, 

there is a finite set of attributes or properties, A (X). 
Let Y a be the set of values that can be assumed by a 
given attribute a in A (X) . 

If the rth syntax rule is 

XO~XIX2 ... Xn 

where XOEVN and XjEVTUVN for I~j~n then the 
semantics can be defined as follows: For each attribute 
a of a symbol X j, there is a function fia which maps the 
values of certain attributes of Xo, Xl, ... , Xn into a 
value of a. That is, !:;a: YalX Ya2 X'" X Yat(i.a)~Ya, 
where ai=ai(j,a) is an attribute of X ki, for O~ki= 
K i ( j, a) ~n and 1 ~i~t( j, a). 

Ag(X)={angle, length, x min, ~, y min, y max} 

for every symbol X which is not a primitive. 

Ag(POINT)={X min, y min} 

Ag(LlNE)={angle, length, x min, ~, y min, y max}. 

Figure 3-Attributes of the object types 

For each symbol X, partition A (X) into two disjoint 
subsets Ag(X), the geometric attributes, and AL(X), 
the attributes dealing with the labels. The sets of 
geometric attributes are given in Figure 3. The label 
attributes are handled in a similar fashion. 

Each attribute is assigned a value by a function of the 
other attributes. Let ((Xl, YI), (X2, Y2» be a pair of 
points giving the cartesian coordinates of the primitive 
LINE and (x, y) be the coordinates for POINT. Then 
the functions which give the semantic rules are defined 
as follows: 

{

arctan[(YI-Y2)/(XI-X2)] for XI¢X2 
angle (LINE) = 

7r/2forxl=x2 

length(LINE) = V(XI-X2)2+(YI-Y2)2 
x min (POINT) =X 
ymin(POINT) =y 
x min (LINE) = minimum {Xl, X2} 
X max (LINE) = maximum {Xl, X2} 

Y min (LINE) = minimum {YI, Y2} 
Y max (LINE) = maximum {YI, Y2} 

For the rth rule XO~XIX2' .. Xn the semantic rules 
for the attributes in Ag are: 

angle(Xo) = "Langle(Xi) • length (Xi)/"Llength(Xi) 
length (Xo) = "Llength(Xi) 
X min (Xo) = minimum {X min (Xi) I i=I, 2, ... , n} 
X max (Xo) =maximum {x max (Xi) I i= 1,2, ... , n} 

ymin(Xo) = minimum {ymin(Xi) I i=I, 2, ... , n} 

y max (Xo) = maximum {y max (Xi) I i= 1,2, ... , n} 

A "meaning" is assigned to each sentence in the 
language by the semantics. A derivation of the sentence 
is carried out in the usual way, using the syntax rules. 
Starting with the terminal symbols, the attributes are 
evaluated for each symbol in the derivation. It is easy 
to see that the semantic rules define the attributes of a 
symbol X as a function of the attributes of those sym
bols which appear on the right side of a production 



148 Fall Joint Computer Conference, 1971 

TRIANGLE ___ --------1---------LT' LT' ~1~ 
«0,0), (2,0» «2,0); (1,1» «1,1), (0,0» 

object angle I length ~ ~I y min y max 

i 
I 

2 I 0 0 LINEl 0 I 2 0 

LINE2 .Jt/4 2 1 2 ! 0 1 

LINE3 "/4 2 0 1 I 0 1 

TRIANGLE 0 2+2+2 0 I 2 I 0 1 

Figure 4-Semantic evaluation of TRIANGLE 

defining X. Thus, by first evaluating the attributes of 
the terminal symbols, and working backward through 
the derivation, the attributes of each symbol can be 
defined. When all the attributes can be evaluated the 
semantic rules are said to be well-defined. The meaning 
of the sentence is the value of the attributes of the 
start symbol. 

In addition, any symbol can be considered to have 
meaning, determined by the values of its attributes. 
The PARSE system allows restrictions to be placed 
upon the meaning of certain symbols or sub-derivations. 
These restrictions are used to limit membership in a 
given pattern language. Thus, if P G is a pattern gram
mar with underlying grammar G, then L(PG ), the 
language generated by P G, is just those sentences with 
structure generated by G which satisfy the semantic 
restrictions imposed by the predicates and labels. 

The specifications of the syntax for the pattern rules 
allow predicates to be used in two ways. When a 
predicate is used as an instance of (relator) it is a two 
argument predicate, with the first argument being the 
basic object preceding it, and the second argument the 
basic object that follows the predicate. When a predi
cate is used as an instance of the metalinguistic variable 
(predicate list), its arguments are the objects corre
sponding to the labels appearing as formal parameters 
in the rule. In both cases the predicate is evaluated 
using the geometric attributes of the object types which 
make up its arguments. The predicates are defined to 
allow sets of symbols as arguments because instances 
of (basic object) can include more than one symbol. 

To illustrate how the semantic information is 

evaluated and used, consider the grammar rules given 
in Figure 2. For each symbol in the grammar, the set of 
geometric attributes is the same. Thus Ag(HOUSE) = 
Ag(TRIANGLE) = Ag(RECTANGLE) = {angle, length, 
x min, x max, y min, y max}. Figure 4 shows the deriva
tion of a sample TRIANGLE and a table of attribute 
values using the given pattern rule. The underlying 
syntax rule for TRIANGLE is: 

TRIAN GLE~LINEI LINE2 LINEa. 

Using the grammar 

Recognition 

The analysis uses the techniques of syntax-directed 
compiling6 to recognize patterns. A "top down" analysis 
of each sample pattern is done to determine if it is a 
sentence in the language generated by the grammar. 
A sketch of the procedure to use is as follows: Consider 
the input pattern to be a set, Q, rather than a string. 
This set is assumed to be finite. Now, beginning with 
the start symbol, S, or global object type, generate a 
sentence, or pattern, by first replacing the start symbol 
by its definition as supplied by a production with that 
symbol as the left side: S~XIX2 ... X n. 

(1) If Xl, X 2, ••• , Xn are all terminal symbols, then 
map the set {Xl, X 2, ••• , Xn} into the input set, 
Q. Evaluate the semantics for the production 
using the values of the attributes of the images 
of the X/so If the semantic restrictions are met, 
then Q is an instance of the object type S, and it 
is a member of the language generated by S. 
If the semantic restrictions are not satisfied a 
new mapping must be tried. This continues 
until either all the possible mappings are tried 
or the semantics are satisfied. 

(2) If the X /s are not all terminal symbols, then 
choose the first nonterminal symbol, say Xj. 
Apply the first production for X j (if there is more 
than one production): Xj~Xj1Xj2 ... X jm. Now 
proceed as in step (1) above, mapping 
{Xjl, X j2 , ••• , X jm } into Q. 

(3) Continue, by repeating steps (1) and (2) until all 
terminals are reached. If at any point in the 
procedure all the mappings have been tried and 
the semantic restrictions have not been met, then 
go back to the previous performance of step (2) 
and apply the next alternate definition. If all 
the alternate definitions for a given nonterminal 
symbol have been tried for a particular per
formance of step (2), then go to the step (2) 



Syntax-Directed Approach to Pattern Recognition and Description 149 

two levels back. If all the alternate definitions 
for the start symbol have been tried and the 
semantics are still not satisfied, then the input 
set, Q, is not in the language generated by S. 

Description 

Since the primary motivation for the linguistic 
approach to pattern recognition is to produce a descrip
tion of the patterns processed, the result of an analysis 
must allow this possibility. The result of a parse, as 
presented in the above, will be a yes or no answer, as 
to whether the input pattern is an instance of the object 
type which is the start symbol of the pattern grammar 
being used. 

In addition, the derivation of the sentence should be 
kept, so that the user can have this derivation printed 
out. This will then be a description of the pattern in 
terms of the subobjects of which it is composed and the 
spatial relationships which they satisfy, as specified in 
the pattern rules. 

This is all very good and useful, but it does not give 
any information about patterns which are not sentences 
in the pattern language. A description of such a pattern, 
in terms of object types within the grammar and the 
spatial predicates, should also be produced. 

The object types, used as nonterminal symbols in the 
pattern grammar, form a natural hierarchy. The start 
symbol is the highest level object type in that hierarchy. 
The object types are ordered by assigning X a lower 
level than Y if the first production defining X occurs 
previous to the first production defining Y. Because the 
object types in the right side of a pattern rule must all 
be defined, this will result in having X lower level than 
Y if there is a production Y ~sXt and no production 
X~uYv, where s, t, u, and v are strings of symbols 
(possibly empty). Also, X is lower level than Y if Z 
is lower level than Y and Z~sXt occurs before any 
production of the form X~uZv. 

In cases in which the input pattern is not a sentence 
in the language, the desired result is a description of the 
input in terms of the highest level object types. This 
description will not be unique, in general, but should be 
minimal in some sense. 

Minimization will be achieved as follows: First the 
highest level object will be found such that the input 
pattern is a candidate for inclusion in the language 
generated starting with that object type. In other words, 
the highest level object type, such that the input 
includes an instance of it, is found first. Each input line, 
used to compose the object found, is marked. Now an 
instance of the highest level object type in the hierarchy, 
which is composed of the maximum number of un-

u 

Z 

v 

TRIANGLE(T:X,Y,Z) rightof RECTANGLE(S:U,X,v,w) 

Figure 5-Maximal description of a pattern 

marked lines, is sought. If none is found with at least 
one unmarked line, the object type which is the second 
highest in the hierarchy must be tried. If an instance is 
found, the unmarked lines are marked, and another 
instance of that type is sought. This process continues 
until all lines are marked or all object types have been 
tried unsuccessfully. 

A list of the instances of object types found in this 
manner is constructed. The predicates defined within 
the PARSE system are evaluated using all pairwise 
combinations of objects found as arguments. Those 
predicates which are true are added to the list of 
object types, and this then becomes the description of 
the input pattern. Figure 5 is an example of such a 
description. 

COMPUTER IMPLEMENTATION 

Computer and language used 

PARSE has been programmed on the Burroughs 
B5500 computer system at the University of Washing
ton Computer Center. Interaction is provided by using 
a remote teletype as an input and output device. Con
sideration was given to using a list processing language 
for the implementation, since much of the data is best 
handled by using linked-list data structures. However, 
for reasons of availability, as well as ease of program
ming, Burroughs Extended ALGOL was used. 



150 Fall Joint Computer Conference, 1971 

!---- f 

rl(oblect~ ! J -,j. I 

-J I. 1 (LINE) --------
FT#!I~~ 1 (object) 1 

1 (LINE) 

~----- 3 
3 2 (predicate) 1 ~ 
7 6 (parallel) -
8 1(# 1st arqs -

1 l(object) 
1(# 2nd arqs l(LINE) 

3 3 
2 
6 
7 

} 
I 

1 (ob;ectl L I 
l{LINEl 

3 -- ---1 4 2 \pred~cate 
8 b \para.Lle.l) 

5 .1 
.! 3 ( predica te 

.L 5 (perp) 
4, 2 (# of arqs 

1 
Label table 2 

X 1 
Y 2 
Z 3 
W 4 
P 5 
Q 6 
S 7 
T 8 

Rule: RECT(R:X,Y,Z,W)::=LINE(X:P,Q) PARALLEL LINE(Z:S,T) 
LINE(Y:Q,S) PARALLEL LINE(W:T,P) PERP[X,Y] 

Figure 6-Internal representation of a pattern rule 

Program structure 

The PARSE program can be divided into three 
major functional areas: 

1. Preprocessor for pattern grammar rules. 
2. Building of the data structure. 
3. Analysis of the data according to the pattern 

grammar. 

The pattern rules are input from the teletype ac
cording to the syntax of Figure 1. The pattern rules are 
checked for syntactical correctness by a top-down 
analysis. Each pattern rule is made into a doubly-linked 
list structure. An example of such a structure is shown 
in Figure 6. 

Each node in the list contains two pointers. The 
forward pointer indicates the next node in the definition, 
while the backward pointer specifies the node to go back 
to in case backtracking is necessary during the analysis 
of a pattern. Each node has a flag to indicate whether 
it is a predicate or an object type, the name of the 
predicate or object type, and a list of integers specifying 
the labels used by that object type or predicate. 

The data structure 

The pattern is also represented by using a linked-list 
structure. This representation arises naturally from the 

hierarchical treatment of the data during analysis. 
Each node represents an instance of an object type and 
consists of several fields. These are a label, a type 
designation, a pointer to the next node of the same type 
object, and pointers to severallists. There is a subobject 
list made up of objects which compose the given object 
and also a superobject list which contains those objects 
of which it is a part. There is also an attribute list which 
contains the values of the geometric attributes the 
object has. 

Before any processing of the pattern is done, the data 
structure consists of only lines and points, the primi
tives. During the analysis, if a given object type is 
being sought, the data structure is examined to see if an 
instance of that type object is present. If not, the rule 
defining that object is invoked. Each node of the 
definition is to be satisfied by searching the data or 
invoking a definition if the node specifies an object type, 
or by evaluating the predicate if the node specifies one. 

As each object type is found it is inserted into the 
data structure. Thus, once a given instance of an object 
has been found, by satisfying the pattern rule defining it, 
the work done in finding it will not need to be repeated 
even though it may not be used at that point in the 
analysis. 

CONCLUSION 

PARSE is most similar to the system described by 
Evans.7 Evans' grammars are somewhat more restrictive 
in their specification of semantics. The Picture Descrip
tion Language of Shaw8,9,lo can be modeled in PARSE 
by associating a label for head and a label for tail with 
each object type. Similarly, the system of Ledleyll,12 

is less powerful than PARSE. The only spatial relation
ship that his system allows is concatenation, which can 
be handled with the labels alone in PARSE. 

While some simple patterns have been processed 
using PARSE,13 it has not been tested on any complex 
pictures, and thus performance figures are not available. 
In order to handle any automatic picture processing, a 
device for recognizing the primitives would be a neces
sary addition to the system. 

The PARSE system produces a description of an 
input pattern in terms of a meta-language supplied by 
the user. Although "natural" is a subjective judgment, 
the description must be termed natural, in that it is 
symbolic, using a familiar vocabulary with its usual 
meaning. The PARSE system allows interaction 
between man and machine. Success at recognizing any 
instance of a pattern defined by the grammar is guar
anteed by the restriction that the grammar be context
free. Further, a description of any picture will always 



Syntax-Directed Approach to Pattern Recognition and Description 151 

be produced, although not a unique one, or necessarily 
the same description that a human being would give. 

REFERENCES 

1 G NAGY 
State-of-the-art in pattern recognition 
Proceedings of the IEEE 56-5 836-62 May 1968 

2 W F MILLER A C SHAW 
Linguistic methods in picture processing-A survey 
Proceedings AFIPS 1968 Fall Joint Computer Conference 
Thompson Book Co Washington 1968 

3 N CHOMSKY 
Formal properties of grammars 
In Handbook of Mathematical Psychology Vol II 
Luce Bush Galanter Eds Wiley New York 1963 

4 J E HOPCROFT J D ULLMAN 
Formal languages and their relation to automata 
Addison Wesley Menlo Park California 1969 

5 D E KNUTH 
Semantics of context free languages 
Mathematical Systems Theory 2-2 127-145 June 1968 

6 T E CHEATHAM JR K SATTLEY 
Syntax-directed compiling 
Proceedings of the AFIPS Spring Joint Computer 
Conference Spartan Books Inc Washington 1964 

7 T G EVANS 
A grammar controlled pattern analyzer 
Proceedings of the IFIP Congress Edinburgh 1968 

8 A C SHAW 
The formal description and parsing of pictures 
Report No 84 Stanford Linear Accelerator Center 
Stanford California 1968 

9 A C SHAW 
A formal picture description scheme as a basis for picture 
processing systems 
Information and Control 14 9-52 January 1969 

10 A C SHAW 
Parsing of graph representable pictures 
JACM 17-3453-81 July 1970 

11 R S LEDLEY ET AL 
FIDAC Film input to digital automatic computer and 
associated syntax directed pattern programming system 
In Optical and Electro Optical Information Processing 
J Tippep et al Eds MIT Press Cambridge Mass 1965 

12 R S LEDLEY 
High speed automatic analysis of biomedical pictures 
Science 146 October 1964 

13 L D MENNINGA 
A syntax-directed approach to the recognition and 
description of visual images 
Tech Rep TR 70-10-06 University of Washington 
Seattle 1970 





Computer pattern recognition of printed music* 

by DAVID S. PRERAU 

Department of Transportation/Transportation Systems Center 
Cambridge, Massachusetts 

INTRODUCTION 

A major area of concentration of pattern recognition 
research has been the design of computer programs to 
recognize two-dimensional visual patterns. These 
patterns may be divided into two classes:1 patterns 
representing objects in the real world (e.g., landscapes, 
blood cells) and patterns representing conventionalized 
symbols (e.g., printed text, maps). The standard 
notation used to specify most instrumental and vocal 
music forms a conventionalized, two-dimensional, 
visual pattern class. 

This paper will discuss computer recognition of the 
music information specified by a sample of this standard 
notation. An engraving process is generally used to 
produce printed music, so the problem can be termed 
one of computer pattern recognition of standard 
engraved music (though the recognition procedure will, 
of course, be effective for music printed by any method). 

The overall process is illustrated in Figure 1. A sample 
of printed music notation is scanned optically, and a 
digitized version of the music sample is fed into the 
computer. The digitized sample may be considered the 
data-set sensed by the computer. The computer per
forms the recognition and then produces an output in 
the Ford-Columbia music representation. Ford
Columbia is an alphanumeric language isomorphic to 
standard music notation. It is therefore capable of 
representing the music information specified by the 
original sample. (An example is shown in Figure 2.) 
In the form of a Ford-Columbia alphanumeric string, 
the output of the program can be used as input to music 
analysis programs,2 music-playing programs, composer 
aids, Braille-music printers, music displays, com
mercial music printers, etc. 

* This paper is based on a thesis submitted in partial fulfillment 
of the requirements for the degree of Doctor of Philosophy at the 
Massachusetts Institute of T~chnology, Department of Electrical 
Engineering, September 1970; the work was supported in part by 
the National Institutes of Health. 

153 

SCANNE COl-IPUTER RECOGNITION 

Figure I-The overall process 

THE PROGRAM 

The product of this research is a computer program 
which recognizes standard engraved music notation. 
The program is called the Digital Optical-Recognizer of 
Engraved-Music Information, or DO-RE-MI. 

DO-RE-MI is written using two computer languages, 
MAD and SLIP. MAD is a FORTRAN-like language, 
and SLIP is a list-processing language. The version of 
SLIP used in this study is embedded in MAD, and the 
combination of the two languages may be considered an 
extended MAD language with list-processing capability. 
DO-RE-MI was programmed on the MIT Compatible 
Time-Sharing System (CTSS), utilizing the IBM 7094 
computer. 

The set of symbols used in standard music notation is 
large. Therefore, it was decided that DO-RE-MI 
would be designed to recognize only a subset of these 
symbols; but a subset that would include all the more 
important symbols of music notation. This allows the 
program output to have practical utility, since many 
applications do not require full recognition. (For 
example, an analysis of the statistical frequency of 
occurrence of different pitch intervals would require 
only recognition of notes, clefs, accidentals, and key
signatures.) Moreover, the program is designed to be 



154 Fall Joint Computer Conference, 1971 

• 

~~~~III 
IG IK1- tM2:4 (27E Z6E) 291Q / RE 21Q. 

Figure 2-An example of the Ford-Columbia music representation 

modular. Thus, it should not prove too difficult to add 
to DO-RE-MI, if desired, the capability of recognizing 
any- of the secondary notational parameters not now 
recognized. This is in contrast to a previous work on 
computer recognition of printed music by Pruslin3 

which dealt with only a small subset of music notation 
and was not readily extendable to the remaining nota
tional symbols. 

DO-RE-MI is divided into three sections: Input, 
Isolation, and Recognition. In brief, the Input Section 
inputs a sample of standard engraved music notation 
to the computer, the Isolation Section isolates the 

I N PUT 

GRAY-LEvEL 
MATRIX 

PACKED 
BLACK-I'IHITE 

MATRIX 

ISOLATION 

CO NE.'NTS WITH 
POSSIBILITY LIST 

~ 
ORDERED COMroNENTS 

FRAGHENTS 

Figure 3-DO-RE-MI flowchart 

notational symbols, and the Recognition Section per
forms the recognition. A flow-chart of the program is 
shown in Figure 3 . 

INPUT 

The Input Section takes a sample of music notation 
and, using a flying-spot scanner, digitizes the sample. 
Several samples of SOUrce music were selected, and a 
positive transparency made for each. Each sample was 
chosen to contain two to three measures of duet music. 
Such a sample will be called a "picture". The scanner 
used is SCAD,4 which was developed by Dr. Oleh 
Tretiak at M.LT. SCAD will scan a transparency, 
measure the light transmission at a large number of 
points on the transparency, and convert these measure
ments to digital form. 

For each picture, SCAD scans a raster of 512 rows by 
512 columns, an inch in the original sample corre
sponding to about 225 points. SCAD finds a 3-bit 
number, T, corresponding to the transmittance of 
light through each raster point. The original picture 
contained, at least ideally, only black regions and white 
regions. It is therefore reasonable to compress the data 

Figure 4-Printout of a picture 



to one bit per point. This is done by choosing a threshold, 
8, and considering all points with transmittance T> 8 
to be "White", and all points with transmittance T < 8 
to be "Black". Since the transmittance of most points 
in the picture will not be near the threshold, the choice 
of 8 is not crucial. 

The result is a matrix whose entries correspond to the 
digitized points of the music sample. (One such matrix 
is sho"\\-11 in Figure 4, representing "Black" by a point 
and "White" by a blank for display purposes.) Thresh
olding is done by a routine which is called PACK 
since it also packs the matrix for storage economy. 
This packed matrix is the data-base for the program. 

ISOLATION 

As sho"\\-11 in Figure 3, the packed Black-White 
matrix produced by the Input Section is passed to the 
Isolation Section. The function of this Section is to 
isolate each of the music notational symbols represented 
in the matrix, so that the program can then attempt to 
recognize individual symbols (rather than having to 
deal with arbitrary groups of symbols or with parts of 
symbols). The symbols must be isolated from the staff
lines upon which they are superimposed, and from each 
other. The staff-lines can be considered as graphical 
interference; they connect symbols that would normally 
be disconnected, they camouflage the contours of 
symbols, and they fill in symbol areas that would 
normally be blank. Thus, recognition is greatly simpli
fied if the symbols are extracted from the staff-lines. 
This is a problem of pattern recognition in the presence 
of qualitatively defined interference, as the graphical 
positions of the staff-lines are qualitatively defined 
(i.e., five lines, nominally horizontal, straight, and 
equally spaced) . 

The process of symbol isolation must not destroy or 
significantly distort the original picture, for such 
destruction or distortion will make recognition difficult 
if not impossible. A method of isolation with minimal 
picture distortion has been developed. This method, 
called Fragmentation and Assemblage, is illustrated in 
Figure 5. First, the symbol fragments falling between 
staff-lines are picked out from the staff-line background 
by a relatively complex Fragmentation procedure. Each 
fragment is obtained by finding a list of the points that 
make up its contour (considering its intersections with 
staff-lines as part of its contour). Then, these fragments 
are assembled together· again by associating . the frag
ments into sets called picture components, each picture 
component corresponding to exactly one of the music 
notational symbols of the original sample. In essence, 
this procedure reforms the symbols, but without the 

Computer Pattern Recognition of Printed Music 155 

ORIGINAL PICTURE: 

r J 
FRAGMENTATION: 

ASSE.\fBLAGE : 

.. . 

... I 
I I 
I ... . ., 

Sa.11 Dots indicate 
Connection. 

Figure 5-Fragmentation and Assemblage 

staff-line interference. The reformed symbols are 
isolated from each other, as desired. 

For each fragment, a SLIP-list is produced con
taining ROWMAX, ROWMIN, COLMAX and 
COLMIN-the extreme rows and columns occupied 
by the fragment. This information is readily found from 
the fragment's list of contour points, and defines a 
rectangle bounding the fragment. The SLIP-list also 
contains fragment interconnection data. 

In addition, a SLIP-list is produced for each com
ponent, containing a listing (by number) of the frag
ments that make up the component. It is then easy to 
find the overall ROWMAX, ROWMIN, COLMAX 
and COLMIN of the component from the data in the 
fragment SLIP-lists. (For example, the COLMIN of 
the component is just the minimum of the COLMINs 
of the fragments.) In this way, a bounding rectangle is 
found for each component. 

The Fragmentation and Assemblage method is some
what intricate and will be discussed in more detail in a 
future paper. However, it is important here to note 
the data reduction that it accomplishes. As illustrated 
in Figure 6, a picture is originally stored as a huge 
(250,000 point) matrix. The fragment data for the 
picture is stored as a fairly long table of contour points 



156 Fall Joint Computer Conference, 1971 

PICTURE 

A 

~ 
1\ 

dJ 
C7-

BOUNDING 
UCTAlIGLIS 

D o 
DO 

DO 
D-

Figure 6-A picture, its fragments, and its bounding rectangles 

(about 5000 to 10,000 contour points per picture). 
The corresponding SLIP-lists contain only the con
nection and bounding rectangle data (about 1000 list
entries per picture). In each step, the amount of data 
has been significantly reduced. 

As will be seen, the small amount of easily-found 
information in the fragment and component SLIP-lists 
is enough, in most cases, to enable complete recognition 
of the components. 

It was originally thought that each symbol would 
have to be fully reconstructed after Fragmentation by 
combining its fragments graphically, and filling in the 
spaces left by the staff-lines. This process was not 
needed. Surprisingly, the information in the Black
White picture matrix was never needed after Frag
mentation. Even more surprisingly, the information in 
the fragment contour-point listings was needed only in 
five very special cases. Except for these special cases, all 
recognition can be done just from the ROWMAX, 
ROWMIN, COLMAX, COLMIN, and connection 
information in the SLIP-lists! This result points out 
another benefit of the Fragmentation-Assemblage 
method of symbol isolation: almost all the recognition 
tests can be performed on the relatively small data 
base of the SLIP-lists, rather than on the larger data 
base of the Fragment point-listings, or the even larger 
data base of the picture matrix. 

PRELIMINARY FILTERING 

The symbols of the picture having been isolated, the 
actual recognition procedure can begin. First, it is 
interesting to note that certain familiar techniques 
cannot be used. In standard music notation there are 
some symbols that are not characters, in that they have 
one or more graphical parameters whose value. may be 
different for each occurrence of the symbol. Consider 

Figure 7. On the top staff there are two occurrences of 
the same symbol. However, the two are not geometri
cally identical, since the spacing is affected by the notes 
on the bottom staff. Thus, these symbols are not 
characters. Many of the techniques used for recognition 
of characters, such as template-matching, cannot be 
used to recognize non-character symbols. Such tech
niques are therefore not very useful in the recognition 
of music notation. Alternative techniques must be 
employed. 

Music notation has many strong syntactic properties. 
In combination with small lists of possibilities for each 
UIiknown symbol, these syntactic properties can be used 
with good results to recognize each component. Thus, it 
was decided to use a preliminary filter to reduce the set 
of possible symbols corresponding to the unknown to a 
small subset, and then to use the syntactic properties 
for unique classification. 

Upon consideration of the form of the data after 
Fragmentation and Assemblage (i.e., the SLIP-lists) 
and of the graphical properties of music notational 
symbols, it was .decided that a simple but powerful 
preliminary filtering .could be obtained by examination 
of the normalized overall size of the component. A close 
look at the symbols of standard music notation reveals 
that each symbol type is significantly different in overall 
height or overall width from almost all others. 

In order to find the size range of each music symbol, a 
survey of standard music notation was made. Many 
samples of each type· of notational symbol were meas
ured,and the overall height and width of each symbol 
tabulated. These measurements must be normalized 
since different samples of music will in general be of 
different scale. The average height of a staff-space 
(which shall be denoted as SPHGT) appears to be a 
good normalization factor, so that by dividing the 
physical dimensions by SPHGT, the measurements can 

Figure 7-Non-character symbols in music notation 



be converted into ratios that are independent of 
absolute dimensions. 

Each normalized pair of measurements is plotted in a 
normalized-height vs. normalized-width property-space. 
A region is then delineated in the property-space for 
each type of music symboL This region is chosen to be 
the smallest rectangular region enclosing all the plotted 
points for that symbol. The symbol regions in the 
property-space are shown in Figure 8. The figure 
shows, for example, that the measured natural signs 
were always approximately 0.6 to 0.8 SPHGTs in 
width, and 3.2 to 3.9 SPHGTs in height. Note from the 
figure that there is very little overlap of the regions. 

In finding the list of possible assignments for an 
unknown component, it appears far better to include a 
few extra possibilities than to leave out the correct one. 
Therefore, it seems reasonable to enlarge the rectangular 
regions of the property-space to allow additional 

6 

o 

J 
I --1 

, if 

-0.1 -. .. 
IO--1 c::J 0·· .. € f 

~ 

o. 
NORMAL I ZED ~HDTI! (Width!SP:;,~T) 

DOTTED LINES mrlO 
FOR CLARITY (lNLY 

Figure 8-Normalized-height vs. normalized-width 
property-space 

Computer Pattern Recognition of Printed Music 157 

• 

~-1 

I 
I 
J 
I 
I 
I 

--~ 

II . .... 

r .------..., 

o 

• , 
• J 
1:1 
1 ~ 

IL.~=~ ... 
3 

NOru·!ALIZrD :'lIDTI-! (I'liclth!SPEG';) 

Figure 9-The H-W space (The normalized-height vs. 
normalized-width space with enlarged regions) 

tolerance. This allows for processing effects due to the 
scanner and quantization, and for such characteristics 
of printed music as the widening of a symbol-line when 
it crosses a staff-line, etc. The normalized Height
Width property-space with the enlarged regions is 
called "the H-W space". This is shO\vn in Figure 9. 
Note that the number of overlapping regions at a 
point is usually between three and five, with a maximum 
of eight. The points with the higher numbers of overlaps 
usually occur where the comers of many regions meet. 
Since most plotted points for unknown components will 
be found near the middle of the regions of their corre
sponding symbols, the areas of the property-space 
corresponding to the larger numbers of overlaps are 
rarely encountered in practice. 

For every tested picture, the point in the H-W space 
plotted for each component fell in the region repre
senting the symbol actually corresponding to that 



158 Fall Joint Computer Conference, 1971 

component. Since the H-W space contains enlarged 
regions, and since it uses normalized values, it is 
reasonable to use the same H-W space for recognizing 
any sample of music notation. However, if for certain 
printed music it is found that the regions in the H-W 
space are not properly delineated, it is only necessary to 
find an H -W space based on this new set of symbols. 
Changing the H-W space in DO-RE-MI requires 
nothing more than changing a few parameter values. 
Or, one might store several H-W spaces, and then call 
the one corresponding to the music style in which the 
sample has been printed. This ability to change the 
H-W space so easily is an attribute of the modularity 
of the program. 

The Get-Possibilities Routine (GETPOS) performs 
the preliminary filtering. Given the H-W space, a short 
list can be generated of the symbols that can possibly 
correspond to a given unknown component. This is 
done by finding the point in the property-space repre
senting the normalized-width and the normalized
height of the component. The regions in which this 
point falls specify the music symbols which can corre
spond to the component. When the Possibility List has 
been found by GETPOS, it is added to the SLIP-list of 
the component. 

It is interesting to note the power of the preliminary 
filter. It is based on a simple overall property of the 
component, normalized size, and is completely in
dependent of the internal features of the component. 
Yet, it is able to reduce the number of possible symbols 
corresponding to the component usually to about three 
to five with a maximum of eight. In addition, use of the 
data found in Fragmentation and Assemblage makes the 
determination of the normalized overall size a trivial 
calculation. 

ORDERING 

The components have been found by Fragmentation 
and Assemblage independent of their positions on the 
staves. It is therefore necessary to associate each 
component with the staff from which it was extracted, 
and to find the left-to-right order of the components 
within each staff. Knowledge of this ordering is needed 
to produce the final output sequence. In addition, it is 
useful because two important graphical features of 
symbols in music notation can be ascertained from the 
order information: immediate symbol context and 
symbol nestedness. 

The Order Routine (ORDER) finds the left-to-right 
ordering of the components in each staff, forming an 
order list for each staff. Due to the two-dimensionality 
of the placement of music symbols, the ordering process 
is not simple. (This is in direct contrast to printed text 

ORDERING BY LEFTMOST POINT: 

COMP(I). COMP(4). COMP(2). COMP(3). 
ORDERING BY CENTER OF MASS: 

COMP(4).COMP(1). COMP(2). COMP(3). 

ORDERING BY THE "ORDER" ROUTINE: 

COMP(l)-L. COMP(4)-L. COMP(4)-R 
COMP(2)-L. COMP(2)-R. COMP(l)-R 

COMP(3)-L. COMP(3)-R. ' 

Figure lO-An example of three different ordering methods 

where the characters are in a one-dimensional string, 
and where the ordering process is trivial.) Consider 
the music sample of Figure 10. Note, for example, that 
Component 2 is neither to the left nor to the right of 
Component 1, but that a more complex two-dimensional 
relationship exists between them. Thus, ordering the 
components by one-dimensional techniques will not be 
satisfactory. An ordering by leftmost point would give 
the sequence: COMP(1), COMP(4), COMP(2), 
COMP(3). An ordering by center of mass would give: 
COMP(4) , COMP(l), COMP(2) , COMP(3). Neither 
is a good representation of the situation. 

DO-RE-MI orders the components by both their 
leftmost and rightmost points in the same list. For 
Figure 10, this method gives the sequence: COMP(1)
Left, COMP(4)-Left, COMP(4)-Right, COMP(2)
Left, COMP(2)-Right, COMP(l)-Right, COMP(3)
Left, COMP(3)-Right. This ordering more accurately 
represents the overlapping of COMP(4) and COMP(2) 
byCOMP(l). . 

SYNTACTIC TESTS 

Most of the symbols of standard music notation (as 
opposed to the alphabetic symbols of printed text) 



have a strong set of symbol-to-symbol contextual 
syntactic properties. For example, in the standard 
music considered by this study, the "flat" sign may 
appear in only one of two contexts (as shown in Figure 
11): 

(1) In a key signature to the right of a clef or 
bar-line. 

(2) As an accidental to the left of a note. 

Any other appearance of a flat is syntactically incorrect. 
Also illustrated in Figure 11 is the rule that the first 
symbol of a line of music must be a clef. This type of 
syntactic property can be used to great advantage in 
recognition. 

Music notation contains many redundancies and 
these too can be used to aid recognition. There are two 
types of redundancies: syntactic redundancy and 
graphical redundancy. Figure 11 shows an example of 
syntactic redundancy. Since the line starts with a 
G-clef, the first flat of the key-signature (if any) must ' 
be on the middle line, i.e., a B-flat. Conversely, if the 
first symbol of the key-signature is on the middle line, 
it must be a flat. Continuing in the same manner, if 
the first key-signature symbol is a flat, the second key
signature symbol (if any) must be on the top space, 
and must be a flat. An example of graphical redundancy 
would be the F-clef, where a component cannot be 

MUST BE A CLEF. 

~TICALLY ALLOWABLE POSITIONS 

~ ~ POR FLATS. 

IF A FLAT. MUST BE ON MIDDLE LINE; 
AND VICE-VERSA. 

IF IN KEY-SIGNATURE. MUST BE A FLAT 
ON THE TOP SPACE. 

Figure ll-Syntax and redundancy in standard music notation 

Computer Pattern Recognition of Printed Music 159 

recognized as an F-clef, even if it passes all other tests, 
unless two other components are recognized as dots and 
are in the correct position to be the F-clef dots. (If so, 
all three components are considered to form the F-clef 
symbol) . 

Another type of syntactic property exhibited by 
music notational symbols is positional syntax. Many 
symbols can occur only in a fixed position on the staff, 
or only in a certain region (e.g., above the staff). For 
example, the two dots of a repeat sign will always be 
found in the two middle spaces of the staff. Also, each 
rest has a standard vertical position and thus will 
always occupy the same position on the staff (except 
for a few special cases) . 

The Syntax Routine (SYNTAX) uses syntactic 
properties to perform the final recognition of the com
ponents. It examines all the components in sequence as 
they appear on each staff's order list. For each com
ponent, SYNTAX performs tests on every entry on the 
Possibility List, and eliminates from the list all those 
possibilities which fail any of these tests. Contextual 
syntactic properties are tested. Some feature tests 
must be employed, but only when the other three types 
of tests still yield ambiguities. This occurs, for example, 
when a sharp, a flat or a natural appears as an accidental 
(i.e., to the left of a note). In this usage, the three 
symbols can be syntactically equivalent. Since they are 
approximately the same size and would occupy approxi
mately the same vertical position, they often cannot be 
differentiated by the H-W space or by position tests. 
In this case, feature tests must be used. As will.be seen, 
a simple feature test is used to differentiate among 
the three. 

As shown in Figure 3, SYNTAX calls nine sub
routines, each testing a different class of symbol
possibility, e.g., notes, rests, clefs, time-signatures, etc. 
SYNTX2 is Part 2 of the Syntax tests, and is called 
when one of the five special cases requiring information 
from the Fragment contour-point lists is found. In all 
other cases, recognition is completed by SYNTAX and 
its nine subroutines, and the only information used is 
that in the SLIP-lists, i.e., the bounding rectangles on 
each fragment and component plus the interconnection 
data. 

A REPRESENTATIVE 'SYNTAX' SUBROUTINE 

As an illustration of the procedures used in SYNTAX 
and SYNTX2, a representative SYNTAX subroutine, 
the Sofon Test, will be discussed in some detail. 
("Sofon", pronounced so-fon, is a term that is coined 
here from the initials "Sharp Or Flat Or Natural" to 
denote a symbol which is any of these three, inde-



160 Fall Joint Computer Conference, 1971 

Figure 12-Situations where sofons occur 

pendent of whether the symbol appears in a key
signature or as an accidental. No such general term for 
this set of symbols exists in the music vocabulary, and 
such a term is needed since these symbols can often be 
treated together during symbol recognition.) The 
Sofon Test (SOFON) tests all components that have 
either "sharp" or "flat" or "natural" on their Possi
bility List. 

There are strong contextual syntactic tests, redun
dancy tests and positional syntastic tests that can be 
applied to sofons. Thus, a sofon must be either: 

1. To the left of a note or a beamed-together note
group, and close to it (i.e., within 1 SPHGT 
horizontally), and at least partially overlapping 
it vertically. 

2. Overlapped horizontally by a beamed-together 
notegroup, and at least partially overlapping it 
vertically. 

3. To the right of a clef or bar-line and on the 
correct pitch-space. (The "pitch-space" of a 
sofon . is defined as the pitch of the line or space 
which the sofon is "on." This is determined by 
the vertical position of the sofon and the clef 
currently in effect.) In this case, the correct 
pitch-spaces are: 

For a sharp: F 
For a flat: B 
For a natural: F or B 

4. To the right of another of the same sofon type, 
and close to it, and on the correct pitch-space. 
The sequence of correct pitch-spaces for key
signature sofons is as follows: 

For sharps: F, C, G, D, A, E, B 
For flats: B, E, A, D, G, C, F 
For naturals: Either of the above sequences. 

The initial sharp or flat of a key-signature can 
also be to the right of a natural. 

In the first two cases the sofon is used as an acci
dental; in the latter two cases it is used in a key
signature. Typical situations are illustrated in Figure 12. 

Since accidental sofons are syntactically equivalent, 
the three types of sofons often cannot be separated 
from each other by the above tests (though SYNTAX 
will eliminate all other possibilities from the Possibility 
List). In this case, a feature test must be used. 

After consideration of many other separation 

Figure 13-Sofon separation 



algorithms, it was noted that the three sofons could be 
separated by examining only their top and bottom 
points, as follows (see Figure 13) : 

(1) Sharp vs. Flat; Sharp vs. Natural: 

-For a sharp, the topmost point occurs in the 
rightmost two-thirds of the component width. 

-For a flat or natural, the topmost point occurs 
in the leftmost one-third of the component 
width. 

(2) Flat vs. Natural 

-For a flat, the bottommost point occurs in the 
left half of the component width. 

-For a natural, the bottommost point occurs in 
the right half of the component width. 

Thus, examination of the topmost point of the com
ponent separates sharps from flats and naturals, and 
examination of the bottommost point separates flats 
from naturals. 

The sofon separation test requires finding the top
most and bottommost points of the component, and 
these can be found easily from the contour-point lists. 
This is one of the cases where it may be necessary to 
employ SYNTX2 and the fragment contour-point lists. 
Point lists for only two fragments must be examined: 
the fragments containing the ROWMIN and the 
ROWMAX of the component. In fact, often these 
fragments fall completely on one side or the other of the 
two-thirds or one-half points of the component's width. 
When this is so, the sofon separation can be made solely 
from the information in the SLIP-lists. Then, there is 
no need to look at the contour-point lists, and SYNTX2 
does not have to be called at all. 

OUTPUT 

The Output Routine (OUTPUT) takes the music 
which was recognized by the Syntax Routine (SYNTAX 
and SYNTX2) and produces the final DO-RE-MI 
output according to the Ford-Columbia Music Repre
sentation. As has been mentioned, Ford-Columbia is an 
alphanumeric language which is substantially isomor
phic to standard music notation. It was developed by a 
musician, Stefan Bauer-Mengelberg.5 OUTPUT stores 
the Ford-Columbia representation of the recognized 
music on a SLIP list. For example, a printout of the 
final output for the picture of Figure 4 is shown in 
Figure 14. (Output ~estrictions on SLIP-lists in CTSS 

Computer Pattern Recognition of Printed Music 161 

1'101.(76 Ed27 S. 285))91(295.305.315.325)),/.(33 E. 31 E. 
28 E. 29=E). • I 0 2. 21 O. R 0.1. 26 H) 

Figure 14-0utput for the picture of Figure 4 

do not allow accurate printing of all the symbols of the 
Ford-Columbia character set; therefore, a modified 
Ford-Columbia is printed out with commas repre
senting blanks and apostrophes representing exclama
tion points.) In this printout, "101" indicates that the 
first instrument's line begins, "26E" indicates an 
Eighth note on space 26 (the third space on the top 
staff), parentheses indicate beams, "I" indicates a 
bar-line, etc. 

RESULTS OF TEST RUNS 

DO-RE-MI was tested on some representative 
pictures, including the one shown in Figure 4. In all 
cases, the program produced the desired Ford-Columbia 
representation of the input picture with complete 
accuracy. All symbols in the subset of music notation 
considered by DO-RE-MI were correctly recognized. 
In addition, all symbols not in that subset were correctly 
recognized as such. 

Some overall statistics on the test-runs: DO-RE-MI 
correctly isolated all the music notational symbols into 
a total of 137 components. These components were 
formed by 527 fragments. All 137 components were 
correctly recognized by DO-RE-MI (including thirteen 
components which were each a group of three to four 
notes beamed together). An average test-run took 
about four minutes, from packed Black-White matrix to 
Ford-Columbia output, for a test picture of two to three 
measures of duet music (i.e., four to six single measures 
of music). This time figure could be significantly 
reduced by various means; however, minimization of 
run-time was not a major goal of this work. 

CONCLUSION 

This work is an investigation into computer recognition 
of a class of conventionalized, two-dimensional, visual 
patterns: standard engraved music notation. Important 
aspects of the problem involve pattern recognition in 
qualitatively-defined interference, recognition of posi
tionally two-dimensional patterns, use of syntax and 
redundancy properties in recognition, and recognition 
of non-character symbols. A simple preliminary filter 



162 Fall Joint Computer Conference, 1971 

proved very effective. Bounding rectangles on frag
ments and components unexpectedly provided all 
necessary data for recognition in almost all cases, and 
thus examination of detailed feature properties was 
rarely required. The program produced should be able 
to be expanded to the recognition of all printed music. 
In addition, the pattern recognition techniques de
veloped can possibly be applied to computer recognition 
of such things as maps, graphs, organic chemistry 
symbols, circuit diagrams, blueprints, aerial pho
tographs, etc. 

ACKNOWLEDGMENT 

I would like to gratefully acknowledge the encourage
ment, support, and counsel of Professor Murray Eden 
of M.LT., who guided me throughout the course of 
this research, and of Professor Allen Forte of Yale, 
Dr. Oleh Tretiak of M.LT. and Professor Francis Lee 
of M.LT. The interest and assistance of the members of 
the Cognitive Information Processing Group of the 

M.LT. Research Laboratory of Electronics is also 
greatly appreciated. 

REFERENCES 

1 M EDEN 
Recognizing patterns 
P Kolers and M Eden editors Chapter 8 
The MIT Press Cambridge MA 1968 

2 H B LINCOLN 
The current state of music research and the computer 
Computers and the Humanities September 1970 

3 D H PRUSLIN 
A utomatic recognition of sheet music 
Doctoral Thesis MIT Cambridge MA January 1967 

40 J TRETIAK 
Scanner display (SCAD) 
Quarterly Progress Report, No. 83 MIT Research 
Laboratory of Electronics October 1966 

5 S BAUER-MENGELBERG 
(of the IBM Systems Research Institute New York City) 
Representing music to a computer: A primer of the 
Ford-Columbia music representation (DARMS) 
Manuscript in preparation 



A storage cell reduction technique for ROS design 

by Dr. C. K. TANG 

International Business Machines Corporation 
Endicott, N ew York 

INTRODUCTION 

A Read Only Store (ROS) of n inputs (n-bit address) 
and m outputs (m-bit words) stores 2n Xm bits of in
formation, and is abbreviated as (2n Xm)-bit ROS. 
The use of mono Ii thic arrays as a ROS depends upon 
an effective store (write once) procedure (or personali
zation of the ROS). Two procedures are currently being 
considered: the personalization by final metallization 
pattern (masking),1 and the personalization by post
metallization connection elimination technique (etch
ing or zapping).1 ,2 This study describes a method of 
designing a monolithic ROS which will reduce the num
ber of storage cells required in the former method of 
personalization. 

The ROS personalization pattern, which is usually 
described by a truth table of 2n rows (where n is the 
number of variables of the function to be implemented 
by the ROS) , is first expressed as a function completely 
expanded with respect to all of its n variables, i.e., a 
function in the standard sum form. The incomplete 
expansion of the same function with respect to less 
than n variables is used to show that the number of 
storage cells in the ROS can be reduced from 2n to 
either 2n-\ or 2n- 2, or 2n- 3 , etc.; this is made possible 
by using a few additional logic gates in the ROS to 
implement a set of selected simple functions (called 
functional sets). As an extension of the previous method 
of simple expansion, a double expansion method is also 
presented; this enables the expansion of the function 
with respect to a smaller number of variables to be 
practical. 

THE USE OF A FUNCTION SET 

A ROS can be represented in block diagram form as 
shown in Figure 1. The inputs cause only one of the 
2n decode outputs to be energized; the energized decode 
output selects the m storage bits to the output through 
the sense amplifier. 

163 

If one takes a logic viewpoint of the ROS, then 
(2n Xm)-bit ROS can be expressed as m logic functions 
of n input variables, and each of the m logic functions 
corresponds to one of the m outputs of the ROS. Let 
iI, ... , in be the n inputs to the ROS, then anyone of 
the m outputs can be expressed as a logic function F of 
the n inputs, and F can always be expanded with re
spect to all the input variables as follows: 

F = F (iI, ... , in) 

=ili2'" inF(O, 0, ... , 0) +il~ .. ' inF(O, 0, ... ,1) 

+ .. ·+ili2 ••• i nF(1, 1, ... ,1) (1) 

where il denotes the negation of i l. 
Each of the 2n products of the form il *i2 * . . . in * in 

Equation (1) (where i* represents either i or i) is one 
of the decode outputs, and hence the corresponding 
residue function denotes the stored bit (0 or 1) associ
ated with that decode output. If personalization by 
masking is used, the storage of the information bit 1 or ° is usually done by the connection or disconnection of 
a cell in the ROS (where the cell is usually a transistor 
or the emitter of a multiple-emitter transistor). Hence, 
there are 2n cells required for each output bit of the 
ROS. These cells are OR gated to provide the desired 
function F. 

Now, if the function F is expanded with respect to 
n-l of its n inputs, then there are only 2n- 1 product 
terms; i.e., 

F=F(il, ... , in) 

=il~ ... in-lF(O, 0, ... ,0, in) 

+il~ ... in-IF (0, 0, ... , 1, in) + ... 

+il i 2 ••• in-IF (1, 1, ... , 1, in), (2) 

Let VI ( in) be the set of all functions of th3 single vari
able in. The outputs of Vl(in) will be (0, 1, in, in), and 
VI (in) will be called the function set of the single variable 
in. Each of the residue functions in Equation (2) is a 



164 Fall Joint Computer Conference, 1971 

Decode 

t --- t 
n Inputs 

(Addressing' Bits) 

I 
I 
I 

Figure 1-(2n Xm)-bit ROS 

Storage 

(2nxm ) 
Storage Cells 

Sense Ampl ifiers 

~ --- T 
m Outputs 

(Word Read-out) 

function of the single variable in, and hence is included 
in the function set VI (in). Assume the function set 
Vl(in) and the decode with iI, ... , in- l as its inputs are 
available, then one can easily see from Equation (2) 
that if there exist 2n- 1 cells and each is capable of per
forming a two-way AND function, then by OR gating 
these 2n- 1 cells, the arbitrary function F(il, ... , in) is 
obtained. 

The above statement suggests the construction of a 
(2nx I)-bit ROS. The selection of a particular function 
from the four functions of VI (in) for each cell is done 
by making a connection in the final masking from each 
cell to an appropriate line that carries the desired func
tion (note there are four lines carrying 0, 1, Xn, Xn). By 
sharing the four lines carrying VI(in ) and the (n-l)
input decode, a (2nXm)-bit ROS can be constructed 
by using 2n- 1 X m storage cells. This arrangement is 
shown in the block diagram of Figure 2. Note that the 
associated decode circuits should also be simpler since 
an (n-l)-input decode is required instead of an n-input 
decode. Also, note that the function set VI(in ) does not 
take any extra circuits to build because 0 and 1 stand 
for the ground and the power supply voltage, respec
tively, and both in and in are necessary in building the 
n-input decode in a conventional ROS. In some con
ventional ROS designs the decoding of the n input 
variables may not be as explicit as that indicated by 
Figure 1, but the idea of using the VI function set can 
still be applied with a resultant saving of storage cells. 
This will be illustrated for the design of a current switch 
emitter follower ROS and a T2L ROS in Appendix A 
and Appendix B, respectively. The existence of the 
simple cell that can perform a two-way AND is also 
illustrated in the appendices. 

The use of the function set of a single variable can 
be extended to the function of more than one variable. 
For example, let V2(in- l , in) be the function set of two 

variables i n- l and in, defined as the set of all functions 
of the two variables in- l and in. There are 16 functions 
of two variables. The expansion of the function F with 
respect to the first n-2 inputs is given as follows: 

F=F(il, ... , in) 

+ ... +iti2 ... in- 2F (1, 1, ... , 1, in-I, in) (3) 

Each of the residue functions is a function of two 
variables, i n- l and in, and is obtainable from the func
tion set V2 (in-I, in). There are only 2n- 2 products in 
Equation (3) and so now only 2n- 2 storage cells are 
required. Each cell should also be ableto perform the 
two-way AND function and can be OR gated. 

Obviously the use of the function set can be extended 
to any number of variables k, where k<n. When k=3, 
V3 will have 223 = 256 functions. Although the number 
of storage cells required (2n- 3 ) is only one-eighth of the 
conventional ROS, the Circuits required to provide the 
256 signals and the wires required to carry these signals 
for selection may now outweigh the saving on storage 
cells for small ROS. For large ROS (e.g., 212 X32-bit 
ROS) this arrangement may be practical. In such a 
design, if 1024 storage cells are to be implemented in 
one chip, 16 chips are required for the 212 X 32 ROS, 
and it becomes more suitable to implement the circuits 
that produce half of the 256 functions (no two of these 
functions are complementary to each other) in one 
separate chip and to place 128 input terminals on each 
storage chip to receive these 128 functions. Only emitter 
followers and inverters are required in each storage 
chip to generate all 256 functions required. By similar 

Decode 

t ---

n-1 Inputs 

(Addressing Bits) 

I 
I 
I 

T 

One Input in , 
VI (in) 

Storage 

( 2
0

-
1 

x m ) 
Storage Ce II s 

Sense Ampl ifiers 

! - - - l 
m Outputs 

(Word Read-out) 

Figure 2-(2n Xm)-bit ROS using 2n - 1 Xm storage cells 



reasoning, much less than 128 input terminals can be 
placed on each storage chip to reduce the I/O pin re
quirement of the chip, and all the 256 functions will be 
generated inside each chip by some simple logic circuits. 

This idea of producing some of the functions of Vain 
a separate chip to reduce the circuit requirement of 
each chip can be applied equally well to ROS design 
using the V2 functional set. The function set of V4 has 
22'= 65536 functions and it becomes impractical to 
construct a ROS by using only 2n- 4 storage cells. How
ever, the method described in the next section over
comes this difficulty. 

DOUBLE EXPANSIONS 

Expand the function F in the following way: 

F(il' ... , in) 
n.,....4 
~ 

=i1i 2 ••• in- 4F (0,0, ... ,0, in-a, in- 2, in-I, in) 

+il~ ... in_4F(0, 0, ... , 1, in-a, in- 2, in-I, in) 

+ .. ·+i1i2 •• • in_4F(I, 1, ... , l,in-a,in-2,in-l,in) 

(4) 

Each residue is a function of four variables and can 
be further expanded with respect to two of its four 
variables. For example, the residue function in the first 
row of Equation (4) is expanded as follows: 

n-4 
~ 

F (0,0, ... ,0, in-a, in- 2, in-I, in) 

n-4 
~ 

= [in- a+in- 2+F(0, 0, ... ,0,0,0, in-I, in) ] 

• [in- a+in-2+F (0,0, ... ,0,0, 1, in-I, in) ] 

• [in-a+in- 2+F (0,0, ... ,0, 1,0, in-I, in) ] 

· [in-a + in-2+ F (0, 0, ... , 0, 1, 1, in-I, in) ] (5) 

Note that the second level expansion given by Equa
tion (5) is in the product of the sum form while the 
first level expansion given by Equation (4) is in the 
sum of the product form. 

Let in-a +in- 2 + V2(in- 1, in) denote the set of functions 
obtained by OR gating each function in V2 (in-I, in) 
with (in-a+in-2). There are 16 functions in this new 
function set [in-a + in- 2+ V2(in- l, in) ] since there 
are 16 functions in V2 (in-I, in) . Function sets 
in-a + in-2 + V2(in- l, in), in-a + in- 2+ V2(in- 1, in) and 
in-a + in-2 + V2(in- 1, in) are similarly defined. These 

Storage Cell Reduction Technique 165 

four function sets represent a total of 64 functions. If 
we assume that half of the V2 functions are available 
as an input to the ROS module (only five addition input 
terminals are required) as described in the last section, 
then some simple circuits in the storage chip can gener
ate all the 64 functions of the four function sets. Also 
assume that the (n-4)-input decode is available to the 
storage chip; then from Equations (4) and (5) it is 
clear that a storage chip of 2n- 4 storage cells can pro
duce the function F, if each of the cells can perform a 
five-way AND function. For example, to obtain the 
first row of Equation (4), a cell is used to AND gate 
the decade output il~ ... in-4 and the four rows of 
Equation (5). 

Each row of Equation (5) is a function in one of the 
four function sets previously described. The personali
zation is made by making the connections in final mask
ing from the inputs of the cells to the lines that provide 
the functions. 

For the ROS previously described, although for each 
output bit only 2n- 4 storage cells are required as com
pared to the 2n required by the conventional design, 
the reduction in circuitry is not by a factor of 16 due to 
the increased complexity of the five-way AND gate 
storage cells. A realistic estimate of reduction in cir
cuitry can be made by calculating the silicon area and 
power dissipation of the circuits given in Appendices 
A and B. 

In this section, the function is first expanded with 
respect to two variables, and then the residue functions 
are expanded with respect to another two variables. 
Combination of different numbers of variables being 
expanded are possible, as will be illustrated in Appendix 
B. The second level expansion given by Equation (5) 
takes the product-of-sums form. The second level ex
pansion can also take the sum-of~products form, which 
will find its application in the current switch design, 
given in Appendix A. Such an expansion is given as 
follows: 

n-4 
~ 

F (0,0, ... ,0, in-a, in- 2, in-I, in) 

n-4 
~ 

= [in-3in- 2F (0,0, ... ,0, 0, 0, in-I, in) ] 

+ [in- 3in- 2F (0, 0, ... ,0,0, 1, in-I, in) ] 

+ [in- ain- 2F (0, 0, ... ,0, 1,0, in-I, in) ] 

+ [in-3in- 2F (0, 0, ... ,0, 1, 1, in-I, in) ] (5') 

The corresponding four function sets are in-ain-2 V2, 
in- ain- 2 V2, in- ain-2 V2 and in- 3in- 2 V2. 



166 Fall Joint Computer Conference, 1971 

CONCLUSION 

A function set can be used to greatly reduce the num
ber of storage cells and the associated decode circuits 
in the ROS design. The cost trade-off is the additional 
circuits to generate the function set and the increased 
wiring complexity in "personalization" which is done 
by connecting each cell to the appropriate function set 
ouptut lines by final metallization. For ROS with a 
large number of output functions (for example, con
sider a microprogram store application: the number' of 
input variables (addressing bits) is typically from 10 
to 15, and the number of output functions (bit lines) 
is typically from 32 to 128), the cost of circuits to 
generate the function set will be relatively small since 
the function set can be shared by all output functions. 
Since the storage cells in a ROS represent the major 
cost of a ROS, the storage cell reduction technique de
scribed in this paper may produce a severalfold cost 
reduction in the ROS manufacture. 

ACKNOWLEDGMENT 

The author wishes to thank his colleague, Dr. G. G. 
Langdon, Jr., for his encouragement and suggestions. 

REFERENCES 

1 A BERGH J C BARRETT J E PRICE 
Design considerations for a high-speed bipolar read-()nly 
memory 
1970 IEEE International Solid-State Circuits Conference 

2 Mass-produced read-only memory is customwired after 
assembly 
Electronics August 18 1969 

3 M H LEWIN 
A survey of read-only memories 
Proceedings of the 1965 Fall Joint Computer Conference 

4 R A HENLE I T HO G A MALEY 
R WAXMAN 
Structure logic 
Proceedings of the 1969 Fall Joint Computer Conference 

APPENDIX A 

CURRENT SWITCH EMITTER FOLLOWER 
ROS DESIGN 

For comparison, a conventional current switch 
emitter follower ROS design4 of 256X I-bit is shown in 

Figure A-I. A current switch emitter follower ROS of 
the same number of bits using V2 function set described 
in the Introduction is shown in Figure A-2. The * at 
the base of each transistor denotes the connection to 
the appropriate line of V2 (i7, is) function set (or con
nection to one of the 15 lines, ,and open base means 
"0" function in V2 function set) .. The collector of each 
storage transistor is connected to a vertical decode line. 
Note that only one transistor will be turned on at a 
time in each column. Therefore no heavy drain of cur
rent will occur on any vertical decode line at any time. 

\ 

Only 64 storage transistors are required as compared 
to 256 storage transistors in Figure A-I. Figure A-3 
gives a different design where the collectors of the 
storage transistors are fixed to ground, but 64 emitter 
decode outputs are required. This arrangement may be 
suitable in a large ROS where these 64 decode signals 
can be shared by other outputs of the ROS, and the 
storage and output circuit of Figure A-3 is only a small 
part of the large multiple output ROS. 

Figure A-4 gives the design of a current switch ROS 
using the double expansion given by Equations (4) 

-v 

i1 fz i3 i4 + F (0, 0, 0, 0, i5 , ... , i 8) 

Base Decode 

Note: Base Connected Stores "1" 
Base Open Stores "0" 

\, 

-v 

Figure A-1-Conventional current switch emitter follower ROS 

F 



-v 

11 12 ls + F (0,0,0, i4 , ... , is,? 

F (0,0, ... ,0, i 7, is )-,,_ \\ i4 is i6-"\: 

Base Decode \ 
~~------~------~~-+-r--~i 

• Denotes connection to appropriate 
line of the function set V 2 

; 
.. ",II 

-v 

Figure A-2-Current switch emitter follower ROS using 
V 2 function set 

F 

Storage Cell Reduction Technique 167 

i;. G ... is + F (0, 0, ... , 0, i 7' i, s ) 

V,07. ;,) \ 

Q) 

" o 
IJ 
Q) 

o I I 
I I 
I F( 1, 11 , .,1, i7, is)l 

-v 

-v 

* Denotes connection to appropriate line of the 
function set V 2 

Figure A-3-Current switch emitter follower ROS with 
grounded collector using V 2 function set 



168 Fall Joint Computer Conference, 1971 

i 5 i 6 F (0, 0, ' , " 0, i7 , ': s ) 

1,16 F (0,0,0,0, \ 1.:..1" I,) \ _ 

V2 (i 7 , is) 

Q) 
'"0 o 
U 
Q) 

o 

* Denotes connection to appropriate 
-V line of the function set V2 

Figure A-4-Current switch emitter follower ROS using 
the double expansions 

F 

and (5') in the Double Expansion section. Sixty-four 
signal lines carrying the four function sets are required. 
Like the design of Figure A-3, it will be suitable for large 
ROS. 

APPENDIX B 

T2L ROS DESIGN 

For comparison, a conventional T2L ROS design of 
256X 1-bit is shown in Figure B-l. A T2L ROS of the 
same number of bits using V2(i7, is) function set de
scribed in the section entitled The Use of a Function 
Set is shown in Figure B-2. The * at the emitter of the 
multiple emitter transistors denotes again the connec
tion to the appropriate line of V2 (i7, is) function set. 
Figure B-3 gives the design of a 256-bit T2L ROS using 

the double expansions given by Equations (4) and (5) 
of the Double Expansion section. There are four func
tion sets which require a total of 64 signal carrying 
lines. The circuits that generate these signals and the 
decode signals are not shown here. These circuits are 
supposed to be shared by other chips in a large multiple 
output ROS. 

To reduce the number of signal lines for function sets, 
double expansions can be used with one more variable 
expanded in Equation (5). Figure B-4 illustrates such 
design. Only 32 lines carrying function set signals are 
required. Note that the circuit configuration is identical 
to that of the conventional design of Figure B-1, while 
the number of emitters in each multiple emitter tran
sistor is reduced from 20 to 9. 

Decode 

x-Decode 
Circuits 
(16Signals) I 

1;; 1, I, 18i'" (; j, ••• , I:~ 0, 0\\ 0) 

:~7-'ict I::, 

(16 Bits) 

{ 

i 5 
y-Select i6 
on(+) "G_ 

is 

(16 Bits) 

No.1 

! 
J 

, 
, 

I 

i5 i6 i7 is F(i 1, '. " i41 1, 1,\ 1) 

Figure B-I-Conventional T2L ROS 

+V 

F 



F (O,O, ... ,O,i\"iS ) 

Vz 0 7 , is) * 

F(l, 1, 1,O,O,O,i 7,,\8) 

Vz (i7,i s ) 

i 4i 5 i6 

+V 
+V 

+V 

"Denotes connection to appropriate line of the function set V2 

Figure B-2-T2L ROS using V 2 function set 

f5+f6+VZ (i 7,i 8 ) * 

i 1 i2 i 3 i4 

is) 

5+ 16+1=(0,0,0,0,1, 1,i7, is) 

F 

.... 16 Collector 
Dots 

" Denotes connection to appropriate line of the function set V 2 

Figure B-3-T2 L ROS using the double expansions 

8 Collector 
Dots 

Storage Cell Reduction Technique 169 

i 5 + i6 + i7 + F (0 ° ° ", ) , I···, , 8\ 

i 5+ i6 + ; 7+ VI (i 8) * 

i 1 ;2;3 i 4* \ 

i5+ ~+17+F(0,0,0,0, 1, 1, 1,i~) 

i5+ i 6+ i 7+;:(1111 000") , , , , , , , 'i +V 

i 5 + '6 + ; 7+ VI (i 8 ) A"""---, 

I 

/ 

i 1 ;2 i 3 i4F (1, 1, 1, 1,i 5 , ... ,i8)/ 

" Denotes connection to appropriate line of the function set V 
1 

+V 

F 

. .16 Collector 
.' Dots 

Figure B-4-T2L ROS using the double expansion with one 
more variable expanded 





A new approach to implementing high-density shift registers 

by TEH-SEN JEN 

IBM Components Division 
Hopewell Junction, New York 

INTRODUCTION 

Progress in the last several years has made many LSI 
products practical for edp applications. One such 
product is in the area of FET dynamic shift registers. 
Through the use of novel circuit techniques and device 
processes,I-8 the density, yield, and performance have 
all been increased appreciably. As a result, the cost has 
been so reduced that the. use of FET dynamic shift 
registers for digital information processing has become 
increasingly popular and important. As cost is mostly 
dictated by density and yield, the author studied ways 
to improve these factors, in addition to the direct 
approach of designing better circuits and processes. 
This paper describes use of the logic organization of 
shift registers to achieve density and yield improve
ments. First, the logic organization of current shift 
registers is briefly reviewed, and then a new approach is 
presented. Although it is general, the discussion will be 
centered on integrated FET dynamic shift registers 
because of their practical importance. Implications and 
trade-offs of using the new approach on the device and 
circuit techniques will also be discussed. 

LOGIC ORGANIZATION OF CONVENTIONAL 
FET DYNAMIC SHIFT REGISTERS 

A basic shift register cell, in principle, requires a 
gated register circuit and a delay element.9 In practice, 
however, the delay element is almost always replaced 
by another gated register circuit, and thus a one-digit 

Figure la-Logic organization of conventional shift registers 

171 

CONTROL A CONTROL A CONTROL A 

d 

CONTROL B CONTROL B CONTROL B 

'" e 

CONTROL A CONTROL A CONTROL A 

e 

CONTROL B CONTROL B CONTROL B 

f 

Figure lb-Data flow of conventional shift registers 

shift register cell actually consists of two gated registers. 
To store N digits of data, N cells or 2N registers are 
required. Figure 1a shows such a shift register. The shift 
operation is performed in the following way: The A 
control gates the output of register B (or the input) 
into register A while the output of register B (or the 
input) remains unchanged during the operation. The 
control B then gates the output of register A into 
register B while the output of register A remains con
stant. By successive applications of control A and 
control B, the data are shifted from the left to the right, 
as demonstrated in Figure lb. 

Basically, all the FET dynamic shift registers are 
operated in this way. Every shift register cell basically 
has two stages, and each stage functionally is a gated 
register circuit. The "register" in this case is simply a 
capacitor, either a parasitic or an enhanced parasitic 
one. The control of the gated register circuit may be one 
signal or one set of clock signals to perform gating, 
resetting or setting functions. 



172 Fall Joint Computer Conference, 1971 

THE MULTICONTROL ORGANIZATION 

Note that in Figure 1 b, every digit of information is 
always stored redundantly in two register circuits except 
during the transient of shift operations. For the sole 
purpose of storing information (without shifting), one 
register circuit alone is sufficient to store one digit of 
information. In shift registers, the additional register 
circuit for every digit position is to provide reliable 
shifting operations. However, this is true only if every 
digit of data is shifted at every control clock. In other 
words, two register circuits per shift cell permits all the 
data to be shifted simultaneously or "in parallel" for 
every shift operation. The situation is different if the 
shift operation is "serialized." That is, to shift only a 
portion of the stored data at one time, only the data 
undergoing shifting need two register circuits per digit, 
while the data not undergoing shifting at that moment 
do not need the additional register circuits. To illustrate 
this point, the shift register is reorganized into the form 
shown in Figure 2a. Instead of shifting all the data in the 
shift register at one time, the controls are sequenced so 
that only one of every three digits is shifted at one time. 
In effect, the shift operation is serialized. When a shift 
operation is to be performed, control D first gates the 
information from register C into register D. (Redundant 
information is stored in register C and register Dafter 
this operation.) Control C then gates the information 
from register B into register C. After this is finished, 
control B gates the information from register A into 
register B, and then control A shifts the data from 
register D into register A. The details of the operation 
are shown in Figure 2b. 

It is clear that shift registers organized this way have 
a smaller maximum data rate, because of the serialized 
shift operation. This shortcoming can be removed, 
however, and will be discussed in the next section. A 
comparison of the conventional organization and the 
one illustrated iIi Figure 2a shows the following differ
ences. The conventional one needs two register circuits 
for one digit of information, and two (or two sets of) 
controls. To shiftN digits of information, 2N circuits 
are needed, and every control needs to drive N loads. 
On the other hand, the one shown in Figure 2a needs 

Figure 2a-Logic organization of M-control (M =4) 
shift register 

ClOffrROL B CONTROL B 

h 

Figure 2b-Data flow of M-control (M =4) shift register 

four registers for three digits of information and four 
(or four sets of) controls. To shift N digits of informa
tion, approximately 4N /3 register circuits are needed, 
and every control needs to drive N /3 loads. If the shift 
rate is limited by the delay of the register circuits, the 
conventional one has twice the maximum data rate as 
the present one. If the delay of the control drivers is the 
limiting factor, the difference in data rate is then less 
than a factor of 2 because of fewer loads to be driven 
by each clock. 

The generalized results of the example above are: 
With M controls (or M sets of controls, M>2) an 
N -digit shift register needs approximately N M / (M -1) 
register circuits (N)>M) , as compared with 2N circuits 
in the conventional ones. The extreme of this approach 
is that N + 1 registers and controls are needed to shift N 
digits of information. A slightly different approach but 
with the same limit has been used in the design of MOS 
dynamic random-access memories. 7,10 In terms of circuit 
count, the number of register circuits is reduced by 
(M -2) /2(M -1) XI00 percent. The controls, on the 
other hand, increased from two to M. To obtain a net 
benefit from this approach, the hardware cost of the 
added controls has to be small compared with the saving 
on registers. This is justified in most cases if a large 
quantity of shift registers is used in a system. 

In LSI technology the gain of circuit reduction by 
using more controls is again related to two factors: (1) 
the area reduction of shift register chips, and (2) the 
cost for more inputs/outputs on the chip for the added 
control lines. The area reduction of the chip is always 
smaller than the (M-2)/2(M-l)XI00 percent 
(reduction of the circuit count). Two factors contribute 
to this: (1) The addej controls always cost some chip 
area. (2) Shift registers occupy a major portion of a 



New Approach to Implementing High-Density Shift Registers 173 

chip but not the complete chip. Some of the area is used 
by control circuits and pads for inputs/outputs. Only 
the array area occupied by the shift registers will be 
considered in this paper. 

The chip area needed to accommodate the added 
control lines is a function of the register circuit con
figurations, the ground rules of the chip layout, and the 
device technology. To obtain meaningful general results, 
the following assumptions are used as the model of 
analysis: 

1. The direction of data flow on the chip is perpen
dicular to the physical lines of the control signals. 

2. The area taken by a single register circuit is 
increased 0 times if an additional control line 
passes over it. 

3. No crossovers are permitted among control lines. 

All these assumptions are more or less based on 
single-layer metal interconnections being used on the 
chip. 

Figure 3 shows an example of the model. Controls A 
and C are commonly used by both the upper and low 
row of registers and thus no additional area is needed 
for these two lines. Control lines Band D, however, do 
cost some additional area. When M is even, a maximum 
of two controls do not take additional area. When M is 
odd, only one control does not cost extra area. The total 
array area reduction thus depends on whether M is 
even or odd: 

M-2-(M-l)0 
Percentage Area Reduction"" 2(M -1) 

XI00 percent 

M =odd number> 2 (1) 

. (M -2) (1-0) 
Percentage Area ReductlOn~ 2(M -1) 

XI00 percent 

M = even number~2 (2) 

These two equations are plotted in Figure 4. At 0 == 0, 
the area reduction ranges from 25 percent at M =3 to 
its asymptotic value 50 percent as M increases. The 
most significant point shown in this figure is that the 
reduction of array area is rather insensitive to 0, the 
fractional area increase of an individual register circuit. 
This is especially true when M is even. For example, by 
reorganizing a two-control into a four-control shift 
register, 20 percent array area reduction can be achieved 
even if two more controls cause 40 percent area increase 
for half of the register circuits. 

OONTROL 
A 

r
• I 
I 
I 
I 
1-

CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL 
BCD ABC 

CONTROL 
D 

CONTROL 
B 

CONTROL 
D 

--I 

I 
I 
I 
I 

__ I 

Figure 3-A possible topological arrangement of integrated shift 
registers where the information flow is perpendicular 

to the control lines 

No distinction has been made so far on whether 
"M controls" stand for M clock signals or M sets of 
clock signals. Applications of the new approach on 
circuits given in Refs. 3-8 all support one result: the 
approach works best for register circuits that have 
only one control clock per gated register circuit. Among 
the circuits given in the references, the bucket-brigade 
shift register6 and circuits similar to the two-phase 
capacitor-pullup circuit4 obtain the most area improve~ 
ment. The exact percentage of improvement depends 
on the ground rules of the device process. As an example, 
the bucket-brigade shift register is organized into a 
two-clock version and a four-clock version, as shown in 
Figures 5a and 5b. Conventional MOS technology is 
used.8 In the four-clock version, half the circuits have 
30.8 percent area increase because of the two additional 
clocks, but the array area is reduced 23 percent with 
respect to the two-clock version. 

AREA INCREASE OF AFFECTED CIRCUIT IPERCENT) 

Figure 4-Array area reduction vs circuit area increase for 
different number of controls 



174 Fall Joint Computer Conference, 1971 

til1 1112 

C2 

1 
1.2 MIL 

~ THIN OXIDE 

~ METAL 

T III DIFFUSION 

AREA/BIT = 1.2X5.2 = 6.24CMIL 

j..-- 5.2 MIL ---...J 

Figure 5a-Two-clock version of bucket-brigade shift register 

PARALLEL OPERATION WITH SAMPLED 
INPUT/OUTPUT 

As mentioned in the previous section, the maximum 
data rate is reduced as a result of the multicontrol 
approach. To overcome this shortcoming, parallel 
operation with sampled input/output can be used. 
Figure 6 illustrates a 4-control shift register system 
organized in such a way that the inputs and outputs are 
sampled by the con troIs of the shift register (and no 
additional gating signals are needed). The inputs of the 
two parallel shift registers.are directly dotted together. 
This is allowed because the registers are gated by 
different controls. The outputs are also dotted directly 
together. This is allowed for most FET dynamic shift 
registers. Physically, these two shift registers can be 

I· 

.,-
1-

~THIN OXIDE 

'2 MIL ------..!-I ~ METAL 

AIIEAIIIT - 'z:",2 - UDMIL 

"REDUc:TION-~-_ 

e- 0.4/1.1_111..,. 

1'1 DIFFUSION 

Figure 5b-Four-control version of bucket-brigade shift register 

CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL 
A 8 C D A 8 

Figure 6-Parallel operation with sampled input/output 

implemented side by side on the chip, or as two separate 
ones, either on the same chip or on different chips with 
no area penalty. The internal shifting speed is not 
changed by using this scheme, but the overall maximum 
data rate is doubled in this example. This, in effect, 
recovers the maximum data rate of conventional shift 
registers, provided the register speed determines the 
maximum data rate. In most practical designs, the 
drivers of the control clocks determine the maximum 
data rate,u Since the driver for M-control shift register 
drives considerably less load, higher maximum data 
rate is actually achieved by using this approach. In 
general M /2 M -control shift registers in parallel 
operation will have the same or higher data rate than 
that of the conventional one, provided M is an even 
number. There is no simple way to gain back the maxi
mum data rate if M is an odd number. 

The minimum data rate in FET dynamic shift 
registers is determined mostly by the leakage from the 
storage capacitors. A conventional shift register and 
its M-control version have the same minimum data 
rate if no parallel operation is used. For parallel operated 
M-control FET shift registers, the minimum data rate 
is approximately M /2 times higher. At a· given data 
rate within the operating range, however, the parallel 
operated M-control shift registus consume approxi
mately (M -1) times less power than the conventional 
ones. 

IMPLICATIONS ON DEVICE FABRICATION 

Because of the higher minimum data rate, the present 
schemes require lower leakage if both the maximum and 
the minimum data rate are required. On the other hand, 
since the new schemes offer smaller chip area, a higher 
device process-yield is expected. Assuming that Yo is 
the yield of a conventional shift register array, then 
based on pure random defects, its M-control version 



New Approach to Implementing High-Density Shift Registers 175 

should give the following yield :12 

y,,-, (yo) [M+(M-2)6) /2 (M-l) • (3) 

A very interesting situation exists when the M-control 
shift register is operated in parallel with sampled 
input/output. Assume that two 64-digit 4-control shift 
registers are operated in parallel to form a 128-digit shift 
register. One of the shift registers has a defect and is 
stuck to a fixed state. In the conventional shift register, 
one bad register ruins the whole shift register. In the 
present case, there is a good chance that a 64-digit shift 
register is still usable, assuming proper controls are 
used. For instance, by using discretionary wiring to 
connect the parallel operation, a good 64-bit shift 
register may have a good chance to be recovered. For 
M =4, the upper bound of the probability of recovering 
one shift register of half length is approximately 

Y = 2 X YOI/6(2+6) (1- YOI/6(2+6») • (4) 

Figure 7 shows the plot of both Eqs. (3) and (4) at 
M =4 for different 5 values as a parameter. Based on 
this model, better than 50 percent yield improvement 
can be achieved for a 20 percent original yield. In 
addition, there is up to 50 percent probability that a bad 

• 

• 

I 

10 

o 10 • 

YIELD. 

4 
8 ' , - 0.3 ------ ~ , 

I: ~:~=== ,~" 
~,,, 

, , 

... ... 

, " 

... ... 

YIELD, ALL 
REGISTERS 
GOOD 

~ ........ 
... .... 
~ ... 

... ' 
USABLE HALF-LENGTH 
SHIFT REGISTERS 
(UPPER BOUND) 

~, 
... ' 
~ 

.. 
Yo (l1li • 21 (PERCENT) 

Figure 7-Yields of full and half shift registers for M =4 

shift rc gister will have a recoverable good half-length 
shift register. For a more realistic yield model, the 
absolute value may be lower, but the general trend is 
not expected to change much. 

CONCLUSIONS 

This paper has described a new approach to improve the 
integrated shift registers by using different logic 
organization. By increasing the number of controls from 
2 (conventional ones) to M, new shift registers can be 
organized which potentially offer many advantages. 
Higher density, higher yield, fewer number of circuits, 
and lower power consumption are among the most 
important potential improvements over using con
ventional shift registers. The study also shows that the 
high recovery of partial length M-control shift registers 
can be expected as a byproduct of this approach. 

In practical applications of the new approaches, 
trade-offs are to be considered. The gain in density, in 
yield, and possibly in data rate have to be weighed 
against the increased number of controls, the number of 
I/O interconnections, and the device implications. The 
basic idea presented in this paper, however, is quite 
general. The reduction of circuit count is always true 
and is independent of the type of shift register. It is 
therefore expected that this work can be applied to 
designs of all shift registers. 

The author thanks N. G. Vogl, Jr. for motivating 
this study, W. D. Pricer and I. T. Ho for many valuable 
discussions, and R. A. Henle and W. Hoffman. 

REFERENCES 

1 R W BOWER H G DILL K G AUBUCHON 
S A THOMPSON 
MOS field-effect transistors formed by gate masked ion 
implantations 
IEEE Transactions on Electronic Devices Vol ED-15 
No 10 1968 

2 L L VADASZ A S GOVE T A ROWE 
G E MOORE 
Silicon gate technology 
IEEE Spectrum Vol 6 No 10 1969 

3 R L PETRITZ 
Current status of large-scale integration technology 
IEEE J Solid State Circuits Vol SC-2 No 4 1967 

4 B G WATKINS 
A low-power multiphase circuit technique 
IEEE J Solid State Circuits Vol SC-2 No 4 1967 

5 Fairchild Semiconductor 3320 Product Description 
January 1968 

6 F L J SANGTER 
Integrated MOS and bipolar analog delay lines using 
bucket-brigade capacitor storage 
Digest of Technical Paper 1970 ISSCC February 1970 



176 Fall Joint Computer Conference, 1971 

7L BOYSEL W CHAN J FAITH 
Random-access M OS memory 
Electronics Vol 43 No 4 1970 

8 F F AGGIN T KLEIN 
A faster generation of MOS devices with low thresholds 
Electronics Vol 42 No 20 1969 

9 G A MALEY M F HEILWEIL 
Introduction to digital computers 
Prentice-Hall 1968 

10 W M REGITZ J KARP 
A three-transistor-celll024 500 ns MOS RAM 
1970 ISSCC Digest of Technical Papers Vol 8 

11 M E HOFF S MAZOR 
Operation and application of M OS shift register 
Computer Design Vol 10 No 2 1971 

12 E TAMMARU J B ANGELL 
Redundancy for LSI y'ield enhancement 
IEEE J Solid-State Circuits Vol SC-2 No 4 1967 



Universal logic lllodules implemented using LSI 
memory techniques 

by KENNETH JAlVIES THURBER and ROBERT ORVAL BERG 

Honeywell SysterM and Research Center 
St. Paul, Minnesota 

INTRODUCTION 

Large arrays of read only storage (ROS, ROM) 
are currently available from semiconductor ven
dors;1-4,10,l1,14,15 however, there is a lack of material 
describing potential uses of these blocks of memory. 
This is due in part to the haste with which the semi
conductor manufacturers place these devices on the 
market and in part to the fact that engineers have not 
yet realized the full potential presented by these devices 
for use as logic. 

Previous researchers5,6,17-19 have considered how to 
use ROMs as logic devices; however, some of these 
approaches have not been fully pursued.5,16,17 Other 
approaches do not take full advantage of the capabilities 
offered by the application of such devices.6,16,17 

In Reference 7 Graham points out that one possible 
partial solution to the large costs and long development 
times associated with custom LSI chips is to replace 
random logic designs with ROM; however, this is 
probably only part of the total solution. Texas Instru
ments20 has developed a Programmable Logic Array 
(PLA) which could possibly provide one economical 
solution to the random logic problem. Semiconductor 
manufacturers have described properties of ROM and 
some simple applications, but have never attempted to 
really investigate the power that is available through 
the use of ROM. Several variations of the ROM array 
have been introduced, notably, the ROAM and Solid 
Logic Technology (SLT) array.s The SLT array may 
be modelled as a special case of the ROAM in which a 
variable can appear in either its complemented or 
uncomplemented form (but not both) and it appears 
in the same form in every minterm. Currently, 4096 bit 
MOS single chip ROMs are available. 1, 10, 14,15 A single 
chip 8192 bit ROM is currently available.H In the 
next one to two years, it is conceivable that ROM 
with two to three times as many bits will be available. 
In fact, it is anticipated that every year for the next 

177 

five years, chip complexity will probably double7. By 
1973, 16,384-bit single chip ROMs should be readily 
available. Prices are also anticipated to reflect this 
improved capability, and will probably be less than a 
penny a bit.4 This should enable the clever logic designer 
to economically perform extensive logic functions with 
memory! One obvious use of such devices is table lookup 
arithmetic; however, this is only one of the many ways 
they can be used. Four possible uses of read-only 
devices are given in this paper. These four uses were 
selected because they illustrate the power of read-only 
devices, show that "pie-in-the-sky" concepts such as 
Universal Logic Modules (ULM) may actually be 
possible, illustrate the future potential of read only 
devices, illustrate the failings and tradeoffs involved 
with several read only devices, and propose relatively 
simple solutions to several problems. 

In the next section, use of read only devices in the 
construction of a universal combinational logic module 
is given. Next, use of read only devices in the construc
tion of a universal sequential logic module is discussed. 
Then the use of read only devices in the realization of 
arbitrary sequential machines is presented. In all cases 
several different implementations of the devices under 
consideration are given. Finally, a new type of read only 
array is introduced which is a hybrid combination of 
ROM and ROAM. It is shown that for a multiple 
output function this hybrid implementation is most 
economical. 

A PROGRAMMABLE UNIVERSAL 
COMBINATIONAL LOGIC MODULE 

Figure 1 (a) shows a section of ROM.* By choosing 
V E = 1 and G = 0, it can readily be seen that if line A 

* The ROM and ROAMs have been implemented using diodes 
in the examples presented in this paper; however, they could have 
been just as easily implemented using transistors. 



178 Fall Joint Computer Conference, 1971 

~-+----+-t----t-----t------''-'-I<I----+---o OU T PU T 

GROUND (G) 

Figure l(a)-A 16 bit read only memory 

and line 1 are both 1 then the output line 0 A is 1 if and 
only if the diode at the intersection of lines A and 1 is 
connected to both lines. (A more detailed explanation 
of the working of ROM and. ROAM can be found in 
the appendix.) This then allows a designer to specify 

+-+
+-+-

OUTPUT 

Figure l(b)-Simplified representation of the ROM shown 
in Figure lea) 

AB r----A----, 
CD 00 01 11 10 

0 1 3 2 
00 

0 f""' 0 1 0 

4 5 7 6 

01 CD 0 1 0 

{ 
12 13 15 14 

'11 0 0 
1 1 

8 9 11 10 

10 
(1 1 ~ 1 

Figure 2(a)-Karnaugh map of AB+CD+AC+ABCD 

the function that is programmed into an array. One 
practical method of utilizing this is in generating a logic 
function. In order to ensure that exactly one vertical 
line and one horizontal line are 1 at the same time, 
decoders are used. The circuit of Figure 2 shows two 
ways in which a four-variable function can be imple
mented. If the input combination A *B*C*D* ** is to 
yield a 1 then the diode is connected to the appropriate 
horizontal and vertical lines. The circuit shown in 
Figure 2 performs the logic function f = AB + C jj + 
AC+ABCD. Several articles have pointed out the 
relationship between the ROM (ROS) and the 
Karnaugh Map.6,S,I7 

Figure 3 illustrates two versions of the read only 
associative memory (ROAM).*** In Figure 3(a), if 

A B 

c--.....,., 

D--~ 

Figure 2(b)-Implementation of AB+CD+AC+ABCD 
in a 16-bit ROM 

** A* denotes A or A but not both. A*B* denotes exactly one 
of AB, AB AB, or AB. 
*** R. A. Henle, et aI., refer to the array in Figure 3(b) as the 
SL T array (Solid Logic Technology Array); however, this array 
can be modelled as a simplified version of the ROAM)" 



WIRED 
OR 

Figure 2(c)-An alternate implementation of 
AB+CD+AC+ABCD in a 16-bit ROM 

A B 

r-------t---4---t----+-J-+--+-L--+-=*"--!----n E OUTPUT 

G=O 

Figure 3(a)-Three input, one output ROAMl 

A B C D E 

--------+~-+--4-+---=--j___:~--....:.-~3---.+-_o OUTPUT 

-VE = 1 

G =0 

Figure 3(b)-Five input, one output ROAM2 

A 

Universal Logic Modules 179 

B 

+-+ 
+--f-

C 

D 

c 

WIRED 
OR 

Figure 4 (a)-ROAM 1 realization of AB+CD+AC+ABCD 

- V E = 1 and G = 0 then it can be seen that the output 
line E is 1 if and only if the input word A, B, and C 
exactly matches a word stored in the ROAM. This then 
allows the construction of logical product terms, one in 
each row of the ROAM. These product terms can then 
be wire ORed together to form a Boolean function in 
the sum of products form. Figure 4 (a) illustrates the 
implementation of the function F=AB+CD+AC+ 
ABeD in ROAM!. A function such as !=AB+AD+ 
D+C cannot be implemented in ROAM2 unless both 
of the v~riable D and D are available on a separate 
line as shown in Figure 4(b). Therefore, ROAM2 is not 
quite as flexible as ROAM1, but it can be used for 
functions that do not require double rail logic for all 
variables. 

Since ROM is completely programmable, any 

A C D 

.... .... 

.... .... I WIRED I OR 

.... I 

.... 

Figure 4(b)-ROAM2 realization of AB+AD+D+C 



180 Fall Joint Computer Conference, 1971 

A 

~ ~ 
EQUI VALENT TO roo 
BITS 
IT HA 

OF ROM BECAUSE 
S TWO DIODES PER 

VARI ABLE 

Figure 4(c)-A worst case ROAM! cell 

arbitrary logic function can be generated. The designer 
gives the manufacturer the outputs he desires for each 
allowable input combination. The manufacturer then 
programs the ROM by appropriately connecting the 
diodes (transistors) to the desired leads and the array 
is tested. Since the ROM can be programmed arbitrarily 
for its input conditions, the complexity of the logic 
function is not of great significance. Since the ROM can 
be used to generate arbitrary logic functions, it can be 
used to replace random logic in the control sections of 
computers. It then begins to seem feasible that com
puters can be constructed from only two elements; 
e.g., memory and a means for moving or transferring 
data. Memory will consist of ROM (or ROAM) per
forming all the logic and control functions and some 

FUNCTION FUNCTION LOGIC 
NUMBER REPRESENTATION 

0 QUAD TWO-INPUT AND QQQQ 
1 DUAL FOUR-INPUT AND Q Q 
2 EIGHT-INPUT AND ~ 
3 TWO DUAL TWO-INPUT AND, OR ~~ 
4 DUAL FOUR-INPUT AND, OR ~ 
5 AND, OR INPUT RS FLIP FLOP ~ FF 

~ ~ FF FF 

6 TWO TWO-INPUT AND RS FLIP FLOP 

~ ~ TWO TWO-INPUT AND JK FLIP FLOP 
FF FF 

7 

Figure 5-:-The functions included in the combinational module 

'-------I TWO TWO-INPUT AND JK FLIP FLOP 

POWER 

GROUND 

24 PIN DIP 

8 -OUTPUT DRIVER 

Figure 6-Block diagram of the module 

type of read/write memory for storage. (Henle et al.,8 
illustrate the use of ROAM and SL T arrays in generating 
logic functions and show some size comparisons 
between the three types of read only devices. A worst 
case realization of ROAMI would require the equivalent 
of approximately 2 _bits of ROM to form 1 bit of 
ROAM as shown in Figure 4(c).) 

Function Performed PIPZ P3 Inputs Output Selection 

Quad2-inputAND 

oo~ °2°4°6°8 
Quad2-1nputNAND 000 °1°3°5°7 
Quad2-1nputCR 000 °1°)°5°7 
Quad2-inputN(E 000 °2°4°6°8 

000 1
1
,"1 3"1

5
=1

7
=1 °1°3°5°7 

Rest Normal 

Dua14-inputANn 0

8 °2°4 
Dual 4-input NAND 001 °r0

3 
Dua14-:[nputoo. 001 Complemented 

°1 03 
Dua14-inputNOR 001 °2°4 
8 input NAND 

0] 

0
1 

8 input AND 010 0, 
8 input OR 010 Complemented 0

1 
8 input NOR 010 Complemented 0, 
Two dual two input AND OR 

Olil 0-2°4 
1\JodualewoinputANDORlnvert Oll 

°1°3 
TwodualtwoinputNoo.OR Oll Complemented °2°4 
Two dual two input 00. AND Oll complemented °1°3 
Dual 4 input AND OR 

10~ 0, 
Dual 4 input AND OR invert 100 0

1 
Dual 4 input NOR OR 100 Complemented 0, 
Dua14 input ORAND 100 Complemented 0

1 
ANDORlnputRS flip-flop (complementary outputs) IW °1°3(°2°4) 
Two input AND RS flip-flop (complementary outputs) 1~1 °1°3°5°7(°2°4°6°8) 
Two input AND JK flip-flop (complementary outputs) 

~~I °1°3°5°7(°2°4°6°8) 
Two trigger flip-flops (complementary outputs) 11"'12=13=-14,15=16"'17"'18 °1°5(°2°6) 

Figure 7-The twenty-five functions produced by the 
combinational module 



Since MOS ROMs of 4096 bits are available1,lo,14,15 

and not much in the line of MOS random logic is avail
able,t aMOS universal logic module has been designed 
using ROM and both types of ROAM.t The functions 
that were selected for inclusion in the module are 
available from a number of manufacturers and are 
shown in Figure 5. The general design of the module is 
shown in Figure 6. One notes that both true and com
plementary outputs are available and therefore by 
selection of appropriate outputs and judicious use of 
complementary inputs, the module can produce 25 
different major functions as shown in Figure 7. 

The eight logic functions included in the package 
were choosen because these functions can allow the 
package to produce anyone of 25 functions by properly 
inverting the input and output terminals. The means to 
invert the outputs has been provided internal to the 
package; however, it is assumed that the inputs would 
be provided in their proper format (inverted or normal) 
to the input of the package. In Figure 7 the functions 
performed by the same function generator but using 

t In January 1970, Electronic Arrays, Inc. announced a line of 
MOS logic devices EA1800, EA1801, EA1802, EA1804, EA1806, 
and EA1808. These arrays are for use in generating random logic 
and are probably the most complete MOS line available at this 
time. 
t In realizing logic with ROM it is possible to produce economical 
realizations using more than one level of logic and/or by careful 
consideration of the function being produced. For example, 
function 0 (Zero) in Figure 5 is 4 (four) AND gates and could be 
realized as four 4 bit ROMs for a total of 16 bits instead of the 
1024 bits required by the authors. In fact the whole module can 
be realized in ROM with on:y 304 bits needed to realize the 
functions. The equivalent amount of bits needed for decoding is 
near 1000 (same order of magnitude as in the solution given in 
Figures 8d and 9) and therefore this realization is still more 
costly than either ROAM solution. Additionally this solution 
would have other drawbacks. Some of these are the following: 

• a large number of small decoders have been substituted for a 
large decoder thus increasing the amount of random wiring 

• multiple level logic realizations yield multiple level "gate" 
delays thus making the speed of the functions in the module 
dependent upon the realization while all combinational func
tions (functions 0-4) in the module of Figure 8d (flip-flops are 
the exceptions) operate at the same speed (functions 5 and 6, 
the R-S flip flops, operate at the same speed as each other) 

The fact that economical ROM realizations can be achieved 
using multiple level logic does not change the conclusions of this 
paper. Care must be taken in the application of ROM to insure 
that the most economical realization is used consistent with other 
design goals and constraints. In fact it is conceivable that the 
search for economical multi-level realizations could result in 
higher overall chip cost due to the increase in random wiring. 
Regularity of structure has been demonstrated to be a very 
important factor (if not the most important) in LSI by the very 
fact that memories and shift registers can be built in the large 
sizes that they are today, whereas, random logic LSI is limited to 
hundreds of gates. 

Universal Logic Modules 181 

I I 
I I 
I I 

2.9 I ~OAi:2 I 
ax2l 

ROAM2 RMM2 :M~2: ROAM? 

I I 
I I 
I ! 1 

Figure 8(a)-Block diagram of the ROAM2 solution 

7 

° 
1 

4 

11 

12 

13 

14 

15 

16 

17 

18 

(Pl , PO!' P3 ' 7 

ROAM CIRCUIT 

./ 
...... 

-<t-----
r--<r-

CCr-

NAND CIRCUIT 

2 5 8 1 1°1 A 
1~2 

1°3 A 
4~5 

1°5/'1 
7~8 

lO~ll 

Figure 8(b)-Sketch of the ROAM2 implementation of two 
JK flip flops 



182 Fall Joint Computer Conference, 1971 

Figure 8(c)-Block diagram of the ROAM! solution 

inverted inputs and outputs have been bracketed for 
easy identification. It is felt that this one package could 
replace a large percentage (over 70 percent) of the 
random logic packages used today. Obviously, with 
enough of these packages, one could generate any 
arbitrary logic function. 

While it is not expected that this package would ever 
be cheaper then standard present day packages which 
perform a single logic junction, its final cost to the user 
should be less especially in small to medium quantity 
ranges. This results because you only have to purchase 
one package type, stock one package type, and have 
spares for one package type thus cutting inventory and 
handling costs. Rework costs on manufactured boards 
and assembly costs should be minimized because there 

is only one type of package to be handled. Thus, 
although this module is slightly more costly than many 
present day single function ICs, its versatility should be 
considered in any comparisons. As total cost of owner
ship considerations become more prevelant, this con
cept should gain wide acceptance. 

The implementation of these functions has been 
outlined in block diagram form for each of the, two 
types of ROAM (see Figure 3(a) and 3(b» and for 
ROM (see Figure 1) in Figure 8. Figure 8(b) shows 
how one part of one of the circuits (Function 7) could 
be implemented in ROAM. From the implementations 
it can be seen that the ROM solution is probably not 
able to be implemented today; however, it will be 
implement able in the near future. The ROAM solutions 
are implementable at this time. Figure 9 shows the 
number of bits needed to realize each function, based 
upon the designs in Figure 8. Since these devices would 
be produced in large quantity and are well suited for 
LSI production, the cost per bit projections for ROM 
shown in Figure 10 are applicable to this device. 

Looking at the realizations presented in Figure 8, it 
can be seen that the manner in which the functions are 
realized and the nature of the functions (essentially 
AND gates) produces the cheapest realization from 
ROAM2, the next cheapest from ROAM!, and the 
most expensive realization from ROM. With current 
technology it should be possible to build the solutions 
of ROAM1 and ROAM2 in either MOS or bipolar 
technology. The solution for ROM is presently pushing 
the state of the art; however, if the dual RS flip flop 

Figure 8(d)-Block diagram of the ROM solution 



ROAM2 

Function if of Bits 

0 36 

18 

9 

36 

4 18 

62 

104 

204 

Decoder ~ 

Total Bits 535 

ROM 

Function if of Bits 

0 1024 

512 

256 

512 

4 256 

544 

1088 

1536 

Decoder .!ill. 

Total Bits 7064 

Note: 2 ROM bits are equivalent to 
1 ROAM1 bit. All bit totals are 
given in terms of bits of ROM. 

ROAM1 

Function # of Bits 

64 

32 

16 

64 

4 32 

112 

192 

384 

Decoding ~ 

Total Bits 1130 

Figure 9-Number of bits required to realize the combinational 
module 

10 

5 

1.0 

I-

~ 0.5 
I
z 
UJ 
u 
!:: 
l
V! 
o 
u 

0.1 

0.05 

I~ 

'" ~ 
-- ........... 

~ 

---

COST PER BIT OF ROM 
HIGH VOLUME PRICE 
FORECAST BASED ON 
INTEL CORP INFORMATION 
FROM ELECTRONIC PRODUCTS, 
JANUARY, 1970 

BIPOLAR 

~M 

- -- ----- :----~ 
MOS ROM 

i 
i 

I 
i 
I 

1 0.0 
71 72 73 74 75 76 

1970 

Figure lO-Cost per bit of ROM 

Universal Logic Modules 183 

(or the dual JK flip flop) were left out, this can probably 
be built. All of the solutions can be packaged in a 24-pin 
DIP. One problem with this implementation is that the 
outputs must not change while the new information is 
being read. This can be assured in MOS implementations 
because of the capacitance; however, in a bipolar 
implementation it may be necessary to add a clock to 
the system and include a clocked latch flip flop in each 
output driver. 

A PROGRAMMABLE SEQUENTIAL 
LOGIC MODULE 

A programmable sequential logic module is defined 
and implemented in this section. This module is 
programmable and can perform three different func
tions. This module is based upon widely available IC 
logic series and it is felt that this module can perform 
the most important sequential functions. This module is 
designed so that it can be used with itself and the ULM 
from the previous section in the implementation of 
more complex systems and subsystems. 

Figure 11 is a flow table description of the functions 
that can be performed by the module. The three 
functions implemented in the module are three different 

F D B K 

o 0 0 0 

000 1 

o 0 1 0 

001 1 

o 100 

010 1 

o 1 1 0 

o 1 1 1 

100 0 

100 1 

1 0 1 0 

101 1 

1 100 

1 101 

1 1 1 0 

1 1 1 1 

DC 

o 0 

o 0 0 0 

o 0 0 1 

o 0 1 0 

001 1 

o 1 0 0 

010 1 

o 1 1 0 

o 1 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 I 1 

o 1 1 0 

000 0 000 1 

000 0 001 0 

o 0 0 0 001 1 

o 0 0 0 o 100 

o 000 o 101 

o 0 0 0 o 1 1 0 

o 0 0 0 011 1 

o 0 0 0 100 0 

o 0 0 0 100 1 

o 0 0 0 101 0 

o 000 101 1 

o 0 0 0 1 100 

000 0 110 1 

o 0 0 0 1 1 1 0 

000 0 1 1 1 1 

o 0 0 0 000 0 

DC 
DC 
DC 

DC 

Figure ll(a)-Flow table for a binary counter 

1 1 

1 1 1 1 

o 000 

000 1 

o 0 1 0 

o 0 1 1 

o 100 

o 101 

o 1 1 0 

o 1 1 1 

1 000 

1 001 

1 010 

1 0 1 1 

1 100 

110 1 

1 1 1 0 

= 00 stop 
= 01 reset 
= 10 count 

up 
11 count 

down 



184 Fall Joint Computer Conference, 1971 

101112 I 

o 0 0 0 

000 1 

o 0 1 0 

001 1 

o 100 

o 1 0 1 

o 1 1 0 

3 

o 1 1 1 

100 0 

100 1 

1 0 1 0 

1 0 1 1 

1 100 

1 1 0 1 

1 1 1 0 

1 1 1 1 

poe 

1 X X o 0 x 

o 0 0 0 o 0 0 0 

o 0 0 1 000 1 

o 0 1 0 o 0 1 0 

o 0 1 1 o 0 1 1 

o 1 00 o 100 

o 1 0 1 010 1 

o 1 1 0 o 1 1 0 

o 1 1 1 o 1 1 1 

1 00 0 1 0 0 0 

100 1 100 1 

1 0 1 0 1 0 1 0 

1 0 1 1 1 0 1 1 

1 1 0 0 1 100 

1 1 0 1 1 1 0 1 

1 1 1 0 1 1 1 0 

1 1 1 1 1 1 1 1 

011 010 

o 0 0 1 1001(1) 

o 0 1 0 o 0 0 0 

001 1 o 0 0 1 

o 1 0 0 o 0 1 0 

o 101 001 1 

o 1 1 0 o 100 

o 1 1 1 o 1 0 1 

1 0 0 0 o 1 1 0 

1 0 0 1 o 1 1 1 

o 0 0 0(1) 1 000 

00 0 1 o 0 0 1 

00 0 0 o 0 00 

00 o 1 o 0 o 1 

00 0 0 o 0 0 0 

o 0 0 1 o 0 0 1 

o 0 0 0 o 0 00 

poe = lXX preset 
POG = OOX ho Id 
POG = 011 count up 
POG = 010 count down 

( ) value in fifth column indicates 
the output value when it becomes 
1. This is the "carry out" Do. 

Figure U(b)-Flow table for a decade counter 

counters. A four-bit binary counter (Figure 11 (a)) has 
been implemented which has the capability to count 
up or down with a range of 16 different numbers; i.e., 
o to 15. This counter can also be reset to zero. 

The second counter (Figure 11 (b)) is an up-down 
BCD decade counter. This counter can count up or 
down and can also be preset to a value. This counter is 
constrained to count between zero and nine and can be 
ganged with other decade counters to form a counter 
capable of counting between zero and 999 ... 9. 

The last counter (Figure 11 (c)) is an up-down, four
bit binary counter. This counter can be preset to a 
value and is constrained to count between zero and 15. 
This counter can also be ganged with other binary 
counters. The differences between the first counter and 
this counter are that this counter can be preset to any 
value and ganged with other binary counters. 

The module is contained in a 24-pin DIP. Figure 12 
is a block diagram of the overall layout of the package. 
This diagram shows the necessary leads for the package 
and the general functions that the package performs. 
The module was realized in ROM and ROAMl. No 
attempt was made to realize the function in ROAM2 
since double-rail logic was necessary. The realizations 
are given in Figure 13. Since the functions are realized 

o 0 0 0 

000 1 

o 0 1 0 

o 0 1 1 

o 1 0 0 

o 1 0 1 

o 1 1 0 

o 1 1 1 

1 0 0 0 

100 1 

101 0 

101 1 

1 100 

1 1 0 1 

1 1 1 0 

1 1 1 1 

3 

POG 

lXX 

o 000 

000 1 

o 0 1 0 

001 1 

o 1 0 0 

o 1 o 1 

o 1 1 0 

o 1 1 1 

1 000 

1 001 

1 0 1 0 

101 1 

1 100 

110 1 

1 110 

1 1 1 1 

o 0 x 

o 0 0 0 

000 1 

o 0 1 0 

001 1 

o 1 0 0 

010 1 

o 1 1 0 

o 1 1 1 

100 0 

100 1 

1 0 1 0 

1 0 1 1 

1 1 0 0 

110 1 

1 1 1 0 

1 1 1 1 

o 1 1 010 

000 1 1 1 1 1 (1) 

o 0 1 0 o 0 0 0 

001 1 o 0 0 1 

o 100 o 0 1 0 

010 1 o 0 1 1 

o 1 1 0 o 1 0 0 

011 1 o 1 0 1 

100 0 o 1 1 0 

100 1 o 1 1 1 

1 0 1 0 1 000 

101 1 1 0 0 1 

1 1 0 0 1 0 1 0 

1 101 1 0 1 1 

1 1 1 0 1 1 o 0 

1 1 1 1 1 1 o 1 

o 0 0 0(1) 1 1 1 0 

poe = lXX preset 
poe = OOX hold 
poe = 011 count up 
POG = 010 count down 

( ) value in fifth column ind 
the output value when it be< 
1. This is the "carry out" 

Figure l1(c)-Flow table for a presetable binary counter 

in a sum-of-products form, it would be natural to 
simplify the functions as if the function to be produced 
were a multiple-output function; however, this is 
impossible since sharing of terms between functions 
does not work properly when the wired-OR is used. 

I 
P, 

PRESET P2 
LINES P3 

"4 

e -QUTPUTDRIVERS 

FUNCTION 
SELECT 

Figure 12-Block diagram of the sequential module 



8-0UTPUTDRIVERS 

FUNCTION 
SELECT LINES 

Figure 13(a)-ROM solution for the sequential module 

'herefore, the functions were realized as single-output 
mctions. 
The number of equivalent bits of ROM used by the 

)lutions given in Figure 13 is shown in Figure 14. The 
arenthesized number in the ROAMI solution is an 
lternative bit count based upon the use of a different 
Lethod of decoding. Instead of selecting the function 
b each implicant requiring 2X2X74=296 bits of ROM 

I I 1 I I 

k00@@ @ po~ I--
GRO.l!!:!Q. I--

-J 
5x8 

1. 
ROAM 1 

b I 

II b 11 
~ ~ 

~ ~ 

I-- I--
I-- I--

21 x 9 ~ 25 x 9 I-- 27 x 9 

~ ROAM1 - ROAM1 I-- ROAM1 
~1 1 LROAM1 

- ROA~J - I--

- -
- -

~LOCK 

G -OUTPUT DRIVERS 

Figure 13(b)-ROAMl solution for the sequential module 

Universal Logic Modules 185 

ROM ROAM 1 

Function Cost Function Cost 

1 512(256) 1 294 
2 640 2 350 
3 640 3 378 

Decoders 320 Decoders 296 (160) 
Misc. 40 Misc. 80 

2152( 1896) 1406( 1270) 

Figure 14(a)-Number of bits required for the sequential module 

as shown in Figure 13 (b) the 160 is based upon the 
construction of a decoder requiring three implicant 
terms at a cost of 3X2X2= 12 plus the cost of one 
con trol bit per implicant 2 X 1 X 74 = 148 or a total of 
160 bits. The control line from each implicant term 
would then pass through only the portion of ROAM 1 
it selects just as the ROM solution decoder lines do in 
Figure 13 (a). 

In the ROM solution, 256 bits of ROM can be saved 
because the first function does not depend on the 

# Imp1icants necessary for function 1 

Variable 

F 
D 
B 
K 

1f Imp1icants 

8 
6 
5 
2 

21 

# Imp1icants necessary for function 2 

Variable # Imp 1 icants 

2 
6 
7 
7 
3 

25 

# Imp1icants necessary for function 3 

Variable =If Imp1icants 

2 
9 
7 
6 
3 

27 

Figure 14(b)-Number of implicants required for the counters 



186 Fall Joint Computer Conference, 1971 

variable P. It is necessary that P = 0 in order for the 
first function to operate correctly; therefore, it is con
ceivable to build the first function using only 256 bits of 
ROM instead of 512 bits since only 256 of the 512 bits 
are used anyway. 

Cost projections for this device can be prepared using 
Figure 10. No timing problems are anticipated with this 
universal sequential logic module. In order to alleviate 
the chance of any races occurring, clocked flip flops have 
been provided as delay units; however, even in the event 
the module was built without providing a means for the 
flip flops to be clocked, no problems are anticipated. It 
is felt that ample time can be allowed so that the net
work could obtain a stable state without jeopardizing 
the module's speed. In order to obtain this objective, 
the feedback variables and their delay hardware were 
kept completely internal to the module. The speed of 
each feedback signal is approximately equal. It is 
anticipated that if the flip flop delay units were placed 
outside of the module and no feedback occurred inside 
the module that serious timing problems could occur 
because of the input-output process to the package and 
the inherent characteristic differences in the various 
parts and this could reduce the module's speed by 
over 50 percent. 

It should be noted that many different functions 
could be placed on the chip. One might want to consider 
counters such as a divide-by-six counter or a divide-by
four counter; however, because of the level of com
plexity that can be reached in this type of logic, the 
authors see no real advantage in placing too many 
counters on the chip because they are so much alike. 
A good understanding of the ideas from which these 
chips have been designed should allow anyone to define 
his own complete ULM (Universal Logic Module) 
that can be easily realized. 

USE OF READ-ONLY MEMORIES IN 
REALIZING ARBITRARY SEQUENTIAL 
MACHINES 

In previous sections it has been shown that ROM and 
ROAM can be successfully applied to the design of both 
universal combinational logic modules and sequential 
logic .modules that replace a large number of ICs. 
These modules are functionally programmable by setting 
different values on the control lines. Because of the 
logical power of ROM and ROAM, it seems that these 
devices may hold the key to the ability to realize 
arbitrary logic networks by means of structured or 
regular logic. Therefore, in this section it will be shown 
that it is possible to formulate design guidelines that 

will enable the designer to describe a regular module 
that is capable of exhibiting an arbitrary sequential 
behavior pattern. Since this sequential machine can be 
built from ROM and ROAM, it is possible to build 
machines in a standard form and then program each 
machine to perform its specific function by specifying 
the interconnection of the ROM and ROAM. Bounds 
on the size of flow table that currently can be realized 
are also given. 

It is felt that there are many practical advantages 
that can be achieved by using this method of realizing 
a sequential machine on a single chip. The four most 
important advantages are the following: (1) it is possible 
to minimize the number of input and output leads since 
the feedback (next state) variables can be handled 
internal to the chip, thereby yielding a high gate-to-pin 
ratio; (2) an iterative realization of the machine will 
minimize (and possibly eliminate) hazards and race 
conditions because there is very little time lag to be 
accounted for due to the extremely close proximity of 
all devices; (3) because there are no distinct parts to be 
connected together, there will be no large line delays 

o ~ ONE UNIT DELAY 

COMBINATIONAL 
LOGIC 

t----Zl 

~--z2 

t-----ZM-l 

t----ZM 

1 

21 
I 
I 
I 
I 
I 
I 

P-l 

P 

Figure I5-Block diagram of a sequential machine 



thus yielding an extremely fast machine; and (4) it is 
conceivable to be able to realize complex special
purpose sequential machines out of mass-produced 
chips by just programming the chip in the near future. 
The concept of placing a subsystem on a chip is felt to 
be the logical extension of ULM. Therefore, a discussion 
of bounds on the size of the system is provided in this 
article. 

Figure 15 shows a block diagram of the class of 
sequential machine under consideration. This machine 
has n inputs, m outputs, and p next-state functions. 
This gives the machine a capability of realizing any 2p 

state machine with n inputs and m outputs where each 
of the output functions and next-state functions is a 
function of n external variable and p next-state variables. 

Figures 16 and 17 show the manner in which this 
type of network could be organized on a chip. The 
flip flops (FF) and AND gates could be mechanized 
using ROM or ROAM and the decoder could be 
mechanized using ROAM. As seen from the figures, any 
mechanization must have m+n+3 package leads. 
This allows one lead for power, one for ground, one for 
the system clock, n input leads, and m output leads. 

Xl -t-----7 

X2 --:,-+----/ 
I 

Xn_l---"-+--~ 

Xn 

POWER GROUND 

ROM 

CL CK 

Figure 16-Block diagram of the ROM implementation 
of a seq ue~ tial machine 

Universal Logic Modules 187 

ROAMI 

POWER GROUND CLOCK 

Figure 17-Block diagram of the ROAM1 implementation 
of a sequential machine 

Internal to the package are p flip flops and the necessary 
gates to clock the next states into the flip flops. Since 
the machine has p next-state variables, the machine can 
have at most 2p internal states. 

All functions (output and next state) will be realized 
in the same general manner. This will make the internal 
structure somewhat regular, and allow the modules to 
be built and then programmed. Inside the chip, m+p 
combinational functions must be realized where each 
function can have n+p variables. Additionally, some 
delay units must be 'included along with the ability to 
clock the next-state variables into the delay units. On 
the chip the delay units will be constructed of clocked 
flip flops. 

Because double-rail logic is not available in ROAM2, 
no attempt will be made to realize an arbitrary sequen
tial machine using ROAM2. In the ROAMI realization, 
each individual function will be realized in a sum of 
products form. Figure 17 shows the general block 



188 Fall Joint Computer Conference, 1971 

V
E n is equal to 2 

m 

2 3 4 5 

R2 
48 72 96 120 144 

OUTPUT = F 2 192 256 320 384 448 

3 640 800 960 1120 1280 
P 

4 1920 2304 2688 3072 3456 

5 5376 6272 7168 8064 8960 

6 14336 16384 

n is equal to 3 

m 

GROUND VE 5 2 3 4 

v
E 128 192 256 320 384 

~ 2 480 640 800 960 1120 

P 3 1536 1920 2304 2688 3072 

OUTPUT = F 4 4480 5376 6272 7168 8064 

5 12288 14336 16384 

n is equal to 4 

m 

2 3 4 5 

320 480 640 800 960 

2 1152 1536 1920 2304 2688 
P 3 3584 4480 5376 6272 7168 

Figure 18-A ROM network for producing for F 4 10240 12288 14336 16384 

diagram realization of the system in ROAM. One 
advantage of the ROAM approach is that no decoders nis equal to 5 
are necessary. Also, using the network shown in Figure 
18, a function or its complement may be selected. m 

Therefore, each function of n+p variables requires at 2 3 4 5 
most 2n+p-l implicants to realize it. Each implicant 

768 1152 1536 1920 2304 
requires n+p bits of ROAMI and each bit of ROAMI 

p 2 2688 3584 4480 5376 6272 
requires the equivalent of two bits of ROM (worst 

3 8192 10240 12288 14336 16384 case) . 
Neglecting flip flops and output drivers (because 

their cost is about the same for all solutions) a cost of 
[c(2n+p-l) (n+p)] [m+pJ bits of ROM is necessary 

n is equal to 6 
to build the sequential machine from ROAMI (the 

0 
function selection ROM described in Figure 18 was m 

neglected). Using a value of two for c [equivalent to 2 3 4 5 
selecting a ROAMI cell that uses two bits of ROM as 

1792 2688 3584 4480 5376 shown in Figure 3 (c) ], the resultant cost of the machine p 2 6144 8192 10240 12288 14336 is (2n+p
) (n+p) (m+p) bits of ROM. Since the cost 

of such an arbitrary machine is a function of three Figure 19-5izing guidelines for sequential machines made 
variables the cost equation was evaluated for several out of ROAMl 



different values of n, m, p subject to certain constraints. 
It has been assumed that in the near future ROMs 
with 8192 bits1,lO,ll will be available. Since 8192 bit 
ROMs will be available, it is felt that ROAM1s of 
16,384 equivalent bits of ROM will be available since 

I) is equal to 2 

p 

1 G 

48 

128 

no 
7IJ8 

1702 

400IJ 

n is equal to 3 

p 

32 

96 

256 

640 

1536 

3584 

8192 

n is equal to 4 

p 

64 

192 

512 

1280 

3072 

24 

G4 

IGO 

384 

80G 

204R 

4608 

48 

128 

320 

7G8 

1792 

4096 

96 

256 

640 

1536 

3584 

71 G8 8102 

n is equal to 5 

r 

128 

384 

1024 

25IJO 

G144 

n is equal to 6 

p 

256 

768 

2048 

5120 

192 

512 

1280 

3072 

7168 

384 

1024 

2560 

G144 

BO 

1 "2 

44 B 

1024 

2104 

5120 

G4 

1 GO 

384 

8% 

2048 

460B 

128 

320 

768 

1702 

4096 

G40 

151G 

3584 

81 >12 

512 

1280 

3072 

71 G8 

40 

224 

80 

1 "2 

448 

1024 

2304 

5120 

160 

384 

B06 

2048 

4G08 

120 

7G8 

17>12 

40"G 

G40 

151G 

3584 

81 >12 

4B 

112 

;)7G 

12 flO 

281G 

GI44 

% 

224 

512 

1152 

25GO 

5G12 

192 

448 

1024 

2304 

;)120 

8:>(; 

204 R 

4GOB 

7GB 

17>12 

400G 

Figure 20-Sizing guidelines for sequential machines made 
out of ROM 

Universal Logic Modules 189 

ROAM1 does not need decoders and therefore has more 
area for bits. Using these bounds, Figure 19 shows the 
number of bits of ROM necessary to construct an 
arbitrary sequential chip with the designated values of 
n, m, p. The values are only calculated until 16,384 bits 
are reached. In interpreting the figure, n is the number 
of external input variables, m is the number of output 
lines, and p is the number of feedback variables (there
fore, a 2p state machine can be realized). The number in 
row p of column m of the table for a specific value of n 
is the number of equivalent bits of ROM required. 

In realizing the machine using only ROM, the cost 
was computed to be (2n+p

) (m+R)' Neglecting the 
decoder (this is done by allowing only 8192 bits), the 
output drive circuitry and flip flops, the cost of realizing 
one function is 2n+p and therefore since m+p functions 
must be realized, a resultant cost of (2 n+p

) (m+p) is 
obtained. This can be compared to the cost of the 
ROAM1 solution since the same factors were neglected 
in both cases. Comparing Figure 20 to Figure 19 it can 
readily be seen that ROM is better suited for the 
realization of an arbitrary sequential machine. 

A GENERALIZED LOGIC ARRAY 

In the preceding sections ROMs and ROAMs were 
used to solve three different problems. As can be seen 
from the solutions given, there seems to be no universal 
array applicable to all types of logic problems. In 
addition for any given problem either ROM or ROAM 
seems to fit the problem, but not necessarily both. It 
was the author's intent to give a detailed illustration of 
the power of memory (particularly read only semi
conductor memory) used as logic and to determine 
design guidelines for their use; however, there is an 
additional array that can be made from read only 
memories. Since this memory is an extension of both the 
ROM· and ROAM it is felt that this array should be 
introduced and an example given which illustrates that 
it too has a use. In the preceding sections ROAM was 
sometimes used for decoding purposes. The GLA is an 
extension of this concept. 

Figure 21 (a) shows the Generalized Logic Array 
(GLA). The GLA consists of a combination of ROM 
and ROAM. From the block diagram of the array 
shown in Figure 21 (a), it can be seen that this array can 
be specialized to be either a ROM or a ROAM as 
previously examined. In order to obtain a ROM 
(ROAM), the ROAM (ROM) is not used in the array. 
This array, as shown, combines the best properties of 
both types of memories; i.e., the table look up (asso
ciative property) of the ROAM and the random 
access properties of the ROM. The combinatio~ of 
associative and random access memories has been used 



190 Fall Joint Computer Conference, 1971 

** IT IS ASSUMED THAT 
THE ROAM OUTPUTS ARE 
INVERTED BEFORE TREY 
ARE OUTPUTTED TO THE 
ROM. THIS IS NECESSARy 
BECAUSE ROAM USES NEGATIVE 
LOGIC AND ROM USES POSITIVE 

ROM 
OUTPUTS 

Figure 21(~)-Block diagram of the GLA 

to advantage previously,12 but for a different pur
pose and in a different manner. 

This array could be applied to the design of a universal 
combinational logic module as follows: 

• for a ROAM1 implementation delete all ROM and 
make the ROAM from ROAMl. 

• for a ROAM2 implementation delete all ROM and 
make the ROAM from ROAM2. 

• for a ROM implementation use the ROAM as a 
decoder and the ROM to produce functions that 
are most economically implemented in ROM. 

This array encompasses both ROM and ROAM and 

w x y z 

Xy 

wXy 
Wxz 

ROAM 
wxz 
y 

xy 

Figure 21 (b)-Realization of multiple output function in the GLA 

OUTPUT 

GROUND 

Figure 21(c)-The use of ROM in the GLA to select the 
appropriate inputs to be ORed together 

has as its main benefits the following: 

• Combines the best properties of ROM and ROAM. 
• Allows the implementation of functions which 

require both associative and random access 
addressing. 

• Is more universal than either ROM or ROAM. 
• Limits random wiring on the chip to be external to 

the memory areas, thus simplifying the layout task. 
• Retains a structure in the sense that the ROAM 

and ROM sections can be considered as macro 
cells. 

The GLA does have a drawback and it is that the 
logic designer is going to be required to be more in
genuous than before. 

The judicious combination of random access and 
associative memories seems to be quite promising for 
certain types of problems. One of these is illustrated 
below. 

The problem to be solved here is the implementation 
of the' three functions fl' h, and f3. This problem is 
taken from page 159 of McCluskey's book. 9 The func
tions are defined as follows: 

fleW, X, Y, Z) = L(2, 3, 5, 7, 8,9, 10, 11, 13, 15) 

heW, X, Y, Z) = L(2, 3, 5, 6, 7, 10, 11, 14, 15) 

f3(W, X, Y, Z) = L(6, 7, 8, 9,13,14, 15) 

The minimal sums for these three functions are as 
follows: (page 164 of Reference 9) 

h=XY+WXY+WXZ+WXZ 

f2=WXZ+Y 

f3=WXY+XY+WXZ 



Realizing the three functions in ROM would require 
three 16-bit ROMs plus decoding. The total estimate 
(in ROM bits) for a realization of this function is 96 
bits (allowing the equivalent of 48 ROM bits for 
decoding). A ROAM1 implementation would require 
the implementation of nine implicants (you cannot 
wire OR the WXZ(WXZ) term into both !1 and 
!3 (!1 and !2) thereby causing you to have to realize all 
nine implicants and wire OR them only in their specific 
function) at a cost of eight ROM bits per implicant for 
a total cost of 72 ROM bits. ROAM2 has a slightly 
cheaper realization because Z does not appear any
where. Therefore if a seven variable ROAM2 is avail
able and the variables are assigned as X, X, Y, Y, z, 
W, and W, then ROAM2 requires 9X7 or 63 ROM bits 
for the realization. In this problem it appears that 
ROAM2 is the cheapest solution with a cost of 63 and 
ROM is the most expensive with a cost of 96; however, 
a GLA solution using ROAM2 (ROAM1) can be given 
that requires only 60 (66) equivalent ROM bits. 

This implementation is shown in Figure 21 (b). This 
implementation is based upon the following observa
tions: 

• A=A+O,O=OX 
• there are six distinct multiple output prime 

implicants: XY, WXY, WXZ, wxz, Y, and XY. 

• !i=XY + WXY + WXZ+ WXZ+OY +OXY 
=XY + WXY + WXZ+ WXZ 

• !2=WXZ+Y+OXY+OWXY+OWXZ+OXY 
=WXZ+Y 

• !3=WXY+XY+WXZ+OWXZ+OXY+OY 
=WXY+XY+WXZ 

In Figure 21 (b) each of the six mUltiple output 
prime implicants have been realized using ROAM2 
(ROAMl) at a cost of 42 (48) equivalent ROM bits. 
Decoding has been eliminated (the ROAM really 
decodes into the multiple output prime implicants) and 
the three ROMs used cost six bits each for the total 
cost of 60 (66) using ROAM2 (ROAM1). The three 
ROMs are 6 by 1 ROMs and contain a connected 
diode to select the proper terms of the function. The 
seventh line into each ROM is always kept at logicall, 
thus allowing the output of the ROAM to select the 
output value. For!1 the diodes driven by the Y and XY 
outputs are just not connected thereby yielding the 
correct realization for JI. The other two functions are 
similarly realized. In this example the ROM just serves 
to mask certain values and to "OR" the proper impli
cants together to realize the functions. This operation 
may be illustrated by the three bit ROM shown in 
Figure 21(c) which produces A+B. The multiple 

Universal Logic Modules 191 

output prime implicants would drive the ROM at 
points equivalent to points A, B, and C of Figure 21 (c). 
Using the ROM in this manner, the ROM effectively 
selects the proper outputs of the ROAM and ORs 
them together if the diode is connected to both lines. 

SPEED CONSIDERATIONS 

Since the modules have not been built, there is no 
way to accurately measure the modules' speed. The 
speed projections given here are based upon speed 
projections for ROMs.2,3,4 

It is important to note that all of the modules are 
just read only memory so that as far as a module itself, 
there are no real internal gate delays. For MOS the 
general sequential machine should be able to run with 
data changing every millisecond or less. There are some 
MOS read only memories2 that have access times on the 
order of 50 nanoseconds. Although these· access times 
are not necessarily for a MOS memory of 8000 bits, the 
general machine running asynchronously could possibly 
run significantly faster than 1 MHZ. If it is running 
synchronously, it would probably have to be slower 
(on the order of 1,250 nanoseconds15). Of all the modules, 
the general sequential machine is probably the slowest, 
however, it is anticipated that this module will probably 
furnish the fastest overall system that could be put 
together. The main speed advantage the general 
sequential machine has is that its speed is dependent 
only on the clock frequency and does not depend upon 
the number of gate delays that the signals must 
propagate through as in a random logic implementation. 

It is anticipated that the sequential logic module will 
be able to operate at a 600 nanosecond access time in 
M OSlO and a 35 to 70 nanosecond access13 time in 
bipolar implementations. These speeds seem reasonable 
and compare favorably with logic that is available 
today; however, it should be anticipated that these 
speeds will be heavily dependent upon the use and 
design of the clocked flip flops. Again, the device is 
really only a read only memory and can be operated 
as fast as a read only memory. There are available 
ROMs which can run a lot faster than those assumed 
here13,16 and ROM speeds are projected to improve 
significan tly. 2 

Evaluation of the speed of the universal combinational 
logic module is fairly straightforward since it does not 
contain any internal feedback loops with flip flops in 
them. In a MOS implementation, one would expect 
currently to be able to operate the module around 
2 MHz, regardless of whether you are changing the 
module's function. A bipolar implementation should be 
able to operate at 20 MHz or above. Both of these 



192 Fall Joint Computer Conference, 1971 

anticipated speeds are below the projected speeds for 
read only memory because there is some internal 
feedback on the flip-flop functions. It would be better 
to operate the module slower than capacity to assure 
that the output values are correct. The MOS speed 
(0.5 millisecond) is slower than most comparable MOS 
logic (typical speeds for the Electronic Arrays 1800 
Series range from 250 nanoseconds to 150 nanoseconds). 
The logic building blocks most comparable to the 
universal combinational building block are the EA1800 
(250 nanoseconds) and the EA1806 (250 nanoseconds). 
However, ROM speeds are expected to increase and 
are increasing on smaller RO Ms.16 

CONCLUSION 

The viability of read only memories for use as logic 
devices was investigated in this paper. Three different 
versions of read only memory were applied to three 
different problems. The three problems that were 
considered are: (l) use of read only memories to build a 
universal combinational logic module to replace a large 
number of ICs and which could be used to generate 
random logic functions, (2) use of read only memories 
to build a sequential logic module to replace a number 
of ICs that could be used to generate subsystems, and 
(3) design guidelines for constructing a sequential sub
system on a single chip. A new type of read only 
memory was introduced which incorporates the best 
features of ROM and ROAM. 

The three types of read only memories that were 
applied to the problems are ROM, ROAMl, and 
ROAM2. Each different type of read only memory has 
its own particular properties that tend to make it quite 
unique when compared to the other devices. ROAM2, 
in general, does not have the ability to perform double
rail logic. This makes ROAM2 particularly efficient at 
realizing simple logic functions such as AND. ROAMl 
has double-rail logic and can therefore implement very 
complex functions; however, it requires a large amount 
of mem<?ry to realize a function unless the function can 
be simplified to a small number of minterms and 
implicants. ROM has the advantage that it takes the 
same number of bits to realize any function of n 
variables, regardless of complexity. The hybrid read 
only memory GLA was also applied to a problem and 
was shown to be able to synthesize multiple output 
functions effectively. 

Applying the three different types of devices to the 
three problems showed that each device has its place 
and no device is optimum for all problems. ROAM2 
was the best choice for the universal combinational 

logic module. This was true because the functions in 
the module could be realized using mostly AND logic. 
ROAMl was best suited for the sequential logic module 
(ROAM2 was not considered because it generally 
doesn't have double-rail logic). This was true because 
the functions considered were able to be simplified to 
a small number of implicants, whereas ROM was best 
suited for realizing the arbitrary sequential circuit on a 
chip. The best fit for any problem will probably be 
found by specializing the GLA into either ROM, 
ROAM, or a hybrid of ROM and ROAM. 

The results of this study indicate that all types of 
read only memories are necessary for efficient realization 
of functions. In this study each different function used a 
different type of read only memory for its optimal 
realization. Depending on the properties of the system 
to be realized, different types of read only memory may 
require a different number of bits (in the universal 
combinational logic module, the difference was over an 
order-of-magnitude between a ROAM2 realization and 
a ROM realization). 

The following guidelines for selection of memory type 
were obtained during this study: 

1. Size the problem for GLA and the appropriate 
guideline from two, three, and four. 

2. If double-rail logic is not required and 
I <2(n+1) In use ROAM2. 

3. If double-rail logic is required and I <2nln 
use ROAM1. 

4. If none of the above use ROM. 

where 

I = number of implicants 

n=number of variables. 

Some of the major benefits offered by the use of read 
only devices are that whole families of logic may be 
replaced by one read only memory chip that is program
mable, thereby increasing the demand for this device 
and lowering costs, and the development of read only 
chips is inexpensive enough that companies can develop 
their own ULM and not be restricted to using logic 
defined by semiconductor manufacturers. In addition, 
read only memories are well suited for large volume 
production and testing. Other major benefits are as 
follows: (1) it may be possible to design a multi
technology compatible device by having different 
power supply pins available where each pin utilizes 
different bias supply resistors to obtain different 
output voltages; thereby obtaining a device capable Df 
driving different technologies based upon the supply 



pin chosen; (2) low development cost compared to 
custom-designed LSI chips; (3) lower inventory neces
sary for replacement and repair purposes; (4) short 
development lead time in comparison to the develop
ment lead time for a LSI chip; (5) regular logic layout 
so that yields can be high and device density maximized' 
(6) very little random logic on the chip; (7) fast, and 
(8) programmable to produce a number of functions. 

It is felt that read only memories do offer a solution 
to the LSI random logic dilemma and that read only 
memory can be very useful in performing logic functions 
in systems, but that all types of read only memory are 
necessary and no one type of read only memory can 
solve all problems in the future unless it is a hybrid 
such as the GLA. 

APPENDIX 

DESCRIPTION OF HOW ROM OPERATES 

Figure 1 (a) shows a I6-word by I-bit read only 
memory (ROM). This device is operated by placing a 
four-bit address onto the four input lines 11, 12, 13, and 
14• This address then reads out the bit stored at the 
corresponding address in the ROM. If the diode at the 
address is connected to both lines a one (V E) is read 
out, otherwise a zero (ground) is read out. 

To see how the device actually works, assume that 
VE>ground (G) and R2»RI. When a four-bit address 
is placed on 11,12, 13 and 14 exactly one of the lines 
A, B, C, and D becomes V E and the rest are G. Simul
taneously, exactly one of lines one, two, three and four 
becomes V E and the other lines are G. Assume lines C 
and two are selected and become V E. The transistor Tc 
then forms a path for current to flow through RI to 
ground. This current is supplied by one of two sources. 
If a diode exists at the intersection of lines C and two 
[as it does in Figure 1 (a) ] then the current is supplied 
through the diode at the intersection of lines C and two' . . ' 
I.e., pomt Oc is at V E which forces the output to be 
near VE. 

In order to see what happens when the diode is not 
connected, assume a new address is placed on the input 
lines and lines two and B go to V E. The diode at the 
intersection of lines two and B is not connected; there
fore, point OB tends to go to G and current is supplied 
by the power supply through R2 and DB to T B which is 
a path to ground. Since R2 was made much larger than 
R1, the output is forced to G. The diodes DA , DB, Dc, 
and Dn prevent unwanted currents from flowing. In 
the case under consideration, lines two and B are at 
V E, but since line two is at V E, the diode at the inter-

Universal Logic Modules 193 

section of lines two and C wants to form a current path. 
Since Tc is not turned on (line C is at G), current would 
tend to flow to point Oc, then to point 0 B (raising the 
output to V E) finally to ground through T B if diode Dc 
were removed. Therefore, diode Dc is necessary to stop 
this unwanted flow of current and keep the output at 
ground (G) which is what was desired. 

DESCRIPTION OF HOW ROAM WORKS 

Figure 3 (a) shows a three-input, one-output, read 
only associative memory (ROAM). This device is 
operated by placing a three-bit address onto the three 
input lines A, B,and C. If this address matches an 
address that has been previously stored in the ROAM, 
then a one appears on the output line of the ROAM. 
If the address doesn't match any of the addresses stored 
in the ROAM a zero appears at the output of the 
ROAM. This network can be used to generate logic 
functions by associating a minterm with a minterm 
that has been previously stored in the ROAM. 

To see how the circuit actually works, assume that 
- V E < ground (G) and that R2» RI. If negative logic is 
assumed (- VE=I and G=O) then the circuit in Figure 
3 (~t ca~ be used to perform the logic function f = 
ABC+AC+ABC+ABC. Assume that A=I B=I , , 
and C = 1 is put onto the input leads then in row 3 
of the ROAM in Figure 3 (a), - V E appears at the 
vertical connection point of all diodes in row 3. This 
leaves point 03 near - V E and current flows through 
R2, 03, and RI to the terminal at - V E. Since R2»RI, 
the output is about - V E and a logical 1 appears at the 
output. All other rows are mismatched and each of the 
lines 01, O2, and 04 were held to ground because (con
sidering row 1) in each row at least one diode's anode 
was tied to ground, causing the horizontal line to be at 
ground, therefore, not biasing the diodes D I , D2 and D4 

ron. If the address was a mismatch in all rows, 01, O2, 03, 

and 04 would all be near G and the output would be G. 
In summary, a mismatch on any bit causes the row to 

leave the output at ground. Any row that has all 
matches (- V E on the anode of all connected diodes in 
that row) will allow the output diode of the row to 
conduct pulling the output negative (logical 1). One 
advantage of ROAM is that "don't care" conditions 
can be programmed in by not connecting diodes. If 
positive logic were used and G = V E and - V E = 0 then 
logic functions compatible with ROM could be realized 
because the ROAM would then produce OR-AND 
logic. In positive logic, the ROAM shown in Figure 
3 (a) produces the function 

f= (A+B+C) (A+C) (A+B+C) (A+B+C) 



194 Fall Joint Computer Conference, 1971 

REFERENCES 

1 M OS firm puts 4096-bit memory on a single chip 
Electronic News p 1 January 19 1970 

2 Designer's guide: Semiconductor memories 
EEE pp 53-67 November 1969 

3 Semiconductor memories Part III, Biopolar RAMs and 
ROMs 
Electronic Products p 23-25 March 1970 

4 R F GRAHAM M E HOFF 
Why semiconductor memories 
Electronic Products pp 28-34 January 1970 

5 J L NICHOLS 
A logical next step for ROM 
Electronics pp 111-113 June 12 1967 

6 J C LEININGER 
The use of read-only storage modules to perform complex 
logic functions 
International Computer Group Conference Washington 
DC June 1970 

7 Microcircuits, IC complexity due to double yearly 
Electronic Design pp U93-U97 March 15 1970 

8 R A HENLE et al 
Structured logic 
AFIPS Conference Proceedings Fall Joint Computer 
Conference 1969 pp 61-68 November 1969 

9 E J McCLUSKEY 
Introduction to the theory of switching circuits 
McGraw-Hill N ew York 

10 4096-bit M OS / LSI 
Electronic Products Magazine p 57 June 21 1971 

11 Most complex ROM shrinks CPU 
EDN pp 16-17 June 15 1970 

12 K J THURBER 
An associative processor for air traffic control 
1971 SJCC Proceedings AFIPS Press Volume 38 pp 49-59 
May 1971 

13 Biopolar 1024-bit ROM accesses in 30 ns 
Electronic Design p 64 March 4 1971 

14 High-density 5120-bit ROMs include on-chip decoding 
Electronic Design p 95 November 8 1970 

15 Specification sheet for the EA 3307 ASCII/EBCDIC code 
converter ROM 
Electronic Arrays Inc 

16 2560-bit memory has 500-ns access 
Electronic Design p 95 November 8 1970 

17 W I FLETCHER A M DESPAIN 
Simplify combinational logic circuits 
Electron c Design pp 72-73 June 24 1971 

18 J WUNNER R COLINO 
Applying the versatile MOS ROM 
Electronic Products pp 35-40 January 1970 

19 H SCHMID D BUSCH 
Generate functions from discrete data 
Electronic Design pp 42-47 September 27 1970 

20 Programmable logic arrays 
Texas Instruments Bulletin CB-126 pp 152-166 October 
1970 



A panel session-Computers in medicine-Problems 
and perspectives 

Medical Inform.ation System.s: A 
Reform.ula tion of the Problem.s as 
Perceived by a Hospital Adm.inistrator 

by BALDWIN G. LAMSON 

UCLA Hospitals and Clinics 
Los Angeles, California 

Much has been said in recent years of the inefficiencies 
of hospital management and patient care, and of the 
opportunities for automating the recording of nurses' 
notes, scheduling of drug administration, recording of 
doctors' orders, dietary menu planning, diagnosis by 
computer, and the like. The hospital business office and 
revenue accounting have often been singled out as the 
only areas in hospitals where modern data processing 
equipment has been at all effectively used. 

After a decade of effort to produce total hospital 
management and communication systems, few, if any, 
completely successful and self-sustaining systems are in 
full operation. Many of the major problems still remain
ing which to date have defied complete solution were 
noted ten years ago but are now recognized as being 
vastly more complex and difficult of solution than 
originally perceived. 

The medical record remains the heart of the problem. 
Hard data, such as clinical laboratory reports, have 
been successfully processed by computer, but doctors' 
observations and physical examination data still largely 
defy satisfactory input solutions. Patient self-query 
systems have proven practical and are anticipated to 
come into wider use. 

The organization of the medical record for most effi
cient computer storage and retrieval is still a major 
challenge. Much of the medical record as it accumulates 
is obsolete within forty-eight hours, except for medi
cal/legal and medical research purposes. Very possibly, 
promptly dictated and typed uncoded records of day-to
day observations of the physician, followed by a single 
well-structured summary and analysis upon the con
clusion of each episode of medical care, will suffice. 

Systems for scheduling of patient appointments' for 
patient convenience and proper utilization of facilities 
remain a very high priority. This problem is solvable 
and awaits only adequate capital and a dedicated effort. 

195 

Despite past successes, the fiscal system is still desper
ately in need of further assistance because of the com
plexities of federal and state health care legislation. A 
national effort is needed to make available to partici
pating hospitals up-to-date information with respect to 
each patient's prior utilization of health facilities, status 
of deductibles and coinsurance, as well as location and 
content of prior medical records. The challenge here is 
more political than technical. 

The goal of a completely integrated hospital com
puter-based information storage and communication 
system is lower in priority. Partial stand-alone appli
cations appear more attainable and are urgently needed. 
Problems related to patient identification, patient 
scheduling, medical record location control, and patient 
eligibility are most urgent. 

Technology already appears to be adequate to do the 
things that are needed most. Slow progress is more 
related to the absence of research and development 
capital in the hospital industry. The short term oppor
tunities appear greater for software development than 
for equipment, although techniques for the rapid re
trieval and transmittal of full page facsimilies by video 
screen with optional hard copy output would appear to 
have a large market in the health service industry. 

New Technologies in Medicine 

by C. T. POST, JR. 

Department of Health, Education, and Welfare 
Rockville, Maryland 

We are at the threshold of a technological era in 
medicine. The Government is interested in harnessing 
technology to alleviate manpower, cost, access and 
distribution problems existing in the health care system 
today. There exist, on the one hand, several examples 
of technology in use today which clearly improve the 
quality of medical care but which do so at considerable 
cost. On the other hand the techniques which have the 
potential for reducing the cost and increasing the avail
ability of health services can only do so when they are 



196 Fall Joint Computer Conference, 1971 

deployed in situations where sufficiently large popu
lations can be aggregated to take advantage of the 
economies of scale that are implicit in these techniques. 
There is a pressing need to demonstrate that these po
tentialities for economy and improved access can be 
realized. This can only be achieved by mounting fairly 
extensive experiments that will make evident the econ
omies of scale that are inherent in these technologies. 
This type of demonstration is made feasible by readily 
available communication capabilities which now exist. 
The fact that it is now possible for a large number of 
medical institutions to share a common automated 
medical service has very clear and immediate impli
cations not only for the reduction of unit costs but also 
for the dissemination of high quality medical infor
mation, advice and services. In addition, the sharing 
of this service will exert pressures that will move com
munities of hospitals toward the sharing of other serv
ices and toward standardization of their operations. 
Both within the hospital, and to a greater extent within 
doctors' offices, the necessity for develo pment of mo~· 
ular, evolutionary, user-oriented reliable systems is be
coming increasingly evident. This latter area, the phy
sician's office, where the majority of medical care is in 
fact delivered in this country today, remains largely 
untouched by technological aids. Given the persistence 
to a large extent of the present organizational scheme 
of primary care delivery, successful entrants into this 
marketplace will in all likelihood primarily operate 
within the physician's environment to tap his thinking 
for purposes of problem definition, and then reconfigure 
existing technological components into a purely problem 
solving user-oriented system. 

The Role of COlllputers and Inforlllation 
Systellls in Medicine 

by E. E. VAN BRUNT 

The Permanente Medical Group 
Oakland, California 

An information system can be defined as a system 
intended to provide information needed by the user in 

the conduct of his business. The primary 'business' of 
medicine is the care (management) of people who require 
various levels of medical investigation, counseling and 
treatment. While many specialized medical and medical 
administrative data processing capabilities have been 
developed, the current systems of medical information 
management and communication are inadequate for 
present day patient care needs. 

Medical care is comprised of both hospital and clinic 
activities; the larger component exists in the out
patient care areas. In this medical center environment, 
the heart of any information system is an integrated, 
or continuous, lifetime record-for each of the patients 
receiving medical services, and the data system
manual and/or electronic, which supports its growth, 
maintenance and utilization. Concomitant with the 
progressive development of group or 'regional' medical 
care programs is the need for more effective large volume 
medical information management. The objective is the 
timely supply of relevant information to appropriate 
users, for patient care services, and medically-oriented 
research and ed uca tion. 

The supply of information supporting patient care 
implies extensive and highly reliable communication 
capabilities: the communication of patient data from 
the professional providers of care to the medical record, 
and to other professionals and service bureaus; com
munication, on demand, of relevant summary infor
mation from the patient's record to medical profes
sionals and service bureaus; communication between 
services. The conduct of medically-oriented research 
implies existence of a medical data base that can sup
port clinical, epidemiological and health services re
search. This same data base should support limited, 
patient care oriented, educational services to medical 
care professionals. 

The role of computer-supported information systems 
in the medical care environment is clear but outstanding 
'problems exist in both the medical and computer
oriented disciplines. 

*Medical data system studies have been supported in part by 
a National Center for Health Services Research and Development 
(NCHSR&D) Grant (HS-00288) and by the Kaiser Foundation 
Research Institute. 



A panel session-The user interface for interactive search 

The User Interface for Interactive Search 

by JOHN L. BENNETT 

IBM Research Laboratory 
San Jose, California 

In January 1971, the AFIPS Information Systems 
Committee sponsored a workshop on "The User Inter
face for Interactive Search of Bibliographic Data 
Bases." This narrower topic was chosen intentionally 
to give the Workshop a focus suitable for intensive dis
cussion within a small group. Now that the Proceedings 
are available it is appropriate to highlight those user 
interface characteristics shared by a less restricted range 
of applications. The keynote for the panel will be 
"what goes on in front of the terminal"-what facilities 
the user requires, what services the computer can pro
vide, and how the user responds to data display. Under
standing the exchange of data between the user and the 
computer at the interface during search will enable 
designers to implement systems truly responsive to 
search needs. 

Each member of the panel will relate his own experi
ences to the keynote subject of interactive search. 
Bennett will draw on work with the Negotiated Search 
Facility which was used to study search behavior given 
the data of bibliographic files. Walker, as editor of the 

197 

Proceedings, will comment on Workshop accomplish
ments and make observations based on the SHOEBOX 
personal file system developed at MITRE. Engelbart, 
an innovator in the use of terminals, will describe what 
has been learned from experiments at SRI which place 
the full power of the computer at the service of the user. 
Katter has examined a variety of interactive appli
cations at SDC, and has developed a model of user 
behavior at the search interface which illuminates prob
lems and suggests a direction for their solution. Hugo 
will comment on the service to be provided for a large 
class of noncaptive users-Senators, Congressmen, and 
their administrative staffs-for whom interactive access 
to a data base would represent just one of a set of infor
mation-gathering tools. Morton will draw on studies 
made at MIT and Westinghouse to tell us what inter
face facilities are needed to establish the conditions 
under which business decision makers would conduct 
their own searches rather than delegating terminal 
interaction to others. 

In our discussion, we will identify those findings 
currently available which help us design the link be
tween the user who understands the search results he 
wants and the system designer who can provide the 
means for achieving those results. Though the emerging 
interface technology is only roughly defined, we can 
begin to outline now the research and development 
issues to be resolved if interactive search is to achieve 
widespread user acceptance. 





A panel session-State of the computer art in biology 

Contputer Applications in Cellular 
Research-Three-Dintensional 
Brain Reconstructions 

by CYRUS LEVINTHAL 

Columbia University 
New York, New York 

Computer applications in cellular research range from 
relatively straightforward data reduction to complex 
modeling. Programs exist for interpreting Coulter 
counter data, for assisting microscopic cytological as
sessments when fluorescent antibodies are used, and for 
relating observed uptake of labels to cell-cycle param
eters. Models of cellular populations range from simple 
cycling systems supportive to data reduction (e.g. for 
label uptake) to complex models incorporating feed
backs and cellular differentiation, which are being used 
to explore better strategies for treating leukemia and 
cancer. The greatest need is for better experimental 
information. Programs enabling reliable automatic anal
ysis of bone-marrow sections or smears probably will 
be difficult to develop but of great value to experimental 
hematology. Programs to reconstruct three-dimensional 
anatomies of cellular systems should provide valuable 
insights and, as indicated in the following report of 
current research, are feasible now. 

The brains of. small organisms can be cut into thin 
serial sections, each of which can then be photographed 
in an electron microscope. All information as to the 
nerve branching patterns and connectivity is contained 
in this set of photographs, but even for a very simple 
organism the number of photographs required will be 
several hundred. Thus, reconstructing the three-dimen
sional (3-D) information in a usable form is a formidable 
problem. We have developed a method of combining 
the photographs in a motion picture film strip in such a 
way that each section is aligned with the one before it. 
When the movie is projected, the observer has the 
illusion that he is traveling through the brain. 

Recording of the nerve net is done by superimposing 
the projected image from the movie with the image on 
a computer-driven oscilloscope display. During record-

199 

ing, a cursor on the scope is controlled by a hand-held 
device (a "mouse") with two potentiometers to de
termine x and y. The movie projector is controlled by 
the computer, and the frame number is proportional to 
the z coordinate. Thus, the observer can use the system 
as a three-dimensional notebook. The cell bodies and 
branching pattern of fibres, as well as synapse locations, 
are recorded for each nerve. After all nerves have been 
recorded a BRAIN file can be constructed by a program 
which matches the synapses which were separately 
recorded in each NERVE file. 

Any combination of nerves can be displayed in 3-D 
by rotation of the projected image. Similarity of branch
ing patterns in two different. organisms can be de
termined by matching them analytically with a simple 
graph-theoretic algorithm or by simultaneous display 
of nerves from different organisms. In the same way, 
bilateral symmetry can be identified in individual 
organisms. 

In simple invertebrates having brains with only a 
few hundred cells but a very complicated set of fibres 
connecting them, no differences have been observed 
between two genetically identical organisms. Within an 
individual organism there is a remarkable degree of 
bilateral symmetry. A four-dimensional description of 
a simple brain is now being developed by carrying out 
the 3-D mapping at various stages during embryologic 
development. 

Contputer Applications in Population 
Studies 

by NEWTON E. MORTON 

University of Hawaii 
Honolulu, Hawaii 

Population genetics is the study of forces that change 
or maintain genotypic frequencies. With support from 



200 Fall Joint Computer Conference, 1971 

computers, research emphasis recently has shifted from 
the conceptual synthesis of simple models to issues 
related to the maintenance of genetic variability in 
actual populations. That man himself Has become the 
preferred organism for many types of population re
search results not only from motivations for human 
benefit but also from the fact that the large number of 
recognizable single-gene differences in man far exceeds 
the known polymorphisms in Drosophila and other 
classical genetic material. With this research emphasis 
on human populations, computers become indispensable 
both for data analysis and modeling. 

Human data rarely can be acquired under the well
defined, controlled conditions possible for the labora
tory geneticist. Efficient data management is essential 
in the study of large populations for whom interrelated 
pedigrees and migratory traces must be maintained. 
Complex data analyses are required. Improvement of 
these approaches is an important area for computer 
implemented biostatistical research. Human data tend 
to be expensive to acquire and often cannot be repli
cated; all possible information must be extracted. 

Theoretical population models become complex as 
they are applied to the description of realistic systems. 
Computer implementation is essential. Efficient model
ing techniques must be developed, as well as more 
effective displays or interactive approaches for model 
exploration. 

Models have been proposed as alternatives to the 
single-locus Mendelian models for the familial clustering 
of some congenital malformations and many of our 
more common diseases, e.g. club foot, pyloric stenosis 
and diabetes. The major contribution of these models 
was realized only after they were extended and pro
grammed for the computer. This additional complexity 
permitted the direct computation of genetic risk figures. 
In the near future, it will be practical to define upper 
and lower boundaries on the risk under a wide variety 
of situations, permitting much more direct genetic 
counseling. Using the computer to extend these models 
and to apply them to a large amount of data is continu
ing to stimulate the development of new approaches 
and modifications in the underlying theory. 

Another important area for stimulating interaction 
between computer advances and population research is 
the problem of record linkage. Testing through appli
ca tion of population models often requires tremendous 
data sets available only by accessing multiple large 
files such as of birth, marriage, and death certificates. 
With the development of more efficient and accurate 
management of these files, important aspects of hy
pothesis testing may be pursued and continuing theory 
and model development is stimulated. 

Molecular Biology as it Relates to Digital 
I:mage Processing 

by ROBERT NATHAN 

California Institute of Technology 
Los Angeles, California 

Biological research has been placing increased at
tention upon the determination of the atomic structures 
of large molecules. These have generally been proteins 
and especially enzymes whose molecular weights range 
up to 50,000. Tremendous efforts to infer functional 
configurations of active enzyme sites have been ex
pended by organic chemists. But total atomic con
figuration has been performed exclusively by the digital 
computer using the methods of x-ray crystallography. 
The sequences of the amino acids in these enzymes 
have been determined by organic chemists. The infor
mation is then used by the crystallographer to infer 
initial estimates about the actual geometrical configur
ation, which the crystallographic data eventually con
firm. Several of these molecules and their functions will 
be described. 

There are many other large biological molecules and 
molecular aggregates whose structures should be de
termined if we are to further unravel the mysteries of 
cell function and apply these solutions to the problems 
of disease. What are the structures of t-RNA, ribosomes, 
mitochondria, membranes, antibodies, and even whole 
viruses? 

In our laboratory, several computer techniques have 
been developed to manipulate continuous-tone digitized 
images. These methods were originally applied to space 
photography. They are now being applied to medical 
x-ray images, and to light and electron micrographs. 

(A brief description of automated karyotyping, the 
light-microscope analysis of chromosomes, is included 
as an example of light-microscope computer auto
mation.) 

An example of micrograph enhancement of the normal 
electron microscopy of the enzyme catalase is shown to 
illustrate present microscope limitations. 

The final discussion is centered around a description 
of a method for computer manipulation of dark-field 
electron micrographs which should eventually reveal 
atomic structure without the assistance of chemical 
inference. A crystal of an organic dye, indanthrene olive 
(molecular weight 750) is chosen to illustrate the com
puter method of obtaining high resolution by means of 
a system called synthetic aperture. A preliminary 
atomic resolution model is presented. 



AutoInated InforInation-Handling in 
PharInacology Research 

by WILLIAM F. RAUB 

National Institutes of Health 
Bethesda, Maryland 

Pharmacology involves the multitude of interrelation
ships between chemical substances and the function of 
living systems. Since these interrelationships manifest 
themselves at all levels of physiological organization 
from the individual enzyme to the intact mammal, 
research in this area involves concepts and techniques 
from almost every biomedical discipline. Thus, pharma
cology entails a class of information-handling problems 
as formidable and enticing as any that can be found in 
the medical area. In recognition of this, the National 
Institutes of Health (NIH), through its Chemical! 
Biological Information-Handling (CBIH) Program, is 
attempting to accelerate the acquisition of new pharma
cological knowledge by designing and developing special 
computer-based research tools. Working through a 
tightly interconnected set of contracts with universities, 
research institutes, profit-making organizations, and 
government agencies, the CBIH Program seeks to blend 
the most advanced information science methods into 
a computer system which can be an almost indispensable 
logistical and cognitive aid to these investigators. 

In the absence of all-encompassing theories of drug 
action, pharmacologists rely primarily on empiric obser
vations communicated in a plethora of literature with 
which currently available information-handling systems 
are unable to cope. There must be an increased emphasis 
on effective data retrieval, as opposed to document 
retrieval. Past work on encoding molecular topology 
has produced two systems, connectivity tables and 
linear ciphers. The former demand considerable storage 
and processing time, but the latter exclude the possi
bility of some important substructure queries. New or 
combined approaches are required which relate effec
tively to the task to be performed. A sophisticated man
machine interface is of high priority to effect the inter
change of data, procedures, and models among geo
graphically and disciplinarily disjoint scientists whose 
work is relevant to the understanding of drug action. 
There exist promising interactive systems for tablet 
input of two-dimensional chemical graphs and for the 
graphical display and manipulation of three-dimensional 
molecular models. 

Two projects currently pursued under the CBIH 

State of Computer Art in Biology 201 

Program will be discussed: 
The PROPHET system is a medium through which 

the latest pharmacologically relevant information
handling methods can be developed, integrated, and 
made widely available via a time-shared PDP-I0 to 
practicing scientists whose disciplines range from mo
lecular biology to human clinical investigation. It in
cludes a powerful interactive command language for 
handling empirical data, a coextensive simple procedural 
language modeled on PLII, provisions for easy access 
to complex computational processes, a rich substrate 
of devices for handling different kinds of pharmaco
logical data structures, and facilities for communication 
among users. 

Another project is exploring the use of automated 
inference methods as cognitive aids to pharmacological 
investigators. At present, model-handling tools are being 
developed to enable researchers to express and assess 
the validity of their concepts about mechanisms of drug 
action. Finite-state automata models have been found 
especially useful. 

COInputers in Physiological Modeling 

by WILLIAM S. YAMAMOTO 

University of California 
Los Angeles, California 

The principal reasons for the construction of com
puter models of systemic physiological models are no 
different from the problem of theoretical computations 
in any other field. Systemic physiology, by which I 
mean the written literature of the subject as distinct 
from the process of acquiring such information, is 
voluminous, undoubtedly redundant, and probably con
tains many contradictions. Moreover, it is difficult to 
separate opinion from observation, correlation from 
imputations of causality. Nevertheless, this is the milieu 
on which the intelligent physiologist functions. He 
pushes the frontier forward in every decreasing salients 
because the weight of past experience becomes more 
and more unmanageable. 

The following are major reasons for mathematical 
modeling of physiological systems: 

1. Models serve an heuristic role, and can guide 
laboratory research into unillumined corners, or 
applications. 



202 Fall Joint Computer Conference, 1971 

2. Models codify unambiguously extensive systems 
of postulate or conjecture for purposes of re
trieval or ratiocination. 

A critique of modeling activities in the light of these 
purposes finds exact parallels in the laboratory study of 
physiology. The perspectives of investigators in the 
laboratory are shrinking. There is specialization because 
the number of details and procedures as well as the 
number of plausible alternatives increases with the 
increase in apparent information. Problems of infor
mation synthesis become monumental, and the review 
article occupies a significant place in scientific literature. 
Modeling, which I claim is the only testable process of 
scientific synthesis (review), suffers from the similar 
problems. Namely, models are not unique, and they 
become rapidly insensitive to both parameter and 
structure when a certain level of complexity is reached. 
The latter implies further that there is for any level of 
development above some minimum the possibility of 
alternative but compatible model structures, just as 
there are alternative but compatible explanations in 
theories of the same phenomenon. 

There have been several models whose scale is suffi
cient to demonstrate the important problems. These 
are the model of glucose metabolism, adrenocortical 
function, the cardiovascular system, and of external 
respiration. I am sure although such matters are usually 
not presented in print that all of these investigators 
have encountered common problems of the following 
sort. First, one must make a choice between lumping 
and tabulating the components of parameters. If one 
lumps, one loses the heuristic value; physiologists can 
no longer assign biologically meaningful notions to 
magnitudes. Parameters with common elements become 
confused. If one does not lump parameters, the glossary 
keeping and degradation of computation efficiency be
come progressively severe. In fact, it becomes im
practical for the modeller to set aside programs for even 
periods as brief as two weeks. Second, model sensitivity 
decreases so that not only parameters but whole sections 
may be altered in structure and if the test behavior is 
a limited set, there is no discriminatory function in 
exercising the model because methods for fitting models 
to data are not well developed. There is constant need 
to map model behavior upon the experimental domain, 

i.e., just as in the real case, conclusions need to be 
tested to see if the permutations which constitute 
laboratory experience can be replicated. 

To examine the problems that arise in the translation 
of physiological ideas into formal models, we chose to 
add to our model of external respiration in mammals a 
subroutine which generates the drive for movement of 
the chest. In the original model this was represented by 
three statements which produced a hybrid modulated 
wave in which both the amplitude envelope and the 
frequency envelope were functions of carbon dioxide 
concentration in brain cells. The plan is to replace this 
short subroutine with one which encompasses a sub
stantial part of the recorded observations upon neural 
mechanisms below the midcollicular level. There are 
three classes of neurophysiological experiment: ablation, 
stimulation, and microelectrode recording. Each of 
these is given an unambiguous symbolic definition. The 
respiratory complex is then constructed as a net of 
differential equations in which the principal criteria 
are location, firing pattern, and chest movement. Fifteen 
nonlinear first order d.e.'s are used, and synthesis pro
ceeds in reverse of the ablation literature. To produce 
the phenomenon of gasping merging into apneusis, we 
are dealing basically with eight of the centers. Apart 
from parameter size, each center may be connected to 
any other center in any of 3 ways and the directed graph 
has potentially 3 X7 X8 = 168 patterns not all of which 
give behavior which is readily discarded. Since one type 
of connection is the non-connection, there are 112 param
eters possible of which at anyone time only a few are 
testable. The computational problem is severe. In the 
absence of search formalisms the most reliable tool 
turns out to be a thorough reading of the physiological 
literature. And the model can be related almost relation 
by relation (in the code) with statements in the research 
literature. 

For both the educational process and for the improve
ment of models beyond the easy stage, tools are neces
sary and they are probably some form of computational 
tool to handle and demonstrate the structure of other 
programs, perhaps in graphical form of their relations 
and their implications. Automatic flow charting is the 
most primitive form of such a program. If a program's 
content is a tree or a forest, a topologically sorted list 
might be a second valuable direction to go. 



Introduction to training simulator programming 

by D. G. O'CONNOR 

Singer-General Precision, Inc. 
Binghamton, N ew York 

INTRODUCTION-GENERAL REMARKS 
ABOUT SIMULATION 

Several years ago, while we were having a compiler! 
developed . for our. use in simulator computer pro
gramming, one of the senior management people at our 
subcontractor's expressed surprise at our dogged in
sistence on object code "efficiency." Now, in fact, he 
had not been on this project very long and did not 
realize that a simulator for our purposes is a product
not a program run on an in-house computer. As I 
shall interpret the word simulator in the remainder of 
this discussion, it will mean a product used for training. 

What are the implications of this statement? Well, 
first it implies someone is being trained, and conse
quently, there is a man in the system someplace. In 
fact, he interacts quite significantly with the· operation 
of the system. System outputs are cues, and feedback 
to this man and his actions are inputs to the computer. 
To be more specific, let us limit our discussion to air
craft2 ,3 and space simulation. 

In Figure 1 is shown an artist's sketch of the Lem 
Mission Simulator (LMS). An appreciation of the size 
of a complete simulator is derived from this sketch. 
A sketch is shown rather than a photograph because 
it is impossible to get a photograph since the physical 
size of the equipment would constrain a camera to be 
so far away that it could not be in the same room. 
In fact, you will note, this equipment is itself in several 
rooms. 

Such a simulator consists of several major parts (as 
seen in Figure 2) : 

(a) a training station (cockpit) 
(b) instructor's station 
(c) a computer 
(d) interface equipment 
(e) special effects-e.g., visual and motion equip

ment. 

203 

The training station is a replica of the operating 
environment, i.e., cockpit, for which the training is 
being conducted. Frequently, production equipment is 
used in the simulator, or at least the panels and controls 
are used. It is fair to say that every effort is made to 
make the training station environment so close to the 
real environment that being brought into the environ
ment blindfolded would leave a human with a difficult 
judgment were he asked whether he was in the real 
operating location or not. In particular, since we deal 
primarily with flight simulators, I mean by the fore
going statement that if an experienced pilot were put 
in the seat of a simulator, he would have difficulty 
determining whether he were in an airplane or not 
(except for certain obvious clues). 

The instructor's station consists of a console with 
display of (almost) all the instruments, signal lights, 
etc., available to the pilot. In addition, other displays 
may be incorporated, such as CRT display used for 
instructor assistance and other indicators, lights, and 
meters of importance to the instructor in performing 
his job. Controls for FREEZE, MALFUNCTIONS, 
etc., are located here for the operation of the simulator 
training problem. 

The computer used in such a simulator must be 
capable of performing "many" calculations per second. 
The calculational load is determined by the aircraft 
being simulated and the number of systems aboard this 
aircraft whose operation must be simulated accurately, 
as well as by psychological and physiological factors. 4 

In recent years, more and more systems have been 
simulated .and have been simulated to a higher degree 
of fidelity. This growth has led to requirements for 
more efficient programs and additional computer ca
pacity. Consequently, significant requirements for im
proved programming have arisen. In spite of this, in
creasing requirements have been placed on the com
puter. 

The interface equipment required includes both hy-



204 Fall Joint Computer Conference, 1971 

Figure l-,-Lem mission simulator 

brid (analog to digital and digital to analog conversion) 
and purely digital inputs and outputs. 

The special effects include systems such as a visual 
system which presents moving scenes to the pilot over 
a portion of his flight path. Obviously, the scenes pre
sented to the pilot must be consistent with such things 
as simulated aircraft velocity and attitude as well as 
simulated position relative to the scenes being por
trayed. In some simulators, a device for moving5 the 
cockpit to simulate accelerations is incorporated. 

A practical side effect is the almost continuous use 
to which this equipment is put. The implications of 
this type of usage are that the computer has the ability 
to be reloaded and restarted with a minimum of oper
ator activity. Before addressing my topic directly, let 
me indicate the size of the problem at least broadly. 

In Figure 3 is shown a .little more detail of the 
peripheral equipment which may be employed in a 
flight simulator. Since this equipment is required pri
marily during program development, there are many 
simulators delivered with a sharply reduced amount of 
this equipment. 

Also shown in this figure is a list of ranges of some 
of the parameters pertinent to the computer hardware. 
The range shown for Processing Speed and Memory is 
representative of single or dual processor simulators. 
Note also the reliability figure. While this figure is 
remarkable, it has been achieved on many simulators 
used twenty hours per day,six days per week. 

THE SIMULATION PROCESS 

The intent of a training simulator is to convince the 
trainee that he is operating the equipment in reality. 

Clearly, the simulation of certain equipment, such as 

aircraft, should incorporate physiological cues such as 
the trainee obtains in real performance through his 
senses. These are simulated to a degree by providing 
sounds appropriate to certain of the activities, ap
propriate force requirements to actuate controls, a 
motion system which jostles the man more or less 
appropriate to the maneuvers of his aircraft, and visual 
presentation through the medium of motion pictures or 
television. 

The simulation which is carried on to a very high 
degree of fidelity is that required to "convert" pilot 
actions into realistic dial readings and other cues. 
Fidelity in anomolous operation, such as malfunctions, 
is emphasized in view of its importance in training 
pilots to make prompt and proper action under such 
circumstances. 

Meanwhile, the simulator produces radio sounds for 
navigational purposes, drives the compass, etc. In places 
where noises appropriate to aircraft operation are likely 
to be encountered, the simulator activates the devices 
which produce these sounds. Examples of this are the 
brake squeal on landing or rumble as the aircraft is 
navigating across the airfield terrain. Simulators have 
several advantages over real aircraft in the training of 
pilots. First-and incidentally most compelling-is their 
reduced cost. In addition, certain technical features give 
them flexibility. Most noteworthy is the ability to intro
duce failures of various parts of the aircraft to train the 
pilot to react properly and safely under such circum
stances. Thus, for example, engine failures may be 
simulated without danger. Similarly, tire blowouts, con
trol system breakdowns to some degree, failure of part 
of the navigation system, may also be introduced to the 

WHAT DOES THE COMPUTER DO? 

INSTRUCTOR STATION 

INTERFACE 

COMPUTER 

FLIGHT COMPARTMENT 

CONTROLS, 
SWITCHES 

The computer provides the ~ that represen~s the h~h"vi()r of the aircraft systems. 

Figure 2-General flight simulator 



simulator to train the pilot. Not to be overlooked is 
the ability to simulate flight in controlled wind, con
trolled icing, etc., which is impossible to control when 
training in a real aircraft. 

Modern simulators include other features which en
hance the utility of the device in training. In particular, 
it is simple for the instructor to freeze simulation at a 
particular point where he intends to instruct the trainee 
in some phase of operation without completely losing 
the continuity. Other features such as being able to 
start the exercise at any point is valuable in situations 
where the trainee needs reinforcement in certain pro
cedures at certain flight conditions. Recording of per
formance with subsequent playback permits the student 
to be a witness to his own activities, and consequently 
assists in his training procedure. 

In the following sections we will mention some of 
these features again in terms of their impact on the pro
gramming of a flight simulator. 

(NORMALLY 
AT INSTRUCT0R'S 
STATION) 

TELETYPE
WRITER 

MTU 

CARD 
READER 

LINE 
pRINTER 

,.IS'{ 

Processing: Speed - -300,000 - 1, 000, 000 
tnst/sec 

Memory 

1,'0 Channels 

Reliability 

- SDK -150K program 
and data memory plus 
2M byte bulk storage 

--100,000 plus words/sec 

-100 hour MTBF 
98% plus availability 

Figure 3-0verall computer requirements 

In Figure 4 is shown a 747 simulator cockpit mounted 
on a motion system and having a V AMP* Visual 
System mounted on it. 

Figure 5 is a representation of such a simulator with 
a cut-a-way showing the electronics used to compute 
the model. This is typical of modern j€t simulator 
installations. 

SIMULATION PROGRAMS 

Figure 6 exhibits, in outline form, the programs 
which we shall discuss for the remainder of 'the talk. 
It is noted that the programs may be divided into two 
general categories-training and program preparation. 

* A trademark of Singer-General Precision, Inc. 

Introduction to Training Simulator Programming 205 

Figure 4-747 simulator with visual and motion 

PROGRAM PREPARATION 

Program preparation includes the programming and 
debugging of the individual programs prior to their 
integration in the simulator. In this context the pro
gramming process is essentially identical to that carried 
on in a laboratory computer. As seen, the main con
stituents are language translator, a debugging package, 
testing programs, data base manageme~t program, and 
the usual computer monitor features. In particular, the 
programmer will want to use the monitor's I/O and 
relocatability features as well as the set of utility pro
grams during this phase of activity. 

Figure 5-Typical 747 installation 



206 Fall Joint Computer Conference, 1971 

I 
PROGRAM 
PREPARA TION 

~ 
LANGUAGE 
TRANSLATOR 

DEBUG, 
TESTING 

DATA BASE 

MONITOR 

PROGRAMS 
I 

TRAINING 

I 
EXECUTIVE 

"FRAMING" 

SIMVLATIO~ 

ROUTI:\ES 

[INTERRlOPTIBLE 

="Oi'l-I"TERRCPTIBLE 

SUBROVTI:\ES 

'MAJOR ROUTI:\ES' 

~ FU:"!CTI00JS 

L RADIO STATIO:--':S 

I;-';TERRCPTS 

l'REAL'TIME CLOCK 

INPUT/OUTPUT DEVICES 

OTHER 

SIMULA TOR PROGRAMS 

FREEZE (& VARIANTS), MALFC:\CTlO:-';S, 
FAST TIME 

RESET, INITIALIZE 

RECORD, PLAYBACK 

INSTRU CTOR FUNCTIONS 

SYNCHRONIZA TlON 

DIAGNOSTICS 

Figure 6-Simulator program tree 

For many of our simulators we have used Assembly 
Language. This choice has been dictated by the very 
severe requirements of the real time environment in 
which we function. Recently, however, we specified 
and had written for us a compiler6 which produces fixed 
point programs with a degree of efficiency approxi
mating that of a good assembly language programmer. 
Consequently, it is likely to be as good or better than 
an average programmer. 

This language, FORTRAN-like in its syntax and 
semantics, is intended to be suitable for the documen
tation of the programs produced. Thus, it adheres very 
closely to normal mathematical rules. We imposed an 
additional constraint on the philosophy of describing 
this language in that we took a point of view contrary 
to that action by most higher order language developers, 
namely we restricted generality as much as possible. 
Our intent has been to provide this language with 
only those features which we could foresee as being 
necessary. This is an outgrowth of our anticipation 
thatmost programs written in this language would be 
written by people who are not programmers. Conse
quently, the tighter the language, the less likely they 
were to make subtle errors. 

Debugging and testing is similar to normal functions 
with these names. The presence of a large data base 
and control of an executive is not unusual. A problem 
of integrating programs written by several people arises. 
Perhaps the problem of mathematical stability in the 
face of simplified routines is a bit more severe than 
normal. The problem of observing real time is to some 
extent postponed until debugging with the full set of 
simulator equipment. However, the trend is to force 
this problem earlier in the programming project. 

Data base problems arise in that there are generally 
several tabular constraints imposed with sometimes 
contradictory requirements. Since duplicate storage re
quires extra memory in the delivered product, much 
effort is expended to avoid this "easy" solution. 

The monitor and utility functions available with the 
purchased computer are exploited (sometimes after in
house modification) during test prior to testing with 
simulator hardware. 

TRAINING PROGRAMS 

In dealing with the training programs,7 we will find 
some to be unusual with respect to what is normally 
encountered in computer programming work. This is 
not to say that there is some magically different set of 
techniques, but rather that the intent and requirements 
of these differ from what we normally encounter in 
laboratory computer programming. The training pro
gram group is dependent heavily on a real-time execu
tive. This executive is in many respects a scheduler as 
well as being a program which recognizes and reacts to 
interrupts and which guides the execution of simulator 
related programs as well as simulation related programs. 
The division of the programs for our purposes are the 
three major headings under "Executive," namely: 
"Framing," "Interrupts," "Simulator Programs." 

Framing 

The word "framing" in this context connotes the 
fact that the simulator programs are divided into pro
grams which are operated at different iteration rates. 
Time is divided into intervals-frequently 50 millisec 
in length-called "Frames." Since programs for differ
ent parts of the simulation operate at different rates, 
the programs which are executed in a given frame 
differ. The executive CALLS the proper programs in 
each frame. Simulation routines include all of the pro
grams which provide the mathematical representation 
of the systems being simulated. They include all of the 
programs which compute the aerodynamics and engines, 
those which compute the various systems aboard, in-



cluding even such things as de-icer and air-conditioning 
systems. These systems must be simulated primarily to 
be sure that the pilot understands the indications of 
both correct and, perhaps more importantly, incorrect 
operation so that he is capable of taking prompt action 
when prompt action is required. 

The programs dealing with applications like simu
lation of flight involve primarily solutions of the normal 
types of mathematical problems found in the field of 
mechanics. Consequently, most of these programs are 
heavily mathematical in orientation. A crucial issue in 
our solving these problems is that we keep the approxi
mations as simple as possible in order to conserve both 
time and memory. We will always be guided by the 
recognition of the fact that the accuracy required for 
such solutions is frequently much less than it might be 
in an open loop engineering simulation. 

One of the more widely discussed mathematical rou
tines is that for integration. Frequently, expensive and 
fairly complicated routines are used for this purpose in 
mathematical computation. In our case we have the 
conflicting requirement that most of these more accu
rate routines require extensive computer time. Further
more, since our step size is generally small, we find 
we can operate with a formula of the type of a modified 
Adams: 

In Figure 6 the words Interruptible and Non
Interruptible have been used as sub-headings under 
Simulation Routines. This choice of words emphasizes 
the fact that some of the programs involved in simu
lation are heavily time dependent in the sense that the 
time variable is an explicit independent variable of the 
function. Typically, these routines are integrations with 
respect to time. As a consequence of this dependence, 
these programs must be solved at fixed regular intervals 
of time-that is to say, in particular frames of simu
lation. The interruptible programs are those which do 
not exhibit this tight time dependency and as a conse
quence are flexible as to the frame in which they are 
solved, at least to a slight degree; i.e., can be completed 
in the next frame. 

The subroutines as the next heading under Framing 
are simply the normal set of mathematical subroutines, 
including such routines as trigonometric and logarith
metic functions. One of the problems encountered in 
the distant past was that of reentrant subroutines
arising from interrupts of some programs conceivably 
in the middle of the use of a subroutine. Many of our 
subroutines must be reentrant. 

The major routines, while similar to similar routines 
used elsewhere, are of significant importance to the 

Introduction to Training Simulator Programming 207 

[(x. Y) 

for 

f(x, y) 

Xl 

, f(x,_ YH) - f(X,)'i) 

Yi+l - Yi 

Figure 7-Interpolation 

y ) 
4 

k " j, H 

(B) 

field of simulation to warrant their being identified 
separately. 

The Function Generation routines are used for 
computation of over 300 functions of one and two 
variables in a large four-engine jet transport. Thus, 
much core is required as well as a noticeable fraction 
of the available computer time in a general purpose 
computer. 

Interpolation, as we implement it, is represented in 
Figure 7. At the top is shown a function of two variables, 
f(x, y). This function is represented in memory as a 
table of values, where the arguments may be explicit 
(in some manner similar to that shown) or normalized 
and implicit. The small x's plotted on the curves repre
sent the values entered in the table. 

Normally, interpolation proceeds as two interpo
lations "on x" as in Equation A to obtain, for instance, 
points A and B. These are followed by an interpolation 
"on y" to obtain point C, using form B. Examination 
shows this method to represent the first four terms of 
the Taylor Series expansion of a function of two vari
ables. The method of interpolation has been selected 
due to the ease of changing data points 'at the last 
minute' when required (and it is frequently required). 



208 Fall Joint Computer Conference, 1971 

Polynomial approximations have the characteristic that 
a change of a single data point affects all coefficients. 
This frequently proves to be an awkward constraint. 

The process of interpolation as described above in
volves a search for the "adjacent" tabular values, given 
an argument (x, y). This search, as well as the calcu
lation, is minimized in order to minimize the computing 
time used in the process. 

The problem of simulating radio navigation facilities 
in a flight simulator is in some sense similar to the 
previously mentioned problem of "function generation." 
In another sense, the problem is different. 

In simulating the radio facilities, it must be observed 
that the trainee has at his disposal all of the normal 
normal types of radio navigation equipment normally 
available in the aircraft being simulated. This includes 
such things as UHF, VHF, omni-range, and Instrument 
Landing Systems (ILS). The trainee may tune any of 
these sets at any time that he pleases. It may be 
parenthetically remarked that he does not do these 
things capriciously or at random. However, it is difficult, 
if not impossible, to take advantage of any prediction 
in terms of his use of this equipment to reduce program 
requirements except for the slight advantage which we 
may gain by noting that he normally cannot be tuning 
all of the radio facilities simultaneously. 

In selecting a radio station the objective is to de
termine whether the receiver is tuned close enough to 
the frequency radiated by the transmitter such that 
were it within range it would be within the band pass 
of the receiver. In tuning a radio station the program 
must locate any station which satisfies simultaneous 
constraints on frequency and range. Furthermore, the 
implication of the transmitter being within range is 
clear. Thus, the initial problem is one of table look-up 
in which a determination is made on the following two 
points: 

a. Is the frequency to which the receiver is tuned 
close enough to the transmitter frequency such 
that the transmitter signal can be passed through 
the receiver? 

b. Is the location of the aircraft close enough to the 
location of the transmitter for the given trans
mitter power such that a signal of sufficient 
strength would have been received by the real 
aircraft radio equipment were the real receiver 
tuned to that station at the same range? This is 
typically simplified to an x and a y calculation 
rather than a range calculation. 

Several factors influence the approach taken in pro
gramming this activity. Since the various types of sta-

tions are generally received on separate receivers, it is 
clear that the first step in proceeding is to detect the 
type of receiver being tuned and search only the table 
containing simulated transmitters acceptable to that 
receiver. A second factor is the necessity for rapid 
response. It is required that, as the trainee tunes the 
receiver, he hears the little "blips" that he would 
normally hear as he tuned through stations. If the 
trainee is tuning from, for instance, channel 12 through 
channel 32, and channels 20 and 24 are within range, 
as he passes through these during his tuning, he should 
hear a response from the radio. 

There are occasionally duplications so that two radio 
stations having the same frequency but at different 
ranges may exist. It is necessary, if the primary search 
is on frequency, to have a secondary search on range to 
eliminate stations which are within prescribed range. 
While it is possible to arrange the stations within each. 
category to be monotonic, it is not generally true that 
the frequencies will be equally spaced. In fact, as men
tioned before, there may be repetitions of some fre
quencies. A search algorithmS which has produced 
excellent results for us has been developed. This algo
rithm may be characterized as being "real-time" in 
nature. It remembers where it was the last time it was 
used and consequently in view of the continuous nature 
of most tuning it reduces the amount of search to find 
the station which is being sought. 

After the radio station has been identified the variety 
of information germane to this radio station is located 
in a block, "unpacked" and presented in another block 
to the computation programs related to radio navi
gation. 

Interrupts 

The simulator computer programs are dependent 
in significant ways upon interrupts. An interrupt is a 
signal, generally from an external source, which causes 
a discontinuance of the normal sequence of calculation 
accompanied by storage of sufficient information to 
resume this calculation upon command, and by a 
transfer in control (jump) to a prescribed location in 
memory corresponding to the interrupt which has 
occurred. 

One of the primary uses of interrupts is the insertion 
of a relatively precise time signal at stipulated intervals. 
This signal occurs, in most cases, every fifty milli
seconds. This signal is used by the programmers as 
representative of real-time input. In a sense it is the 
means of synchronizing the operation of the simulator 
computer with the external world. 



As previously noted when discussing "framing" the 
computer executive must be aware of real-time, or at 
least that which both the computer and its immediate 
environment believe to be real time. In this context, 
of course, the trainee is construed to be part of the 
"immediate environment." Using these time signals the 
computer may conveniently count the frames. In most 
cases sixteen frames are grouped together as a "Cycle." 
The choice of sixteen is more or less obvious in that the 
rate of solution of programs requiring different rates 
may be conveniently halved as the time requirements 
become less stringent permitting then rates with ratios 
of 

16:8:4:2:1 

This framing has other implications. The most im
portant of these is perhaps the situation which arises 
when two computers are operated together in a large 
simulator. Under these conditions, it is necessary that 
the two computers not only be starting each frame 
together, but, perhaps more importantly, that they 
start each Cycle together. This synchronization require
ment is a direct result of the requirement that infor
mation transferred in either direction between com
puters be properly phased (if I may use that word) 
in order to observe stability requirements in the solution 
of differential equations. 

Input/ output interrupts are fairly standard. In our 
applications we have used multiplexed channels for the 
obvious reasons. The channels have been allocated to 
both the normal computer type peripheral equipment 
such as card readers, line printers, as well as the real 
time equipment such as D / A converters and digital 
word channels. 

On some simulators involving multiple processors 
and on some earlier simulators using somewhat slower 
computer equipment with somewhat different I/O fa
cilities, several additional interrupts were required. In 
one case an interrupt was required between computers 
to indicate the fact that a transfer of data between the 
computers in a given direction had been completed. 
This was used by the computers to set up for transfer 
in the other direction. In fact, in an earlier simulator 
using three separate computers without any shared 
memory, there were actually six data transfers to be 
made. This inter-computer interrupt was essential in 
this situation. It was in this same project where a 
separate I/O control box was developed and this pro
vided with its own interrupt. In this case a comput~r 
not involved in inter-computer transfers was being 
serviced by the external real time input/output equip
ment and required that interrupt for proper operation. 

Introduction to Training Simulator Programming 209 

Simulator programs 

Specific to training itself as a general problem are 
some programs, which we have referred to as simulator 
programs, used in the educational process. These pro
grams are not involved in the simulation of any of the 
equipment used by the trainee. Nor are they involved 
with the operation of the computer as a device con
taining a model of the thing simulated. In general 
these programs are programs which provide functions 
which could either not be done in the live equipment 
or could be done only at unnecessarily high risk (in an 
airplane). 

Malfunctions 

The first of these is called "malfunctions." The term, 
I believe, is reasonably explicit. The intent of these pro
grams is to provide a simulation of some system of the 
aircraft when operating incorrectly and to exhibit ap
propriate indications of this faulty operation. Typically, 
in the programming of a simulator, this might be 
represented as a coefficient on an equation representing 
some performance. These failures show up in several 
ways. Some failures are complete; thus, an output 
might be either a "normal" value or a constant (usually 
zero), depending upon whether the system being simu
lated is intended to be operating or "failed." In other 
cases the failure might be partial. In such cases the 
math model would have a coefficient which might be 
varied from unity (for normal operation) to some other 
number to indicate the failure. The control of these 
malfunctions is generally at the discretion of the in
structor. He has means of introducing into the com
puter a number representing the malfunction and a 
switch indicating that the malfunction shall become 
effective. In terms of a programming of such a situation 
the equation to be solved representing the system is 
normally preceded by a check of the malfunction. 
Should the malfunction be total, a complete branch 
around the calculation may be feasible with the in
sertion of a constant as the pseudo result for the mal
functioned system. 

The instructor who has carefully planned his training 
session will have a script indicating which malfunctions 
shall be introduced and under what conditions. Clearly, 
this indicates that the control of the introduction of 
malfunctions could bea computed operation. In fact, 
this is sometimes done. The price of doing this is not 
only the price of the additional program to continually 
check these conditions (time or other conditions), but 
the additional program which permits the instructor to 



210 Fall Joint Computer Conference, 1971 

enter the malfunctions that he wishes and the conditions 
under which they are to occur. These data will change 
from training session to training session. But the price 
is not completely paid yet. On top of this, it is almost 
always required that the instructor have the prerogative 
of overriding even those malfunctions that he has 
scheduled. Thus, additional programs must be intro
duced to check his "override" control so that if he 
chooses to eliminate the malfunction for some reason 
such as the training mission not going as planned, he 
can do so. 

Freeze 

Freezing or halting of the simulation is another 
feature almost always included in a training simulator. 
The instructor can, upon command, stop all compu
tation. He does this in some cases in order to converse 
with his student and instruct him on the correct action 
or procedure. This feature is used normally only when 
there is a gross mistake which the instructor feels is so 
important that it needed to be corrected before the stu
dent is influenced by any repetition of this mistake. 
Typically, this feature is accomplished in the program 
in an indirect way. By this I mean the typical operation 
is to set any variables representing increments of time 
to zero. Thus, time stands still. On the other hand, it is 
generally of supreme importance that the output be 
continued in order to keep all of the displays at their 
readings just prior to freeze. It may be essential to the 
instructor's purposes to refer to these readings in his 
explanation to the student as to what should have 
prompted hiin to do something other than what he has 
done. Inputs are also typically permitted during Freeze 
-not so much for the function during Freeze only, but 
because of their necessity during Reset or Initialization. 

Parameter freeze 

Another form of "freeze" is the so-called parameter 
freeze. This term refers to the fixing of a given variable 
in the flight simulator. For example, it may be desirable 
to relieve a pilot of the necessity of controlling a variable 
in order to reinforce his learning the control of some 
other variable. To this end, parameter freeze is used. 
Thus, for example, the altitude may be maintained at 
some fixed number if the primary intent is to train the 
pilot to use radio equipment for navigation. If, for 
instance, it is desired to emphasize the training of 
keeping an aircraft on the localizer, the required rate 
of descent might be frozen so that the pilot is relieved 
of the necessity of keeping the aircraft on the glide 

slope. The implications of this on the programming are, 
of course, clear. The computation of the number may 
be inhibited, or more likely, it is allowed to continue, 
but the program simply inhibits the storage of the 
answer computed in preferring to insert a constant in 
its place. 

Fast time 

In some simulators, notably space simulators, 'fast 
time' has been a feature of the simulator. In this situ
ation, the training is suspended temporarily and the 
time increment is increased by a factor simulating 
passage of real time faster than the actual time elapsed. 
This may be useful in some circumstances to exhibit 
to the trainee the long term effects of an action he has 
taken. This feature is intended to show the trainee the 
effects of severe errors. Typically, fast time has an 
attendant inhibition of any action by the student 
affecting the simulation. 

Reset, initialize 

Reset and initialize are two words for the function 
which permits the simulation to be established· at an 
a priori condition for training. Thus, one condition 
might be the aircraft at the beginning of the runway 
prepared to take off. Another condition might be the 
aircraft in full flight at a given velocity, altitude and 
attitude preparing to make an approach to landing. 
These conditions are stored in bulk memory of some 
type, usually magnetic tape. They could, however, be 
introduced through a medium of punched cards or 
punched paper tape if a severely reduced amount of 
equipment is necessary for economic reasons. It is to be 
remarked that when the flight simulator is being reset 
or initialized, it is in a freeze condition. Thus, the 
input/output equipment is working so that when the 
new conditions are in memory the meters, lights and 
other indicators are all driven to the proper condition 
while the aircraft is still in freeze. The controls are set 
manually and accepted as input. This is necessary in 
order that the trainee may adjust himself to these 
values prior to his having to actually "fly" the airplane. 

Record-playback 

A relatively recent requirement introduced into the 
simulator business has been the "Record-Playback" 
feature. The objective of this operation is to record 
significant variables during the course of training exer-



cise. After the exercise has been completed, the record
ing is played back driving the required instruments to 
review for the trainee what his performance was during 
the training exercise. Properly used, this feature is a 
great training aid in that the instructor, knowing what 
is coming up, can indicate to the trainee the effects 
which are about to occur in response to the trainee's 
action. The major problem in dealing with this feature 
from a programming standpoint is the control of the 
number of variables to be recorded. The programmer 
looks for those variables which might be construed as, 
in some sense, basic. This may be interpreted as the 
smallest set of variables which, with the aid of normal 
simulation computations, can cause the proper instru
ment readings to be reproduced reflecting the pilot's 
performance. 

Instructor functions 

I refer to the various controls which may be exercised 
by the instructor at his console. Some of these have been 
mentioned previously in our discussion of the instruc
tor's control of Malfunctions. Implicitly he also has 
controls for Freeze, Parameter Freeze, Reset and 
Initialize, Record and Playback. Programs to examine 
the inputs from these various instructor stations are 
clearly required. 

In addition, certain other conditions may be required 
for simulation and ordered by the instructor. Winds 
and turbulence in varying amounts may be introduced 
by the instructor for training of the pilot under these 
conditions. Icing on the aircraft or snow, slush or ice 
on runways may also be introduced for the obvious 
training purposes. These inputs and their attendant 
effects require additional programs to be introduced. 
Typically the outputs of these programs are used to 
modify some variable of the computation. The method 
of programming is similar to that used in the intro
duction of malfunctions (malfunction of the weather?). 

Synchronization 

In those simulators using more than one central 
processing unit, additional programs dealing strictly 
with computer operation, specifically and most im
portantly synchronization, are also required. Although 
the real time interrupt can be relied upon to keep the 
two simulator computers in synchronization once 
started that way, it is necessary to insure that they 
start simultaneously. Once this has been arranged, it is 
a simple matter to make the program check from cycle 
to cycle that they have remained in synchronization. 

Introduction to Training Simulator Programming 211 

Thus, any transient failure of one of the real time 
interrupts may be overcome in some cases. 

Diagnostics 

Diagnostics are, of course, required. In addition to 
the normal mainframe and central processor unit 
peripheral diagnostics, additional diagnostics for the 
real time input! output equipment and for the cockpit 
equipment are generally required. These diagnostics 
are made automatic to the greatest extent possible. 
However, much of the cockpit equipment involves 
human interaction in either reading or observing the 
results of a computer output or in controlling something 
which results in a computer input. In view of the size 
of the complete system, it is clear that a reasonable set 
of diagnostics is mandatory. The problem involved in 
reaching this "reasonable" set is important since the 
objective of keeping the equipment on the air and the 
objective of reducing the length of time it takes to 
run the diagnostics conflict. Delicate compromise is 
required. 

SUMMARY 

Programming of training simulators involves a combi
nation of scientific, real-time and multiprogramming 
problems. During program development the activity is 
similar to laboratory scientific programming. Through
out the process emphasis is on efficient core and time 
utilization characteristic of all real-time programs. The 
final program being a combination of many programs 
operating under a real time executive resembles a 
multiprogram operation. Much of the program is de
voted to simulator as contrasted with simulation related 
programs. 

REFERENCES 

1 Math model compiler reference/operating manual 
Internal Technical Report Singer-Link Division 

2 B M TATE 
Boeing 74-7 training developments and implementation 
Fourth International Simulation and Training Conference 
Society of Automotive Engineers May 1971 

3 J A FERRARESE 
Assessment of new training systems as substitutes for 
airborne training 
Fourth International Simulation and Training Conference 
Society of Automotive Engineers May 1971 

4 R L TAYWR A GERBER 



212 Fall Joint Computer Conference, 1971 

A study to determine requirements for undergraduate pilot 
training research simulation system (UPTRSS) 
Air Force Human Resources Laboratory AFHRL 
TR 68-11 1968 

5 E COHEN 
How much motion is really needed in flight simulators 
Fourth International Simulation and Training Conference 
Society of Automotive Engineers May 1971 

6 Math model compiler reference/operating manual op cit 
7 R E FLEX MAN W P JAMIESON 

J M WALSH et al 
Synthetic flight· training system (SFTS) concept formulation 
report 
Technical Report NAVTRADEVCEN 68-C-0106-1 
July 1968 

8 Internal Report Link Division 



The handling qualities simulation program for 
the augmentor wing jet STOL research aircraft 

by WILLIAM B. CLEVELAND 

N ABA-Ames Research Center 
Moffett Field, California 

INTRODUCTION 

Aircraft have been simulated on computers for a 
variety of reasons. The training of pilots and crews on 
operational flight trainers, for example, is a common 
use of simulation. Subsystems of aircraft are often 
simulated to firm up the design of the hardware and 
frequently the whole aircraft must be simulated to help 
in the design of the subsystems. This is the case in the 
simulation of the Augmentor Wing Jet STOL Research 
Aircraft, a modified de Havilland C8-A Buffalo, in 
which the total aircraft was simulated to determine 
final design values for control systems and devices 
which augment control of the aircraft. For research and 
development simulations such as this one, simulation 
software and hardware must have general application 
while in piloted "man-in-the-loop" simulations speed of 
computation is the overriding concern. Thus the air
craft model and computer software and hardware must 
be merged to provide an accurate simulation which 
meets the needs of the research objectives. 

The STOL problem 

Short Take-Off and Landing (STOL) aircraft are 
designed to use 1500 ft. runways as opposed to 10,000 
ft. runways commonly used by commercial jet transport 
aircraft. To meet this requirement it is necessary to fly 
at a slower speed with a resulting steeper flight path 
angle. Due to the slow speed requirement all aero
dynamic control of the aircraft is reduced as aero
dynamic control power is proportional to the square of 
velocity. For example: 

Lift cc V 2CL 

The coefficient of lift C L is a function of the shape of 
fixed parts such as the fuselage and wings but it is 
varied by movable surfaces such as flaps and spoilers. 

213 

As the aircraft velocity decreases or increases C L 

must be increased or decreased to maintain the required 
value of aerodynamic lift. When conventional means 
cannot produce sufficient lift special devices are a 
necessity. For example, if insufficient lift is obtained 
from aerodynamic properties, direct thrust lift from 
the jet engines may be employed. Similarly, lateral
directional (roll-yaw) control is reduced in the same 
manner as lift at the lower speeds making the STOL 
class of aircraft in general dependent on special aids in 
roll-yaw control as well as lift. For the C8-A a special 
aerodynamically high lift flap is used in conjunction 
with vector able jet engine thrust to provide the neces
sary lift at low landing approach speeds. 

Handling qualities 

Along with loss in control effectiveness the stability 
of flight maneuvers is also reduced and improvements 
in stability as well as control must be introduced to 
bring the aircraft "handling qualities" up to an ac
ceptable level. "Handling qualities" is a general term 
in which the aircraft characteristics are rated by 
pilots on a scale ranging anywhere from' 'uncontrollable" 
to "optimum." The pilot must be asked to perform a 
specific task. For instance, he may rate the handling 
quality of an aircraft in a normal landing approach as 
"optimum." However, the same approach may be 
difficult or nearly impossible with an engine failed and 
his rating would be consequently lower. The ratings are 
nearly purely subjective, as the rating is the pilot's 
opinion. Normally several pilots are used to avoid 
personal biases and obtain a crude statistical sampling 
for a handling quality rating. Since one of the primary 
outputs of a simulation of this type is the subjective 
pilot evaluation, systematic investigations require 
exacting simulation models and the ability to introduce 
or repeat any combination of initial conditions, failure 



214 Fall Joint Computer Conference, 1971 

Figure 1-The augmentor wing jet STOL research aircraft 

modes, control effectiveness, air roughness, etc., desired 
to obtain reliable pilot ratings. 

STATEMENT OF PROBLEM 

The augmentor wing aircraft 

The Augmentor Wing Jet STOL Research Aircraft 
is sponsored jointly by the National Aeronautics and 
Space Administration and the Department of Industry, 
Trade and Commerce of Canada. Major modifications 
of a de Havilland C8-A Buffalo are presently under way 
to provide the research vehicle, Figure 1. 

To meet the· short field requirements set by the 
Federal Aviation Agency for STOL aircraft the airplane 
contains several novel pieces of hardware. The aug
mented jet flap is a high lift device which gets its name 
from the blowing of a flat jet of air down the slotted 
flap as seen in the wing section diagram, Figure 2. 

c 
AIR DUCT ~ 

FLAP SYSTEM 

Figure 2-Cross section of the augmented jet flap wing 

Cold air from the fan-jet engines is ducted to ejector 
nozzles to provide the air jet. The ailerons also con
tribute lift by drooping in conjunction with the flaps 
but only up to one half the total flap deflection. The 
aileron is a boundary layer control device in which air 
is blown over the surface to improve the aerodynamic 
force characteristics. Normal roll control by the ailerons 
is provided by differential aileron deflections about the 
common flap-aileron angle operating point. 

The effect of air blowing on the aileron may be seen 
in Figure 3, the function of coefficient of roll C laa versus 
aileron deflection oa and blowing coefficient, CJa• The 
coefficient CJa is a measure of the cold air thrust, Te, 

non-dimensionalized through division by the product of 
dynamic pressure and wing area, (C J a = Tel ij S) . 

As CJa increases for any down going aileron angle 
(oa>O) so does the rolling moment on the aircraft. It 
is apparent that boundary layer control adds great 
effectiveness over the non-blown aileron. Since the roll 

. coefficient curves represent an individual aileron the 
total rolling coefficient for both ailerons is C laa (port) -
C laa (starboard) . 

The engines themselves are remarkable in that they 
provide the air for the flap blowing and aileron boundary 
layer control and more so since the engine thrust is 
deflectable. The thrust angle, under pilot control, is 
normally directed aft for cruising but it may be directed 
straight down to provide direct engine lift at slow 
speeds. 

APPROACH OPERATING POINT 

.2 ~ 

CJa=·OI6 

CJa=·008 

Figure 3-Rolling coefficient CIBa, a function of aileron 
deflection, 8a and blowing coefficient CJa for one aileron, down
going is positive 



Objectives of the program 

An early piloted simulation of the modified Buffalo 
was conducted to determine just how the pilot might 
best control the aircraft in takeoff, transition to cruise 
and back to landing, and landing itself. The results 
showed that the aircraft overall had acceptable handling 
qualities, but the pilot's workload was higher than 
desirable for a commercial STOL aircraft. However, it 
was felt that the use of Stability Augmentation Systems 
(SAS) in lateral (roll) and directional (yaw) would 
reduce the work load to a satisfactory level. Systems 
that were designed to help the lateral characteristics 
provided turn coordination and dutch roll damping. In 
order to evaluate these control aids the aircraft was 
simulated on a moving base simulator in as much detail 
as possible. The test pilots had not only the normal 
flight instrumentation but good visual and motion cues 
to make their evaluation of the proposed stability 
systems. Various effects such as control system hy
draulic failures, SAS servo failures, and engine failures 
were needed in addition to the usual disturbances such 
as air turbulence to evaluate the handling qualities of 
the aircraft in both normal operating and failure modes. 

Computer requirements of the handling qualities simulation 

The problems discussed in these previous sections 
place certain requirements on the simulation and at 
the same time allow some few concessions. To be 
specific the simulation of this vehicle must provide 
the following: 

1. Six-degree-of-freedom equations of motion com
pletely rigorous and no approximations; a flat 
earth is acceptable in a landing study. 

2. Accurate and detailed aerodynamic derivatives 
including all coupling effects. This is required to 
access handling qualities. 

3. Engine performance model. 
4. Stability augmentation system to help make the 

aircraft easier to fly in the lateral-directional 
modes. 

5. Air turbulence model, wind shear, gust upset, 
and/or steady state winds. 

6. System failures, engine failures, SAS failures of 
several types. 

7; Non-steady aerodynamic effects; for example, 
the effects· of a time delay from when the air 
flows over the wing until it reaches the horizontal 
stabilizer. 

8. Landing gear model for landing and roll out. 

Handling Qualities Simulation Program 215 

Other simulations, especially of high speed and very 
large aircraft, would require a representation of body 
bending modes and aero-elastic effects. 

The amount of computation required to accomplish 
these items listed above made it impractical, if not near 
impossible, to do with analog computers (at least with 
the desired accuracy). Thus this simulation was done 
using a digital computer. 

SIMULATION HARDWARE AND SOFTWARE 

Simulation computing system 

The Ames Research Center simulation computing 
system is made up of both analog and digital computers. 
The principal component of the system is the EAI 8400 
Digital Simulation Computer. This computer is a 32 bit, 
32,000 word machine with a real-time interval timer 
and floating point hardware. Its input/output to the 
analog domain consists of 32 bits "in" and 32 bits "out" 
of discrete on-off signals as well as 64 channels of multi
plexed analog-to-digital converters (ADC) and 64 
DACs. Peripheral equipment includes four magnetic 
tapes, line printer, card reader, disk file, and typewriter. 
Of this equipment 29,500 cells, 64 DACs, 16 ADCs, 
17 discrete bits "out" and 12 bits "in" were used in 
addition to the computer peripherals. The memory 
was allocated as follows: 6,500 for the simulation 
monitor system, 21,000 for the simulation program, and 
2,000 for the simulation software (user provided). 
Because most of the cockpit instrumentation was 
developed in the past for all-analog simulations, data 
communication with the simulator cab is entirely 
through the ADC-DAC linkage and the discretes. No 
digital instruments were used. 

In addition to the digital computer an analog com
puter (EAI 231-R) was used. Whereas the digital 
computer computes the aircraft model as its primary 
work, the analog computer is used as a buffering device 
between the digital computer and the analog recorders, 
motion and visual simulators, and the various cockpit 
instruments and controls. 

Theoretically the analog computer was not needed 
since no part of the aircraft was simulated on it but with 
the myriad of devices requiring data transfer to and 
from the digital computer it is impractical not to have 
some sort of analog computer for a data trunking center. 
No claim is made to call this a hybrid computing 
arrangement due to the nature of the workloads on the 
two systems, however, it is interesting that the require
ment exists for analog components to be available for 
the "digital" simulation. 



216 Fall Joint Computer Conference, 1971 

Figure 4-Flight simulator for advanced aircraft located at 
NASA-Ames Research Center, Moffett Field, California 

Simulator system 

To obtain the most valid handling quality evaluations 
the pilot must be subjected to as many motion, visual 
and aural cues as he would experience in flight. While 
this is impossible to achieve on a ground based simulator 
the most important cues of STOL aircraft can be faith
fully duplicated on the large motion generator at Ames 
called the Flight Simulator for Advanced Aircraft 
.(FSAA), Figure 4. This motion simulator has a fully 
Instrumented cockpit and six-degrees-of-freedom travel 
capabilities of ±50 feet in lateral, ±4 feet in vertical 
a~d longitudinal, and at least ±22.5 degrees in roll, 
pItch, and yaw. The FSAA was chosen for its large 
lateral travel which proved most useful in the roll-yaw 
control handling qualitiBs study and also in the engine
out maneuvers. In the simulator the pilot has the 
capability of flying on instruments or by visual contact. 
The visual scene is an out-the-window pictorial repre
s~ntation of a landing field and surrounding country
SIde. The scene is a tBlevision representation in which 
the model of the landing field is scanned by a color 
television camera mounted in gymbals so that in addi
tion to three translations the angular motions of roll 
pitch, and yaw of the airplane are displayed to the pilot: 

A mes simulation software 

The simulation software system at Ames has evolved 
from manned simulation requirements. With a "man
in-the-Ioop" all work must be performed in real time. 
Historically, manned simulations havB been done on 
analog computers with their fast parallel computing 

capability and only recently have digital computers 
been used widely for the real-time problem. Execution 
time is of prime importance, thus the software used in 
simulations must meet rigorous execution time require
ments. At present the Ames simulation software is of 
two types: hardware support and program support. 
The program support software is a group of programs 
under the label FAMILY 1.1 The main features of 
FAMILY I include the basic Ames simulation monitor, 
integration packages, real-time magnetic tape data 
dump and two special systems-MOTHER (Monitor 
Time Handling Executive Routine) and CASPRE 
(Comprehensive Aid to Simulation Programmers and 
Engineers). The hardware support software serves to 
make analog type operations tractable from the digital 
computer. This software is critically important to the 
operational efficiency of Ames' simulations. 

Program support software 

A real time scheduler called MOTHER was developed 
in response to the problem arising from the speed 
limitations of the EAI 8400 digital computer. It was 
recognized that programs that contained high frequency 
systems or that sampled high frequency analog inputs 
must sample and solve the system equations at high 
rates to produce sufficient accuracy. However, the size of 
our simulations indicated that one big program loop 
solving all the systems would normally produce integra
tion and sampling step size too large to accuratBly 
reproduce the high frequency portion of the problem. 
The easiest solution to this problem would be to get a 
computBr fast enough, but when the problem is not too 
large and the frequencies are not too high, there are 
less drastic solutions. The approach used in the Ames' 
simulations is to do the high frequency operations more 
often than the low frequency ones using a special piece 
of software called MOTHER. 

MOTHER is a scheduling and executive routine 
which schedules subroutines to operate at synchronized 
time intervals or to operate within given time con
straints. Subroutines are defined to MOTHER to 
operate within specific time constraints~ By organizing 
all the high frequency computations into one list and 
the remainder into a second list one may define to 
MOTHER what the computation rate is to be on each 
list. Both lists are called constrained processes because 
they must he completed within time constraints as 
opposed to syn~hronized processes such as input! output 
of analog data which must be performed at specific 
time intervals. 



In Figure 5 a two loop program is shown as it might 
be run under a MOTHER schedule. Assume that the 
I/O for loops A and B must be executed every 10 and 
20 milliseconds respectively and that the computation 
blocks, A and B, must execute within the same 10 
and 20 milliseconds. 

Since the I/O processes are synchronized, they are 
executed first. After the I/O the constrained processes 
begin; process A has been scheduled to execute first 
since it must execute within the shorter time constraint. 
At the completion of A, process B begins; at the time 
of 10 milliseconds the I/O of A interrupts the con
strained process and proceeds to execute. Note that A 
executes again before process B resumes its execution 
and finally is completed. At this point all the syn
chronized and constrained processes are completed for 
this period. The period as used iIi this context is the 
shortest time into which all the various process times 
must divide integrally. The ability of MOTHER to do 
this scheduling is a great aid to the simulation pro
grammer since all he must do is to provide the simulation 
subroutines and specify the calculation rates. The 
scheduling burden has been removed. 

Other items that have proved useful are MOTHER's 
executive features such as the servicing of simulation 
mode control and discrete signal inputs. In the typical 
operating environment a request for a mode change 
may come from any of three areas: The analog domain, 
the program itself, or from the digital control console. 
M OTHER receives the mode requests and services 
them by first setting a user-provided mode word and 
then executing the process list defined for this mode. 
Discrete bit signals from the analog domain are serviced 

TIME, m/sec a 10 20 

I/O FOR A 

1/0 FOR B 

LIST A 

LIST B 

EXECUTIVE 

MODE 

WAIT 

Figure 5-MOTHER schedule for two computation loops 

Handling Qualities Simulation Program 217 

by either setting a corresponding Fortran word high or 
low according to the condition of the input bit or by 
executing special subroutines not in the lists of defined 
constrained processes. Figure 5 shows the mode and 
discrete bit servicing periods which follow execution of 
the defined processes. 

The digital simulation computers are completely 
dedicated to simulations as Ames' batch work is per
formed at a separate central facility. Hence the emphasis 
in the simulation laboratory is not on computer through
put but on computer/simulator uptime. In this context 
computer uptime means not only that the hardware be 
operational but also that the program be operationally 
useful. Experienced simulation engineers will certainly 
agree that changes to programs occur at a high rate and 
in a seemingly never ending stream. In this state of flux 
a means of quickly updating and changing data and 
equations is a necessity. Since the simulation programs 
are written in Fortran, recompilation is the only prac
tical means of making lengthy changes. However, small 
changes may not warrant delaying an operational 
simulation to make a time consuming compilation. The 
software used to make minor changes is called CASPRE. 

Changes of data constants~ for example, are very 
simple, e.g., if it was desired to set the weight of the 
aircraft to 100,000 pounds the computer operator need 
only type + WEIGHT = 100000$. The elements of this 
statement fall into several categories. The +, =, and 
$ are commands or operatives defined to perform 
specific tasks on the character strings WEIGHT and 
100000. The plus sign indicated to CASPRE that a 
Fortran name was to follow, the equal sign is a command 
to set the "weight" cell to the following data concluded 
by the dollar sign. This flexibility and ease of change is 
essential to the operation in research and development 
simulations. 

Some of the many directive codes in the CASPRE 
system include typewriter display and modification of 
a data cell's contents in floating point, octal, or integer 
formats and even in Binary Coded Input (BCI) if the 
cell happens to contain such data. The display is also 
available on the line printer making it possible to 
provide short data print-outs. In practice this print 
capability is rarely used for more than program check
out. 

Small program changes are made with a combination 
of machine language instructions and symbolic ad
dressing. Making these changes requires some knowl
edge of the machine language codes but the nature of 
program patches normally requires only arithmetic 
plus a few conditional branch instructions. For example, 
a very common request is for a sign change in an 
equation. This is easily done by a simple operation 



218 Fall Joint Computer Conference, 1971 

SCALE 

SWITCH I OISCRETE DIGITAL COMPUTE R, O· AC 
o--B=IA.:..:;.S_-t-.;.;,.IN.;.;,.PU-:TS--\ r----.,-----,,-i f7\ 

CRE E a, • 100 (J!. + a ) V 
IN AS INSCAl SUBROUTINE IR. a mox BIAS 

SWITCH 2 DECREASE 

Figure 6-Calibration of cockpit instruments using INSCAL 

such as changing an add to a subtract instruction. 
Large changes such as the insertion of an equation into 
the program are made by a jump from the compiled 
program to an area of memory set aside as a patching 
area, where the equation is patched in machine language 
and then a jump back to the equation stream. 

Hardware support software 

One of the operational problems associated with 
flight simulators is the calibration of the cockpit 
instruments. The instrument readings are, for the most 
part, linear with voltage input but the zeroes and 
scaling vary with each instrument. It is a daily process 
to calibrate and check each instrument used. Calibration 
consists of both a bias and a gain on the problem 
variable. It was the practice at Ames to provide a 
DAC channel scaled in some convenient manner and 
with an analog computer do the necessary voltage 
scaling and biasing before sending the signal to the 
instrument. This straightforward approach proved to 
have a major fault albeit a human one. Due to the 
general purpose nature of the computers and the 
simulators there is a large turnover of programs on the 
equipment. The analog equipment requires a high 
amount of human attention to keep up with changes 
which frequently resulted in improperly scaled instru
ments and control inputs thereby plaguing the uptime 
record of the facilities. The solution to this problem was 
to scale and bias the instrument drive signals in the 
digital program before sending them out via the DACs. 
INS CAL was devised to ascertain just what values of 
gain and bias were required. Figure 6 shows two switches 
and an instrument located in the simulator cabin. A 
computer operator selects the instrument to be scaled 
by typing the DAC channel number into the INSCAL 
routine. From this point one of the simulator personnel 
in the cockpit performs bias and scaling. When the 
operator sets switch 1 to Bias, the variable to that 
DAC is set to zero and the DAC output is only a bias 
voltage. If the instrument is not in its null position, 
switch 2 is used to increase or decrease the value of the 

bias until it does null. Having determined the voltage 
bias of this instrument, switch 1 is set to Scale position. 
Internal to the INS CAL program a static test value has 
been previously assigned to the variable to aid in the 
determination of its scale value for the instrument. 
With switch 1 in the Scale position the variable is set to 
its static value. The operator again uses switch 2 to 
increase or decrease the scale factor until the meter 
reads the prescribed test value. 

For most simulations this process is repeated for 10 
to 30 instruments. However, once the initial cockpit 
calibration has been done the gains and biases, having 
been saved in the program, are available for subsequent 
setup of the program. Normally, subsequent calibration 
checks require no changes to the stored gain and bias 
values, thus dramatically reducing the setup and turn
around time for simulations. 

A requirement for many channels of recorded data on 
analog strip chart recorders prompted the multiplexing 
of·2 variables onto one recorder channel. Multiplexing 
can be done by mechanically switching between con
tacts carrying the appropriate signals. This approach 
will require many DACs in the digital simulation. By 
multiplexing the variables in the digital computer the 
same effect is produced, but only one DAC is used to 
display two variables. Figure' 7 shows an example of 
what can be done with multiplexing. The input and 
output signals of a control system have been multi
plexed onto one data channel for comparison. Normally 
high frequency and/or discontinuous signals are not 
multiplexed since in that form they would be very hard 
to read. Most variables can be multiplexed in aircraft 
simulations and the use of this routine has proved to 
be quite successful. 

x-----
S2+2twS+w2 y 

Figure 7-Strip chart recording of X and Y multiplexed 
for comparison 



AWFTV PROGRAM MECHANIZATION 

The organization of the digital program is illustrated 
in Figure 8. The middle block contains MOTHER the , 
executive program for the aircraft and support sub
routines. The upper block in the figure represents the 
main program of the simulation which defines to 
MOTHER the timing requirements for the execution 
of programs and input/output data transfer schedules. 

The three lower blocks constitute the simulation 
which consists of two real-time calculation loops and a 
set of supporting subroutines. Because MOTHER can 
schedule the computations of fast variables more 
frequently and slow variables less frequently, MOTHER 
makes it possible to run complex programs with 
adequate dynamic fidelity than otherwise is possible 
using a straightforward seriai calculation of all vari
ables. Two calculation loops proved satisfactory in this 
simulation. The high frequency loop contained the 
rotational kinematics, part of the rotational aero
dynamics, the control system and the landing gear 
model. The low frequency loop contained the transla
tional kinematics, the remainder of the aerodynamics, 
the engine model and the simulator drive calculations. 
The terms "high" and "low" frequencies are relative, of 
course, and the split of the workload is somewhat 
subjective. Usually the rotational behavior of an air
craft in flight contains higher frequencies than the 
translational. As a natural grouping of rotationally 
oriented work the control system and rotational 
aerodynamics were put into the fast loop with the 
rotational kinematics. The landing gear equations must 
be solved relatively fast due to the high transient 
frequencies present upon touchdown. The lower fre
quency work is essentially the remainder of the work
load. One improvement that most probably will be 
made in the future is to solve for altitude in the fast 

~EDULES AND DEFINITIONS I 
FOR MOTH E R 

I 
I 

MOTHER, MONITOR TIME HANDLING AND EXECUTIVE ROUTINE 1 
I I I 

HIGH FREQUENCY LIST LOW FREQUENCY LIST SUPPORT CAPABILITIES 

ROTATIONAL DYNAMICS TRANSLATIO NAL DYNAMICS TRIMMING ROUTINE 

LANDING GEARS AERODYNAMICS PRINT ROUTINES 

AERODYNAMICS ENGINES DYNAMIC CHECKS 

CONTROL SYSTEM SIMULATOR VARIABLES LIBRARY FUNCTIONS 

Figure 8-0rganization of the digital simulation program 

Handling Qualities Simulation Program 219 

AERODYNAMICS 

ENGINES 

LANDING GEARS 

BODY 
VELOCITY 

Figure 9-Translational dynamics block diagram 

loop for improvement in the simulated landing gear 
response. 

The digital simulation depends upon several sub
routines some of which _ do not run in real time. Data 
printout and aircraft trim calculations cannot run in 
real time. However, the three dynamic check routines 
which provide modal response checks must run in true
time. These routines are simply called by pressing a 
computer console push button. Other support software 
such as wind turbulence models, random number 
generators, and arbitrary functions of one, two, or three 
variables require a Fortran call in either the high or 
low frequency simulation loops. 

Equations oj motion 

The equations of motion chosen for this simulation 
are a six-degree-of -freedom rigid body set. The set 
assumes a flat non-rotating earth in which the linear 
accelerations are integrated in a local horizontal Euler 
axis system and the angular accelerations are integrated 
in the vehicle's conventional body axis. This set of 
equations is sufficient for landing studies in which the 
range traversed is only four or five miles or less and the 
maximum velocities are very low, 60 to 150 knots. 

The translational equations are interesting in that all 
forces, not including gravity, are summed in the body 
axis frame then transformed to the local horizontal 
axis where gravity is easily added in before integrating 
to obtain ground velocities. Wind velocities may be 
easily inserted in this axis system in the north, east, 
and down directions. No resolution of winds or gravity 
from Euler axis to body axis is necessary in this formula
tion. This is illustrated in Figure 9. One advantage of 



220 Fall Joint Computer Conference, 1971 

DYNAMIC 
PRESSURE 

8SAS 

1-------1 
IAERODYNAMICS: 
I AND I 

IEQUATIONS OFt 
: MOTION : 
L ____ .J 

COMPENSAT ION 
FEEDBACK SIGNALS 

Figure Io-Typical control system and stability 
augmentation system 

integrating the forces in the inertial frame is that the 
w Xx terms present in body axis acceleration equations 
are omitted along with the corresponding higher fre
quency content in the angular velocity terms. In digital 
simulations this is to be desired as reduction of fre
quency content usually improves solution accuracy. 

Aerodynamics 

The aerodynamic equation set formulates all the 
effects of velocity, control deflections, etc. and produces 
three forces and three moments. The stability deriva
tives were formulated from wind tunnel data taken with 
respect to the stability axis; from which a rotation 
through the angle of attack, a, about the y axis produces 
derivatives in the body axis frame. The equations and 
data are representative of many simulations with just a 
few interesting exceptions. The effects due to angle of 
attack of the horizontal tail takes into account the 
downwash of air flow over the wings onto the tail and 
the variable time delay involved between the distance 
from wing to tail as a function of speed. The most 
interesting facet of the aerodynamics simulation is the 
separation of the effects of right and left ailerons, due 
to simulated engine failures which stop the air blowing 
on an aileron with the resultant loss of aerodynamic 
control force. 

Two types of random disturbances were included in 
the simulation. The first type was a "wing drop" in 
which a roll acceleration was inserted for a specific 
period of time to produce a resultant roll angle. The 
second was a wind gust model which produced noise in 
the three rotational and three translational velocities 
using a Dryden model. 

Control systems and stability augmentation systems 

Figure 10 is a block diagram of a longitudinal control 
system. This figure shows "force feel" modification 

under computer control as a function of dynamic 
pressure and control column movement (as shown in 
the figure) or by surface deflection. It also illustrates 
how the control actuator, in the forward control path, 
and the SAS, in the feedback control loop, serve to 
affect the amount of control surface deflection obtained 
by column movements. In each control mode lateral , , 
longitudinal, and directional, there is a similar control 
system to provide correct. pilot work loads. 

In the actual aircraft the longitudinal control system 
is a purely mechanical system while both the lateral 
and directional systems have hydraulic power assist 
actuators. Provisions are made in the simulation to 
fail the hydraulic systems with resulting losses in 
aileron, spoiler and rudder effectiveness. In this vehicle 
stability augmentation is necessary in lateral and 
directional modes only. The lateral SAS system uses 
sideslip angle, roll rate and yaw rate feedbacks for roll 
stabilization while the directional SAS uses roll rate and 
sideslip rate feedbacks for stabilization in yaw. Wherever 
possible the linear filters are mechanized as simple 
difference equations using state space transform 
methods.2 

Engines 

The engine simulation is primarily a thrust com
putation in which the port and starboard engine thrusts 
are calculated separately from their individual throttle 
and diverter control levers. The engine thrusts con
tribute to body axis forces and moments for the aero
dynamic computations. The jet engines produce hot 
thrust for propulsion and cold thrust for the flaps and 
ailerons. 

The engine diagram, Figure 11, shows the basic ideas 
of the thrust simulation. The operation of this circuit 

THRUST + 
DEMAND 

Figure ll-Fan jet engine thrust block diagram 



is based on non-linear rate limiting of a first order 
system. When a demand for increased thrust is made 
the thrust rate, T, is either T'l or T'2. Initially T'l is 
greater than T'2 so no limiting occurs, and the limited 
thrust, PL <65. Thrust, T, is a positive exponential 
function of time but as thrust builds up and P L becomes 
limited, the thrust will become linear with time until 
T'l5:.T'2. At this time the limiter acts to make T=T'l 
providing a first order exponential tail-off of the process. 
The rate limiting used whe,n thrust is decreasing is 
much simpler; the maximum thrust rate bares simply a 
square relationship to thrust. This scheme provides 
high thrust rates' at high thrust levels and quite low 
thrust rates at low thrust levels. 

The thrust diverter dynamics are modelled with 
rate limiting and hysteresis between the control and 
diverter angle. For determination of pilot handling 
qualities, system failures were implemented providing 
thrust loss in either of the two engines and a "hard 
over" diverter lock to a specific angle. 

Landing gear 

The landing gear model is composed of equations for 
tire friction forces and oleo reaction forces and the 
proper resolution of the forces into body axis forces and 
moments. The friction forces are resolved into two 
components, one' in line with the tire and the other 
perpendicular to it. Coefficients of friction for both 
components are functions of gear velocities. The equa
tions on gear compression and compression rate are 
rigorous but assume no tire deflection, so all reaction 
forces are due to the oleo. In the case of the C8-A three 
individual gears were simulated with the forces and 
torques on each summed to provide the total landing 
gear force and moment components. 

Subroutine ICTRIM 

ICTRIM is a subroutine which performs two 
separate functions. "10" refers to the calculation of 
Initial Conditions (ICs) for the velocity terms in the 
local horizontal or Euler Frame based on inputs of 
airspeed, Va, sideslip angle, /3, and angle of attack, lX. 

"TRIM" refers to the capability of this subroutine to 
trim the aircraft longitudinally. 

In the operation of simulations at Ames it has been 
found that while use of the Euler frame to integrate 
accelerations improved calculation accuracies it did 
pose operational problems. In the use of the simulations 
it was apparent that research people using the program 
were more used to-thinking in terms of total airspeed, 
for instance, than its components in body axes much 

Handling Qualities Simulation Program 221 

less those in Euler axes. Consequently a simple routine 
was written to accept Va, lX, /3 to calculate initial 
conditions for north, U E, east, V E, and down, WE 
velocities. Later it was modified to allow the flight path 
angle, 1', to be input along with lX to calculate the initial 
condition of pitch angle, fJ. 

Starting the aircraft simulation run with a trimmed 
aircraft avoids requiring the pilot to waste time trim
ming the aircraft before starting his task. For a large 
class of simulation problems the trimming need only 
consist of nulling pitch acceleration and the aircraft 
longitudinal and vertical accelerations. When aileron, 
rudder and sideslip angles and the roll and yaw rota
tional velocities are zero, the remaining three ac
celerations are zero. 

The trimming algorithm is an iterative scheme. In 
the routine's most conventional form elevator control, 
8e, is used to null pitch acceleration, q; thrust, T, is used 
to null longitudinal acceleration, Az; and angle of 
attack, lX, is used to null vertical acceleration, A z• 

As an example of the iterative process the current value 
of q is used to modify the current value of 8e according 
to the equation 8ei+l = 8ei+kqi where k is an appropriate 
gain predetermined from the aerodynamics of the air
craft. After modifying 8e the routine commands a cycle 
of calculation through all the aircraft equations and 
data using the new value of 8e to obtain a new value of 
q. Of course lX and thrust are being changed concurrently 
in the same manner. After sufficient iterations and for 
reasonable initial condition the routine determines the 
control inputs for which the accelerations are sufficiently 
close to zero for the airplane to be considered trimmed. 

This basic scheme has proved to be sufficient for 
transport aircraft. However the C8-A has the capability 
of directing its thrust from 180 to 1160 from the aft 
horizontal and when using this thrust vectoring to 
obtain trim the throttle may be held constant so that 
the diverter angle then becomes the trim parameter 
affecting both Az and Az strongly. A more general 
scheme was devised for the iteration algorithm since 
thrust diverter angle influenced both vertical and 
longitudinal accelerations. Basically the chain rule of 
differential calculus was employed to introduce the 
effects of lX and thrust diverter angle, 'II, on Az and A z. 

We say that 

but since the desired Az is zero then 

By the chain rule 



222 Fall Joint Computer Conference, 1971 

In like manner 

This is a set of two equations in two unknowns if we 
assume the partial derivatives can be found from the 
aero and engine data. Now we say that 

and 

where ~a and All are the solution of the two chain 
equations. The partials of Ax and A z with respect to 11 

are merely thrust modified by the sines and cosines of 
the diverter angle, but the derivatives with respect to 
a are unknown analytically and difficult to determine 
exactly. 

The approximation aAz/aa= AAx/ Aa was imple
mented by having the trim routine determine Ax and 
Az for some ai and again for ai plus one degree then 
using those results to calculate the approximations. 
Since the approximation to the partial derivative was 
made rather arbitrarily the calculated Aa and ~1I were 
multiplied by a constant less than 1 to assure con
vergence. Most generally .8 was used, for instance, 
ai+l = ai+ .8A,a. 

This scheme in all other respects acts as the original 
more crude iterative scheme for conventional aircraft 
trim, iterating until the three accelerations are nulled. 

Dynamic check routines 

The subroutine DYNCHK is used to perform 
dynamic checks of the aircraft. The routine provides 
doublets and pulses in roll control and rudder control. 
In elevator control the optional disturbances are steps 
and pulses. The disturbances are input as pilot control 
variations providing a check on the control system as 
well as the aerodynamics. By recording the response 
data on eight channel strip chart recorders the user may 
view the results and determine the parameters in which 
he is interested. 

Print routines 

Two separate print routines are included in the 
simulation. One is a general purpose print routine for 
determining the status of a list of variables and is 
useful for printing initial conditions and trim conditions 
for documentation as well as a trouble shooting aid. The 
second routine is an attempt to determine the pilot's 
and aircraft's performance. It collects data in two ways 
as functions of altitude. Variables such as airspeed and 

climb rate are saved at predetermined altitudes while 
the maximums of such variables as pilot control forces 
and guidance errors are determined within certain 
altitude ranges. If this routine is desired it automatically 
prints after completion of the run. This type of data is 
useful to correlate with the pilot's subjective ratings of 
the vehicle's handling qualities. 

Support subroutines 

Three subroutines from the computer library should 
be mentioned in the context of supporting simulations. 
They are WIND, MLTPLX and INSCAL. The latter 
two were described as hardware support routines. 
Probably the most important is WIND since it provides 
the atmospheric turbulence needed in simulations for 
aircraft handling qualities work. Turbulence is used 
primarily to assess the effects that real-life turbulence 
has on controllability, flying qualities, and ride qualities 
of an aircraft. The disturbance effects on the design of 
controls and stability augmentation systems are very 
important to insure that the airplane has sufficient 
control effectiveness to be manageable during flight in 
turbulence. 

The turbulence model is the Dryden mode1.3 •4 In 
essence white noise is passed through filters to provide 
noise in the three translational and three rotational 
velocities which have good representations of the power 
spectral densities present in actual air turbulence. 

EPILOGUE 

The simulation program and simulator hardware pro
vided test pilots a realistic representation of the 
modified C8-A Buffalo with the result that various 
control and SAS representations were evaluated using 
pilot handling qualities ratings. 

Final design parameters were found for the aircraft 
which is scheduled for flight test in early 1972. The 
digital program has subsequently been used as a base for 
additional simulations of navigation and guidance of 
STOL craft in the air traffic control situation near 
airports and for studies of control and SAS in longitu
dinal motion for this class of airplane. Of current popular 
interest are the noise reductions made possible by the 
high angle landing approaches to the runway· which in 
turn are made possible by the slow approach speeds. At 
any ground point the STOL aircraft will be at a higher 
altitude then conventional aircraft thereby reducing 
the noise. 

Due to the diverse uses of the program it is not con-



sidered to be fixed as present effort is aimed at deter
mining better simulation techniques and models and at 
making the system software execute faster and be more 
responsive to the needs of the user. 

REFERENCES 

1 E A JACOBY J S RABY D E ROBINSON 
FAMILY I: Software for NASA-Ames simulation 
systems 
AFIPS Conference Proceedings Vol 33 Part 11968 

Handling Qualities Simulation Program 223 

2 J V WAIT 
State-space methods for designing digital simulations of 
continuous fixed linear systems 
Transactions of IEEE/PGEC Vol EC-16 No 3 1967 

3 F NEWMAN J D FOSTER 
Investigation of a digital automatic aircraft landing 
system in turbulence 
NASA TND-6066 1970 

4 C R CHALK 
Background information an user guide for MIL-F-8785B 
(ASG), "Military specification-flying qualities of piloted 
airplanes" 
AFFDL-TR-69-72 1970 





Software validation of the Titan IIIC digital1light 
control system utilizing a hybrid computer 

by R. S. JACKSON and S. A. BRAVDICA 

Martin Marietta Corporation 
Denver, Colorado 

INTRODUCTION 

In April 1966 work was initiated by~ Martin Marietta 
Corporation (MMC) , Denver Division, to extend the 
role of an airborne computer to include flight controls 
as well as guidance and navigation computations. This 
project is one of several significant improvements for 
the Titan IIIC space booster which was funded by the 
Space and Missile Systems Organization of the Air 
Force. The new Digital Flight Control System (DFCS) 
has been successfully tested in four (4) Titan IIIC 
missions. 

The purpose of this paper is to describe how a large 
hybrid computer simulation was used as an aid to 
design and develop the DFCS and then used to validate 
the resulting D FCS airborne software. 

The simulation was programmed in six-degrees-of
freedom and included an airborne Univac 1824M Missile 
Guidance Computer (MGC) in the closed loop. Ad
ditional computing equipment used in the simulation 
included three (3) EAI 8800 analog computers, an 
EAI 8400 digital computer and an SDS 930 digital 
computer. Flight control hardware components such as 
rate gyros, body mounted accelerometers, and hy
draulic actuators were also used in the simulation. 

DESCRIPTION OF THE VEHICLE AND A 
TYPICAL SIMULATED MISSION 

The Titan IIIC is one of the Titan models being 
built to carry Air Force and Defense Department pay
loads. The Titan IIIC is a four-stage vehicle with solid
propellant five-segment rocket motors on each side of 
a liquid propellant core. Stage 0 is powered by dual 
solid-propellant engines; Stages I and II are powered 
by gimbaled liquid propellant engines; and Stage III 
(transtage) is powered by a pair of restartable gimbaled 
liquid propellant engines. The transtage also has 12 

225 

mono-propellant attitude control engines, which are 
used for control purposes during the non-powered flight 
(coast) portions of a mission. 

The Titan IIIC is required to handle single and 
multiple payloads that range from 1800 pounds to 
30,000 pounds. There is also a variety of missions, one 
of which is described below, to match the spectrum of 
payloads. A wide range of payloads, in turn, signifi
cantly impacts the upper stage total vehicle mass, 
inertia, and dynamic characteristics which results in a 
requirement for flexibility in control system compen
sation. While in coast, the Digital Attitude Control 
System (DACS) must provide several levels of pointing 
accuraoy as well as the capability to optimize time 
response and propellant utilization in a variety of inertia 
conditions. Furthermore, the powered flight Titan IIIC 
booster characteristics present to the control system 
designer a multi-plant problem with significant struc
tural bending and propellant slosh dynamics. One of 
the DFCS design goals was to provide the capability 
to fly all of the missions and payloads with one basic 
airborne software package. Therefore, when the mission 
or payload change only modifications to the program 
parameters will be required. 

A diagram of the particular mission that was simu
lated is shown in Figure 1. A 92-by-109 mile parking 
orbit is achieved by the boost portion of the flight 
which includes a 17 second 1st burn of transtage. Mter 
a one hour coast period, transtage will then fire for the 
2nd burn, lasting 298 seconds, to obtain an elliptical 
transfer orbit of 107-by-22,300 miles. Mter about five 
hours in this path, the transtage will perform the 3rd 
burn to inject the satellite into a near-circular syn
chronous orbit measuring 22,221 miles at perigee and 
22,318 miles at apogee. This typical synch-eq mission 
requires about 672 hours from liftoff to satellite eject. 
(One of the software validation runs is a 672 hour 
continuous run which duplicates this mission.) 



226 Fall Joint Computer Conference, 1971 

MISSION DIAGRAM 

I 

t 

I 

I 
I 

I Coast 
I (5 hr) 

\ 

'\ 
'\ 

Tranltage \ 
2nd. Burn \ 

/:/(ij----:;;\ ~~." " 
{ \ ;0, / t Co .. t (1 hr) I 
f \ ,,/./;, I 
I" I 
I '- / 
\ 
\ 
\ 

/ 
" \ 'lTanstage 

....... " 3rd Burn 
'-. "-

....... -' :::...-~ Satellite Release 

FIGURE 1 

Figure I-Mission diagram 

~ I 

During the coast portions of transtage flight, the 
simulation of the digital attitude control system (DACS) 
is required to perform a series of maneuvers to maintain 
proper thermal balance of the payload and to position 
the transtage for transmission of telemetry signals. In 
addition, the DACS is required to operate for several 
seconds in one or more velocity vernier modes wherein 
the eight aft-pointing DACS engines are turned on to 
make fine adjustments in the trajectory and to bottom 
the propellants in preparation for a main engine burn. 
This mode requires that the attitude control logic on 
these eight DACS engines be reversed because attitude 
control is maintained by turning a jet off in this mode 
rather than on, as in normal operation. 

Figure 2-Titan IIlC configuration 

A diagram of the Titan IIIC is shown in Figure 2, 
and the pertinent flight control hardware that was used 
in the closed loop simulation is labeled. 

DESCRIPTION OF THE HYBRID SIMULATION 

Since flight hardware was included as part of the 
simuhttion effort, the simulated airframe had to be 
computed in real time. The real time computational 
requirement and the size of the simulated airframe 
dictated the need for a hybrid simulation. Thesimu
lation hardware as shown in Figure 3 is located in two 
separate facilities; the hybrid computation facility and 
the controls mockup facility. The distance between the 
two facilities is approximately 300 ft. 

Facilities description 

The hybrid facility contains 3-EAI 8800 analog 
computers, l-EAI 8400 digital computer with a 32 bit 
per word 32K memory, and a linkage system containing 
32 analog to digital converters and 32 digital to analog 
converters. 

The Controls Mockup Facility (CMU) contains the 
Univac 1824M missile guidance computer, an SDS 930 
digital computer, flight actuation devices for all stages, 
flight hardware sensor devices, and interface equipment 
for buffering the signals received from the hybrid fa
cility. Figure 4 is a photograph of the inverted engine 
bells which are driven by' hydraulic actuators with 
Stage II in the foreground, Stage I in the middle and 
transtage in the background. Engine commands gener-

SIMULATION FACILITIES 

;~.~"·I 

HYBRID FACILITY 
<:ODED PLATFORM ACCELERATION 

AIRFRAIIE EQUATIONS ...... v <:ODED VEHICLE ATTIT~ 
ACTUATION DEVICE 7 STRUCTURAL BENDING 1I0DES !vEHICLE LATERAL ACCELERATION 

OUTPUTS THRUST VECTOR CONTROL DYNAIIIC8 illEHICLE RATE8 

ATTITUDE CONTROL THRUST SHAPING (uQUENCING DI8CRETES 

CONTROLS MOCKUP FACILITY J 
1 

IIISBILE GUIDANCE 

COIIPUTER IUNIVAC 18241 H RATE GYRO 
IIISBILE GUIDANCE 8EN81NG SYSTEII Y ACTUATION }- COMPUTER SIIIULATOR 

DEVICES 18D8-8S01 H LATERAL ACCELERATION t----
FLIGHT CONTROLS UN81N8 IIYSTEM 

AND 

GUIDANCE FUNCTIONII 

I 
FIGURE 3 

Figure 3-Simulation facilities 



Figure 4-Controls mockup Titan IIIC engine bells 

ated in the MGC were output to the actuation devices. 
Engine displacements measured by telemetry potenti
ometers on the actuation devices were used to provide 
feedback into the airframe simulation. 

The Univac 1824M missile guidance computer is a 
binary machine employing fixed point, two's comple
ment arithmetic with single address capability. The 
MGC . employs a non-destructive readout thin-film 
memory which can store 12,096 16-bit words. 

The SDS 930 digital computer contains a 16K mem
ory with 24-bits per word. Prior to using the MGC in 
the closed loop simulation, the digital flight control 
system, while still in the development stage, was pro
grammed on the SDS 930 computer. The SDS 930 
computer was then utilized to aid in checkout of the 
airframe simulation and also to provide a means of 
easy access for investigating design considerations for 
the DFCS. The final MGC software was translated for 
use in the SDS 930 computer, therefore allowing the 
SDS 930 to be used as a missile guidance computer 
simulator (MGCS). The primary purpose of the MGCS 
was to stand backup for the MGC during the critical 
DFCS··software validation period. 

The hybrid simulation 

The airframe simulation required the use of 3-EAI 
8800 analog computers utilized to 95 percent of their 
operational amplifier capability and a digital program 
requiring 16K of core in the EAI 8400 digital computer. 
The assignment of computational tasks to the analog 
and digital computers was handled in such a manner 
as to make use of the best computational aspects of 

Titan IIIC Digital Flight Control System 227 

both computers. The parts of the simulated airframe 
mechanized on the analog computer were as follows: 
The body acceleration and body rate equations; seven 
system modes representing structural bending and fuel 
slosh for all four stages; vehicle sensor station equations; 
a Thrust Vector Control system (TVC) for the solid 
rocket motors of Stage 0; attitude control system thrust 
shaping, and an analog autopilot to aid in the checkout 
of the simulated airframe. Two-bit Gray coders were 
implemented on the logic panels for the Gray coding of 
the simulated inertial platform accelerations and ve
hicle attitudes. Functions used in the. thrust vector 
control system were generated on card programmed 
diode function generators. All other functions required 
in the simulation were generated in the 8400 digital 
computer. 

Resolution on the body rate and body acceleration 
equations was maintained by releveling the input func
tions originating in the digital computer at vehicle 
staging events. The simulation of the seven system 
modes required the generation of 6 functions per mode 
per stage; therefore, a total of 168 separate functions 
were needed in the simulation of the seven system 
modes for a complete mission. Again the digital com
puter provided a means of generating the required 
functions and also supplied a method of rescaling at 
staging times, which made it possible to conserve on the 
amount of analog equipment required to simulate the 
seven system modes. 

On the actual vehicle, platform acceleration and 
vehicle attitude are generated by means of optisyns 
which produce a two-bit Gray code as output to the 
missile guidance computer. Both platform acceleration 
and vehicle attitude in the simulated airframe were 
computed in the EAI 8400 digital computer. Vehicle 
attitude was updated every 10 milliseconds. The atti
tude was then quantized and compared with the· pre
vious pass. If a change of one quanta in attitude was 
observed, the information was sent to the analog patch 
panel for Gray coding and then output to the missile 
guidance computer. Gray coding of platform acceler
ations was handled in the same manner as vehicle atti
tude except that they were updated and output every 
20 milliseconds. 

The digital portion of the simulated airframe con
sisted of two routines. Routine 1 was updated every 
10 milliseconds in Stages 0, I, and II and every 5 milli
seconds during transtage flight; routine 2 was updated 
every 20 milliseconds throughout the mission. Using 
the external interrupts of the EAI 8400 digital com
puter, routine 1 was given higher priority than routine 
2. The timing for the interrupts was generated on the 
analog logic panel via a binary coded decimal down 
counter. Routine 1 sampled the body rates generated 



228 Fall Joint Computer Conference, 1971 

on the analog computer and utilized the body rates in 
the generation of the direction cosine matrix. Vehicle 
attitude was generated as a function of direction cosine 
terms, and then quantized and output to the analog 
logic panel for Gray coding. , 

Routine 2 sampled the body accelerations and, using 
the direction cosine matrix generated in routine 1, 
transformed the body acceleration into inertial accelera
tion. Subtracting the gravity component from the 
inertial acceleration and integrating produced inertial 
velocity. Another integration produced inertial posi
tion. A transformation on the inertial velocity using 
the inverse direction cosine matrix produced· the body 
velocities from which the aerodynamic terms were 
formed. The aerodynamic terms were then output to 
the analog computers for input to the body accelera
tion and body rate equations. Platform acceleration 
was computed, quantized and output to the analog 
logic panel for Gray coding. All functions generated in 
the digital computer were computed and output in 
routine 2. An Automatic Data Channel Processor 
(ADCP) was used to store digital variables on magnetic 
tape at I-second intervals. The tape was then post
processed to retrieve the real time information. 

The flight computer generates timing and sequencing 
discretes which control staging, engine start and engine 
shut-down commands. These discretes were sensed in 
routine 2 and the necessary action was initiated on the 
simulated airframe. 

Simulation checkout 

The general purpose hybrid facility was scheduled 
in 6-hour shifts; therefore, setup of the simulation air
frame was a daily occurrence. Potentiometer settings 
and static tests were performed with each setup of the 
simulation, using the Hytran Operations Interpreter 
which is an EAI processor designed to perform check
out functions on the analog equipment. To further in
sure that the airframe simulation was operating prop
erly, a trajectory was flown using an analog autopilot. 
This trajectory run was made daily before closing the 
loop around the missile guidance computer and all the 
associated flight hardware. 

In addition to the static checkout method, a thorough 
dynamic checkout procedure was developed to ensure 
that the airframe simulation represented the physical 
plant. Part of this procedure required that the entire 
closed loop simulation be in a perturbate mode. This 
is a mode wherein the trajectory is fixed in time; thus 
all vehicle parameters are held constant. 

The missile guidance computer has a perturbate 
mode built into the software. This mode allows the 

autopilot gains and digital filter parameters to be held 
constant. Also the guidance commands into the auto
pilot are held constant and all guidance computations 
are bypassed. When the missile guidance computer is 
put into the perturbate mode, a discrete is issued to the 
hybrid simulation. The perturbate discrete actuates 
logic incorporated in the EAI 8400 digital program 
which holds all parameters that are functions of time 
and also holds vehicle altitude. The discrete also sets 
the longitudinal body acceleration in, the analog com
puter to zero. 

The dynamic checkout procedure consisted of two 
main parts. The first part included frequency response 
testing with the simulation in the. perturbate mode. 
Frequency responses of the closed loop simulation were 
generated by forcing engine deflections with a sinu
soidal signal. In this way, stability margins at several 
time points in each stage were verified against previ
ously generated stability analysis results. The second 
part of the dynamic check involved comparing the 
hybrid simulation trajectory results with the results of 
an all-digital trajectory program. 

DESIGN AND DEVELOPMENT OF THE DFCS 

A new set of analytic, software, and simulation prob
lems were generated by incorporation of a DFCS into 
the Titan IIIC. This section of the paper describes 
how some of these problems were resolved with the aid 
of the hybrid simulation. 

Digital filter accuracy 

Figure 5 is a block diagram of the Stage 0 pitch 
plane autopilot, showing the four feedback loops used. 
The attitude and two angular rate loops are used only 
for stabilization purposes, while the lateral acceleration 
feedback loop is employed as a means of achieving 
active load relief, and is operative only during the max 

SYSTEM BLOCK DIAGRAM 

ATTITUDE 
COMMAND .. ACTU

ATION 
DEVICE 

AIR
FRAME 

Figure 5-System block dia.gram 

ATTITUDE 

RATE I 

RATE 2 

LATERAL 
ACCEL 



buffet-max dynamic pressure portion of Stage 0 flight. 
Each of the feedback loops is compensated with a gain 
and a digital filter. 

The digital filters are susceptible to accuracy prob
lems1 when mechanized on a fixed point digital computer 
such as the Univac 1824M. Two main sources of the 
accuracy problem are (a) difference equation coeffi
cient accuracy, and (b) fixed point digital computer 
truncation accuracy. Furthermore, the requirement 
that the software design will be able to fly the wide 
range of payloads and missions without the repro
gramming of equations makes the accuracy problem all 
the more acute. For example, filter computations must 
be scaled in such a way as to insure no overflow for 
large inputs for all possible combinations of mission/ 
payload. Then for low level inputs (such as those ex
pected for nominal operation) computations are scaled 
in a very sub-optimal manner, thereby exaggerating 
even further a computational truncation inaccuracy 
problem. 

To determine the effect on system operation in re
gard to digital filter computational accuracy, a pro-, 
posed D FCS was programmed on the SDS 930 digital 
computer. System operation in this case means the 
effect of interaction between filter accuracy and other 
vehicle characteristics such as quantization of MGC 
input and output variables, actuator nonlinearities, 
sensor nonlinearities, and propellant slosh. This possible 
interaction could cause excessive limit cycle ampli
tudes and even instability. Therefore, to verify the 
DFCS design, the DFCS was programmed on the 
MGCS and the operational word length was varied in 
the digital filters for each stage. This was done by 
"masking" bits in the word that are furthermost to the 
right, thereby effectively varying the scaling (binary 
point location). 

Noise susceptibility 

Digital autopilot noise susceptibility is caused by 
the sampled data folding phenomenon. Relatively high 
frequency environmental noise brought into the system 
as corruption on the sensors will, upon being sampled 
by the DFCS, be "folded" to a lower frequency (i.e., 
any signal whose frequency, w, is greater than half the 
sampling frequency, w s/2, will, on being sampled, be 
"folded" about nWs/2, n= 1, 2, 3, ... ). Hence, energy 
that was filtered out by an analog autopilot now ap
pears in the form of low frequency signal content in the 
control system. This low frequency energy can cause 
excitation of the structural bending modes of the 
vehicle, thereby inducing significant structural loads. 
The severity of the loads problem is a function of the 

Titan IIIC Digital Flight Control System 229 

amplitude and frequency content of the noise coming 
in on the sensors and of the sampling frequency of the 
DFCS. 

To determine the severity of this problem on the 
Titan I1IC DFCS (sampling frequency of 25 samples 
per second), the mean and 30" environmental noise 
spectrum existing during flight was measured. This was 
done by statistically reducing telemetry data on sensor 
outputs from several past Titan IIIC flights which 
used analog autopilots. Next, a noise generator on an 
EAI 8800 console plus shaping networks were set up 
to duplicate the in-flight environmental noise. When 
the 30" noise was superimposed on sensor outputs, and 
therefore sent directly into the autopilot, excessive ex
citation of the first structural bending mode was seen 
and intolerable vehicle loads were generated. This 
problem was solved by using analog prefilters (by filter
ing the sensor input to the MGC) with a break fre
quencyof 10 cps, .5 damped on the rate channels and 
a 5 cps break frequency, .5 damped on the lateral 
accelerometer channels. These prefilters were specified 
to be built into the MGC and are common to all flights. 

Recursive and non-recursive digital prefilters were 
derived and tested by using the MGCS. However, 
significant noise energy proved to be present at fre
quencies above w s/2 which, due to the folding phe
nomenon, rendered the digital prefilters much less 
effective than analog prefilters. 

An extremely useful application of the EAI 8400 
digital computer was made in' conjunction with the 
noise investigation, wherein a program was written 
which would sample the noise-shaping network out
puts and calculate the power spectral density and rms 
level of the noise. Thus the validity of the noise simula
tion was easily and rapidly checked against desired re
sults. This one application saved many hours that 
would have otherwise been spent waiting for the same 
results to be calculated on an "off-site" digital 
computer. 

Digital autopilot malfunction detection logic 

Experience with airborne computers indicates that 
the prevalent failure mode is a transient one. In this 
failure mode an electrical transient can cause either 
read-write memory or one of the central processor 
registers to pick up or drop one or more bits of infor
mation. The result is that the program will transfer 
incorrectly, perform an incorrect calculation, or store 
bad data. 

As part of the DFCS development, MMC designed 
malfunction logic that will detect these types of errors 
and reset the MGC to a safe-point condition. The 



230 Fall Joint Computer Conference, 1971 

VALIDATION TASKS 

DEVELOPMENT OF DETAIL 
VALIDATION PROCEDURES 
MGC, MGCS, HYBRID 

CLOSED LOOP TESTS, MGC, HYBRID 
1. TRAJECTORY VERIFICATIONS ---
2. STABILITY MARGIN VERIFICATION 
3, TRANSIENT RESPONSE/MALFUNCTION LOGIC TEST 
4. NOISE SUSCEPTlBILITY/MALFUNCTION LOGIC TEST 
5. FORWARD LOOP GAIN REDUCTION TEST 
6. FORWARD LOOP GAIN INCREASE TEST 
7, DIGITAL ALTITUDE CONTROL SYSTEM CHECKOUT 
8. TEST NO. 9 PRETEST 
9. COMPLETE MISSION 

10, REAL TIME MALFUNCTION LOGIC TESTS 
11. VERNIER BACK-UP SHUTDOWN VERIFICATION 

Figure 6-Validation tasks 

safe-point condition means that all possible flight con
trol parameters are initialized from nondestructive 
readout memory. As implemented, 98 percent of the 
DFCS parameters are initialized. The key variables 
(stage indicators, time, and certain other key flags) 
which cannot be initialized are specially protected, de
creasing the chance of their being altered. The overall 
malfunction logic requires approximately 8 percent of 
the total DFCS memory requirements. 

The MGCS and the hybrid simulation were used to 
verify the operation of this system. Possible types of 
malfunction were simulated in the MGCS and the re
sponse of the flight was monitored in the hybrid lab. 
Only 40 milliseconds are required to complete the 
initialization process. The resultant transient to the 
vehicle, even in the maximum dynamic pressure region 
of flight with worst case winds, is almost undetectable. 

SOFTWARE VALIDATION 

The software is in the form of a flight tape-a 
punched paper tape that was coded to MMC specifica
tion by Univac and delivered to MMC and other 
agencies for validation. Program validation has two 
main objectives. The first is to insure the correctness 
of equations, logic, timing, memory utilization, module 
interaction, etc., for the flight tape programming when 
compared to the software specification. The second ob
jective is to insure that the program on the punched 
tape satisfies all of the mission and vehicle performance 
requirements. The validation itself consisted of a series 
of open and closed loop tests executed per a detail 

procedure· document. The open loop tests were an im
portant part of the tape validation and consisted of 
phasing tests, open loop digital filter response, etc. 
However, these tests did not include the hybrid simula
tion and they will not be discussed further. The closed 
loop testing basically consisted of determining if the 
flight tape could "fly" the entire mission and meet all 
requirements. 

Figure 6 illustrates the tasks that were necessary 
for software validation. One of these tasks required 
that a validation procedures document be written. 
This document was developed into a 537 page volume 
that detailed the test set up, the test procedure, and 
the expected results for each validation test. The ex
pected results are .called success criteria. Tolerances 
were placed on the success criteria in such a way that 
if validation test results should exceed these tolerances 
then the test is considered to be invalid. The reason for 
the test being invalid must then be traced and ex
plained. The MGCS, MGC, and the hybrid simulation 
were used to develop and check out the tests, and in 
some cases, to generate success criteria. Development 
of the validation procedures document required ap
proximately five man-months of effort, but this docu
ment proved to be invaluable during the flight tape 
validation period. 

The closed loop tests that were performed are listed 
in Figure 6. To illustrate how these tests were run, 
test 1 is discussed briefly. The following wording IS 

taken from the validation procedures document. 
Validation Test 1, Trajectory Verifications: 

1. Test Objective-This will be a baseline trajec
tory run through Stage III first burn and ap
proximately 5 minutes into coast flight. The 
overall objective of this test is to uncover quickly 
any major trouble areas that may exist. The 
specific purposes of this test are to verify proper 
preaiming filter initialization and e.g., tracking, 
and to verify dynamic stability during staging. 
(The preaiming filter is a forward loop filter in 
the control system that tracks the vehicle center 
of gravity. Also this filter is "initialized" just 
before a main engine is fired which causes the 
thrust vector to be pointed through the center of 
gravity.) 

2. Configuration~The test configuration is the 
Hybrid Computation Lab (HCL) /CMU Closed 
Loop 6-Degree of Freedom Trajectory Simula
tion Configuration as illustrated in Figure 3. 
For this test, the Stage III thrust differential is 
removed for Stage III start, but is included for 
Stage III shutdown. 



Titan IIIC Digital Flight Control System 231 

TABLE I-Success Criteria and Test Results for Preaiming Filter Operation 

Success Criteria 
Engine Deflection 

Flight Condition Pitch (deg) 

Stage II Start Initialization Value - .027± .019 
Stage II Burnout - .018±.095 
Stage III Start 1st Burn Initialization Value - .24 ±.05 
Stage III End 3rd Burn - .162±.28 

3. Test Sequence-

a. Set up HCL and CMU to use trajectory run 
procedure with the telemetry (TM) ground 
station. 

b. Label HCL strip charts and the x-y plotters 
and enable Automatic Data Channel Pro
cessor. Plot the aerodynamic variables a and 
qAT on x - y plotters. 

c. Null to zero any biases on the TVC valves, 
TM monitor pots, and upper stage actuator 
TM pots. This is done in Stage 0 with the 
hybrid simulation in the I.C. mode. Stage I 
actuators are biased to zero with the simula
tion in "perturbate" at approximately T = 110 
sec. Stage II and Stage III actuators are 
biased to zero with the simulation in "per
turbate" in Stage I. 

d. Success Criteria. 

Success criteria for this test is given in Table I. Table I 
is taken from the validation document for this test to 
illustrate how the success criteria is typically used. The 
test results shown in Table I were obtained from tele
metry data output from the MGC. (This is the only 
way that real time data could be continuously extracted 
from the MGC during validation tests.) 

The most significant table of success criteria for this 
test is not included in this paper because of space 
limitations; however, it will be discussed. This table was 
designed to measure trajectory variables against success 
criteria that were generated by an all-digital trajectory 
program. In this table, the following hybrid computer 
trajectory variables for ten flight times are measured 
against the success criteria: total velocity, velocity com
ponents, altitude, angle of attack, side-slip angle, aero
dynamic pressure, and the product of the aerodynamic 
pressure and the total angle of attack. All of these 
variables must be within the success criteria tolerances 
for the results to be acceptable. Tolerances for this 

Test Results Test Results 
(Test 1) (Test 9) 

Pitch (deg) Pitch (deg) 

-.0336 -.019 

-.0573 -.055 

-.254 -.23 

N.A~ - .419 

test vary from less than 1 percent upward depending 
on the flight time and the particular variable that is 
being examined. One other table of success criteria (not 
shown) was generated for test 1, which consists of the 
maximum vehicle attitude rates that should never be 
exceeded during staging sequences. 

Test 7, which is a complex checkout of the digital 
attitude control system, involved a special application 
of the EAI 8400 digital computer. The DACS has 
several different logic "stages" in each of the three 
autopilot channels. Consequently, to check every logic 
path in the DACS, 132 separate sub-tests were required. 

As in some of the other tests, support of the TM 
ground station was necessary for test 7. This support 
involved recording DACS information on magnetic 
tape. Hence, it was important that test 7 be executed 
as rapidly and efficiently as possible. To achieve this 
goal, the 8400 digital computer was programmed to 
accept data for the 132 sub-tests from punched cards 
and execute the entire sequence of test 7. More spe
cifically, the digital program simulated vehicle attitude 
motion which was then Gray coded on an 8800 analog 
computer. The resulting Gray code was sent to the 
MGC to exercise the DACS logic. The time needed to 
complete test 7 for one channel was one hour of con
tinuous running. The other tests listed in Figure 6 were 
conducted in a manner similar to test 1; therefore, they 
will not be discussed. 

During the validation period, configuration control 
was carefully maintained in both the CMU and in the 
HCL. For example, whenever reprogramming of the 
hybrid computer was required, or a pot setting changed, 
this information was entered into a configuration con
trollog book along with the reason for the change. In 
addition, the analog patch boards and the EAI 8400 
program were kept locked in a special cabinet when 
not in use. Responsibility for maintaining configuration 
control and security during validation tests was as
signed to the lead engineers who were running the 
tests. 



232 Fall Joint Computer Conference, 1971 

FLIGHT RESULTS 

-('oOO"-Ov 1--+~+-+--""'f--+--t--+--r-=t~'4 

au aM ase H8 8'1' 
Trajeoi:or,o TiM - SM 

SIMULATION RESULTS 

~'-------+--+---+--+---- --.-------
aea aTO 

Trajectory TIllIe - 8eo 

Figure 7-Simulation and flight result comparison 

Figure 7 is a typical comparison of simulation results 
with results obtained from the flight. Pitch engine de
flection commands are compared over a ten second 
time period during Stage II flight; trajectory time cor
responds to 360 seconds at the beginning of the plots. 

Each quanta of engine command is equivalent to .02 
degrees of engine deflection. Figure 7 illustrates that 
the expected in-flight limit cycle results were substanti
ated quite well. 

CONCLUSIONS 

The hybrid simulation described in this paper proved 
to be a valuable aid in the development and design 
validation of a new digital flight control system for the 
Titan IlIC. 

The simulation was instrumental in resolving prob
lems associated with digital filter accuracy and digital 
flight control system noise susceptibility. Also malfunc
tion detection logic for the airborne missile guidance 
computer software was developed. This developmental 
work contributed significantly to achieving an opera
tional digital flight control system which is capable of 
flying the broad range of Titan IIIC missions without 
the necessity of reprogramming software. 

The simulation was successfully used for validation 
of the final airborne software by executing a series of 
carefully planned validation tests. These tests were de
signed to verify performance of the entire digital flight 
control system. 

REFERENCES 

1 R S JACKSON 
Minimization of computer word length and storage 
requirements in recursive digital filter design 
IEEE Proceedings of the Fourteenth Symposium on 
Circuit Theory May 6-7 1971 



Multivariable function generation for simulations 

by S. P. CHEW, J. E. SANFORD and E. Z. ASMAN 

Boeing Computer Services 
Seattle, Washington 

INTRODUCTION 

The purpose of this paper is to describe the mechaniza
tion of a technique for generating continuous functions 
of up to six variables, given a discrete set of experi
mental data points. This technique is currently being 
applied in a real-time simulation of a high performance 
missile. The characteristics which make this method of 
function generation unique are the high speed with 
which many multivariable functions are produced and 
the large size of the data base from which .the function 
values are computed. 

The need for this capability emerged at a time when 
an existing hybrid simulation of the missile was to be 
improved and expanded to support missile flight tests. 
It was determined that in order to refine the simula
tion's predictive and post-flight analytic capability, a 
substantial improvement over the existing all analog 
method of generating the functions which define the 
aerodynamic model was required. With. the all analog 
method, only a small portion of available data could be 
applied to model the missile aerodynamics. The objec
tive was to develop a technique for direct utilization of 
wind tunnel data in order to provide a more accurate 
model. 

The following discussion defines the problem and its 
solution constraints, considers alternative solutions and 
describes the mechanization of the selected approach. 
A summary of significant results achieved by the 
application of this technique concludes the discussion. 

PROBLEM DEFINITION 

The problem of generating aerodynamic functions 
in a real-time* simulflJtion of a high performance missile 
is more difficult than in simulations of slower flight 

* Real-time simulation is required in order to evaluate flight 
hardware in the loop and to collect sufficient data in a reasonable 
amount of time. 

233 

systems, primarily because of the higher system fre
quencies involved. The difficulties, however, become 
particularly acute when the number, shape and size of 
the missile control surfaces is highly restricted by 
carrier-missile interface design. The stringent per
formance requirements for maneuverability and the 
control surface design constraints, impose demanding 
requirements on the function generation task. Some 
important reasons for this are: 

1. During certain maneuvers, a control surface 
(fin) may be flying in the shadow of the missile. 
The effectiveness of this control surface may be 
very non-linear with respect to the deflection 
angle. 

2. The missile control system is only stable within 
a narrow region defined by the gain margin. Gain 
margin errors of a few db introduced by the 
function generation process may quickly in
validate simulation results. 

3. The frequency response of the system is excep
tionally fast. Any computational delay intro
duced has a pronounced effect on the gain 
margin. 

In addition to all of these general constraints, the 
following specific simulation requirements were identi
fied: 

1. The number of functions to be generated In 
real-time, included: 

6 functions of 6 variables 
5 functions of 3 variables 
3 functions of 4 variables 

2. A provision for a data base containing approxi
mately 20 million discrete, wind-tunnel derived 
data points was required. 

3. All function outputs were to be continuous to 
permit integration with the existing simulation 



234 Fall Joint Computer Conference, 1971 

and to avoid degradation in gain margins. U n
acceptable degradation was empirically deter
mined to occur when function output delays 
exceeded 0.3 milliseconds; 

4. The selected function generation technique was 
to provide the capability for rapidly altering 
functional data, as further wind-tunnel or actual 
flight test data became available. 

A literature search of material related to multi
variable function generation and consultations with 
individuals and equipment manufacturers (See Refer
ences 1, 2 and 3) yielded useful ideas which later 
influenced the design concept. Most notably, contacts 
with Mr. A. I. Rubin, author of Reference 3, provided 
the base from which the ultimate design evolved. 

ALTERN ATIVES 

Several alternatives were evaluated for satisfying 
the above problem definition. Improvement to the 
existing all analog aerodynamic function generation 
system was rejected because lengthy and complex curve 
fitting techniques are required whenever changes to 
aerodynamic data points are made. Also, the system 
did not accurately represent the functions, due to 
inherent noise and inability to include sufficient data 
points. Evaluation of function generation using a 
general purpose digital computer revealed that un
acceptable time delays would be created. It was deter
mined that a Hybrid Function Generation System 
(HFGS) would best meet the stringent requirements 
for accuracy, flexibility of modifying function data 
points, and frequency response. Two mechanization 
alternatives, a multiplexed and a parallel, were evalu
ated. The multiplexed HFGS, which generated several 
functions with the same set of circuits, could greatly 
reduce the number of computing components. Although 
a reduction in components could theoretically be 
achieved, the component specifications would be 
extremely rigid and the resultant system would have 
limited general purpose applications. The parallel 
HFGS, which employed separate circuits for each 
function, could be designed with commercially available 
computing components and configured to meet the 
required multivariable function generation task as 
well as other simulation needs. Based on these evalu
ations, the parallel alternative was chosen for imple
mentation. 

The parallel HFGS (See Figure 1) was envisioned to 
consist of a large general purpose digital computer, 
interfaced with a special hybrid computing unit. The 
digital computer would be assigned the task of data 

storage, management and input/output. The hybrid 
computing unit would perform the interpolation 
calculations in parallel, to. produce continuous func
tions simultaneously. 

HFGS DESIGN REQUIREMENTS 

In order to meet the simulation requirements dis
cussed earlier, certain internal design criteria had to 
be met: 

1. The HFGS was required to produce updated 
function values in less than 5 msecs. following a 
breakpoint* crossing of anyone of the indepen
dent variables. Consequently, the internal update 
time was not to exceed 2.5 msecs. 

2. A correct set of 442 data points had to be 
retrieved from storage and made available for 
interpolation within the update time. 

3. The data requirements had to be met within the 
storage constraints of the available digital 
computer. 

4. The interpolated functions had to match within 
1 percent the theoretical values obtained from 
linear interpolation of wind-tunnel data. 

The stringent 5 msec. requirement was derived from 
consideration:s of missile frequency characteristics, 
minimum expected spacing between breakpoints and 
time delay constraints. A longer update time was 
expected to compromise the 1 percent accuracy speci
fication considered necessary to provide realistic 
results. 

EASE 2100 CONSOLES 

AND XDS 9300 ",,"PUTER 

-
HI SSI LE SIMULATION 

• CARRI ER TARGETI NG PROGRAM 

• HI 551 LE GUI DANCE 

• EQUATIONS OF HOTIONS 

• FLI GHT CONTROL SYSTEM 

• FI N ACTUATION SYSTEM 

HYBRI D FUNCTION GENERATION SYSTEM 

~ ADI ~ HYBRI D 
CONSOLES 

11 '";:::.":~ .. 
I Lt-- 4 6 Functions of 

6 Variables 

.. 3 Functions of 
4 Variables 

.. 5 Functions of 

AERO DATA 
MANAGEMENT 

• General Control 

• Address Calculation 

• Datil Storage 
Retrieval and 
Output 

<:= = 4Functlon Dat. 
II 3 Variables 

,-__ ....L-t __ --,I L f-- • Independent 
Variables 

= ==:;: .D~;~f!~~:sl:~:pend.n 
Interrupt Signals 

FLI GHT HARDWARE 

OPERATI DNAL MOCKUP 

~ AnalogSlgnals <===:::J DI gl tal Dat. 

Figure I-The Boeing hybrid function generation system 

* Breakpoint is a predefined discrete value, Xi, of an Independent 
variable X for which a function data point f(Xi) exists. 



In order to provide for the occurrence of two break
point crossings in rapid succession, the internal update 
time had to be 2.5 msecs. This would ensure that 
sequential processing of two closely spaced breakpoints 
would not exceed the allotted 5 msecs. to accomplish a 
function update. 

DATA REDUCTION TECHNIQUES 

The HFGS was required to produce functions from 
data matrices of 17X13X13X13X13X7 (3,398,759 
points), 17X 13X 13X7 (20,111 points) and 6X3X25 
(450 points) for functions of 6, 4 and 3 variables 
respectively. To represent the specified number of 
multivariable functions, the resulting data base would 
be 20.5 million points. Although required to accurately 
describe the highly non-linear aerodynamic functions, 
the data base was impractical to . obtain from direct 
wind tunnel measurements or to fit into the random 
access memory of the available digital computer. 

Fortunately, not all of the 20.5 million points were 
needed to reproduce an EFFECT lVE data base of the 
specified size. 

The aerodynamic coefficients produced by the HFGS 
are functions of six independent variables: angle of 
attack, a, side slip angle, /3, velocity, M, and the control 
surface deflection angles (h, 02 and 03. Although a six 
dimensional d,ata matrix is needed to describe a func
tion of six variables, in practice a minimum set of 
single fin effective data is obtained from wind tunnel 
measurements. The effect of each control surface is 
incrementally combined to produce an equivalent 
function of 6 variables. This superposition of the fin 
effects reduces a function of 6 variables to the sum of 
3 and 4 variable functions. The superposition algorithm 
for this reduction is: 

f(a, /3, M, 01, 02, 03) =fo(a, /3, M) 

which simplifies to: 

+f1(a, /3, M, 01,0,0) -fo(a, /3, M) 

+f2(a, /3, M, 0, 02, 0) -fo(a, /3, M) 

+f3(a, /3, M, 0, 0, 03) -fo(a, /3, M) 

f(a, /3, M, 01, 02, 03) =f1(a, /3, M, 01) 

+f2(a, /3, M, 02) +fs(a, /3, M, 03) -2fo(a, /3, M) 

The 17 X 13 X 13 X 13 X 13 X 7 data matrix required for a 
function of 6 variables was reduced to one matrix of 
(17XI3X7), and 3 matrices of (17X13X7X13) for 
functions of 3 and 4 variables respectively. This reduces 
3,398,759 data points to 61,880. Since redundant data at 
01 = 02 = 03 = 0 in these matrices can be eliminated, the 

Multivariable Function Generation 235 

number of data points would be 57,239 for each of the 
6 functions of 6 variables. 

In addition to superposition, vehicle symmetry 
presented the opportunity to further reduce the data 
base. Function values corresponding to negative angles 
of an independent variable can be derived from data 
measured at positive angles. The HFGS is programmed 
to compute data points derived from symmetry during 
each update cycle. 

The above techniques reduced the specified 20.5 m 
point data base to approximately 435,000 points. 

The available digital computer was an IBM 360/75 
equipped with a 750K byte core memory. The data 
base of 435K, 15-bit data points would require 870K 
bytes. Since the total database could not reside in core, 
the total function data was segmented into several 
pages and stored on drum. Each page contained data 
corresponding to a breakpoint of the slowest changing 
variable. For linear interpolation data from two ad
jacent pages are required. Thus only four pages (two 
immediate plus one ahead and one behind) need to be 
in random access memory at any time. Since the paging 
variable is relatively slow, a new page can be trans
ferred to core before the paging variable exceeds the 
boundaries described by the resident data. 

The data base required to produce the functions could 
now reside in core and be manipulated by the software. 
The application of these data management techniques 
did not compromise original system specifications. 

THE INTERPOLATION ALGORITHM 

The linear interpolation algorithm was chosen to: 

1. Provide direct correspondence between equation 
and computing elements for easy hardware 
implementation and fault isolation. 

2. Allow systematic expansion from functions of 
one to n variables. 

3. Eliminate operational restrictions (such as 
maximum slope and data spacing) because of 
hardware limitations. 

The algorithm can be derived directly from the 
principle of superposition as follows: 

Figure 2 shows a typical function of one variable. 
Figure 3 shows the region of interest. For linear inter
polation, regardless of how the rest of the data 
points are distributed, the value f(X)' at any point 
Xi5;X 5;X i+1 is determined by f(Xi) andf(Xi+1)' The 
principle of superposition states that the value of f(x) 
can be computed as the sum of the individual con-



236 Fall Joint Computer Conference, 1971 

f(X) 

XI X X,+l X 

Figure 2-A function of one variable 

tributions from f(Xi) and f(Xi+l) , The contribution of 
f(Xi) is fl in Figure 2, From similar triangles: 

, [Xi+l-X] 
h=f(Xl) X X· 

i+l- 1 

Similarly the contribution of f (X i+l) is: 

[ 
X-Xi] 

f2=f(Xi+1) X X' 
i+l- 1 

And 

[
X'+I-X] ( X-Xi] 

f{X) =fl+f2=f(Xi) X ~ X' +f(Xi+l) X X'. 
i+l- 1 i+l- 1 

(2) 

Although the spacing between data points is not equal, 

f(XI+l ) 

f(X) 

f(XI) fl 

~'~ 

f2~ 
fl '-...." 

...... ,. 

'~--
Xf 6X X 1-6X X'+1 

Figure 3-Generation of f(x) within two known points 
by superposition 

simplification of the equation is accomplished by 
normalizing each interval between Xi and X i+l to 
unity, Thus, in Figure 2, 

and 

Xi+l-Xi= 1; 
X-Xi 
--- =X-Xi=aX' 
Xi+l- Xi ' 

Xi+1-X [ '] [X X'] 1 X ---, = Xi+l-X1 - - 1 = -a , 
Xi+l-Xl 

Equation (2) becomes 

f(X) = f(Xi) [1- a.¥]+f(Xi+l) [aX] (3) 

The same principle can be applied to obtain the 
interpolation algorithm for a function of two variables, 
From Figure 4, f(X, Y) is determined from the mag
nitude of f21 and f12 which are in turn determined by 
f(Xi, Yi), f(Xi+l, Yi), f(Xi, Yi+l) and f(Xi+l, Yi+l) , 
The magnitudes 

f21=f(Xi, Yi)[1-AX]+f(Xi+l, Yi)[aX] 

f12= f(Xi, Yi+l) [1- AX]+f(Xi+1, Yi+l) [aX] 

f(X, Y) =f21[1-aY]+h2[aY] 

Substituting for f12 and f21 

f(X, Y) =f(Xi, Yi)[1-aX][1-aY] 

+f(Xi+l, Yi) [aX][1- aY] 

+f(Xi, Y i+1) [1- AX][aY] 

+f(Xi+1, Yi+l) [AX][aY] 

Figure 4-Generation of a function of two variables 
by superposition 

(4) 

f(Xr+l,Yr+l) 



XI 

X 

Analog 

6X=~ 
XI+I - XI 

Where (1) Digital 
Input ~

Input 

MDAC 

-6X 

+6Y 

-6X 
I 

(2) High gain analog amplifier 

-{>- Analog Inverting amplifier 

Figure 5A-A typical normalization circuit 

- (6X) (1-6 Y) 

- (6X) (6Y) 

- (I-6X) (6 y) 

-(I-6X) (I-6Y) 

-----------

-/:.Z 

=rE> -(6X) (AY) q; (6X) (6Y) (AZ) 

(6X) (6Y) (1-6Z) 

-6Z 

=22 - (/:'X)(6Y) q; (6X) (6Y) (6Z) 

(6X) (6Y) (1-6Z) 

-6Z =p -.(I-AX)ilY q; (1-6X) (6 Y) (ilZ) 

(I-6X) (6Y) (I-6Z) 

Figure 5B-Generation of weighting coefficients for a 
function of three variables 

-6X 

Multivariable Function Generation 237 

(1-6X) (1-6 y) (I -6Z) 

f(XI,Yj,Zk) 

(I-6X) (I -6 Y)6Z 

(I-6X) (6Y) (1-6Z) 

(I -6X) (6 Y) (6Z) 

(6X) (I-6Y) (I-6Z) 

(6X) (HY) (6Z) 

(6X) (ll y) (I -6Z) 

(lIX) (6Y) (6Z) 

Where (1) 

f (x, Y,Z) 

Multiplying Digital to Analog Converter 

(2) f(XI,yj,Zk)' ..... , f(Xi+I'Yj+l'Zk+l) are the 

functional values at the breakpoints (Olgl tal) 

(3) (1-6X) (1-6Y)(I-6Z), ••••• ,6X6Y6Z are the weighting 

coefficients (Analog voltages) 

Figure 5C-Implementation of a function of three variables 

The same procedure can be applied to derive the 
interpolation algorithm for a function of three variables. 
But we also have observed from the physical picture 
that the value of the function f(X, Y) at any point 
(X, Y) is the sum of the ~ontributions of the data 
points immediately surrounding the point. Furthermore 
the magnitude of each contribution is proportional to 
the magnitude of the data point multiplied by the 
normalized distance from the point (X, Y) to the 
reference point. The normalized distances are actually 
weighting coefficients of the data points since their 
expanded sum is equal to unity. 

With the experience gained from the procedure of 
deriving the interpolation algorithm for a function of 
two variables we can systematically write down the 
interpolation algorithm for a function of n variables. 
As an example, for a function of four variables there are 
2n (n = 4) data points surrounding any point of interest. 
Therefore, there will be 24 = 16 terms contributing to 
the value of the functionf(X r Y, Z, W). Each term will 
be the value of a data point multiplied by a weighting 



238 Fall Joint Computer Conference, 1971 

~ MultIplIer 

-6a 
EC 

+1--_1 ..... 

I I 
I 60.6P (1~») I 
'---- --- -.-------' 

r-----------
6o.6p (1~) 66 1 

L ___ 6~ ~~ <..!.~l {,!..-6_6 J L 

,----------., 
6M t:, a {I ~P}b.MI---+--I 

: I 

r-------------
60. (I-6p)6~ 6 1 I 
6a (l~P}b.M(I~ 61) I L ______________ J 

60. (1~P) 
I 
I 6o.(1~p){l '- ___________ .J 

r- - --- --------
6a(I~p)(1-6M)661 I 

6a (1-68) (1_6M) (l~ 61 L ___________ _ 

r------------
r-----------, (l-6o.~ 61 I 
6M {l~o. ~ {1-60)6p6M(I~ 6I> I I I L _______ ~ ____ _ 

I (1-6a)6p I ,----- - _____ _ 

I (l~a)6p(l~)I:--+-1 (1-60' )6P (1...0.M) 6 6 1 I 

L - - - - - -- - - - J {l~a )6p (1..6M) (1-66 1) I L ___________ _ 

r--------------
r------------, (1~o.)(1~p~61 I 
6M (1-60.) (I -6p}b.M t----+--I (I ~ a ) (I -6p)6M (1 ~ 61) I 

1 I L ____________ _ 

1 (l-6a){l~) I r ____________ _ 
(l~O) (1~P) (1-6M}---+--t (l~ 0' ) (l~P) (1-6M) 6611 

L ______ - - _oJ L_~~~~~~~)~l~J~~~ 

Figure 6-Implementation for the generation of a function of six variables 

f(o.,p,M, 6 1,/21 

63) 

coefficient or the normalized distance between the 
reference point and the point of interest. 

+f(Xi, Yi+l, Zi, Wi+1)(l- aX) (.1Y) (1- az) (a W) 

+f(Xi+1, Y i+1, Zi, W i+1)(.1X)(AY)(I-aZ)(aw) 

+f(Xi, Yi, Zi+l, Wi+1)(I-aX)(I-aY)(az)(aw) 

+f(Xi+1, Yi, Zi+1, Wi+1) (.1X)(l-aY)(az)(aw) 

+f(Xi, Yi+l, Zi+l, Wi+1)(I-aX) (aY)(az)(aw) 

+f(Xi+1, Yi+l, Zi+l, W i+1)(ax)(.1Y) (.1Z) (aw) 

Thus 

f(X, Y, z, W) 

=j(Xi,Yi, Zi, Wi)(l-aX)(I-aY)(I-aZ)(I-.1W) 

+f(Xi+l, Yi, Zi, Wi)(aX)(I-aY)(I-aZ)(I-.1W) 

+f(Xi, Yi+1, Zi, Wi)(I-aX)(aY)(1-.1Z)(I-.1W) 

+f(Xi+1, Y i+1, Zi, Wi)(.1X)(aY)(I-.1Z)(I-LlW) 

+f(Xi, Yi, Zi+l, Wi) (1- aX) (1- .1Y) (.1Z) (1-.1 W) 

+f(Xi+l, Yi, Zi+l, Wi)(.1X)(I-.1Y)(aZ)(I-aW) 

+f(Xi, Y i+1, Zi+1, Wi)(l-aX)(aY)(.1Z)(I-aW) 

+f(Xi+1, Yi+l, Zi+1, Wi) (ax) (.1Y) (az) (1- aw) 

+f(Xi, Yi, Zi, Wi+1)(I-aX)(I-aY)(I-aZ)(.1W) 

+f(Xi+l, Yi, Zi, Wi+1)(.1X)(I-aY)(I-aZ)(aW) 

SYSTEM IMPLEMENTATION 

In the interpolation algorithm the independent 
variables X, Y, etc., and their normalized values AX, 
aY, etc., are analog signals; the breakpoints Xi, Yi, 
etc., and the function data points f(Xi . .. ), etc., are 
digital values. Each function is the sum of several 
products. Each product is the multiplication of a digital 
value, f(Xi ... ) by an analog signal, the product of 
the a's, and (1-.1)'s. This form of the algorithm is 



IBM 

INTERRUPT 

I 

SELECTOR 
CHANNELS 

2860 

CH 1 

2860 

CH 2 

~ • I 
! 6 f (6v) 

ADAPTER 
UNIT 

2701 

2701 

2701 

2701 

MDAC 

Multivariable Function Generation 239 

INTERFACE 

~ ~ 
RIF 1 

RIF 2 

I<J ~ RIF 3 
I ! 

fJ ~ RIF 4 

__ ,, _________________ --+_---1 

i 
PRODUCT 

I WEI GHTI NG ADC 

ANALOG 

SIMULATION 

EQUI PMENT R i i f (4v) INTERPOLATOR I COEFFI CI ENTS 
! I 

! 
MVX 

I 

f (3v) 

I I 

W 
I 

I 

9 --9"-
GENERA TI ON 

ANALOG VARIABLES~ __________________________________________________ _L ______ ~--~ 

----t> Dig I ta 1 Da ta 

----I.-Analog Signals 

Figure 7-HFGS implementation 

ideally suited for implementation using hybrid com
puting circuits. The basic computing elements are (1) 
the multiplying digital to analog converter (MDAC), 
(2) the analog multiplier, and (3) the operational 
amplifier. The implementation of a typical normaliza
tion circuit is shown in Figure 5A. Figure 5B shows 
how the products of the d'S and (1- L.\) 's can be formed 
systematically for functions of two and three variables. 
Figure 5C shows the concise implementation of a 
function of three variables using MDAC's. Figure 6 
shows the implementation of equation (1), a function 
of six variables. 

In a typical flight simulation all aerodynamic 
coefficients are functions of the same independent 
variables. Under such conditions one set of normaliza-

tion circuits is sufficient for the generation of all 
functions of the same variables. This simplifies the total 
system implementation requirement considerably. 

The HFGS is implemented with an IB]\II 360/75 
digital computer interfaced to four AD/4 analog com
puters that house hybrid computing elements. A block 
diagram showing the interconnections of the major 
subsystems of the HFGS is in Figure 7. Two-way 
communication is provided between the digital com
puter and the interpolation circuits. The DACs and 
the MDACs in the normalization circuits receive break 
point values and break point spacing information 
respectively from the digital computer. The remaining 
MDACs receive functional values of corresponding 
break points from the digital computer. The dual data 



240 Fall Joint Computer Conference, 1971 

path provides an effective transmission rate of one 
million words per second. An analog-to-digital con
verter (ADC) supplies the values of the analog in
dependent variables to the digital computer. Analog 
comparators are used for monitoring the outputs of the 
normalization circuits. The outputs of the comparators 
are connected through an OR circuit to an interrupt 
line in the digital computer. Servicing of the interrupt 
is controlled by the function generation program. 

SYSTEl\1 OPERATION 

The interpolation circuits for generating the multi
variable functions are programmed on the analog 
patchboards. The digital computer stores in memory 
and bulk storage the digitally recorded data repre
senting the functions to be generated. During a simula
tion, the analog computing elements monitor the 
independent variables and generate interrupt signals to 
the digital computer when the value of any variable 
crosses a breakpoint. This condition occurs when the 
normalized value of any independent variable goes 
below zero or above unity. The ADC under the control 
of the digital computer converts and supplies the values 
of the independent variables to the digital computer. 
Based on these values the digital computer calculates 
data addresses, retrieves, orders and outputs the 
necessary data to the l\1DACs. If necessary, it brings in 
a new page of data from the drum concurrently with the 
other operations. The computing elements in the analog 
consoles perform linear interpolation simultaneously 
and continuously based on the instantaneous value of 
the independent variables. Negligible phase delay is 
introduced as the functions are generated. As the value 
of any variable crosses a breakpoint, the digital com
puter again updates the MDACs dynamically within 
2.5 msec. with new data. 

During the 2.5 msec. after an independent variable 
crosses into a new region and before the MDACs can 
be updated with the new data, the process of inter
polation temporarily becomes extrapolation since the 
independent variable is outside the defined region. The 
error of extrapolation depends on the rate of change of 
data values between adjacent data points. This ampli
tude error appears as high frequency noise in the 
simulation. 

HFGS CAPACITY 

Equipment capable of generating functions of six 
variables is obviously good for functions of 5, 4, 3, 
2 or 1 variables. Table I shows the maximum ca
pacity of the Boeing HFGS. The number of functions 

TABLE I-Capacity of the HFGS 

No. of functions 212 106 53 26 13 6 

No. of Variables 123 4 5 6 

that can be generated increases as the number of 
variables decreases. A mix in the number of functions 
and the number of variables is also possible. The total 
maximum number of independent variables at present 
is limited to 9. 

SYSTEM ACCURACY 

One interesting point worth mentioning is the 
determination of the dynamic accuracy of the HFGS. 
If a standard sine wave of 100 HZ at 100 volts peak is 
used to represent the independent variables, the 
product term of the normalized variables in the inter
polation algorithm can become very complex. For 
instance, let 

AX=AY=AZ=AW= sin wt, 

then 

(AX) (AY) (AZ) CAW) 

= sin4 wt = % - Y2 cos 2wt + VB cos 4wt 

The product terms of the weighting coefficients all 

A. Signal Characteristics of A Sallpled-hta S'(St. 

~~ 

Output" os ... ,Je 11 t 
Hold while COlllpute 

Output a. s .... ple 

Hold while c~ut. 

Output a. ..... ple 

I 

SallPffl 1'-.,---') CoaIpute 

Update 
SalWple 

c:-pute 
Update 

f'UIICtiO/l •• erated by 
a s.,.led-data system 

tr function 

Figure 8-Comparison of output signals 



contain harmonics of the original sine wave. The output 
of the function, in general, will not be a simple sine 
wave. However, with the understanding of the char
acteristics of the weighting coefficients, the equation 
can be simplified for test purposes. The equation for 
linear interpolation can be rearranged such that all 
terms containing one normalized variable, such as ~ W 
are collected in one group and the remaining terms 
containing (1- ~ W) in another group. Within each 
group the common terms ~W, and (l-~W) are 
factored out giving: 

f(X, Y, Z, W) 

= (l-~W)[f{Xi, Vi, Zi, Wi)(l-~X)(l-~Y)(l-~Z) 

+f(Xi+l, Vi, Zi, Wi)(~X)(l-~Y)(l-~Z) 

+f(Xi, Yi+l, Zi, Wi)(l-~X)(~Y)(l-~Z) 

+f(Xi+l, Y i+1, Zi, Wi) (~X)(~Y) (1- ~Z) 

+f(Xi, Vi, Zi+l, Wi)(l-~X)(l-~Y)(~Z) 

+f(Xi+l, Vi, Zi+l, Wi)(~X)(1-~Y)(~Z) 

+f(Xi, Yi+l, Zi+l, Wi)(l-~X)(~Y)(~Z) 

+f(Xi+l, Yi+l, Zi+l, Wi) (~X) (~Y)(~Z) ] 

+(~W)[ f(Xi, Yi,Zi, Wi+l)(l-~X)(1-~Y)(l-~Z) 

+f(Xi+l, Vi, Zi, Wi+l)(~X)(l-~Y)(l-~Z) 

+f(Xi, Yi+1, Zi, Wi+l)(l-~X)(~Y)(l-~Z) 

+f(Xi+l, Yi+l, Zi, Wi+l) (~X) (~Y) (1- ~Z) 

+f(Xi, Vi, Zi+l, Wi+l)(l-~X)(l-~Y)(~Z) 

+f(Xi+l, Vi, Zi+l, Wi+l)(~Z)(l- ~Y)(~Z) 

+f(Xi, Yi+1, ZiH, Wi+l) (1- ~X) (~Y) (~Z) 

+f(Xi+l, Yi+l, Zi+l, Wi+l)(~X)(~Y)(~Z)J (6) 

The remaining coefficients inside the brackets are 
exactly the weighting coefficients of a function with 
one less variable. If we set the digital values of the data 
points in the two groups to El and E2 respectively, and 
factor them out of each group, we have 

f(X, Y, Z, W) = (l-~W)El[(l-~X)(l-~Y)(l-~Z) 

+ ... +(~X)(dY)(~Z)J 

+ (~W)E2[ (1- ~X) (1- ~Y) (1- ~Z) 

+ ... + (~X) (~Y) (~Z) ] 

Since the weighting coefficients inside the brackets 

Multivariable Function Generation 241 

reduce to unity, the equation becomes 

f(X, Y, Z, W) = (l-~W)El[lJ+ (~W)E2[lJ (7) 

Equation (7) indicates that whatever signals are used 
for ~X, ~Y, and ~Z, they should sum up to unity for 
properly chosen values of data points. Equation (7) 
shows the simple relationship between the output of 
the function and the input signal ~W. The use of (7) 
enables the measurement of small dynamic errors by a 
simple comparison of output to input while all function 
generation circuits are being exercised. 

The maximum total dynamic error including phase 
shift for a function of six variables measured at an 
output signal of 100 sin21r(100)t volts is 1 percent. The 
measured error is very close to the calculated error 
based on the individual component specifications. 

A COMPARISON WITH OTHER METHODS 

Before the hybrid equipment was available for 
function generation, the aerodynamic coefficients were 
simulated in an analog aero model. An example of the 
interpolation polynomial for the coefficient C L is given 
below. The mechanization of this polynomial on an 
analog computer introduces very little phase delay at 
the output. But, the basic drawbacks are: 

1. Many man-months of effort are spent in the 
derivation of the interpolation polynomial from 
wind tunnel data. 

2. The equation does not produce correct outputs 
throughout the entire range of interest. 

3. The many multiplications and gains in a chain 
produce unacceptable noise amplitudes. 

4. The method requires a major effort to update 
when new data are obtained from wind tunnel 
tests. 

A sampled-data hybrid system employing a large 
scale digital computer with simple zero-order hold 
reconstruction was tested for function generation by the 
sample, compute, output and hold scheme. The com
plete cycle using digital interpolation is about 7 milli
seconds. The output waveform of this sampled-data 
system is compared to the waveform of the HFGS in 
Figure 8. The significant difference is that the HFGS 
introduces negligible phase delay at the output. With 
the phase delay created by the sampled-data system 
the simulation was forced to run at 10 times slower than 
real-time. Even on a 10 times slower time scale, the 
method introduces into the simulation a loss in gain 
margin twice as much as the HFGS running in real
time. 



242 Fall Joint Computer Conference, 1971 

A Sample Equation For An Aerodynamic Coefficient C I 

CZ=C1(3f3+C 1(321 f31 f3+CZhOl+Clo}21 011 01+C1PP-CyAZCG 

+CZ8202+CI822 I 021 02+CloS03+CZ8a2 I 03\ OS+CZ(33(33 

+ [C la(3(3C la(33(33a + C la3(3{3 + C la3(33(3S]aS 

+[C1(301 I 01 I + CZ(3o 12012 + C1(30 140l4]f3 
+[Cl(321lt0l+Cl(32012 101 I 01+C1(32014 I 01 I 

} Derivatives depend on the sign of a 

5.319'} 
} 

Derivatives depend on the sign of f301 

+ [Claol01+ C 1ao12 I 011 01+Clao1301S]a 
+ [Cla21lt0l+Cla2012 I 01 I 01+CZa20130lS]a2 

Derivatives depend on the sign of a 

+ [C la/i202 + C la/i22022 + C lao2302S]a 
+ [C la20202 + C la2022022 + C la2023023 ]a2 

+ [C laosOS + C laos20S2 + C laos3033]a l 
l 

Derivatives are zero for negative a, and depend on the 
sign of 0 for positive a 

+ [C la2osOS + C la2os2032 + C la2oa80aS]cx2 

+ [C 1(30202 + C 1(3022022 + C l~o 24024]f3 
+ [C 1(321l202+C 1(32(322022+ C 1(32024024](32 
+ [C l(3os0S + C l(3os2032 + C l~oa40S4]f3 

Derivatives depend on the sign of f3 and the sign of 0 

+ [C 1(32os0S + C 1(32oa20S2 + C 1(32os40S 4 ]f32 

SUMMARY OF SIGNIFICANT 
IMPROVEMENTS USING THE HFGS 

The use of the HFGS has enabled the refinement of 
real-time flight simulations of high performance systems 
to a degree never before achieved at Boeing. Some 
important benefits resulting from the application of the 
HFGS are summarized below. 

1. The use of recorded data eliminates the tedious 
process of curve fitting which often fails because 
the functions are not analytic. 

2. The flexibility of a digital computer allows fine 
adjustments of the aeromodel unattainable by 
analog computing methods. 

3. The parallel, continuous outputs of the HFGS 
eliminate the phase delay of sampled-data 
systems. The illustration in Figure 8 shows that 
the delay in updating the function values in the 
MDAC's creates amplitude errors (due to 
extrapolation) rather than a phase shift. The 
superior signal characteristics of the HFGS 
have enabled the simulation to run in real time 
with a high degree of confidence in the accuracy 
of the simulation results. The increase in 

simulation speed by a factor of ten over the 
sampled-data system represents a significant 
improvement in computing efficiency. 

The ease of function changes with the HFGS have 
enabled refinement of the aeromodel until simulation 
data and missile flight test telemetry data closely 
matched. Observed anomolies were exactly reproduced 
by the simulation during the post-flight analysis phase. 
Based on these factors this hybrid technique of multi
variable function generation is considered to be a 
success. 

REFERENCES 

1 R WHAMMING 
Numerical methods for scientists and engineers 
1962 

2 J A PUSTAVER JR. 
A multivariable interpolation formula 
Air Force Cambridge Research Laboratories Physical 
Sciences Research Papers No 358 May 1968 

3 A I RUBEN 
Hybrid techniques for generation of arbitrary functions 
SIMULATION Volume 7 number 6 December 1966 



Problems in, and a pragmatic approach to, 
programming language measurement 

by JEAN E. SAMMET 

IBM Corp(YI'ation 
Cambridge, Massachusetts 

INTRODUCTION 

Although considerable attention has been given to the 
measurement of compilers (e.g., size of compiler, 
amount of memory needed for compilation, speed of 
compilation and object program, size of object code), 
virtually nothing has been done about measurement of 
languages. This is not an empty issue, because there are 
a number of relevant and significant questions per
taining to programming languages for which we would 
like to have (quantitative) answers. For example, 
given three languages which two are most alike? By 
what criteria? Which of them is most like some fourth 
language? How could we develop a general ranking or 
hierarchy for a set of languages according to features 
so as to handle subsets and extensions? Probably the 
most important practical question is "For a given 
application or set of applications, which language 
is best?" 

Among the most frequently used phrases involving 
languages are the ones indicating one language is a 
"dialect" of another, or one language is "like" another, 
i.e., an "L-like language." There is no concrete meaning 
for these terms. Furthermore, given two "dialects," 
how do we determine which is closer to the base 
language? 

Finally as an illustration of a different kind of ques
tion, consider the problem of having N syntactic forms 
for accomplishing the same specific task; we need SOIJle 
specific numerical method of comparing them. For 
example, suppose one language has a key word XYZ, 
and one "dialect" uses XYZABC while another 
"dialect" uses RST; which is closer to the original? 

The entire field of programming languages is quite 
sUbjective; opinions are used more often than facts. 
Part of the reason for this is the lack of numerical 
values which can be associated with languages, and 
hence the lack of concrete data. Development of 
methods for quantification should help improve objec-

243 

tivity. Eventually such measurements should help 
improve the selection of a language, the design of new 
languages, the modification of existing ones, and even 
in implementation. 

The second section establishes the problem by dis
cussing currently used terms, the practical need for 
comparison, types of measurements, and elements not 
included in the current approach to the problem. The 
third and fourth sections discuss approaches to measure
ment of non-syntactic and syntactic characteristics, 
respectively, including relevant features, the numerical 
approach, and examples. A brief summary is given at 
the end. 

The only related published work seems to be that of 
Goodenough. 1 His paper concentrates on syntax and 
semantics from a linguistic (not a numerical) view
point. This paper takes a very pragmatic approach and 
emphasizes many of the intangible aspects of languages. 

ESTABLISHMENT OF MEASUREMENT 
PROBLEM 

Currently used terms 

There are a number of terms which are currently used 
in discussing programming languages which imply some 
type of measurement. Unfortunately this measurement 
is very likely to be subjective. As the simplest illustra
tion, consider the term "dialect" which is generally 
used for a language purportedly very similar to some 
other language; very often a dialect is merely a particu
lar implementation of a well known language with some 
"trivial" changes made. Well defined dialects usually 
arise by making "minor" syntactic changes, e.g., 
restricting the number of characters in a data name, 
eliminating certain options in a partiCUlar command, 
and/ or adding some particular feature or removing a 



244 Fall Joint Computer Conference, 1971 

restriction which is in the original language. As indicated 
in the previous section, one of the problems that con
stantly faces us is the situation in which we have two 
dialects of a given language and no way of measuring 
them relative to each other or to the base language. 

Another popular term which is frequently heard is 
the phrase "L-like language." This usually refers to a 
language which is similar in spirit and notation to 
language L, but differs from it markedly enough not to 
be considered merely a dialect. Thus we hear of 
"ALGOL-like" languages, or "PL/I-like" languages 
(e.g., REDUCE and MAD /1 respectively) . Not only do 
we have the same problem of measuring the "likeness" 
that exists with dialects, but in addition we have no 
way of indicating when a language stops being a dialect 
and when it starts becoming an L-like language. 

In both these cases the primary issue is one of syntax; 
semantics generally plays only a minor role. 

This paper does not provide firm definitions of the 
terms "dialect" and "L-like language"; however, the 
types of measurements discussed do provide an ap
proach which will help in defining these terms. As a 
first approximation, we might (arbitrarily) say that a 
language which has a syntactic deviation of 20 percent 
from another language is a dialect, whereas a deviation 
between 20 percent and 50 percent would be considered 
"language-L like." Beyond 50 percent it might be truly 
considered a different language. 

The questions of subsets and extensions are somewhat 
more easily dealt with. This author has already stated 
in Reference 3 the following definitiori of subset: A 
language 8 is considered a proper subset of a language L 
if (1) there are some programs which can be legally 
written in L which cannot be legally written in 8; (2) 
all legal 8 programs are legal L programs ; and (3) the 
results from a program written in 8 when executed with 
an 8 compiler are the same as the results obtained from 
an L compiler on the same machine, except for those 
aspects which are implementation dependent. 

From that definition of subset, we can then easily say 
that a language E is an extension of a language L if L 
is a subset of E. 

If we look at only subsets or extensions which are 
arranged in a hierarchical fashion then there is very 
little problem. Thus we could have a language L with 
extensionsE(l),E(2), 000, E(n) whereE(i) is a proper 
subset of E (i + 1) for all i. A similar concept can apply 
to subsets. However, in actual practice the situation is 
seldom that simple and what happens far more fre
quently is that there are two languages, both of which 
are extensions (or subsets) of the same base language 
but neither of which is properly contained in the other. 
We need to have some way of measuring the size of the 
extension (or subset) when there are non-nested 

extensions (or subsets). For example, if one extension 
of a language contains a new data type, and another 
one contains a new command, which is really a "larger" 
extension of the base language? 8imilarly if one subset 
removes an input/output command and another one 
eliminates a double precision facility, which is the 
smaller subset? 

Finally, as the worst situation we very frequently 
have what can be called an "L-like extended subset." 
This is a situation in which a language L has a subset 8 
with some mmor deviations (called 8') but some 
features are added to the subset which are not in the 
language L (say 8'+). The result is surely an L-like 
language (or might even be considered merely a dialect) 
but we cannot say anything more quantitative than 
that. If we have two such situations (say 81'+ and 
82'+) we have no way of measuring the amount of 
differences involved. A good example of this is CP8 
and RU8H, both of which are PL/I-like extended 
subsets. 

Practical need for comparison 

There are at least two broad classes of people who 
are concerned in a very practical way with these 
measurements and comparisons, completely aside from 
any theoretical interest. One is the user and the other 
is the implementor. 

The· user in general is concerned with the problems 
of relevance and compatibility. In the case of relevance, 
he is very concerned with the usefulness of a particular 
language for a particular problem or a broad application 
area. However, any resulting decisions on what to 
actually use are generally based on intuition. The user 
badly needs a way of measuring languages in terms of 
their relevance to his needs. He is also greatly concerned 
with all of the issues pertaining to compatibility. For 
example he would like some way of knowing which of 
two languages is most like some other language, because 
use of· the "closer one" will ease his training problem 
and/or improve compatibility and hence ease his 
potential conversion. On the other hand, given two 
languages both of which seem to meet his needs it 
would be very desirable for him to have some way of 
measuring which of these two was "closer" to his needs. 
A nonnumerical approach to this for one case is de
scribed in Reference 2. 

The implementor is slightly less concerned in a 
practical way and slightly more interested from the 
theoretical viewpoint. As part of the practical con
siderations, the implementor is likely to want to meas
ure languages because he may want to consider which 
techniques that have been previously used in a compiler 



for a "similar" language are applicable; if there was 
some reasonable measure of the deviations of the lan
guage he might be able to tell. In another instance, the 
implementor might have a compiler for a given language 
and be attempting to determine how wide a deviation 
in the language could still be handled by the same 
compiler. (In many cases the measurement may be 
irrelevant because one language might be much closer 
to another one numerically but the deviations would 
cause far more drastic changes in compiling techniques 
than from a language which had a bigger numerical 
deviation. ) 

Types of measurements 

There are many types of measurements that can be 
applied, but not all are meaningful in all cases. One 
important type of measurement is that of a single 
language against some fixed numeric scale for a particu
lar characteristic. Thus we might conceivably have an 
absolute scale for generality which is certainly one 
characteristic of a language; a numerical value could be 
given (providing we could establish the scale in the 
first place which is extremely difficult) . 

Another very important type of measure men t is of a 
single language with respect to a given application. 
Thus while we might measure a particular language for 
generality considered across the scope of all desired 
computations, in more realistic circumstances we would 
be likely to consider a particular language against a 
specific application or a broad area of applications. 

Finally, we are frequently interested in measurements 
between two languages. This tends to be simpler in 
many cases because it is easier to indicate that language 
A is more general than language B without actually 
worrying about a numeric scale. If we introduce a third 
language and we wish to rank them, we can still do this 
on a pair-wise basis; however, it will become increasingly 
harder to compare more than two languages unless we 
use some type of numeric scale. 

It is important to realize that there is a significant 
difference between measurements of a language and 
measurements of a program written in that language. 
The former can be developed once, from the given 
specifications, whereas the latter will literally depend 
upon who does the programming. 

Elements not included in the current approach 
to the problem 

In this first introduction to the overall problem there 
are several elements which will not be considered. First 
and foremost, no attempt will be made to include any 

.' 

Programming Language Measurement 245 

type of formal semantics. We will be dealing primarily 
with syntax, and will implicitly use semantics only in 
an intuitive fashion, i.e., we know intuitively what a 
particular syntactic construction is meant to do. 
Furthermore, syntactic measurements will be shown in 
this paper only through a limited example i.e., specific 
methods of providing detailed measurements of syn
tactic elements are not included. Finally, no attempt 
will be made to establish an absolute scale for individual 
features. 

It should be emphasized that the problem of meas
uring languages specifically excludes measurement or 
numerical comparisons of implementations. Thus this 
aspect does not need to be included in any approach to 
the problem. 

APPROACH TO MEASUREMENTS BASED ON 
NON-SYNTACTIC CHARACTERISTICS 

Relevant features and viewpoints 

As the first step in measuring programming .languages 
with respect to their non-syntactic characteristics, it is 
necessary to list the relevant features or elements or 
characteristics (e.g., consistency, ease of reading) 
that are to be measured, where subfeatures will be used 
as appropriate. Figure 1 provides this list. However, it 
is not necessarily meaningful to measure all features in 
all ways. The characteristics of the language can be 
measured with respect to the following viewpoin ts : 

absolute scale (if one exists) 
user 
implementor 
one other language 
two or more other languages 
specific application 
application area 

(U)* 
(I) * 
(OOL)* 
(TML)* 
(SA) * 
(AA) * 

A particular characteristic may be irrelevant or of 
minor importance from some viewpoints (e.g., relevance 
to an application is not significant to the implementor). 
In a few cases the relevance is questionable. 

Numerical approach 

To the ·extent that numbers can be supplied, the 
following simple techniques will be used. Absolute 
scales should be established in the range 0 to 1, 
with 1 representing the maximum of the char-

* Abbreviation used in Figure 1. 



246 Fall Joint Computer Conference, 1971 

ViewEoints 
Non-Slntactic Characteristics U I OOL* TML* SA AA 

CONSISTENCY s 9 9 9 NA NA 
This deals with internal contradictions in rules, or 

exceptions to rules. For example a language might say that 
blanks are irrelevant except in particular cases. This 
language would then have a certain amount of inconsistency 
within it. 

EASE OF 
READING 9 NA 9 9 s s 
WRITING 9 NA 9 9 9 9 
DEBUGGING (from the language viewpoint only) 9 9 9 9 9 9 
MAINTENANCE ? 9 9 9 ? ? 
LEARNING 9 NA 9 9 9 9 
CONVERSION 9 ? 9 9 9 9 
IMPLEMENTATION ? 9 9 9 ? 9 
Each of these "easel! features calls for a different 

measurement since what is easy to read is not necessarily 
easy to write, etc. 

ENVIRONMENT INDEPENDENCE 
MACHINE INDEPENDENCE 9 9 9 9 9 9 
OPERATING SYSTEM INDEPENDENCE 9 9 9 9 9 9 
ON-LINE VERSUS BATCH INDEPENDENCE s 9 9 9 9 9 

While all programming languages are fairly machine 
independent, some have some implicit hardware dependencies 
which could be simulated but only with great inefficiency 
(e.g. read tape backward). Furthermore there are cases 
of language dependencies on the operating system (e.g. 
handling of STOP command or its equivalent). Some languages 
can only be implemented effectively in on-line or batch 
modes. 

GENERALITY ? s g 9 s 9 

This is essentially equivalent to the phrase "general 
purpose" . A completely general purpose language could be 
used effectivell for all applications and problems. There 
is no such language today. 

NATURALNESS 9 NA 9 g 9 9 

This deals with the intuitive resemblance of the 
programming language itself to the way in which an 
individual would describe the problem or give ins truct ions 
about how to solve it to another person. 

NON-PROCEDURAL 9 s 9 9 s 9 

It is this author's contention that non-procedural 
is a relative term which changes as the state of the 
art changes. At a given point in time one can talk 
about the amount of non-procedurality in a particular 
language. 

Figure 1-Measurement of N on-Syntactic Characteristics 



Programming Language Measurement 

View~oints 

!L I OOL* TML* 

RELEVANCE TO APPLICATION AREA 9 NA 9 9 
This includes the whole gamut of notation, features, 

etc. which would be used for a particular application area. 

RELEVANCE TO SPECIFIC APPLICATION 9 NA 9 9 
In contrast with the above, a particular application 

may impose different demands on the language than a 
broader area and therefore different measurements will 
be needed. 

SIMPLICITY 1 1 g 9 
This provides some measure of the complexity of the 

rules in the language but also must bear some relationship 
to the amount of generality. A very narrow language can 
be very simple because not many rules are needed; a very 
general language may need more rules. Thus simplicity 
really should be measured both in absolute terms and also 
as a ratio of the generality. To simplify matters only 
the absolute scale will be considered. 

SUCCINCTNESS s g 9 9 
This contrasts with verbosity, i.e., how many pencil 

strokes are needed to convey a particular concept. 

USE AS A HARDWARE LANGUAGE g s 1 1 

Some languages are definitely defined using a character 
set which is not readily available on normal equipment. This 
affects the direct and immediate use of the language as input 
to a computer. 

USE AS A PUBLICATION LANGUAGE 1 NA 1 1 

Some languages are particularly well designed for use 
in normal publication media and this can be used as a 
measurement. 

Column Headings: 

U = User 
I = Implementor 

TML = Two or More Other Languages 
SA = Specific Appl ication 

OOL = One Other Language 

Column Entries: 

9 = of great importance 
s = of small importance 

AA = Application Area 

1 = relevance is questionable 
NA = not applicable 

* While these two columns are identical in this formulation, it seems advisable to 
keep both for potential changes as this table is revised and refined. 

Figure l-(Continued) 

247 

SA AA 

9 9 

9 9 

s s 

s s 

s s 

s s 



248 Fall Joint Computer Conference, 1971 

TABLE I-Measurement of Languages from Viewpoint of A User Writing A Payroll Program* 

Normalized Normalized 
Weighting * Weighting Raw Scores* Weighted Scores 

Feature Factor Factor COBOL PL/I COBOL PL/I 

Consistency NA 
Ease of 

reading .9 .09 1 .3 .090 .027 
writing .8 .08 1 .5 .080 .040 
debugging .5 .05 1 .8 .050 .040 
maintenance .2 .02 .7 1 .014 .020 
learning .3 .03 1 .5 .030 .015 
conversion .8 .08 1 .2 .080 .016 
implementation .2 .02 1 .3 .020 .006 

Environment independence 
machine independence .9 .09 .8 1 .072 .090 
operating system independence .9 .09 1 .4 .090 .036 
on-line vs. batch independence .1 .01 1 1 .010 .010 

Generality .1 .01 .2 1 .002 .010 
Naturalness .7 .07 1 .2 .070 .014 
Non-procedural .5 .05 1 1 .050 .050 
Relevance to application area NA 
Relevance to specific application 1 .10 1 .6 .100 .060 
Simplicity .5 .05 1 1 .050 .050 
Succinctness .5 .05 .3 1 .015 .050 
Use as hardware language 1 .10 1 1 .100 .100 
Use as publication language .1 .01 1 1 .010 .010 

Totals 10.0 1.00 .933 .644 

* These values are based on the author's personal judgment and are somewhat arbitrary. The numbers are meant primarily for illustrative 
purposes. 

acteristic. It will be assumed that the relationships are 
linear, i.e., if one language has a measurem~mt of .9 
on an absolute scale (with the maximum of 1) and 
another one has a measure men t of .3 it will be assumed 
that the first had three times more of the characteristic 
than the second. Since the types of elements being 
measured are not in the same units, each measurement 
must be normalized. This is accomplished by doing the 
following: Where comparisons of two or more languages 
are made, the one having the highest value will be 
assigned the value 1 and all others assigned the 
appropriate ratio value. Using this technique also 
permits us to obtain quantitative results without 
assigning an absolute measurement to any language 
elements. 

A fundamental assumption in attempting to measure 
programming languages from any point of view is that 
the criteria to be used will vary depending on both the 
individual and the viewpoint from which he makes the 
measurement. What is important to one person is 
unimportant to another; what is vital in one type of 
measurement is insignificant in another. For example, 
from the viewpoint of relevance to an application area 
the actual syntactic form of a loop control statement 

may not make much difference, whereas rules on 
formation of data names may be very significant. The 
views of two individuals will differ even if they make the 
same comparisons from the same viewpoints (e.g., use, 
implementation). In order to accommodate these 
individual differences, each person attempting to do a 
measurement will assign his own weighting factors 
each time he makes a measurement. These will be 
normalized so that the total is 1 and then a numerical 
score can be obtained by multiplying each weighting 
factor against the numerical value (already normalized) 
for the related characteristic and adding them. This 
then produces a number-albeit a very crude one
which represents a measurement of a particular lan
guage using the viewpoint (i.e., the criteria) of the person 
making the measurement. 

TABLE II-Types of Changes to be Made to a Base Language 

None (Le., same as base language) 
Deletion (Le., subset) 
Addition (i.e., extension) 
Substitution (of one word or character for another) 
Optional (in new version instead of required in base) 
Required (in new version instead of optional in base) 
Other change (i.e., not shown above) 



Programming Language Measurement 249 

TABLE III-Features in Base Language and Two Other Versions* 

Feature 

Character Set 

Literals 

Multiple Assignment Statements 

Keyword LET before assignment 
statements 

Built in functions 

Computed GOTO 
DATA statement 

MATRIX inversion statement 
END 

Statement numbers 

Base Language 

A-Z 
= < >., 
** + - * / 
Single quotes 
required 

Not allowed 

Optional 

11 specific functions 

Not defined 
Number or character 
strings 
Present 
Required as last 
statement in program 
Required 

Version 1 

As shown, plus 
use of 1 for NOT 

Single or double 
quotes required 

Allowed 

Required 

Numbers or character 
strings or expressions 
Not allowed 
Optional 

Version 2 

Uses i instead of ** 

Double quotes required 

Optional use of keywords 
COMPUTE or LET 
11 as specified plus 
2 more functions 
Allowed 
Numbers or character 
strings or expressions 

Optional 

* The entry - indicates that the feature has the same specification as the base language. 

Specific example 

Table I shows the author's evaluation of the non
syntactic features of COBOL and PLjI made from the 
viewpoint of a user wishing to write a payroll program. 
Since this author believes intuitively that COBOL is 
better suited for this application, it is not surprising 
that the numerical results confirm that; however the 
figures were not manipulated, i.e., weighting factors and 
raw scores were assigned without any fudging of the 
figures except to increase two weighting factors by .1 
each to make the total 10 instead of the original 9.8 
which had come about naturally. Readers are invited 
to replicate this experiment for themselves. 

APPROACH TO MEASUREMENT OF SYNTAX 

Relevant features 

In considering the syntactic elements of the language, 
the following are some of the parameters which must 
be considered as elements in the measuring system: 

reserved words (existence, number, exact words 
themselves) 

punctuation, including handling of blanks and 
literals 

length of user-defined identifiers (i.e., data names, 
statement names) 

mandatory versus optional usage of words or features 
program structure (e.g., blocks, procedures, se-

quencing rules) 
data types 
commands 
declarations 

There are many different ways of measuring, and 
not all the items in the above list can be measured the 
same way. For example, it is easy to compare lists of 
reserved words, but hard to compare program struc
tures. Then again, which is more important in com-

TABLE IV (a and b)-Scores Assigned to Types of Changes* 

Change Type 

None 
Deletion 
Addition 
Substitution 
Optional 
Required 
Other change 

(a) 
User Viewpoint of 
Compatibility of 
Program in the 

Base Language to 
New Language 

+1 
-1 

o 
.5 
.1 
.8 
.7 

(b) 
User Viewpoint of 
Generality of New 

Language with 
Respect to Base 

Language 

o 
-1 

+1 
o 

+ .8 
- .5 

o 

* These scores are based on the author's value judgments and are 
somewhat arbitrary; they are meant primarily for illustrative 
purposes. The scores are not normalized because that seems to 
be unnecessary. However, maximum values of +1 and -1 are 
used. 



250 Fan Joint Computer Conference, 1971 

TABLE V-Measurement of Features From Viewpoint of Compatibility 

Normalized Normalized 
Weighting* Weighting Raw Scores** Weighted Scores 

Feature Factor Factor Version 1 Version 2 Version 1 Version 2 

Character Set .8 .13 0 - .5 0 .068 
Literals .8 .13 0 - .5 0 .068 
Multiple Assignment Statements .4 .07 0 +1 0 + .07 
Keyword LET before assignment statements .9 .15 - .8 - .7 .12 .105 
Built in Functions .6 .10 +1 0 + .10 0 
Computed GOTO .5 .08 +1 0 + .08 0 
DATA statement .8 .13 0 0 0 0 
MATRIX inversion statement .2 .03 -1 +1 .03 + .03 
END .1 .02 - .1 +1 - .002 + .02 
Statement numbers .9 .15 +1 - .1 + .15 - .015 

Totals 6.0 .99 + .178 - .136 

* These values are based on the author's personal judgment of the importance of the feature with regard to compatibility and the other 
parts of the language. The values are meant primarily for illustrative purposes. 
** Based on Tables III and IV(a). 
Note: The significance of the specific numbers +.178 and -.136 cannot be stated quantitatively. What can be concluded is that Version 1 
is more compatible with the base language than Version 2. 

paring reserved words-length, or similarity of letters? 
i.e., is the word XYZ closer to the word XYZABC or 
to the word ABC? The answer again depends on the 
viewpoint. The primary viewpoints are user and 
implementor, each of whom may use specific criteria 
(e.g., compatibility, generality) and/or many of the 
non -syn tactic characteristics shown in Figure 1. 

Numerical approach 

The approach here is similar to that used for the non
syntactic characteristics. The major types of changes 
to the syntax of a language are shown in Table II. 
(N ote that the common term "restriction" actually 
becomes one of the listed items for each specific case.) 

TABLE VI-Measurement of Features From Viewpoint of Generality 

Normalized Normalized 
Weighting* Weighting Raw Scores** Weighted· Scores 

Feature Factor Factor Version 1 Version 2 Version 1 Version 2 

Character Set .5 .10 +1 0 + .10 0 
Liter~,ls .5 .10 +1 0 + .10 0 
Multiple Assignment Statements .3 .06 +1 0 + .06 0 
Keyword LET before assignment statements .8 .16 - .5 0 .08 0 
Built in functions .6 .12 0 +1 0 + .12 
Computed GOTO .5 .10 0 +1 0 +.10 
DATA Statement .7 .14 +1 +1 + .14 + .14 
MATRIX inversion statement .3 .06 -1 0 - .06 0 
END .1 .02 + .8 0 + .016 0 
Statement numbers .7 .14 0 + .8 0 + .112 

Totals 5.0 1.00 + .276 + .472 

* These values are based on the author's personal judgment of the importance of the feature with regard to generality and the other 
parts of the language. The values are meant primarily for illustrative purposes. 
** Based on Tables III and IV(b) .. 
Note: The significance of the specific numbers +.276 and +.472 cannot be stated quantitatively. What can be concluded is that Versions 
1 and 2 are both more general than the base language and Version 2 is more general than Version 1. 



Depending on the viewpoint from which the measure
ment is to be made, the individual assigns a value from 
+ 1 to -1 with the "best" and "worst" changes at the 
extremes. A change which is irrelevant to the particular 
measurement being made is assigned the value o. 

Each syntactic feature under consideration is 
assigned a weighting factor between 0 and 1 to 
represent the individual's judgment of its importance 
from the particular viewpoint involved. These are 
then normalized. 

Raw scores for each syntactic feature are obtained 
by determining the type of each syntactic deviation and 
assigning the appropriate "measure of change" score. 
Multiplication of normalized weighting factors by the 
raw scores, followed by addition, yields a number 
representing the syntactic deviation from the base 
language according to the specified viewpoint. 

Specific examples 

In order to illustrate the types of measuring on syntax 
that can be done, some hypothetical cases are taken. In 
Table III, some syntactic features in a (hypothetical) 
base language are specified, and then two versions of 
the base language are defined with respect to those 
same characteristics. (The language is intuitively 
BASIC, but that is not significant to the discussion.) 
Tables IV(a) and IV(b) assign a score to each of the 
change types, considered from two different points of 
view-compatibility of a program in the base language 
to a new language, and generality with respect to the 
base language. Tables V and VI show the raw and 
weighted scores for each version, from the viewpoints of 
compatibility and generality, respectively. The results 
show (a) Version 1 is more compatible with the base 
language than Version 2, and (b) Versions 1 and 2 are 

Programming Language Measurement 251 

more general than the base language, with Version 2 
more general than Version 1. 

SUMMARY 

This paper has attempted to provide an introduction 
to the need for, and a pragmatic approach to, measuring 
programming languages. Commonly used terms such as 
"dialect" were shown to have only an intuitive meaning 
although numerical measures could and should be 
defined. Two very simple numerical approaches to 
-obtaining some quantitative results for. syntactic and 
non-syntactic characteristics were outlined. A set of 
non-syntactic characteristics was described, and the 
major syntactic parameters involved in measurement 
were shown. Three specific examples illustrate the 
techniques involved. 

The approach shown here is not yet ready for practical 
usage except in very simple cases, and the numerical 
techniques have deliberately been kept simple to make 
further explorations of this problem easy to do. The 
actual numbers used were primarily for illustrative 
purposes and should not be considered as absolute 
values to be used in all similar cases. 

REFERENCES 

1 J B GOODENOUGH 
The comparison of programming languages: 
a linguistic approach 
Proceedings ACM 23rd National Conference 1968 

2 H HESS C MARTIN 
T A CPOL-a tactical C & C subset of P L / I 
Datamation Vol 16 No 4 April 1970 

3 J SAMMET 
Programming languages: History and fundamentals 
Prentice-Hall Englewood Cliffs N J 1969 





The EeL programming system* 

by BEN WEGBREIT 

Harvard Unive:I'sity 
Cambridge, Massachusetts 

INTRODUCTION 

EeL is a programming language system currently 
being implemented as a research project at Harvard 
University.** Its goal is an environment which will 
significantly facilitate the production of programs. In 
this paper, we describe the motivation for this project, 
present the approach taken in its design, and sketch 
the resulting ECL system. Detailed treatment of spe
cific aspects of the system are found elsewhere. l ,2 

Programmers, whether professionals or casual users, 
manufacture a unique product, programs: objects, 
often large, which must be coded, modified, debugged, 
verified, made efficient, and run on data. In providing 
an environment for this manufacturing, four goals 
were considered primary: 

1. To allow problem-oriented description of algo
rithm, data, and control over a wide range of 
application areas. 

2. To facilitate program construction and de
bugging. 

3. To allow and assist in the development of highly 
efficient programs. 

4. To facilitate smooth progression between initial 
program construction and the final realization of 
an efficient product. 

ECL consists of a programming language and a system 
built around this language to meet these goals. 

The language component, called ELI, includes most 
of the concepts of ALGOL 60, LISP 1.5, and COBOL. 
It provides standard arithmetic capability on scalars 
and multidimensional arrays, dynamic storage alloca-

* This work was supported in part by the U.S. Air Force, 
Electronics System Division, under Contract No. F19628-68-C-
0101 and by the Advanced Research Projects Agency under 
Contract No. F19628-68-C-0379. 
** The current implementation is on a PDP-lO running under the 
10/50 monitor. Versions for other machines are contemplated. 

253 

tion with automatic storage reclamation, record han
dling, and algorithm-independent data description. 
Further, it provides facilities which allow the pro
grammer to define extensions to the language to tailor 
it to each particular problem area. New data types, 
new operators, new syntax and new control structures 
can be added to the language enabling the program to 
model directly the objects, unit operations, relations, 
and control behavior of each problem domain. For ex
ample, list processing, matrix arithmetic, string manip
ulation by pattern matching and replacement, and 
discrete simulation can all be carried out in ELI by 
appropriate extensions. 

To aid program construction and debugging, the 
ECL system has been designed for use in an iteractive 
on-line fashion. t Programs can be composed at the 
console using a text editor and run interpretively with 
appropriate levels of error checking, tracing, and con
ditional suspension. With execution suspended, the 
programmer can examine data or program, modify 
either, and resume. Any variable may be declared 
"sensitive"; changes to its value are monitored and an 
interrupt generated whenever a programmer-specified 
predicate associated with the variable becomes true. 

Several system facilities contribute to the construc
tion of efficient programs. One is the compiler. Vari
ables can be data typed so that the compiler can per
form type checking, compile in type conversion, and 
choose among alternative procedure bodies on the basis 
of argument data types. The compiler can be called at 
any time, so it is possible to write procedures which 
compile themselves or other procedures. To allow eco
nomical use of storage, the language allows packed 

t This is not to the neglect of batch processing. Any interactive 
language can be used in batch mode if the job control commands 
that would normally come from the console are taken from a file 
and results which would normally appear· on the console are 
written to a second file. ECL allows such switching of command 
streams, so that batch processing falls out as a sub case of its 
normal mode of operation. 



254 Fall Joint Computer Conference, 1971 

data (e.g., bits, bit strings, bytes, and byte strings) and 
operations on such data objects. This is carried out in 
a machine-independent notation and representation so 
that programs using this are not tied to a particular 
machine. To allow the construction of efficient pro
grams which include asynchronous components, ECL 
includes multiprogramming and a programmer-con
trollable interrupt system. 

Efficiency, in any metric, is seldom gained at one 
fell blow; programs are only relatively stable. Even 
after code is checked out with the interpreter and com
piled, it is usually changed and frequently requires ~e
bugging. Further, it is sometimes necessary to compIle 
part of a program in order to, get sufficient ~peed to 
test an algorithm against a large data base. Smce the 
road is filled with relapses, it is important to allow 
smooth progression and regression between initial con
struction and final product. It should scarcely need 
saying that the languages acceptable to the interpreter 
and compiler are identical and that compiled and inter
preted code may be freely intermixed with no restric
tions. For example, the result of compiled code may be 
used as an argument to interpreted code; a golo in 
interpreted code may lead back into compiled code; 
variables local. to compiled code may be accessed by 
interpreted code, etc. A less familiar concept, but 
equally fundamental, is the notion that compilation is 
not all or nothing. In ECL, compilation can be carried 
out to any level depending on the amount of informa
tion supplied to the compiler: specifically, the number 
of program components that the programmer is willing 
to accept as being invariant. The more invariants, the 
better the compiled code. As with interpreted code, the 
execution of compiled code may be broken (either by 
an internal condition or an external interrupt) to allow 
intervention by the programmer, e.g., for debugging 
purposes. 

The primary motivation for, and the intended use of, 
the ECL programming system is "difficult" program
ming efforts. That is, projects which could otherwise be 
carried out only with considerable waste of human or 
machine resources. It is our intention that ECL be 
usable for production programming. Hence the empha
sis on machine efficiency. This is not to say that the 
requirements of interactive usage have been slighted in 
system· design. Quite the contrary, we view good inter
action capability and a well-engineered debugging 
facility as significant tools in tackling a difficult pro
gramming project. The utility of on-line debugging 
should be clear. Equally important is the use of an 
interactive capability in developing and refining algo
rithms. Still more important is the use of interaction 
in allowing measurement of program behavior and the 

attendant optimization based on knowledge of this 
behavior. 

SYSTEM ORGANIZATION AND DESIGN 
PHILOSOPHY 

Before discussing ECL in detail, it will be useful to 
outline its internal organization and discuss the phi
losophy which underlies its design. 

Nornally, one uses ECL on-line, communicating with 
the system via a console. As seen by the programmer, 
ECL is an executor of input commands. Syntactically, 
commands correspond roughly to statements of an alge
braic language;. semantically, commands embrace all 
actions expressible in the system. Hence, commands 
include: conventional algebraic statements, definitions 
used to construct new procedures and operators, and 
the "job control" statements of a batch processing 
system such as instructions to compile procedures, 
transact with data sets, create and destroy processes, 
etc. 

As seen by ECL, the programmer is a source of input 
commands. We will take the system's point of view. It 
reads and parses each command, interprets it, and 
turns to the next command. Since commands include 

Figure I-Primary system modules 

Callable 
Routines 



calls on procedures which may be programmer-defined, 
the interpretation portion of the cycle may set off the 
running of a compiled program. 

At the heart of ECL is the command handler-the 
routine which controls the above command loop. It has 
two main components: the parser and the interpreter 
(c.f. Figure 1). The parser calls on a lexical analyzer to 
decompose the input stream into lexemes. The parser 
then analyzes the lexeme stream as directed by parse 
tables previously derived from a syntactic specification 
of the language. Both the input source and the parse 
tables may be changed by commands, so that the 
source of commands and the language in which com
mands are expressed are subject to change by the pro
grammer. The output of the parser is a representation 
of the command as a linked list. Constituent syntactic 
units are represented by sublists, recursively. The 
command handler calls on the interpreter to execute the 
command. When this is completed, control returns to 
the command handler which outputs the result and 
then calls on the parser for the next command. 

The list structured representation has two uses. On 
the one hand, it can be executed directly by the inter
preter; on the other, it is a convenient form of input to 
the compiler. This achieves several economies. A pro
gram need be parsed only once, on input. Hence the 
interpreter does not reparse a line each time it is en
countered during execution, e.g., in a loop. Also, the 
compiler is considerably simplified since it is not at all 
concerned with parsing. 

Most commands will be function calls, i.e., the appli
cation ofa routine (procedure or operator) to a set of 
arguments. Routines initially available in ECL include: 

1. The conventional arithmetic, relational, and 
trigonometric routines. 

2. A set of I/O routines. 
3. A routine for defining new procedures and 

operators. 
4. The compiler. 
5: Routines to define new data types. 
6. Routines to change the parse tables, thereby 

changing the syntax of the language. 
7. Routines to allocate storage, and a garbage col

lector to reclaim storage no longer in use. 
8. Routines to create, run and destroy processes. 

The first· three sets require no explanation; the others 
will be discussed individually in subsequent sections. 

It should be clear that ECL is an unusually eclectic 
system. This is unavoidable; a complete programming 
environment necessarily includes many components, 

EeL Programming System 255 

each fairly complex. There is a certain danger in this. 
Such a system can easily become very large, hence 
prohibitively expensive to implement and maintain. No 
less dangerous is the possibility that a system may be 
unwieldy for the casual users. Finally, there is the 
danger that the system may impose too much or the 
wrong kind of structure on the programmer. With each 
decision made incorrectly, a language system incon
veniences some class of users. With many decisions to 
make, a system is certain to inconvenience all pro
grammers some of the time. 

In ECL, these very real dangers of an eclectic system 
have been avoided by judicious application of four con
cepts: (1) extension mechanisms, (2) sustained vari
ability, (3) bootstrapping, and (4) system uniformity. 

The first of these has been mentioned earlier. The 
idea is to construct a small initial system consisting 
mostly of powerful definition facilities for self-exten
sion. Only the initial system-the nucleus-need be 
Implemented and maintained by the system's creators. 
The rest is built on this by the programmer or pro
gramming group to suit its needs and taste. The ECL 
provides definition mechanisms for extension along 
three axes: syntax, data types, and control structures. 

A second key concept, distinct from language ex
tension, is systematic variability. That is, the deliber
ate provision for access by the programmer to key 
points at which he can control system behavior. All 
well-designed systems have key points of control; 
usually, however, these points are deeply embedded in 
the system either on grounds of supposed efficiency or 
because actions to be taken were believed to be in
capable of sustaining intelligent variation. Seldom is 
the burial justified. Allowing programmer control over 
such issues provides a surprising amount of power. In 
ECL, three points have been singled out for attention: 
error and interrupt handling, input/output stream 
direction, and data type conversion on binding formal 
parameters of routines to their arguments. 

Bootstrapping, i.e., using the system to define parts 
of itself, provides system variability at another level. 
In ECL, bootstrapping has been a fundamental imple
mentation technique. The data type extension facility 
was used to create the system data types needed by the 
interpreter itself. Further, large parts of the system are 
coded in the language, most notably the compiler. Such 
system modules can be run either interpreted or com
piled: the compiler, of course, is compiled by itself 
using the interpreter. For the system implementor, this 
technique avoids a large amount of machine language 
coding with the attendant benefits of rapid production, 
better system organization, . and ease of change. For 
sophisticated system users, this bootstrapping provides 



256 Fall Joint Computer Conference, 1971 

an additional point of variability: those portions of the 
system coded in the language are accessible to change. 

The fourth concept in the ECL system is uniformity. 
Insofar as possible, the entire environment of the pro
grammer is treated as a single homogeneous space with
out special times, cases, or preferred objects. Corre
spondingly, the implementor has to deal with a system 
notable for its lack of special cases and "funny" 
situations. 

All data types (called modes in ECL) are treated 
equally. Each class of objects in the system has a 
mode; for each mode there are values of that mode; 
declarations are used to create variables which can be 
assigned values of that mode. A procedure is like any 
other object in this respect. It is a value, it has a mode, 
and may be assigned to be the value of a procedure
valued variable. Programs can be treated as data and 
data as programs. Programs which generate other pro
grams are straightforward. Files (somewhat general
ized) are another mode in the system, so that programs 
can compute the source of or sink for input/output and 
can arrange for arbitrary transformation of the data 
during transmission. Finally, there is no preferred 
status for the data type mode. A mode (e.g., integer) is 
just as legitimate a value as, say, 3.1. Hence, mode 
values may be computed, assigned to variables of data 
type mode, passed as arguments to routines, etc. There 
are a number of system-defined routines which take 
modes as arguments and produce new modes. Addi
tional routines for computing modes may be defined by 
the programmer from these. Hence, a programming 
project might include all of the following (c.f. Figure 2) : 

1. Defining a set of routines which compute modes. 
2. Writing a program which uses variables whose 

modes are of the class generated by 1. 

3. Running the program defined in step 2 inter
pretively, halting, modifying and debugging it. 

4. Running the routines of step 1 on input data to 
compute a set of modes. 

5. Compiling the program of step 2 to get object 
code tailored to the data types computed in 
step 4. 

6. Running the object program of step 4 on a data 
set. 

Conceiva.bly, this could be done in a single console 
session. Alternatively, these steps might be carried out 
over the course of-several months as a large program
ming effort goes throu~h the process of defining its 
data formats, coding and checking out its routines, 
metering the input profile, compiling and tuning code, 
and finany running. The key point is that all these 

Figure 2-Program development in EeL 

8teps can be carried out in a single system using a com
mon language to describe their actions. 

SYSTEM FACILITIES 

In this section we discuss the key facilities seen by 
the programmer using ECL. In.the interest of brevity, 
we concentrate on innovative features and treat lightly 
those which are straightforward. In discussing the 
language component, we will ignore all but its exten
sion mechanisms; in particular, we do not give its 
syntax or programming examples in this paper. Suffice it 
to say that the language is ALGOL-like in syntax, 
ALGOL/LISP-like in semantics and that a formal 
description of both syntax and semantics exists.3 

Builtin data types of the language include characters, 
integ-ers, reals, and Booleans; builtin operations include 
the usual operations on these types. A system-provided 
extension package adds to this the data types symbol, 
list and arrays of reals, integers, and Booleans along 
with appropriate operations. 

Syntax extension 

A number of proposals for syntax extension have 
appeared during the past few years, proposals ranging 
from simple macro extension schemes requiring prefix 
macro name triggers, to recognition of arbitrary con
text-free languages with complex parse-tree manipula
tion facilities. The technique used in ECL has two key 
properties: (1) it is very efficient in both parse speed 



and storage required, (2) it includes specific provision 
for simple common additions as well as complex com
prehensive changes. 

The parser is a deterministic pushdown store ana
lyzer. It scans the input stream from left to right, re
cording the progress of the parse in state information. 
At each step, the parser either reads the next lexeme 
and adds it to the pushdown store or it reduces the 
top elements of the pushdown store. In either case, it 
goes into a new state. In the case of a reduction, em
ployed whenever a complete syntactic phrase has been 
found, a semantic action associated with the phrase 
class is executed. The choice of read or reduce, the 
reduction to be made, and the next state to be entered 
are recorded in a syntax table as a function of the cur
rent state, next lexeme, and top elements of the push
down store. This table is computed by a parse table 
genera tor using a technique developed by F. DeRemer, 4 

from a syntax specification in BNF. Semantic actions 
augmented to each syntax rule specify the desired 
mapping from the parse tree into the intermediary list 
structure representation-IL. Each syntactic form of 
the source text is therefore represented by some IL list. 

The interpreter and compiler treat certain IL lists 
(e.g., those representing a (block» specially; all others 
are taken as procedure or operator calls where the head 
of the list is the function name and the rest of the list 
is the set of arguments. Therefore, most augments 
simply map the syntactic construction into prefix form. 
The final element of the language specification is the 
definition of the function names used as prefix opera
tors in IL. 

The language may be extended by (1) adding to the 
syntax specification new syntax rules with augments, 
(2) defining the function names used as prefix opera
tors in the new IL forms, thereby defining the semantic 
specification, (3) calling the parse table generator on the 
new syntax specification, and (4) switching the parser 
to be driven by the resulting new parse tables. In sub
sequent input any command, in particular any program, 
containing the new constructs will be analyzed employ
ing the new syntax rules, mapped by the augments into 
prefix form, and executed by the associated function 
in the semantic specification. Compiling the program 
and the semantic specification functions will yield ac
ceptable although not specially optimized code for the 
new construct. 

The most common additions to the language will 
surely be new operators. For example, much of APL5 
can be obtained simply by defining the appropriate 
array operators. While new operators could be added 
by using the above technique, this is needlessly com
plex for such a simple addition. Hence, ECL provides 
a special facility to handle this, making the definition 

ECL Programming System 257 

of a new operator no more difficult than the definition 
of a new procedure. An identifier in the language can 
be written either like a PL/I identifier (e.g., X, TEMP, 
FOO, COEFFICIENT) or as a sequence of special 
symbols (e.g., +, -, **, +f-, = # ». Any identifier 
can be declared to be a prefix operator, an infix opera
tor, or both. (E.g., the minus sign denotes negation as 
a prefix operator and subtraction as an infix operator.) 
An infix opera tor can be given an integer index from 
1 to 7 specifY,ing its binding strength. 

The mechanism used to implement this facility is a 
simple extension of the basic analyzer; hence, operator 
and other extensions mesh together smoothly. The ini
tial syntax specification includes the syntactic cate
gories (prefix opera tor) and (infix operator i) for 
i= 1, ... ,7. All operators are recognized as (identifiers) 
by the lexical analyzer and are handed to the parser 
with syntactic category (identifier). The parser changes 
the syntactic category to (prefix operator) or (infix 
operatori) under "appropriate conditions" (e.g., for 
the second identifier in X**I). The parser recognizes 
the possibility of such an appropriate condition by 
means of a second set of parse tables (actually part of 
the symbol table) which specifies which identioors may 
be used as operators and in what roles (i.e., prefix, 
infixi, or prefix and infixi). The tricky point here is 
distinguishing between different uses of an identifier 
symbol; e.g., if #@ has been declared to be both a 
prefix and infix operator then it may appear in: 

# @ B as a prefix operator acting on B, 

A # @ B as an infix operator acting on A and B, 

# @ f-. .. as an identifier being assigned a new 
(operator) value. 

The parser distinguishes between these three uses in 
the same way as the human reader-by local context. 
The read routine of the parser examines each (identifier) 
that can be used as an operator, checks its local con
text and decides how it is being used in the context, 
and possibly changes its syntactic type to (prefix
operator) or (infix-operatori). The rest of the parser, 
in particular the part that performs reductions, is obliv
ious to this local transformation; it sees either an 
(identifier), a (prefix-operator), or an (infix-operatori) 
and regards these as disjoint terminal categories. 

Storage management 

There are two classes of storage provided by the 
ECL system: (1) storage automatically allocated and 
freed at block entry and exit (on the stack) and (2) 
storage dynamically allocated by the program (in the 



258 Fall Joint Computer Conference, 1971 

heap, using Algol 686 terminology). The former is 
handled by well-known stack implementation tech
niques and requires little discussion. In providing dy
namic storage allocation, however, there is a critical 
design decision-whether to provide automatic storage 
reclamation or whether to require explicit return of un
used storage, e.g., by a free command. 

A common characteristic of allocated storage is that 
the programmer does not, in general, know when it is 
becoming unused. Typically, a block is pointed to 
from many places, most of which are in other allocated 
blocks. Deciding when the last reachable pointer ceases 
to reference a block is therefore no simple matter. Keep
ing track of this at all times places a burden upon the 
programmer, one that may significantly complicate a 
program. Hence, ECL provides automatic reclamation. * 
Garbage collection was chosen· as the implementation 
technique since this requires the least housekeeping 
storage and is guaranteed to find all unused storage. 
The programmer sees only a system-provided alloca
tion function-ALLOC. Specifically, ALLOC (M) allo
cates an object of mode M and returns a pointer to this 
object. When available storage is exhausted, the allo
cator invokes a garbage collection. 

The garbage collector is basically straightforward. A 
few subtle points are, however, worth mentioning. The 
trace phase traces all storage blocks referenced and 
marks all machine words in use using a bit map. By 
marking machine words, not objects, it is possible to 
mark only part of a block in a compound object. Gar
bage collection leaves untouched these parts actually 
referenced and reclaims the rest. The difficult point in 
the trace phase is the possibility, indeed almost cer
tainty, of tracing through objects having programmer
defined mode. Given an object, the trace routine must 
be able to determine how big it is (so as to mark all of 
its words), whether or not it has pointers within it 
and, if so, where they are (so they can be traced). 
This information is calculated by internal system 
routines whenever a new mode is defined and is entered 
into tables associated with the mode. Once marking is 
complete, the garbage collector sweeps linearly 
through storage, collects all unmarked words into maxi
mal contiguous blocks, and sorts these blocks by size 
into a set of linked lists forming the free storage pool. 
Keeping different lists for various sized blocks (cur
rently, one list for each power of 2) speeds up subse
quent allocations. 

Clearly, it is best to avoid garbage collection entirely 
if possible. We therefore stress that ECL also provides 

* Dynamic storage management in EeL therefore differs from 
that of PLjJ.7 The latter provides dynamic storage allocation but 
no automatic reclamation. 

automatic, block-structured storage. This behaves like 
a normal ALGOL 60 stack, holding variables declared 
to reside on the stack as well as arguments to routines, 
and. temporary results. Hence, all computation con
cerned with ALGOL-like objects (e.g., scalars and ar
rays of fixed-point and floating-point numbers) can be 
carried out on the stack and requires no use of the free 
storage mechanism. 

Data type extensions 

Perhaps the chief requirement of a programming 
language intended to serve a wide range of application 
areas is an equally wide range of data types or modes. 
Clearly, a language must include integers and reals for 
numerical computation, Booleans as the result of rela
tional operations, and characters for headings and 
labels. List processing implies data objects which refer
ence other objects, i.e., pointers. However, compiled 
code can be made considerably more efficient if a 
pointer variable may be declared as restricted in what 
types of objects it can point to; this introduces integer 
pointers, real pointers, character pointers, Boolean 
pointers, etc. Packed objects such as bit vectors are 
sometimes essential in saving core storage. A list of in
teresting data types could go on indefinitely. 

In the face of so many diverse claimants for inclusion 
in a language, the only sensible solution is an extension 
facility: here, a mechanism for defining new modes. 
The language provides a few basic modes and five 
primitive routines for defining new modes in terms of 
these. The primitive mode constructors are ARRAY, 
PTR, STRUCT, PROC, and ONEOF; these create 
arrays, pointers, heterogeneous structures, procedures, 
ap.d mode unions, respectively. These mode construc
t~rs are callable routines. They evaluate their argu
ments, perform some computation, and deliver a result 
having data type mode. The resulting modes are just as 
legitimate as the builtin modes. Objects of these types 
may be assigned values, passed as arguments to rou
tines, returned as the value of routines, etc. 

The key point of this facility is that the mode con
structors compile modes in the same sense that a tradi
tional compiler compiles procedures. That is, they cal
culate once, at the time a mode is created, all informa
tion about the mode that the system will subsequently 
need. One such computation is the storage layout for 
compound objects-how to represent objects of the 
constructed mode in the fewest possible machine words. 
The current algorithm produces optimal packing on al
most all cases; e.g., a structure consisting of one 18-bit 
pointer, four 7-bit characters, three 5-bit fields, one 
3-bit field and four I-bit fields will be packed into two 



36-bit words. * The result of the calculation is a struc
ture table giving the location and mode of each com
ponent in a compound object, to be used by subsequent 
phases of mode compilation and by the runtime rou
tines. Another computation is preparing the tables for 
the garbage collector, in particular, deciding whether 
an object of this mode contains a pointer to be traced. 
The most important computation, however, is the gen
eration of three blocks of machine code: (1) to con
struct objects of this mode, (2) to perform assignments 
to objects of this mode and (3) (for compound objects 
only) to select the individual components of objects of 
this mode. To effect construction, assignment,· and se
lection, the interpreter executes these code bodies so 
that these operations are partly compiled, even from 
interpreted code. The compiler may either use these 
bodies or compile corresponding code in-line depending 
on whether it is optimizing space or time. 

The programmer can use these mode compilation 
routines to define the types he needs. For example, bit 
vectors are defined as ARRAYs of Booleans, multi
dimensional arrays of any sort are defined by composing 
the function ARRAY, data processing records are 
STRUCTs of characters and integers, and a list of reals 
is constructed from blocks of identical STRUCTs each 
containing an integer and a pointer to the next block. 
Further, the programmer can define new mode-valued 
procedures (i.e., mode generators) in terms of the 
primitive routines. We anticipate a library of modes 
and mode-valued procedures analogous to a library of 
numerical algorithms. 

One additional facet of the mode extension facility 
requires discussion. When a mode is defined using the 
system primitives, certain behaviors are automatically 
assumed. For example, if BYTE names the mode 
ARRAY of 8 Booleans (represented as an 8-bit object), 
it will be assumed that an object X of mode BYTE has 
8 components which may be accessed as Boolean values 
by XCI] for I = 1, ... ,8, that assignment of one BYTE 
to another copies all 8 bits, and that if X is to be passed 
as an argument to a routine then that routine must 
have a corresponding formal parameter of mode BYTE. 
If the programmer wishes, he can override these as
sumptions and specify the behavior he wants. He can, 
for example, declare that an object X' of mode BYTE 
is to have the following behavior: 

1. X can be assigned an integer value (e.g., X~73). 
If the value can be represented in 8 bits 2's 

* This is, of course, entirely machine-dependent. However, the 
programmer never sees this packing. He deals only with objects 
of the language which have the right properties-e.g., access to 
the second 1-bit field getsthe desired value. This differs from the 
approach taken in LISP 28 where the programmer deals explicitly 
with the bit packing himself. 

ECL Programming System 259 

complement notation, an 8-bit assignment is 
made; otherwise, an error procedure P is to be 
called with the integer value as an argument. 

2. X can be used as an argument to a routine taking 
an integer formal parameter, in which case sign 
extension is used to get a full-word value to be 
treated as signed integer. 

3. X is to be treated as if it had an additional 9th 
component recording the number of leading O's 
in its bit configuration. X[9] is always inter
preted as an integer count of the number of 
leading O's in X[I] ... X[8] at that point in the 
computation. 

Using this facility, the programmer can specify ex
.actly the properties of his data objects. Encoded repre
sentation for values, variables which monitor their 
values, objects with "protected" fields, and the ability 
to represent'sparse compound objects fall out as simple 
applications. 

Compilation 

A compiler can be viewed in two distinct ways. It 
can be taken as a device for translating programs from 
source representation to one which can be executed 
directly by some computing machine. Alternatively, it 
can be seen as a means for factoring a computation into 
two parts: that which is invariant with respect to input 
data and can be performed once at compile time, and 
that which depends on the data and is therefore post
poned until run time. The second view subsumes the 
first and is surely the more fundamental. Translation 
is only one of many computations that can be factored 
out. Others include: evaluation of expressions at com
pile time, data type checking, and generic selection. The 
interesting problems in compilation can be best ad
dressed by pushing the notion of factoring to take 
advantage of additional invariants. It is this line of 
approach that characterizes the ECL compiler. 

A program consists essentially of a large number of 
variables, a few constants, and some punctuation to 
paste this all together. EeL carries the notion of vari
able somewhat farther than most languages. For ex
ample, a program may declare X to be an object of 
mode TRIPLE when TRIPLE is a mode-valued vari
able or may apply FOO to a set of arguments where 
FOO is a procedure-valued variable. This allows the 
programmer great flexibility, but presents the compiler 
with the problem of dealing with an unknown value of 
the variable. There are three possible routes it might 
take: 

1. Attempt to deduce the value by examining the 
structure of the program, e.g., look for an initiali-



260 Fall Joint Computer Conference, 1971 

zation of or assignment to TRIPLE and verify 
that the value will not change. 

2. Obtain explicit assistance from the programmer. 
3. Wait until run time when the value will surely 

be known. 

From a theoretical point of view, the first route has 
certain appeal. However, the inevitable undecidability 
results are assurance that in general one can deduce 
nothing; discovering subcases in which interesting de
ductions can be made is a significant research problem. 
Further, making such deductions is often a pointless 
task: the programmer usually knows far more about a 
program than could ever be deduced from examining 
it; he alone knows its intended function and the en
vironment in which it is to run. 

Hence, the second route is the mainstay of the com
piler. In compiling a procedure P, the compiler is 
called with two arguments: P and a list L of all vari
ables in P whose value is to be "frozen." P is then 
compiled with each variable on L replaced by the value 
of that variable at the point where the compiler is 
called. (It will be recalled that this point might be 
while executing another procedure or P itself.) For ex
ample, if X is declared in P to be a TRIPLE and 
TRIPLE is on the frozen list L, then the value of 
TRIPLE must be a mode and this mode is taken as 
the data type of X. Similarly, if FOO appears on L, 
then an appearance of FOO(argl, ... ; argn) can gener
ate code specific to the value of FOO, e.g., by in-line 
expansion. To treat a related case, it may be that FOO 
does not appear on L, but FOO is declared in P to have 
mode FOOMODE and FOOMODE is a variable on L. 
The compiler then does not have access to the value of 
FOO, but it does know its data type, i.e., the modes of 
its arguments and the mode of its result. Hence, the 
compiler can perform type-checking of arguments in 
calls on FOO and type-check the usage of its result in 
a larger context (e.g., A+FOO(argl, ... , argn»). 

Any set of variables may appear on the freeze-list L. 
If an operator and all its arguments are frozen (e.g., by 
appearance on L), then the entire function application 
is frozen. * By recursive application of this rule, it is 
possible for arbitrary complex expressions to be frozen. 
These can and will be evaluated during compilation. 
For example, if X, Y, FOO, and FUM are all on L, 
then 

FUM(Y, FOO(Y), FOO(FOO(X))) 

will be evaluated, the result replacing that expression 
in the code generated. 

For those variables not in L, the third route remains 

* Assuming that the operator definition contains no free variables. 

open: wait until run time to obtain its value. This in
cludes "ordinary" variables as well as mode identifiers 
and procedure names. For example, if TRIPLE is not 
on L, then in a procedure with formal parameter de
clared to be a TRIPLE the data type is left open until 
the procedure is called. The compiler is governed by a 
consistent rule: it will compile the best code it can with 
the amount of information (i.e., set of invariants) 
given to it. This code can be anything from a single call 
on the interpreter (in those cases where nothing useful 
is frozen) to the value of the program (in those cases 
where everything is frozen). The interesting cases fall 
somewhere in between. 

It is possible to compile a procedure dynamically 
during the course of some computation as values are 
calculated and frozen. Hence, a computation may in
volve reading part of the input data, compiling a pro
gram specific to that data, and running the compiled 
routine on the remainder of the data. Programs which 
periodically recompile themselves based on statistics 
gathered during the course of a run are an obvious 
application. 

Errors and interrupt handling 

It should go without saying that a modern program
ming language needs a facility for handling errors and 
interrupts. That is, a means for accepting asynchronous 
external interrupts and dealing with internal error con
ditions. ECL takes care of both by means of the pro
cedure call mechanism. Every error or interrupt may 
be treated as if the program had explicitly called an 
error handling routine of its choice from the point 
where the error or interrupt occurred. Associated with 
each* error or interrupt is a procedure name (e.g., 
ENDOFILE, FLOATOVF, FIXOVF, etc.). When an 
error occurs or an interrupt comes in, the normal com
putation sequence is suspended at that point and a 
system routine ERR is entered. ERR finds the sym
bolic name associated with that error/interrupt condi
tion and then checks whether there is a variable of type 
procedure valid at that point in the suspended compu
tation. If no such variable exists, ERR types out an 
error message and goes into a break routine which pre
serves the state of the computation and accepts further 
commands from the console. If, however, there is an 
appropriate variable, then the associated procedure is 
called; so far as ECL is concerned, that is the end of 
the matter-any further action is the responsibility of 
the called routine. 

* These include: end of file, fixed point overflow, floating point 
overflow, taking the value of a null pointer, the completion of 
certain I/O transactions, subscript index out of range, and timer 
interrupt. 



In the case of an external interrupt, it may be pos
sible to handle the interrupt without regard to the 
suspended environment. Such an interrupt processor 
may perform some computation on the interrupt mes
sage, change global flags, variables, and queues, then 
continue with the suspended computation. However, 
to handle most errors and internal interrupts, it is 
necessary to access the environment in which the condi
tion occurred. For example, it will frequently be useful 
to examine the call structure (the sequence of function 
calls that lead to this point) and to examine and change 
the values of variables in the suspended environment. 
ECL allows access to this information, not as a special 
feature offered to the error handling routine, but rather 
as a system facility available at all times. A stack of 
return points is· used by ECL so as to allow recursive 
procedures; it is a simple matter to also stack the sym
bolic name of the called routine. Hence, any procedure, 
whether called to process an interrupt or otherwise, can 
obtain the symbolic name of the Ith dynamically pre
ceding routine (CALLER (I) ) and can access the value 
of any variable in that environment (DYB ( (variable 
name), I». 

An error or interrupt routine can exit in a number of 
ways, depending. on the cause of the interruption. 
GOTO L transfers control to the nearest enclosing 
label L; this, however, may be arbitrarily far back in the 
chain of calls. Since the argument to GOTO is evalu
ated, it is possible to use DYB to get to an arbitrary 
level, even one "masked" by another label of the same 
name; e.g., GOTO DYB (L, I) transfers control to the 
label L defined in the Ith enclosing environment. Two 
other routines allow returning a computed value. For 
errors, CONTWITH ( (expression» continues computa
tion with the value of (expression) used in place of the 
expression which caused the error. RETURN ( (expres
sion), I) acts as if the Ith routine back on the call 
chain had suddenly returned to its caller with the 
value of (expression). 

In summary, this scheme provides a powerful, inex
pensive mechanism giving the programmer fine control 
over errors and interrupts. The program is armed for a 
specific error or interrupt in any scope where a pro
cedure-valued variable of the appropriate name is de
fined. Errors or interrupts for which the program is so 
armed are handled by the specific routine. Control and 
environmental inquiry facilities of the system provide 
the linguistic power needed by the routine to handle 
such conditions intelligently. 

Control structures: paths and multiprogramming 

The error/interrupt facility allows the mainline of 
.computation to be suspended so that a subsidiary 

ECL Programming System 261 

computation can be performed to process the cause of 
interruption. However, this is strictly a priority situa
tion: the interrupt routine must complete and exit 
before the main computation can continue. It is fre
quently useful to deal with subsidiary computations 
going on whenever there is any work to be performed, 
in parallel with the main computation. 

ECL provides such parallel computation. In general, 
a job consists of some dynamically varying number of 
independent processes (called paths in ECL). What has 
been described thus far is the behavior of one such path. 
Indeed, when ECL is started, there is but one path. 
However, that path may create new paths and start 
computations on these paths, computations which in 
general proceed asynchronously with respect to com
putation on the starting path. Each path is an indepen
dent computational entity consisting of an environment 
(the call structure and variables created during this 
call sequence) and an activation record which, among 
other things, records the state of the path. States in
clude suspended, waiting for some resource (e.g., I/O), 
and runnable. All runnable paths are parallel processes. 
The state of a path may be changed by a number of 
commands; these include SUSPEND some path, 
WAIT some period of time, and the Dijkstra P and V 
semaphores9 for synchronization among paths. All 
paths have a certain portion of their environment in 
common-potentially, any allocated storage. Hence, it 
is possible for two or more paths to reference common 
data,e.g., a buffer, a set of flags, or a message queue. 
This, coupled with the P and V semaphores, allows the 
conventional sort of cooperating sequential processes 
to be established. 

The really interesting aspects of the ECL path 
facility lie, however, in its ability to host nonconven
tional multiprogramming, in particular, control regimes 
not explicitly anticipated by its designers. That is, like 
many other facilities in ECL, the multiprogramming 
mechanism is extensible. As with other extension facili
ties, that for multiprogramming consists of a set of 
primitives and a framework for combining them. Primi
tive operations include creating a path, setting up a 
function to be executed in a created path, running a 
path, deleting a path, accessing and changing the value 
of a variable in some other path, and making a copy of 
a path. The basic framework is provided by a distin
guished path-the control interpreter. This is unique in 
two respects: (1) timer interrupts pass directly to it; 
(2) there is a control primitive-CIA-by which other 
paths can call for the execution of an arbitrary proce
dure in the environment of the control interpreter and 
wait for the result. 

There is a program which runs in the control inter
preter path and acts as the central control of EeL . 



262 Fall Joint Computer Conference, 1971 

Basically, its functions are to handle I/O requests, ar
range for running the other paths, and handle coordina
tion between paths. This program is written in the 
language using the primitives mentioned above. For 
example, to perform path scheduling, a queue of run
nab Ie paths is maintained; when the timer interrupt 
comes into the control interpreter, the path that was 
running is put at the end of the queue, a new path is 
chosen from the runnable queue by the scheduler, and 
the start-path primitive is executed to run the new 
path. The scheduler is· also a routine written in the 
language. Currently, it simply chooses paths in FIFO 
order. However, the programmer may redefine the 
scheduler by substituting his own routine for the sys
tem-provided one. Hence, such refinements as a priority 
system, either simple or with dynamically changing 
priorities, can be readily added. 

Other control activities are equally easy to program. 
For example, a Dijkstra semaphore is a language
defined data structure consisting of an integer count 
and a queue of paths (also a defined data type) waiting 
on this semaphore. The P and V operations are imple
mented by using CIA primitive to transfer into the 
environment of the control interpreter where the neces
sary queues can be safely modified. 

With the framework provided, it is straighforward to 
implement most of the known control structures, e.g., 
coroutines, multiple parallel returns, cooperating se
quential processes and fork/join structures. Further, 
since ECL leaves its control structures open to change, 
it will be possible to develop, as needed, a variety of 
other control regimes. 

SUMMARY 

The ECL programming system has been designed to 
provide an environment conducive to effective pro
gramming. To this end, it contains a language with 
comprehensive data types, operators, control structures, 
and storage management facilities. It allows interactive 
program composition and debugging with smooth 

transition to efficient compiled code. Most important, 
it· allows the programmer to tailor this environment to 
suit his needs. 

ACKNOWLEDGMENTS 

It is a pleasure to acknowledge the help of B. Brosgol, 
B. Byer, T. Cheatham, B. Holloway, and C. Prenner. 

REFERENCES 

1 B WEGBREIT 
The treatment of data types in EL1 
Technical Report 4-71 
Center for Research in Computing Technology 
Harvard University Cambridge Massachusetts May 1971 

2 B WEGBREIT 
Compactifying garbage collection in the heap 
Technical Report 5-71 
Center for Research in Computing Technology 
Harvard University Cambridge Massachusetts June 1971 

3 B WEGBREIT 
Studies in extensible programming languages 
ESD-TR-70-297 
Harvard University Cambridge Massachusetts May 1970 

4 F L DE REMER 
Practical translators for LR(k) languages 
Ph.D. thesis 
Electrical Engineering Department MIT Cambridge 
Massachusetts October 1969 

5 IBM 
APL/360 user's manual 
GH 20-0683-1 

6 A VAN WIJNGAARDEN et al 
Report on the algorithmic language ALGOL 68 
Mathematisch Centrum Amsterdam MR 101 February 
1969 

7 G RADIN H P ROGWAY 
Highlights of a new programming language 
Communications of the ACM Vol 3 January 1965 

8 P S ABRAHAMS et al 
The LISP 2 programming language and system 
FJCC Vol 29 1966 

9 E W DIJKSTRA 
Co-operating sequential processes 
In Programming Languages edited by Genuys Academic 
Press New York 1968 



The "single-assignment" approach to parallel processing* 

by DONALD D. CHAMBERLIN 

IBM Thomas J. Watson Research Center 
Yorktown Heights, New York 

INTRODUCTION 

Parallel processing systems--..:..computer systems in 
which more than one processor is active simulta
neously-offer potential advantages over uniprocessor 
systems in terms of speed, flexibility, reliability, and 
economies of scale. However, they pose the problem of 
how multiple processors can be organized to cooperate 
on a given problem without interference. Various 
solutions have been proposed to this problem.1,2,3,4 

Some systems require a programmer to assign units of 
work to the various processors, while other sy~tems 
perform this assignment automatically; in some sys
tems, the processors are linked closely together, while 
in others the processors are nearly independent. The 
system to be described here automatically detects 
opportunities for parallel processing in programs written 
in a specific, high-level language. Parallelism is detected 
on a very low level-even within a single algebraic 
expression. The system consists of many independent, 
asynchronous processors, all active at once in processing 
a single program. 

In a paper presented at the 1968 Spring Joint Com
puter Conference6 Larry Tesler and Horace Enea 
proposed the concept of "single-assignment" program
ming languages. In a single-assignment program, 
statements do not necessarily execute in the order in 
which they appear; rather, each statement executes as 
soon as all the variables it needs are defined. In order 
that each statement be triggered at a well-defined 
time, it is required that each variable be assigned a 
value only once during the execution of a program. In 
such a program, there is no "flow of control" in the 
conventional sense; rather, the sequencing of state
ments is determined by the data flow, as some state-

* This work was done while the author was with Digital Systems 
Laboratory, Electrical Engineering Dept., Stanford University, 
and was supported by a National Science Foundation Graduate 
Fellowship. 

ments assign values to variables which are needed by 
other statements. If many statements simultaneously 
have all their needed variables defined, all the state
ments may be executed in parallel. 

This paper describes a single-assignment language 
called SAMPLE (for Single-Assignment Mathematical 
Programming Language), and a parallel processing 
system to implement the language., SAMPLE was 
originally inspired by Tesler's language COMPEL; 
however, it includes quite different facilities for itera
tion, input/output, and other features not found in 
COMPEL. All considerations of implementation are 
original to this paper. 

THE LANGUAGE 

SAMPLE resembles as closely as possible a con
ventional high-level language such as ALGOL. It 
employs the left arrow (~) as an assignment operator, 
and allows use of the conventional arithmetic and 
logical operators and parentheses in the construction of 
expressions. However, all SAMPLE programs must 
obey the single-assignment constraint: No variable may 
be assigned a value more than once during the execution 
of a program. SAMPLE recognizes two data types: 
Real numbers and tuples, which are ordered sets of 
numbers or of other tuples. By nesting tuples inside 

, each other, the programmer can implement arrays, 
trees, or "structures" as in PL/I. Tuples are denoted by 
lists of their elements, enclosed between ( and ). For 
example, the array 

might be represented by the nested tuple 

A = ({I, 2,3), (4, 5, 6), (7, 8, 9». 

263 



264 Fall Joint Computer Conference, 1971 

Elements are accessed by means of the subscripting 
arrow 1, which is grouped from the left if it occurs 
multiple times. The first element of a tuple has subscript 
one unless otherwise specified. In the above example 
A 1 2 1 3 is the number six. The reserved word TO 
generates a tuple containing successive integers; for 
example, (II TO 14) is the same as (11, 12, 13, 14). 

The reserved words FIRST and LAST yield the 
subscript number of the first and last element of a 
tuple, respectively. For example, LAST (11, 12, 13, 14) 
has the value four. 

Arithmetic and logical operators may be used 
between two tuples or between a number and a tuple, 
in which case they operate element-by-element. 
Examples: 

(1,2,3)+(2,3,4)= (3,5,7) 

(1,2,3)+2 = (3, 4,5). 

Assignments may be made to individual elements 
within a tuple, provided that the single-assignment 
constraint is observed. When a tuple variable is to 
have its elements assigned one at a time, an additional 
"bounding" statement must be included to inform the 
system that the variable is a tuple, and giving its first 
and last subscript numbers (which may be expres
sions). In the following example, A is defined to be a 
tuple having subscripts ranging from one to three, 
and its elements are assigned values: 

A IS TUPLE (1,3); 

Allto-5; 

A 1 2 to-I3.5; 

A 1 3 to- (X+ Y)/Z; 

Rather than writing a separate bounding statement, 
the programmer may choose to state the bounds of a 
tuple's subscripts in the same statements which assign 
values to its elements, as in 

A 110F(I,3)to-5; 

If the lower subscript bound is omitted, it is taken to be 
one. The "OF" clause may be used more than once in 
a statement, once for each subscript. Thus, 

A 1 I OF L 1 J OF L to- 50; 
means: 

1. A is a tuple whose subscripts range from one to L 
2. A 1 I is a tuple whose subscripts range from 

one to L 
3. A 1 I 1 J is assigned the value 50. 

SAMPLE has no conditional or unconditional 

branches, because it has no flow of control. However, it 
has a conditional expression. The following statement 
assigns to SWITCH the value A if X= Y, otherwise 
the value B: 

SWITCH to- IF X = Y THEN A ELSE B; 

SAMPLE has block structure, which enables the 
programmer to declare and use a name in an inner 
block without danger of duplicating a name used else
where. However, no storage allocation occurs on block 
entry; in fact, "block entry" is undefined since state
ments execute in an unpredictable order. 

The unpredictable order of statement execution also 
requires some special provisions for input and output, 
since the programmer cannot know the order in which 
quantities will be read or written. Conceptually, an 
I/O medium is provided in which all inputs are simul
taneously available, each associated with a "tag" 
(each tag is a unique integer). The statement READ 
(A, 1) means "read into variable A the input quantity 
associated with tag one." WRITE (B, 2) means "write 
the value of B into the I/O medium and associate it 
with the tag two." Post-processing can be done on the 
I/O medium to produce the desired output document. 

SAMPLE allows the programmer to define functions, 
which are pieces of code which may be called by name 
from various places in the program. Functions may have 
parameters and may be recursive; however, a function 
must obey the single-assignment constraint internally, 
and must return exactly one value and have no side 
effects. 

The most difficult facility to provide in a single
assignment language is iteration, which, by its nature, 
tends to assign values to the same variables repeatedly. 
Since SAMPLE is intended for parallel processing, we 
distinguish two types of iteration: (1) a set of actions 
which may be taken simultaneously, and (2) a set of 
necessarily sequential actions. For simultaneous itera
tion, we provide a convention which obeys the single
assignment constraint. A statement containing a tuple 
name enclosed in single quote marks behaves exactly as 
though it were many statements, one with each element 
of the tuple substituted for the quoted name. If more 
than one different quoted name appears, a copy of 
the statement is generated for each possible way of 
substituting a tuple element for each quoted name. The 
order of execution of the copies is determined by the 
readiness of their respective input values. For example, 
if the programmer writes 

I to- (1,2); 

J to- (1,2); 

A 1 'I' 1 'J' to- B 1 'J' 1 'I'; 



"Single-Assignment" Approach to Parallel Processing 265 

the last statement behaves exactly as though it were 

A1111~B1111; 

All 1 2~B 1 2 11; 
A1211~B1112; 

A 1 2 1 2 ~ B 1 2 1 2; 
The SAMPLE facilities for sequential iteration 

abridge the single-assignment property; they look 
almost exactly like ALGOL FOR and WHILE loops. 
Examples: 

FOR I ~ 1 STEP 1 UNTIL 10 DO 
(loop body) 

END 

WHILEX=YDO 
(loop body) 

END 

For the purposes of the external program, the entire 
loop with all its iterations looks like a single statement, 
and any variables assigned values in the loop are not 
considered to be "ready" until the final iteration is 
complete. Within the loop body, the order of execution 
of statements (and nested loops) is governed by the 
readiness of their data, according to the single-assign
ment property. Each iteration of the loop is not begun 
until the previous iteration is complete. Within the 
loop, any variable name X means "the value which is 
being computed for X during this iteration of the loop" 
whereas OLD X means "the value which was computed 
for X in the previous iteration." Each loop may have an 
initialization section, which assigns the value to be used 
for OLD X (or any other OLD variable) during the 
first iteration, as follows: 

INITIAL X ~ 0; 

Shown below is a SAMPLE program which reads a 
matrix A (of arbitrary size and shape) and reduces it 
to upper diagonal form by a process of Gaussian 
elimination. Rows and columns are assumed to begin 
with subscript one. 

BEGIN 
READ (A, 1); 
COMMENT: A IS A TUPLE OF TUPLES 

REPRESENTING A MATRIX. EACH ELE
MENT TUPLE IS A ROW; 

L~LAST A; 
COMMENT: L IS THE NUMBER OF THE 

LAST ROW; 
FOR I ~ 1 UNTIL L-1 DO 

COMMENT: DO THE LOOP BODY FOR 
EACH ROW EXCEPT THE LAST; 

INITIAL B ~ A; 
J ~ (1 TO I); 
K ~ (1+1 TO L); 
FACTOR IS TUPLE (1+1, L); 
FACTOR 1 'K' ~ OLD B 1 'K' 1 IjOLD 

B 1 I 1 I; 
COMMENT: FOR EACH ROW LOWER 

THAN THE PRESENT ONE, WE HAVE 
COMPUTED THE NECESSARY FACTOR. 
WE NOW CONSTRUCT THE NEW B 
FROM THE OLD B BY ROW OPERA
TIONS; 

B IS TUPLE (1, L); 
B 1 'J' ~ OLD B 1 'J'; 
COMMENT: THE NEXT STATEMENT 

DENOTES ARITHMETIC OPERATIONS 
BETWEEN ROWS; 

B 1 'K' ~ OLD B 1 'K' - OLD B 1 I * 
FACTOR 1 'K'; 

END 
WRITE (B, 2); 
COMMENT: ONLY THE FINAL VALUE OF B 

(THE FINISHED MATRIX) IS WRITTEN; 
END 

IMPLEMENTATION 

Implementation of SAMPLE consists of two steps: 
Compilation and execution. 

Compilation is done by a conventional method: The 
program is parsed according to a phrase structure 
grammar, and appropriate machine-language instruc
tions are emitted during the parsing process. The 
compiler generates "temporary" variables as needed to 
ensure that the single-assignment property is preserved 
in the emitted code. For example, in compiling the 
expression 

X ~ (A * B) + (C * D) ; 

the compiler would generate temporary variables Tl 
and T2 and emit the following instructions: 

1. Tl ~A *B 
2. T2~C *D 
3. X~Tl + T2 

During the execution phase, instructions (1) and (2) 
might execute simultaneously, defining the values of 
Tl and T2, which in turn would release instruction (3) 
for execution. The compilation process, which could be 
implemented on a conventional machine, is described 
in more detail in a Stanford Ph.D. thesis. 6 SAMPLE 
could not conveniently be used as the language in which 



266 Fall Joint Computer Conference, 1971 

its own compiler is written, because it lacks facilities 
for manipulating character strings. 

It has been proposed that the SAMPLE compiler 
might generate names, relieving the programmer of the 
necessity to invent a different name for every different 
assignment of a variable. However, this would require 
the compiler to make assumptions about the order in 
which statements are to be processed, and so would be 
contrary to the principle of single-assignment pro
gramming. 

A hardware organization is proposed for executing 
compiled SAMPLE programs. The system has three 
passive storage units: 

1. The Instruction Store 

This unit contains the machine instructions 
emitted by the compiler. Each instruction has an 
opcode, an output operand, up to three input 
operands, and certain link fields as described 
below. Each input operand has a "ready" bit; 
the instruction cannot be executed until all the 
ready bits are on. 

2. The Data Store 

This unit contains data used during execution of 
the program. Each cell contains a space for the 
value of a variable, and a pointer to some 
instruction which is waiting for that variable as 
an input operand. If there are many such 
instructions, they are organized into a linked 
list, each instruction pointing to the next by 
means of special link fields in the instructions. 
Thus, when a given variable becomes ready, all 
instructions waiting for it can be notified by 
following the linked list. The linked list is 
created by the compiler (or by the action of 
certain instructions at run time). 
A number can be stored in the "value" field of a 
single data cell. If the variable to be stored is a 
tuple, the cell contains a notation of the size of 
the tuple, and a pointer to where the first 
element is stored. The elements are stored in a 
set of consecutive cells, one element to a cell. 
Each element may itself be a tuple which points 
to a set of elements of its own. 

3. The Ready List 

This unit contains copies of all instructions which 
are known to be ready for execution, in the 
sense that all their input operands are defined. 

Execution of the program is carried out in parallel by 
many independent processors. Each processor re-

peatedly executes the following Basic Instruction 
Routine: 

1. The processor fetches from the Ready List an 
instruction which is ready to be executed. 

2. The processor fetches from the Data Store the 
input operands of the instruction, and performs 
the indicated operation on them. 

3. The processor writes the resulting output operand 
into the Data Store. In the same storage access 
cycle, it obtains the pointer to an instruction 
which is waiting for the newly-ready cell, if any. 

4. The processor follows the linked list of instruc
tions which are waiting for the newly-ready data 
cell. For each such instruction, it does the 
following: 
a. It turns on the ready bit of the newly-ready 

operand. 
b. If all ready bits are now on, it copies the 

instruction into the Ready List. 
c. It obtains the link to the next instruction on 

the waiting list. 

Because many processors are simultaneously making 
access requests to the three storage units, each is 
organized into many banks, and the cell addresses 
within the unit are interleaved among the banks. In a 
given storage cycle, each bank can satisfy only one 
access request; however, two processors making simul
taneous requests of two different banks may both be 
satisfied. 

Certain features of SAMPLE make it necessary that 
additional machine instructions be generated at run 
time. One such feature is the ability to define and call 
functions. The compiler produces, from the function 
definition, a template of machine instructions, with 
certain operands left "blank." Then, when the function 
is called at run time, a special CALL instruction makes 
a new physical copy of the template, filling in the 
blanks with the real parameters of the function call, 
and releases the newly copied instructions for execution. 
The original template is preserved and used for other 
calls. Because of the single-assignment constraint, each 
new copy of the function template must have a com
pletely new set of memory cells allocated for its tem
porary variables; these new cells are allocated by the 
action of the CALL instruction. 

Another feature requiring run-time generation of 
instructions is the parallel iteration feature, in which a 
statement containing a quoted tuple name behaves 
like many statements, one for each element of the 
tuple. In general, the size of the quoted tuple is not 
known at compile time, and so it is not known how 
many copies of the statement are to be made. Again, 



"Single-Assignment" Approach to Parallel Processing 267 

the solution is to make a template of all the instructions 
compiled from the statement. At run time, when the 
quoted tuple is defined, a special EXPAND instruction 
is triggered, which expands the template into the re
quired number of copies and fills in the addresses of the 
tuple elements in the appropriate places. 

A third language feature requiring special imple
mentation is the loop. Once again, the compiler generates 
a template of instructions corresponding to one copy of 
the loop. At run time, a physical copy of the template is 
made and released for execution. At the same time, a 
special REPEAT instruction is generated, whose 
function is to sense when the most recent copy of the 
loop is completely executed, then test the continuation 
condition and, if it passes, generate a new copy of the 
loop template (complete with its own REPEAT 
instruction). In order for the REPEAT instruction to 
sense when all the loop instructions have executed, it 
must have a dummy input operand which becomes 
ready only when the output operands of all the loop 
instructions are ready. This is accomplished by means 
of a tree of NOP instructions, whose only function is 
to make the readiness of the dummy REPEAT operand 
dependent on the readiness of all variables defined in 
the loop. 

Loops also require introduction of the concept of 
"levels of readiness." A variable defined in a loop may 
be "ready" to instructions which are implementing the 
current copy of the loop, but "not ready" to instruc
tions outside the loop, which must wait for all loop 
iterations to be complete before they can use the 
variable. Therefore, all instructions in the instruction 
store have a "level" field, which describes the level of 
loop nesting at which the instruction is found, and 
each cell in the data store has a field describing its 
level of readiness. The ready bit of an instruction is not 
turned on unless the corresponding operand is ready 
on the level of the instruction (or on an outer level 
of nesting). 

EXPECTED PERFORMANCE 

We expect that, for some class of problems, the 
SAMPLE type of organization has a speed advantage 
over a conventional uniprocessor, despite its wastage of 
storage accesses on overhead functions such as updating 
ready bits. The speed advantage arises from the ability 
to overlap multiple memory accesses into the same 
memory cycle. However, the SAMPLE system requires 
a costly replication of processors and memory banks, 
and its total storage requirements for a given unit of 
work are expected to exceed those of a conventional 
processor by a large factor. The increased storage 

requirements are due to the following causes: 

1. Storage is required for such "overhead" items as 
pointers, links, ready bits, and the Ready List. 

2. Because the processors communicate only 
through memory, they cannot store temporary 
results in internal registers, but must use memory 
cells for this purpose. 

3. The single-assignment property dictates that 
each storage cell is used only once in a program. 
Therefore, although SAMPLE processing is 
compacted in time, it is correspondingly "spread 
out" in memory space. This trading off of time 
for memory space may be an inevitable con
sequence of parallel processing. 

Because of its wasteful use of storage, single-assignment 
processing is not considered to be a cost-effective 
method of computing at the present time. Its feasibility 
would be improved by a large reduction in the cost of 
random-access storage, or by development of a means of 
reusing storage locations during processing of a 
program. The problem of deciding when to free a 
storage cell for reuse is complicated by the fact that, 
in processing a SAMPLE program, new instructions are 
generated at run-time. Thus, although all instructions 
referencing a particular cell may have been executed, 
there is no assurance that more such instructions will 
not be generated at a future time, and so the cell cannot 
be released. 

EXAMPLE 

As an example of the behavior of the proposed 
system, programs were written to multiply together two 
square matrices, in SAMPLE (see Appendix A) and in 
IBM System/360 Assembler Language7 (see Appendix 
B). The 360 program was written in such a way as to 
minimize memory accesses by storing temporary 
results in registers. Behavior of the two programs was 
simulated in detail, on a memory-cycle level, for 2X2 
and 3X3 matrices. The results were compared on two 
bases: (1) total memory cycles required to execute the 
program, and (2) total bits of storage required for 
program, data, Ready List, and all working areas. Each 
360 memory cycle resulted in exactly one memory 
access for fetching instructions or data or storing results. 
In the SAMPLE system, memory accesses were used 
not only for these purposes but also for "overhead" 
functions such as updating ready bits. However, in the 
SAMPLE system, one memory cycle might result in 
many memory accesses made by different processors to 
different storage banks. Three parameters limited the 



-
lIJ 
:E 

268 Fall Joint Computer Conference, 1971 

ability of the SAMPLE system to overlap storage 
accesses in this way: (1) the number of processors, 
(2) the number of storage banks,and (3) the number 
of ports through which a processor may make an access 
request (effectively, the number of access requests 
which may be made by a single processor in the same 
cycle) . Two SAMPLE systems were investigated: 
(1) an unlimited system, in which there were in
definitely many processors, each with an unlimited 
number of ports, and each individual storage address in 
the instruction store or data store is considered to be 
its own "bank"; (2) a limited system having ten 
processors, each with four ports, and, in which the· 
instruction and data stores each have their addresses 
interleaved among ten banks. The simulation results are 
shown in Figures 1 and 2. The results of the example are 
consistent with the expected performance described 
above. 

500 
. (484) 

~ 200 z 
o 
~ 
:l . (55) 
hi 
~ 100 

(90) . 

(55)0 lMIimit.d SAWLE 0(61) 

O--~~~----------~ 2x2 3x3 
SIZE OF MATRICES 

Figure I-Execution time comparison, 360 vs. SAMPLE 

50 
. (52.0) 

(26.2) . 

360 
(1.0)0-· -------0. (1.5) 

O--~~----------__ ~ 
2x2 3x3 

SIZE OF MATRICES 

Figure 2-Storage usage comparison, 360 vs. SAMPLE 

REFERENCES 

1 J P ANDERSON 
Program structure for parallel processing 
Communications of the ACM Vol 8 No 12 December 1965 

2 G H BARNES R M BROWN M KATO 
D J KUCK D L SLOTNICK R A, STOKES 
The Illiae IV computer 
IEEE Transactions on Computers Vol C-17 No 8 
August 1968 

3 H W BINGHAM D A FISHER E W REIGEL 
A utomatic detection of parallelism in computer programs 
Burroughs Corporation Technical Report TR-67-4 
November 1967 

4 H S STONE 
One-pass compilation of arithmetic expressions for a 
parallel processor 
Communications of the ACM Vol 10 No 4 April 1967 

5 L G TESLER H J ENEA 
A language design for concurrent processes 
Proceedings of tpe 1968 Spring Joint Computer Conference 



"Single-Assignment" Approach to Parallel Processing 269 

6 D D CHAMBERLIN 
Parallel implementation of a single assignment language 
PhD Thesis Electrical Engineering Department Stanford 
University Stanford California 1971 

7 IBM System/360 principles of operation 
IBM Publication No A22-6821 February 1966 

APPENDIX A 

SAMPLE MATRIX MULTIPLICATION 
PROGRAM 

This program multiplies square matrices A and B 
(which may be of any size) to form the product C :** 

BEGIN 
L t- LAST A; 
It- (1 TO L); 
J t- (1 TO L); 
Kt- (1 TO L); 
COMMENT: DO ALL MULTIPLICATIONS 

IN A SINGLE STEP; 
T 1 '1' OF L l 'J' OF L 1 'K' OF L t

A l '1' l 'K' * B l 'K' 1 'J'; 
COMMENT: NOW ADD UP THE PRODUCT 

ELEMENTS; 
C 1 '1' OF L l 'J' OF L t- + T 1 '1' l 'J'; 

END 

APPENDIX B 

IBM SYSTEM/360 MATRIX MULTIPLICATION 
PROGRAM 

This program accepts 2X2 matrices in row-major 
order in areas A and B, and leaves their product in 
row-major order in area C. To convert to multiply N XN 
matrices, simply enlarge areas A, B, and C to N2 words 
each, and change the constant N4 to contain 4 * N. 

** The unary operator + in the last statement yields the sum 
of the elements of the tuple T ! I ! J. 

* REG. ° WILL CONTAIN 4 * N 
* REG. 1 WILL CONTAIN 4 * I 
* REG. 2 WILL CONTAIN 4 * J 
* REG. 3 WILL CONTAIN 4 
A DS 4F 
B DS 4F 
C DS 4F 
N4 DC F'8' 

LA 12,4 
L 0,N4 
LR 1,12 

ILOOP LR 2,12 
JLOOP LR 5,1 

MR 4,0 
AR 5,2 

SR 
LR 

KLOOP LR 
MR 
AR 

10,10 
3,12 
7,1 
6,0 
7,3 

LR 9,3 
MR 8,0 
AR 9,2 

LE II,A(7) 
ME II,B(9) 

PUT 4 INR12 
PUT4*NINRO 
SET 1=1 (4*1=4) 
SET J = 1 (4*J =4) 

R5 NOW CONTAINS 
DISPLACEMENT 
(I,J) 

ZERO RIO 
SET K=1 (4*K=4) 

R7 NOW CONTAINS 
DISPLACEMENT 
(I,K) 

R9 NOW CONTAINS 
DISPLACEMENT 
(K,J) 

LOAD A(I,K) INTO Rll 
MULTIPLY 

A(I,K) * B(K,J) 
AER 10,11 ADD PRODUCT TO RIO 
AR 3,12 INCREMENT K 
CR 3,0 IF K (=N, 
Be 12,KLOOP GO TO KLOOP 
ST 10,C(5) STORE RIO INTO C(I,J) 
AR 1,12 INCREMENT J 
CR 2,0 IF J (=N, 
Be 12,JLOOP GO TO JLOOP 
AR 1,12 INCREMENT I 
CR 1,0 IF I (=N, 
Be I,ILOOP GO TO ILOOP 





MEANINGEX-A computer-based semantic parse 
approach to the analysis of meaning* 

by DAVID J. MISHELEVICH** 

The Johns Hopkins University School of Medicine 
Baltimore, Maryland 

INTRODUCTION 

It is the purpose of this paper to look at the semantic 
analysis of a subset of natural English text, namely the 
simple noun phrase, and present the theoretical basis 
for and the implementation of a semantic analyzer 
called MEANIN GEX. A "simple" noun phrase is 
defined as a noun modified by adjectives and/ or 
prepositional phrases. Throughout the paper, examples 
will be given from medical record text because of my 
own orientation and because the desirability of semantic 
analysis of specific types of phrases provided the 
motivation for my study of meaning. I look at the basic 
operational question to be as follows: "How can state
ments with the same meaning, but which are said in 
different words be transformed to an identical form?" 
Thus the basic object of the process is to make ~imilar 
things fall together. 

Looking at the set of medical records of a hospital or 
physician as a whole, the set forms a costly and hard
won body of medical knowledge from which information 
for both individual patient care and for research 
purposes can be retrieved. 

As in any document which contains many, many 
words, organization is a requirement for the purpose of 
rapid retrieval. One formal scheme for producing a well 
organized patient record results in the "PROBLEM
ORIENTED MEDICAL RECORD" of Weed.1,2 

The record consists basically of a numbered list of 

* This investigation was supported in part by National Institute 
of General Medical Sciences SpeciaJ Fellowship No. 5-F03-GM-
42, 816-02. The computing was done in the computing center of 
the Johns Hopkins University School of Medicine supported in 
part by a research grant of the Control Data Corporation. This 
paper is based on a dissertation submitted in partial fulfillment 
of the requirements for the degree of Doctor of Philosophy at the 
Johns Hopkins University. 
** Present address: National Educational Consultants, 711 
St. Paul St., Baltimore, Maryland 21202. 

271 

problems (which mayor may not be diagnoses) 
followed by progress notes and flow sheets of laboratory 
values or other measurements keyed to the problems. 

An important feature for the generalization of the 
approach to semantic analysis is that the individual 
problems are essentially the same in format and content 
as statements of diagnoses, symptoms or abnormal 
laboratory findings in medical and pathological records 
which are not in the form of the "Problem Oriented
Medical Record." 

The striking syntactic feature about this highly 
important problem list is that, ,in the vast majority of 
instances, the statements are noun phrases. The availa
bility of a valuable corpus of medical record text as 
the subset of natural language to be analyzed first, 
before completely free text, justified the limitation of 
this study in semantic analysis to noun phrases. 

THEORETICAL BASIS FOR SEMANTIC 
ANALYSIS 

Semantics has been primarily studied by philosophers. 
Rather than the development of a unified, applicable 
analysis scheme, the approach to semantics has been 
largely descriptive with example and counter-example. 

The major thrust of recent philosophical work in 
semantics has been due to Dr. Jerrold Katz and his 
coworkers. Katz points out that there are three com
ponents to the linguistic description of a natural 
language: syntactic, semantic and phonological,3 They 
define the linguistic description of a natural language 
as "attempt to reveal the nature of a fluent speaker's 
mastery of that language" (Ibid, p. 8). Basically, then, 
we are concerned with the act of communication. 
Specifically, we are interested in the means by which 
one physician communicates with other physicians 
through the medium of the medical record. We desire to 
make relatively minimal restrictions on his com-



272 Fall Joint Computer Conference, 1971 

munication and avoid such practices as the enforced 
use of handbooks of standard terms or numerical codes. 

Katz and Fodor4 and Katz and Postal3 outlined a 
model for a semantic theory. A "projective device" 
was described which consisted of two components: a 
dictionary and set of projection rules which assign a 
semantic interpretation to the output produced by the 
syntactic process. It is required that every sense that 
a term can take on in any sentence be covered. Katz and 
Postal3 require that the entries in the dictionary have 
"normal form" with the following components: 

1. Syntactic Markers 
2. Semantic Markers 
3. Distinguishers (optional) 
4. Selection Restrictions (optional) 

MEDICAL INFORMATION RETRIEVAL 
SYSTEMS 

Retrieval of information in the form of diagnoses has 
been a very important objective in medicine. The major 
systems currently used are those involving numerical 
codes (SNDO = Standard Nomenclature of Diseases 
and Operations,5 IC = International Classification of 
Diseases and Operations,6 ICDA = International Clas
sification of Diseases, Adapted,7 and SNOP = Standard 
Nomenclature of Pathology8) although there is a move 
(e.g., Reference 9) toward standard terms uncoded 
into numbers (Reference 10), such as the Current 
Medical Terminology,11 

Other medical systems not relying on numerical 
codes coded by the user can be broken down into two 
classes. The first is the synonym approach12- 14 and 
the second is the syntax-oriented approach (the 
ACORN system, see References 15 and 16). 

COMPUTER-ORIENTED RELATED AREAS 

Four computer-oriented types of programs depend 
very heavily on the general field of semantic analysis. 
They are: Machine Translation, Question and Answer 
Systems (part of artificial intelligence) , Content 
Analysis and Bibliographic Retrieval. 

Machine translation 

The 1950s brought forth the hope for and attempts 
to realize machine (or mechanical) natural language 

translation from one language to another~ While the 
results were largely disillusioning even with postediting, 
some questions are related to the present problem. 
With copious postediting, machine translation cost more 
than human translation. 

Question and answer systems 

Question answering systems must have semantic 
talents. Simmons has reviewed the area twice17- 19 

and indicated that there have been essentially two 
generations of such systems with a fuzzy dividing line. 
One difference has been that most first generation 
systems have had fixed data bases from which in
formation can be retrieved while second generation 
systems are more likely to be able to accept revisions to 
the information structure by the individual asking the 
question. With rare exceptions (e.g., see Reference 20) 
the systems have been quite limited in the English 
subset involved. Bibliographic retrieval is a related area, 
since the search request is actually a formally stated 
question. Giuliano,21 commenting on the first Simmons 
article, felt that there were many reasons for being 
pessimistic since the semantic analysis in general was 
restricted to "almost trivial subject areas" such as 
kinship relationships,22 baseball23 and uncomplicated 
geometric figures. 24 Some improvements were made by 
the time of writing of the second review article as we 
shall see below. 

It is beyond the scope of this paper to cover such a 
rich field exhaustively. The area can be broken down 
into list-structured data base systems (BASEBALL;23 
SAD SAM22,) text-oriented systems (PROTOSYN
THEX20, 25,) logical inference systems (SIR26-27 and 
STUDENT28-29), belief system simulationSo-S4 and 
semantic memory.35-37 

Content analysis 

The major thrust in content analysis has been using 
a tool called "The General Inquirer,"38-39 a computer
oriented system for which a user's manual has been 
supplied.40 

Bibliographic retrieval 

Bibliographic retrieval or automatic indexing is a 
question answering system in that the question is, 
"Please retrieve all references which are relevant to my 
search request in a given field." 



The most ambitious test of retrieval techniques has 
been with regard to the SMART system developed by 
Salton and his coworkers. 41-46 

REQUIREMENTS FOR A SEMANTIC 
ANALYZER 

What, then, are the requirements which a semantic 
analyzer should be able to meet? They are in summary: 

1. Application of a "semantic transformation" so 
that statements which are given in different 
words but are recognized as meaning the same 
thing in a given contextual communication are 
reduced to an identical form. 

2. Effective selection of sense of meaning 
3. Resolution of ambiguity 
4. Deletion of contradiction 
5. Ability to handle the problem of specificity 

The approach to MEANINGEX will be stated, the 
implementation described and results on typical medical 
record text statements exhibited. WB then shall have 
the opportunity to compare the output of the 
MEANINGEX analyzer to the above criteria and 
evaluate its performance. 

THE SEMANTIC PARSE APPROACH TO 
MEANING ANALYSIS 

As opposed to the selector scheme of Katz et al. 
with the subsequent combination of appropriately 
selected lexical paths, I have chosen the more efficient 
representation of the modification of a head term in 
which both the selection and combination of meaning 
are integrated processes. I call this a semantic parse or 
composite selector-modifier system. Not just the 
attributes of a word {e.g., (Human), (Animate), etc. 
of the Katz, Fodor and Postal model] are displayed. 
The head term is the noun in the noun phrase statement 
which forms the root in the tree-structured semantic 
analysis of that statement. Any arbitrary modifi~ation 
ofa head term by semantic markers is permitted. The 
appropriate markers for the text being analyzed are 
automatically selected. The use of a tree structure 
means that the modifier of a term can be in tum 

MEANINGEX 273 

modified to any level. Thus we have schematically: 

HEAD TERM 
MODIFIER A 

MODIFIER Al 
MODIFIER A2 

MODIFIER B 

Etc. 

Note that typographical indentation is and will be 
employed as the means by which hierarchical structure 
is displayed. The modifiers are general properties such 
as anatomical or functional considerations. 

I call the tree structure a semantic parse or "sparse" 
because the nodes are composed of semantic markers as 
opposed to syntactic ones. Note that Raphael27 has used 
the term "semantic parse" to denote the phase of 
extracting relational information from English text in 
his SIR program (see above). Since the MEANINGEX 
modifications are at least informal relations, the present 
use is certainly related. Quillian3s- a6 feels that his 
dictionary view of encoding definitions using the 
concept of modifications to a word represents at least 
in part a Hparse." This use is also consistent, perhaps 
more so. The non-hierarchical, linear presentation of 
the node contents in descriptor form after the tree 
structure has been constructed is called the "end
sparse." 

An important point is that we are dealing with a 
functionally oriented analyzer. It has generative 
properties as well since the input of a single head term 
will generate an entire skeletal structure. The analysis 
is performed, however, with regard to the rest of the 
text given. These concepts will become clearer through 
the development of an example. Let us analyze the 
noun phrase problem statement: 

MODERATELY SEVERE, ACUTE, 
PNEUMOCOCCAL ARTHRITIS OF THE 
LEFT KNEE 

which is a typical problem statement. 

The lexical phase 

Of course, the only information about a word that 
an analyzer has is given to it by the system user. We 
must therefore relate each input word or compound 
term we wish the analyzer to recognize to a standard 



/ 

274 Fall Joint Computer Conference, 1971 

term (which may be the term itself) and a part of 
speech. In some cases the part of speech may be changed 
later when context dictates such a move. For example, 
a noun might be effectively changed to an adjective 
role as in the case of liver becoming an adjective in 
liver biopsy. The form of such a lexicon .might be as 
follows: 

TERM OR COM
POUND TERM 

CEREBRAL VASCULAR 
ACCIDENT 

CVA 
DIABETES 
DIABETES MELLITUS 
DIABETES INSIPIDUS 
MODERATELY SEVERE 
STROKE 
LIVER BIOPSY 

STANDARD 
TERM 

CVA 
CVA 
DIABETESM 
DIABETESM 
DIABETESI 
SEVERE 
CVA 
LIVERBX 

PART 
OF 

SPEECH 

NOUN 
NOUN 
NOUN 
NOUN 
NOUN 
ADJ 
NOUN 
NOUN 

For our problem statement, we would also use the 
information that "ACUTE" was substituted for 
"ACUTE" as an adjective, "PNEUMOCOCCUS" 
was substituted for "PNEUMOCOCCAL" as an 
adjective and "ARTHRITIS" was substituted for 
"ARTHRITIS" as a noun. Common incorrect spellings 
could be placed in the lexicon as well. 

Syntactical phase 

In this phase, the head term is separated out and the 
rest of the terms become adjectives. For example, the 
prepositional phrase is dealt with. In our sample 
problem "of the left knee" is such that "left knee" 
tells the location of the arthritis so "of the left knee" 
is converted to the role of an adjective. Once this is 
recognized, then "of the" is no longer required. 

The extent of the adjectives modifying the noun 
within the prepositional phrase can be marked with· a 
special symbol, sayan ampersand. Some nouns used as 
adjectives will be taken care of in the lexical com
pressions (e.g., "liver" in "liver biopsy"). Others can 
be handled by assuming that the final noun in a string 
of nouns is really a noun and that the rest are adjectives 
(e.g., "disease" in "kidney disease"). The ambiguity 
which might arise because of confusion with regard to 
whether a term is a noun or a verb (e.g., "biopsy") 
does not arise since we are dealing exclusively with 
"simple" noun phrases. 

Normalized text 

The output of the lexical and syntactical phases 
combined is called "normalized text." It forms the input 
to the semantic parser. We are using as an example for 
analysis the problem statement: 

MODERATELY SEVERE, ACUTE, 
PNEUMOCOCCAL ARTHRITIS OF THE 
LEFT KNEE 

Our example would have the normalized text: 

SEVERE,ACUTE,PNEUMOCOCCUS, 
&LEFT,KNEE, ARTHRITIS 

Tree directory 

While it is possible to get some reduction to identical 
meaning by use of the lexicon alone, the power of 
modification and selection resides in the semantic 
parse itself. The elements of the semantic parse are the 
entries in the tree directory. Starting with the head 
term and its terms on the next node, the tree can be 
constructed. Two types of nodes are available. Both 
represent "term or terms on the next node." The first 
is an inclusive node in which all the ter~ are used. 
The second is a selector node in which only one of the 
possible choices is selected. One modifier being chosen 
is equivalent to a subset being chosen since the one 
selected can be defined to generate the others required. 
For display purposes, an asterisk in front of the mem
bers of a· set of "terms on the next node" will denote 
that only one of .those is to be selected. If one of the 
selections in turn has no entry in the tree directory, 
it is assumed to be terminal and "null" as the following 
step is automatically supplied. The form of the tree 
directory is as foliows: 

TREE DIRECTORY 
TERMS 

ARTHRITIS 

BACTERIAL 

DEGREE 

TERMS ON NEXT 
NODE 

JOINT 
INFLAMMATION 

*GONOCOCCUS· 
*MENINGOCOCCUS 
*PNEUMOCOCCUS 

*MILD 
*MODERATE 
*SEVERE 



DURATION 

ETIOLOGY 

INFECTIOUS 

INFLAMMATION 

JOINT 

JOINTNAME 

LOCATION 

SIDE 

The sparse 

*ACUTE 
*SUBACUTE 
*CHRONIC 

*INFECTIOUS 
*OSTEO 

. *RHEUMATOID 

*BACTERIAL 
*VIRAL 

DEGREE 
DURATION 
ETIOLOGY 
LOCATION 

JOINTNAME 
SIDE 

*SHOULDER 
*FINGER 
*HIP 
*KNEE 
*TOE 
*POLY 

*JOINT 
*CAVITY 
*ORGAN 

*LEFT 
*RIGHT 
*BOTH 

The skeletal form of the sparse is solely determined 
by the head term. Aside from that head term, the only 
role played by the normalized text is to supply selector 
node decisions. The tree produced by the sparse from 
the sample problem statement with reference to the 
above tree directory is as follows: 

ARTHRITIS = 
JOINT = 

JOINTNAME= 
KNEE = 

NULL = 
SIDE = 

LEFT = 
NULL = 

INFLAMMATION = 
DEGREE = 

SEVERE = 
NULL = 

MEANINGEX 275 

DURATION = 
ACUTE = 

NULL = 
ETIOLOGY = 

INFECTIOUS = 
BACTERIAL = 

PNEUMOCOCCUS = 
NULL = 

LOCATION = 
JOINT = 

JOINTNAME= 
KNEE = 

NULL = 
SIDE = 

LEFT = 
NULL = 

"JOINT" and "KNEE" are duplicated because if the 
problem had been stated "MODERATELY SEVERE, 
ACUTE PNEUMOCOCCAL INFLAMMATION OF 
THE LEFT KNEE," we would need some way to 
indicate location (except see section on IMPLIED 
RELATIONS, below). The only result not thus far 
explained is how the terms "INFECTIOUS" and 
"BACTERIAL" were produced considering that they 
were not present in the original problem statement. 
This facility is taken up in the following section. 

Implied relations 

Within a given context, more information is present 
in terms of meaning than is given by the terms actually 
comprising a given statement. In a medical context, for 
example, the term "pneumococcal" calls to mind that 
the pneumococcus is a bacterial agent and therefore the 
process involved is an infectious one. Thus the fact 
that pneumococcal implies bacterial and bacterial 
implies infectious can be and was used to good advan
tage in producing the above sparse. 

The logical relations, of course, are not always as 
simple as pure implication and for some cases one can 
see the practical extension of these operations to cover 
other cases. For example (Diabetesm AND Pancreas) 
might imply "Endocrine." The present system deals 
with pure implication, and the binary logical operators, 
AND and OR. The OR is an inclusive OR. 

We note parenthetically that there is redundancy 
present in the implied relations. This really is not a bad 
situation except in the information theoretical trans
mission sense. We have two choices, first to put in 
implied members of the tree or second to cull out all 
such members which are otherwise implied. I have 



276 Fall Joint Computer Conference, 1971 

chosen the first course of action even though it occupies 
more space, since it gives us the most consistent body of 
information to use for the similarity determination. 
This is a desirable approach to allow the greatest 
degree of symmetry since it exhibits linkages which 
might otherwise be lost. This "expansive" approach 
might well be criticized on the basis that somehow the 
"essence" of meaning should be the smallest set of words 
possible, but this is not one of my present goals. It 
appears, in fact, that the only method by which one can 
demonstrate the meaning of an item is to attach all the 
relevant sememic tags to it. Since words are often quite 
rich in meaning, we would expect to have a number of 
such tags occur and in fact this is part of the measure 
of "goodness." 

The end-sparse 

Once the sparse has been constructed, we have 
utilized the power of the hierarchical structure and 
now can transform the sparse to a form that is con
venient for the purpose of information retrieval. A very 
convenient format is that of the linear descriptor string. 
Each data item is enclosed between virgules with the 
descriptor for that item to its right. This is an "attribute
value" approach. Such a record can be logically searched 
with the SEARCH program47 or similar systems. The 
sparse placed in the linear descriptor form is called an 
"end-sparse." Note that one item's descriptor can be 
another descriptor's item. For our sample problem we 
obtain: 

/NULL/LEFT /SIDE/NULL/KNEE/ JOINT-
N AME/ JOINT /LOCATI ON jNULL/PNEUM 0-
COCCUS /BACTERIAL/INFECTIOUS / 
ETIOLOGY /NUJ .. L/ ACUTE/DURATION /NULL/ 
SEVERE/DEGREE/INFLAMMATION /NULL/ 
LEFT /SIDE/NULL/KNEEj JOINTN AME/ 
JOINT / ARTHRITIS/ 

The end-sparse for the problem statement 
"MODERATELY SEVERE, ACUTE, PNEUMO

COCCAL INFLAMMATION OF THE LEFT KNEE" 
would be the same except that "/ ARTHRITIS/" 
(which is redundant information anyhow) would not 
occur. If one states in the implied relations that "joint 
AND inflammation IMPLIES arthritis," the head 
term "inflammation" will be replaced by the higher 
level term "arthritis." In any case, since the basic 
elements (those resulting from "joint" and "inflam
mation") do occur, we have transformed a statement 
said in different words than the previous one but with 
the similar meaning into a "similar" form. It would be 

possible to remove redundancies and thus shorten the 
end-sparses. 

MEANINGEX IMPLEMENTATION 

MEANINGEX is a language for "extracting 
meaning" from medical text which consists of problem 
statements. The language MEANINGEX runs inter
pretively on the CDC 3300 computer and has been 
implemented in the assembly language COMPASS. 
The current version is batch process only. The instruc
tions are *INPUT LEXICON, *IMPLICATIONS, 
*TREE DIRECTORY, *DUMP LEXICON, *DUMP 
IMPLY LIST, *DUMP TREE DIRECTORY, and 
*SP ARSE. Implications are described in Polish postfix 
notation. An on-line interactive system would be 
valuable since spelling, format and implication problems 
could be resolved in a conversational manner. Many of 
the items could be internally coded so the storage 
requirements for the sparses could be pared down 
dramatically. In the present version where space was 
not a major factor, a design decision was made to main
tain everything in actual text. 

EXAMPLE OF MEANINGEX ANALYSIS 

Two sparses from a typical run using the 
MEANINGEX interpreter appear in Figure 1. 

Comparison of the first and second problem state
ments illustrates the use of the implication facility to 
displace a head term. Implication is stated in Polish 
postfix notation with = standing for implication, * for 
an inclusive OR, and & for AND. In the second sparse, 
the implication HJOINT,INFLAMMATION,&, 
ARTHRITIS, = " is used to displace the head term 
"INFLAMMATION" by "ARTHRITIS." Thus the 
sparses: 

MODERATELY SEVERE, ACUTE, 
PNEUMOCOCCAL ARTHRITIS OF THE 
LEFT KNEE 

and 

SEVERE, ACUTE PNEUMOCOCCAL 
INFLAMMATION OF THE LEFT KNEE 

are transformed to an identical form which was the 
object of the semantic analysis. Thus "LOCATION" 
as a tree directory nextnode for inflammation is redun
dant in this case. Note that in the first two sparses, the 
information that the condition is serious (from 
the implication "SUBACUTE,ACUTE,*,SEVERE, 
&,SERIOUS, =") and that a bacterial and there-



MEANINGEX 277 

·SPARSE 
.1075936 
MODERATELY SE~ERE, ACUTE, PNEUMOCOCCAL ARTHRITIS OF THE LEFT KNEE • 
SEVERE,ACUT~,PNEUMOCOCCUS,~LEFT.KNEE, ARTHRITIS, 
ARTHRITIS= 

JOINT= 
JOINTNAME= 

KNEE= 
NULL= 

SIOE= 
LtFT= 

NULL= 
INFLAMMATION: 

DEGREE= 
SEVERE= 

NULL= 
DURATION: 

ACUTE= 
NULL= 

STATUS= 
SERIOUS:. 

NULL= 
ETIOLOGY= 

INFECTIOUS= 
l:IACTERIAL= 

LOCATION= 
JOINT: 

PNE UMOCOCG US= 
NULL= 

JOINTNAME= 
KNEE= 

NULL= 
SIOE= 

LEFT= 
NULL= 

.1075938/NULL/LEFT/SIUE/NULL/KNEE/JOINTNAME/JOINT/LOCATION/NULL/PNEUMOCCCCUS/BACTERIAL/INFECTIOUS/ETIOLOGY/NULL/SERIOUS/ 
STATUS/NULL/ACUTE/DURATION/NULL/SEVERE/DEGREE/INFLAMMATION/NULL/LEFT/SIDE/NULL/KNEE/JOINTNAME/JOINT/ARTHRITISI 

.0935487 
SEVERE, ACUTE PNEUMOCOCCAL INFLAMMATION OF T~E LEFT KNEE .. 
Sf VERE. ACU TE. PNEUMOCOCC US, ~LEF T, KNEE, INFLAMMAT ION, 
SEVERE,ACUTE,PNEUMOCOCCUS,~LEFT,KNEE, ARTHRITIS, 
ARTHRITIS= 

JOINT= 
JOINTNAME= 

KNt:E= 
NULL= 

SIDE= 
LeFT= 

NULL= 
INFLAMMA TI ON= 

DfGi<E2.= 
SEVERE= 

NULL= 
OURATION= 

AGUTE= 
NULL= 

STATUS: 
SERIOUS= 

NULL= 
ETIOLOGY= 

INFEC TI OUS= 
BACTERIAL= 

LOCATION: 
JOINT= 

PNE UMOCOCGUS= 
NULL= 

JOINTNAME= 
KNEE= 

NULL= 
SIOE= 

LEFT= 
NULL= 

.093546 7/NULL/LEFT /SIDE/NUlL/KNEE /JOI NT NA ME/JOINT /LOCA TION/NUll/PNEU MOC(CC US/BAC TERIA L/INFECT IOUS/E TIOLOGY /NULL/SERIOUSI 
STA TUS/NULL/AC UTE I DURA T ION/NULL ISEVERE/DEGREE II NFLAMMAT ION/NUlL/LEF T lSI DE/NUL L/KNEE/JOI NT NAKE IJOI NT IARTHRITIS/ 

Figure l-Sparses from a typical MEANINGEX run 

fore infectious process is involved (from the im
plications "PNEUMOCOCCAL,INFECTIOUS, =" 
and "VIRAL,PPLO, * ,MYCOBACTERIUM, * ,BAC
TERIAL, *,INFECTIOUS, = ") does not occur directly 
in the problem statements, but is added because the 

system "understands" through its use of stored semantic 
information. 

A striking feature of the system is the versatility 
of a relatively small number of tree directory e:ntries. 
The trees are built modularly so frequently used 



278 Fall Joint Computer Conference, 1971 

information such as "INFLAMMATION," "ORGAN" 
and "BACTERIAL" need only appear once and yet 
contribute a great deal of semantic information to 
many trees. 

SEARCH REQUEST TRANSFORMATION 

We have only talked about transforming the original 
problem statement. This leaves the burden of the 
appropriate choice of relatively "low level" descriptors 
to the user who is formulating the search requests. The 
MEA"NIN GEX approach could be used to automati
cally transform search requests using the identical 
lexicon, tree directory, etc. used to sparse the problem 
statements. 

MEANINGEX vs. SEMANTIC ANALYZER 
REQUIREMENTS 

Five requirements for a semantic analyzer were 
outlined above. The ability for MEANINGEX to 
fulfill these criteria is dealt with in the following 
discussion. 

Semantic transformation 

The first requirement was that statements which are 
given in different words but are recognized as meaning 
the same thing in a given contextual communication are 
reduced to an identical form. This is exactly what 
MEANIN GEX can do very well. The transformation 
to an identical form requires that the implications be 
set up so that "higher level" head terms can displace 
lower level ones. Another part of this requirement is 
actually that similar statements be transformed to a 
similar form. This will occur to a great extent whether 
head term displacement is employed or not. In the 
majority of instances of information retrieval, one is 
interested in selecting out records with certain descrip
tors or descriptor-value pairs, and not getting an exact 
match. For example one is more likely to be interested 
in all those records with infectious arthritis of some 
type, than be concerned with the degree of severity of 
the process. 

Selection of sense of meaning 

The selection of sense of meaning goes back to the 
selection of the appropriate reading of possible deriva
tions for a term present in a lexicon of the type suggested 

in the Katz, Fodor and Postal model which was dis
cussed above. This capability in MEANIN GEX is 
embodied in the selector node. Selections are auto
matically made based on the information present in the 
rest of the problem statement being sparsed. Indeed this 
use of contextual information to determine sense of 
meaning is the only way this process can be done. 

Resolution of ambiguity 

Ambiguity is a problem for MEANINGEX. De
pending on the situation, MEANINGEX will choose 
one meaning and lose the other possibility. The capa
bility for handling the conjunction "and" has not yet 
been put in the system. This term is a particularly 
likely source for ambiguity. Take, for example, the 
problem statement: 

SEVERE MYOCARDIAL INFARCTION AND 
PULMONARY EDEMA 

which might well appear. The ambiguity as to whether 
"severe" applies to both "myocardial infarction" and 
"pulmonary edema" or just to "myocardial infarction" 
alone can be only "resolved" in the sense that a con
vention is stated. In the case of MEANINGEX, this 
could mean breaking up the problem statement into 
two parts with a decision made as to the range of 
"severe." One could leave "pulmonary edema" attached 
to the "myocardial infarction" as well, so it perhaps 
could be picked up as an associated condition. This is 
not really necessary, however, since the term "pul
monary edema" will end up with a sparse under that 
particular patient's record number anyhow. 

Deletion of contradiction 

At this point in time, the ability of MEANINGEX 
to delete contradiction resides in the fact that once a 
head term has been chosen, a skeletal tree is deter
mined (albeit with a number of selector node choices 
possible for modification of meaning). Terms that do 
not fit into the possibilities inherent in that skeletal 
sparse are left over. This tends to maintain an internally 
consistent view of the problem and will often delete 
contradictions. It is true that some correct items might 
be deleted because of incompleteness in the tree 
directory. Examination of such deleted items will, 
however, point to the corrections to be made. 



Specificity problem 

Since MEANINGEX allows arbitrary modification 
to any depth, one can be quite specific if appropriate 
tree directory entries are used. The way the system is 
set up, it is possible to decide that a terminal requires 
further modification and just add the related tree 
directory entry. It might be desirable, for example, to 
further break down a particular kind of bacteria. 
Another type of specificity would be provided if one had 
quantitative capabilities. 

MEANINGEX AND FREE TEXT 

A consideration is the use of MEANINGEX for the 
encoding of meaning in free text. If· a period were 
replaced by "*", the system could analyze sentences 
rather than noun phrases. In the most trivial applica
tion, verbs would be ignored. At another level, just the 
determination would be made as to whether the present 
or past tense was involved. An adjective could then be 
produced and attached to the sparse tree. For example, 
if in the lexicon we had the en tries: 

IS, PRESENT, ADJ, 
WAS, PAST, ADJ, 
WILL BE, FUTURE, ADJ, 

we could have in the tree directory: 

INFLAMMATION = /DEGREE/DURATION/ 
ETIOLOGY /CHRONOLOGY / 

and 

CHRONOLOGY = * /PRESENT /PAST /FUTURE/ 

Another lexical item defined as /P AST / would be 
"HISTORY OF" defined as an adjective. Higher level 
use would require a more detailed syntactic analysis. 

CONCLUSION 

MEANIN GEX is perhaps the first system for extracting 
meaning by describing terms using arbitrary modifica
tion. It uses a functional rather than a philosophical 
approach, although the basic mechanism of selection 
is grounded in linguistic theory of the past decade. 
The basic principle is that we want to take noun phrases 
and transform them such that statements that are said 
in different words but which humans would recognize 
mean the same thing are transformed to an essentially 
identical product. Although the examples involve 
medical text, the existing mechanics are not restricted 
to it. 

MEANINGEX 279 

REFERENCES 

1 L WEED 
Medical records that guide and teach 
New England Journal of Medicine Vol 278 No 11 
pp 593-600 No 12 pp 652-657 1968 

2 L WEED 
Medical records, medical education, and patient care 
Case Western Reserve University Cleveland Ohio 1969 

3 J J KATZ P M POSTAL 
An integrated theory· of linguistic descriptions 
MIT Press Cambridge Massachusetts 1964 

4 J J KATZ J A FODOR 
The structure of a semantic theory 
pp 479-518 in The structure of language (Fodor and Katz 
editors) Prentice-Hall Englewood Cliffs New Jersey 1963 

5 AMERICAN MEDICAL ASSOCIATION 
Standard nomenclature of diseases and operations 
Blakiston Division McGraw-Hill Book Company 
New York 1961 

6 WORLD HEALTH ORGANIZATION 
Manual of the international statistical classification of 
diseases, injuries and causes of death 
2 Volumes Geneva Switzerland 1957 

7 U S PUBLIC HEALTH SERVICE 
International classification of diseases, adapted 
US Department of Health Education and Welfare 
WashiIigton D C 1962 

8 COMMITTEE ON NOMENCLATURE AND 
CLASSIFICATION OF DISEASE OF THE 
COLLEGE OF AMERICAN PATHOLOGISTS 
Systematized nomenclature of pathology 
College of American Pathology Chicago Illinois 1965 

9 DAB LINDBERG 
Electronic retrieval of clinical data 
Journal of Medical Education Vol 40 No 8 pp 753-7591965 

10 B L GORDON 
Biomedical language and format for manual and 
computer applications 
Diseases of the Chest Vol 53 No 1 pp 38-42 1968 

11 B L GORDON (editor) 
Current medical terminology 
American Medical Association Chicago Illinois 1966 

12 B G LAMSON BERNICE C GLINSKI 
G S HAWTHORNE J C SOUTTER 
W S RUSSELL 
Storage and retrieval of uncoded tissue pathology 
diagnoses in the original English free-text form 
Proceedings of the 7th IBM Medical Symposium 
Poughkeepsie New York 1965 

13 B G LAMSON B DIMSDALE 
A natural language retrieval system 
Proceedings of the IEEE Vol 54 No 12 pp 1636-1640 1966 

14 H JACOBS 
A natural language retrieval system 
Methods of Information in Medicine Vol 7 No 1 
pp 8-161968 

15 P SHAPIRO 
ACORN-an automated coder of report narrative 
Methods of Information in Medicine Vol 6 No 2 
pp 153-162 1967 

16 P A SHAPIRO I D BROSS R L PRIORE 
B B ANDERSON 
Information in natural language,a new approach 



280 Fall Joint Computer Conference, 1971 

Journal of the American Medical Association Vol 207 
No 11 pp 2080-2084 1969 

17 R F SIMMONS 
Answering English questions by computer: a survey 
Communications of the ACM Vo18 No 1 pp 53-69 1965 

18 R F SIMMONS 
Natural language question-answering systems: 1969 
Communications of the ACM Vol 13 No 1 pp 15-30 1970 

19 J D BEATTIE 
Natural language processing by computer 
International Journal of Man-Machine Studies Vol 1 
No 4 pp 311-329 1969 

·20 R F SIMMONS S KLEIN K L MCCONOLOGUE 
Indexing and dependency logi(; for answering English 
questions 
American Documentation Vol 15 No 2 pp 196-204 1964 

21 V E GIULIANO 
Comments (on reference 17) 
Communications of the ACM Vol 8 No 1 pp 69-70 1965 

22 R K LINDSAY 
Inferential memory as the basis of machines which 
understand natural language 
pp 217-233 in Computers and thought (Feigenbaum and 
Feldman editors) McGraw-Hill New York 1963 

23 B F GREEN A K WOLF 
C CHOMSKY K LAUGHERY 
Baseball: an automatic question answerer 
pp 207-216 in Computers and thought (Feigenbaum and 
Feldman editors) McGraw-Hill New York 1963 

24 R A KIRSCH 
Computer interpretation of English text and picture 
patterns 
IEEE Transactions on Electronic Computers 
Vol EC-13 No 4 pp 363-376 1964 

25 R M SCHWARZ J F BURGER R F SIMMONS 
A deductive question-answerer for natural language 
inference 
Communications of the ACM Vol 13 No 3 pp 167-1831970 

26 B RAPHAEL 
SIR: a computer program for semantic information 
retrieval 
PhD Dissertation MIT 1964 

27 B RAPHAEL 
SIR: a computer program jorsemantic information 
retrieval 
pp 33-145 in Semantic information processing (Minsky 
editor) MIT Press Cambridge Massachusetts 1968 

28 D G BOBROW 
Natural language input for a computer problem-solving 
system 
PhD Dissertation MIT 1964 

29 D G BOBROW 
N aturallanguage input for a computer problem-solving 
system 
pp 146-226 in Semantic information processing (Minsky 
editor) MIT Press Cambridge Massachussetts 1968 

30 K M COLBY H ENEA 
Heuristi(; methods for computer understanding of natural 
language in context-restricted on-line dialogues 
Mathematical Biosciences Vol 1 No 1 pp 1-25 1967 

31 L TESLER H ENEA K M COLBY 
A directed graph representation for computer simulation 
of belief systems 
Mathematical Biosciences Vol 2 No 1 pp 19-40 1968 

32 K M COLBY H ENEA 
Machine utilization of the natural language word "good" 
Mathematical Biosciences Vol 2 No 1 pp 159-163 1968 

33 J WEIZENBAUM 
ELIZA-a computer program for the study of natural 
language communication between man and machine 
Communications of the ACM Vol 9 No 1 pp 36-45 1966 

34 J WEIZENBAUM 
Contextual understanding by computers 
Communications of the ACM Vol 10 No 8 pp 474-480 
1967 

35 M R QUILLIAN 
Semantic memory 
PhD Dissertation Carnegie Institute of Technology 
Pittsburgh Pennsylvania 1966 

36 M R QUILLIAN 
Semantic memory 
pp 227-270 in Semantic information processing (Minsky 
editor) MIT Press Cambridge Massachusetts 1968 

37 M R QUILLIAN 
The teachable language comprehender: a simulation 
program and theory of language 
Communications of the ACM Vol 12 No 8 pp 459-476 
1969 

38 D C DUNPHY P J STONE M S SMITH 
The General Inquirer: further developments in a computer 
system for content analysis of verbal data in the social 
sciences 
Behavioral Science Vol 10 No 4 pp 468-480 1965 

39 P J STONE D C DUNPHY M S SMITH 
D M OGILVIE 
The General Inquirer 
MIT Press Cambridge Massachusetts 1966 

40 P J STONE D C DUNPHY M S SMITH 
D M OGILVIE 
User's manual for the General Inquirer 
MIT Press Cambridge Massachusetts 1967 

41 G SALTON 
The evaluation of automatic retrieval procedures-selected 
test results using the SMART system 
American Documentation Vol 16 No 3 pp 209-222 1965 

42 G SALTON 
A comparison between manual and automatic indexing 
methods 
American Documentation Vol 20 No 11969 

43 G SALTON 
A utomatic text analysis 
Science Vol 168 No 3929 pp 335-343 1970 

44 G SALTON M E LESK 
Computer evaluation of indexing and text processing 
Journal of the ACM Vol IS No 1 pp 8-36 1968 

45 M E LESK G SALTON 
Interactive search and retrieval methods using automatic 
information displays 
Technical report No 08-17 Department of Computer 
Science Cornell University Ithaca New York 1968 

46 E IDE G SALTON 
User-controlled file organization and search strategies 
Proceedings of the American Society for Information 
Science Vol 6 pp 183-1911969 

47 R P RICH 
Information handling 
Proceedings of the 6th IBM Medical Symposium 
Poughkeepsie New York pp 197-206 1964 



Law enforcement communication and inquiry systems 

by JOHN D. HODGES, JR. 

Continental Information Systems 
Santa Monica, California 

The Law Enforcement and Criminal Justice Com
munity is one that survives and becomes effective 
through the efficient use of information. People are 
wanted for criminal offenses, warrants are issued, 
vehicles and property are stolen or recovered, asso
ciated criminal activities and known or suspected 
offenders must be traced-a mass of data that must be 
collected, ve~ified, stored and disseminated to the 
appropriate people in a timely and reliable manner. 
Elements that compound the problem are geographic 
dispersion, availability of rapid transportation means 
and the mobility of the criminal element, the criticality 
of the data to the officer on the street and the sensitivity 
of the data in the personal privacy realm. This in
formation need of Law Enforcement has been ap
proached by the various national, state and local 
agencies as a communication problem. Their original 
solution was a series of inter-connected teletype systems 
that transferred wanted notices, requests for data, etc., 
between and within agencies. But as society has become 
larger and more complicated, these agencies have had to 
enhance their information transfer and storage capa
bilities. 

In the last two to three years more than twenty law 
enforcement computerized communication and inquiry 
systems have been installed or are in the process of 
implementation. This paper presents the basic require
ments for these systems as reflected by the specifications 
developed by the user agencies and the computer 
applications necessary to satisfy the specifications. 

SYSTEM REQUIREMENTS 

In order to establish what the law enforcement 
agencies have defined as their system needs, twelve (12) 
Request for Proposals from user groups have been 
analyzed and a set of requirements established. This 
analysis is presented in Table I, where the associated 
requirement of each requesting agency is specified. As 

281 

can be readily seen, these systems are both com
munication and inquiry systems with a background 
batch processing requirement. They require a range of 
inquiry subsystems and computer-to-computer inter
faces. All types of terminals and communication circuits 
must be supported, in a variety of combinations and 
volumes. The systems must all operate on a 24-hour 
7 -day week basis and the majority require some type of 
system back-up. They have a varied schedule of 
response times, but most expect a ten (10) second or 
less terminal-to-terminal response time. 

To indicate the general requirements of these 
systems, the description of requested systems by three 
agencies, will be presented. 

The Police Department of The Metropolitan Govern
ment of Nashville and Davidson County defined the 
general requirements for their real-time law enforce
ment information system as follows: 

The electronic data processing equipment to be 
installed for the Metro Nashville Police Depart
ment will serve a dual purpose function for the law 
enforcement community in the Middle Tennessee 
area-data communications and information re
trieval. 
The objective is to acquire a modularly expandable 
hardware configuration capable of processing 
increasing workloads. The installation of this 
equipment is intended to provide the basis for 
automating the procedures and capabilities of data 
communications in and around N ashville, Ten
nessee. This will be accomplished through the 
ultimate employment of up to 100 remote tele
communication terminals connected on-line to the 
central system configuration located in Nashville, 
Tennessee. 
The system will be a multi-purpose system and 
must simultaneously perform several tasks. The 
tasks are to be performed under priority rules with 
automatic transition from one priority level to 



282 Fall Joint Computer Conference, 1971 

TABLE I-Law Enforcement Communication and Inquiry System Requirements 

PAGE 1 

Requirement Colo. Fla. 
Nash-

N.J. N.Y. N.C. Mo. Okla. Ontario Ore. Tex. Wash. ville 

Functions 

Message Switching X X X X X X X X X X X X 

On-Line Information Storage, 

Retrieval and Dissemination X X X X X X X X X X 

Batch Data Processing X X X X X X X X X X 

Software Applications 

Master Name Index X X X X X 

Vehicle X X X X X X X X X 

Person X X X X X X X X X 

Property X X X X X X X X X X 

Want-Warrant X X X X X X X X X 

File Management X X X X X X X X X X 

NCIC Interface X X X X X X X X X X X 

Message Switch ing X X X X X X X X X X X X 

Computer Interfaces X X X X X X X X X X X 

Terminal Types 

Teletype X X X X X X X X X 

Other Hard Copy X X X X X X X X 

CRT Devices X X X X X X X X 

Facsimile X X X 

Number of Terminals 38- 280 25- 235- 365- 150- 15- 65 110 80- 250 110 
200 100 400 500 300 30 100 

Type of Circuits 

Low Speed, Teletype Grade X X X X X X X X X X X 

Low Speed, Voice Grade X X X X X X X X X X X X 

High Speed, Asynchronous X X X X X X X X X 

High Speed, Synchronous X X X X X X X X X 

Simplex X X 

Half Duplex X X X X X X X X X X X X 

Full Duplex X X X X 

Number of Circuits 15 17- 6- 14- 146 13- 15- 7- 110 12 15 33-
78 18 32 42 30 16 60 

Number of Computer Interfaces 4-5 9 2 8 12 4 2 1 2 3 3 5 

24 Hour Per Day-7 Oay Per 

Week Operation X X X X X X X X X X X X 

Back-Up System No No No No 

Duplex Processors X X X 

Redundant X 

Message Switching X X X 

Miscellaneous X X 



Law Enforcement Communication and Inquiry Systems 283 

TABLE I (cont'd)-Law Enforcement Communication and Inquiry System Requirements 

Requirement 

Files 

Master Name Index 

Wanted Persons 

Criminal History 

Stolen Vehicles 

Stolen Guns 

Stolen Articles (Property) 

Drivers Records 

Vehicle Registration 

Terminal Response Time* 
90% of Transactions 

Inquiries 
Messages 

99% of Transactions 
Inquiries 
Update 
Messages 

Maintenance Response 

Standard of Performance 
System Acceptance 
System Operation 

Demonstration ** * 
Hardware & Gen. Sup. Software 

Application Software 

Benchmark 

Multi-Programming 

Storage Protection 

Dynamic Loading & Linking 

Language Processors 
Assembler 

COBOL 

FORTRAIN 

RPG 

Transaction Processing-Peak Hour 
Inquiry and Update 

Messages 

* s = seconds 
m=minutes 

Colo. 

X 

X 

X 

X 

X 

10s 

60s 

1hr 

95% 

Opt 

Opt 

Opt 

X 

X 

X 

Req 

Req 

Opt 

Opt 

** Mutually agreed to Acceptance Test 
*** Opt = Optional 

Req = Required 

Fla. Nash- N.J. ville 

X X X 

X X X 

X X X 

X X X 

X 

X X X 

30s 10s 
10s 
3m 
5m 

1 hr 

95% 
** 

Opt 

Opt 

Opt Opt Opt 

X 

X 

Req Req Req 

Req Req Req 

Req Req Req 

8100 395 1980 

1000 360 

PAGE 2 

N.Y. N.C. Mo: Okla. Ontario Ore. Tex. Wash. 

None None 

X X X 

X X X X X 

X X X 

X X X X X X 

X X X 

X X X X X X 

X 

X 

lOs 5s 
5s 
5m 

10s 30s 60s 
20s 20s 

60s 60s 

% hr 1 hr 1 hr 

95% 95% 93% 
93% 

Opt Opt Opt Opt Opt 

Opt Opt 

Opt Req Opt Opt 

X X X X X 

X X X 

X X X 

Req Req Req Req Req Req Req 

Req Req Req Req Req Req 

Req Req Req Req Req Opt 

Opt 

250 1000 
330- 124 
550 

1020- 60 4500 3400 
1500 



284 Fall Joint Computer Conference, 1971 

another in a manner calculated to optimize the 
total system utilization. 
The tasks to be performed by the system fall into 
three main categories: 

(1) Information storage/retrieval/dissemination 
(2) Message switching ~ 

(3) Background batch processing 

... The proposed configuration must function with 
or exhibit the following characteristics: 

a. General Purpose: i.e., not oriented to scientific 
or special applications, except as in b. below. 

b. Communications Oriented: capable of supporting 
up to 100 remote telecommunication terminal 
devices for on-line transmission. 

c. Multi-Programming Capability: capability of 
concurrently processing the tasks listed above. 

d. High Performance: must take advantage of 
current technical advances in computer design, 
systems organization and programming tech
nology to insure a high level of efficiency and 
processing throughout. 

e. Capable of Modular Expansion: must provide for 
hardware and basic operating systems software 
compatibility to facilitate installation upgrading 
and expansion. Expansion capability for reason
able system growth in the next five years in both 
input, storage and processing without major 
hardware change or reprogramming is a re
quirement. 

The Request for Proposal for Colorado's Automated 
Law Enforcement System documented the system 
concept and capabilities in the following manner: 

The Colorado Law Enforcement Information 
System (CLEIS) will be an on-line, computer 
based, communications, information retrieval, and 
centralized records system, serving Colorado law 
enforcement agencies. The initial number of 
terminals are estimated at thirty-eight (38) ; 
eventually a maximum number of two hundred 
(200) will be on-line when the total criminal justice 
system is fully operational.. It is a requirement that 
the current thirty-eight (38) ASR 28 Colorado 
Law Enforcement Teletype System terminals be 
supported in the first part of Phase 1. In addition to 
complete message switching capability between 
agencies (CLETS and NLETS) and file inquiry and 
updating in the application areas, the system will 
provide automatic interfaces with other local, 
state, and national law enforcement systems as 

follows: 

• National Law Enforcement Teletype System 
(NLETS)-Phoenix, Arizona. 

• National Crime Information Center (NCIC), 
Washington, D. C. 

• Department of Revenue-Motor Vehicle Regis
trations and Drivers Licenses inquiry-Capitol 
Complex, Denver. 

• Denver Crime Information Center (DCIC), 
Denver, Colorado. 

• Other systems such as Project SEARCH as 
the need for such interfaces arise. 

These automatic interfaces will give all CLEIS 
users on-line access to the automated Driver's 
License and Vehicle Registration files at the 
Department of Revenue, DCIC information which 
will not be duplicated within CLEIS, and to the 
general crime information files at NCIC, as well as 
give users on DCIC access to state and national 
files through a common terminal. 
The system proposed must perform three primary 
tasks (message switching, on-line file inquiry and 
update, and batch data processing) concurrently. 
Message switching and on-line file inquiry and 
updating will be operational twenty-four hours a 
day, seven days a week. Batch processing will be 
available as required to support the on-line tasks. 
It is a requirement that the ability to automatically 
transmit messages from point to point not be 
affected by' a failure in the central files or pro
cessor(s). 

The system requirements of the State of New Jersey 
for the Division of State Police Statewide Communica
tions Information System were set forth in the following 
description: 

This communications system is designed to support 
the law enforcement agencies of the State of New 
Jersey. A digital computer complex consisting of 
two communications-oriented computer processing 
units (CPUs) and their related peripheral equip
ment, will be connected by telecommunication 
lines in an array of communication terminal 
devices remotely located at State Police facilities, 
at facilities of New Jersey county and municipal 
police agencies and at Motor Vehicle offices and 
other locations. 
Duplexed CPUs and switchable peripherals will 
provide communications processing backup for 
the system. The primary communications processor 



Law Enforcement Communication and Inquiry Systems 285 

will handle the State Police digital data com
munications, information storage and retrieval, and 
related background batch processing. The second
ary or back-up communication processor will 
normally handle the other communications needs 
of the Department of Law and Public Safety. In a 
backup situation either processor must be capable 
of performing all communications tasks. 
The communications tasks related to the Division 
of Motor Vehicle consist of concentrating messages 
from terminals and forwarding them to the Division 
of Motor Vehicles data processors for updating and 
inquiry handling. Responses will be transmitted 
back to the originating terminals. 
The communications processors are also linked to 
other communication systems outside the state 
with which information is exchanged; for example, 
the National Crime Information Center (NCIC), 
located in Washington, D. C. 
Two types of data messages are carried on the 
communications system. The first type is those 
messages originating at the terminal for trans
mission to one or more other terminals. Ad
ministrative messages, bulletins and alarms fall 
into this category. The identity of each of the 
receiving terminals is incorporated into the 
message header when it is composed. 
The second general type of message is that asso
ciated with inquiries. An inquiry message com
posed at a terminal, is used by the computer 
complex to elicit information from one or more 
files maintained by the system. Information so 
derived then is used by the computer complex to 
compose a response message which is routed back 
to the inquiring terminal. Certain inquiries, de
pending on their content, will be reformated and 
routed to either DMV data processor or to the 
NCIC system. The receiving system formulates the 
response to the inquiry and routes this response 
back to the communications processor, where it is 
again routed. to the inquiring terminal. 
The inquiry-handling sub-section involves entry, 
update, cancellation and inquiry messages. To 
introduce a new entry into a data file requires 
that an entry message be composed at a terminal. 
Upon receipt of this message, the computer com
plex creates new records in the pertinent file. 
Some entry messages with the appropriate content 
will be forwarded to NCIC for inclusion in their 
files. 
New information on an existent record is intro
duced into the system by an update message 
composed at a terminal. The computer complex 
uses this message to modify or update the content 

of a record. Related records in different files may 
be modified by an update message. 
Deletion of a particular entry in a file (or related 
entries in different files) is done by means of a 
cancel message, which codes the record for elimina
tion. However, the actual act of purging the entry 
is performed later, with a time-lapse which depends 
upon the retention period of the file involved. 
Receipt of an entry, update or cancel message by 
the computer complex initiates an acknowledg
ment message being transmitted back to the 
originating terminal by the complex. However, if 
the received message is found to be in error, a 
message describing the error condition is passed 
back instead. 
The system will provide for keyboard terminal 
devices equipped with a cathode-ray tube (CRT) 
device in addition to a printing device. This allows 
messages to be composed and viewed on the CRT 
as well as being printed out in hard copy form. 
Terminals of this sort are buffered and are con
nected to the computer complex by means of 
voiceband, half-duplex lines. Each of these ter
minals may have its own point-to-point line 
connection with the computer complex, or a given 
line may be shared by a number of such terminals. 
However, this shared arrangement will prevent one 
terminal from making use of the line if it is being 
used by another terminal. The full configuration 
could include 75 or more such terminals, located at 
State Police and municipal locations. 
The full configuration also can provide for up to 
190 Receive-Only (RO) terminals. These devices 
can receive messages from the computer complex 
and reproduce these in hardcopy but do not have 
the capability of entering (composing) messages. 
These terminals may share some 25 narrowband, 
multi-drop lines, with five to ten terminals sharing 
a line. 

The following sections discuss the Communications, 
Inquiry and File Management capabilities to meet 
these system requirements. 

COMMUNICATIONS 

The communications capabilities encompass the 
routing of all messages and control of all terminal 
stations within a law enforcement network. 

Each terminal associated with the system is assigned 
capabilities as to the types of messages the terminal is 
permitted to send and receive: e.g., QUERY, UPDATE, 
SWITCHED, FUNCTIONAL, CONTROL; and the 



286 Fall Joint Computer Conference, 1971 

level of control that the terminal is permitted to 
exercise over message processing operations and the 
operations of other terminals: e.g., STANDARD, 
PRIVILEGED, MASTER. 

Each input message· is checked for validity prior to 
assignment to one of the processing levels. The agency 
must specify the processing order of the validated 
SWITCHED, FUNCTIONAL AND CONTROL 
messages and the terminals that are permitted to 
monitor and even intercept the traffic routed to other 
terminals in the network. Within the system query 
messages maintain the highest processing priority, with 
update messages usually holding the second priority. 

Extensive fail-safe features must be provided to 
minimize the disruption of operations and enable an 
orderly changeover to a backup mode. The restart 
procedures should be highly automated and require a 
minimum of assistance from computer operators and 
include various categories of restart procedures. 

In order to enable efficient reallocation of the system 
resources and provide statistics concerning terminal 
utilization, the system should automatically record and 
compile a number of measures of system activity, and 
present them in a form convenient for analysis. 

Message types 

A SWITCHED message contains unformatted text 
which is to be forwarded to the addressees specified. 
Such messages describe operational or administrative 
matters of interest at particular command levels or 
areas of activity within the Agency. SWITCHED 
messages may be directed within the immediate User 
network exclusively, or to remote systems such as the 
National Crime Information Center (NCIC). Interfaces 
to other systems whose central communications 
switching computer is connected may be handled as 
SWITCHED messages. 

A QUERY message is a request for law enforcement 
file data and is directed by the originator to one of the 
application subsystems (such as Vehicle or Persons) 
rather than directly to another terminal. A QUERY 
message contains file search identifiers which a particu
lar subsystem uses to locate records of interest within 
its associated files. Subsystems formulate and transmit 
messages containing the requested file data to the 
QUERY originators. 

An UPDATE message contains the data required to 
modify the contents of an on-line data file: for example, 
add a record, modify elements in a record or delete the 
record. The subsystem returns a message to the 
originating terminal acknowledging the update. 

A FUNCTIONAL message provides a terminal 

operator with terminal oriented services. These services 
may include: deferring message output or checking 
terminal status. 

The CONTROL message permits personnel at 
qualified terminals to alter basic message processing 
procedures within the System, such as to activate a 
routing list or to deactivate a communication line. 

Level of control 

A terminal operator can request message processing 
services or modify the message processing procedure 
depending upon the level of control assigned to his 
terminal. The three levels of control usually provided 
correspond to command levels within the agency 
organization: Standard Control, exercised at sub
ordinate levels; Privileged Control, which is available 
at supervisory levels within the agency organization 
and within special headquarters and divisions; and 
Master Control, restricted to those terminals designated 
as having maximum command and technical responsi
bility for System operations. 

Switched message processing 

The message switching function must include the full 
range of capabilities normally associated with a 
generalized, selective store-and-forward system. It 
provides for the routing of messages between all 
terminals on the communications network including 
selecting multipoint and full broadcast capabilities. 
The message switching module should consist of 
numerous routines for routing determination, access 
and routing validation, routing redirection and 
message deferral. 

The originator of a switched message should be able 
to specify routing destinations using any combination 
of at least three methods. 

Single Station-Individual station identifiers refer
enced in a switched message header qualify 
particular stations as addressees. 
List-Each station in the system can be assigned 
as a member of one or more routing lists. Reference 
to a routing list in a switched message header 
routes the message to all members of the list. 
Geographic-The originator specifies a radius in 
miles, or other agency defined units, which 
describes an area with the originating terminal at 
the center. All stations in the described area 
qualify as addressees. 

Multiple routing lists and multiple single stations 



Law Enforcement Communication and Inquiry Systems 287 

may be specified. In addition, combinations of geo
graphic areas, routing lists and single stations may be 
specified in a single message. If a station appears on 
more than one routing list specified by the originating 
station, only a single copy of the message is to be 
forwarded. 

The routing data associated with a SWITCHED 
message is modified when a non-addressee terminal is 
monitoring the output or input from terminals, or when 
due to terminal malfunction or other reason any of the 
addressee terminals are unable to accept output and 
other terminals within the network have been desig
nated as alternate addressees. Duplicate copies of 
output messages are transmitted to those terminals 
which are monitoring the traffic of SWITCHED 
message addressees. 

A file of undeliverable messages is established for each 
station which has requested that its output be held by 
the system and for each station which is determined as 
not being able to receive. Messages from these files may 
be removed upon receipt of FUNCTIONAL messages 
from the terminal indicating that output can once again 
be accepted; or printed on the line printer at the com
puter installation and forwarded to the addressee in 
hard copy form. 

Functional message processing 

FUNCTIONAL messages allow a station operator to 
request terminal oriented services directly from the 
Communications Module. FUNCTIONAL messages 
are subclassified into three groups according to the level 
of the stations authorized to invoke them; STAND
ARD, PRIVILEGED and MASTER. 

Standard terminal oriented FUNCTIONAL messages 
that can be exercised by any terminals in the network 
include obtaining the current status of the terminal, 
operator log-in and placing the terminal in the test/ 
training mode. While the terminal is in test-training 
mode, the operator may originate messages for valida
tion by the system; however, switched messages are 
not forwarded to the addressee stations. The terminal 
status information includes the terminals designation 
and alternate; operator's identifier; current message 
number and the number of output messages currently 
queued. 

FUNCTIONAL messages may be used to control the 
disposition of the output currently being directed to 
the terminal. For example, all output messages may be 
held until further notice. This capability is useful when 
priority input activity is expected or the terminal is to 
be placed off-line for some reason (for example, a paper 
or ribbon change). 

The terminal operator may also obtain copies of 
previously transmitted messages. Either a single 
message may be obtained by specifying the appropriate 
message number, or multiple messages between specified 
message numbers may be retransmitted. In addition, 
the operator may request a retransmission of messages 
that were transmitted between specified times. Copies 
of previously transmitted messages· are usually main
tained by an on-line wrap around file. Only messages 
currently resident in the file may be retrieved on-line 
with other messages maintained on tape. 

In addition to the FUNCTIONAL messages de
scribed above pertaining to his own terminal, the 
operator of a PRIVILEGED or MASTER terminal can 
affect the operation of other terminals. For example: 
hold the output to another terminal; direct the dis
carding of output of another terminal or have the 
output printed at the central site. He may also obtain 
the current status of other terminals in the network. 

The operator of a MASTER or PRIVILEGED class 
terminal may selectively monitor traffic directed to 
other terminals. All traffic, or all traffic of a specified 
message type (SWITCHED, FUNCTIONAL or 
CONTROL), input only or output only traffic may be 
monitored. The monitoring of transmissions should not 
affect the routing of the messages, nor should the 
monitored terminal be aware of the monitoring. 

Transmissions directed to, or originated from, 
another terminal may be intercepted. This intercept 
capability is essentially a monitoring function followed 
by a decision to either approve and forward the inter
cepted traffic; disapprove and cancel it; modify routing 
or priority and forward; or, hold for later action. The 
originator of an intercepted message is notified of its 
interception and disposition. 

In addition to the messages described above, 
MASTER class terminals may also Monitor and 
Intercept line traffic and check line status. The monitor 
and intercept of line traffic is similar to the corre
sponding functions for single terminals. In this case, 
however, traffic on the entire line is considered. 

Control message processing 

CONTROL messages are used to alter the basic 
organization and operation of the communications 
network. The use of CONTROL messages is thus 
restricted to MASTER class terminals. 

CONTROL messages can be used to activate or 
deactivate terminals or communications lines. When a 
line or terminal is deactivated, the associated polling 
and line control operations are suspended. In addition, 
all output directed to the line or terminal is held and 
transmitted when the line is reactivated. 



288 Fall Joint Computer Conference, 1971 

The operator of a MASTER class terminal should 
have the ability to alter routing lists. Lists may be 
deactivated or terminals dynamically added to or 
deleted from the list. New routing lists may also be 
established. 

In order to prevent abuse or unauthorized use of the 
functional monitor and intercept capabilities described 
above, CONTROL messages are provided to designate 
the terminals authorized to monitor or intercept 
traffic. Following this operation, the specified terminal 
may use the appropriate FUNCTIONAL message to 
initiate the monitor or intercept mode. 

CONTROL messages are also provided to specify 
alternate terminals authorized to receive traffic in the 
event the primary terminal is not operational. Alternate 
terminals can assume the status, routing lists and 
other characteristics of the primary terminal or may be 
restricted to only receiving traffic. In this latter case, 
the alternate terminal maintains its own status, 
routing lists and other characteristics. 

Message validation, assignment and priority 

The construction of each incoming message is 
validated for format and content. Messages that are 
determined to be valid should be acknowledged with 
an appropriate response to the originating operator. 
The acknowledgment contains the message number 
assigned to the message. Messages that are found to be 
incorrect are returned to the originating operator with a 
diagnostic message to assist him in the correction of the 
message. The invalid message is discarded with no 
message number assigned. 

Valid messages are assigned to a processing level 
(queue). SWITCHED messages may be submitted 
with Emergency, Priority or Routine precedence and 
thus assigned to three separate queue levels. 
SWITCHED, FUNCTIONAL, and CONTROL 
messages are queued first-in/first-out within type and 
by queue. Messages are assigned from the top of each 
queue to SWITCHED, FUNCTIONAL and CON
TROL message processing programs which may 
operate concurrently. 

Subsystem messages are assigned to the remaining 
queues depending on assigned station priorities and the 
weight assigned to the type of the Subsystem message. 
Subsystem messages have one other processing level 

d · td" " that is reserved for messages eSlgna e as express 
priority by the originating operator. Processing assign
ments are made starting with the highest priority; with 
periodic modifications made to the processing assign
ment scheme such that the lower priority categories 
are serviced. 

On-line modifications of processing levels should be 
provided to authorized operators. Thus, order of 
precedence for CONTROL, FUNCTIONAL and 
SWITCHED messages can be changed and the pro
cessing order for subsystem message types may also 
be regulated. 

Recovery 

Communications must be supported by message 
recovery software which is activated in response to an 
equipment or other failure which significantly inter
rupts normal message processing. The basic tasks of 
message recovery software include: notifying active 
terminals that a message processing failure has occurred 
and identifying the last complete message received 
from and transmitted to each terminal; initiating pro
cessing of the backlog of complete messages; and, 
reinitiating transmission of those output messages 
partially transmitted at the time of the failure. 

The message processing environment is usually 
reconstructed following a failure through use of input/ 
output message logs stored on magnetic tape or random 
access devices and message processing status records 
maintained in computer memory or on peripheral 
devices (checkpoints). 

Three basic techniques to provide the reinitiation 
of system on-line operations are: system empty-no 
message pending for processing or output (Cold Start); 
system to be restarted following loss or destruction of 
main storage information (Checkpoint Restart); and 
system to be restarted following loss or destruction of 
peripheral message storage information (Communica
tions Log Restart). 

The Cold Start procedure opens all lines and initiates 
the system to accept· input traffic. 

The Checkpoint Restart procedure restores the 
contents of main storage from checkpoint records 
constructed periodically during on-line operations. 
The checkpoint records are stored in a mass storage file. 

The Communications Log Restart procedure recon
structs and reinitiates input traffic by reloading 
peripheral message storage from the contents of the 
communication log tape. The communications log tape 
contains a copy of each message input to the system. 

All active terminals are to be notified when the 
system resumes on-line operation. 

Communications support facilities 

To succinctly express the communications support 
facilities required the North Carolina Police Informa-, . . 
tion Network specified that "The communICatIOns 



Law Enforcement Communication and Inquiry Systems 289 

control must include an integrated system of routines to 
control all real-time message switching/data com
munications functions." These routines must be adapt
able to the particular hardware environment being 
proposed and must provide, at least, the following 
facilities: 

(1) Line Control: Communications line control, 
including sending/receiving bits or characters 
from/to line control equipment. 

(2) Message Assembly: Assembly of messages from 
all terminals including buffer allocation and 
queuing of completed input and output messages. 

(3) Message Queues: Multiple queues for input must 
exist with message placement dependent upon at 
least the sending terminal and processing routine 
involved. Messages should be retrievable from 
queues by processing routines via simple logical 
I/O commands. 

(4) Polling: Automatic polling of terminals with the 
ability to easily modify the polling list and/or 
the polling sequence. There must be a capability 
of adding automatic dial-up facilities as needed. 

(5) Terminal Addressing: Addressing of individual 
terminals on shared transmission lines as well as 
groups of terminals for controlled line usage, 
employing one address code. 

(6) Traffic Queuing: Traffic queuing for inoperative 
or closed terminals and lines. 

(7) A utomatic Transmission: Automatic transmission 
upon terminal/line-up condition. 

(8) Header Analysis: Message header analysis rou
tines for determination destination, e.g., another 
terminal, other terminals or a processing queue. 

(9) Message Formatting: Formatting of messages 
and replies based upon file access results and 
other system responses. 

(10) Message Sequence Numbers: Automatic assign
ment of sequence/serial numbers to incoming 
and outgoing messages. 

(11) Message Validation : Validation of source and 
destination codes and message formats. Should 
an error arise, the system will automatically 
and according to a prescribed procedure either 
return the message to the originator, correct 
the error, or place the message on an intercept 
station for correction. 

(12) Code Translation: Translation between external 
transmission code and internal processor code if 
not done via hardware, including editing function 
of removing non-data characters. 

(13) Message Logging: Logging of all messages for 
on-line retrieval within twenty-four (24) hours 
of transmission. 

(14) Error Checking/Recovery: Transmission error 
checking and recovery routines. 

(15) Date/Time Stamping: Date and time stamping 
of all messages flowing through the system. 

(16) Status Reporting: Line, network, terminal and 
system status reporting. 

(17) Automatic Testing: Automatic procedures to test 
all terminals for possible malfunctioning and 
presentation of fault conditions to operator for 
immediate attention. 

(18) Computer Interfaces: High speed communica
tions with other computer systems. Although 
the computer links are considered for the most 
part as another type of terminal, significant 
differences exist in the speed and method of 
transmission and reception. 

(19) Message Intercept: The ability to intercept any 
message, in a collective manner, which passes 
through the system will be provided for the 
system operator. The intercepted message will 
be displayed for action by a system operator. 
Modifications in the criteria for interception 
will be easily implementable in a timely manner. 

(20) Acknowledgment: All messages received by the 
system will be acknowledged. Such acknowl
edgment will be transmitted to the sender. The 
acknowledgment format will include the systems 
and originator's identification numbers and time 
of receipt. 

(21) Control Messages: Accept control messages from 
c~mmand terminal and modify or report 
operation. 

(22) Processing Schedules: Schedule message pro
cessing based upon message type, FIFO queue 
discipline, etc. 

(23) Interrupt Capability: Full interrupt accom
modation to analyze cause of interrupt by 
supervisory program and giving control to a 
specific routine. To take the appropriate action 
(i.e., issue an I/O when the previous one com
pletes; switching buffers to receive another 
segment of a message being received, restart 
polling sequence when a line becomes free). 

(24) Controlled Time Initiated Actions: Initiating a 
given action after a given elapsed period. 

(25) Message Security: Ensuring that queued mes
sages are not overwritten incorrectly by testing 
programs or by errors in operational programs 
and that messages will not be lost due to various 
types of machine failure. 

(26) Fault Indication and Control: Taking appropriate 
action when errors of all types are detected, 
logging and correcting them when possible. 

(27) Diagnostics and Reliability Checks: Operating 



290 Fall Joint Computer Conference, 1971 

on-line diagnostics for dealing with errors, for 
increasing confidence in the system and for 
assistance to the equipment engineers. 

(28) Fall-Back: Organizing a degraded mode of 
operation when a component of the system fails, 
for example, a communication buffer. Switching 
to the redundant or backup component. 
Organizing recovery from fall-back. 

(29) System Testing Aids: Routines to aid in real
time program debugging and test of the com
munications system. 

(30) Switch-Over: Organizing switchover of the com
bined Information Retrieval and Communica
tion support function to another processor in 
the event of hardware malfunction. 

INQUIRY 

Various forms of messages are used for information 
retrieval and update operations within the Inquiry 
Subsystems. The requests to the Subsystems fall into 
the two general system message categories of QUERY 
messages and UPDATE messages. 

Usually Vehicle, Property and Person Application 
SUbsystems are provided for the query and updating of 
data maintained in the vehicle file, property file and 
name-want/warrant files respectively. 

File oriented request messages are processed within 
the appropriate Inquiry Subsystem through the use of 
general task-oriented functions. For each request 
message, several of the following tasks must be per
formed: edit and validate the request; verify access 
authority; formulate file search strategy and record 
matching profiles; perform the requested search or 
update; generate output responses (including error 
diagnostics if appropriate); and, forward the transaction 
to NCIC as required. 

Query messages 

The QUERY Request is used to determine whether 
or not a record exists in the file. If the record exists in 
the file, the appropriate data is returned to the re
questing operator. 

QUERY persons should exist in two forms: QUERY 
PERSONS IDENTIFICATION (QPI), which restricts 
access to the Master Name File only, and QUERY 
PERSONS RETRIEVAL (QPR) , which goes beyond 
the Master Name File and automatically retrieves 
records from subsidiary files such as the Want/Warrant 
and Criminal History files. 

Both QUERY Persons types should permit any 
mixture of search criteria from among those data 

elements carried in the agency specified Master Name 
File. 

General QUERY requests should allow any mixture 
of search criteria from among those variables carried in 
the agency specified data record. As large a portion of 
the file as is possible should be eliminated from the 
search as determIned by the values supplied with the 
request. The presence of a unique identifier or any of 
the optional cross-indexed variables will improve this 
search limiting effect. Both "weighted" profile and 
absolute identifier matches should be used as appro
priate when comparing records for finds. 

The search strategies and file organization should be 
oriented toward efficient operation under conditions 
where multiple records in the data base will satisfy the 
search criteria. Thus, considerable effort should be 
directed toward organizing and structuring the data 
base and search techniques to minimize the numb~r of 
accesses required to satisfy the request completely. 

Every request message must contain sufficient 
information to determine a list of one or more file 
groups which could contain the desired record(s). If 
not, the full file may be scanned (generally only per
mitted at agency option). File groups may be found by 
making a find in a cross-index or by the inclusion of the 
group defining element(s) in the request message. 

In those instances where the agency maintains a 
cross-index to the file by a particular variable, file 
search time is significantly reduced if the indexed value 
is supplied in the request. This function searches cross
indices for each such value present in the message. 
When indexed values are found, the resulting file group 
numbers are added to the search group list. Failing to 
find such values in the index does not necessarily mean 
that a record cannot be found. In such a case, the 
normal search strategy is pursued using other variables 
given in the search profile. 

Once the search group list is determined, further 
definition is needed to select candidate records as each 
indicated group is scanned. Two methods of matching 
are usually utilized by the Subsystems. The first uses 
all unique, positive identifiers from the request and 
places them in a special argument list. Any record 
encountered in the search which matches anyone of 
these arguments will be included in the output. Typical 
of such elements are Social Security Number, Vehicle 
Identification Number, FBI Number, Drivers License 
Number, or System Identification Number. 

The second technique of record matching involves a 
weighted element profile. Weights for all possible data 
elements in the record may be pre specified by the 
agency. For each QUERY Request, the sum of these 
weights is computed for all variables indicated in the 
request. (This combined weight must exceed an agency 



Law Enforcement Communication and Inquiry Systems 291 

specified threshold before a profile type search will be 
performed.) A match-hit threshold is computed from 
the combined weight and an agency specified per
centage. 

Each record scanned will have the values for those 
variables included in the QUERY Request compared 
to the values in the record. The weights for each correct 
variable match are accumulated. The total weight 
for the record is compared to the match hit threshold. 
Records with scores greater than the threshold will be 
selected. The profile type match is made only on those 
records which were not already selected via special 
arguments. By varying the element weights, thresholds, 
and other parameters the agency can provide its own 
unique balance among the importance of individual 
elements. 

Update messages 

The ENTER Request adds a new record to the data 
file. The ADD, MODIFY, and DELETE Requests 
selectively alter the content of any number of data 
elements in a specified record already in the file. The 
CLEAR (Locate) Request effectively changes the 
status of a specified record when its subject (person, 
vehicle, or property) has been located or apprehended. 
The originator of the record should be automatically 
notified. The DELETE Request also allows deletion 
of a specified record from the file. 

ENTER request processing 

ENTER Requests involve one or more of the 
following operations. A pre-enter Search is made to 
avoid record duplication. An optional override may be 
provided to the operator so that the entry of a record 
can be made even though it is very similar to one already 
existing in the file. A new record is constructed using 
element values supplied in the request and element 
values self-generated by the system. The new record is 
inserted in its appropriate file group by File Control 
and all available values are inserted in the appropriate 
cross-indices. The originator is notified of successful 
entry combined with a copy of the complete or partial 
record content. When specified, an NCIC entry will be 
constructed and sent. 

ADD, MODIFY and DELETE request processing 

The SUbsystem processing performed by these 
message types consist of the following functions. 

Unique and absolute identification of the subject 
record must be established. The basis of identification 

will normally be the record's System Identification 
N umber plus any other required variables established 
by the agency as being mandatory. Optional agency
specified rules are then applied for authorization to 
up-date the record (such as requiring that the requesting 
terminal be the same as the record originator). The 
requested operation is performed on the record for each 
element specified in the request and element-by
element editing of the requested type of operation is 
allowed for each. 

File control is used to replace the updated record in 
its appropriate file group and file cross-indices entries 
are removed, added or modified if such elements are 
involved. The originator is notified of successful com
pletion along with a copy of the updated record. NCIC 
transactions will be constructed and sent when re
quired. 

The capability to delete an entire record is also 
provided. This function differs from the ordinary 
DELETE request described above with ADD and 
MODIFY in that more stringent criteria can be applied 
to determine the authorization. Furthermore, the entire 
record may be immediately deleted via File Control or 
optionally, the record may be flagged for removal 
during the next periodic purge run (Background). All 
such flagged records would be omitted from normal 
on-line responses until they are-removed. 

CLEAR (Locate) request processing 

The Subsystems for this type of request modify the 
status of the record to show that it is inactive and 
information is added to the record to indicate the time 
and source of the "locate" action and event. According 
to conditions and options established by the agency a 
notification message is ,constructed and sent to the 
originator of the record indicating the subject record 
and the nature of the "locate" event. The request 
originator is advised of the successful update and 
notification along with a copy of the updated record. 
When so specified,NCIC is advised of the "locate" 
event. 

N C I C translate junction 

Each Subsystem request-type should contain specific 
logic to determine whether an NCIC message can and 
should be formulated. Should NCIC be referenced, a 
general NCle translate function should be provided to 
select elements from among those specified in the 
request, translate their values to NCIC codes, and 
place them in acceptable NCIC format. Subsystem and 
NCIC responses are independently sent to the origi-



292 Fall Joint Computer Conference, 1971 

nator. NCIC responses, which may be delayed, are 
usually directly routed to the originator without 
Subsystem intervention. With this translate function , 
NCIC request can be formulated by the user in a non
NCIC specific format and reformatted by the computer 
for NCIC acceptance. This eliminates the use of two 
separate formats or the required adoption of the NCIC 
format by the system. 

FILE MANAGEMENT 

Law Enforcement File Control supports the Inquiry 
Subsystems by providing the logical record storage and 
retrieval operations·which permit the Subsystems to be 
independent of the physical characteristics of the files 
being processed. It provides access control to preserve 
the security and integrity of System data, and also 
supervises and schedules all requests for file access from 
Subsystems. In so doing, it is responsible for preventing 
simultaneous file access requests from Subsystems by 
applying appropriate priority recognition and delay 
criteria. File Control also provides the mechanisms 
required for system file recovery. 

When a single generalized concept for the organiza
tion, and access to all on-line files is utilized, all on-line 
files are structured similarly. Each contains an agency 
specified set of Data Elements arranged in a format to 
produce a record type. Multiple variable-length records 
are in turn "blocked" according to a common char
acteristic. Multiple blocks may be linked together when 
necessary to contain an entire sub-group of the file. 

To provide rapid and efficient access to specific 
records within the file, multiple cross-indices to in
dividual files may be defined and maintained. A cross
index must be based on some unique identifier of the 
subject vehicle, person or property (such as Vehicle 
Identification Number (VIN) or Social Security 
Number). 

Organization of a file consists of using one or more 
data elements (variables) within the record to partition 
the file into a number of groups such that in a pre
ponderance of access situations few groups need to be 
scanned to find a specific record or set of candidate 
records. Furthermore, the group's size may be set such 
that the group may easily be scanned within the 
agency's desired limits of maximum response time for an 
individual file and type of request. Thus, full file scans 
are minimized and ~ay, at user agency discretion be 
disallowed. ' 

The usual variables selected for defining on-line file 
groups are: 

Vehicle File-License Plate Numbers & State 
of Registration 

Master Name File-Phonetic Name Codes 
Want/Warrant File-Corresponds to Master 
Name File 
Property File-Property Category and Serial 
Number 

File' Control should provide all Subsystems with a 
logical file processing capability allowing the following 
functions to be performed: 

OPEN File-initializes processing within the 
designated file for the requesting Subsystem. 
CLOSE FILE-terminates processing of the 
designated file for the requesting Subsystem. 
READ Record-the first such request causes the 
first record of the file, or designated record group, 
to be transferred from the input buffer into the 
call Subsystem's designated core storage area. 
Each subsequent read causes the next logical 
record to be transferred to the designated storage 
area. 
LOCATE READ Record-the LOCATE READ 
function operates in the same manner as READ 
described above with the exception that no move
ment of the record within core storage from I/O 
buffer to Subsystem workspace will take place. 
Instead, the Subsystem is provided with the 
location of the record. The use of LOCATE READ' 
enables more rapid scanning of records by the 
Subsystem. 
REREAD Record-causes File Control to transfer 
to the calling Subsystem's core storage space the 
same record as that just read. 
DELETE Record-causes File Control to delete the 
last record read from the file. 
REPLACE Record-'-causesFile Control to replace 
the record last read with the record designated in 
the request. 
INSERT Record-causes File Control to insert a 
designated record in the file. 

In addition to the service capabilities described 
above, File Control should also provide the following 
features: access validation, multiprogramming capa
bility, data file integrity, file recovery, test mode and 
overall storage management. 

CONCLUSION 

Real-Time Law Enforcement and Criminal Justice 
information systems are almost becoming common
place as more and more agencies acquire computerized 
communication and inquiry systems. There is evolving 
a network of computers and communication systems 
that will tie all of the law enforcement system together. 



Law Enforcement Communication and Inquiry Systems 293 

The current National Crime Information Center 
(NCIC) of the FBI makes available to each state and 
major urban agency data on wanted persons, stolen 
vehicles and stolen articles. Each of the real-time law 
enforcement systems are interfaced with this central 
FBI computer system, giving all of the terminals in each 
system direct access to the NCIC files. A nationwide 
criminal history system is under development that will 
connect each of the participating states via computer 
communications to a master name index and criminal 
profiles on all major offenders in the United States. 

The era of large, complex and integrated communica
tion and inquiry systems has been projected as a mid-
1970's phenomenon. With the current emphasis and 
acquisitions in the Law Enforcement field, it looks like 
they will again lead the industry in Real-Time com
puterized communication and inquiry systems as they 
did in land-mobile radio and teletype torn-tape message 
switching systems. 

REFERENCES 

1 Colorado's automated law enforcement system request for 
proposal 
Department of Administration No 10 July 1 1970 
Denver Colorado 

2 Communication and inquiry general description, law 
enforcement application program 
UNIV AC Division of the Sperry Rand Corporation 
February 1971 Blue Bell Pennsylvania 

3 Electronic message switching system specification for Texas 
Department of Public Safety 
No DPS-8-2-4 April 23 1970 Austin Texas 

4 Florida crime information center request for proposal 
May 1 1969 Tallahassee Florida 

5 Metropolitan Government of Nashville and Davidson County 
Police Department request for bid for a police information 
network system 
February 19 1971 Nashville Tennessee 

6 Missouri law enforcement data system specifications 
Missouri State Patrol April 1968 Jefferson City Missouri 

7 New Jersey statewide communications and computer base 
information system for the Department of Law and public 
safety request for proposal 
No 5-71 January 29 1971 West Trenton New Jersey 

8 New York State police real-time law enforcement information 
system specifications 
January 1970 Albany New York 

9 North Carolina police information network request for bid 
June 1970 Raleigh North Carolina 

10 Ontario police tactical information centre electronic data 
processing system specifications 
December 1968 Ontario Provincial Police Toronto Canada 

11 Oregon law enforcement data system specifications 
December 12 1969 Salem Oregon 

12 C T SMITH 
A computerized national law enforcement communications 
system 
Law Enforcement Science and Technology Volume III 
ITT Research Institute 1970 

13 Washington State patrol computer message switching system 
request for proposal 
July 311970 Olympia Washington 

14 P M WHISENAND J D HODGES JR 
Automated police information systems-A survey 
Datamation May 1969 





The Long Beach public safety information subsystem 

by GEORGE M. MEDAK 

City of Long Beach 
Long Beach, California 

and 

DR. PAUL M. WHISENAND 

Institute for Police Studies 
Long Beach, California 

and 

GARY GACK 

Digital Resources Corporation 
Charleston, West Virginia 

INTRODUCTION 

Not many years ago, officials in a city with a five year 
capital improvement plan, a "master" plan, and a 
computer that handled payroll calculations and utility 
billing were termed relatively progressive. This was 
considered a dynamic approach to the use of modern 
management techniques and computer technology. 

In more recent years there has been a dramatic 
increase in the challenge of city management. A 
growing crime rate, financial dilemmas, problems with 
ecology, urban transportation and the like provide 
great tests of management skill for today's municipal 
executive. Information about people and the urban 
environment is a critical requirement for effective 
municipal management. 

It is recognized that the development of a com
prehensive municipal information system is a costly and 
complex task. An independent effort by a municipality 
to research, develop, and implement a system would 
require substantial technological resources, together 
with a large appropriation of local tax dollars to fund 
the project. Furthermore, individual projects across the 
nation would lead to great duplication of effort, use of 
resources and cost. 

It was with these facts in mind that the major federal 
agencies concerned with urban programs established a 
coordinated research effort to develop municipal 
information systems. The Urban Information Systems 
Inter-Agency Committee (USAC) Program was estab-

295 

lished on September 10, 1968, by the Secretary of the 
Department of Housing and Urban Development. 
Sponsoring the program were representatives from nine 
federal agencies: 

• Department of Housing and Urban Development 
• Department of Justice 
• Department of Transportation 
• Department of Labor 
• Department of Commerce 
• Department of Health, Education and Welfare 
• Bureau of the Budget 
• Office of Economic Opportunity 
• Department of the Army, Office of Civil Defense 

The USAC Program, supported by multi-agency 
funding, initiated two classes of effort. One class, a 
3 year program directed at total integrated municipal 
information systems, and a second 2 year effort directed 
toward functional subsystems. The functional sub
systems as defined by USAC were: (1) Public Safety; 
(2) Physical and Economic Development; (3) Public 
Finance; and (4) Human Resources Development. 

During July, 1969, the Department of Housing and 
Urban Development, acting on behalf of USAC, 
initiated a nation-wide procurement action inviting 250 
cities between the population of 50,000 and 500,000 to 
compete for the two classes of contracts. Approximately 
100 proposals were received from 79 cities in 30 states. 
On January 13, 1970, six awards were announced by 



296 Fall Joint Computer Conference, 1971 

TABLE I-USAC Municipal Information System Projects 

System/Subsystem 

Total Integrated Municipal 
Information System 

Public Safety 
Physical and Economic 

Development 
Public Finance 
Human Resources 

Development 

City 

Wichita Falls, Texas and 
Charlotte, North Carolina 

Long Beach, California 
Reading, Pennsylvania 

Dayton, Ohio 
St. Paul, Minnesota 

the Department of Housing and Urban Development 
for the projects and cities shown in Table I. 

A unique requirement in the request for proposals 
was that the government called for the creation of a 
consortium by all respondents. The consortium had to 
consist of a municipal government (as the prime 
contractor), a systems/software firm (as a subcon
tractor) , and a university/research center (as a 
subcontractor) . 

The City of Long Beach, California, awarded the 
prime contract by HUD for development of the Public 
Safety Subsystem, has the primary responsibility to the 
federal government. Long Beach must organize, monitor 
and supervise the overall project to assure that all 
contractual performance requirements are fulfilled. The 
City has also made a substantial in-kind contribution of 
personnel and other resources. 

The Project Director is an employee of the City and 
works closely with a Management Steering Committee 
established specifically for the project. In addition, the 
City has advisory and technical personnel assigned to 
the effort to assure that system development tasks lead 
to operational features which will best satisfy the needs 
of the various city user organizations. 

Digital Resources Corporation (DRC) is the Systems 
Contractor and is responsible for the planning and 
execution of technical efforts associated with the 
project. Specific areas of responsibility inClude: analysis 
of the current operations; design of the data base 
structures; and design, development and implementa
tion of the computer applications. The contractor will 
inventory and analyze the current technology in 
information management systems. That technology will 
be employed to conceptualize and design the system for 
the City of Long Beach. 

The Institute for Police Studies (IPS), California 
State College at Long Beach, is the third member of 
the consortium. Through the Institute, a team of public 
safety authorities is providing consulting services to the 
project. IPS is responsible for technical leadership 

related to the orientation and training process. The 
Institute will also perform project monitoring and 
evaluation to determine overall effectiveness of the 
developed system. 

PROJECT ORIENTATION 

The USAC Public Safety Subsystem project under 
way in Long Beach was initiated in March, 1970, and 
covers the complete development cycle in a 24 month 
period. It began with system analysis and includes 
system conceptualization, design, development, imple
mentation, and evaluation. The project is chartered so 
as to result in a significant state-of-the-art advance in 
municipal information systems. It is not envisioned as a 
pure research project, however, but is committed to 
reaching operational status. 

To maximize the utility of this project to other 
municipalities, all stages of conceptualization, design, 
development and implementation are being conducted 
with due consideration for system characteristics that 
enhance transferability. 

To facilitate dissemination of information on ac
tivities relative to experience gained in the six project 
cities, HUD requested that all projects be organized into 
specific tasks. These tasks, as defined by the federal 
government are: 

• Analysis-The project team will perform an 
in-depth analysis of the present operation of the 
Police, Fire, Civil Defense and Licensing/Code 
Enforcement agencies within the City of Long 
Beach. 

• Conceptualization-Conceptualize the emerging 
information system including both manual and 
automated components. 

• Design-Design in detail those system components 
selected for implementation by the City. 

• Development-Complete programming and de
bugging tasks as required to achieve operational 
status. 

• Implementation-Successfully maintain operation 
of the developed applications in the operational 
environment. 

• Orientation and Training-Orient and train the 
affected personnel in the effective use of the system. 

During the initial 12 months of activity, efforts were 
applied principally to the tasks of project organization, 
system analysis and system conceptualization. Excellent 
progress has been achieved to date. The following 
paragraphs provide a brief report on these activities. 



ANALYSIS OVERVIEW 

The objectives of systems analysis as stated in the 
Long Beach contract with HUD are: 

• Analysis of the Municipal Governmental System
Broad examination of municipal affairs and the 
relationship of the Public Safety functions to those 
operations and other governmental agencies. 

• Analysis of Current Operations-Detailed review 
of current information processes with a view 
toward attaining an in-depth knowledge of in
formation carriers, flows, procedures, policies and 
requirements. 

• Analysis of Decisions-Identification of decisions 
and the inter-relationship of those decisions 
currently made in the Public Safety functions. 

• Analysis of Information Requirements-Definition 
of the existing data elements and their relationship 
to the decision making process. 

The System Analysis Task findings, which were 
submitted to HUD in a 5-volume, 3700 page report, 
provide the foundation for subsequent project efforts. 
The significance of this effort is in the establishment of 
an accurate data base reflecting departmental needs. 
This data base is an essential information resource in 
designing an improved information system that is 
responsive to the operational needs of the city. Through 
a thorough analysis, we are assured that the Public 
Safety Information Subsystem now under development 
is geared to actual information needs, rather than 
hypothetical requirements. 

Computer aided analysis techniques 

Analysis of the information flow through the agency 
on both an interdepartment and intradepartment level 
is a burdensome and time consuming job. As a result, the 
public safety project staff developed a complete system 
of computer programs called META DATAII to aid in 
the analysis of both content and flow of information 
in the public safety function. Capable of operation on 
current third generation computers, the META 
DATAII system consists of two phases, eitCh of which 
begins with a systematic surveyor interview procedure 
and culminates with a series of reports and a tape file of 
descriptive information about the data elements. 

Phase I is primarily concerned with the forms and 
elements of data currently used in the agency. These 
forms (sets) and their composing elements are pro
cessed into a series of reports which are used in systems 

Long Beach Public Safety Information Subsystem 297 

analysis and subsequent tasks. Phase II is concerned 
with the flow of sets through the agency and costs 
(total and by functional activity) of processing the 
respective sets. The resultant report provides subtotals 
at various levels and grand totals at the end of report 
are printed for the following quantities: (1) average 
monthly volume, (2) accumulated quantity, and (3) 
average monthly cost. 

The elapsed time required and the cost of processing 
information at each functional operation is clearly 
identified. The application of the META DATAII to 
other localities represents another transferable feature 
in the planning, design, and implementation of munici
pal information systems and functional systems for 
public safety. 

One of the outputs produced by META DATAll, 
Phase I, used in the Police Department, is a listing in 
data element name sequence of each element on each 
of the 1088 forms identified. This automated processing 
of forms and data elements enabled the staff to uncover 
some very interesting facts relative to the Police Func
tion in Long Beach including the following: 

• There are more forms (1088) than employees 
(877) . 

• There are a total of 12,944 data elements in all 
forms. 

• There are 384 data elements termed "NAME," 
with 10 qualifiers (arrestee, employee, applicant, 
suspect, etc.). 

• Many synonyms are used to describe the same data 
element (hand gun, pistol, automatic, revolver) . 

The Phase II outputs, which include a record of the 
handling of each form, are even more revealing. These 
reports provided for the following observations: 

• The Police Department use 1048 separate files 
of all types. / 

• It costs approximately $170,000 per month, or 19 
percent of the budget to process all forms. 

• Five forms account for 35 percent of the cost 
(Crime Report, Field Report, Accident Report, 
Parking Citation, Arrest Report). 

• Ten forms (1 percent of the total) account for 50 
percent of the cost. 

Perhaps even more significant than these isolated 
facts is the design tool which was available as a result 
of the automation of this data. First, these reports 
provide an objective indication as to where the highest 
potential benefit of automation lies. Second, they 
provide a complete cross reference of every file and every 



298 Fall Joint Computer Conference, 1971 

organizational unit· which is concerned with any given 
form. This makes it possible to examine the entire 
effect of any change in form design or process flow. 
Third, the META DATAl1 outputs also provide a 
complete cross reference of every form and every file 
which is used by any given organizational unit. This 
makes it possible to examine the entire impact of any 
organizational change on the infor-.mation system. 

CONCEPTUALIZATION OVERVIEW 

The project efforts are currently directed toward 
detailed design of the applications which will be 
implemented to demonstrate the USAC philosophy and 
provide the City of Long Beach with certain operational 
capabilities. The concepts up6n which applications are 
being designed are derived from the Conceptualization 
Task Completion Report recently submitted to HUD. 

The conceptualized Public Safety Information Sub
system (PSIS) for the City of Long Beach adheres to 
the general guidelines described in the HUD Request 
for Proposals. To obtain a better understanding of what 
municipal functions are included in the Public Safety 
System, a brief discussion of the total municipal 
information processes will be given followed by a 
definition of those elements / contained in the con
ceptualization. 

As defined by USAC, a total integrated municipal 
information system can be viewed as consisting of four 
functionally oriented subsystems. When viewed collec
tively, the subsystems function in a united manner and 
show a high degree of horizontal information inter
change. The concept of municipal information sub
systems was introduced in order to separate the total 
system into manageable, functional groupings which 
could be incrementally developed. 

To further define the makeup of an information sub
system, each is comprised of a group of related func
tions. Functions within the context of this definition 
mayor may not follow organizational lines. They are, 
however, characterized by the processing of information 
to accomplish a specific goal, i.e., assessing, planning, 
etc. In the Public Safety Subsystem, the functions are 
identified as Police, Fire, Civil Defense and those 
aspects of Licensing and Code Enforcement which are 
applicable to the other three functions. 

For further refinement, each function is thought of as 
being composed on one or more components. The 
component defines the points where similar information 
is input, processed and output from the subsystems. 
Primary emphasis was placed throughout the Con
ceptualization Task on the development of the concepts 

TABLE II-Public Safety Subsystem Functions and Components 

Function 

Police 

Fire 

License /Inspection/ Code 
Enforcement 

Civil Defense 

Component 

Case Reporting 
In-Custody 
Traffic Reporting 
Investigation Support 
Calls-for-Service 
Wants/Warrants 
Vehicle/License 
Stolen Property 
Fire Suppression 
Fire Investigation 
Fire Prevention 
Fire Dispatching 
Fire Code Enforcement 
Police Perm it and Licensing 
Civil Defense Shelter Licensing 

Shelter Management 
Resources 

for components since they represent the operational 
elements of the information subsystems. Table II is a 
listing of the functions and their related components as 
identified in Long Beach. 

Each of the components is defined as a logical 
implementation block which can be developed and 
implemented either singularly or in conjunction with 
several other components. 

Public safety horizontal and vertical interfaces: 
design concepts 

The vertical subsystem may be described as the sub
system which links various levels of government along 
functional lines. Within public safety, the vertical 
relationships between city, county, region, state, and 
federal levels of government are well defined and 
structured as compared to other similar municipal 
relationships. 

The most pronounced vertical intergovernmental 
relationship is in the Police Information function 
because of presently established interfaces between the 
regional, statewide, and federal criminal justice in
formation systems. For example, the Long Beach 
system must interface as shown in Table III. 

Public Safety is a subsystem to not one, but many 
information systems at various levels of government. 
I t does become a logical building block for the other 
systems since it is operational in the municipal govern
ment structure. 



USAC has stated that "as a matter of emphasis, this 
project is aimed at the discovery, establishment and 
automation of the horizontal subsystem." 

A horizontal subsystem may be described as a set of 
data linkages which exists between one subsystem and 
another, one function and another, or one component 
and another. These linkages appear in three primary 
forms: 

• Informal-phone calls, meetings, etc. 
• Formal hardcopy interchange-memos, reports, 

etc. 

• Data Sharing 

The latter form is the one most subject to automation 
and is, therefore, the prime target of project effort. A 
three step approach to the development of design con-
cepts was adopted. . 

Subsystem ·concept 

In order to perceive the rather complex array of 
interfaces to which the Public Safety Subsystem con
tributes, it is necessary to examine each function of 
each subsystem at the component level. For ease of 
understanding, the project team has chosen to classify 
components as to their nature. Components are 
identified according to the following classes: 

• Supportive components-Those information pro
cesses concerned with the internal operations of 
one or more functions. 

TABLE III-Typical Systems Interface 

Government Level 

Federal 

State 

Regional 

System 

NCIC (National Crime Information 
Center) 

SEARCH (System for the Electronic 
Analysis and Retrieval of Criminal 
Histories) 

Auto-Statis (California Highway Patrol) 
DMV-AMIS (Department of Motor 

Vehicles-Automated Management In
formation System) 

CJIS (California Criminal Justice Infor
mation System) 

RJIS (Los Angeles Regional Justice 
Information System) 

AWWS (Los Angeles Automated Want/ 
Warrant System) 

Long Beach Public Safety Information Subsystem 299 

TABLE IV-Horizontal Linkages 

Public Safety 
Horizontal 
Interfaces Supportive Environmental Operational 

Human People Data 
Resources Base 

Physical and 
Economic 
Development 

Finance Fiscal Data 
Base 

Public Safety 

Property Data 
Base 

People Data 
Base 

Property Data 
Base 

• Environmental components-Those information 
processes concerned with collection and main
tenance of data which describes the community or 
environment to be served. 

• Operational components-Those information pro
cesses which are triggered by specific events such as 
crimes, fires and so forth. 

In view of the fact that those components defined as 
supportive and environmental in relation to public 
safety are also operational components in other sub
systems, they were not included in the conceptualization 
of the Public Safety Subsystem. Table IV illustrates 
the horizontal linkages which exist in relation to public 
safety at the subsystem level. 

As indicated in Table IV, the various data bases are 
the mechanism which implements data sharing. In 
other words, data base concepts are employed because 
they are in fact an operational necessity of the system. 
The technical benefits derived are only incidental and 
were not the motivating factor behind this approach. 

Function/ component concept 

After arriving at a general conception of horizontal 
relationships at the subsystem level, the project team 
looked next at the function level and at components 
within each function. The perspective of the data bases 
as a data sharing mechanism was maintained. The 
rationale behind the identification of components as 
presented is too lengthy to go into here, but the result 
of this step is illustrated in Figure 1. 



300 Fall Joint Computer Conference, 1971 

Figure 1-Public safety subsystem conceptualization 

Data base concept 

To implement the subsystem function and com
ponent design, we have reached a point at which 
information technology must be employed to the full 
extent of its capabilities. Without attempting to address 
the organizational issue of centralization, it does seem 
clear that informational centralization is necessary to 
implement the Long Beach Public Safety concept. 
Informational centralization, in contemporary terms, is 
an integrated data base. 

The Data Base Management Software (DBMS) 
technology to be employed in Long Beach has three 
primary attributes which are essential to informational 
centralization. 

The first attribute, of which much has been written 
and little has been done, is the "integrated data base." 
The integrated data base technique of storing data in a 
computer system differs from the traditional approach 

DATABASE; PROPERTY 

SUISYSTEM: PUlLICSAFETY 

C.O.SWter~ 

"" ..... . s ...... ce 

'". 

Vow . ~. 

Figure 2-Segment detail of a property data base 

in terms of the means used to associate elements of data 
together. It has been traditional to associate data 
together in terms of use. In contrast, the integrated 
data base approach suggests that data be associated 
by object. 

There is considerable evidence that association based 
on object will reduce operational costs associated with 
redundant acquisition, storage and maintenance of data 
while at the same time improve the currency, accuracy 
and reliability of the data. The second attribute provides 
the capability for the information system to tolerate 
change. 

Development of an integrated information system, of 
the scope anticipated for the Long Beach Public Safety 
Subsystem, requires an incremental approach. This 
approach necessarily assumes that additions may be 
made without major modifications to initial programs 
or components. Were this not the case, an incremental 
development would be economically impractical. 

To resolve the problem, data definitions are separated 
from the program. This approach creates a software 
environment which supports a single data definition, 
known as a "data dictionary", that is shared by all 
programs accessing the file. 

The data dictionary facilitates the development of a 
system which permits independent evolution of both 
the data files and programs without excessive modifica
tions to either, as only the dictionary requires main
tenance, not the programs. 

In keeping with the idea of organizing data by object, 
the Public Safety Subsystem employs two primary data 
bases: People and Property. 

The Property data base (Figure 2) acts as a data 
sharing mechanism at the subsystem level between all 
four subsystems, and the function level within Public 

... ,~ 
eo.. 
Reporting 

Poli .. 
Inwl!ifQtlon lIM _. 

Voli.:. 
CaIl.fIK 

PoIi.:. 
Tl'Dffic 
J.tporting 

In-Cwtody F.I. 
Accident Pawn 
"port ShopLoon 

Hoc"h 

"~d 

8ooldnoNo. PhY'lcol CMtg. 
OMcription 

'''' 

Figure 3-Segment detail of a peop]e data base 

Utility .. "..V 

::~:ng ~:"''''V 

<>or • .... , ... 

Etc. WIthHolding 



Safety between Fire, Police and Civil Defense and at 
the component level within the Fire Function between 
Dispatch, Suppression, Prevention and Investigation. 

The People data base (Figure 3) acts as a data 
sharing mechanism at the subsystem level between all 
four subsystems, and at the component level within the 
Police Function between in-Custody, Case Reporting, 
Investigation Support, Calls for Service and Traffic 
Reporting. 

PERSPECTIVE 

During the remainder of this project, Long Beach 
will proceed with the phased implementation of selected 

Long Beach Public Safety Information Subsystem 301 

applications to substantiate the hypothesis proposed by 
the concepts developed. The conceptualization described 
above is expected to evolve into a multi-year imple
mentation plan for the City of Long Beach and become 
the basis for planning in other municipalities. 

If the Long Beach Public Safety Subsystem is success
fully transferred to another jurisdiction, the USAC 
objective of transferability will be validated. This can 
occur only if the recipient municipality openly ap
proaches change to its existing policies and operations. 
Such change appears to be desirable in view of antici
pated benefits to be derived from the implementation of 
an integrated municipal information system or sub
system. 





State criminal justice information systems 

by ROBERT R. J. GALLATI 

New York State Identification and Intelligence System 
Albany, New York 

INTRODUCTION 

There has finally been wide recognition of the need 
to improve the systemic relationships of the various 
functions and processes of what has been euphemisti
cally referred to as our criminal justice system. With 
this recognition has come an understanding of the 
central role of criminal identification bureaus in com
puterized criminal justice information systems, which, 
in turn, serve as foundations for the development of 
true criminal justice systems. 

As a practical matter the state is the most logical 
governmental level at which computerized criminal 
identification bureaus could be housed. Local com
munities, regardless of size, necessarily have less com
plete files than those at the state level. Criminal law, 
both in terms of enactment and enforcement, is state
level based. State identification files are records of 
violations of the criminal laws of the particular state 
involved. As an operational matter, it is exceedingly 
difficult for a national agency to handle the fantastic 
workload involved in an attempt to process finger
prints and perform other identification functions for the 
entire nation. 

An additional factor which commends the mainte
nance of computerized criminal justice information 
systems and the identification bureaus they are struc
tured around at the state level is the increasing public 
concern about possible invasions of privacy involved 
in computer data banks, particularly those at the federal 
level which might be interfaced with others to form a 
single giant National Data Bank. Criminal justice in
formation system data banks necessarily contain de
rogatory records, so it has been strongly recommended 
by civil libertarians and many criminologists that 
comprehensive criminal justice information files be kept 
at state level. 

Obviously, if we are to retain our computerized 

303 

criminal justice information systems at the state level, 
there must be some method for the interstate exchange 
of criminal history records. This was fully recognized 
during the development of Project SEARCH (System 
for the Electronic Analysis and Retrieval of Criminal 
Histories). The FBI/NCIC (National Crime Infor
mation Center) has assumed responsibility for main
taining the central index of the SEARCH-type system 
which becomes operational this November. 

The critical role to be played by state identification 
bureaus in the future of the NCIC Criminal History 
Record Exchange System is apparent from a policy 
statement approved on March 31, 1971, at a meeting 
of the National Crime Information Center (NCIC) 
Policy Board. The Board determined that in order for 
the NCIC system to evolve into a truly national 
system ... "each state must create a fully operational 
computerized state criminal history capability within 
the state. . . ." 

It is submitted that state criminal justice infor
mation systems and the identification bureaus which 
form the nuclei of their files, are destined to play an 
ever-increasing role in the area of public systems dedi
cated to law enforcement and criminal justice. One of 
the noteworthy examples of the development of such 
systems is the New York State Identification and 
Intelligence System (NYSIIS). 

I propose to present the NYSIIS story as an analytic 
case study of a particular model for a state criminal 
justice information system. NYSIIS did not evolve 
from some other agency or function. It was created 
"de novo" as a conscious effort to produce both an 
agency and a function that had never before existed 
in N ew York State, or elsewhere. It is unique, and 
may well continue to be the only one of its kind in the 
nation. However, all 50 states will follow the model in 
one way or another, even though each may develop an 
indigenous system, which, on the surface, appears to 
differ considerably. 



304 Fall Joint Computer Conference, 1971 

NYSIIS CASE STUDY 

Origins 

NYSIIS was created as an agency in 1965. The 
concept of NYSIIS rests upon the following basic 
principles of the unitary nature of criminal justice: all 
criminal justice agencies need to participate in and 
share a joint data bank; the submission of information 
thereto should be primarily voluntary; NYSIIS is to 
be a service agency only, with no powers, duties or 
facilities to arrest, prosecute, confine or supervise; 
security and privacy considerations must permeate the 
system and involve central and remote NYSIIS oper
ations; new dimensions of science and computer tech
nology can be applied to provide greater effectiveness 
in filing methodology and the utility of processed data; 
and that criminological research will be supported by 
a vast resource of computerized empirical data available 
for variable searching to test theses, hypotheses, theories 
and pilot projects, thereby enabling criminal justice 
administration to evaluate its own procedures, practices 
and operations. 

Development 

It was very evident from the start that if NYSIIS 
was to function effectively as a criminal justice infor
mation system serving all functional areas of criminal 
justice, there were some obvious conditions that had 
to be met: 

1. NYSIIS had to be created and maintained as 
an independent agency so that it could serve all 
functions without fear or favor. This has been 
a public administration and computer sciences 
problem (opportunity); 

2. NYSIIS had to have a vast computer capability 
and engage in massive historical and ongoing 
data conversion of the millions of criminal history 
records contained in its manual identification 
files. This has been a systems and computer 
sciences problem (opportunity); 

3. NYSIIS had to advance the state-of-the-art of 
computer-related techniques for the further auto
mation of the fingerprint identification process. 
This has been a research and development and 
computer science problem (opportunity); 

4. NYSIIS had to create state-of-the-art computer
related technology for the development of new 
and improved analytical techniques for the 
identification and intelligence functions. This has 
been a planning, research and computer sciences 
problem (opportunity); 

5. NYSIIS had to provide computer-related com
munications systems for remote access to the 
system data bank and for computer interface 
with interstate information exchange systems. 
This has been a systems, communication and 
computer sciences problem (opportunity); 

6. NYSIIS had to be able to survive a period of 
several years during which it produced only a 
minimum tangible product in the service of the 
criminal justic~ community. This has been a 
public relations and computer sciences problem 
(opportunity) ; 

7. NYSIIS had to embrace a sophisticated security 
and privacy program in order to allay the fears 
of those who perceived computerized data banks 
of derogatory data about individuals as a threat 
to civil liberty. This has been a political and 
computer-sciences problem (opportunity). 

Computer opportunities 

I t is fair to say that NYSIIS would be as nothing 
but for its computer capability. In every phase and at 
every stage of its origins, development and continued 
growth computer science problems (or opportunities) 
presented themselves and then became the most con
stantly viable elements of continued survival. Indeed, 
the future of NYSIIS and criminal justice information 
systems is wholly dependent upon computer capabilities 
and related technology. Perhaps it is more accurate, 
therefore, to refer to the role of the computer as com
puter-science opportunities rather than computer
science problems. 

Agency independence 

A cardinal tenet of the founders of NYSIIS was that 
it should be an independent agency with its own dedi
cated computer system. Maintaining bureaucratic inde
pendence has been a torturous trail to blaze. As a small 
agency among the giants (State Police and Department 
of Correctional Services), it is not surprising that in
fluential legislators would each year call for NYSIIS' 
elimination and the consolidation of its services, either 
with the State Police or the Department of Correctional 
Services. In fact, within a single week, a prominent 
legislator recommended that NYSIIS be taken over by 
the. State Police on one occasion, and then recom
mended that it be absorbed by the Department of 
Correctional Services on another occasion, just a few 
days later. 

Another facet of the war for independence has been 
misguided attempts to consolidate state agency com-



puters on a statewide basis. To date these have been 
frustrated, largely because of the fact that NYSIIS 
seized the opportunity to obtain its own very large 
computer system as soon as possible. Had NYSIIS 
yielded to the temptation to "get started" with some 
attractive police modules such as stolen motor vehicles 
and stolen property, it may have found itself a ready 
candidate for absorption by a larger agency or have 
been required to share a general service computer with 
a number of other state agencies. Since NYSIIS, from 
the beginning, went for the "big apple"-a vast com
puterized criminal history file-very early in the game, 
it became not so readily digestible and it managed to 
stand alone and independent-saved by the Burroughs 
6500! 

Data conversion 

Data conversion for the computer is invariably con
sidered a simple problem by people who have never 
experienced its impact. Those who are veterans of con
version battles know better. They also know it is par
ticularly difficult to convert a very large manual file 
while that file is being used on a day-to-day basis in 
essential operations. 

In the NYSIIS con version of criminal history records 
as is true to a greater or lesser extent in all criminal 
identification bureau conversions, there have been cer
tain added dimensions that further increased the diffi
culty attached to such an operation, such as: 

1. Different time periods-due to the type of docu
ments involved (fingerprint cards, court dispo
sitions, institution cards, etc.), and primarily 
for control of data conversion it was necessary 
to set four time periods from 1927, to the present; 

2. Multiplicity of agencies-there are more than 
1000 relatively autonomous agencies which have 
submitted source documents to NYSIIS; 

3. Document differences-documents received from 
varying sources differ in format; 

4. Information location-the positioning of infor
mation on submitted forms varied from the same 
and different sources. 

At present more than 750,000 criminal history records 
are on tape and fully edited and purified records are 
being added to the computer data base at the rate of 
over 10,000 per month. Obviously, this amount of 
storage of extensive criminal histories requires tre
mendous computer capacity and maximum speed and 
multiprocessing capability. Computer science has pro
vided NYSIIS with these capacities and capabilities 

State Criminal Justice Information Systems 305 

and the opportunity to provide a two-hour response 
time for fingerprint submissions-as opposed to the 
10-14 day response time of the old manual system. 
This 12,000 percent improvement in response time is 
completely dependent upon the extensive computeri
zation of the identification function at NYSIIS. 

A utomated identification 

The fingerprint identification process which is the 
basic function of all criminal identification bureaus 
virtually demands computerization and complete auto
mation by its very nature. It is fortunate that NYSIIS 
planners recognized this from the very beginning of the 
agency. Today, NYSIIS is the most fully automated 
identification bureau in the world. 

The need for systematic improvement in the oper
ation of these bureaus is accentuated by three recent 
developments: 

1. New legal procedures such as preventive de
tention, release on own recognizance, forthwith 
sentencing, and mandatory rapid arraignment 
and bail setting require swift criminal history 
record responses; 

2. The overwhelming increases in the volume of 
fingerprint submissions has resulted in larger and 
less readily accessed files; 

3. Facsimile transmission and other telecommuni
cations devices have eliminated time delays con
nected with delivery and focused attention upon 
the lag-time at the point of processing. 

The fundamental steps in the fingerprint identifi
cation process are as follows: 

1. Name search of main file and wanted file 
2. Classification of fingerprints 
3. Fingerprint search 
4. Fingerprint comparison 
5. Criminal history preparation 

NYSIIS has computerized the name search process, 
both for wanteds and the main file. To date, no agency 
in the world has succeeded in automating the classifi
cation of fingerprints; however, extensive research has 
been conducted by the FBI, NYSIIS and others to 
achieve this objective. NYSIIS, however, has developed 
a computerized fingerprint search technique with the 
remarkable capability of searching incoming finger
prints against a base file of 2.5 million fingerprint 
classifications in less than 30 seconds. Fingerprint com
parison through microfilm image retrieval techniques is 



306 Fall Joint Computer Conference, 1971 

within the state-of-the-art and NYSIIS intends to ob
tain such a capability as soon as funds become available. 
Finally, the hard copy criminal history record is re
trieved from the computer data bank and printed out 
in NYSIIS, or at a remote access facility. Here again, 
we see that the opportunity to utilize computer sciences 
and related technology is the key to entirely new di
mensions of service which serve to protect civil liberties 
and to deal more effectively with suspects and appre
hended criminals. 

A nalytical identification 

The basic function of an identification bureau (which 
is, in turn, at the heart of any criminal justice infor
mation system) is to receive hard copy sets of finger
prints containing the friction ridges of all ten fingers of 
the subject; compare these sets with those in the base 
file and produce verified criminal history records (or 
"no record responses", as the case may be). However, 
there are many analytic (investigative) needs of crimi
nal justice agencies which can be satisfied as by
products of the computerized criminal identification 
bureau. These bonus-type modules of the system have 
a high pay-off in terms of public support and increased 
credibility in the criminal justice community. Examples 
of some of these computerized modules which NYSIIS 
has developed to date are as follows: 

1. Latent fingerprint identification 
2. Fraudulent check 
3. Personal appearance 
4. Warrant/Wanted 
5. Organized Crime Intelligence 
6. Stolen motor vehicles (Automatic License Plate 

Scanning) 
7. Modus Operandi 
8. Criminalistic data analysis 

All of these analytical modules are viable theoretically 
for investigative purposes by all branches of the criminal 
justice process. However, as a practical matter, they 
are most often within the police domain and their 
availability pleases the law enforcement segment of 
the total spectrum of criminal justice administration. 
Since 70 percent of the total resources of criminal 
justice are concentrated in the police function, special 
attention to law enforcement requirements was defi
nitely in order for this fledgling agency. 

However, it was not sufficient merely to take the 
very primitive files that currently existed and com
puterize them. This would have outrageously sub-

optimized the capabilities of the computer and the 
developing criminal justice system. Ergo, NYSIIS found 
itself in the position of having to create state-of-the-art 
computer-related technology in order to justify its 
efforts to meet these law enforcement needs. Once 
again, great opportunities were presented to provide 
orders of magnitude improvement in this vital area of 
government. 

For example, there has never before been an effective 
latent (crime scene) fingerprint identification system. 
Under the conditions of existing fingerprint classification 
systems, it is not possible to search the fingerprints of 
unknown suspects left at the scene of a crime through 
the millions of sets of prints in the main file. As a result, 
special files of recidivists in those types of crimes where 
there are likely to be prints left at the scene and the 
perpetrators are not otherwise identifiable (i.e., burg
lary, auto theft, etc.) have been created. The largest 
file of this type in the United States contains the 
prints of less than 30,000 persons-compared with many 
millions in the base file! NYSIIS' studies indicate that 
at least five percent of all burglaries could be solved 
through latent print identification if a sufficient number 
of crime scene fingerprints were lifted and processed 
in a large base file. (It must be recognized that less 
than 20 percent of current burglaries are cleared by all 
other investigative methods.) NYSIIS is developing 
an improved system with the capability of matching 
lifted crime scene fingerprints with prints in the main 
criminal fingerprint file, utilizing a combination of com
puter search and microfilm retrieval technology. 

Likewise, computer searching to identify perpetrators 
by personal appearance, modus operandi, trace data 
analysis, fraudulent check characteristics, etc., opens up 
an entire new spectrum of aids to criminal justice ad
ministration. In automatic license plate scanning for 
the apprehension of wanted motor vehicles a combi
nation of optical and computer technologies has pro
vided a viable solution to the epidemic stolen car 
problem. Most recently, through NYSIIS planning and 
research, it has been recognized that computerized 
organized crime intelligence systems hold the key to 
new opportunities for dealing with this nagging problem 
which, up to now, has been largely unresolved despite 
vast allocations of manpower resources. 

Computer communications 

The fantastic opportunities for criminal justice offered 
by computer technology depend to a very large extent 
upon compatible communications resources. Speedy 
computer processing of arrest fingerprint submissions 



is pretty much in vain if the fingerprints require two 
or three days to arrive by mail and it takes two or 
three more days thereafter to receive the printout. 
The "magic" of computer identification of wanted ve
hicles passing on the highway is meaningless unless the 
"hit" message can be retrieved within a few seconds. 
The intra- and interstate exchange of identification and 
intelligence data must be facilitated by an entire array 
of computer compatible communications. Likewise, re
mote access and computer-to-computer interface depend 
upon appropriate telecommunications systems. 

NYSIIS has seized the opportunities available to 
provide computer-related communications systems, 
both within N ew York State and on an interstate basis 
through its participation in SEARCH. A very sig
nificant development in this regard was the establish
ment of the first statewide facsimile network for the 
photo transmission of fingerprints from any point in 
the state to NYSIIS for computer processing and ap
propriate responses thereto by message facsimile. At 
the present time it still takes 14 minutes to transmit 
each set of fingerprints and an average of 4 minutes to 
respond with a criminal history record. These elapsed 
times are, of course, unsatisfactory and we are urgently 
pressing vendors to escalate their efforts to improve 
the technology. 

In this connection, NYSIIS has been participating 
in the satellite transmission project of SEARCH, ex
perimenting with the possible transmission of finger
print card images via microwave and satellite rather 
than facsimile ground systems. Likewise, NYSIIS par
ticipated in the Project SEARCH interstate trans
mission of criminal history records which involved an 
advanced telecommunication network with remote ac
cess and computer-to-computer interface. NYSIIS and 
its many counterparts throughout the country are inter
faced with the National Crime Information Center 
(NCIC) computer at the FBI in Washington, D.C., for 
purposes of stolen property and wanted identifications 
and most recently for the transmission of alphanumeric 
criminal history record data. Despite the sophisticated 
hardware presently available, we still need a number 
of breakthroughs in the area of communication tech
nology in order to optimize the impact of the computer 
upon the criminal justice system. 

Barren survival 

Government agencies must justify their continued 
existence and make requests for their share of scarce re
sources each year. In the case of NYSIIS, it was neces
sary to convince the Legislature and its scrupulous 

State Criminal Justice Information Systems 307 

fiscal committee of the merits of this computerized 
criminal justice information system long before it pro
duced any tangible benefits to anyone. Here again, the 
msytique of the computer provided opportunities to 
sustain interest in the glorious promise of a criminal 
justice information system. 

A public information program which took full ad
vantage of the public's fascination with computers and 
their incredible capabilities was mounted with signifi
cant success. Professional associations of police, district 
attorneys, correction, probation and parole officials pro
vided loyal support during the barren years. They, too, 
were intrigued by the promised potential of computer
ized information sharing. 

The continuous announcement of technological break
throughs during development and the constant reiter
ation and reinforcement of the ultimate promise kept 
NYSIIS alive on the one hand; and, on the other hand, 
prevented the abortive development of unnecessary 
and redundant computer systems at the state and local 
levels. Many millions of dollars were saved by in
hibiting the creation of systems which would duplicate 
what was already being planned on a more compre
hensive basis and would perforce supplant any such 
truncated endeavors. The dazzle and the promise of 
the computer served NYSIIS well during the "lean" 
years of little production and much planning, research 
and development. 

Security and privacy 

From the very inception of NYSIIS it was evident 
that matters of security and privacy should be given 
prime attention. The same public awe of the computer 
which served NYSIIS so well in buying time for system 
analysis and development, could readily be changed to 
fear and turned against us. The computer compelled 
us to critically examine every facet of the planned 
structure to be certain that the system provided dy
namic security and privacy, in order to equate in pro
ductive equilibrium the right of privacy and the need 
to share information. 

NYSIIS recognized that we need to protect private 
personality as zealously as we protect private property. 
Long before the issue of the computer vs. privacy be
came a subject of national debate, NYSIIS had com
mitted itself to a program of computer security which 
earned the praises of Congressman Gallagher) Oscar 
Ruebhausen, Orville Brim, Senator Ervin, Alan Westin, 
the New York Civil Liberties Union, the Vera Institute 
of Criminal Justice and many other persons and organi
zations who champion civil liberties. 



308 Fall Joint Computer Conference, 1971 

As I testified recently before the Senate Subcom
mittee on Constitutional Rights: 

"I firmly believe that computerized criminal justice 
information systems are essential for the effective ad
ministration of criminal justice and that such systems 
can be developed and operated with adequate security 
against unreasonable invasions of individual privacy
indeed, I believe that they can be so developed and 
operated as to provide new dimensions of personal 
freedom and protection for civil liberties and consti
tutional rights." 

The concerns of NYSIIS were also the concerns of 
Project SEARCH and with their respective plans for 
protecting privacy and their voluntary adoption of 
stringent codes of ethics, we may rest assured that the 
computer sciences will remain alive and well in the 
criminal justice community. 

SUMMARY 

The future of criminal justice information systems, 
particularly at the state level, seems very bright indeed. 
The difficult years of development, which I have indi
cated by reference to the NYSIIS experience, are pretty 
much behind us. The miracle of mounting infusions 

of money through welcome federal funding of computer
ized criminal identification bureaus and related tech
nologies assures the fiscal support of such systems. 

The very rapid and meaningful responses that com
puterized criminal justice information systems are pro
viding for the felt needs of all functional branches of 
criminal justice administration are engendering pro
fessional support and commitment. The challenge of 
those who fear 1984, has been met head-on. We are 
leading the march for individual freedom and civil 
liberties, for the computer, properly controlled, is a 
willing slave to serve humanity, not a master of our 
fate. 

Ultimately, computerized criminal justice informa
tion systems will be vindicated by two consummations: 

1. Emergence of a coherent and coordinated system 
of criminal iustice; 

2. Reduction in the incidence of crime and effective 
apprehension, prosecution, adjudication and re
habilitation of offenders. 

I am so bemused myself with the mystique of the 
computer that I sincerely believe the computer can ac
complish this. 



Automated court systems* 

by RONALD L. BACA, MICHAEL G. CHAMBERS and WALTER L. PRINGLE 

Symbiotics International Incorporated 
Houston, Texas 

and 

STAYTON C. ROEHM 

Harris County 
Houston, Texas 

INTRODUCTION 

Why does our Judiciary continue to use antiquated 
methods in the courts instead of taking advantage of 
business automation techniques which have been so 
successfully utilized by private industry? 

This paper answers this question and discusses some 
of the reasons why the courts, especially those in the 
larger cities, need such automation techniques. 

The paper also describes what has been done in 
Houston, Texas, to solve this problem. The authors 
have worked closely with Harris County criminal 
justice officials for several years and have designed a 
completely automated criminal records system. 

This system, called the Harris County Subject-in
Process Records System, 1 maintains pertinent in
formation about criminal cases. This information is 
made available to the courts, law enforcement agencies, 
the District Attorney, and other agencies and depart
ments involved with the judicial process. 

JUDICIARY REQUIREMENTS 

The court officials, especially in the larger cities, 
including judges, clerks of the courts and prosecuting 
attorneys, know what computers can do for them. 
Their conferences and professional publications con
stantly emphasize the importance of automation. They 
know also that somehow the processing of cases must be 

* The development of the system described in this paper was 
financed in part by the Law Enforcement Assistance Administra
tion with a grant awarded to Harris County, Texas, and 
administered by the Texas Criminal Justice Council. 

309 

speeded up or the wheels of justice will soon come to a 
grinding halt. 

Chief Justice Warren E. Burger in his first state of the 
judiciary message in 1970 said: "In the supermarket 
age, we are like a merchant trying to operate a cracker 
barrel corner grocery store with the methods and 
equipment of 1900." 

Litigants in criminal cases are experiencing delays of 
up to two years and more before their cases can even 
come to trial. This is particularly true in our larger 
metropolitan centers. After such a long period of time it 
is not unusual to find that witnesses involved in a case 
have moved away or even died. The standard solution 
to the delay problems is simply to add more courts. 
More courts mean more judges, more clerical support 
and more docketing problems. 

Our courts are bogged down with manual book
keeping procedures. In many of the metropolitan areas 
it is not unusual to read about how someone was denied 
his freedom due to a simple clerical error or a breakdown 
in communications between the various departments 
that comprise the criminal justice system. Citizens 
often win judgments against law enforcement agencies 
in resulting litigation. 

The problem of crimes committed by persons out on 
bond is a major one. Many states are implementing 
procedures to speed up the processing of cases involving 
dangerous persons who are free on bond. Such pref
erential treatment can result in more delays for 
innocent people who cannot post bond and must remain 
in jail. 

It is suspected that a prime cause for much of the 
backlog and delay is due to a lack of coordination in 
docketing cases. Attorneys are often involved in a large 



310 Fall Joint Computer Conference, 1971 

number of cases and therefore are frequently unavail
able. It is also suspected that attorneys often ask for a 
postponement of one case in order to get a better setting 
for another case they are representing. These things are 
suspected, but without automation it is a formidable 
task to sift through the mountain of paperwork to 
determine bottlenecks in the judicial process and to 
formulate action to remove them. 

Former Chief Justice Earl Warren, in a speech 
delivered at the annual meeting of the American Law 
Institute in 1966, said: "It seems to me there is a 
definite need for thorough analysis and study of the 
mechanics-in its physical aspects-of carrying on the 
business of the courts. I am led to this belief by the 
accomplishments of new data. processing methods 
employed in other fields-medicine, for example." 

Governmental agencies, especially on a local level, 
are quite inflexible in comparison to commercial busi
nesses. Seemingly simple changes such as using an 
available computer facility to print an index of criminal 
defendants instead of manually entering each name in a 
"well-bound" journal often require amendments to 
state constitutions; or, at a minimum, require an 
interpretation by the State's Attorney General. 

Of course, we are all too familiar with the problems 
posed by budgetary considerations and of officials who 
are not close enough to the problem and who find it 
difficult to approve expenditures for data processing. 

Government often fails to use modern data pro
cessing procedures simply due to organizational 
restrictions. There is usually no one person or depart
ment to tie the various criminal justice departments 
and agencies together to organize and support the 
implementation of such a system. 

What, then is being done to relieve our congested 
courts. The use of computers to streamline court 
procedures can presently be found in several large 
cities. Many of these systems, however, were imple
mented quickly to solve some immediate problems. 
What is desperately needed is a thorough analysis of the 
entire court system and the development of long range 
plans to solve the problems. 

SYSTEM OBJECTIVES 

The criminal justice officials in Harris County have 
long been aware of the administrative problems and 
have recently taken positive steps toward a solution by 
working together to develop what is now called the 
Harris County Subject-in-Process Records System. 
This computer system maintains all pertinent in
formation about criminal cases and the defendants 
involved. The system information is available, via 

printed reports and remote terminals, to the District 
Clerk, District Attorney, Sheriff, Probation Depart
ment, and the Courts. 

The primary objectives in the design of the Harris 
County Subject-in-Process Records System were to 
produce a system which would provide an efficient 
means of monitoring the progress of criminal cases and 
to define methods of using such information to reduce 
the total time and effort required to process a case. 

The system is designed in a manner to be mutually 
beneficial to the various County agencies and depart
ments concerned with the criminal process. It is, when
ever feasible and allowable under the statutes, designed 
to eliminate unnecessary duplication of records and 
effort amongst these agencies and departments. 

Harris County records show that in 1966 the average 
time from indictment to trial was 18 months. Today the 
average is down to six months due to the diligent efforts 
of the County officials. U. S. Chief Justice Warren E. 
Burger, however, has urged that all criminal cases be 
brought to trial within 60 days of arrest. 

ORGANIZATION AND DESIGN 

The Harris County Subject-in-Process Records 
System was designed to eliminate the necessity of 
looking for information manually. Naturally, there are 
many manually processed legal documents. The com
puter system may, however, maintain copies of per-

AUDITOR JUSTICE OF THE 
PEACE COURTS 

cQ cQ 

~~\/ ~ 
'"'"'' / IN 
PROCESS 

.A ~ COMPUTER ~ "-
~ V--,--SYST-----,'" ---. ~ cCl 

Q.). / 

c=CJ 
DISTRICT 

CLERK 
DISTRICT 

ATTORNEY 

Figure 1-System interface 

SHERIFF 



tinent facts from each document and thereby provide 
instant response to many questions concerning criminal 
cases. 

As a subject progresses from one step in the judicial 
process to the next, information regarding this progress 
is recorded in the computer system. 

Figure 1 is a graphical representation showing which 
County departments interface with the System. The 
number depicted in each box indicates the number of 
terminals assigned to each department. 

The Subject-in-Process Records System consists of 
teleprocessing and batch processing functions built 
around a nucleus of files serving as the System's data 
base. The System Organization flowchart shown in 
Figure 2 illustrates the system.2 The various files and 
queues are shown in the center with the teleprocessing 
functions to the left and the batch processing functions 
to the right. 

The three basic data files are the Case History File, 
Name and Identification Number File, and the Calendar 
File. These files are similar to those of the Basic Courts 
System3 (BCS) files, but several additions and 
modifications have been incorporated. The basic files 
are separated into active and inactive files to augment 
the on-line and batch oriented functions. 

Figure 2-System organization 

Automated Court Systems 311 

The remote terminal user has available to him nine 
basic teleprocessing functions. These consist of Remote 
Batch Input (RBI), Batch Output Reporting (REP) 
and seven on-line functions (CAS, NAM, NUM, 
ANM, PER, JAC and CAL) which aid the user in the 
interrogating, retrieving and updating of the basic data 
files via the remote terminals. 

RBI allows for the input of batch data via the remote 
terminals by placing the input in a queue to be processed 
by the Batch Input Subsystem. REP allows the user 
to request batch output from the remote terminals by 
placing the requests on a queue to be processed by the 
Batch Output Subsystem. The seven on-line functions 
yield terminal displays to the terminal inquiries and are 
briefly described below: 

CAS: allows the user to search, retrieve and update 
the Case History File, and to display all 
associated transaction records at the terminal 

N AM: allows the user to search, retrieve and update 
the Name File and to display the desired 
records at the terminal 

NUM: allows the user to search, retrieve and update 
the Identification N umber File and to 
display the desired records at the terminal 

ANM: allows the user to display all available 
identification numbers associated with a 
defendant to a case 

PER: allows the user to display all available 
personal descriptor information associated 
with a defendant 

JAC: allows the user to display the arrest/con
viction history of a defendant 

CAL: allows the user to search, retrieve and update 
the Calendar File and to display the docket 
of a court 

These teleprocessing functions are written in 
FASTER-LC4 and are incorporated into the system to 
augment the facility available to the user. 

All terminal inquiries are logged on the Log File to 
provide system backup. In the event of a system failure, 
all transactions can be reconstructed and the integrity 
of the basic data files insured. The Log File also pro
vides a data base for the analysis of user requests and 
overall terminal usage. 

Batch Processing 

The batch processing functions are divided into the 
Batch Input and Batch Output Subsystems. These 
subsystems are designed to interact with the queues 
built in the on-line mode and the basic data files. These 



312 Fall Joint Computer Conference, 1971 

RUN DATE 01-23-70 

HARRIS COUNTY 
COMPLAINT INDEX - MONTH TO DATE 

JANUARY 22. 1970 PAGE 33 

NUJ!IIER DEFENDANT'S NAME OFFENSE CODE OFFENSE DESCRIPTION 

2100-02 WASHINGTON SADIE 2501 FORGERY OF CHECKS 

2352-01 WATTS CHARLES R 3562 MARIJUANA - POSSESSING 

2260-01 WEST JAMES M 2270 BURG & THEFT 

2362-01 WHITE ROBERT 230b THEFT BY BAILEE 

Figure 3-Complaint index 

subsystems provide for the input of data to the files and 
the output of pre-defined system reports. 

The Batch Input Monitor is a subsystem consisting 
of ANS COBOL programs which take the batch and 
remote batch input data and update the basic data 
files. This subsystem performs the necessary editing 
and formatting of the various data records and supplies 
diagnostic messages when appropriate. 

The Batch Output Monitor is a subsystem con
sisting of ANS COBOL programs which queue the 
system requests for generating reports on pre-estab
lished frequencies. This subsystem also analyzes all 
system generated and user generated requests for batch 
output, eliminates duplication, establishes priorities 
and invokes the various batch output programs which 
produce the system reports. 

The capabilities of the System include the ability to 
produce numerous printed reports at predetermined 
intervals or upon request. These reports include indexes, 
case histories, and summary reports. 

The Complaint Index shown in Figure 3 is a list of 
all felony complaints which have been submitted to the 
Grand Jury. The index contains the defendant's name, 
a unique sequence number, the co-defendant suffix (a 
two-digit number used to identify defendants when 
there are more than one to a case) , the offense code and 
the offense description. The Complaint Index is sorted 

HARRIS COUNTY 
FELONY INDEX - MONTH TO DATE 

RUN DATE 10-26-70 OCTOBER 25. 1970 PAGE 92 

CASE JUDGEMENT-RECORDS CASE 
NUMBER DEFENDANT'S NAME VOLUME PAGE DISPOSITION 

310154-02 ALLEN JOHN B 312 / 006 GUILTY 

308916-01 BOND JAMESON L 

309985-01 SMITH JOHN 310 / 125 NOT-GUILTY 

310225-03 WILLIAM WILLIAM W 311 / 205 NO BILLED 

Figure 4-Felony index 

HARRIS COUNTY 
CASES' PENDING THE GRAND JURY INDEX 

RUN DATE 12-18-70 WEEK ENDING 12-18-70 PAGE 16 

COMPIAINT DATE J P COURT 
NUMBER FILED DEFENDANT I S NAME PREC POS OFFENSE DESCRIPTION 

14296-01 WASHINGTON SADIE 2501 FORGERY OF CHECKS 

15113-02 08-10-70 WATTS CHARLES R 1 0 3562 MARIJUANA - POSSESSING 

14184-01 WEST JAMES M 1 1 2270 BURG & THEFT 

24780-01 WHITE ROBERT 2300 THEFT BY BAILEE 

TOTAL CASES PENDING THE GRAND JURy 4 ... 
TOTAL CASES PENDING OVER 90 DAYS 1 ... 

Figure 5-Grand jury index 

and printed by defendant name and by the sequence 
number. 

The Felony Index and the Misdemeanor Index are 
similar and contain the case number, co-defendant 
suffix, defendant's name, the volume and page of the 
judgment records and the case disposition. The indexes 
are printed in defendant name order. A sample is shown 
in Figure 4. 

The Cases Pending the Grand Jury Index, see Figure 
5, is an alphabetical list of all defendants of felony 
cases which have been bound over to the Grand Jury 
but have not been indicted or no-billed. The index 
contains the defendant's name, the complaint number 
with co-defendant suffix, the Justice of the Peace 
Court, and the offense. In addition, cases which have 
been pending the Grand Jury for 90 days or more are 
flagged by listing the date the case was filed in the 
Justice of the Peace Court. 

The Cases Pending the District Courts Index and 
the Cases Pending the County Courts at Law Index 
consist of a list of cases which have been assigned to a 
County Court at Law or District Court, but are 
pending final disposition. The indexes are sorted in two 
major ways: by case number, and by ready status. A 
sample is shown in Figure 6. 

The Case History Registers consist of chronological 
listings of all transactions concerning each case from 
the time the case number is issued until the case has 
been disposed of. A sample is shown in Figure 7. 

PUBLIC JOHN Q 

HARRlSCOUNTY 
FELONY CASES PENDING STATUS IND£X 

WEEKENDING 12-04-70 

... TOTALFELQNY CASES PENDIHG -4 .... 

Figure 6-District courts index 



Teleprocessing 

The System has the ability to display system in
formation on remote terminal CRTs. As indicated 
earlier in Figure 2, which describes the organization of 
the data files, the system provides for the following 
terminal displays: 

• NAME INDEX INQUIRY-NAM 
• PERSONAL DESCRIPTOR INQUIRY-PER 
• JAIL ARREST CONVICTION INQUIRY

JAC 
• COURT CALENDAR INDEX INQUIRY

CAL 
• IDENTIFYING NUMBER INDEX 

INQUIRY-NUM 

• ASSOCIATED NUMBER INDEX 
INQUIRY-ANM 

• CASE HISTORY REGISTER INQUIRY
CAS 

The Name Index Inquiry, shown in detail in Figure 8, 
is a display which allows the user to identify information 
pertaining to persons . involved in the judicial process. 
By supplying the System with the name of a person, 
the System responds by displaying all cases involving 
the person. 

This inquiry capability is used to find the case 
number when only the name is known. The Name 
Index contains the names of all persons associated with 
complaints, misdemeanors, and felonies. That is, it 
contains the names of defendants, defense attorneys, 
prosecuting attorneys, witnesses, bondsmen, etc. 

The Personal Descriptor Inquiry is used to answer 
requests for more identifying information about a 
defendant. Upon entering the defendant's name, the 

14687-01 BROWN HOLLY A 

HARRIS COUNTY 
FELONY CASE HISTORY REGISTER 

WEEK ENDING 02-18-70 

T R -A N SAC T I 0 fo,' MINUTES C BAIL BOND 
TYPE DATE VOL/PAG T 

~:~~~~ ~~:~~::: 001/213 IS3 560 

CAPIAS RET 12-29-69 
DISPOSITION 02-06-69 005/131 

INDICTMENT 12-24-69 001/213 119 1000 
CAPIASISS 12-24-69 

NONEXECUTABLE 
DEATH OF DEFENDANT 

-cAPIASRET 12-27-69 PLACED IN JAIL 
BOND MADE 12-30-69 lOaD APPEARANCE BOND _ ALLSTATE s.:>~t' C~ 
HEARING 01-05-10 FOUND SANE AT TIME OF TRIAL 
PLEADING 01-79-70 PLEA OF NOT GL'ILT'i 
JURYREQ 01-29-70 
DISPOSITION 02-UI-70 069/S15 DECISION _ GUILTY BY.Jt""Y 

• PRISON - LIFE 

INDICTMENT 12-1-1-70001/82418"3 SOD 
CAPIAS ISS 12-17-10 

Figure 7 -Case history register 

Automated Court Systems 313 

Input: 

~ NAM, Smith, John, B. 

Response: 

... NMN 
I N 0 E X 

JOOO LAST NAME M TI CON C CASE MS CT ENTITLEMENT 5 FIL-DATE 

J010 SMITH 
B SR OEF 2 003945601 010 5 v SMITH 

J010 SMITH 
B SR OEF 3 003816801 176 S V SMITH 

06-29-70 

05-18-70 
J010 SMITH 8 SR WIT 2 004137403 040 IMP THOMPKINS 09-23-70 

Figure 8-Name index inquiry 

following information is provided: 

Place of Birth 
Date of Birth 
Height 
Weight 
Hair Color 
Ethnic Features 
Sex 

The Jail Arrest Conviction Inquiry provides a display 

Input: 

~ CAL,08-24-70,176 

Response: 

~SMN CALENDAR 

ROOO CAL-DATE CNC TIME LOC 

ROID 08-24-70 176 10:00 CR31 

CASE MS.PEAS PARTIES-DESCRIP_TIN EST ACT DISP FUT-DATE FCC 

5010 3 003456-9D1 SENT MICHAEL SMITH 

003513201 TRY JOHN A. ooE 

003483601 SENT JOHN Q. PUBLIC 

Figure 9-Court calendar index inquiry 



314 Fall Joint Computer Conference, 1971 

Input: 

~ CAS, 3,176-0028346-01 

Response: 

~CMN CASE HISTORY 

MS CT ENTITLEMENT DCPS NEXT-APPEAR FIL-DATE CODE LAST-CHG PF 

002834601 176 S V DOE B NN 11-15-70 08-26-70 2501 10-26-70 

BODO TRANSACTION -DATE- VOL/PAG IDENTIFIER VALUE 

BOlO OFFENSE 082670 FORGERY OF CHECKS 

B030 COMPLAINT 082670 123/303 09-13-70 $ 10000 004-0163104-01 

B070 BOND MADE 082870 S 10000 

8130 INDICTMENT 102370 $ 10000 176-0028346-01 

DODO PRINCIPL JUDGMNT TRIAL DIS-ATT SHERIFF CLERK JURY LAW-LIB 

DOlO 100.00 15.00 

Figure lO-Case history register inquiry 

of all known arrest and conviction information con
cerning a particular defendant. This information may 
be used by the District Attorney's Office to prepare 
the prosecution and by the Sheriff's Office for criminal 
investigation purposes. 

The Court Calendar Index Inquiry shown in Figure 
9, allows the user to display the cases scheduled for a 
particular day in a particular court. 

The Identifying Number Index Inquiry allows the 
user to identify a person and the cases that person is 
associated with by entering anyone of several iden
tifying numbers. The following identification numbers 
may be used: 

Complaint Number 
Sheriff' s Number 
Texas Department of Public Safety Number 
FBI Number 
Social Security Number 
Operator License Number 
Arresting Agency Number 
Law Enforcement Number 
Grand Jury Records Section Number 

This index allows the various agencies of the criminal 
justice process to communicate with the system by 
using their own identification numbers. 

The Associated Number Index Inquiry allows the 
user to display all identification numbers associated 
with a person involved in the judicial process by 
supplying the system with a case number. 

The Case History Register Inquiry shown in Figure 

10 allows the user to display all transactions regarding 
a particular case. 

SECURITY AND PRIVACY 

In every computer system incorporating a large data 
base, security and privacy of information are important 
considerations. This is especially true in the case of a 
criminal records system. Two basic problems exist, 
errors and unauthorized access. 

Errors are a result of mistakes occurring during the 
manual preparation of the input data. Errors on source 
documents, typographical or keypunching errors, and 
inadvertent omission of pertinent data are examples of 
the types of errors which can occur. The input routines 
detect invalid input data (numeric value out of range, 
alphabetic character in a numeric field, unknown code, 
etc.) and all data input via cards is verified by being 
displayed and matched with the source document. As 
data are input, routines also check for inconsistencies in 
data (e.g., a warrant for arrest is shown to be executed 
prior to being issued) . 

The second problem of unauthorized access to the 
data files is particularly critical. The criminal records 
system deals with highly sensitive information. Destruc
tion or modification of this information would severely 
cripple the effective performance of criminal justice. 
Therefore, a considerable amount of effort has been 
made to ensure the integrity of the information con
tained in the criminal records system. 

The criminal records system allows for the updating 
of records from remote terminals. This provides up-to
the-minute information in the files but can be a source 
of problems if unauthorized personnel have access to 
the terminals. Several steps have to be taken to alleviate 
this problem. 

• Each person authorized to update the files is 
assigned an access code which is changed periodi
cally. Without the code, modification of or addi
tions to the files cannot occur. Furthermore, the 
access codes are valid only for a particular terminal. 

• Certain terminals are designated as display 
terminals only and allow no modifications or 
additions to occur. In addition, those terminals 
which are allowed to make modifications or 
additions may be restricted to use only during 
those periods of the day when authorized persons 
are on duty. 

• The system also provides file protection by 
terminals. Thus a particular terminal may be able 
to modify or add a record in the Name File but not 
in the Case or Calendar File. 



• The system also has the ability to restrict the trans
actions allowed on a given terminal. Thus a particu
lar terminal may be able to make an inquiry that 
is not allowed by some other terminal. This allows 
controls, via software, to be placed on the use of 
any terminal. 

Periodically the information is transferred from disk 
storage to magnetic tape. Two copies of the files are 
made. One is stored locally and is used to recreate the 
files in the event of inadvertent (hardware malfunction) 
or deliberate destruction of the files currently recorded 
on disk storage. The other copy is kept at a remote 
location as protection against the destruction of both 
the files on disk storage and the magnetic tape copy. 

While the above mentioned capabilities provide a 
means of protection, the ultimate success depends on the 
people involved and the extent to which the operating 
procedures are followed. 

CONCLUSION 

It should be noted that while this System was tailored 
specifically for Harris County, Texas, the concepts and 
design, if not some of the programs themselves, could 
be successfully applied to many other counties in Texas 
and throughout the country. 

The System was designed with several important 
growth features in mind. Some of the possible additional 
capabilities being considered are simulation models 
which take advantage of the statistical information 
now available, a complete bookkeeping system for the 
Adult Probation Department to keep track of fines, 
supervisory fees and restitution payments, a complete 
jail record system from keeping track of personal 
effects and making cell assignments to computerized 
search capability of fingerprints and mugshots, and 
automated recording procedures for the Juvenile 
Probation Office. 

The benefits of the Harris County Subject-in-Process 

Automated Court Systems 315 

Records System are numerous. One of the primary 
benefits however, is the ability to obtain instantaneous 
response to a variety of questions concerning a case or 
a defendant. In the past, an inquirer was often trans
ferred from one office to another as each office searched 
but failed to find the requested information. 

Another benefit of primary importance is the System's 
ability to monitor the progress of each case and periodi
cally report required actions. These action reports 
include lists of persons being held for no apparent 
reasons, cases that are ready for trial but have not been 
calendared and persons whose probation periods have 
elapsed but have not been officially terminated. 

In addition to providing answers to questions and 
monitoring case progress, the System also provides 
numerous/ written reports which assist the criminal 
justice officials in preparing a case for trial, scheduling 
each event of the trial, and preparing local and state 
statistical reports. 

Another result of the computerized system is the 
ability to use the information to produce various 
statistical reports to aid in evaluating administrative 
procedures and to test hypothetical changes in these 
procedures. Additionally, quick access to accurate case 
load information is extremely useful for budget planning 
and evaluating future manpower and facility require
ments. 

All of these benefits aid significantly in reducing the 
time it takes to process a case. 

REFERENCES 

1 The User' s Manual 
Harris County subject-in-process records system 
Symbiotics International Inc 1971 

2 Design Specifications 
Harris County subject-in-process records system 
Symbiotics International Inc 1971 

3 Basic courts system (BCS) 
IBM form No GH20-0888 IBM Corp 

4 Faster-LC 
IBM form No SH20-0863 IBM Corp 





Delphi and its potential impact on information systems 

by MURRAY TUROFF 

Office of Emergency Preparedness, Executive Offices of the President 
Washington, D. C. 

THE DELPHI METHODl,2 

The Delphi method is basically defined as a method 
for the systematic solicitation and collation of informed 
judgments on a particular topic. The concept of "in
formed" here could mean poor people, if the subject 
were poverty, as well as the usual interpretation of 
"experts." The method has two important character
istics which distinguish it considerably from a polling 
procedure. The first is feedback, where the judgments 
of the individuals are collected, possibly formulated as 
a group response and fed back. Thus, each individual 
may view the results and consider whether he wishes 
to contribute more to the information and/or reconsider 
his earlier views. This round or phase structure may 
go through three to five iterations in the usual paper 
and pencil exercise. The second characteristic is that 
all responses are anonymous. The reasons for anonymity 
are much discussed in the literature and will not be 
reviewed here. However, there are circumstances where 
complete anonymity could be relaxed. In some cases it 
may be useful for the respondents to know who is 
participating in order to insure awareness that a peer 
group is involved in the discussion. Also, when a highly 
specialized subtopic enters the discussion it may be 
appropriate to permit an expert to endorse an item. 

The primary objective of the Delphi process, as set 
forth in this paper, is the establishment ofa "meaning
ful" group communication structure. If this view is ac
cepted as correct, then the question of whether or not 
a Delphi exercise will produce "truth" is not a relevant 
one. The real issue, given the context of a particular 
problem, is what communication process or combination 
of processes will be most effective in terms of the 
resources available to examine the problem. 

There appear to be five situations where the Delphi 
method clearly has an advantage over other alterna
tives: 

• Where the individuals needed to contribute knowl
edge to the examination of a complex problem have 

317 

no history of adequate communication and the 
communication process must be structured to in
sure understanding; 

• Where the problem is so broad that more indi
viduals are needed than can meaningfully interact 
in a face-to-face exchange. 

• Where disagreements among individuals are so 
severe that the communication process must be 
refereed. 

• Where time is scarce for the individuals involved 
and/or geographical distances are large, thereby 
inhibiting frequent group meetings. 

• Where a. supplemental group communication pro
cess would be conducive to increasing the efficiency 
of the face-to-face meeting. 

In order to emphasize the view that the Delphi is a 
communication process, Table I directly compares the 
properties of normal group communication modes and 
the non-automated and automated Delphi processes. 
The major differences lie in such areas as the ability of 
participants in a Delphi to interact with the group at 
their own convenience (i.e., random as opposed to 
co-incident), the ability to handle large groups, and the 
ability to structure the communication. With respect to 
time considerations, there is a certain degree of simi
larity between a Committee and a Delphi exercise since 
delays between meetings and rounds are unavoidable. 
Also, the Delphi Conference3- s may be viewed con
ceptually as a random (occurring) conference call with 
a written record automatically produced. It is inter
esting to observe that within the context of the normal 
operation of these communication modes in the typical 
organization, governmental or industrial, the Delphi 

, process appears to provide the individual with the 
greatest degree of individuality or freedom from re
strictions on his expressions. 

While the Table breaks down these systems sepa
rately, there is no reason why the examination of a 
particular problem would not be best served by a 
combination of these techniques. For example, a Delphi 



318 Fall Joint Computer Conference, 1971 

TABLE I-Group Communication Techniques 

Conference 
Telephone Call Committee Meeting 

Effective Group Small Small to Medium 
Size 

Occurrence of Coincident with Coincident with 
Interaction by Group Group 
Individual 

Length of Short Medium to Long 
Interaction 

Number of Multiple, as Multiple, necessary 
Interactions required by group time delays 

between 

Normal Mode Equality to Equality to 
Range Chairman Control Chairman Control 

(Flexible) (Flexible) 

Principle Costs Communications -Travel 
-Individuals time 

Time·Urgent Forced Delays 
Considerations 

Other Character- -Equal flow of information to and from 
istics all 

-Can maximize psychological effects 

Conference may be used between committee meetings 
to arrive at an agenda and expose the areas of agreement 
and disagreement. This, in turn, would improve the 
efficiency of time spent in the actual committee meeting 
by focusing the discussion on those areas requiring 
review. In some instances this would also improve the 
efficiency of staff work before the meeting. 

Usually a Delphi communication process, whether it 
be an exercise or conference undergoes four distinct 
phases. The first phase is usually characterized by 
exploration of the subject under discussion wherein 
each individual contributes additional information he 
feels is pertinent to the issue. The second phase usually 
involves the process of reaching an understanding of 
how the group views the issue (i.e., where they agree 
or disagree and what they mean by relative terms such 
as importance, desirability or feasibility). If there is 
significant disagreement, then that disagreement is ex
plored in the next phase to bring out underlying reasons 

Formal Conference 
or Seminar Delphi Exercise Delphi Conference 

Small to Large Small to Large Small to Large 

Coincident with Random Random 
Group 

Long Short to Medium Short 

Single Multiple, necessary Multiple, as 
time delays required by 
between individual 

Presentation Equality to Equality to 
(Directed) Monitor Control Monitor Control 

(Structured) or Group Control 
and no Monitor 
(Structured) 

-Travel -Monitortime -Communications 
-Individuals time -Clerical -Computer Usage 
-Fees -Secretarial 

Forced Delays Time Urgent 
Considerations 

-Efficient Flow of -Equal flow of information to and from all 
Information -Can minimize psychological effects 
from few to many -Can minimize time demanded of re-

spondents or conferees 

for the differences and possibly to evaluate them. The 
last phase, a final evaluation, occurs when all previously 
gathered information has been initially evaluated and 
evaluations have been fed back for consideration. 

The Delphi technique may be considered to have 
roots in the jury system and is, perhaps unfortunately, 
a rather simple idea. Because of this, many individuals 
have conducted one Delphi and only a few have gone 
on to do more than one. The process of designing a 
workable communication structure for a particular 
problem currently appears to be more an art than a 
science. However, a number of general reasons for 
failures have come to light from these less successful 
attempts: 

• Utilizing a blank sheet of paper on the first round 
or phase and thereby implying that the respondents 
should waste their time in educating the design 
and monitor team; 



• Poor techniques of summarizing and presenting 
the group response and insuring common interpre
tations of the evaluation scales utilized in the 
exercise; 

• Ignoring and ot exploring disagreements so that 
discouraged dissenters drop out and an artificial 
consensus is generated; 

• Ignoring the fact that respondents to a Delphi are 
acting in a consultant mode in what may be a 
demanding exercise and should therefore be in
volved as a part of their normal job function or 
should receive normal consulting fees for partici
pation. 

The use of the Delphi process appears to have in
creased at an exponential rate over the past five years 
and on the surface seems incompatible with the limited 
amount of controlled experimentation that has taken 
place on the methodology itself. It is, however, meeting 
a demand for improved communications among larger 
and/ or geographically dispersed groups which cannot 
be satisfied by other available techniques. It also serves 
the decision maker who wishes to seek out the potential 
secondary effects of a decision or policy which may 
involve a more diverse group of experts than is normally 
available. Also, technologists have become increasingly 
concerned that attempts to evaluate cost-benefit aspects 
through mathematical models often eliminate signifi
cant technical factors which they may feel are crucial 
criteria for the making of a decision. The Delphi 
process can, in this context, be viewed as an attempt 
to put human judgment, in terms of a group judgment 
by experts, on a par with a page of computer output. 
This is an unfortunate justification for the Delphi 
process, . but from a pragmatic point of view it is a 
valid one in terms of decision processes in some organi
zations. 

It can be expected that the use of Delphi will continue 
to grow. From this one can observe that a body of 
knowledge is developing on how to structure the human 
communication process for particular types or classes 
of problems. The abuse, as well as the use, of the 
technique is contributing to the development of this 
design methodology. It would seem obvious that any 
communication structure that employs pencil, paper, 
and the mails can, in principle, be duplicated in a real 
time mode on an interactive terminal-oriented com
puter-communication system. When this is done the 
resulting product is a continuous group communication 
process which eliminates some of the disadvantages in 
the paper and pencil type Delphi while retaining most 
advantages. It is the contention of this author that 
those in the computer field should begin to actively 
plagiarize the techniques of the Delphi design area for 

Delphi 319 

building on-line conferencing systems tailored to various 
problem applications. The remainder of this paper at
tempts to support this assertion. 

EXAMPLES* 

In examining applications.of the Delphi, one observes 
that the vast majority deal with forecasting the future. 
Because of this, many individuals associate the Delphi 
process solely with forecasting. However, in examining 
other Delphi exercises, one finds that they span a 
surprising diversity of applications : 

• Examining the significance of historical events 
• Gathering current and historical data 
• Putting together the structure of a model 
• Delineating the pros and cons associated with po

tential decision or policy options 
• Developing causal relationships in complex eco

nomic or social phenomena 
• Clarifying human interactions through role play

ing concepts. 

If one adopts the view of Delphi as a communication 
tool, then this exhibited diversity of application is not 
surprising. A group communication process can, in 
theory, be applied to any problem area. The following 
will discuss some of these previous applications and 
indicate where they may lead in the future. 

Dr. Williams of Johns Hopkins University has utilized 
the Delphi to obtain estimates of current rates of 
disease incidence' and the success rate of various al
ternative treatments. Since hospital reports may reflect 
local reporting standards, there is considerable uncer
tainty associated with the data that is available. This 
phenomenon also occurs in other areas such as crime 
statistics. In applications of this sort, individuals are 
asked to supply low and high values as well as an 
explicit estimate. This type of exercise then proceeds in 
very much the form of a forecasting Delphi, although it 
deals with current data. 

There are a surprising number of Delphi designers in 
the medical research and health care areas, some of 
these are Dr. A. Sheldon at Harvard, Dr.A. Bender 
at Smith Kline French, Dr. D. Gustafson at the Uni
versity of Wisconsin, and Dr. G. Sideris, American 
Surgical Association. 

A Recent Delphi on the Steel Industry7 by the 
National Materials Advisory Board of the National 
Research Council also attempted to gather estimates on 

* See Reference 1 for explicit references to the examples 
mentioned. 



320 Fall Joint Computer Conference, 1971 

the quantity of material flowillg in and out of various 
processing segments of the industry. In such a case, 
even when a parameter is published it may only repre
sent a percent of the industry. This percent factor may 
be only approximately known. 

A proprietary Delphi was done which dealt only 
with historical events affecting the subject of the "Limi
tation or Elimination of Internal-Combustion Vehicles." 
Some eighty-two events were compiled by the respon
dent group and evaluated for explicit significance and 
"factors to watch" as a result of the events. The events 
were technological, economical, social, and political. 
The resulting summary arranging the events chrono
logically represented an excellent review and conden
sation for management. This same concept could easily 
be applied to a professional area and the computer 
field is perhaps overdue for a careful review of the 
literature. For example, it is doubtful that anyone in 
the field can claim he has read all that has been written 
on Management Information Systems. Probably all 
would agree, however, that the signal to noise ratio is 
small. It would be interesting to see the list of significant 
papers drawn up by a group of experts, and to discover 
how they would identify papers representing follow-on 
work to earlier papers and further developments that 
may occur as indicated by a particular paper. One 
added benefit of the Delphi is that an expert need not 
feel embarrassed to propose or argue for his own papers 
as significant. It is not clear, of course, that the group 
would always vote to include a suggested paper. 

The concept of utilizing Delphi to examine history is 
a simple but powerful concept. Most organizations do 
not really do a good job on evaluating past performance 
and this often defeats the purpose of their planning 
efforts. The author hopes more applications of this 
type will be forthcoming. 

Mr. S. Scheele of the SET, Inc. designed and executed 
a fascinating Delphi on the Role of Mentally Retarded 
in Society. Since he was dealing with a non-quanti
tatively oriented group, he relied very heavily on pic
torial models which the individuals could fill in in order 
to represent human and societal interactions. Also in
heren t in the design were role playing concepts and a 
requirement for the respondents in answering different 
questions to assume different roles. This same concept 
applies to obtaining answers from individuals in po~ 
litical or public position where one would wish to ask 
for the individual's true view on an issue and the view 
he would espouse if required to take a public position. 

The role playing concept in the Delphi has impli
cations for an organization in the sense that most 
budget allocation procedures may be viewed as a form 
of polling where each manager submits his requests to 
a central source. When budget cuts must be made, 

there is a great deal of competition among the divisional 
groups, often resulting in antagonism and a complete 
breakdown of lateral cooperation and communication. 
The budget process could be "carefully" recast in a 
Delphi mode and each manager asked to assume the 
roles of other managers and to attempt justification of 
budget segments other than his own. This could lead 
to more understanding of the final allocation for all 
concerned and correspondingly less antagonism. The 
validity of the above general suggestion is, however, 
extremely dependent upon the particular organization 
and details of the environment, operation, and makeup. 

Norman Dalkey's "Quality of Life" Delphi is a 
classic simple example of utilizing a Delphi to obtain 
subjective evaluations which could not be gained by 
any analytic method. Here the respondents were asked 
to itemize and define a set of variables which comprised 
the Quality of Life and were measurable in at least an 
empirical sense. The feedback mechanism was necessary 
to arrive at mutually understandable definitions and 
the anonymity was desirable to avoid the embarrass
ment of individuals who might rate factors such as 
"aggression" higher. than the group as a whole. The 
same type of Delphi was conducted on a group of 
corporate executives to determine if their ranking of 
the Quality of Life variables corresponded to the 
corporation executive benefit program. 

Many individuals have a mistaken impression that 
consensus is a goal of all Delphi Exercises. When ex
ploring policy or decision issues, the goal may be to 
develop the strongest set of pros· and cons concerning 
a given issue. In a sense then, some policy Delphis seek 
to at least explore disagreement if not to directly foster 
it through the makeup of the respondent group. Even 
if a decision maker has reached a view on an issue, it 
may be of interest to him to seek out the opposing 
view to be forewarned of difficulties he may encounter 
when his decision is made public. The discovery of a 
consensus among opposing advocates on underlying 
issues or compromise positions may make the exercise 
doubly useful but may not be the primary goal. 

In the steel Delphi mentioned earlier, the respondents 
were given a flow model diagram of steel processing 
which was intended to collect data on the flow of 
material in each path. The initial model was put to
gether by an expert. However, many of the respondents 
to the exercise decided that the diagram was not suffi
cient to express what they felt were significant con
nections. As a result of the uninvited modification of 
the model,the diagram obtained after two Delphi 
rounds was considerably more detailed and realistic. 
This leads to the proposition that Delphi can be utilized 
to build model structures for complex processes. The 
difficulty with some of the plans for designing computer 



graphic systems for group engineering design efforts is 
that the computer people often forget that the concept 
can be first tried with pencil and paper on a real-life 
problem to see if a workable communication structure 
would result. If it succeeds in a Delphi Exercise mode 
then there is a higher probability of success in the 
automated version. In many ways, the Delphi activity 
as it occurs today is conducting a significant experimen
tation program for the field of computer sciences. This 
fact appears to have, thus far, escaped the notice of 
most computer personnel. The general concept of pre
testing an information system design by paper and 
pencil exercise before it is frozen in the concrete of our 
"flexible" computer system deserves more attention 
than it has received. 

One very significant aspect of the Delphi area has 
been the design of attempts to discover views on causal 
relationships underlying complex physical, social, and/or 
economic systems. While many design techniques have 
been tested, one in particular has gained wide use 
because of the ease with which even non-quantitatively 
oriented individuals can supply answers. This com
munication format is generally referred to as "Cross 
Impact"8 and involves a matrix formulation of causal 
effects where the user is asked to supply either prob
abilities, odds, or weights depending on the particulars 
of the formalism. While the approach is easy to use, 
the analysis of the results is less clear because one is 
asking only for a small, but feasible portion of the 
information required to rigorously specify the problem 
and therefore consistency checks can only be approxi
mations. At least four different methods of analysis are 
currently being used. An important difference for some 
of these approaches is the ease with which the method 
can be incorporated into an interactive mode on a 
computer system. In experiments the author has con
ducted with a method of treatment suited for a com
puter, one finds that a non-programming user, by 
supplying answers to a cross impact form, can in effect 
build his own model of the future which he can then 
subject to perturbations to see the effects of alternative 
decisions or policy. This becomes very useful as an aid 
to the thinking through of a complex situation. The 
interactive feature is extremely important in allowing 
an individual to modify his initial estimates until he 
feels he has obtained consistency between these and the 
inferences provided by the analytic treatment. Once a 
user is satisfied with the estimates obtained in this one
person game mode, they may be applied automatically 
to the formation of a group estimate and may allow 
individuals to see the differences in judgment that may 
occur for both the magnitude and the direction of the 
causal effects. This process quickly focuses the group's 
attention on areas of either disagreement or uncertainty 

Delphi 321 

which then may be discussed in a committee process or 
a general discussion-oriented Delphi. 

The particular utility of the cross impact formalism 
in a planning environment will become evident in the 
next section. 

In terms of the author's knowledge alone, there are 
at least thirty distinctive Delphi designs which have 
been successfully applied to particular problem areas. 
Each one of these is a potential candidate for auto
mation on a terminal-oriented computer system in order 
to implement a real time conference system. While many 
of these require graphical input, a sizable number can 
be implemented utilizing the common teletype terminal. 
When the computer is introduced we also introduce the 
ability to provide for the Delphi respondent both ana
lytical tools and selective data bases which he may 
utilize to sharpen his jUdgments before they are con
tributed to the group response. 

A significant observable effect of a computerized con
ference system is the group pressure to restrict discus
sion to the meat of the issue. Verbose statements always 
tend to receive low acceptance votes and individuals 
quickly learn, because of this, to sharpen their position 
if they wish to make a point. 

Putting all these factors together with the real time 
nature of such a system, we can begin to visual the 
results as approaching something that might be ter
mined a "collective human intelligence" capability. In 
terms of the current state of the art in the computer 
field there may be a great deal more pay-off in easing 
the ability of humans to contribute the intelligence to 
the computer than in attempting to get the computer 
to simulate intelligence. 

INFORMATION SYSTEMS 

In most organizations today, the individuals or groups 
involved in forecasting and/or planning* usually exhibit 
the greatest desire to foster lateral communication. 
This often comes from a realization that uncertainties 
and ancillary considerations must be carefully explored 
if the organization is to avoid problems in the future. 
The desire to seek out the specialists in the organization 
regardless of where they sit, combined with the require
ment to minimize the time they must give up from their 
normal functions, has led to an increasing use of the 
Delphi by the forecasting groups. 

* The exception to this generality occurs when there is a belief 
that planning or forecasting can be reduced to only the considera
tion of dollars and alternative dollar equivalents or investments. 
Perhaps more organizations take this view than is warranted by 
their situation. 



322 Fall Joint Computer Conference, 1971 

STANDARD PROCEDURES. MODElS. DATA MANAGEMENT SYSTEMS 

li.! 
PEOPLE 

-~-

TERMINALS 

t~\ 
AN ADAPTIVE LATERAL MANAGEMENT SYSTEM 

CONTROLLABLE EVENTS 

EVALUATED OPTION 
CONSEQUENCES 

Ffgure 1 

UNCONTROLLABLE EVENTS 

Due to the increasingly complex environment that 
most organizations face today, a similar circumstance 
has developed with respect to day-to-day management 
functions. The need for committee participation is be
ginning to make heavy demands upon the time of many 
managers. While the paper and pencil Delphi process 
has been introduced in some cases to alleviate the situ
ation, it does not always meet the time urgent require
ments associated with some management activities. 
These seems, therefore, to be a rapidly increasing 
interest in implementing more efficient communication 
techniques to deal with complex management problems. 
The automated Delphi or Delphi Conferencing may 
very well be the answer to this problem. In fact, one 
can conceptually layout a highly adaptive Management 
Information System based upon this view. 

Given that the organization has a problem to be 
examined and resolved, the first step is to pinpoint 
the individuals who can contribute to the process inde
pendent of their organizational or geographical location. 
They, as individuals, may contribute via· terminals at 
their convenience to a general discussion conference 
(see Figure 1). 

Requests for information on the potential environ
ment (i.e., those factors not under control of the organi
zation) will emerge from this discussion. These requests 
are shifted to a specialized conference structure which 
may involve only a subset of the general conference 
group and other specialists as needed. The communi
cation structure for this forecasting conference is prob
ably typical of many of the forecasting Delphis already 
in existence. 

Potential program options would also evolve from 
the general discussion conference. These options would 
be shifted to another secondary or specialized conference 
to evaluate questions of resource allocation within the 
organization. This type of conference would possibly 
have various analytical support routines involving 
optimal allocation of resources among combinations of 
program options. 

In both the resource allocation and forecasting con
ferences one would expect uncertainties or disagree
ments to occur which should be fed back to the general 
discussion conference for resolution. The results of these 
efforts would be a set of program options and potential 
environments which may now be played off, one against 
the other, in a conference structured along the lines of 
a 'Cross Impact' exercise. 

In this third conference, additional uncertainties and 
disagreements may arise to be fed back to the general 
discussion conference. It is also possible, if not likely, 
that the results of the cross impact may trigger the 
requirement to introduce new program options or to 
examine a newly introduced aspect of the environment. 
One then views the interaction of these four conference 
structures as a continuous communication and feedback 
structure. 

This basic set of four conferences may be replicated 
for each problem the organization wishes to put through 
this process. Therefore anyone individual may be in
volved in a number of different problems. Also, a par
ticular problem may be perpetual in nature so that the 
activity never stops but different individuals may enter 
and leave the discussion as a need for their particular 
speciality arises and is satisfied. The result of this is a 
highly adaptive and flexible structure for problem solv
ing which the author feels exhibits all the characteristics 
of a Management Information System or what MIS 
should be. 

The underlying premise behind the adoption of such 
a system is that while the organization may have 
elaborate data management systems and simulations 
or models, there are no algorithms allowing the data 
flowing through the normal organization procedure to 
automatically be transformed into a form directly suit
able for addressing management problems as they occur. 
The view here is that individuals provide the best 
available mechanism for discriminating, reorganizing 
and presenting the portion of the data needed for 
problem consideration. 

The problem that appears to exist in many current 
MIS efforts is the view that it is possible to introduce 
automation to the point where the person at the top 
can press a few keys on the terminal and all the perti
nent data in a form appropriate to his problem will be 
retrieved. This is true only to the extent one believes 



that all the problems that will be considered can be 
predefined. 

Most of the current MIS efforts are based upon 
what the philosophy of science people would term a 
'Leibnitzian Inquiring System'9 where the approach is 
to believe that one can construct a model of a physical 
process independent of the data inputs. This view 
underlies the mathematical and physical sciences, and 
the attempt of the soft sciences, including the manage
ment sciences, to emulate this philosophy has perhaps 
created some of the problems in applying work in this 
area to real problems. 

It is of interest to note that any particular Delphi 
design, or communication structure can be characterized 
in terms of one of the Inquiring Systems specified in 
Churchman's writings. However, very few Delphis fall 
into the category of being Leibnitzian since there is 
usually a basic recognition in Delphi structures that the 
problem and data are inseparable. The policy type 
Delphi can, for example, be characterized as a "Hegelian 
Inquirer" which in its extreme assumes that any par
ticular data, through its representation, can be used to 
support contrary positions. Information is considered 
fundamentally, in this view, as a property of the conflict 
between contesting points of view. 

The lateral management system that this paper has 
attempted to describe can be viewed as what has been 
termed a "Singer-Churchmanian Inquirer" where it 
is assumed that "there are a multiplicity of models, 
theories, and inquirers for looking at the world, no 
one of which has absolute priority over the other". 
With this view, one is quickly forced to the position 
that each new problem must be examined within the 
context of the available information and potential 
analysis tools in order to arrive at a treatment. There
fore, we must utilize the only information processor 
which can evaluate* among alternative approaches
humans. 

When one realizes that a majority of the efforts 
associated with trying to apply computer systems to 
the problems facing organizations are based upon a 
Leibnitzian Inquiring philosophy, then one of the little 
known, but crucial dangers associated with computer 
systems becomes clear. Organizations are forced, by 
both accounting requirements and command (i.e., focus
ing of responsibility) requirements, into adopting a 
hierarchical structure. Because the environment con
fronting these organizations has become increasingly 
complex the resulting structure does not often match 
the problems that arise. The usual Leibnitzian reaction 
to this situation is to reorganize so that a new structure 
fitting the problem emerges. Because structures, es-

* In the sense of applying value to the alternative approaches. 

Delphi 323 

pecially if they retain the hierarchical property, are 
fairly rigid, and the· situation today is characterized by 
numerous problems wherein no one structure is common 
to all, these attempts to reorganize do not usually 
accomplish the desired goal. 

Since organizations are made up of at least a subset 
of intelligent human beings, the inadequacies of the 
organizational structure and the resulting established 
communication channels are at least obvious to some. 
The result is a growing lack in maI;ly organizations of 
effective communications about various problems. The 
individual perceiving the situation faces a choice of 
either establishing informal communication channels 
and perhaps suffering consequences for bypassing the 
established modes or suffering in silence and adapting 
a game-playing attitude toward the communication 
process available to him. When this latter attitude is 
characteristic of a large segment of the organization, 
there is no longer an effective human communication 
process and individuals become extremely unresponsive 
to attempts to effectively deal with problems. This is 
further complicated in times of tight budgets where 
there is competition for resources among different seg
ments of the organization. 

Given the above situation in an organization, what 
happens when a computerized Management Infor
mation System designed along Leibnitzian lines is 
introduced? A well designed system of this sort gives 
the illusion of intelligence by being very responsive to 
the individuals communicating with it. Since it is data 
independent it can translate any input data provided 
by the humans into an apparently original output or 
consequence. Psychologists would possibly agree that 
given the alternative of an unresponsive human com
munication process or a responsive man-machine com
munication process most individuals will shift their 
efforts at communication to the machine. We then find 
the computer becoming a surrogate for a repressed 
individual desire for effective communication. In ad
dition, since the Leibnitzian view of the world appears 
invalid for the type of problems confronting most 
organizations, then the introduction of a Management 
Information System based on this concept is a form of 
deception. The result is that the human is still playing 
a game, although with the computer he may be less 
aware the existence of the game than in the process of 
dealing with humans. 

What the author therefore believes to be a real 
danger of computer usage over the long term is the 
ability of these systems to subjugate the desire to 
treat problems associated with human communications 
in organization by providing an image that an effective 
communication process exists. There is the possibility 
of a world ten to twenty years hence where a majority 



324 Fall Joint Computer Conference, 1971 

of the professional populace believes it is performing a 
useful function, but is, in fact, engaged in a game from 
which no tangible benefits result. 

USER REQUIREMENTS FOR CONFERENCINGlO 

The first and paramount requirement is that the 
designer of a conference structure have available a user 
oriented language (i.e., BASIC, JOSS ·APL TINT , , , 
etc.) in which the conference can be programmed. The 
general rule about conferencing systems is that any 
~oup of users will, through experience, have a con
sIderable number of modifications to make. Also, it can 
be expected that a new type of problem may dictate a 
new communication structure. The role of the computer 
specialist should be to provide those features in a user 
language and machine executive which will allow the 
designer the flexibility of programming communication 
structures which may be intertwined with simple or 
complex analytical expressions (i.e., from vote aver
aging to optimization models). The basic system re
quirements are twofold and very similar to those re
quired for on-line simulations involving a group of 
humans: 

(1) 

(2) 

Simultaneous attempts by two or more indi
viduals at separate terminals to write in the 
same file should not cause garbling of the file. 
Errors in input or noise on the line should not 
confuse the user by throwing him out of the 
program and into the compiler or executive 
program. 

There are several ways to meet the requirements. 
Summarized here are the particular features available 
in XBASIC* on the UNIVAC 1108 that allow the 
writing of conferencing systems. 

An XBASIC program can execute a subset of the 
~xecutive .level co.mmands on the 1108. This capability 
IS helpful ill allowillg the program to assign the common 
file exclusively (using the executive command) for a 
short time (less than a second) to the conferee who is 
inputing data at that moment. The program then frees 
the file for any other conferees desiring to write in it. 
This simple feature solves the first requirement. 

In order for the interaction program to do all the 
error checking, a full capability for decoding strings is 
required. Everything (even a number) entered via the 
terminal or via noise on the communication line is read 
as a string and checked for allowed choices. Therefore, 

* Proprietary processor developed by Language and Systems 
Development Inc. 

t~e ability to accomplish string manipUlation and pro
VIde storage of string variables is required. 

Output, especially for non-programmers, must be 
neat. Therefore, format or form control, such as is 
provided in FORTRAN or JOSS, for example, must 
be part of the language. 

A good test of the sufficiency of the string handling 
capabilities in a user language is provided by examining 
the difficulty of writing one of the standard interactive 
text editors in the user language. 

Although the above items are sufficient, a number of 
other features will make things easier or more efficient. 
Many of these are covered in Hall's paper in the 1971 
SJCC proceedings.4 

Many computer professionals appear to have believed 
until now that any user can be placed in one of five 
categories. The user does calculations, or he looks at 
data, or he manipulates strings, or he edits text, or he 
files things away; but he always does just one of these 
things, and the system capabilities are slanted ac
cordingly. All the users I have ever encountered seem 
to do all the above in their daily non-computer chores. 
It is time for user languages to reflect a more realistic 
picture of users and their requirements. 

If computer conferencing is to be a successful oper
ation, the design and modification of conference struc
tures with respect to the dictates of the problem being 
examined must be largely carried out by the users. 
Once a successful structure has evolved, a good systems 
programmer will have a role in making the overall 
operation efficient, provided the system is to receive 
long term use. 

REFERENCES 

1 A more detailed discussion of the Delphi and a comprehen
sive bibliography of this area may be found in The Design 
of a Policy Delphi by Murray Turoff, Journal of Technologi
cal Forecasting and Social Change, Vol. 2, No.2, 1970. 

2 A comparison of Delphi as a planning tool with other 
planning tools may be found in Technological Forecasting 
and Engineering Materials by the Committee on Techno
logical Forecasting of the National Materials Advisory 
Board of the National Research Council, NMAB-279, 
December 1970. 

3 The history of a particular Delphi Conference application 
may be found in Delphi Conferencing (i.e., Computer Based 
Conferencing with Anonymity) by Murray Turoff, Journal 
of Technological Forecasting and Social Change, Vol. 3, 
No.2, 1971 (publisher: American Elsivier). This paper 
contains the complete design of the user interaction. 

4 Details on implementing the above conference system on a 
computer may be found in Implementation of an Interactive 
Conference System by Thomas W. Hall, Proceedings of the 
1971 Spring Joint Computer Conference. 



5 An abbreviated report on this topic may be found in 
Industrial Applications of Technological Forecasting and its 
use in R&D Management, Wiley 1971, edited by M. Cetron 
and C. Ralph. 

6 An explanation of the Delphi Conferencing concept for the 
layman is available in the April 1971 issue of the Futurist 
(magazine of the World Future Society, Washington, 
D. C.). 

7 Two other large recent Delphis (involving 40 to 100 
experts) reviewing the potential future of an industrial 
sector was one on computers by IBM and one on the 
Housing Industry by Selwyn Enzer of the Institute for the 
Futttre. See Some Prospects for Residential Housing by 
1985, IFF report R-13, January 1971. The "Delphi 
Exploration of the Ferroalloy and Steel Industry" should be 
available from NMAB in late 71 and contains a detailed 
history of the effort involved in carrying out a large scale 
Delphi exercise. 

8 For a review of this literature see An Alternative Approach 
to Cross Impact Analyses by Murray Turoff, Submitted to 
the Journal of Technological Forecasting for publication 
early 1972. This paper also illustrates the use of Cross 
Impact in an information system context. 

9 See What is Information? A Philosophical Analysis by 
Jan J. Mitroff, Interdisciplinary Program in Information 
Sciences, University of Pittsburgh (to be published). Also 
the writings on Inquiring Systems by C. West Churchman 
(Internal working papers 28, 29, 45, 46, 49 on Inquiring 
Systems, Space Sciences Lab., University of California 
Berkeley, to be compiled in a book). 

10 The author has discussed some of these issues earlier: 
Immediate Access and the User, Datamation, August 1966 
and Immediate Access and the User Revisiated, Datamation 
May 1969. 

OTHER REFERENCE MATERIAL 

Most of the current literature on Delphi appears in 
the Journal of Technological Forecasting and Social 
Change, Futures, or the Futurist (the magazine of the 
World Future Society). The World Future Society also 
runs a supplemental bulletin in which on-going work is 
reported usually long before publication. 

The Institute for the Future is doing continuing 
work on applying the Delphi to fairly complex problems. 
Their reports and working papers should be of con
siderable interest to anyone planning to utilize the 
technique on a large scale problem. 

Norman Dalkey at RAND has been carrying on a 
continuing series of experiments on the methodology 
and many of his recent papers are mandatory reading 
for potential practitioners. 

The following items are meant to augment the ex
tensive bibliography already available in the paper: 
The Design of a Policy Delphi. 

A recent OEO report discusses the role of Delphi 
Conferencing as a component of an "Executive Infor-

Delphi 325 

mati on System", for the Governor of Wisconsin: 

• GENIE (Government Executives Normative Infor-
mation Expediter) by D. Sam Scheele*, Vincient 
De Sante and Edward Glasser, March 1971. 

A version of the Delphi Conferencing System has 
been implemented in TRAC on the PDP-10 by Claude 
Kagan of Western Electric Research, Princeton, N.J .. 

The proceedings of the First General Assembly of 
the World Future Society (held in May of 1971 In 

Washington, D.C., and to be published late 1971 or 
early 1972) contain two papers of interest: 

• On the Design of Inquiring System-A Guide to 
Information Systems of the Future by Ian I. Mitroff. 

• Three-Hundred and Seventy-Third Meeting of the 
Council on Social and Economic Cybernetic Stability 
in the Year 2011 by Murray Turoff. 

The first provides a review and literature guide to 
the concept of "Inquiring Systems" and the second is 
a forecasting scenario which carries some current ten
dencies in the computer field to their dangerous, but 
perhaps logical, extreme. 

Prof. Mitroff also has a paper in Vol. 17, No. 10, 
June 1971 issue of Management Science which deals 
with a particular application of a Hegelian Inquirer: 

• A Communication Model of Dialectal Inquiring 
Systems-A Strategy for Strategic Planning. 

The 1971 IFORS (International Federation of Oper
ations Research Societies) meeting on Cost Effective
ness held in May of 1971 in Washington, D.C., had a 
working session on Delphi. (The proceedings should be 
published in 1972 by Wiley.) The report on the working 
session provides a synopsis on the Delphi method and 
also reports on an experiment held in the session where 
the audience voted (as to agreement or disagreement) 
with respect to twenty-one conclusions contained in a 
technical presentation. The vote was taken both before 
and after the presentation. This modified form of Delphi 
provided a clear measure of the effectiveness of the 
presentation and its utility as an educational experience 
for the audience. One cannot help but conjecture that 
extensive use of this technique at professional meetings 
might either significantly decrease the number of papers 

* Mr. Scheele (Social Engineering Technology Inc., L.A.) 
presented this concept at a session in the SJCC 1971' it is not 
however, available in those proceedings. " 



326 Fall Joint Computer Conference, 1971 

submitted or significantly improve the quality of the 
presentations. 

The IFORS proceedings also contain a review article 
on Multidimensional Scaling and its potential use in 
Delphis by J. Douglas Carroll of Bell Telephone Lab
oratories. Work of this sort in the field of psychology is 
pertinent to using the Delphi for obtaining value 
judgments. 

Those interested in the use of Delphi in social indi
cators should examine: 

• Experimental Assessment of Delphi Procedures with 
Group V alue Judgments by Norman Dalkey and 
Daniel Rourke, RAND Report R-6-12-ARP A, 
February 1971. 

Two recent attempts to validate Delphi exercises 
with respect to "real" applications were carried out 
by Dr. John W. Williamson of the School of Hygiene 
and Public Health, Johns Hopkins University. These 
were: 

• Prognostic Epidemiology of Breast Cancer and Prog
nostic Epidemiology of A bsentee'ism 

A recent Delphi of interest to the computer field is: 

• A Delphi Inquiry into the Future Economic Risks 
of Computer-Based Systems Institute for the Future, 
Middletown, Connecticut. 

There is considerable activity in the use or potential 
use of Delphi in the area of regional or urban planning. 
An example of this may be found in: 

• Sea Grant Delphi Exercises: Techniquesfor Utilizing 
Informed Judgments of a Multi-Disciplinary Team 
of Researchers, by John D. Ludlow, Bureau of 
Business Research, University of Michigan, Work
ing Paper 22, Jan. 1971. 

A number of county governments are utilizing the 
Delphi technique internally. 

The Delphi literature has become quite rich in recent 
years with respect to the diversity of applications. One 
can quite easily be amazed at the number of infor
mation systems being designed and utilized without the 
use of a computer. This is especially significant if one 
concludes, as I have, that many of these designs are 
closer to meeting MIS requirements than other ac
tivities designed on computers and labeled as MIS. 



Technology for group dialogue and social choice* 

by THOMAS B. SHERIDAN 

The Massachusetts Institute of Technology 
Cambridge, Massachusetts 

INTRODUCTION 

Usually the best way to discuss and resolve the choices 
that arise within groups of people is face-to-face and 
personally. For this reason, city planners and educators 
alike are calling for new kinds of communities for 
working, living, and learning, based more on familial 
relationships between people than on contractual 
relationships. When people get to know one another, 
conflicts have a way of being accommodated. 

Beyond the circle of intimacy the problem of com
munication is obviously much greater; and while 
social issues can still be resolved more or less arbitrarily, 
it is more difficult to resolve them satisfactorily. 

The "circle of intimacy" is constrained in its radius. 
One analyst has estimated that the average person in 
his lifetime can get to know, on a personal, face-to-face 
basis, only about 700 people-and surely one can know 
well only a much smaller number. The precise number 
is not important: the point is that it is dictated by the 
limitations of human behavior and is not greatly 
affected by urban population growth, by speed of 
transportation and communication, by affluence, or by 
any other technologically induced change in the human 
condition. 

Indeed, these changes underlie the problem as we 
know it. Although the number of people with whom we 
have intimate face-to-face communication during a 
lifetime remains constant, we are in close proximity to 
more and more people. 

We are, moreover, a great deal more dependent on 
one another than we used to be when American society 
was largely agrarian. Weare all committed together in 
planning and paying for highways and welfare. We 
pollute each other's water and air. We share the risks 

* The research at M.LT. described herein is supported on 
National Science Foundation Grant GT-16, "Citizen Feedback 
and Opinion Formulation" and a project "Citizen Involvement in 
Setting Goals for Education in Massachusetts" with the 
Massachusetts Department of Education. 

327 

and the costs of our military-industrial complex and the 
foreign policy which it serves. Technology, while 
aggravating the selfishly independent consumption of 
common resources, has made communications beyond 
the circle of intimacy both more awkward and more 
urgent. 

Beyond the circle of intimacy, what kind of com
munications make sense? Surely most of us do not 
demand personal interactions with "all those other 
people." Yet in order to participate realistically in the 
decisions of industry and commerce, and in government 
programs to aid and regulate the processes which affect 
us intimately, we as citizens need to communicate with 
and understand the whole cross-section of other 
citizens. 

Does technology help us in this? Can it help us do it 
better? We may now dial on the telephone practically 
anywhere in the world, to hear and be heard with 
relatively high fidelity and convenience. We may watch 
on our television sets news as it breaks around the 
world and observe our President as though he were in 
our living room. We can communicate individually with 
great flexibility; and at our own convenience we can be 
spectators en masse to important events. 

But effective governance in a democracy requires 
more than this. It requires that citizens, in various ways 
and with respect to various public issues, can make their 
preferences known quickly and conveniently to those 
in power. We now have available two obvious channels 
for such "citizen feedback." First, we go to the polls 
roughly once a year and vote for a slate of candidates; 
second, we write letters to our elected representatives. 

There are other channels by which we make our 
feelings known, of course-by purchasing power, by 
protest, etc. But the average citizen wields relatively 
little influence on his government in these latter ways. 
In terms of effective information transmitted per unit 
time, none of the presently available channels of citizen 
feedback rivals the flow from the centers of power 
outward to the citizens via television and the press. 



328 Fall Joint Computer Conference, 1971 

What is it that stands in the way of using technology 
for greater public participation in the important com
promise decisions of government, such as whether we 
build a certain weapon, or an S.S.T., or what taxes we 
should pay to fund what federal program, or where the 
law should draw the line which may limit one person's 
freedom in order to maintain that of others? 

Somehow in an earlier day decisions were simpler 
and could involve fewer people-especially when it 
came to the use of technology. If the problem was to 
span a river and if materials and the skills were avail
able, you went ahead and built the bridge. It would be 
good for everyone. Thus with other blessings of tech
nology. There seemed little question that higher 
capacity machines of production or more sophisticated 
weapons were inherently better. There seemed to be an 
infinite supply of air, water, land, minerals, and energy. 
Today, by contrast, every modern government policy 
decision is in effect a compromise-and the advantages 
and disadvantages have to be weighed not only in 
terms of their benefits and costs for the present clientele, 
but also for future generations. Weare interdependent 
not only in space but in time. 

Such complex resource allocation and benefit-cost 
problems have been attacked by the whole gamut of 
mathematical and simulation tools of operations 
research. But these "objective" techniques ultimately 
depend upon subjective value criteria-which are valid 
only so far as there are effective communication 
procedures by which people can specify their values in 
useful form. 

THE FORMAL SOCIAL CHOICE PROBLEM 

The long-run prospects are bright, I think, that new 
technology can play a maj or role in bringing the 
citizenry together; individually or in small groups, 
communicating and participating in decisions, not only 
to help the decision makers but also for the purpose of 
educating themselves and each other. Hardware in 
itself is not the principal hurdle. No new breakthroughs 
are required. What is needed, rather, is a concerted 
effort in applying present technology to a very classical 
problem of economics and politics called "social 
choice"-the problem of how two or more people can 
communicate, compare values or preferences on a 
common scale, and come to a common judgment or 
preference ordering. 

Even when we are brought together in a meeting 
room it is often very awkward to carryon meaningful 
communication due to lack of shared assumptions, fear 
of losing anonymity or fear of seeming inarticulate, 
etc. Therefore, a few excitable or most articulate 

persons may have the floor to themselves while others, 
who have equally intense feelings or depth of knowledge 
on the subject, may go away from the meeting having 
had little or no influence. 

It is when we consider the electronic digital computer 
that the major contributions of technology to social 
choice and citizen feedback are foreseen. Given the 
computer, with a relatively simple independent data 
channel to each participant, one can collect individual 
responses from all participants and show anyone the 
important features of the aggregate-and do this, for 
practical purposes, instantaneously, 

Much of technology for such a system exists today, 
What is needed is thoughtful design-with emphasis on 
how the machine and the people interact: the way 
questions are posed to the group participants; the 
design of response languages which are flexible enough 
so that each participant can "say" (encode) his reaction 
to a given question in that language, yet simple enough 
for the computer to read and analyze; and the design of 
displays which show the "interesting features" or 
"pertinent statistics" of the response data aggregate. 

This task will require an admixture of experimental 
psychology and systems engineering. It will be highly 
empirical, in the same way that the related field of 
computer-aided learning is highly empirical. 

The central question is, how can we establish scales 
of value which are mutually commensurable among 
different people? Many of the ancient philosophers 
wrote about this problem. The Englishmen Jeremy 
Bentham and John Stuart Mill fir~t developed the idea 
of "utility" as a yardstick which could compare different 
kinds of things and events for the same person. More 
recently the American mathematician Von Neumann 
added the idea that not only is the worth of an event 
proportional to its utility, but that of an unanticipated 
event is proportional also to the probability that it will 
happen.! This simple idea created a giant step in 
mathematically evaluating combinations of events 
with differing utilities and differing probabilities-but 
again for a single person. 

The recent history of comparing values for different 
people has been a discouraging one-primarily because 
of a landmark contribution by economist Kenneth 
Arrow.2 He showed that, if you know how each of a set 
of individuals orders his preferences among alternatives, 
there is no procedure which is fair and will always work 
by which, from this data, the group as a whole may 
order its preferences (i.e., determine a "social choice"). 
In essence he made four seemingly fair and reasonable 
assumptions: ( 1 ) the social ordering of preferences is 
to be based on the individual orderings; (2) there is no 
"dictator" whom everyone imitates; (3) if every 
individual prefers alternative A to alternative B, the 



society will also prefer A to B; and, (4) if A and Bare 
on the list of alternatives to be ordered, it is irrelevant 
how people feel about some alternative C, which is not 
on the list, relative to A and B. Starting from these 
assumptions, he showed (mathematically) that there is 
no single consistent procedure for ordering alternatives 
for the group which will always satisfy the assumptions. 

A number of other theoreticians in the area have 
challenged Arrow's theorem in various ways, particu
larly through challenging the "independence of irrele
vant alternatives" assumption. The point here is that 
things are never evaluated in a vacuum but clearly are 
evaluated in the context of circumstance. A further 
charge is a pragmatic one: while Arrow proves incon
sistencies can occur, in the great majority of cases 
likely to be encountered in the real world they would 
not occur, and if they did they probably would be of 
minor significance. 

There are many other complicating factors in social 
choice, most of which have not been, and perhaps 
cannot be, dealt with in the systematic manner of 
Arrow's "impossibility theorem."2 For example, there 
is the very fundamental question of whether the 
individual parties involved in a group choice exercise 
will communicate their true feelings and indicate their 
uncertainties, or whether they will falsify their feelings 
so as to gain the best advantage for themselves. 

Further difficulties arise when we try to include in the . 
treatment the effects of differences among the par
ticipants along the lines of intensity-of-feelings vs. 
apathy, or knowledge vs. ignorance, or "extended
sympathy" vs. selfishness, or partial vs. complete 
truthfulness; yet these are just the features of the social 
choice problem as we find it in practice. 

To take as an ultimate goal the precise statement of 
social welfare in mathematical terms is, of course, 
nonsense. The differing experiences of individuals (and 
consequently differing assumptions) ensure that com
mensurability of values will never be complete. But this 
difficulty by no means relieves us of the obligation to 
seek value-commensurability and to see how far we can 
go in the quantitative assessment of utility. By making 
our values more explicit to one another we also make 
them more explicit to ourselves. 

POTENTIAL CONTRIBUTIONS OF 
ELECTRONICS 

Electronic media notwithstanding, none of the newer 
means of communication yet does what a direct face
to-face group meeting (town meeting, class bull session) 
does-that is, permit each participant to observe the 
feelings and gestures, the verbal expressions of approval 

Technology for Group Dialogue and Social Choice 329 

-qr.SPONSF 

nl::VU'E 

'l'F.LEPfJ()Nf' cnr~l.n~~ICllTI,)N 

rH'\N~H;T. t;'()'Q rF.F.l)m\c~· 

Figure 1-General paradigm for citizen feedback (right) 
added to top-down communication (left) 

or disapproval, or the apathetic silence-which may 
accompany any proposal or statement. As a group 
meeting gets larger, observation of how others feel 
becomes more and more difficult; and no generally 
available technology helps much. Telephone conference 
calls, for example, while permitting a number of people 
to speak and be heard by all, are painfully awkward and 
slow and permit no observation of others' reaction to 
any given speaker. The new Picture-Phone will even
tually permit the participants in a teleconference to see 
one another; but experiments with an automatic system 
which switches everyone's screen to the person who is 
talking reveals that this is precisely what is not 
wanted-teleconferees would like most to observe the 
facial expressions of the various conferees who are not 
talking! 

One can imagine a computer-aided feedback-and
participation system taking a variety of forms all of 
which are more or less characterized by Figure 1. 
For example: 

( 1) A radio talk show or a television "issue" program 
may wish to enhance its audience participation 
by listener or viewer votes, collected from each 
participant and fed to a computer. Voters may be 
in the studio with electronic voting boxes or at 
home where they render their vote by calling a 
special telephone number. The NET "Advo
cates" program has demonstrated both. 

(2) Public hearings or town meetings may wish to 
find out how the citizenry feel about proposed 
new legislation-who have intense feelings, who 
are 'apathetic, . who are educated to the facts 
and who are ignorant-and correlate these 
responses with each other and with demographic 
data which participants may be asked to volun
teer. Such a meeting could be held in the town 
assembly hall, with' a simple pushbutton console 
wired to each seat. 



330 Fall Joint Computer Conference, J971 

(3) Several P.T.A.s or alternatively several eighth 
grades in the town may wish to sponsor a feed
back meeting on sex education, drugs, or some 
other subject where truthfulness is highly in 
order but anonymity may be desired. Classrooms 
at several different schools could be tied together 
by rented "dedicated" telephone lines for the 
duration of the session. 

(4) A committee chairman or manager or salesman 
wishes to present some propositions and poll his 
committee members, sales representatives or 
etc. who may be stationed at telephone consoles 
in widely separated locations, or may be seated 
before special intercom consoles in their own 
offices (which could operate entirely independ
ently of the telephone system) . 

(5) A group of technical experts might be called 
upon to render probability estimates about 
some scientific diagnosis or future event which is 
amenable to before-the-fact analysis. This pro
cess may be repeated, where with each repetition 
the distribution of estimates is revealed to all 
participants and possibly the participants may 
challenge one another. This process has been 
called the "Delphi Technique" after the oracle, 
and has been the subject of experiments by the 
Rand Corporation and the Institute for the 
Future,3 and by the University of Illinois.4 
Their experience suggests that on successive 
interactions even experts tend to change their 
estimates on the basis of what others believe 
(and possible new evidence presented during 
the challenge period) . 

(6) A duly elected representative in the local, state 
or national government could ask his con
stituency questions and receive their responses. 
This could be done through radio or television 
or alternatively could utilize a special van, 
equipped with a loudspeaker system, a rear
lighted projection/display device, and a number 
of chairs or benches which could be set up 
rapidly at street corners prewired with voter
response boxes and a small computer. 

These examples point up one very important aspect 
of such citizen feedback or response-aggregation 
systems: that is that they can educate and involve 
the participants without the necessity that the re
sponses formally determine a decision. Indeed the 
teaching-learning function may be the most important. 
It demands careful attention to how questions are 
posed and presented, what operations are performed by 
the computer on the aggregated votes and what 
operations are left out, how the results are displayed, 

and what opportunity there is for further voting and 
recycling on the same and related questions. 

Some skeptics feel that further technocratic invasion 
of participatory democracy should be prevented rather 
than facilitated-that the whole idea of the "com
puterized referendum" is anathema, and that the forces 
of repression will eventually gain control of any such 
system. They could be correct, for the system clearly 
presupposes competence and fairness in phrasing the 
questions and designing the alternative responses. 

But my own fear is different. It is that, propelled by 
the increasing availability of glamorous technology and 
spurred on by hardware hucksters and panacea pushers, 
the community will be caught with its pilot experiments 
incomplete or never done. 

THE STEPS IN A GROUP FEEDBACK 
SESSION 

Seven formal steps are involved in a technologically 
aided interchange of views on a social-choice question: 

(1) The leader states the problem, specifies the 
question, and describes the response alternatives 
from which respondents are to choose. 

(2) The leader (or automated components of the 
system) explains what respondents must do in 
order to communicate their responses (including, 
perhaps, their degree of understanding of the 
question, strength of feeling, and subjective 
assessment of probabilities). 

(3) The respondents set into their voting boxes 
their coded responses to the questions. 

(4) The computer interrogates the voting boxes and 
aggregates the response data. 

(5) Preselected features of this response-aggregate 
are displayed to all parties. 

(6) The leader or respondents may request display of 
additional features of the response aggregate, or 
may volunteer corrections or additional in
formation. 

(7) Based upon an a priori program, on previous 
results and/or on requests from respondents, the 
leader poses a new problem or question, re
starting the cycle from Step 1. 

The first step is easily the most important-and also 
the most difficult. Clearly the participant must under
stand at the outset something of the background to any 
specific question he is asked, he must understand the 
question itself in nonambiguous terms, and he must 
understand the meaning of the answers or response 
alternatives he is offered. This step is essentially the 



same as is faced by the designer of any multiple-choice 
test or poll, except that there is the possibility that a 
much richer language of response can be made available 
than is usually the case in machine-graded tests. 
Allowed responses may include not only the selection of 
an alternative answer, but also an indication of intensity 
of feeling, estimates of the relative probability or 
importance of some event in comparison with a stand
ard, specification of numbers ( e.g. allowable cost) 
over a large range, and simple expressions of approval 
("yea!") or disapproval ("boo!"). 

The leader may have to explain certain subtleties of 
voting, such as whether participants will be assumed to 
be voting altruistically (what I think is best for every
one) or selfishly (what I think is best for me alone, me 
and my family, etc.). Further, he may wish respondents 
to play roles other than themselves (if you were a 
person under certain specified circumstances, how would 
you vote?). 

He may also wish to correlate the answers with 
informedness. He may do this by requesting those who 
do not know the answer to some test question to refrain 

Identification of self (note: if 
one of 1, 2, 3 not switched assume 
unregistered or other party; if one 
of 4, 5, 6 assume other or none) 

1) Republican 
2) Democrat 
3) Independent 
4) Protestant 

Expressions of feeling and 
experience 

Four numerical categories 
Two administrative categories 

Three alternatives plus 
Three administrative categories 

Rank orderinq of three first 
alternatives, A, B, C choice 

second 
choice 

Response to interpersonal 
cOIlU1lunica tion of actors 

To select one of 8 on each 
of two questions 

as to 

5) Catholic 
6) Jew 

1) Am intensely interested 
2) Am mildly interested 
3) Am uninterested 
4) Daily experience 
5) Occasional experience 
6) No experience 

1) Less than 10% 
2) 10 to 30% 
3) 30 to 60% 
4) Greater than 60% 
5) Don It know 
6) Don It understand 

1) I want olan 1 
2) I want plan 2 
3) I want plan 3 
4) Undecided as to olans 
5) Object to availahle plans 
6) Confused by procedure 

{

l) A 
2) B 
3) C 

{

4) A 
5) B 

6) C 

{l) 
~liss Adams 

2) Colonel Baker 
3) Doctor Crank (4) Agree 
5) Disagree 
6) Am bored 

(dots under your answer 
indicate switches to be 
thrown) 

Question 1 (1) 
2) 
3) 

ABCDEFGIl 

••• · • • • • 
• • 

{

4) 

Quesl:ion' 5) 
6) 

. • • 
•• • . • 
• • 

Figure 2-Sample categories of response for a six-switch console 

Technology for Group Dialogue and Social Choice 331 

from voting, or he can pose the knowledge test question 
before or after the issue question and let the computer 
make the correlation for him. 

Insuring the participants "play fair," own up to their 
uncertainties, vote as they really feel, vote altruistically 
if asked, and so on, is extremely difficult. Some may 
always regard their participation in such social inter
action as an advocacy game, where the purpose is to 
"win for their side." 

The next two steps raise the question of what equip
ment the voter will have for communicating his re
sponses. At the extreme of simplicity a single on-off 
switch generates a response code which is easily inter
preted by the computer, but limiting to the user. At the 
other extreme, if responses were to consist of natural 
English sentences typed on a conventional teletype
writer-which would certainly allow great flexibility 
and variety in response-the computer would have no 
basis for aggregating and analyzing responses on a 
commensurate basis (other than such procedures as 
counting key words). Clearly something in between is 
called for; for example, a voting box might consist of 
ten on-off switches to use in various combinations, plus 
one to indicate "ready," plus one "intensity" knob. 

An unresolved question concerns how complex a 
single question can be. If the question is too simple, the 
responses will not be worth collecting and will provide 
little useful feedback. If too complex, encoding the 
responses will be too difficult. The· ten switches of the 
voting box suggested above would have the potential 
(considering all combinations of on and off) for 210 = 
1024 alternatives but that is clearly too many for the 
useful answers to anyone question. 

It is probably a good idea, for most questions, to 
have some response categories to indicate "understand 
question but am undecided among alternatives" or 
"understand question and protest available alterna
tives" or simply "don't understand the question or 
procedures," three quite different responses. If a 
respondent is being pressured by a time constraint, 
which may be a practical necessity to keep the process 
functioning smoothly, he may want to be able to say, 
"I don't have time to reach a decision"; this could 
easily be indicated if he simply fails to set the "done" 
switch. Some arrangement for "I object to the questions 
and therefore won't answer" would also be useful as a 
guide to subsequent operations and may also subsume 
some of the above "don't understand" categories. 
Figure 2 indicates various categories of response for a 
six switch console. 

The fourth step, in which the computer samples the 
voting boxes and stores the data, is straightforward as 
regards tallying the number of votes in each category 
and computing simple statistics. But extracting mean-



332 Fall Joint Computer Conference, 1971 

ing from the data requires that someone should have 
laid down criteria for what is interesting; this might be 
done either prior to or during the session by a trained 
analyst. 

It is at this point that certain perils of citizen feedback 
systems arise, for the analyst could (either unwittingly 
or deliberately) distort the interpretation of the voting 
data by the criteria he selects for computer analysis and 
display. Though there has been much research on 
voting behavior and on methods of analyzing voting 
statistics, instantaneous feedback and recycling poses 
many new research challenges. 

That each man's vote is equally important on each 
question is a bit of lore that both political scientists 
and politicians have long since discounted-at least in 
the sense that voters naturally feel more intensely 
about some issues than about others. One would, there
fore, like to permit voters to weight their votes ac
cording to the intensity of their feeling. Can fair means 
be provided? 

There are at least two methods. One long-respected 
procedure in government is bargaining for votes
"I'll vote with you on this issue if you vote with me on 
that one." But in the citizen-feedback context, nego
tiating such bargains does not look easy. A second 
procedure would be to allocate to each voter, over a 
set of questions, a fixed number of influence points, say 
100; he would indicate the number of points he wished 
the computer to assign to his vote on each question, 
until he had used up his quota of 100 points, after which 
the computer would not accept his vote. (Otherwise, 
were votes simply weighted by an unconstrained 
"intensity of feeling" knob, a voter would be rather 
likely to set the "intensity of feeling" to a maximum 
and leave it there.) 

A variant on the latter is a procedure developed at 
the University of Arizona5 wherein a voter may assign 
his 100 points either among the ultimate choices or 
among the other voters. Provided each voter assigns 
some weight to at least one ultimate alternative an 
eventual alternative is selected, in some cases by a 
rather complex influence of trust and proxy. 

Step five, the display of significant features of the 
voting data, poses interesting challenges concerning 
how to convey distributional or statistical ideas to an 
unsophisticated participant, quickly and unambigu
ously. 

The sixth step provides an opportunity for non
planned feedback-informal exposition, challenges to 
the question, challenges to each other's votes, and 
verbal rebuttal-in other words a chance to break free 
of the formal constraints for a short time. This is a time 
when participants can seek to influence the future 
behavior of the leader-the questions he will ask, the 

response alternatives he will include, and the way he 
manages the session. 

EXPERIMENTS IN PROGRESS 

Experiments to date have been designed to learn as 
much as possible as quickly as possible from "real" 
situations. Because the mode of group dialogue dis
cussed above introduces so many new variables, it was 
believed not expedient to start with controlled labora
tory experiments, though gradually we plan to make 
controlled comparisons on selected experimental condi
tions. But the initial emphasis has been on plunging 
into the "real world" and finding out "what works." 

Experiments in a semi-laboratory setting 
within the university 

In one set of experiments in the Man Machine 
Systems Laboratory at M.LT. the group feedback 
system consists of fourteen hand-held consoles, each 
with ten on-off switches, a continuous "adjust" knob 
and a "done" switch. The consoles are connected by 
wire to a PDP-8 computer with a scope display output. 
Closed circuit television permits simulation of a meeting 
where questions are being posed and results aggregated 
at some distant point ( e.g., a television station in 
another city) and where respondents may sit together 
in a single meeting room or may be located all at 
different places. Various aggregation display programs 
are available to the discussion leader, the simplest of 
which is a histogram display indicating how many 
people have thrown each switch. Other data reduction 
programs are also available, such as the one described 
above permitting voters to give a percentage of their 
votes to another voter. A variety of small group 
meetings, seminars and discussions have been held 
utilizing this equipment. 

Two kinds of leadership roles have been tried. The 
first is where a single leader makes statements and poses 
questions. Here, among other things, we were concerned 
with whether respondents, if constrained to express 
themselves only in terms of the switches, can "stay with 
it" without too much frustration and can feel that they 
are part of a conversation. Thus far, for this type of 
meeting, we have learned the following: 

(1) Questions must be stated unambiguously. We 
learned to appreciate the subtle ways in which 
natural language feedback permits clarification 
of questions or propositions. Often the ques
tioner doesn't understand an ambiguity in his 
statement-where a natural language response 



from one or two persons chosen at random only 
for the purpose of clarifying the question is often 
well worth the time of others, though this by no 
means obviates the need to have some "I don't 
understand" or "I object" categories. 

(2) The leader should somehow respond to the 
responses of the voters. If he ca·n predicate his 
next question or proposition on the audience 
response to the last one, so much the better. 
Otherwise he can simply show the audience that 
indeed he knows how the vote on the last 
question turned out and freely express his 
surprize or other reaction. In cases where the 
leader seemed as though he was not as interested 
in the response and simply ground through a 
programmed series of questions, the audience 
quickly lost interest. 

(3) Anonymity can be very important, and, if safe
guarded, permits open "discussion" in areas 
which otherwise would be taboo. For example, we 
have conducted sessions on drug use, in which 
students, faculty, and some total strangers quite 
freely indicated how often they use certain drugs 
and where they get them. Such discussions, led 
unabashedly by students (who knew what and 
how to phrase the key questions!) resulted in a 
surprising freedom of response. (We made the 
rule that voters had to keep their eyes on the 
display, not on each others' boxes, though a small 
voting box can easily be held close to the chest 
to obstruct others' view of which switches are 
being thrown.) It was found especially impor
tant, for this kind of topic, not to display any 
results until all were in. 

In the same semi-laboratory setting described above 
we have experimented with a second kind of leadership 
role. Here two or more people "discuss" or "act" and 
the audience continuously votes with "yea," "boo," 
"slow down and explain," "speed up and go on to 
another topic" type response alternatives. Voters were 
happy to play this less direct role but perhaps for a 
shorter time than in the direct response role described 
above. Again it proved of great importance that the 
central actors indicate that they saw and were inter
ested in how the voters voted. 

Experiments with citizen group meetings 
using portable equipment 

As of this writing five group meetings have been 
conducted in the Massachusetts towns of Stoneham, 
Natick, Manchester, Malden and Lowell to assist the 
Massachusetts Department of Education in a program 

Technology for Group Dialogue and Social Choice 333 

of setting educational goals. In each case cross sections 
of interested citizens were brought together by invita
tion of persons in each community to "discuss educa
tional goals." Four similar meetings were conducted 
with students and teachers at a high school in Newton, 
Massachusetts. (A similar meeting was also held in a 
church parlor in Newton to help the members of that 
church resolve an internal political crisis.) All groups 
ranged in size from twenty to forty, though at anyone 
time only thirty-two could vote since but that number 
of voting boxes have been built. 

The portable equipment used for these meetings, 
held variously in church assembly halls, school class
rooms and television studios, features small hand-held 
voting boxes, each with six toggle switches, connected 
by wire to substations (eight boxes to a substation, 
each of the latter containing digital counting logic) 
which in turn are series connected in random order to 
central logic and display hardware. The display 
regularly used to count votes is a "nixie tube" type 
display of the six totals (number of persons activating 
each of the six switches). The meeting moderator, 
through a three position switch, can hold the numbers 
displayed at zero, set it in a free counting mode, or lock 
the count so that it cannot be altered. A second display, 
little used as yet, is a motorized bar graph to be used 
either to display histogram statistics or to provide a 
running indication of affective judgments such as 
agree with speaker, disagree, too fast, too slow, etc. 

The typical format for these meetings was as follows. 
After a very brief introduction to the purpose of the 
meeting and the voting procedure itself several ques
tions were asked to introduce members of the group to 
each other (beyond what is obvious from physical 
appearance) such as education, political affiliation, 
marital status, etc. An overhead projector has been 
used in most cases to ask the questions and record the 
answers and comments (on the gelatin transparency) 
since, unlike a blackboard, it need not be erased before 
making a permanent record. Following the introduction, 
the meetings proceeded through the questions, such as 
those illustrated by Figure 3, and those posed by the 
participants themselves. The categories of "object to 
question" or "other" were used frequently to solicit 
difficulties or concerns people had with the question 
itself-its ambiguity, whether it was fair, etc. Asking 
persons who voted in prepared categories to identify 
themselves and state, after the fact, why they voted as 
they did, was part of the standard procedure. Roughly 
twenty questions, with discussion, can be handled in 
172 hours. 

After the meeting, evaluations by the participants 
themselves have suggested that the procedure does 
indeed serve to open up issues, to draw out those who 



334 Fall Joint Computer Conference, 1971 

How are preschool children best prepared for school? 
(as school now exists) (as school should be) 

1) lots of parental love 9 11 
2) early exposure to books 2 1 
3) interaction with other kids 14 8 
4) by havinq natural wonders and 

esthetic deliqhts pointed out 5 
5) unsure 3 
6) object 1 

Salient cOllllllents after vote ("as school now exists" and "as school 
should be" not part of question then): One man object to "pointed 
out" in 4), as it EIIIIphasized "instruction" rather than "learninq." 
Discussion on this point. SCllleone else _nted to qet at "encouraqinq 
curiosi ty • " Another claimed, "That's what question says," and another 
"discover natural wonders." Consensus: "leave wordinq as is." Then 
a lady Violently objected that the vote would be different depenclinq 
on whether voter _s thinkinq of school as it now existed or as it 
should be. others aqreed. Two cateqories added. Above is fi_l 
vote. 

Student attendance should be: 

1) cOlllpulsory with firm excuse policy 11 
2) compulsory with lenient excuse policy 0 
3) voluntary, with students responsible for 

material missed 12 
4) Voluntary, with teachers providinq all 

reasonable assistance to pupils who 
miss class 2 

5) unsure 3 
6) object 0 

Comments centered on the feelinq-that sOllIe subjects require attendance 
more than others do. (Note the 0 vote on cateqory 2) which is 
inappropriately self-contradictory.) 

Figure 3-Typical questions and responses from the citizen 
meetings on educational goals 

would otherwise not say much, and generally to provide 
an enjoyable experience-in some cases for three hours 
duration. 

EXTENDING THE MEETING IN SPACE 
AND TIME 

The employment of such feedback techniques in 
conjunction with television and radio media appears 
quite attractive, but there are some problems. 

A major problem concerns the use of telephone net
works for feedback. Unfortunately telephone switching 
systems, as they presently work, do not easily permit 
some of the functions one would like. For example, one 
would like a telephone central computer to be able to 
interrogate, in rapid sequence, a large number of 
memory buffers (shift registers) attached to individual 
telephones, using only enough time for a burst of ten or 
so tone combinations (like touchtone dial signalling), 
say about 72 second. Alternatively one might like to be 
able to call a certain number, and, in spite of a tem
porary busy signal, in a few seconds have the memory 
buffer interrogated and read over the telephone line. 
However, with a little investigation one finds that 
telephones were designed for random caller to called-

party connections, with a busy signal rejecting the 
calling party from any further consideration and 
providing no easily employed mechanism for retrieving 
that calling party once the line is freed. 

For this reason, at least for the immediate future, it 
appears that for a large number (much more than 
1,000) to be sampled on a single telephone line in less 
than 15 minutes, even for a simple count of busy signals, 
is not practical. 

One tractable approach for the immediate future is 
to have groups of persons, 100 to 1,000, assembled at 
various locations watching television screens. Within 
each meeting room participants vote using hand-held 
consoles connected by wire to a computer, which itself 
communicates by telephone to the originating television 
studio. Figure 4 illustrates this scheme. 

Ten or more groups scattered around a city or a 
nation can create something approaching a valid 
statistical sample, if statistical validity is important, 
and within themselves can represent characteristic 
citizen groups (e.g. Berkeley students, Detroit hardhats, 
Iowa farmers, etc.). Such an arrangement would easily 
permit recycling over the national network every few 
minutes and within anyone local meeting room some 
further feedback and recycling could occur which is not 
shared with the national network. 

Cable television, because of its much higher band
width, has the capability for rapid feedback from smaller 
groups or individuals from their individual homes. For 
example, even part of the 0-54 MHZ band (considered 
as the best prospect for return signals6 ) is more than 
adequate theoretically for all the cable subscribers in a 
large community, especially in view of time sharing 
possibilities. 

The above considerations are for extensions in space. 

Figure 4-Multi-group arrangement for television audience 
response 



One may also consider extensions in time, where a single 
"program" extends over hours or days and where each 
problem or question, once presented on television, may 
wait until slow telephone feedback or even mail returns 
of an IBM card or newspaper "issue ballot,"7 variety 
come in. 

Development of such systems, fraught with at least 
as many psychological, sociological, political and 
ethical problems as technological ones, will surely have 
to evolve on the basis of varied experiments and hard 
experience. 

REFERENCES 

1 J VON NEUMANN 0 MORGANSTERN 
Theory of games and economic behavior 
Princeton University Press 2nd edition 1947 

Technology for Group Dialogue and Social Choice 335 

2 K ARROW 
Social choice and individual values 
John Wiley New York 1951 

3 N DALKEY 0 HELMER 
An experimental application of the Delphi Method to the 
use of experts 
Management Science No 91963 

4 C E OSGOOD S UMPLEBY 
A computer-based system for exploration of possible systems 
for Mankind 2000 
Mankind 2000 pp 346-359 Allen and Unwin London 

5 W J MACKINNON M K MACKINNON 
The decisional design and cyclic cooperation of SPAN 
Behavioral Science Vol 14 No 3 pp 244-247 May 1969 

6 The third wire: cable communication enters the city 
Report by Foundation 70 Newton Msssachusetts March 
1971 

7 C H STEVENS 
Citizen feedback, the need and the response 
MIT Technology Review pp 39-45 Cambridge 
Msssachusetts 





Structuring information for a computer-based 
communications medium* 

by STUART UMPLEBY 

U nive1'sity of Illinois 
Urbana, Illinois 

Several years ago Prof. Charles E. Osgood suggested 
that it might be possible to develop a program for a 
computer-based education system which would eventu
ally allow the public, possibly at a world's fair, to 
"explore the future."1 Such an "exploration" would 
be useful both for education and for social science 
research. This paper is a progress report on the con
tinuing development of that "exploration of alternative 
futures" using the PLATO system (see Figure 1). 

The educational function of the exploration is ac
complished by exposing the "explorer" to four types 
of information: 

1. A list of developments possible in the future. 
2. The model of "reality interaction" used in the 

computer program. 
3. The decision-making procedure, including 

making investments to change probabilities. 
4. The operation of a teaching computer. 

The data from these exercises can reveal which de
velopments people consider desirable, which develop
ments they are most familiar with, and which develop
ments they are most interested in. Data from several 
demonstrations of early versions of the exploration will 
be discussed later in this paper. 

In short this work originated neither as an attempt 
to develop software for a new communications medium 
nor from an interest in conducting on-line Delphi 

* The research described here was conducted using the PLATO 
system at the Computer-based Education Research Laboratory 
of the University of Illinois at Urbana-Champaign. The labora
tory is supported in part by the National Science Foundation 
under grants NSF GJ81 and GJ 974; in part by the Advanced 
Research Projects Agency under grant ONR Nonr 3985 (08); in 
part by Project Grant NPG-188 under the Nurse Training Act 
of H}64, Division of Nursing, Public Health Service, U.S. Dept. 
of Health, Education and Welfare; and in part by the State of 
Illinois. 

337 

studies as a decision -making aid. The direction in which 
the research moved resulted in part from the nature of 
the medium and in part from our concern with in
creasing public participation ill decision-making 
processes. 

THE EVOLUTION OF THE PROJECT 

After the project had been under way for a year or 
two, it appeared that this work could have applications 
beyond simply education and social science research. 
This belief resulted from the projected growth of the 
PLATO system and the ease with which the computer 
program for the exploration could be modified to deal 
with problems other than the general future of mankind. 

A .glance at the past 

The PLATO III system, which we have been using, 
is capable of operating 20 terminals simultaneously. 
However, the PLATO IV system, scheduled for com
pletion in 1974 or 1975, is being designed to operate 
4000 terminals simultaneously (see Figure 2). 

When the first wave of interest in computer-aided 
instruction began in the early 1960s there were basi
cally two questions which had to be answered. First, 
could students learn educational material as rapidly 
and retain it as well if they were taught using a com
puter terminal rather than by sitting in a classroom? 
Second, was computer-aided instruction economically 
competitive with classroom instruction? After a d€cade 
of educational experiments at the University of Illinois 
and €lsewhere, the answer to the first question is em
phatically yes.2 But computer-aided instruction is not 
economically competitive using the technology available 
in 1960. It was this realization-that the crucial prob
lem lay in the cost of the equipment and its operation
that led to the invention at the University of Illinois of 



338 Fall Joint Computer Conference, 1971 

Figure 1-The PLATO III system provides each student with 
an electronic keyset as a means of communicating with the 
computer and a television display for viewing information 
selected or generated by the computer 

the plasma display panel and the development of the 
PLATO IV system. 3 

A computer-based education system which is both 
educationally effective and economically competitive 
will in all probability be adopted throughout the United 
States and around the world in due course. With the 
prospect of teaching computer terminals in most class
rooms, if not most homes, within a few decades, we 
began to think of this equipment as a new kind of mass 
communications medium. 

Keyset 

"" 

Student Console 

Random Access 
Image Selector 
/ 

Figure 2-Using terminals such as the one pictured above, 
the PLATO IV system, scheduled for completion in 1974, will 
provide a high quality color display at low cost. The terminals 
will be connected to the computer over standard voice-grade 
telephone lines 

Generations of communications media 

If radio and television are thought of as first and 
second generation mass communications systems, then 
perhaps the PLATO system could be thought of as a 
forerunner of a third generation mass communications 
system. Originally, we felt that built-in feedback would 
be the characteristic distinguishing computer-based 
communications systems from radio and television. 

However, due to the feedback possibilities of cable 
television, it now seems more appropriate to list four 
"generations" of electronic communications media now 
existing in at least prototype form. 

1. Radio transmits audio messages from the center 
to the periphery. 

2. Television transmits audio and visual messages 
from the center to the periphery. 

3. Cable television provides a great increase in the 
number of available channels and the possibility 
of both passive feedback (monitoring what 
people watch) and active feedback (for example, 
voting by pressing a button on the television 
set). 

4. Computer-based communications systems have 
several new characteristics. 

a. Less simultaneity: Although many people 
may be using the program, each may be in a 
different part of the program. Thus everyone 
on one "channel" does not see the same thing 
at the same time. 

b. Less evanescence: With radio and television 
a listener or viewer cannot go back if he 
misses a word or sentence (unless he has a 
tape recorder). With PLATO each individual 
progresses at his own rate. The display does 
not change until he wants it to, and he can 
go back to review previous displays. 

c. Viewer-designed programs: With PLATO the 
viewer can ask for additional information or 
can jump ahead if he becomes bored, thus to 
some extent designing his own program. 

For the sake of clarity it should be noted that the 
displays for computer-based communications systems 
are generally static, like color slides, rather than dy
namic, like movies or television. Messages are conveyed 
primarily by the use of words, frequently supplemented 
by tables or graphs and occasionally by drawings and 
pictures. However, the PLATO IV equipment, as con
trasted with the PLATO III equipment, will use audio 
as well as visual messages and will be better suited to 
simple moving displays such as dancing.stick figures or 
plotting out a graph. 



A pplying the exploration to specific issues 

Even before we began thinking of the PLATO system 
as a new kind of mass communications medium and 
not simply as a teaching device, we had thought of 
writing explorations on a variety of different topics 
such as disarmament, the future of education, and 
urban planning. But with the probable widespread 
acceptance of computer-based education in the next 
few decades, it seemed that our work suggested the 
possibility of using this equipment as a medium between 
planners and the public for exchanging information and 
opinions regarding community goals. 4 

The adaptability of the exploration resulted from the 
fact that the decision-making framework could remain 
the same for any problem area and that only the infor
mation units with the matrix giving the relationships 
between them would need to be changed. 

Thus the projected expansion of the PLATO system 
and the ease with which the exploration could be 
modified to deal with specific issues resulted in our 
thinking of the teaching computer as a new kind of 
mass communications medium particularly suited to 
discussions among different interest groups about the 
long range goals of a community. But how does one 
present information on this new medium? 

HOW DOES ONE DESCRIBE THE FUTURE? 

Programming an exploration of the future required 
suggesting possible future developments in a way which 
emphasized their probabilistic nature and in a way 
which could be easily manipulated by the explorer. We 
needed a method of presenting possible future develop
ments so that people could request additional infor
mation, make "investments" which would alter the 
initial probabilities, and see the possible secondary 
effects of their actions. Consequently we assumed that 
the future, and also the present and the past, can be 
described using "information units." 

Features of information units 

The features or components of an "information 
unit," as described in an earlier report, were (1) a short 
descriptive statement, (2) a background paragraph, 
and (3) an associated probability or other measure.5 

It now seems necessary to expand and revise this list of 
features. 

The background information (2) can involve graphs, 
charts, pictures, drawings, and tape recordings in ad
dition to written information. 

Complete measurement (3) of an historical occurrence 

Computer-based Communications Medium 339 

requires the measurement itself, the date the measure
ment was made, and some indication of measurement 
error. The measurement of a forecast requires the fore
casted value of a parameter, the date at which that 
value of the parameter is expected to occur, some indi
cation of certainty about the forecast, and also the 
date at which the forecast is made. 

With respect to graphs of information units, the 
horizontal axis will always be time. The vertical axis 
which we have used so far for developments has been 
probability, ranging from 0 to 100 percent. This kind 
of scale requires a specific, identifiable event such as 
50 percent of the nation's schools having computer
based education equipment or 50 percent of the popu
lation favoring the legalization of marihuana. A su
perior method of forecasting would lend itself more 
easily to validation and would make possible the meas
urement of progress toward a goal as the years pass by. 
Such a scale is suggested by the previous format. 
Rather than measuring the probability of a particular 
level of distribution of a technology, one can simply 
measure the distribution itself. Similarly one can esti
mate the percentage of the population which will favor 
a social development rather than the probability of a 
particular degree of acceptance. Regarding the develop
ment of a technological capability, as opposed to its 
diffusion once it is developed, one could list the stages 
of development ranging from the original concept 
through experimentation and prototype construction to 
the first production model. However, this kind of 
measure would use an ordinal rather than an interval 
scale. 

An important new feature which should be noted 
explicitly when developing lists of information units is 
the group or person suggesting a particular idea as im
portant (4) and worthy of attention. This information 
can usually be deduced either from the name and 
affiliation of th€ person writing the paper or from the 
list of people who took part in a Delphi exercise. 
The person or group originating an idea is frequently 
recorded. However, the thought behind recording this 
data is usually either to aid in locating additional back
ground material or to give credit where it is due. But 
such information is also politically relevant. It is needed 
so that other forecasters, public officials, and especially 
the general public, will know whose ideas about the 
future of society are represented in the total set of 
forecasts and social indicators now being generated. 
People in different walks of life, in different socio
economic groups, will be subjected to different stresses 
in their daily lives. Consequently they will define 
different "problems" as being important for mankind 
to solve. The intervention of politics into forecasting 
cannot be avoided, we can only try to be aware of 



340 Fall Joint Computer Conference, 1971 

possible sources of bias so that the interests of all 
groups will be as fairly represented as possible.6 

Categories of information units 

Information units can be divided into four categories: 

1. Developments, including both social and techno
logical developments, refer to new characteristics 
of the social system. 

2. Initiatives are actions taken by a group or an 
individual. 

3. Events are sudden or unanticipated occurrences. 
4. System variables, now more commonly called 

social indicators, are measures of a system which 
fluctuate in time. 

Two criteria are used to distinguish among these four 
kinds of information units: the shape of the graph over 
time and the extent of human control. 

Type of 
information unit Shape of graph Human control 

Development S-curve ../ Many small decisions 

Initiative Step function S Single large decision 

Event Spike function JL Very little control 

Social indicator Fluctuation ~ Regular adjustments 

The earlier report suggested that the four categories 
of information units could be thought of either as 
"change-producing factors" (developments, events, and 
initiatives) or as "system variables" (social indicators). 
The distinction between these two larger categories lies 
in the period of time during which the information unit 
can usefully be of interest. System variables or social 
indicators are of interest over an indefinite period of 
time and so are used to monitor the behavior of social 
systems. Change-producing factors can occur in a period 
of hours or years but are of little interest outside of the 
period of time during which they are producing change 
in the social system. 

Most mathematical models deal with the relation
ships among several "system variables," such as popu
lation, per capita income, gross national product, and 
capital investment in agriculture. Delphi studies usually 
concern themselves only with "change producing fac
tors." An ideal exploration of the future would use 
both system variables and change-producing factors. 

A new literary form 

Every new communications medium seems to gener
ate its own distinctive forms for structuring informa
tion. The printing press made possible newspapers, 
journals, and novels. Films greatly extended the use of 
animated cartoons and led to zoom and pan shots, 

parallel editing and special visual effects. Radio and 
television produced the talk show, 15 minute news, 
commercials, and spot announcements. The mimeo
graph machine was best suited to the leaflet, the working 
paper, and the "underground press." The Xerox ma
chine promoted letter writing to multiple recipients 
and extended the readership of journal and magazine 
articles. It is not surprising that computer-based com
munications media also seem to be developing their 
own literary form. 

Branching sequences and mathematical algorithms, 
so useful in "individualized instruction," create a de
mand for literature in which statements and paragraphs 
can be rearranged, dropped or added. Scripts or pro
grams which follow the single logical sequence of the 
essay are criticized by the managers of the medium as 
"not taking full advantage of the capabilities of this 
kind of system." In such cases there is pressure to either 
rewrite the material or present it using a different 
communications medium. 

Rather than an articulate text with an interest
arousing introduction and a good summarizing con
clusion, .the material written for a computer-based 
communications medium, particular ly when it deals 
with public issues, emphasizes alternatives and their 
consequences and concisely stated, measurable events. 
With this medium a person can describe his ideal future 
without having to give a speech or write an essay or 
book. Furthermore, his views can be easily compared 



or combined with the "ideal futures" of other people, 
thereby informing the explorer, the programmer, and 
the general public what visions are dancing in the heads 
of their fellow citizens. 

We have long needed a literary style which, rather 
than imposing a particular idea, tends to draw out 
new ideas, and which tends simply by its form to make 
normally implicit assumptions explicit so that they can 
be challenged. When people see that they disagree 
about the relationships between developments or events 
they may discover that their disagreements are not 
about basic values or goals as much as they are about 
factual questions such as what does in fact lead to 
what. 

The future-oriented literary form of the Delphi 
Method is different in several important respects from 
the present and past-oriented literary forms more com
monly used today.7 The essay form, whether a news
paper report, a magazine article or a book, is most 
useful for developing a single idea to a certain degree 
<,>fdetail. A story related in this way has only one plot 
and all the subplots are related in the same way for 
all readers. Thus for the reader it is not a very personal
ized artistic form, no matter how weird one's powers of 
interpretation. It is little wonder that one criterion of 
quality in a short story or novel has been the range of 
interpretations or meanings which can be drawn out of 
it. This practice might be thought of as bestowing 
cuddos for the ability to transcend the limitations of 
the medium. Imagine the artistry possible if a literary 
form could be designed which had nearly all of the 
strong points of the essay but reduced or eliminated 
some of the limitations! 

The essay requires only the passive involvement of 
the reader. Fantasy and relationships with previous 
knowledge or experience can be brought into play, but 
the new ideas which are generated cannot be tested out 
in the story itself. Literary essays, reports, stories, 
even films, plays, and melodramas are closed ended 
and are characterized by high certainty. Events do or 
do not happen. The closest thing to the hypothetical 
or probabilistic is the scientific report with its margins 
of error and the assumption that refutation is possible. 
But the scientific report states facts, not possibilities. 
Even science fiction stories while beginning from a 
hypothetical situation follow a fixed course to a unique 
conclusion. 

Robert Theobald's Teg' 81994- a mimeographed, alter
able account of a small girl's possible future world is 
one example of rumblings of a demand for new literary 
forms which are flexible, probabilistic, open-ended and 
user-controlled, thereby permitting active involvement 
of the reader.s A more conditional and manipulatable 
style of literature will not be very satisfying and may 

Computer-based Communications Medium 341 

be downright disconcerting to some people. It will 
probably be most satisfying for people who have a high 
tolerance for uncertainty and ambiguity and who ap
preciate being asked for their judgments as well as 
being given someone elses. A plot not subject to in
fluence other than interpretation is suitable for a past 
not subject to influence other than interpretation. A 
future susceptible to action and open to invention 
requires a medium which invites action and encourages 
invention. 

THE EXPLORATION AND SOME RESULTS 

With the preceding background on how our thinking 
about the project has evolved and the refinement of 
what is meant by information units, we shall now pause 
in our speculations for a look at the present version of 
the exploration and the data which has been collected 
so far. 

A n outline of the exploration 

The decision-making procedures in one cycle of the 
40 information unit exploration were as follows: 

1. From a list of the 35 social and technological 
developments programmed into the computer 
the explorer chooses a development whose prob
ability he would like to change.9 The object is to 
make more probable those developments which 
the explorer considers desirable and less probable 
those developments which the explorer considers 
undesirable. However, desirable developments 
may have undesirable secondary effects, and 
undesirable developments may have some desir
able secondary effects. 

2. The explorer makes an "investment" (an indi
cation of desirability) between -100 and +100, 
where -100 would mean that the development 
is maximally undesirable, 0 would mean that 
the development is neither desirable nor un
desirable, and +100 would mean that the de
velopment is maximally desirable. An invest
ment such as +50 would mean that the develop
ment is moderately desirable. In the present 
version, no limit is placed on the total amount 
which can be invested in an exploration. 100 
units could be invested during each cycle. 

3. The computer shows in table form the secondary 
effects of the explorer's immediately preceding 
investment according to the estimates of sec
ondary effects put into the computer by the 
programmer. For each development listed as a 



342 Fall Joint Computer Conference, 1971 

TABLE I-Demonstrations with Recorded Data 

Date 

1. 3/9/68 

2. 3/13/68 

3. 5/12/68 

4. 7/10/68 

5. 10/9/68 

6. 2/1/69 
7. 2/17/69 
8. 3/3/69 

9. 3/4/69 

10. 3/17/69 
11. 5/12/69 

12. 2/14/71 

13. 2/20/71 
14. 2/27/71 
15. 2/28/71 
16. 3/6/71 

Number of 
people Group 

? ? 

? ? 

17 Social 
Science 
Undergraduates 

10 Social Science 
Faculty & Graduate Students 

11 Undergraduates from several disciplines 

6 local press 

7 Undergraduates from several disciplines 
15 Political Science 

Graduate Students 

9 Social Science 
Undergraduates 

7 Political Science Graduate Students 
13 

9 

5 
8 

13 
6 

Education 
Professors 

Landscape 
Architecture 
Graduate 
Students 

WBBM reporter and friends 

Urban planning Graduate Students 

Graduate Students in secondary education 

Graduate Students in religion 

Notes 

1. 15 information units 
2. uses GENERAL language 
3. only comment data (Always same as preceding 

demonstration except as noted) 

1. uses TUTOR language 
2. no comment mode 
3. primary development (PD) selected randomly and 

not recorded in data 
4. shows background paragraph for PD 
5. investment is only +, 0, -
6. asks for relationship of PD to 4 predetermined 

secondary developments, relationship must be 
given as +, 0, ~ 

7. select 5 to follow, option to see 3 other secondary 
effects 

8. 4 stage oracle 
9. main calculation sequence is part of special version 

of TUTOR 
10. secondary effects matrix read in by paper tape 

(+,0, -) 
1. magnitude on investment can go to ± 99 
2. asks for numbers of 3 developments which might 

affect PD and how they will affect PD (+, -) 
1. indirect investment possible in up to 5 developments 
2. no question on what developments affect PD 
3. magnitude of investment can go to total of 100 in 

one cycle 

1. Built-in comment mode 

1. data printout at end of each cycle, gives PD, cycle 
number, and probabilities for all 15 developments 

2. calculation sequence and secondary effects matrix 
built into Delphi program 

1. 40 information units, 35 developments and 5 events 
2. PD selected by explorer 
3. background paragraph for PD not automatically 

displayed, must be requested 
4. no indirect investment 
5. does not ask for estimates of 4 secondary effects 

relationships 
6. automatic selection of secondary effects, only those 

whose probabilities are changed by the investment 
in PD 

7. secondary effects matrix with relationships up to ± 3 



secondary effect the computer displays the old 
probability (before the investment) and the new 
probability (after the investment) and the 
change in probability (the difference between 
the two).** 

4. An oracle message is displayed. Oracle is a verbal 
message telling which developments are likely 
to happen in the year 2000 and which are not 
likely to happen, on the basis of the current 
probability of each development in the explor
ation. 

5. At the end of each cycle the computer performs 
several random calculations to determine 
whether an "event" occurs. If an event does 
occur, a background paragraph about it is pre
sented and then its effects on the probabilities 
of the social and technological developments are 
shown by a table of secondary effects. 

Tradeoffs due to hardware and software limitations 

The primary limitation on the complexity of these 
explorations has been the amount of computer memory 
allocated to what is called student bank, the number 

TABLE II-Rank Order of Developments by Mean Investment 
(Data from demonstrations 12-16) 

Development 

1. Pollu tion Con trol 
2. Racial Barriers Eliminated 
3. Abortion Legalized 
4. Population Planning 
5. World University 
6. World Currency 
7. Treaty Banning CBW R&D 
8. Complete Nuclear Disarmament 
9. Wor ld Aid Program 

10. Ocean Farming 
11. Synthetic Food 
12. Staggered Work Week 
13. Group Marriage Legalized 
14. International GNP Tax 
15. Marijuana Legalized 
16. Citizen Sampling Simulations 
17. "Sexicare" 
18. Time Travel by Deepfreezing 
19. Global 3-D Color 1V 
20. Air Cushion Vehicles 
21. !ianned Lunar Base 
22. l~eather Modification 
23. Animal Donors 
24. !>lational Data Bank 
25. Nationless Corporations 
26. Credit Card Economy 
27. Teaching Computers 
28. Legal Decisions by Computers 
29. Passing of Religion 
30. In telligence Drugs 
31. Genetic Manipulation 
32. U. S. in Limited War 
33. Continued Urbanization 
34. Cloning of Humans 
35. All-out Nuclear War 

Mean Investment 

-100 -SO -60 -40 -20 20 40 60 80 100 
" 'I.J 

,,\ ,'\'\'\'\'\'X .... 

". ""," l'\'\ ,,\,\,\,\,\',,\' 
rtf!. 'I/I//I/j 
1,\,\ .'\'\'\'\'\' 

/I/I/I/I/I/J 
,,\,\ .'\ '\' 
'///.'/. 'I, 
,\\ .\ \' 
'I. 'I. 'I. 

,\\ \ .\1 

14 
tfr~ 
~+ 

~~i 
~ , 

-100 -80 -60 -40 -20 & 20 40 60 SO 100 

** For a discussion of the mathematical model used in the 
exploration and the decisions which have to be made by the 
programmer, see Reference 5. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 

Computer-based Communications Medium 343 

TABLE III-Rank Order by Frequency with which the 
Development was Selected for Consideration* 

N umber of times Chosen 
Development for Investment 

Pollution Control 31 
Racial Barriers Eliminated 25 
Complete Nuclear Disarmament 23 

Abortion Legalized 21 
All-out Nuclear War 19 
Population Planning 18 
Continued Urbanization 15 
Genetic Manipulation 15 
Citizen Sampling Simulations 13 
Cloning of Humans 13 
Group Marriage Legalized 13 
International GNP Tax 13 
Treaty Banning CBW R&D 12 
World Aid Program 12 
World University 12 
Marijuana Legalized 11 
Passing of Religion 11 
U. S. in Limited War 11 
Air Cushion Vehicles 10 
Credit Card Economy 10 
Legal Decisions by Computers 10 
Manned Lunar Base 10 
"Sexicare" 10 
Intelligence Drugs 9 
National Data Bank 9 
Animal Donors 8 
Ocean Farming 8 
Synthetic Food 8 
Global 3-D Color TV 7 
Staggered Work Week 7 
Weather Modification 7 
Nationless Corporations 6 
Teaching Computers 6 
World Currency 4 
Time Travel by Deepfreezing 3 

* Data from demonstrations 12-16. 

of words accessed by only one terminal. The number 
of variables can be increased somewhat by packing, but 
of course this procedure involves a limit as well. 

The' 15 information unit explorations, particularly 
the later ones, involved a larger number of decision
making operations in each cycle, such as indirect in
vestment (what other developments are likely to affect 
the occurrence of the development under consideration) 
and asking for estimates by the explorer of some of the 
probable secondary effects of the development being 
considered. 

When the number of information units was expanded 
to 40, the number of decision-making operations per
formed by an explorer in each cycle was decreased. 
This reduction resulted both from the demand for more 



344 Fall Joint.Computer Conference, 1971 

TABLE IV-Rank Order by Frequency with which Background 
Information was Requested* 

Development 

1. Cloning of Humans 
2. "Sexicare" 
3. Citizen Sampling Simulations 
4. Pollution Control 
5. Racial Barriers Eliminated 
6. Treaty Banning CBW R&D 

N umber of times background 
information was requested 

22 
21 
17 
15 
15 
15 

7. Complete Nuclear Disarmament 14 
8. Group Marriage Legalized 14 
9. Passing of Religion 14 

10. Population Planning 14 
11. Abortion Legalized 13 
12. Animal Donors 13 
13. Genetic Manipulation 11 
14. All-out Nuclear War 10 
15. Air Cushion Vehicles 9 
16. Continued Urbanization 9 
17. International GNP Tax 9 
18. Ocean Farming 8 
19. World University 8 
20. Intelligence Drugs 7 
21. Legal Decisions by Computer 7 
22. National Data Bank 7 
23. Staggered Work Week 7 
24. Nationless Corporations 6 
25. U. S. in Limited War 6 
26. World Aid Program 6 
27. Marijuana Legalized 5 
28. Synthetic Food 5 
29. Credit Card Economy 4 
30. Manned Lunar Base 3 
31. Teaching Computers 3 
32. Time Travel by Deepfreezing 3 
33. Global 3-D Color TV 2 
34. World Currency 2 
35. Weather Modification 1 

* Data from demonstrations 12-16. 

variables caused by more information units and from 
the addition of some more sophisticated computer 
operations. 

Di8cu8sion of the data 

Since work on developing the computer program 
began in the f&ll of 1966, sixteen demonstrations of an 
exploration of the future have been given during which 
data was recorded. Numerous demonstrations were 
given during which data was not collected. Table I 
lists by dates the demonstrations during which data 
was collected. The number of people participating in 
the demonstration and the background of the group 
are given in the second and third column. The right-

hand column contains notes about the nature of the 
program, such as the number and categories of infor
mation units and the decision-making operations which 
were added or dropped since the previous demon
stration. 

The first 11 demonstrations were of an exploration 
having only 15 information units, all of which were 
either social or technological developments. Demon
strations 12-16 were of an exploration having 40 infor
mation units-35 social and technological developments 
and 5 events. Table II lists the 35 social and techno
logical developments according to the mean investment 
in each development. 

Table III lists the developments in order according 
to the number of times each development was chosen 
as an object of investment. The greater the number of 
people who choose to invest in a development, the less 
influence each person has in determining its mean 
investment. 

TABLE V-Answers to Questionnaire at End of Exploration* 

1. Is the outcome close to or far away from the future you had 
hoped to achieve? 
a. very close 2 
b. close 14 
c. slightly close 19 
d. slightly far 2 
e. far 1 
f. very far 1 

2. If you had it to do all over again, would you change any of 
your investments? 
a. yes 25 
b. no 15 

3. I found the information in the background paragraphs 
a. helpful 33 
b. not helpful 4 
c. wrong 2 

4. I found the instructions on what to do next 
a. sufficient 34 
b. insufficient 2 
c. repetitious 1 
d. badly written 2 

5. All in all I found the Delphi exploration to be 
a. loads of fun 10 
b. fun 25 
c. a bore 0 
d. a complete waste of time 1 

6. Sex 
a. F 12 
b. M 24 

7. Year in school 
a. freshman 2 
b. sophomore 2 
c. junior 0 
d. senior 4 
e. graduate student 20 
f. professor 15 

* Data from demonstrations 12-16. 



The number of times that background information 
was requested for each development is shown in Table 
IV. There are no doubt a variety of reasons for 
requesting background information. The more promi
nent items in the list seem to be those with which 
people are least familiar. Background paragraphs are 
also frequently requested on subjects which the explorer 
is familiar with, probably in order to test the expertise 
of the people writing the program. Similarly, contro
versial subjects seem to be called up in order to divine 
the political opinions of the programmer. 

Ten minutes before the end of the hour each person 
is asked to type a code word in order to jump to a 
series of questions at the end of the exploration. Seven 
of these questions are listed in Table V. Question 2 
asks, "If you had it to do all over again, would you 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 

TABLE VI-Developments in which People Would have 
Changed Their Investment* 

Development N umber of times listed 

Continued Urbanization 5 
Pollution Control 4 
U. S. in Limited War 4 
Complete Nuclear Disarmament 3 
Legal Decisions by Computers 3 
Ocean Farming 3 
Passing of Religion 3 
Population Planning 3 
Racial Barriers Eliminated 3 
Treaty Banning CBW R&D 3 
World Aid Program 3 
Cloning of Humans 2 
International GNP Tax 2 
National Data Bank 2 
Synthetic Food 2 
World Currency 2 
Abortion Legalized 1 
All-out Nuclear War 1 
Genetic Manipulation 1 
Group Marriage Legalized 1 
Intelligence Drugs 1 
Nationless Corporations 1 
"Sexicare" 1 
Staggered Work Week 1 
Teaching Computers 1 
Weather Modification 1 
Air Cushion Vehicles 0 
Animal Donors 0 
Citizen Sampling Simulations 0 
Credit Card Economy 0 
Global 3-D Color TV 0 
Manned Lunar Base 0 
Marijuana Legalized 0 
Time Travel by Deepfreezing 0 
World University 0 

* Data from demonstrations 12-16. 

Computer-based Communications Medium 345 

change any of your investments?" If the explorer an
swers, "yes," he is then asked to list the numbers of 
the developments in which he would make a different 
investment. Table VI lists the 35 developments in 
order from the most to the least frequently mentioned 
in responses to this question. 

Not all of the people who worked through at least 
part of the exploration completed the questionnaire at 
the end of the exploration. Fifty-four people partici
pated in 6 demonstrations. Of that 54, 39 completed 
the questionnaire. 

A non-random sample of people 

It should be stressed that the people who took part in 
these demonstrations were not randomly selected from 
the population at large. They were not even randomly 
selected from the university community. The disciplines 
represented are suggested by the groups listed in Table 
1. The data in Table V, questions 6 and 7, shows the 
distribution of people according to sex and year in 
school. An open-ended question on political viewpoints 
stimulated frequently extended critiques of American 
society. My own interpretation of their answers indi
cates that there were two radical liberals, 10 liberals, 
and 2 people between middle and right wing. 

Furthermore, the people were not randomly selected 
in terms of their interest in the exploration. With the 
exception of a few students in political science classes, 
all of the explorers to date have asked to work through 
the exploration or have responded to the encouragement 
of a friend to do so. The most frequent pattern is for 
an interested faculty member to bring along either a 
group of faculty members or a class of graduate stu
dents. We have not yet systematically sought repre
sentative samples since we are still primarily concerned 
with the development of a more interesting program 
from the viewpoints of both education and research. 
Consequently this data is presented only as a very 
preliminary indication of the kinds of responses that 
can be obtained when using a computer-based com
munications medium to discuss an area of public policy. 
The responses should not be interpreted as representa
tive of how the American people or even university 
people would rate the desirability of the developments 
listed. The data is useful in indicating how many 
possible future developments can be considered by an 
educated person in a given period of time. 

Measures of performance 

Despite extensive instructions at the beginning of the 
exploration, a few people have great difficulty figuring 



346 Fall Joint Computer Conference, 1971 

No. of 

People 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

Total Number of Cycles Completed 

Figure 3-Total number of cycles completed 
(Data from demonstrations 12, 14, 15, 16) 

out what they are supposed to do. This is shown by the 
fact that in Figure 3 several people were able to com
plete only a very few cycles. 

The time allotted for the exploration was in most 
cases one hour. The demonstration on 2/20/71 extended 
to about an hour and twenty minutes. For the five 
demonstrations of the 40 information unit game the 
mean number of cycles completed was 10.3. For the 
four demonstrations in which only one hour was avail
able, a mean of 8.9 cycles were completed with the 
mode being 8 and the median 10. 

The number of people requesting a particular number 
of background paragraphs is shown in Figure 4. The 
mean number of background paragraphs requested was 
8.8. The mode was 6 and the median 11.5. 

The number of people having a particular number of 
random events occur in their exploration is given in 
Figure 5. The mean number of events in an exploration 
was 1.7. The mode was 1 and the median 2.5. 

Figure 6 shows the number of people who made a 
certain number of comments. The mean number of 
comments was 1.6. The mode was 1 and the median 2. 
Everyone was explicitly asked for comments, sug
gestions, and criticisms as one part of the questionnaire 
at the end of the exploration. Consequently there were 
very few people who made no comments, or a response 
such as "none" in answer to that question. Those 

No. of 

People 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Total Number of Background Paragraphs Requested 

Figure 4-Total number of background paragraphs requested 
(Data from demonstrations 12-16) 

25 

20 

No. of People 

o 1 2 3 4 5 6 

Total Number of Events Which Occurred 

Figure 5-Total number of events which occurred 
(Data from demonstrations 12-16) 

people who made only one comment did so in reply to 
the specific request and did not interrupt the exploration 
in order to go into the "comment mode." 

Comments by explorers 

The comments made by the participants during the 
demonstrations reflected a variety of criticisms, sug
gestions, questions, and general reactions. These can be 
grouped in the following categories: 

1. Technical errors. Debugging is an activity familiar 
to all computer programmers. Debugging a program on 
a teaching computer involves calling in some friends 
who either have a knack for making things go wrong 
or who find a malicious glee in outwitting a computer. 
Examples of technical errors would be that the com
puter does not accept a negative number when it 
should, or it accepts a letter when it should accept only 
numbers. A few participants were quick to point out 
such errors: "Hal You made a mistake." 

No. of People 

o 1 2 4 

Total Number of Comments Made 

Figure 6-Total number of comments made 
(Data from demonstrations 11-16) 

5 



2. Instructions. N early every exploration produces 
suggestions for clarifying the instructions. For example, 
"I did not understand how to invest and make a 
meaningful contribution toward my goal." "It would 
be helpful if we were given a reminder to enter our 
choices and outcomes on the data sheet." "Need more 
explanation of what you mean by investment." 

3. The purpose of the exploration. In a game in which 
no score is kept, where the object is to make the desir
able probable and the undesirable improbable, expres
sions of confusion are to be expected. "The final results 
of the game or the goals were not clear to me." Some 
people seem to have difficulty conceptualizing complex 
systems. "I had difficulty realizing the issues. Conse
quently, I'm not sure I was making intelligent de
cisions." On the other hand, some people experience 
"an awakening of the sense of the future of man." 

4. Important items not included. Some of the most 
thoughtful and helpful comments deal with what is not 
included in the exploration. "I did not think that there 
were enough policy factors involved in the issues con
tained here. For example I would have liked to see the 
question of manipulation of the individual considered 
more explicitly-in other words questions about atti
tudinal changes." "Complete disarmament rather than 
nuclear disarmament should be one of the futures 
included." 

5. The original probabilities. Explorers sometimes 
question the actual estimates. "All out nuclear is not 
possible." And sometimes they question who made the 
estimates. "I am curious as to how the original prob
abilities for the given issues were determined." 

6. Background paragraphs. The brief background 
information was challenged usually for not giving suffi
cient attention to consequences, regulation, or alterna
tive solutions. "Nothing was mentioned about the ef
fects of pressure on the surface the air cushion vehicle 
is going to be passing over. Until the ecological effects 
of such an apparatus over a natural surface are de
termined, I would seriously question such an appa
ratus." "In such items as cloning of humans, crucial 
matters would be the regulations that go along with 
the process. It is difficult to decide if it is good or bad 
without at the same time fixing some of the regulations." 
"Legislation or executive action is not needed to sta
bilize population growth rate-education is the answer 
to this problem." 

7. Secondary effects. Questions about secondary ef
fects ranged from who determined them and the logic 
used, to amazement that there were so many. For 
example, "How does a 100 percent investment in world 
aid program reduce probabilities of ocean farming and 
synthetic food?" "I am unclear as to how the associ-

Computer-based Communications Medium 347 

ations were decided upon after I had made my invest
ment or an event had happened. Some of them did not 
make sense to me. Like some of the considerations were 
left out." "I do not see what happened at this point 
which caused the probability of limited war to in
crease." "I would have been interested in how various 
choices affected other events specifically, e.g., a little 
more about why one probability caused a particular 
change in another variable." "Frightening how one de
cision influences so many others you never took into 
consideration when making your initial decision. On 
some do not see off hand how the influence came 
about." 

8. What makes the exploration enjoyable. "I like when 
you add the event to make it more exciting." "I was 
angry at being told· what to do in such a demanding 
way by a machine. My hands felt slapped each time I 
made a mistake." "I would have liked to have finished 
in order to see the full picture of the world. Occasionally 
became bored, however, perhaps due to each step being 
handled in the exact same manner as the previous." 

9. The dangers or opportunities implied by this tech
nology. Only a very few people remarked on the po
tential of this kind of equipment and this kind of 
program for radically altering the process of citizen 
participation in planning. The people who do comment 
on this possibility have usually been students who were 
told in advance what this work might lead to. More 
than we would like, people have concentrated on the 
information in the program rather than thought about 
the possibilities of this kind of information exchange. 
"Concerning this computer, I hope we never go into 
teaching children by this means even though I can see 
where it may be more efficient. Learning how to deal 
with people seems much more important to me." "The 
greatest difficulty here is that as well explained as the 
process is, it is still very confusing. I am not sure you 
could ever get the general publie to use them as the 
general public strikes me as being very lazy and there
fore would not consider this worth the effort." "I think 
the idea is very· interesting and has many possible 
applications especially in finding out what the common 
level of awareness is and where work is needed to bring 
what area up." "A great start at showing the inter
relationship of various particular choices." 

FURTHER NOTES ON SOCIAL IMPLICATIONS 

Not all of the analysis which can be performed on the 
data from these demonstrations has yet been carried 
out. But perhaps the preceding discussion is. adequate 
evidence that the earlier and following speculations and 



348 Fall Joint Computer Conference, 1971 

philosophical musings are based on experiences with 
operational though still elementary prototypes. *** 

The practicality of public discussions 

The data presented here is useful in estimating the 
feasibility of widespread use of "citizen sampling simu
lations" to involve the public in the planning process. 
It is to be expected that some people will be intimidated 
by the thought of using a computer and will be over
whelmed by this advanced communications technology. 
As was mentioned earlier, there is some evidence that a 
few people do have great difficulty with the program 
or at least proceed very slowly. Nevertheless, learning 
how to use a new technology and also exploring a list 
of 35 unusual social and technological developments is 
a demanding task for a one hour period. The success of 
these people in performing that task leads us to believe 
that community issues can Ibe discussed by the public 
with this kind of technology, particularly as people 
gain practice in using it.lO 

The power of suggestion 

The method of describing the future using information 
units seems to have been successful. Most people find 
the experience educational, and the basic structure of 
the program-the way the future is described-has 
not been criticized by most people who play the game. 
However, a few perceptive observers have expressed 
skepticism about the exploration, and rightly so. Simply 
listing a set of possible developments structures the 
thinking of explorers and thereby severely limits the 
range of responses. This is confirmed by the fact that 
people rarely suggest new developments or criticize the 
list given. 

Those observers who are equally concerned but less 
theoretically inclined question the assumptions about 
the world which led to the selection of that particular 
set of forty information units. Furthermore there is a 
danger that some individuals may assume the changes 
in probabilities are "real" or indicate something more 
than merely the aggregated judgment of a group of 
individuals. 

In future explorations we intend to make even more 
explicit the fact that the original probabilities and the 
changes in probabilities of other developments which 
we call "secondary effects" merely reflect the judgment 

*** An earlier consideration of possible social, political, and 
psychological implications of citizen participation in planning 
using computer-based communications media is contained in 
Reference 4. 

of the programmer and the people he has consulted 
and that the consequences indicated are not determined 
by a computer model based upon verified theories of 
the operation of social systems. 

A program now being developed on a specific prob
lem area, the Future of the University, uses prob
ability, desirability, and importance ratings and both 
occurrence and non-occurrence matrices for three sepa
rate groups-students, faculty members, and adminis
trators. In the Delphi program the computer is serving 
as a communications medium between the programmer 
and the people at the terminals. In the Future of the 
University program the fact that the computer is simply 
operating as a mediator among groups of people with 
different patterns of concern and perceptions of the 
world is made much more explicit. 

Who is communicating with whom? 

Even though the responses of each individual are not 
automatically seen by the other participants and the 
program itself may be changed only at intervals in
volving weeks or months, communication can still be 
taking place. In order to clarify the differences among 
Delphi-like computer programs it is useful to keep in 
mind whether individuals or groups are communicating 
with each other, the number of times a single individual 
will sit down at a computer terminal in order to work 
on one particular problem, and how much monitoring 
or editing of responses is done by the programming 
staff. 

1. In Turoff's Delphi Conferencing, as I understand 
it, the responses of each individual are seen by 
all the other participants in the exercise. Items 
are added or dropped on the basis of a vote taken 
among ·participants. No monitoring or editing of 
the exercise is done by anyone except the par
ticipants themselves. Each time a person re
sponds to a question or types a statement his 
response is not only recorded for viewing by the 
programmer but actually alters the program 
which each participant will view thereafter. Each 
person works on the given problem for a few 
minutes every day for several days. 

2. The idea behind the Delphi Exploration, which 
can be thought of as a prototype "citizen sam
pling simulation," was to have communication 
take place not among individuals but rather 
between the planning group and the public. The 
responses of the explorers are recorded and 
viewed by the monitoring group but do not 
automatically change the program itself. This 



pattern is similar to the normal process of in
struction where communication takes place pri
marily between the teacher and the students. 
Each explorer works on a particular problem 
probably only once, at a sitting lasting from one 
to two hours. If the issue is a recurring one, the 
program is changed only every few weeks or 
months when the programming staff has an 
opportunity to reconsider the issue and to change 
the program on the basis of the responses ob
tained since the last modification of the program. 
The purpose of this kind of exercise is not to 
generate a forecast or a set of policy alternatives 
but rather to reduce the amount of time spent 
by planners in presenting background informa
tion to interested citizens and to generate data 
from the public on the desirability of particular 
alternatives, the completeness of the set of al
ternatives considered, and the way in which 
"the problem" is defined. 

3. For a "computer-based mediator," such as the 
program on the Future of the University, com
munication takes place neither among individuals 
nor between planners and the public with the 
planners also acting as monitors, but rather be
tween conflicting interest groups with either no 
monitor or a neutral party acting as monitor / 
arbitrator. The responses of individuals are not 
seen by the other participants except in the mean 
responses of a group. The position of each group 
is not arrived at by negotiation or compromise 
within the group but rather results from aver
aging the views of individuals in the group. In 

TABLE VII-Group Communication Techniques 

Participants 

Length of 
Interaction 

Number of 
Interactions 

Normal 
Mode 

Delphi 
Conference 

individuals 

minutes 

several, 
usually 1 
per day 

usually 
group 
control and 
no monitor 

Citizen Computer-
Sampling based 
Simulation Mediator 

planning interest groups 
group and 2 or more 
the public 

1 to 2 hours 1 to 2 hours 

usually only usually only 
one one 

at present at present 
completely only list of 
monitored items not 

modifiable 

Computer-based Communications Medium 349 

the present program the responses of an indi
vidual alter his group's estimates of probabilities, 
desirabilities, and causal relationships, but the 
list of information units can only be changed by 
the programmer. 

The practice in Delphi Conferencing of allowing the 
participants themselves to add and drop information 
units is a very important capability which can be in
corporated into both citizen sampling simulations and 
computer-based mediators. 

Exchanging views vs. simulating complex systems 

There is a tendency to confuse this project with the 
presently growing number of attempts to model com
plex social systems. If that were our purpose, we would 
be greatly hampered by the technology we are using. 
The PLATO system was designed to operate a large 
number of computer terminals simultaneously with 
each terminal being allocated a small amount of com
puter memory space. Our efforts are sufficiently similar 
to the modeling of complex systems that we have at
tempted to keep up with developments in that area in 
hopes that the form of the models would be applicable 
to our programs. 

However, given the limitations of our equipment for 
doing that kind of work and given its uniqueness for 
doing the task for which it was designed, we believe 
that it would be most productive to spend o~r time 
developing the computer as a communications medium 
between people and as a device for helping less skilled 
people to articulate their mental models of how the 
world works. Since computer models of social systems 
inevitably embody the assumptions of the programmer 
about what the important variables are, the ability of 
less technically skilled groups to express their assump
tions about important variables could be helpful in 
trying to achieve a balance of political influence. 

REFERENCES 

1 C E OSGOOD S UMPLEBY 
A computer-based exploration of alternative futures for 
mankind 2000 
Mankind 2000 pp 346-359 
Edited by Robert Jungk and John Galtung 
London Allen & Unwin 1969 

2 D ALPERT D L BITZER 
Advances in computer-based education 
Science Vol 167 pp 1582-1590 Mar 20 1970 

3 D L BITZER D SKAPERDAS 
PLATO IV: An economically viable large-scale 
computer-based education system 
National Electronics Conference Chicago 1968 



350 Fall Joint Computer Conference, 1971 

4 S UMPLEBY 
Citizen sampling simulations: a method for involving the 
public in social planning 
Policy Sciences Vol 1 No 3 pp 361-375 Fall 1970 

5 S UMPLEBY , , 
The delphi exploration: a computer-based systim for 
obtaining subjective judgments on alternative futures 
Social Implications of Science and Technology Report F-1 
pp 34-51 University of Illinois Urbana-Champaign 
August 1969 

6 G MYRDAL 
Objectivity in social research 
N ew York Pantheon Books 1969 

7 A bibliography of Delphi studies is included in 
M TUROFF 
The design of a policy delphi 
Technological Forecasting and Social Change Vol 2 No 2 
1970 

8 R THEOBALD J M SCOTT 
Teg's1994 
mimeographed 5045 North 12th Street Phoenix Arizona 
1969 

9 An explanation of how the 40 information units were 
selected is given in the third progress report 
V LAMONT S UMPLEBY 
Forty information units for use in a computer-based 
exploration of the future 
Social Implications of Science and Technology Report F-2 
University of Illinois at Urbana-Champaign March 1970 

10 An experiment using the PLATO system to discuss a 
local environmental issue is reported in 
V LAMONT 
New communications technologies and citizen participation 
in community planning 
Computer-based Education Research Laboratory 
University of Illinois Urbana May 1971 



INSIGHT-An interactive graphic instructional 
aid for systems analysis* 

by M. J. MERRITT and R. SINCLAIR 

University of Southern California 
Los Angeles, California 

.. 
INSIGHT (INstructional Systems Investigation 

GrapHic Tool) is an interactive graphics program 
which illustrates the basic concepts of systems analysis. 
The transfer functions, inputs, and parameters of a 
single loop control system are drawn on the graphic 
display. Numeric data entry, system modifications and 
control of the time domain and frequency domain 
analysis is performed using the graphics terminal's 
light pen. All communications are problem oriented 
and no previous computer experience is required. 

INSIGHT provides a common instructional tool for 
all disciplines touching upon systems analysis, control 
theory, and differential equations. Such disciplines 
might include engineering, physics, mathematics, geol
ogy, and chemistry, to name but a few. The common 
link between all of these fields is the use of Laplace 
Transforms to describe linear components of possibly 
non-linear systems, represented as serially connected 
block elements, with and without feedback. Additional 
common factors fall into two classes: 

1. Common Instructional Goals 
(a) encourage use of analysis techniques to de

velop insight into the process under study 
(b) relate frequency domain analysis to time 

domain performance 
(c) provide feel and intuition for theoretical 

concepts 
2. Common Analysis Techniques 

(a) time domain measurements of step, ramp, 
sinusoidal, etc., responses 

(b) phase plane trajectories 
(c) frequency domain analysis: root locus, Bode, 

Nyquist, and describing functions 

The instructional device which provides all of these 
features should also be a universal educational solvent. 

* Supported by the National Institutes of Health under Grant 
No. GM 16197-03. 

351 

I t should be suitable for classroom instruction, labora
tory exercises and homework assignments (see Refer
ence 2 for a more complete discussion). 

The work of Melkanoff,4 Moe,5 and Calahan! clearly 
demonstrates the advantages of computer aided in
struction and computer graphics. The INSIGHT pro
gram is a continuation of these efforts which utilizes 
interactive graphics to meet all of the goals listed 
above. 

All communications between the program and the 
user take place at the display console. Selection of sys
tem components, specification of parameters, and selec
tion of computational algorithms are all accomplished 
with the light pen. The computational services pro
vided by INSIGHT include both time domain analysis 
(numeric solution of the system equations) and fre
quency domain analysis (root locus). 

Computational results are displayed as they are com
puted. All graphs are scaled and rescaled automatically 
to fit within the plot area of the display. 

INSIGHT offers a number of unique advantages: 

1. Learning time is short, usually less than five 
minutes. 

2. The program is autoinstructional and com
pletely protected against inappropriate user 
commands. 

3. Both setup and solution times are extremely 
short. 

4. No previous computer experience is needed. 
5. No programming of any kind is needed. 

The Hardware 

All computer programs are constrained by the com
puter hardware available. INSIGHT is no exception. 
The USC School of Engineering's System Simulation 



352 Fall Joint Computer Conference, 1971 

Laboratory contains (in part) the following equipment: 

1. IBM 360 Model 44 with 64K bytes (going to 
128K bytes as this is written), high speed line 
printer, and four disk files. 

2. Adage AGT-10 Graphic Display System with 
8K words (30 bits) of memory, light pen, func
tion switches, joy stick, teletype and magnetic 
tape. 

All of the facilities of the Adage Graphic System are 
available to FORTRAN programmers through the 
AGNOS language. 3 The AGNOS language contains 
simple FORTRAN callable subroutines for image gen
eration and manipulation, and light pen hit processing. 

Using INSIGHT 

INSIGHT is used in much the same manner as one 
would use a pencil and paper, only much more con
veniently. The pages of paper are represented by a se
quence of graphic "pages" appearing at the graphic 
console. Each graphic page elicits new information 
from the user relating to the design and analysis of the 
system. 

INSIGHT provides the skeleton framework-a 
single loop control system with an arbitrary input. The 
user fills out this framework by selecting items from a 
menu and inserting them in the control systems block 
diagram. The first graphic page presented to the user 
is shown in Figure 1. 

The block diagram is the process, and vice versa. In 
order to reinforce this feeling, the block diagram is 
always retained at the top of the display. All other 
material is entered into the lower half of the screen. 

Figure I-First graphic page of INSIGHT showing the 
block diagram and element menu 

Linear Transfer 
Functions 

A 

A 

s 

A 

(Bs+I) 

(As+I) 

s2+BS+C 

As 

A(Bs+I) 

D parameter is the 
initial condition 
for all linear 
transfer function 
elements 

TABLE I 

Non-linear 
Functions Forcing Functions 

SATURATION A SIN (Bt) 

RELAY A U(t) 

BANG-BANG At 

GEAR TRAIN YzAt2 
BACKLASH 

CUBIC SQUARE WAVE 

SAMPLE AND GAUSSIAN 
HOLD RANDOM 

NOISE 

The contents of the element menu are summarized 
in Table I. All of the photographs seen in this article 
were taken from an early version of INSIGHT. When
ever a discrepancy exists between the text and the 
photographs, the text is correct. 

Menu elements are placed in desired blocks in two 
steps: 

1. Selection-when a menu item is touched with 
the light pen, INSIGHT affirms the touch by 
moving the square shown enclosing the item 
A/S in Figure 1, to enclose the touched item. 
This item is the "current selection." 

2. Placement-when the contents of one of the 
control systems blocks is touched with the light 
pen, the current selection is copied into it, re
placing its previous contents. 

Initially, all of the control system blocks are filled 
with asterisks. An asterisk filled block will be treated 
as a unity gain element by all of the computational 
algorithms. 

INSIGHT recognizes obvious errors, for example 
placing a forcing function, A SIN (BT), in a transfer 
function block, or the reverse, placing a transfer func
tion element, A/S, in the INPUT block. When either 
of these placements is detected, the words "ILLEGAL 
OPERATION" are written at the top of the display. 
The contents of the block involved are not changed. 

When the block diagram is complete, the user 
touches the word FINISHED with the light pen. The 



Figure 2-INSIGHT's specification page, paramet~r entry for 
the diagram shown is complete 

element menu is removed, and the parameter specifica
tion page written in its place, see Figure 2. 

Each block in the control system is assigned a refer
ence number. Thereference number is associated with 
a block's contents, as well as its output. The number 3 
alone refers to the output of block 3. The INPUT 
block is assigned a reference number of 7. A given 
block may contain an element with one two three or , , , 
four parameters. These parameters are denoted by the 
letters A, B, C, and D (see Table I). 

The parameter values are arranged in seven rows of 
four columns each, as shown in Figure 2. All parameter 
values are set to zero when the INSIGHT program is 
entered. Thereafter parameter values are retained until 
they are changed by the user. 

Parameter entry is a three step process: (1) prepara
tion, (2) selection, and (3) placement, as follows: 

1. Preparation-a 13 item menu containing the 
numbers 0 through 9, decimal point, minus sign 
and RUB (backspace) is written below the 
block diagram. The underlined value seen just 
below the numbers 2, 3, and 4 in Figure 2 is 
called the temporary line. As menu items are 
touched, the corresponding character or back
space is written on the temporary line. 

2. Selection-when a parameter value is touched 
by the light pen, the box shown enclosing the A 
parameter, in Figure 2, is moved to enclose the 
touched parameter. This parameter becomes the 
"current selection." 

3. Placement-when the word PUT is touched 
with the light pen, the current contents of the 

INSIGHT 353 

temporary line are copied into the box enclosing 
the current selection. The temporary line re
mains unchanged, allowing the same value to be 
stored in a number of places. 

Integer values may be entered with and without a 
decimal point. For convenience in entering comple
mentary numeric constants (for relays, saturation, 
etc.), the minus sign may precede or follow the numeric 
characters, thus -1 and 1- are both stored as -1.0. 

When all numeric values have been entered, the 
words "SPECS COMPLETE" are touched with the 
light pen. The parameter specification page is replaced 
with the mode specification page, shown in Figure 3. 

The mode specification page allows the user to select 
between the two computational algorithms: 

1. Time domain solution 
2. Root locus 

(N?TE: These options are not shown in Figure 3, 
whICh was taken from a preliminary version of IN
SIGHT.) 

If the root locus option is selected, INSIGHT adds 
an auxiliary gain K to the control systems open loop 
transfer function. Pole and zero positions are marked 
on the root locus plot by Xs and Os respectively. 
Root positions are plotted for values of K in the range 
zero to ten. The root positions at K = 1 are the roots 
of the control systems characteristic equation and are 
denoted by small squares instead of the usual asterisk , 
see Figure 7. The locii are drawn as they are computed 
and are automatically rescaled to fit into the plot area 
of the display. Four options are available while the locii 
are being drawn: STOP, START, RESTART, DONE. 

Figure 3-Mode specification page of INSIGHT-Showing 
default parameter values 



354 Fall Joint Computer Conference, 1971 

TABLE II-Graph Formats 

X FORMAT KEEP 

0 phase plane Yl versus Y2 NO 
1 same as X = 0 YES 
7 time histories Yl and Y2 versus time NO 

(see Fig. 4) 
8 same as X = 7 YES 

The STOP and START options are normally used to 
freeze the display for purposes of discussion or repro
duction. If, at the end of a locus, i.e., K= 10, START 
is touched, then the locus is continued to K=20, 30, 
etc. The decision to STOP a root locus cannot be made 
effectively until the entire locus has been viewed. The 
RESTART option allows the user to return to the be
ginning of the sketch and STOP it at selected inter
mediate positions. Touching DONE with the light pen 
returns control to the first graphic page. 

The root locus algorithm treats all non-linearities as 
unity· gain elements. If describing function gains are 
known, they must be inserted in place of the non
linearities before requesting the root locus analysis. 

If time domain solutions are requested, then the five 
parameter values, step size, total time, Y1, Y2 and X, 
are examined. If the step size is too small, i.e., if 

total time/step size/> 100,000 

Figure 4-Non-linear control system with saturation and a 
square wave forcing function 

then the step size is set to 

step size = total time/100,000. 

Time domain solutions may·be displayed in either of 
two formats, with and without a KEEP option. In all 
cases, the reference numbers placed next to Y1 and Y2 
specify the two block outputs to be plotted. The refer
ence number placed next to the X symbol in the mode 
specification page determines the format of the graph, 
as shown in Table II. 

If the KEEP option is selected, the current solution 
is drawn on top of the previous solution or solutions 
at the same scale factors. The KEEP option is useful 
in modeling and optimization studies and demonstra
tion of the properties of phase plane singularities. 

Figure 5-Non-linear system with relay element in place of 
saturation element 

Values are added to the graphs as they are computed. 
Scale factors are adjusted automatically to fit the 
graph in the plot area (unless the KEEP option was 
selected). The STOP, START, and DONE options 
halt and resume computations and terminate the solu
tion, returning control to the first graphic page. 

Application of INSIGHT 

An instructor wishes to demonstrate the effect of non
linearities on system performance and to illustrate, the 
concepts of limit cycling and stability. He begins by 
constructing the control system shown in Figure 4. 

This system contains three poles and one zero in its 
open loop transfer function. Numeric values must be 



Figure 6-Non-linear system with sinusoidal forcing function 

specified for the gains, time constants, slope of the 
linear segment of the saturation element, and for the 
saturation levels. After specifying the integration step 
size and total solution time, the instructor selected the 
time domain solution, plotting the output of blocks 
3 and 7 versus time. 

In Figure 5, the instructor has replaced the satura
tion element with a relay and plotted blocks 3 and 1 
versus time. 

In Figure 6, the instructor has switched to a sine 
wave forcing function and has plotted the input to, and 
output from, the relay element versus time. This could 
be used to introduce describing function analysis. 

The ease of use, fast solution time and rapid inter
action of INSIGHT are illustrated by the fact that 
less than five minutes was required to generate the 
three examples just described. 

INSIGHT may be used for its root locus facilities 
alone. Another instructor, desiring to discuss properties 
of the root locus sketch, selected elements to form an 
open loop transfer function of the form: 

G(s) 
60(0.08338+1)(0.28+1) 

8(82+48+20) 

The resultant INSIGHT root locus diagram (again 
from an early version without axis labels, magnitudes 
or K= 1 markers) is shown in Figure 7. 

FUTURE PLANS FOR INSIGHT 

The single loop structure and restriction to seven 
blocks are major disadvantages. They are, however, 
removable through additional programming. The high 
cost of the dedicated IBM 360/44 and the Adage dis-

INSIGHT 355 

play system is not so easily treated. Calahan! and 
others have discussed the cost factors relating to the 
use of computer aided instruction. A number of satis
factory graphics systems are available for less than 
$10,000 (Techtronics T4002 and the Adage ARDS 
System, to name only two). The low cost of these de
vices, combined with increased demand for computer 
time will encourage administrators to restructure the 
financial foundations of educational computer centers. 
Conversion of INSIGHT to operate within an existing 
Conversational Programming System (CPS) utilizing 
a large screen video device is under study. The decrease 
in display capacity and increased response times will be 
offset by the decreased cost and increased availability. 

SUMMARY AND CONCLUSIONS 

INSIGHT provides a variety of Systems Analysis 
functions to a wide range of users in a convenient, easy 
to use package. The goals set forth at the beginning of 
this article were met and exceeded. Extension of IN
SIGHT's capacities to encompass more complex struc
tures and additional analysis tools is in progress. 

ACKNOWLEDGMENTS 

The authors are indebted to Rick Klement, Bill Liles, 
and Al Vreeland for the AGNOS language, and to 

Figure 7-Root locus diagram for a three pole two zero open 
transfer function 



356 Fall Joint Computer Conference, 1971 

Donald Miller for his many valuable suggestions in the 
development of the INSIGHT program. 

REFERENCES 

1 D A CALAHAN 
Circuit design application of the Michigan terminal system 
IEEE Transactions on Education Vol E-12 No 3 
September 1969 

2 M L DERTOUZOS 
Educational uses of on-line circuit design 
IEEE Transactions on Education Vol E-12 No 3 
September 1969 

3 R KLEMENT W LILES M MERRITT 
A VREELAND 
The AGNOS language 
University of Southern California Technical Report 
No 71-19 April 1971 

4 M A MELKANOFF 
The use of on-line graphical computer systems for student 
research 
IEEE Transactions on Education Vol E-12 No 3 
September 1969 

5 M L MOE 
The N ASAP computer-aided circuit design program and 
its use in undergraduate education 
IEEE Transactions on Education Vol E-12 No 4 
December 1969 



An interactive class oriented dynamic graphic 
display system using a hybrid computer 

by A. A. FRANK 

University of Wisconsin 
Madison, Wisconsin 

INTRODUCTION 

The current state of engineering education is such that 
it is often difficult for students to gain insight into the 
many subjects they must master. To aid the professor 
or teacher in "getting the point" across, the following 
system is being tried. 

In every field of engineering, theory is developed 
using mathematical and graphical techniques. These 
theories are manifested in problems which illustrate 
different aspects of the theory. These problems in gen
eral are rather tedious to work out by hand and when 
they are worked out they illustrate one single aspect of 
the theory. For example, a beam in a strength of ma
terials class has a given load, then how does the shear, 
moment and displacement change for different kinds 
of loading? What effect does the cross-sectional inertia 
have? How does cross~sectional inertia change as the 
shape is changed? What are the natural frequencies of 
this beam? How would it bend if a natural frequency 
were excited, etc? This kind· of problem could easily be 
solved by a hybrid computer system and the solution 
displayed on an oscilloscope screen. The answers to all 
these questions and many more can be easily seen in a 
continuous fashion on command of the professor. 

It must be emphasized that this system is not in
tended to be a student involved teaching aid.1 ,2 It differs 
with other elaborate systems used for specific applica
tions in that the machine and language remains general 
and only the "skilled" operates the machine. 3 ,4 Further, 
it is possible to display "static" as well as "dynamic" 
problems as illustrated by the example. 

To make the system worthwhile and utilize the hy
brid system more effectively, it is necessary to consider 
multiple numbers of terminals placed into different 
classrooms. I t is then necessary to solve each class
room's problem on a shared basis. A hybrid system 
with a digital computer which has a real time monitor 
and a disc or drum storage can be used in this mode. 

357 

Then since the digital computer can control fully the 
analog computer, dynamic displays in real time can 
easily be generated. 

To make this system work in a reasonable manner in 
a university environment it is an absolute necessity 
that the professor not be burdened with the additional 
responsibility of writing his own programs. To solve 
this dilemma a full time staff member whose sole duty is 
the programming of class problems is provided. This 
staff member is the key to the success or failure of the 
system. He must be versatile enough to handle all 
fields of engineering. 

It must be emphasized that the professor is not to be 
replaced by the system, but rather the system is to 
provide him a more effective manner in which to teach, 
or in other words to enable courses to contain more 
material for a given amount of time, and to provide 
the student a means to comprehend this material more 
effectively. It is thus the responsibility of the professor 
to learn about this new teaching tool. 

DISCUSSION 

1. System Concept 

The hybrid computer is the heart of the display 
system. A normal hybrid computer system has the ele
men ts shown in Figure 1. 

The computer system has all the elements of a dis
play computer. The objective is to design a system 
which can maintain a display system without greatly 
jeopardizing normal hybrid computer usage. 

In a normal environment the hybrid computer's 
digital machine experiences only about 5-10 percent 
CPU usage. The graphical display will essentially steal 
from the unused time. It has plenty of time from which 
to pick. Besides, there is a full time operator so com
munication between operators is possible. 



358 Fall Joint Computer Conference, 1971 

r - - - - - -- - - - - - - - - -- -- - --, 
I 

I 

I 

HYBRID 
CO}1PUTER 

SYSTEM 

"-- -- ---- - ------- -..I 

DISPLAY 

DISPLAY \o4------<J 

DISPLAY 

Figure 1 

The full time operator's duties include both machine 
set up and operation, and programming advice. 

HARDWARE 

The hybrid computer for such a system must consist 
of at least the flowing complement of equipment: 

Digital Computer 

I-General Purpose 
CPU. 

2-16 K Core memory. 
3-Disc or drum mass 

storage. 
4-Real time monitor 

system. 
5-Priority interrupt 

structure. 
6-External communi

cations: AID, DIA, 
logic in and out, and 
hardware interrupts. 

Analog Computer 

I-General purpose 
computer with patch
boards. 

2-16-64 integrators. 
3-4-40 multipliers. 
4-30-60 summers. 
5-100-200 digital 

computer controllable 
potentiometers. 

6-Lines to various 
display centers. 

7-Hard copy capability. 

Each of the displays in the system consists of the 

following: 

1. 872X11 memo scope or scope with memory. 
2. Keyboard. 
3. 8 Coefficient potentiometers. 

SYSTEM OPERATION 

The organization, hardware and software, is designed 
to provide an aid to the teaching of engineering princi
ples for the professor. Thus the display of a problem 
solution must be available immediately (within a sec
ond) after the professor's request is put into the system. 
To do this, the hybrid computer is time shared with 
the various terminals and the user of the hybrid 
computer. 

The operation of a terminal is done by a professor 
simply pushing a request button. On initiation by the 
professor, his program will be presented with the set of 
parameters he has specified on the display screen in 
less than one second. The professor can then change the 
coefficients or parameters and push the request button 
again and the students can see within a second the next 
solution to the problem. These solutions can be stored 
for comparisons or the screen can be wiped clean each 
time. This is the feature of the memory screens. If a 
"hard copy" is desired the professor need only to call 
the operator and make the request. The operator then 
will use the hard copier and provide the professor and 
class with hard copies. These hard copies could also 
have been made in advance in which low cost reproduc
tion methods would be employed. 

The professor may have a number of problems pro
grammed into the computer system. He can simply call 
for the problem by name through the keyborad. For 
example, the bending beam problem can be broken 
into at least three separate parts; (1) shear-moment 
diagrams, (2) deflection-stress diagrams, (3) vibration 
mode diagrams, etc. 

The development of the software for each problem is 
the responsibility of the display systems personnel. The 
only responsibility the professor has is to specify the 
problem and the parameters he would like to see varied, 
and the time and date the problem will be requested. 
His problem will be stored in the computer. Of course, 
it will be easy for a professor to specify a problem which 
is beyond'the computers capability. This will either be 
due to the problem magnitude and the computer ca
pacity or due to the fact that the problem is not suit
able for this kind of computation. It is not likely that 
such problems, at the present level of undergraduate 
education, will be encountered; however, to provide for 



Interactive Class Oriented Dynamic Graphic Display System 359 

such eventuality the terminals will be outfitted with 
time share capabilities to other larger facilities, such as 
a large IBM 360 system or an 1108 Univac system via 
telephone connections. 
__ The program developed by the systems analyst will 
be put onto the digital computer's mass storage device 
(either a disc or a drum). In this fashion, when the 
professor makes a particular problem request the digital 
computer fetches the program from the disc or drum 
and executes it and sends the output to the display; 
In problems involving the analog computer, or real 
time dynamics, the digital computer provides the con
trol and direction of the analog computer and its sig
nals. Problems involving the analog computer will re
quire a patchboard as well as the digital program. It is 
the responsibility of the system staff member to see 
that such a patchboard and the digital program be on 
the machine and ready to run when the request button 
is pushed. The professor may use this display for only 
tep. minutes during his lecture and may only use it 
three or four times during the semester. Even with 30 
professors throughout a college using such a system, it 
will have a relatively low demand if a little care is 
taken in scheduling. 

SOFTWARE SUPPORT 

The staff must be capable of providing this service 
to any professor and any department in the engineering 
college. For example a professor in the engineering 
graphics area wishes to present a problem in descriptive 
geometry, such as a cone cutting a cylinder, on the dis
play system. Another example may come from the 
chemical engineering department which has a problem 
involving chemical kinetics and process control. Still-a 
third example may come from civil engineering in the 
design of earthquake proof structures. Obviously every 

department of engineering has courses which can find 
uses for such a system. The important aspect of the 
total system is that the staff must be able to compre
hend all areas of engineering so as to aid professors 
from all disciplines. The program can be called upon 
once a semester or whenever such a class is run. 

As the system becomes used by the College of En
gineering the facility may have to be expanded to a 
separately dedicated computer system. However, a 
way to begin such a program is to initially start with 
an existing hybrid computer system as an overload. 
Then when the system has proven itself and grows be
yond the hybrid labs capability it will be easy to justify 
further expenditures and argue for its own system and 
staff. 

Most important is that the professor's present teach
ing techniques need not be modified by any great extent 
and thus this system lends itself to a natural "phase in" 
period. It is but a stepping stone to more elaborate 
systems. 

REFERENCES 

1 J LENAHAN 
Synthesis of an interactive human-machine system 
PhD Thesis University of Wisconsin 1969 

2 F KOENIG 
Formal analysis for a general system of interactive automata 
Presented at the 3rd Hawaii International Conference on 
System Sciences January 1970 

3 D CALAHAN 
Circuit design application of the Michigan terminal system 
IEEE Transaction on Education Vol E-12 No 3 
September 1969 

4 M MELKANOFF 
The use of on-line graphical computer systems for student 
research 
IEEE Transactions on Education Vol E-12 No 3 
September 1969 





Hybrid terminal systelD for simulation in science education 

by DONALD C. MARTIN 

North Carolina State University 
Raleigh, North Carolina 

ONCE UPON A TIlVIE - - -

Once upon a time ... there was an old woman who 
lived in a shoe. She had so many children, she didn't 
know what to do .... 

... Precisely the problem which faces the professor 
who wishes to use computer simulation in education 
today. Like the old woman, he has no serious difficulty 
with the older children who are helping around the house 
or in graduate school, but what can be accomplished 
with the thousands of youngsters now lodged in or 
entering that shoe we call the university. This paper is a 
progress report on a new approach taken by one school 
to introduce continuous system simulation concepts to 
all four thousand of its children. 

Once upon a time ... we attempted to teach analog 
computer programming in various engineering and 
science oriented courses. The majority of students 
objected, and well they should. Ten years ago, they 
objected by writing short references to the professor on 
the desks or bathroom walls. Today, they simply ask 
in class-where will I use the analog computer after I 
enter the real world. The answer is, of course, that 
ninety-five percent or more will never see a general 
purpose analog computer after they graduate. They all 
need to know about analog and digital simulation, 
operational amplifiers, basic electronics and signal 
conditioning, but the majority will· never require the 
ability to patch a six degree of freedom or nuclear 
reactor simulation. Wouldn't· it be nice if they could 
all use such simulations to study complex systems 
response without the patching exercise? 

Once upon a time ... it seemed that digital simula
tion would be the answer to the old patching and scaling 
problem. Once students grasped the idea of implicit or 
bootstrap solution of differential equations, they could 
easily learn a digi~al simulation language structure in 
several hours; The scaling problem largely disappears 
and the output can be displayed on an oscilloscope or 
plotted. The difficulty with most digital simulation 

361 

languages is speed and availability. It is far too expen
sive for most universities to provide sufficient remote 
terminals to effectively service an engineering school of 
several thousand students. One terminal for every fifty 
students is not unrealistic and even this number will 
lead to long hours waiting for access during prime time. 
The time shared terminals currently being developed 
by Grannino Korn1 in project DARE at the university 
of Arizona are certainly encouraging and may change 
this picture in the future. At any rate, it is fair to say 
that the high cost of interactive digital terminals for 
continuous system simulation severely restricts their 
extensive use in the undergraduate science education 
program today. 

Once upon a time ... students were asked-no, 
required-to submit lengthly laboratory reports to be 
read and graded by the graduate teaching assistant. 
The hours of hand calculations were gradually super
seded by reams of computer output. It would appear 
that much of the undergraduate laboratory could be 
improved by using simulation techniques and pro
grammed instructional material. The student would be 
required to answer specific questions about the physical 
system, either real or simulated, to demonstrate his 
acquisition of the information presented in the labora
tory. 

Now ... It is because of the nature of interactive 
simulation and its use as an aid to the students' under
standing of physical processes that the hybrid terminal 
system described in the remainder of this report was 
developed. An ideal system includes the high speed, 
interactive, graphic display capability of the analog 
computer along with the memory, program storage and 
terminal capability of the digital computer. The design 
parameters for such a terminal were recently described.2 

These hybrid terminals evolved from earlier work with 
student evaluation of simple and inexpensive analog 
computer terminals.3 The final terminal design was 
based on the premise that the student need not learn 
analog patching to use the hybrid terminal and that 



362 Fall Joint Comput~r Conference, 1971 

TER MINAL 
NO. 16 

CLASSROOM 

INTERFACE 
AND 

MULTIPLEXER 

TR-48 

ANALOG 
COMPUTER 

COM PUTE R ROOM 

Figure I-Hybrid terminal system 

IBM 
1/30 

DIGITAL 
COMPUTER 

PROCESS 
CONTROL 

LABORATORY 

programmed instruction type laboratory handouts 
should replace the traditional concept of submitting 
hard copy computer results of a simulation. 

THE HYBRID TERMINAL SYSTEM 

The hybrid terminal system developed at North 
Carolina State University is the largest system in the 
world devoted to undergraduate system simulation 
utilizing both analog and digital computers. This 
system, funded by the National Science Foundation, 
was designed and installed in less than twelve months. 
The hardware was supplied by Electronic Associates 
and the software was developed by student program
mers at the university. 

A flow sheet for the classroom hybrid terminal 
system is given in Figure 1. The system consists of the 
following components: 

a. Sixteen student simulation terminals. 
b. An instructor's control terminal. 
c. A digital mini-computer with teletype and cassette 

tape I/O. 
d. Control interface to the analog computer. 
e. Channel communication link with an IBM 1130 

for hybrid problems. 

The student simulation terminals 

The basic terminal configuration is shown in Figure 2. 
All display functions are located on the upper display 
panel. Control and data input are provided on the in-

clined panel. The control functions available to the 
student include power on-off, store, non-store, and erase. 
Indicator lights are also provided for terminal identifica
tion, error and terminal ready status. 

The primary output display device is a Tektronix 
type 601 storage screen oscilloscope. Output scaling is 
automatically provided for in the digital software. A 
six digit display is available to return parameter values 
and other numbers from the digital control computer. 

The student controls the analog or digital simulation 
from the keyboard. There is provision for selecting 
from two X and four Y channels for the display of 
analog signals from any of four pre-patched analog 
problems. The student sets any of eight function 
switches and enters values for up to eight parameters 
from this keyboard. The current value of any parameter 
can be displayed in the six digit window on command. 
Either E or F format can be selected by setting a two 
position switch. Hybrid problems are all addressed as 
problem five, i.e., selecting problem 52 is for digital 
simulation, problem 51 for least squares fit of data, 
etc. Provision is made on the terminal for automatically 
incrementing a parameter through a range of values and 
for control of a cursor to locate points on the analog 
display. 

Instructor's control terminal 

The instructor has access to a terminal which is 
similar to the students as shown in Figure 3. The major 
difference lies in the output display. This terminal uses a 
Tektronix type 4501 storage oscilloscope with television 

Figure 2-Student simulation terminal 



output. The instructor can display his solution to the 
entire class on a large screen television monitor and mix 
visuals with the computer output. By selecting the 
appropriate terminal number, he can also displa;:y any 
student's solution on the monitor. He also has the 
capability of obtaining a hard copy of his or a student's 
solution of any given problem in ten seconds with a 
Tektronix type 4601 hard copy unit. 

Digital control computer 

The heart of the hybrid terminal system is the digital 
control computer. This is a PDP-8 with 4K cor-e and 
cassette tape drive for program storage. This computer 
collects and stores data from the simulation terminals 
until a solution is requested by a student. When a 
solution request is received for an analog problem, 
appropriate problem number, outputs and function 
switch settings are transferred to the multiplexer. All 
parameters are normalized, the digital to analog con
verter set, and the analog is placed in the operate 
mode. Only the oscilloscope of the terminal which 
initiated the solution request is unblanked. The basic 
cycle time for this process is forty milliseconds although 
solution time can be extended by the instructor if 
desired. 

If a hybrid problem is selected by a student, the 
PDP-8 computer interrupts the IBM 1130 and initiates 
the transfer of the appropriate program from disk to 
core. All further entries from this particular terminal 
are then transferred to the IBM 1130 until the hybrid 
program has been executed or terminated by the 

Figure 3-Instructor control terminal 

Hybrid Terminal System 363 

student. For a hybrid or digital simulation program the 
IBM 1130 stacks interrupts and stores input on the disk 
for sequential execution. After execution, the IBM 1130 
interrupts the PDP-8 control computer which steers 
the output back to the proper terminal. 

The instructor uses a special conversational language 
developed by our programmers for setting up student 
application programs. This language makes use of the 
cassette tape recorder to store maximum and minimum 
values of parameters, analog operate and reset time, 
and output display scaling information. The only 
expertise required by the instructor who wishes to 
employ this system in his course is basic analog com
puter programming and a knowledge of FORTRAN 
for digital applications. 

Control interface 

The interface couples the PDP-8 control computer 
with the analog computer multiplexer, and terminals. 
If the student wishes to enter a parameter value, this 
information is transferred digitally from a 32 bit sIiift 
register in his terminal to his core area in the PDP-8 
through this interface. If a parameter display is re
quested, values are transferred through the interface 
back to the display window of the terminal. A solution 
request directs the interface logic to transfer all in
formation collected from a given terminal to the analog 
computer. The interface clock determines basic cycle 
time for analog problems. This interface also contains 
the logic for interrupt processing between the PDP-8 
and IBM 1130 computers for hybrid or digital problems. 

Channel communication link 

Since the PDP-8 control computer only has a 4K 
core, hybrid and digital problems were extremely 
limited on the basic system. To implement digital 
simulation and more extensive hybrid problems, the 
PDP-8 was coupled to an IBM 1130 located in a nearby 
process control laboratory. Each computer treats the 
other as an additional device operating under interrupt 
control. A basic monitor was written for the IBM 1130 
to transfer terminal information to disk and call stored 
digital programs. 

TERMINAL CLASSROOM 

The sixteen terminals are installed in a classroom 
near the computer room as shown in Figure 4. Three 
terminals are located on a large conference table near the 
instructor's console. These are used for small groups of 



364 Fall Joint Computer Conference, 1971 

Figure 4-Terminal classroom 

students in a seminar-discussion mode to provide a high 
degree of interaction with the instructor. The remaining 
terminals are located in restaurant-type booths designed 
for use by two students. The classroom can handle 
thirty students comfortably. The terminals are series 
connected with the last terminal of the string located 
approximately 350 feet from the computer room. 

SYSTEM RESPONSE TIME 

The basic system response time for analog programs 
is 40 milliseconds. This time is limited by the old but 
reliable relay mode control analog computer used in our 
system. When a student requests a solution after 
selecting a problem and setting parameters, the next 
twenty milliseconds are used to set the multiplexer, set 
any or all of the eight DA converters to his parameter 
values and reset initial conditions on the analog com
puter. During the next twenty millisecond time span, 
his display oscilloscope is unblanked to store or view 
the problem solution curves. In this mode of operation, 
the worst case response time when all sixteen students 
request a solution simultaneously is 640 milliseconds. 

The response time for hybrid problems and digital 
simulation is naturally dependent on the specific 
application. A typical illustration is the least squares 
data program described in the next section. This pro
gram requires from thirty seconds to one minute 
execution time on the IBM 1130, the time dependent 
on the order of polynomial requested. Thus, if two or 
three terminals are using this program, an· individual 
would have to wait several minutes for a solution. Since 
the communication channel operates on an interrupt 

basis, the analog solution response time for other ter
minal users would not be degraded. It should be noted 
that only one hybrid or digital simulation problem can 
be entered and executed from an individual terminal at 
any given time. Any attempt to enter a second hybrid 
problem before completion or deletion of the first results 
in an error message on the screen. This error message 
directs the new user to a terminal which is not busy. 
This feature is particularly important when using the 
digital simulation program which can result in in
dividual terminal response times of· 20-30 minutes for 
multiple users. In such instances, the user can leave the 
terminal and return at a later time to request his 
solution. Again, analog solution time is not affected on 
the remaining terminals. 

TYPICAL PROBLEMS IMPLEMENTED ON 
THE SYSTEM 

The types of problems which can be implemented 
on the hybrid terminal system are illustrated with three 
specific examples. The first is an analog water pollution 
study used at the freshman and sophomore level and 
the second is a digital data reduction problem used by 
juniors and seniors to analyze laboratory data. The third 
example illustrates control features of the digital 
simulation language. 

A n analog problem 

This problem demonstrates the effect of dumping 
pollutants in a stream at two different points. The 

Figure 5-Typical output for an analog problem 



primary display presented to the student is the typical 
oxygen sag curve, but he can also look at the waste 
decay function. The model consists of four first order 
differential equations, two for each town on the stream. 
The student can control the decay rates characteristic 
of the waste, the rate of dumping waste material, and 
the reaeration coefficient as a function of stream velocity 
and turbulence. He is given a programmed instruction 
type handout, and asked to determine from the ter
minal, waste characteristics, rates, and stream aeration 
coefficients so that the oxygen level will remain above 
habitable levels for fish population. This problem is 
designed for a two hour laboratory session. Since this 
is an all analog simulation, response time is excellent. 
A typical illustration of the parameter increment 
features of the terminal is shown in Figure 5. In ~this 
case the student has incremented the quantity of waste 
dumped at the second town from its minimum to 
maximum value. For single student operation, this plot 
is obtained in 400 milliseconds. If all were requesting 
ten solutions of this or another analog problem at the 
same time, the plot would have been obtained in about 
seven seconds. Student feedback from this problem 
has been very favorable, partly because of the current 
nature of the problem. 

A digital problem 

A polynomial fit of experimental data serves to 
illustrate the terminal system capability in the digital 
mode. When the student selects any problem number 
beginning with the numeral five, his terminal is coupled 

Figure 6-Initialization of the least squares program 

Hybrid Terminal System 365 

Figure 7-0utput of digital curve fitting problem 

to the IBM 1130 through the communication link. 
Figure 6 shows the response received at the terminal 
for the least squares program, number 51. The student 
can then either select card input for data or enter the 
data on the terminal keyboard in XY pairs. He then 
specifies the order of the polynomial and requests a 
solution. The data, curve and coefficients are returned 
as shown in Figure 7 in approximately one minute. For 
this particular plot, the student requested a first, second, 
and fourth order polynomial and then requested the 
coefficients for the fourth order case. The user scales 
the output by entering the percentage of the vertical 
screen he wishes the input data to occupy. Naturally 
the response time would be on the order of sixteen 
minutes if all terminals requested a solution simul
taneously, but such use is unrealistic with this type 
of program. 

A digital simulation problem 

The digital simulation program is accessed in the 
same manner as other digital programs, i.e., selection of 
problem 52 provides the terminal response shown in 
Figure 8. The student can enter configuration state
ments, parameters, and control statements as indicated. 
Incidentally, the graphics package written by our 
student programmers requires about 400 milliseconds 
to fill the screen. Programs which exceed the line 
capability of the display are paged. Since the IBM 1130 
simulation language is slow, between two and eight 
minutes are required for digital execution time. The 
user's program is tagged and he can return later to 



366 Fall Joint Computer Conference, 1971 

Figure 8-Digital simulation control 

obtain his output if desired. Another user can solve an 
analog problem from this terminal, but if he attempts to 
enter a digital or hybrid program, a message on the 
screen directs him to another terminal which is not 
busy. In this case, a busy terminal is one which has any 
hybrid solution pending. This problem could be avoided 
with a larger digital computer with additional storage 
capability. 

CLASSROOM EXPERIENCE 

At the time of this writing, the system has been 
installed and used for one semester. Approximately one 
thousand students have used the system during this 
initial phase of operation. These students were from the 
Chemical Engineering, Engineering Operations, Civil 
Engineering, and Computer Science Departments. 
Many others have expressed interest in using the system 
and will be developing application programs during the 
summer. One interesting use has been by the Freshman 
Engineering Division. These students take an intro
ductory engineering orientation course and have no 
background in differential equations or system simula
tions. They seemed to have little or no difficulty in 
understanding the concepts presented in the study of a 
simple stream pollution simulation. 

The time required for a student to learn the operation 
of these terminals is about two hours. Most of this time 
is spent in overcoming a natural reluctance to press the 
buttons without detailed instructions concerning their 
function. Once they decide for themselves, for instance, 
that a value entered on the keyboard will not alter a 
parameter value unless the ENTER key is used, they 

seldom have further hesitation. We try to ensure that 
the first two problems used by a given group are of the 
programmed instruction type with very detailed in
structions 0Ii. terminal operation. Subsequent handouts 
generally include detailed description of the physical 
system being studied but not much information on 
terminal operation. 

Typical problems used in an introductory chemical 
engineering systems analysis course include: 

Session one: An introductory session used to teach 
terminal operation. The example used is the filling of 
tanks of various sizes with different fluid flow rates. 

Session two: A perfectly mixed tank is forced with a 
step function and sine wave to illustrate superposition 
for linear systems. The student controls the tank 
volume, inflow rate, input frequency, and initial con
centration. He uses the simulation to reinforce the 
concept of time constants and determines phase lags and 
amplitude ratios for sinusoidal forcing of a linear system. 

Session three: The student studies the response of 
first order systems in series from the oxygen sag curves 
of a two town river pollution model. 

Session four: A mercury manometer is forced with a 
step function and the student observes the actual 
response in terms of frequency and damping. He then 
uses the terminal with a second order model to see how 
closely calculated values of the parameters in the 
simulation fit the experimental data. 

Session five: A heated tank model is studied to 
introduce the idea of proportional, integral and deriva
tive control. The student varies control parameters to 
demonstrate the idea of stability of such control 
systems. 

Additional laboratory sessions introduce frequency 
response, sampled data systems, etc. The laboratory 
report consists of answering questions related to system 
response as determined from the simulation. 

STUDENT FEEDBACK 

Initial feedback from the students using this system 
has been excellent. They are asked to comment on each 
experiment and hand in their comment sheet without 
identifying themselves. Approximately 80 percent are 
ecstatic and make such comments as: 

"The most interesting lab in the university." 
"I never understood stability until I actually saw the 

system response on the terminaL" 
"The labs improve with time because as you go on 

you become more accustomed to the machine. It 
was also easier to follow instructions for this third 



experiment. They made more sense. Too bad we 
have to stop when we are barely started." 

"Lab so far has been very interesting, and more 
important, useful. My only concern (sad but true) 
is how these reports will be graded." 

As expected, a few adverse comments were received, i.e., 

"This lab can be instructive but not in two hours! 
The time t'o fully understand the computer and the 
system is much closer to 5 or 6 hours." 

, "I feel lost but I'm learning." 
"Too much material to cover in the time allotted." 
"Very interesting but I think I need more background 
in differential equations to fully appreciate the 
problems." 

In the particular course being evaluated, some" 
students had completed a course in differential equa
tions, but most were taking differential equations 
concurrently. In talking to students who felt they were 
not receiving much benefit from the simulation ter
minals, it turns out that they were a semester behind in 
their mathematics sequence and would not take differ
ential equations until next semester. Since the terminals 
were successfully used in the freshman orientation 
course, it is apparent that we used the wrong handout 
material for these students. 

CONCLUSIONS 

Student response to the use of this hybrid simulation 
laboratory has been very encouraging. It is apparent 
that we can indeed introduce the concepts of simulation 

Hybrid Terminal System 367 

in the study of dynamic systems to all of our children. 
The key to success is the development of the student 
handout material which must be oriented toward both 
the specific course material and the background of the 
student. The cost of the system described is approxi
mately $80,000, not including the IBM 1130. The 
system . can easily accommodate several thousand 
students per year. If the cost were amortized over a 
five-year period, the cost would be something on the 
order of eight to ten dollars per student per year for 
essentially unlimited use. Quite a bargain for simulation 
terminals when connect time, line charges and CPU 
time are considered for conventional digital terminals. 
While these terminals are more limited in scope, we are 
convinced that we will see significant improvement in 
the students' understanding of dynamic systems as the 
terminals are used in additional curricula. 

ACKNOWLEDGMENT 

The financial support of the National Science Founda
tion to develop and evaluate these hybrid terminals is 
gratefully acknowledged. 

REFERENCES 

1 G A KORN 
The handwriting on the CRT 
SIMULATION pg. 319 June 1969 

2 D C MARTIN 
A different approach to classroom computer use 
ACEUG TRANSACTIONS Vol 1 No 1 January 1969 

3 D C MARTIN 
Development of analog/hybrid terminals for teaching system 
dynamics 
Fall Joint Computer Conference 1970 





BIOMOD-An interactive computer 
graphics system for modeling* 

by G. F. GRONER, R. L. CLARK, R. A. BERMAN, and E. C. DeLAND 

The Rand Corporation 
Santa Monica, California 

INTRODUCTION 

Many of those involved in improving the quality of life 
often model and simulate continuous systems as part 
of their work. For example, one group of investigators 
may model an oil refinery to learn how to produce a 
new fuel efficiently, while another may simulate a 
global weather model to determine the effect of burning 
large quantities of the fuel at high altitudes. An urban 
planning team may simulate the water flow in an 
estuary to discover the best location for a new sewage 
treatment plant or the effect of a proposed breakwater. 
A medical team may simulate the bodily distribution of 
drugs to determine optimal dosage amounts and in
tervals, while another team might simulate the blood
volume control system to design a more efficient 
artificial kidney. 

All of these investigators may take a common ap
proach to solving their problem. This approach involves 
the following steps: 

• Develop a mathematical model based on data and 
experience. 

• Represent the model in terms suitable for an 
analog, hybrid, or digital computer. 

• Run a computer simulation for a number of 
situations where the real system behavior is known. 

• Adjust the model structure and parameters until 
it behaves the same as the real system. 

• Run the simulation to predict the system behavior 
in new situations. 

• Continue to collect data and run the simulation to 
verify the model and learn more about the real 
system. 

* This research was supported by Public Health Service Grant 
No~ l-ROI-GM-15896. Any views or conclusions contained in 
this paper should not be interpreted as representing the official 
opinion or policy of The National Institutes of Health or The 
Rand Corporation. 

369 

To accomplish this, the investigators must have 
available to them a computer system that can simulate 
large models and produce accurate,repeatable results. 
In addition, the computer system should provide aids 
for describing, analyzing, and verifying the model, 
mechanisms for changing the model and rerunning the 
simulation, and facilities for saving the model descrip
tion, simulation run results, and data about the system 
being modeled. 

An investigator can be most effective if he, the person 
who understands the real system, can directly and 
easily develop and operate the computer simulation of 
that system. The computer system should allow him to 
describe his model using terminology that is meaningful 
to him, to develop, modify and run his model by taking 
actions natural to him, and to examine his model's 
behavior in those ways that are most understandable 
to him. Because continuous systems are usually de
scribed by combinations of block diagrams, mathe
matical statements, logical operations, ordinary and 
partial differential equations, chemical equations, 
transfer functions, graphs, and tables of data, the 
computer system should be able to interpret these modes 
of representation. Modelers communicate by sketching 
diagrams, writing equations, drawing curves, and 
typing text, so the computer system should allow for 
these natural forms of input. Because the behavior of 
real systems is usually presented through graphs or 
through tables of numbers, the.computer system should 
present the behavior of simulated models in these 
forms. 

A succession of digital computer programs for 
simulating continuous systemsl- 3 provides analog
computer-like elements, mathematical statements, logi
cal operations, printed graphs, and the ability to 
automatically modify parameters and rerun. These 
programs are usually run in the batch mode, however, 
so an investigator can neither directly develop his 
model nor control its operation. Some recent computer 



370 Fall Joint Computer Conference, 1971 

Figure 1-A BIOMOD user at a console 

systems4-7 employ graphic consoles attached to com
puters to allow investigators to interactively construct 
and operate models. These systems are, however, still 
lacking in man-machine communication techniques. 
The BIOMOD system has been developed specifically 
to make modeling continuous systems more convenient 
for investigators who are unsophisticated in the use of 
computers. It accomplishes this by providing a high 
degree of interaction, graphical displays, user-oriented 
model-definition languages, and flexible, in-depth 
model structuring. 

A modeler uses BIOMOD via an interactive graphics 
console comprising a television screen, data tablet, and 
keyboard (Figure 1). The system takes full advantage 
of the screen/tablet two-dimensionality by allowing the 
user to shift his attention from one place to another 
and take any appropriate action at will. He may com
municate with the system by typing with the keyboard, 
and by handprinting or pointing with the tablet pen. 
BIOMOD responds immediately with its interpretation 
of user actions. This interaction is present in the system 
at several levels. For example, when the user hand
prints a character, the system displays its interpretation 
as a stylized character in the respective position on the 
CRT; when he completes a statement, the system either 
lists the variables appearing in the statement, or 
provides an error diagnostic. When he completes the 
description of his model, the system generates an 
executable program and runs the simulation. 

A user may represent a model by a block diagram, 
each component of which, in turn, may be defined by 
another block diagram. This hierarchical structuring 
enables him to organize his model into meaningful 
substructures. At the most detailed level of the struc
ture, he defines blocks by analog-computer-like ele
ments, algebraic, differential, or chemical equations, 
and/ or Fortran statements. A modeler may thus define 
his model in whatever terminology is meaningful to him. 

Displayed curves are continuously and automatically 
updated during model simulation. At any time, a user 
may stop the simulation, display curves for different 
variables, change scales, alter simulation parameters, 
or modify the integration method, and then continue 
the simulation or revise the description of his model. 

The next section demonstrates BIOMOD by pre
senting a scenario of how a user might describe and 
simulate a simple, but important, model. The third 
section describes BIOMOD's features more fully. The 
paper concludes with a brief description of the 
BIOMOD system implementation and a discussion of 
experience with users. 

A MODEL FOR EVALUATING DRUG 
ADMINISTRATION POLICIES 

Medications and their prescribed dosages are designed 
to maintain a critical amount of drug in the blood for a 
specified period of time. The conventional method for 
determining optimal dosages involves numerous labora
tory experiments. If the drug effects can be modeled, 
however, a more efficient method is to experiment by 
running computer simulations. 

One technique for maintaining the prescribed 
amount of drug is to use a capsule containing a large 
number of differently coated pellets. The pellets dis
solve at different times, so that, as drug leaves the 
blood, it is replaced by drug released by newly dis
solved pellets. Garrett and Lambert8 have proposed 
the following model to describe this situation. A capsule 
comprises a number of pellet popUlations with different 
mean times of release. The rate of drug release for each 
population is assumed to be normally distributed (with 
the same standard deviation for each population) about 
the mean time of release for that population. The rate 
of adding drug to the body is therefore specified by a 
sum of normal distributions. The transfer of drug 
through the body is described by 

kGI,B kB,U 

drug~~~~@ 

where GI refers to the gastrointestinal tract, B to the 



blood, and U to the urine and other excretory parts of 
the body; this means that drug flows from GI to B at 
rate kGI,B and from B to U at rate kB,u. Thus, for 
example, 

dDB/dt = kGI,BDGI - kB,uDB 

where DB is the amount of drug in B, and DGI the 
amount of drug in GI. 

Given this description together with the requisite 
parameter values, BIOMOD can be used to simulate 
the model. Note that the following dialogue describes 
only one of many possible ways of reaching the same 
goal, and that BIOMOD does not force the user to take 
actions in any particular order. 

When using BIOMOD, we communicate via a data 
tablet pen and a keyboard. The pen's location on the 
tablet is always indicated by a dot displayed in the 
corresponding location on the television screen. 
BIOMOD's interpretation of user pen actions depends 
on where the pen is placed and on what is currently 
displayed on the screen. We may handprint characters 
in most areas. As we write, a displayed "ink" track 
appears to flow from the pen; each time we complete a 
character, its track is replaced by a stylized character. 
We can change a character by writing another over it. 
Some symbols are used for editing; for example, we 
may use a caret to insert text, or we may scrub with the 
pen to delete text. Some areas displayed on the screen 
act as pushbuttons; if we "push" one of these (by 
touching the pen down), the system performs the 
indicated action. If we push a displayed arrow, a con
tinuous action takes place, such as the rescaling of a 
set of curves. Some figures can be "dragged"; if we 
"touch" one of these and move the pen, the displayed 
figure follows the pen's motion. We may type (with the 
keyboard) in any area where writing is possible. The 
keyboard cursor may be positioned either with the pen 
or with keyboard control keys. 

To create our model, we enter our identification, 
name our model DRUGS, then begin constructing the 

. model. Because it has two major components, we first 
draw two rectangles; these are replaced by stylized 
function boxes. We write CAPSULE in one box and 
names of parts of the .body in the other box, and then 
draw a flowline to connect them. This diagram (Figure 
2) provides not only a picture of our model, but also a 
means of defining the two components of the model 
separately. 

To define the capsule component, we first push the 
DEFN button on its box. The system replaces the block 
diagram with a list of languages that we may choose 
from to define the component. The languages are: block 
diagrams, mathematical equations, chemical equations, 
and Fortran statements. We choose block diagrams so 

BIOMOD 371 

tll"'ll. ITC 

Figure 2-The DRUGS model block diagram 

that we can define the capsule as a set of boxes, each 
representing a pellet population. This ability to define 
a box by another block diagram enables us to organize 
a model as a hierarchical collection of a number of 
components at different levels. We draw four boxes and 
write PILL on the top line of each to represent four 
pellet populations. We name a function box in this way 
whenever we anticipate using the same function 
repeatedly. 

Because each population is defined by a normal 
distribution, we indicate that we want to define the 
PILL function with mathematical equations. BIOMOD 
responds by displaying a form for writing algebraic .a~d 
differential equations. We assume that the probabIlity 
of a pellet dissolving in an interval about time t is 
given by the probability density function 

1 
p = -- exp[ - (t - m)2/20'2] 

0'y'2;r 

Using this function to approximate the drug release 
rate by a deterministic variable, we write 

P = 1/ (SIGMA *SQRT (2*PI) ) *EXP ( - (TIME

MEAN) **2/ (2*SIGMA **2) 

The system analyzes this statement and immediately 
responds with the message 

UNBALANCED PARENTHESES 



372 Fall Joint Computer Conference, 1971 

~TOR!. , R!CUL 
'UM! 000000 

OG Oil MODU !DITOR I HARDCOPY ~. ROLL 1 

• 'AGI .. 
PILL I ORIOI" 

t !lCROLL , 

MATH!MATICU !QlJlTION~ CODIIiG 'ORM 

D!"!I!~ DI""ITIO" 

VARUIILI~ DI""ID HIli! VARUILI!~ DI""ID ILSI_HIRI 

CHICK ,,: 
Ol'TPl!T V"""'ILI! 
I LOCU VAIIUILI! 

•• IllAM! COMMINT , 

CHI!CK ,,: t !lCROLL , 
UIUMUIU III'liT 
I~ON-RI!IIIAMUILI IN'lI1" 

.. IllAMI! COMMINT 
NIAll 
PI 

I ~IOM. 
IbO ... II 

Figure 3-The definition of a pellet population 

We then add a closing parenthesis to correct the state
ment. We also realize that we should parameterize the 
amount of drug released by each pellet population, so 
we insert DOSAGE after the equals sign, and scrub the 
1. The display now appears as in Figure 3. 

BIOMOD has generated separate lists of the defined 
and undefined variables; TIME does not appear 
because it is always the simulation independent 
variable. These lists enable us to indicate which 
variables have different meanings or values each time 
we use the function. We indicate that the names (and 
therefore the values) of PI, SIGMA, and DOSAGE 
are the same each time we use the PILL function. This 
is because PI is a constant, and because we assume 
that the standard deviation and dosage amount are the 
same for each population. On the other hand, we 
indicate that MEAN may have a different value for 
each pellet population. 

N ow that we have defined the PILL function, we are 
ready to use it to define the individual populations. We 
push a button to get back to our diagram of the four 
PILL boxes, then push the DEFN button on one of 
these. Because PILL is now defined, BIOMOD displays 

P ~ 

MEAN f-
PI f-PI 
SIGMA f- SIGMA 
DOSAGE ~ DOSAGE 

for us to provide the names of the output and mean of 
this particular population. We write PI next to P~, 
to name this output PI, and write MI next to 
MEAN f-, to name this mean time of release M 1. We 
similarly establish the correspondence between the 
names of variables in the other three pellet populations 
and the names (P and MEAN) used when defining the 
function PILL. 

We can describe the flow of the drug through the 
body by chemical equations because these are mathe
matically equivalent to mass transport equations. When 
we push the DEFN button on the box that describes 
the body, and select chemical equations, BIOMOD 
presents an appropriate form. According to our original 
model description, we would like to write 

kGI,B k:s,U 

DGI~DB~Du 
or 

where O. indicates that there is no backward flow. 
BIOMOD requires that we linearize each equation, 
and write the rate coefficients and equation in the 
provided columns as 

S 
S 

KGIB 
KBU 

O. 
O. 

DGI = DB 
DB = DU 

Here S (for slow reaction) means that BIOMOD 
should derive integral equations from our equation. 
Since the pellets release drug into the gastrointestinal 
tract, we also write 

G DGI Pl+P2+P3+P4 

This statement (with G for gain) indicates that the 
gain of DGI, i.e., the increased rate of change of DGI 
due to drug entering the body from outside, is equal to 
the sum of the rates of drug release from the four pellet 
populations. 

The model is now defined except for parameter 
values. When we indicate that we are ready to provide 
these values, BIOMOD displays the names of model 
variables and parameters in two separate lists (Figure 
4). Names such as D G 10 indicate initial values; they 
are derived from the chemical equations by BIOMOD. 
We enter the values given or implied by Garrett and 
Lambert. We assume that some drug is immediately 
released into the gastrointestinal tract and therefore 
set DGIo to 5; the other drug amounts are initially 



!!TO". I "ICALL L 
"''''HI 00 .... · 

00 Oil I HODIL 101 TO" I H"'''DCO'Y I' .OLL t .. 

• D"UO!!' 
~ 

I 
• ''''GI .. 

I O"IGIII 

VA"tAIL.1!! """"'MITIIl!! 

CHICIC IJI', CHICK 1', t _nOLL' , PLOTTAILI HODIJI'tAILI 
UOT PLOTT AIL I UOT HODIJI'tAILI 

II AMI COMMINT IIAMI • VALUI COMMIIIT 

l.!.. 
I· :1 "---
~ 
'--- ~ ~ 
11_"'" 

Figure 4-The model variables and parameters 

zero. In order to mInImize storage requirements, 
BIOMOD limits the number of variables whose values 
are saved during simulation and the number of param
eters whose values can be modified during simulation. 
Since this model is small, we indicate that we want to 
save values of (and possibly plot) all the variables, and 
that we might want to modify values of all parameters 
except PI. 

I t has taken us less than half an hour to completely 
describe our model. We now indicate that we would 
like to simulate it. BIOMOn first produces a 
CSMP /3602 program that describes our model and 
provides for graphic display of the results. CSMP, in 
turn, generates a Fortran program, which is compiled 
and linked with other programs required to run the 
simulation. If an error is detected at one of these steps, 
program listings and error messages are displayed on 
the screen; otherwise, our only awareness of the inter
mediate steps is via displayed messages. The time 
required for the translations depends on the load on the 
(multiprogrammed) computer; generally it is about 
three minutes. 

Our DRUGS model translates successfully so the 
form shown in Figure 5 is displayed on the screen. As 
in the other forms, software pushbuttons appear across 
the top. The central area is for selecting numerical 
integration methods, modifying parameter values, 
examining variable names and values, or plotting 

BIOMOD 373 

graphs. The areas to the left and below the central area 
are for specifying the y and x axes of the graphs. 

We expect the values of our model variables to change 
smoothly and over several units to TIME, so we 
choose a simple integration method-Simpson's method 
with step-size = 0.1. This is a fixed step-size method, 
so the information regarding variable step-sizes dis
appears. Before studying how to use a multi-pellet 
capsule, we want to ensure proper model behavior when 
there is initially some drug in the gastrointestinal 
tract, but no capsule. To eliminate the capsule drug we 
push the PARAMETERS button to display the list of 
modifiable parameters in the central area, then over
write the value of DOSAGE, changing it to O. Next we 
display the list of plottable variables. Because we are 
most interested in the amount of drug in the gastro
intestinal tract, blood, and urine, we drag the names 
DGI, DB, and nu to the y axis. We want to watch 
the model for several simulated hours, so we change the 
upper range of TIME (in the small box at the lower 
right of the central area) from 1. to 7. We push PLOT; 
now we are ready to plot DGI, DB, and DU from O. 
to 1. against TIME from O. to 7. hours. 

We push RESTART and the simulation begins 
running. We see (from the curves) that DB, and later 
nu, are being generated; the "NOW X =" number 
changes continuously to indicate the current value of 
simulated TIME. Because DGI is plotted off scale 

FO~ CI~VE~' I , DO t I 'DI~PLAY t I 'GO TO t 
ENTF.~ I RE~TART ~I CONTINl!F. ,I PARAM!T!R~ [:!MPORARY C.OPY 

ANALY1E ~TOP .. ARDCOPY VARIA8LE~ MODU r.DITOR 

PLOT T .. IN ALL' DATA HIN THI~ DATA 'H!THOD~ .TART 01' MOD1!L 

INTEGRATION FOR Rl'N I, DRl'G~ 08/211'1 14 :02 

SET UP GRAPH AND r METHOD 
I, I OOE+OO tl INTPGRATION METHOD 

( I RECTANGI'LAR 

Y-NAME Rl'N 10 

( I T~APE1.0IDAI 

, I ~1'4P~ON' ~ Rl'tE 

( I 2ND-ORDER ADAM~ 

( 14TH-ORDER RI'NGF.-kl'TTA 

(XI 4T .. -OROER «l'NGF.~tTTA, VARIABLE ~TEP-~IZ1! 

( 15TH-ORDER MILNE, VARIABLE ~TEP-~I7.E 

( I FO"LER-IOARTEN MOO BAND C, VAR. ~TEP-~I7.1! 

INITIAL INTF.GRATION ~TEP-~IZE : 1.00!-08 

114'" ALtO"ABLE INTr.GRATION ~TEP-~I1.1! : I.OOF.-IO 

MAX REL F.RROR IN INTEGRATOR OtTPl'T~ : 1.001!-0. 

MAX A8~ F.RROR IN INTEGRATOR Ol'TPl'T~ : I.OOE-Ol 

THI! ~TEP-~I1,E I~ AOIl ~TEO ~l'C" T .. AT: 

1!~TIMATF.1l [RROR < I 

A +R.AB~( Y I -

"HERr. Y : Il~TIMATEO Ol TPl T 

A : ~P1!CIFIEO "AX R1!tATlVll' r.RROR 

A : ~P1!CIFI1!O MAX AB~Oll T1! ERROR 

.. 0 ,oor.+no", ... I.OOI!+eo,,", 

I·~H!'~I NO •• : O.GOr.+OO 

PLOTTING INT1!R~Al :Io.oo!!+ooi ~TO' II' • I' I.oor.+all 

Figure 5-The simulation control form with integration methods 



374 Fall Joint Computer Conference, 1971 

SIMULATION 
•• !I OOF.OO it 

PLOTTING INTI!IIYAL • O.OOr..OO 

• GO TO t 
IIMpORARY COpy 

"ODI!L I!DITOR 

PENDOWN 

Figure 6-The simulation run with no capsule drug 

along the upper boundary, we touch the pen down to 
stop the simulation. In order to determine the range of 
DGI, we return to the display that lists the variables 
along with their current, minimum, and maximum 
values. The maximum value of DGI is 5. (its initial 
value), so we write 5 over the 1 that specifies the 
upper y-axis value, then redisplay the curves. The 
curves are now nicely scaled. We continue the simula
tion, then stop it when we see that nearly all the drug 
has entered the urine, and values are changing slowly. 
We assume, ~ from the curve's reasonable appearance 
(Figure 6), that we described at least the body com
ponent of the model correctly, and our choice of 
integration method is adequate. We see from the curve 
labeled DB that, as expected, the drug remains in the 
blood for only a short time. 

We reintroduce the capsule drug by changing 
DOSAGE back to 3., then restart the simulation and 
watch the curves Being continuously updated as it runs. 
Once it becomes apparent that the capsule is not 
effective, i.e., that the value of DB drops too low, we 
stop the simulation. Apparently (Figure 7) the drug is 
not released from the pellets in time to replace the drug 
that leaves the blood. To correct this, we change the 
mean times of release from 2., 4., 6., and 8. to 1., 2., 
3., and 4. We then rerun the simulation and get much 
better results. The amount of drug in the blood should 

I'OR CURVE,!: 

I!NTER 
AIULYZE 

PLOT 

•• 5. OOE.OO tl 

Q!!L __ 

Q!'----
Qt; _ _ _ _ 1. Q~ 

PLOTTTIiG 

• GO TO t 
.MPORAIIY COP, 

"ODI!L l!DITOR 
TART 01' MODEl 

Figure 7-The simulation run with the parameter values shown 
in Figure 4 

FOR Cl'RVE'I: 

ENTER 
ANAI.YU: 

PLOT 

x= 
I. 5 .OOE'OO tl 

Y-IIAME RliN TO 

QCH._. 1 
l!1! __ '. t QI! 

l!t:._.. l!t; 

y= 

Figure 8-The simulation run with Means 

• 00 TO t 

RT 01' MODEl. 

2.50E+OO 

1., 2., 3., and 4. 



be greater than 2.5. In order to determine if this is 
achieved, we place the pen down in the central area to 
establish an x-y meter, then drag this meter to a place 
where Y (corresponding to DB as well as DGI and 
DU) is equal to 2.5 (Figure 8). Our choice of means 
was good, but they need to be adjusted to maximize the 
total duration of capsule effectiveness. 

While changing the means for further trials we 
realize that rather than controlling four means, we 
would prefer to deal only with the first mean and the 
interval between mean times of release. To reformulate 
the model in this way, we return to its description and 
add another box to the definition of the capsule com
ponent. In this box we write 

M2 = MI + INTVAL 

and similar equations for M3 and M 4. This replaces the 
parameters M2, M3, and M 4 with the single parameter 
INTV AL, which we set to 1. and mark modifiable. Once 
that is accomplished, we retranslate the model, then 
continue to resimulate it and change parameters until 
we have established a satisfactory drug formulation 
and administration policy. 

SOME ADDITIONAL BIOMOD FEATURES 

The DRUGS example illustrates many, but not all, 
of BIOMOD's features. One facility that was not 
described is file management. Every new model is saved 
on secondary storage, and is filed according to name and 
user identification until it is intentionally destroyed. 
One may copy, and then modify a model description to 
build a family of related but different models. 

When drawing a block diagram or writing a set of 
equations, a user may run out of space on a displayed 
"page." In either case, a blank continuation page may 
be obtained by pushing a displayed button. A few lines 
of text may similarly be moved off the display to 
create writing space. 

Text can be edited by overwriting, deleting, closing, 
inserting between characters, and inserting between 
lines. Block diagrams can also be conveniently edited. 
A box or a flowline may be deleted by scrubbing. The 
appearance of a block diagram may be improved by 
dragging a box to another position or by "stretching" 
it (from its lower right corner) to change its size and 
shape. 

BIOMOD makes available most of the functions 
provided by CSMP /360. These include mathematical 
functions, logical functions, and signal sources. A box 
given the name of one of these functions has its defini-

BIOMOD 375 

tion provided by the system. Such a box is used in the 
same way as a user-defined function (e.g. ,PILL) , 
except that its definition cannot be viewed. Equations 
may also refer to these functions; BIOMOD checks to 
see that such a reference includes the proper number of 
arguments. 

Mathematical equations may be differential equa
tions as well as algebraic equations. Derivatives with 
respect to time are indicated by up to nine prime signs 
(') or by a prime sign and a digit. The variable defined 
by an equation need not appear alone to the left of an 
equals sign. Thus, the equations 

Mixi + (KI+K2)XI - K2X2 = 0 

-K2XI + M 2x2 + BX2 + K2X2 = 0 

may be entered as 

MI*XI" + (KI+K2)*XI - K2*X2 = O. 

-K2*XI + M2*X2" + B*X2' + K2*X2 = O. 

If the user indicates that the first equation defines Xl, 
BIOMOD manipulates it to place Xl" alone at the 
left, generates integral equations for Xl' and Xl, and 
requests initial values for Xl and Xl'. The second 
equation is handled similarly. The major restrictions 
are that the highest derivative of the defined variable 
may appear only once in an equation, and may not 
appear as a function argument. 

Chemical equations may be written as 

S KF KB 2H2 + 02 = 2H20 

or as 

F KEQ 2H2 + 02 = 2H20 

In the former case, S indicates that BIOMOD is to 
generate, and numerically solve, integral equations that 
model the (slow) chemical reaction; rate coefficients 
(KF and KB in this example) indicate the rate at 
which the reaction proceeds in each direction. In 
the latter case, F indicates that the (fast) reaction is 
to be forced to equilibrium initially and at each succes
sive time step; an equilibrium coefficient (e.g., KEQ) 
is used in specifying the equilibrium condition. In 
either case, BIOMOD requests initial values of the 
chemicals. Rate and equilibrium coefficients may be 
defined by either algebraic expressions or numerical 
values on a chemical equations form. Each box defined 
by chemical equations is treated as a self-contained 
compartment separated from the others. Mass flow 
between compartments is specified by gain terms as in 
the DRUGS example. A non-reacting chemical may be 



376 Fall Joint Computer Conference, 1971 

included in a compartment to affect the concentrations 
of the other chemicals. 

A function that involves the conditional evaluation of 
variables may be specified entirely in terms of Fortran 
statements. The allowable statement types are assign
ment, arithmetic IF, GO TO, and CONTINUE. 

While running the simulation, any set of up to five 
variables may be plotted against TIME or any other 
variable. The plots may be linear, logarithmic, or 
semi-logarithmic .. The ranges of the axes may be 
changed by overwriting the numbers that specify them, 
dragging variable values over these numbers, pushing 
displayed buttons to gradually magnify or contract 
the curves, or pushing buttons to shift the curves. 
When the curves are rescaled or shifted, they are re
displayed so fast that they appear to magnify or move 
continuously. As the simulation proceeds, the user may 
control the intervals at which points along the curves 
are plotted, and those at which data values are saved. 

Once he begins simulating a model; a user may like 
to define a new variable for some purpose, e.g., to 
scale a variable so that it has approximately the same 
range as others or to plot a boundary value. BIOMOD 
allows a user to define such a new variable as a simple 
combination of constants and other variables without 
requiring retranslation of the model. Such a new 
variable may be plotted just as any other. It is not 
incorporated into the model, however, and so it cannot 
define a parameter such as M2 in the D RU GS model. 

If a user wishes to reexamine his model description 
during the simulation process, but not modify the model 
structure, he indicates this by pushing the TEM
PORARY COPY button. BIOMOD saves a translated 
copy of the most recently simulated model so that, 
after examining the model, a user may simulate it 
again without retranslation. 

A user may push a displayed button to request 
hardcopy of what is currently displayed. Hardcopy is 
produced off-line on a Stromberg Datagraphix 4060 
film and hardcopy unit. The figures in this paper 
(except Figure 1) were generated this way. 

IMPLEMENTATION 

The BIOMOD system operates on an IBM 
System/360, Model 40 or larger, utilizing a partition 
of approximately 228,000 bytes. The operating system 
may be either the MFT II or MVT version of OS/360, 
augmented by Rand's Video Operating System, which 
serves as a link to the Rand Video Graphic System.9 

BIOMOD is used from a Video Graphic console com
prising a television screen, a data tablet, and a key
board. 

Parts of the model description portion of BIOMOD 
were derived from GRAIL, 10-12 a Rand system that 
enabled users to draw and execute program flowcharts. 
Both BIOMOD and GRAIL were tailored to provide 
good response times for operations on complex problem 
descriptions while minimizing demands on computer 
resources. However, since they are designed for different 
applications, they differ in their user-oriented lan
guages. 

When a user requests simulation of his model, the 
BIOMOD translator interrogates the data structure 
that contains the model description, and produces a 
CSMP program. Dummy names are generated for 
variable names that include primes (') or initial value 
symbols (0). Algebraic and differential equations are 
rearranged so that a single variable is assigned a value 
specified by an expression. Chemical equations are 
handled by calls to specially designed subroutines. 
Boxes defined by Fortran statements are implemented 
as CSMP procedures. User-defined functions are 
implemented as CSMP macros. In addition to this 
description of a model, the BIOMOD-generated CSMP 
program also includes calls to graphics subroutines that 
let the user control the simulation and observe results. 
The program also includes a subroutine that com
municates the names and storage addresses of variables 
and parameters to the graphics subroutines. 

The CSMP program is passed to the standard 
CSMP /360 processor. CSMP sorts statements and 
expands macros to produce a Fortran program that 
describes the model, and then calls the Fortran com
piler and the Linkage Editor to generate an executable 
program. The resulting program runs under CSMP 
control. The simulation graphics programs are Fortran 
subroutines that call assembly language routines to 
extend the capabilities of Fortran and to communicate 
with the graphics hardware. They extract variable 
values and change parameter values directly; they 
return codes to control the simulation. 

Since a user's model is represented at one point in 
the translation as a CSMP program, a user with a batch
mode CSMP program may modify it slightly, then load 
it into the BIOMOD system to take advantage of the 
simulation graphics facilities. Similarly, a user may 
modify a CSMP program produced by BIOMOD, then 
run it at another facility in batch mode. 

CONCLUSIONS 

Users are very enthusiastic about BIOMOD. The 
combination of graphics, highly interactive facilities, 
and user-oriented languages enables them to get their 
work done quickly, and occasionally provides insights 



that would have been missed using other techniques. 
The graphics not only help in visualizing the model and 
the simulation results, but also provide for operating 
freely on a two-dimensional surface. 

For the most part, the interactive techniques have 
been well received. The methods for controlling the 
simulation and manipulating graphs are particularly 
effective. The pen and tablet are intended to be used 
like pencil and paper; however, users tend to use the 
tablet pen for printing labels, changing values, editing 
text, and dragging, but use the keyboard for entering 
equations and anything else that is extensive, because 
typing is faster than printing. 

Thus far, most BIOMOD users have had previous 
experience writing and running batch-mode programs, 
and this has influenced the way they develop models. 
They tend to be too experienced as programmers to 
require all the aids provided by BIOMOD, yet too 
inexperienced as modelers to take advantage of all the 
power provided. For example, those of our users who 
have previously written Fortran and CSMP programs 
usually state their models in terms of these formal 
languages, rather than write differential and chemical 
equations. On the other hand, users with "little or no 
computer experience find it convenient to describe 
models in their own terminology. Since it is often 
interesting to study models in the literature, it is 
particularly convenient to be able to directly transcribe 
their description with, perhaps, minor notational 
changes. 

Block diagrams are used more to organize the model 
into component parts and to make different languages 
available for defining some boxes than they are for 
using system functions, defining new functions, or 
visualizing the flow of signals or mass. Our users have 
not learned to take advantage of BIOMOD's hier
archical capability, but rather, construct models at 
only one or two levels. This is probably because they 
have not yet begun to develop very complex models, and 
because hierarchical model structuring has previously 
been difficult to accomplish. Another reason is that the 
techniques for moving from one part of a model to 
another are presently too complicated, particularly 
when user-defined functions are involved. 

BIOMOD has several inadequacies that we plan to 
correct. It is often convenient to specify the initial 
state of a model by a set of equations that are evaluated 
only once; BIOMOD does not provide for this. Users 
would like to draw data curves to define functions or to 
compare with simulation results. Although the tablet is 
an excellent device for drawing, this feature is not yet 
implemented. Users would like to save simulation 
results in order to compare various runs, but they can-

BIOMOD 377 

not. Users spend a great deal of time adjusting param
eter values and rerunning the simulation until they get 
the desired results; it would be very helpful to use 
parameter identification schemes to automate this 
process. Most of these features were taken into con
sideration when BIOMOD was initially designed and 
can be added without any major difficulty. 

Other problems are hard to remedy. Users with large 
models run into size limitations imposed both by 
BIOMOD and by CSMP. These limitations can un
doubtedly be relaxed, but it will require more experience 
to evaluate tradeoffs, and may require abandoning the 
standard version of CSMP. Many CSMP and execution
time error messages are vague. In the present imple
mentation it is difficult, if not impossible, to auto
matically relate these to a specific part of the user's 
model. BIOMOD operates only at The Rand Corpora
tion because of its display-hardware dependencies; we 
are pre"sently rewriting large portions of the system to 
make it exportable. 

Further details about the BIOMOD system are 
reported in a user's manuaP3 and in a description of its 
implementation. 14 

REFERENCES 

1 J J CLANCY M S FINEBERG 
Digital simulation languages: A critique and a guide 
AFIPS Conference Proceedings 1965 FJCC Vol 27 pp 23-36 
Spartan Books Washington D C 1965 

2 System/360 continuous system modeling program 
(360A -C X -16 X) application description 
IBM Corporation Form No H20-0240-2 August 1968 

3 SCi SIMULATION SOFTWARE COMMITTEE 
The SCi continuous system simulation language (CSSL) 
Simulation Vol 9 No 6 pp 281-303 December 1967 

4 H B BASKIN S P MORSE 
A multilevel modeling structure for interactive graphic design 
IBM Systems Journal Vol 7 Nos 3 and 4 pp 218-2291968 

5 R G RENAUD R F WALTERS 
The interactive creation, execution and analysis of 
biological simulation using MIMIC on a graphic terminal 
Proceedings of the Conference on Applications of 
Continuous System Simulation Languages San Francisco 
California pp 185-191 1969 

6 G A KORN 
Project DARE: Differential analyzer replacement 
by on-line digital simulation 
AFIPS Conference Proceedings 1969 FJCC Vol 35 
pp 247-254 
AFIPS Press Montvale New Jersey 1969 

7 M J MERRITT D S MILLER 
MOBSSL-U AF-An augmented block structure 
continuo'us system simulation language for digital and 
hybrid computers 
AFIPS Conference Proceedings 1969 FJCC Vol 35 
pp 255-274 
AFIPS Press Montvale New Jersey 1969 

.... 



378 Fall Joint Computer Conference, 1971 

8 E R GARRETT H J LAMBERT 
Analog computer in drug dosage and formulation design 
Journal of Pharmaceutical Sciences Vol 55 No 6 
pp 626-634 June 1966 

9 K W UNCAPHER 
The Rand video graphic system-An approach to a general 
user-computer graphic communication system 
The Rand Corporation R-753-ARPA April 1971 

10 T 0 ELLIS J F HEAFNER W L SIBLEY 
The GRAIL project: An experiment in man-machine 
communication 
Proceedings of the Society for Information Display 
Voll! No 3 pp 121-129 Third Quarter 1970 

Also The Rand Corporation RM-5999-ARPA 
September 1969 

11 T 0 ELLIS J F HEAFNER W L SIBLEY 
The GRAIL language and operations 
The Rand Corporation RM-6001-ARPA September 1969 

12 T 0 ELLIS J F HEAFNER W L SIBLEY 
The GRAIL system implementation 
The Rand Corporation RM-6002-ARPA September 1969 

13 R L CLARK G F GRONER R A BERMAN 
The BlOMOD user's reference manual 
The Rand Corporation R-746-NIH July 1971 

14 R L CLARK G F GRONER 
The BlOMOD system implementation 
The Rand Corporation R-747-NIH July 1971 



The future on-line continuous-system simulation 

by HANS M. AUS and GRANINO A. KORN 

The University of Arizona 
Tucson, Arizona 

INTRODUCTION AND REVIEW 

The DARE I and DARE II simulation systems each 
added a simulation console with graphic and alpha
numeric displays to a PDP-9 minicomputer with 16K 
of memory and a small disk (Figure 1) and employed a 
continuous-system simulation language for simplified 
programming. System equations or block statements, 
text, and comments, are typed and edited on a CRT 
typewriter. Solutions appear on a second CRT and can 
be plotted or listed for report preparation; they are 
automatically labeled and scaled without any need for 
special FORMAT statements. Iterative and statistical 
simulation studies involving repeated differential
equation-solving runs are possible. 

A DARE system is loaded onto the small PDP-9 
disk from a reel of magnetic tape. The TYPE EQUA
TIONS console light lights, and a "communication 
line" at the bottom of the alphanumeric CRT says 

DERIVATIVE BLOCK NO. I-INPUT MODE 

The operator types first-order differential equations, 
say 

X' = XDOT 

XDOT' = ALF A * (1. - X*X) *XDOT - X 

and equations introducing "defined variables," such as 

E=X-BETA*SIN(X) 

in any order. He can intersperse this material with 
titles, comments, and other report material; each such 
"comment line" begins with a star to prevent com
pilation. Program and text can be edited at will on a 
CRT typewriter, which permits one to move words or 
lines, to substitute symbols, and also to find specified 
symbol strings in long programs. Any or all of this 
material can also be printed out as a hard-copy report 
at the touch of a console button. 

Table look-up functions of one or two variables are 
simply entered as one- or two-dimensional tables called 

379 

Figure I-PDP-9 and DARE console at the University 
of Arizona 

by function names. An initial display, showing one or 
two variables against the independent variable T, or a 
phase-plane plot, is specified with a display statement, 
say 

DISPLAY X, XDOT, T 

Note, however, that all state variables and defined 
variables are also stored for later display or listing in 
any combination. 

The integration routine to be used is selected with a 
12-position console switch (DARE I and II), or by 
typing the method number on the CRT screen (DARE 
III). There is a choice of predictor/corrector- and both 
fixed- and variable-step Runge-Kutta methods, plus an 
"implicit" method for stiff-equation systems (DARE 
I, DARE II, and DARE III have two derivative blocks, 
permitting simultaneous use of two different integration 
methods and step sizes) . 



380 Fall Joint Computer Conference, 1971 

Figure 2-Closeup of DARE control panel, showing method 
switch, sense switches, and lighted control buttons 

If we want to run a complete simulation study 
requiring multiple differential-equation solving runs, 
iterative adjustment of parameters or initial values, 
and/ or crossplotting or statistical evaluation of results 
obtained in successive runs, we type OPEN LOGIC to 
call for a DARE logic block and proceed to type a 
FORTRAN IV program such as 

CALL RUN 

ALFA=2.5 

CALL RUN 

ALFA=3.7 

etc. 

This logic block will then take control of the computa
tion and call for successive equation solving runs with 
suitable parameter changes, which could also depend 
on results from past solutions. 

Our program is now complete except for initial-value 
and parameter settings (corresponding to potentiometer 

settings on an analog computer. We push the COMPILE 
button on the console. 

WHAT THE SYSTEM DOES: 
STAND-ALONE-COMPUTER SYSTEMS 

The edited DARE I, DARE II, or DARE III 
program (source-language program) is partially in core 
and partially on the small local (PDP-9) disk. To see 
what each DARE system must do, let us first look at a 
stand-alone-minicomputer system, say DARE I, which 
can handle 20 first-order state equations. This will make 
it easier to understand the larger time-sharing systems. 

The COMPILE button causes compilation and 
loading in several overlays from the minicomputer 
disk. A precompiler (translator) first sorts the system 
equations into a FORTRAN program so that no state
ment can call for as yet uncomputed quantities. 
Undefined parameters (BETA, and the first-run value 
of ALF A in our example) are left over in this sorting 
process and will be presented automatically to the 
operator, who must supply numerical values. The 
FORTRAN compiler is loaded next and compiles the 
FORTRAN program, including the logic block. Finally 
a linking loader loads the resulting binary program 
together with any library routines needed (such as sine 
or square~root functions). The alphanumeric CRT 
screen now displays the names of all initial-value 
settings and as yet undefined parameters, say, 

X= 

ALFA= 

XDOT= 

BETA = 

together with the simulation parameters DT (integra
tion step), TMAX (total computation time) and, in 
variable step integration routines, also EMAX, the 
maximum allowable local truncation error. 

The operator then simply enters the desired values 
on the CRT typewriter. Note that he did not have to 
remember which quantities needed· to be specified; 
the CRT screen told him. 

Weare now ready to solve the differential equations. 
Pushing the COMPUTE button on the console starts 
the computation; the initial solution display will 
appear on the graphic-display CRT. If there is a logic 
block, solutions will automatically proceed through the 
desired iteration sequence. 

After a solution is complete, the operator can push a 
RESET button on the console to display the parameter 
values again, type new ones, and restart the solution 
at once by pushing the COMPUTE button (this 
corresponds to resetting and restarting an analog
computer solution). It is also possible to change the 
integration routine, DT, TMAX, and EMAX without 



recompiling, and to use sense switches on the console. 
If one wishes to change the differential equations in a 
more radical way, one pushes the RESTART button 
on the console; this will again display the differential 
equations, which can now be changed and recompiled. 

After a set of differential equations has been solved, 
the SELECT DISPLAY button on the console loads 
another PDP-9 overlay which permits one to recall 
time histories of all state variables and/or defined 
variables, and also crossplots from different solutions, 
from the disk. The following display options are 
obtained by simply typing codes on the alphanumeric 
CRT typewriter. 

1. Plot up to 4 variables against T on the same or 
different reference axes. Curves can be in 4 
colors. 

2. Plot any variable against any other (phase
plane plots) . 

3. Tabulate up to 4 variables on CRT or tele
typewriter. 

4. Obtain hard-copy plots on the 4-channel strip
chart recorder or XY recorder. 

The possibility of plotting any set of variables 
against time or any other variable, including variables 
saved from preceding computer runs by a special option 
code, is not only very convenient for evaluation of 
results and report preparation, but also constitutes a 
useful debugging aid. 

TIME-SHARING SYSTEMS 

Large simulation problems require more powerful 
computers, and such computers are too expensive to 
wait idly while an engineer engaged in on-line simulation 
thinks or interprets results. We cannot tie up a large 
computer for interactive simulation without some type 
of time-sharing. A medium-sized computer (of the 
order of an XDS SIGMA 5) with a sufficiently large 
sector-protected memory could be time-shared between 
one interactive simulation and a batch-processed back
ground program, which would be interrupted by the 
simulation runs. 

Perhaps the main attraction of such a system is that 
the simulation laboratory would have its own computer. 
For more cost-effective time-sharing of a larger digital 
computer, and for multiple interactive simulations, 
simulation programs will have to be swapped in and 
out from a system disk. It would also seem expedient to 
arrange priorities and time slots so that each simulation 
runs or each iterative sequence of simulation runs is 
considered as a job which ordinarily cannot be inter
rupted by other users. Typical runs might take seconds, 

On-line Continuous-System Simulation 381 

PDP-9 TERHINAL 

CHART 
On 4-channel 
Strip Chart 
Recorder 

Plotter 

PRINT 

COMPLl. ' 

Tabular 
Data on 
Screen 

Tabular Data 
on Teletype 

I 
I 
I 
I 
I 

CDC 6400 

DARE III Simulation 
Translator and CDC 
FORTRAN Compiler 

Output Data 

Tabular Data 
on CDC 6400 
Line-Printer 

Figure 3-Time sequential flow chart of DARE III 

but large iterative sequences could take much longer. 
Quite frequently, interactive simulation would be 
employed mainly. to debug some initial runs, with the 
rest of the study deferred for batch-processing study 
at night. 

In developing DARE III, we were confronted with 
the ponderous organization of a university computing 
center with a CDC-6400 in an iron-clad operating 
system (CDC SCOPE), which we did not want to 
change. The closest approximation to time-sharing was 
the CDC INTERCOM system used at the University 
mainly for remote batch-processing job entry and 
printing. Since the 6000-series INTERCOM combina
tion is widely used in Universities, it was a worthwhile 
challenge to develop a suitable simulation system. 

DARE III OPERATION 

Most of the user interaction required in the DARE 
III system is the same as in DARE 1. The main differ
ence between the interactive portion of the two systems 
is that DARE III does not use the simulation control 
panel, and that the user must dial, connect and dis
connect the telephone as directed from the CRT 
screen. The DARE III user can exercise system control 
functions exactly like those provided by the control 



382 Fall Joint Computer Conference, 1971 

panel in DARE I by typing the appropriate command 
on the last line of the CRT screen, for example COM
PILE, PRINT REPORT, READ PROBLEM TAPE, 
etc. 

The simulation-problem text is entered and modified 
using the alphanumeric CRT editor. Each problem
definition block can contain up to 600 full 40 character 
lines. DARE III also offers sophisticated users the 
ability to replace any run-time system routines with 
his own routines such as new integration routines, 
transfer-function operators, etc. These may be written 
in either CDC FORTRAN IV or 6000 series assembly 
language (COMPASS). 

After the user has entered and modified his problem, 
he types COMPILE on the last line on the CRT 
screen. The screen next flashes 

DIAL COMPUTER 3243 

Using the Data Phone adjacent to the keyboard the 
user dials the university extension 3243 and presses 
the DATA button after the initial answer-back tone is 
finished. Several Control Data INTERCOM messages 
flash up on the screen for user information. The user 
does not take action in response to any message except 

HANG UP THE PHONE 
When the telephone has been disconnected, the screen 
will say: 

PLEASE SELECT INTEGRATION METHOD 

After the user has selected a valid integration
routine number, the alphanumeric screen will display 
the names of the variables which need initial conditions 
and parameter values. Numerical values are entered by 
typing (NAME) = (VALUE) on the last line of the 
screen. Numerical values of the integration method 
may be changed as often as desired. 

When finished entering data, the user simply types 
RUN on the command line. The screen next flashes 

then 

PLEASE SELECT NUMBER OF 
OUTPUT POINTS. MAX 512 

PLEASE SELECT DISPLAY 

and finally 

DIAL COMPUTER 3243 

The first two requests are used to minimize the length of 
time the user has to wait for output data to be trans
mitted to the local terminal. The first request requires a 
number between 10 and 512. The user responds to the 

second request by typing, say: 

DISPLAY (TIME) Xl, X2, BETA, T 

where Xl and X2 are state variables, BETA is an out
put variable and T is time. The user may select up to 
5 variables in any output request. The file name, in 
this case TIME, is required in all output requests in 
order to distinguish between the four output storage 
files available to the DARE III user. All output data 
stored during the simulation study will always be 
available on the 6400 for later retrieval, regardless of 
the data returned to the local terminal. 

After the simulation study is finished the message 

HANG UP THE PHONE 

will once again appear on the screen. The display 
. selected above will flash on the XY display screen when 
the telephone has been disconnected. Scale factors, etc., 
will appear on the alphanumeric screen. A tabulation 
of the current graphic data precise to only three places 
can be obtained by typing: 

QLIST Xl, X2, BETA 

or 

QPRINT Xl, X2, BETA 

More precise tabulations require an additional DARE 
111/6400 access. 

As in DARE I, additional output requests can be 
made at any time. The output requests may require an 
additional DARE 111/6400 access, in which case the 
screen will once again flash 

DIAL COMPUTER 3243 

The local terminal will, however, always try to complete 
the output request without an additional DARE 
III/6400 access. The graphic data returned from the 
additional 6400 accesses will destroy the data currently 
available on the local disk. The destroyed data will, 
however, still be available on the 6400 storage files. 

The use of the 6400 line printer for long tabular 
listings is encouraged, especially since the local tele
typewriter is extremely slow. The line-printer listings 
can be picked up at the computer center under the job 
name DARE3. The user's ability to create long output 
listings without any input deck will continuously amaze 
the I/O clerks. 

DISCUSSION-THE DARE IV SYSTEM. 

The 2,000 bits/sec data rate of the inexpensive, 
unconditioned, dial-up telephone line is just sufficient to 



return oscilloscope displays at low audio frequencies. 
Transmitting a reasonably large program, say, 600 
character lines takes about 4 minutes, which is still 
tolerable. The main delay is in getting access to a 
CDC 6400 control point via the user queue of the 
system, which is, at heart, still a batch-processing 
system. When the 6400 was busy, delays up to 15 
minutes were experienced, and such delays in an inter
active simulation are somewhat hard on the nerves. 

With DARE III, the user might need, moreover, 
three such accesses for a single computer run: once to 
submit the program, once to enter parameters and 
execute the simulation study, and once to get extra 
solution displays, if any. This problem can be greatly 
relieved by acquiring a high input-queue priority, say 
by crossing the computer-center administration's palms 
with money. Since we had no money, ours proved to 
be incorruptible. 

A viable alternative is to change the apportionment 
of tasks between the large central processor and the 
local minicomputer. If the precompiling (translation) 
of the CSSL programs can be done in the local mini
computer, the latter will find the undefined parameters 
in the sorting process, flash them on the CRT screen, 
and accept the operator's parameter entries. The 
translated program and parameter values can then go 

PRIJIT 
report 
ud ub1 •• 
on teletype 

PLOT 
on CALCOMP 
plotter 

Figure 4-Time sequential :Bow chart of DARE IV 

On-line Continuous-System Simulation 383 

to the central computer in a single access. The central 
computer still compiles the program and proceeds to 
solve the differential equations. In most applications, 
we will then require only one access to the remote 
central processor, a very great advantage. 

COMPUTING SPEEDS 

For a typical medium-sized aerospace simulation 
problem involving second-order Runge-Kutta integra
tion of 12 state-variable derivations, 100 sums, 140 
products, 10 sine-cosine evaluations, and 8 table-lookup 
functions of one variable, the floating-point DARE I 
system can accommodate sinusoidal oscillations up to 
about 0.1 Hz, while DARE II (fixed point) goes to 
4Hz, and DARE III (floating-point) will admit 7Hz.l 
The CSSL benchmark problem (pilot ejection problem) 6 

takes 64 sec for 815 runs with DARE III. Digital com
puting times will be proportionately longer in larger 
simulation problems. While on-line digital simulation 
does not match the bandwidth of the latest analog 
computers, all-digital real-time simulation is possible 
for many practical problems, and problem setup and 
checkout is incomparably simpler for digital simulation. 
Analog/hybrid computation will hold its own mainly in 
problems requiring a very large number of simulation 
runs on large systems, and in certain high-speed Monte 
Carlo, optimization, and partial-differential-equation 
studies. l 

DISPLAY AND CONSOLE REQUIREMENTS 
FOR ON-LINE SIMULATION 

At the present time, Project DARE employs a 
television-raster alphanumeric display with internal 
memory, plus an l1-inch electrostatic-CRT graphic 
display refreshed by memory interlace from the PDP-9 
almost without programmed instruction. Packed 18-bit 
computer words simultaneously transfer the X and Y 
coordinates of each displayed point to save refresh time 
and memory.7 There is also a separate simple color 
display.s 

It is clearly desirable to minimize the equipment 
committed to each local time-sharing station. The 
minimal display facility would consist of a simple 
storage-tube display for both alphanumeric and graphic 
output. Such a display has excellent resolution and 
saves local computer time, but will not permit quick\ 
on-line editing of alphanumeric text. The DARE CRT 
editor program is so very convenient that it is well 
worth the extra cost of a television-raster alphanumeric 
display (CRT typewriter). Such units incorporate 
simple refresher memories (usually M OS shift registers) 



384 Fall Joint Computer Conference, 1971 

* DERIVATIVE BLOCK: 
* SAMPLE PROBLEM-PILOT EJECTION 
* 
* VE = SEAT EXIT VEL. 
* THE = SEAT EXIT ANGLE 
* Yl = HEIGHT OF RAILS 
* 

X' = V*COS(TH) - VA 
Y' = V*SIN(TH) 
PROCED YGEYI = Y, Yl 

YGEYI = 1. 
IF(Y.LT.Yl)YGEYI = 0. 

END PRO 
V' = - YGEYI *(D / AM + G*SIN (TH» 
TH' = - YGEYl*(G*COS(TH»/V 
D = RHOP*V**2/2. 
YF = Y 
TERMINATE X +30. 
AM = 7. 
G = 32.2 
DISPLAY Y, X 

* LOGIC BLOCK: 
* VA = PLANE VEL. 
* 

H = 0. 
S = 10. 
CD = 1. 
INPUT VA, VE, THE 
OUTPUT H 

* CONVERT THE TO RADIANS 
THE = THE/57.2957795 

* 
* CALCULATE INITIAL PILOT VEL. 
* 
2 V = «VA-VE*SIN(THE»**2+(VE* 

$ COS(THE»**2)**0.5 
* 
* CALCULATE INITIAL PILOT ANGLE 

* 

* 

TH = ATAN(VE*COS(THE)/(VA- VE* 
$ SIN (THE») 

3 RHOP = RHO (H) * CD * S 
VS = V 
THS = TH 
vAs = VA 
CALL SHOW (H, VAS, VS, THS) 
CALL RUN 
IF (YF.GT.20.) CO TO 4 
H = H+500. 
GO TO 3 

4 RUNNO = VA 
CALL STORE 
VA = VA+50. 
IF (VA.LE.1000.) GO TO 2 

* OUTPUT BLOCK: 
DISPLAY H 
* TABLE BLOCK NO.1: 

RHO, 12 
0., 2.377E-3 

IE3, 2.303E-3 
2E3, 2.241E-3 
4E3, 2.117E-3 

6E3, 1.937E-3 
10E3, 1.755E-3 
15E3, 1.497E-3 
20E3, 1.267E-3 
30E3, 0.391E-3 
40E3, 0.587E-3 
50E3, 0.364E-3 
60E3, 0.2238E-3 

* DATA: 

DT = 1.0E-01 
TMAX = 2.0E+00 
X= 
Y= 
V= 
TH = 
RHOP = 

VE =40 
VA = 100 
Yl = 4 
THE = 15 

Figure 5-Problem listing for pilot ejection problem 

and their prices have recently come down into the 
$2,000-region. 

The graphic display could still use a storage tube. 
Since storage tubes permit comparison of current and 
past displays stored on the screen, one could dispense 
with the moving repetitive solution displays possible 
with DARE II. For a larger display presentation, we 
are also considering a storage-tube/ scan-converter 
system, which would combine the refresher-memory 
output of a television-scan alphanumeric-display gen
erator with scan-converter pickup from a small storage 
tube on one large television screen, possibly in color. 

The simulation console will also need a local mini
computer for editing, communication control, and 
display operation. With the storage-tube graphic 
display, 9- or 10-bit display-point X and Y coordinates 
could be stored separately, so that the local mini
computer need only be one of the new inexpensive 
12-bit types costing under $5,000 or for central pro
cessor: we would anticipate a need for at least 8K of 
local memory instead of the minimal 4K. 

For hard-copy preparation, we have employed a 
teletypewriter, a handheld Polaroid oscilloscope camera 
capable of photographing. both the alphanumeric and 
graphic displays, a four-channel strip-chart recorder, 
and an XY servo recorder. A small line printer with full 
140 character lines would be faster and more reliable 
than our KSR 35 teletypewriter. Unlike the latter, the 
line printer could accept the full-width of the 6400 
output for debugging; the line printer could also be used 
for plotting solutions. Very extensive line-printer tables 
and CALCOMP graphical plots could also be prepared 
at the computer center. 



DIGITAL-COMPUTER ARCHITECTURE FOR 
SIMULATION 

Most modern 24- to 36-bit intermediate-sized digital 
computers with floating-point arithmetic are well 
suited for simulation applications. Since no such 
machine is available at the University of Arizona, the 
DARE IF project will investigate the augmentation of 
an existing 18-bit minicomputer (PDP-9 or PDP-15) 
with a newly designed floating-point arithmetic unit 
plus some high-speed storage. The result will be a new 
small general-purpose computer, but we are, of course, 
especially interested in those features of digital-com
puter architecture which might favor continuous
system simulation. 

The very fast MECL-II emitter-coupled logic (2 to 
3 n sec gate delay) was chosen for the new processor to 
permit us to trade this speed for a relatively simple 
arithmetic design. The fast processor can communicate 
with the PDP-9 memory through the direct-memory 
access channel, which requires 1 J,Lsec for the trans
mission of an 18-bit instruction, or 3 J,Lsec for the 
transmission of a 54-bit floating-point data word 
(consisting of three 18-bit PDP-9 words). These word
transfer rates are fairly well matched to the anticipated 
10 ,usee to 15 ,usee floating-point addition and multi
plication times in the fast arithmetic unit. We will, 
nevertheless, investigate instruction lookahead and the 
use of some fast-storage (scratchpad memory) con
sisting of MECL-II memory chips to buffer some data 
and/ or instruction transfers in an effort to match the 
arithmetic processor's speed to better advantage. 

A look at a typical simulation program indicated that 
most of the. program execution involves the repetitive 
calling of derivative-computing, integration-formula, 

VA ~ 10 0 

Figure 6-Plot of H VB. VA for pilot ejection problem 

On-line Continuous-System Simulation 385 

and data-storing subroutines. It would appear that 
many time-consuming core accesses could be saved 
through storage of complete subroutines in a fast 
scratchpad memory. Additional execution time would 
be saved if instruction, fetching, and/or data storage 
could be overlapped with arithmetic execution. 

Further investigation of derivative computations for 
differential-equation solution indicates that the re
quirements for intermediate storage are relatively 
small. The implementation of a typical simulation 
block diagram requires one word of temporary storage 
for each point where the block-diagram interconnections 
branch. Fast-access storage in multiple arithmetic 
registers, small scratchpad memories, or special memory 
stacks would appear to be especially suited to such 
operations and could save many time-consuming core 
accesses. Indeed, the organization of derivative com
putations tempts the designer to organize his scratchpad 
storage into a stack for temporary data storage. A 
stack-oriented processor would permit a wide variety 
of 18-bit operating instruction, with only a minimum of 
memory-reference instructions for communicating with 
core storage. Unfortunately, such a stack organization 
of the fast processor would also increase the total 
number of instructions (and instruction fetches !) 
required for the total derivative-computing program. 
The optimal system would have enough fast scratchpad 
storage to store all frequently used subroutines, but 
this is a fairly expensive proposition; a future DARE 
study (DARE IIF, Table 1) will look into possible 
compromises and trades. 

SOME CONCLUSIONS 

We believe that the success of the DARE I and DARE 
III (equation-oriented) and DARE II (block-oriented) 
simulation systems has conclusively proved the feasi
bility and advantages of all-digital on-line simulation. 
Without question, all future systems of this type will be 
scale-factor free floating-point systpms. In our experi
ence, most users appear to prefer the equation-oriented 
systems. On the other hand, the possibility of creating 
special frequently used system blocks as macros is a 
very convenient feature of the block-oriented DARE II 
language. Future continuous-system-simulation sys
tems will superimpose a macro generator on equation
oriented systems; this has already been done in the 
batch-processed CSMP-360 and in some of the newer 
CSSL systems. In the final analysis, the main ad
vantage of assembler-based purely block-oriented 
simulation systems will depend on the extent of their 
execution-speed advantage over compiler-based 
equation-oriented systems. This speed advantage is 



386 Fall Joint Computer Conference, 1971 

TABLE I-Project DARE On-line Simulation Systems 

System Author Completed Description Computer Reference 

DARE I J. Goltz 1969 Floating-point, equation-oriented CSSL System, 20 
state variables one derivative block 

PDP-9 1,2 

Similar to DARE I, two derivative blocks PDP-9 DARE IR 
DARE II 

J. Moore 
T. Liebert 

1971 
1970 Fixed-point, block-oriented system two derivative 

blocks, extremely fast 
PDP-9 1,3 

DARE III H. Aus 1971 

DARE IIIB A. Trevor 1971 

Floating-point, equation-oriented CSSL time-sharing 
system, 200 state variables, two derivative blocks 

Batch-processed CSSL, 200 state variables, two deriva
tive blocks 

PDP-9 
CDC 6400 
CDC 6400 

4 

5 

C. Wiatrowski 1972 Similar to DARE IR PDP-9 and DARE IF 
DARE IIF Similar to DARE II, but floating-point homemade 

floating-
point 
processor 

DARE IV Modified version of DARE III PDP-9 

overwhelming with minicomputers which, because of 
their small memory sizes, rely on many subroutine 
calls for FORTRAN execution. With large digital 
computers having larger core memories and floating
point hardware, together with modern, very efficient 
FORTRAN compilers, much of the speed advantage of 
assembler-based systems may be lost. Estimates of this 
remaining speed advantage vary, but might be in the 
order of two-to-one, which would still result in signifi
cant cost savings. 

ACKNOWLEDGMENTS 

Project DARE is sponsored by the National Science 
Foundation under NSF Grants GK-1860 and GK-
15224. DARE I and DARE II were respectively written 
by John Golts (now President of COMPU-SERVE, 
Columbus, Ohio) and Tom Liebert (now on the tech
nical staff of the Bell Telephone Laboratories) as 
Ph.D. dissertations. Professor John V. Wait is co
principal investigator. 

CDC-6400 

REFERENCES 

1 G A KORN 
Project DARE: Differential analyzer replacement by 
on-line digital simulation 
Proceedings Fall Joint Computer Conference 1969 

2 J R GOLTZ 
The DARE I simulation system 
Proceedings SWIEEECO Dallas Texas 1970 

3 T A LIEBERT 
The DARE I I simulation system 
Proceedings SCSC Denver Colorado 1970 

4 H AUS 
DARE III, A time-shared digital simulation system 
PhD Dissertation University of Arizona 1971 

5 A TREVOR 
The DARE IIIBsimulation system 
M S Thesis University of Arizona 1971 

6 The SCI continuous-system simulation language 
SCI Software Committee Simulation December 1967 

7 G A KORN et al 
A new graphic display/plotter for small digital computers 
Proceedings Spring Joint Computer Conference 1969 

8 C WIATROWSKI 
A color television graph plotter 
Computer Design April 1970 



A panel session-Computer structure-Past, present 
and future 

Possibilities for COInputer Structures 1971* 

by C. GORDON BELL and ALLEN NEWELL 

Carnegie-Mellon University 

What computer structures come into existence in a 
given epoch depends on the confluence of several 
factors; 

The underlying technology-its speed, cost, re
liability, etc. 
The structures that have actually been conceived. 
The demand for computer systems (in terms of 
both economics and user influence). 

One ignores any of these factors at one's peril. In 
particular, with technology moving rapidly, a real 
limitation exists on our ability as designers to discover 
appropriate structures that exploit the new trade-offs 
between the various aspects of a computer system. 

The design of computer structures is not a systematic 
art. So new is it, in fact, that in a recent book (Bell 
and Newell, 1971) we found ourselves dealing with 
basic issues of notation. We are still a long way from 
concern with the sort of synthesis procedures that 
characterize, say, linear circuit design. However, the 
immaturity is dictated, not so much by youth (after 
all we have been designing computers for almost 30 
years), as by the shifts in technology that continually 

* The ideas expressed in this presentation have emerged from a 
number of overlapping design efforts, mostly around CMU and 
DEC, but occasionally elsewhere (e.g., at Newcastle-on-Tyne, 
the ARPA list processing machine effort, and the effort at the 
Stanford AI project). Consistent with this being a short note, 
we have attempted to indicate the individuals involved in these 
efforts at appropriate places in the text. But we wish here to 
acknowledge more generally the contribution of all these indi
viduals. The preparation of this paper was supported by the 
Advanced Research Projects Agency of the Office of the Secretary 
of Defense (F44620-70-C0107) and is monitored by the Air Force 
Office of Scientific Research. The paper is to be published in the 
Proceedings of the FJCC, 1971 and may not be copied without 
permission. 

387 

throw us into previously uninhabited parts of the space 
of all computer structures. Whatever systematic tech
niques start to emerge are left behind. 

This note comments on several possibilities for com
puter structures in the next half-decade. Given the un
familiarity that we all have with the region of computer 
space into which we are now moving, there can be no 
systematic coverage. Neither is it appropriate simply to 
reiterate what would be nice to have. Such an exercise 
is not responsive to the new constrain.ts that will limit 
the new designs. Such constraints will certainly con
tinue to exist, no matter how rapidly logic speed rises 
and logic costs fall. In fact, it is useful to view any 
prognostication of new computer structures (such as 
this paper) as an attempt to reveal the nature of the 
design constraints that will characterize a new epoch of 
technology. 

We will discuss five aspects of computer structures. 
Mostly, these represent design features that we think 
have a good possibility of becoming important in the 
next few years, though we have reservations on one. 
We have been actively engaged (with others) in working 
on particular structures of the type we present. Our 
selection of these is not a denial that other quite 
different structures might also be strong contenders for 
dominance during the next several years. Indeed, 
according to the point made earlier, with strong shifts in 
technology no one can know much about the real 
potentialities for new structures. Thus, that we have 
been working on these particular structures provides, 
mainly, a guarantee that we have thought hard enough 
about their particulars to have some feeling for the 
design limitations in their local vicinity. 

Minicomputer multiprocessor structures 

Consider the multiprocessor structure of Figure 1. 
There are p central processors (Pc) and m primary 
memories (Mp). We ignore, in this discussion, the 
remaining structure that connects the secondary 
memories and ij o. The switch (Smp) is effectively a 
crossbar, which permits any of the processors access 
to any of the memories. 



388 Fall Joint Computer Conference, 1971 

Smp 

Mp 

Stp 

Unibusses for connectin ________ -' 

Ms and other i/o 

Crosspoint swi tch 

Da ta operations 
for address 
translation 

central processors 

Figure l-Smp (crosspoint) for connecting p central processors 
(Pc) from primary memories (Mp) 

There is nothing new per se about a multiprocessor 
structure. Many dual processors exist, as do genuine 
multiprocessors whose additional processors (beyond 
one Pc) are functionally specialized to i/o and display. 
General multiprocessors have been proposed and a 
very few have come into existence (e.g., the Burroughs 
D825). But they have not attained any substantial 
status. The main technological reasons appear to be 
(1) the cost and reliability of the Smp and (2) the rela
tive cost of many processors. Software (i.e., operating 
systems) is also a critical difficulty, no doubt, but not 
one that appears yet to prohibit systems from coming 
into existence. 

Both of these technical factors appear to be changing 
sufficiently to finally usher in multiprocessor systems 
of substantial scope. The cost of the processor is 
changing most rapidly at the minicomputer end of 
the scale. Thus, we expect to see minicomputer multi
processors systems before those with large work-length 
Pc's. An additional impediment for large Pc's is the 
bandwidth required through the switch, which i~\~ub
stantially less for 16b/w machines than for 32-64b/w 
machines both in terms of cost and reliability. 

As a basis for discussing detailed technical issues, let 
us describe a multiprocessor system involving the 
DEC PDP-II. Variant designs of this system have 

been proposed both at CMU and at N ewcastle-on
Tyne.* A set of p PDP-II's have access to a set of 
m Mp's aggregating 221 8b bytes.** Each Pc maintains 
its address space of 216 bytes, but an address mapping 
component (Da) associated with each Pc permits this 
address space to be distributed as 23 independent pages 
of 213 bytes each. The details of this addressing, though 
important, need not be discussed here. Similarly, the 
details of the Smp need not be discussed. Each link 
through the Smp is essentially a unibus (the bus of the 
PDP-ll, see Bell et al., 1969). Connections are made 
on a memory access basis, so that the a PC broadcasts 
d's address to all Mp's and the connection is made to the 
recognizing Mp for the data transfer. 

The three critical questions about the Smp are its 
performance, measured in terms of Pc effectiveness, 
its reliability and its cost. Figure 2 gives the calculated 
expected performance (Strecker, 1970) in terms of total 
effective memory cycle access rate of the Pc's (whose 
number is shown along the abscissa). Each instruction 

memory 
accesses/ 
sec 6 
X 10 

14 

13 

12 

11 

t. swi tch delay: 
t.cycle(Mp) : 
t.access (Mp): 

Pc: 
number Mp: 

190 ns 
600 ns 
350 ns 
PDP 11/25 
16 

10 15 20 25 30 35 40 

Number of Processors 

Figure 2-Performance of a multiprocessor computer with 16 
independent Mp's. 

* The original design was proposed by W. Wulf and W. Broadley, 
based on a switch design by Bell and Broadley; a second more 
general design was proposed by C. G. Bell, H. Lauer and B. 
Randall at Newcastle-on-Tyne; the version described here is by 
C. G. Bell, W. Broadley, S. Rege and W. Wulf. No published 
descriptions are yet available on any of the designs, though some 
are in preparation. 
** Addressing in the PDP-ll is by bytes, though it is preferable to 
view it as a 16b machine. 



requires one to five memory accesses. The curve is 
parameterized by the number of Mp's (m= 16 here), 
the t.cycle of the Mp (350 ns here) and the delay 
through the switch (190 ns here). The criteria we have 
used for ideal performance is p stand-alone computers 
with no switching delays. Thus, the loss is due to both 
switching delay and multi-Pc interference. The param
eters shown are attainable with today's technology. 
The number of memory references per processor de
creases as the number of processors increase, since the 
calculation assumes a reference to any Mp is equally 
likely. The reliability cannot yet be estimated ac
curately, but appears to be adequate, based on a com
ponent count. The cost per Pc is of the order of one 
quarter to one times the Pc, measured in amounts of 
logic for a 16 X 16 switch. Thus, the Smp cost is ap
preciable, but not prohibitive. 

What does one obtain with such a structure? Basi
cally, Pc cycles have been traded for (1) access to a 
larger memory space and (2) Mp-level interprocessor 
communication. These benefits come in two styles. 
Statistically, the Smp permits configuration of the 
Pc's with various amounts of memory and isolation. 
An important design feature, not stressed above, is 
that the PDP-II components remain essentially 
unmodified, so that they can be moved in and out of the 
system at will. This feature extends to permitting the 
addition and extraction of components to the system 
while in operation. Dynamically, the Smp permits the 
set of processors to cooperate on various tasks and to 
decrease the system overhead for input/output and 
operating systems programs. Coupled with this is 
common access to the secondary memory and peripheral 
parts of the systems, permitting substantially lower 
total system cost as opposed to p independent systems. * 

Caches for multiprocessors 

A key design parameter in multiprocessor organiza
tions, such as the one above, is· the delay through the 
switch, measured relative to the performance of the 
Mp's and Pc's. The total instruction (e.g., for a memory 
access instruction) of a Pc can be partitioned as: 

t.instruction = t.Pc+t.Smp+t.Mp 

In current memory technology overlap is possible 
between Pc and Mp since accessed information is 
available before the rewrite cycle is completed. How 

* If this latter goal were all that were required, then one might 
consider less expensive alternatives. However, a price must be 
paid in system overhead for less general coupling and the trade-off 
is far from clear. In fact, we are not justifying the design here, 
but simply presenting a concrete example. 

Computer Structures 389 

much this can be exploited in a multiprocessor depends 
on t.Smp. Thus, the relevant t.Mp is that which would 
obtain in a non-switched system. 

Current technology makes all the above terms 
comparable, from 50""'500 nanoseconds. Thus, varia
tions of a factor of 2 in any of the component terms can 
have a determining effect on the design. Most important 
here is that t.Smp can easily become large enough to 
make t.instruction(with Smp) twice t.instruction(with
out Smp). 

The cache appears to offer a solution to this problem 
within the currently emerging economic design param
eters. The basic concept of a cache is well established. * 
To review: a cache operates by providing a small high 
access content addressed memory (M.cache) for 
recently accessed words. Any reference to Mp first 
interrogates M.cache to see if the information is there, 
and only if not is an access made to Mp. The basic 
statistical regularity of system performance underlying 
the cache is that words recently accessed will be accessed 
again. This probability of reaccess depends of course on 
the size of the past maintained. Available statistics 
show that if a few thousand words of cache can be kept, 
then well over 90 percent of the Mp accesses will be 
found in the cache, rather than having to go to Mp it
self. If technology provides a steep trade-off between 
memory size, memory cycle time and cost per word, 
then a cache is a valuable structure. 

If we associate the cache with the Pc, as in Figure 3, 
then the net effect of the cache is to decrease t.Pc (for 
fixed computational power delivered). In organizations 

Mp 

Smp 

Mp 

Figure 3-Multiprocessor computer with cache associated 
with each Pc. 

* The first machine really to use a cache was the 360/85 under 
the name of "buffer memory" (Conti, 1969). Wilkes (1965) 
termed it the "look-aside" memory. "Cache" seems by now an 
accepted designation. 



390 Fall Joint Computer Conference, 1971 

such as the 360/85 this permits balance to be achieved 
between a fast Pc and a slower Mp. In the case of 
multiprocessor, this permits the delay of Smp to be of 
less consequence (for aggregated t.Smp and t.Mp 
play the same role as does t.Mp in a uniprocessor 
system). 

There is a second strong postive effect of caches in a 
multiprocessor organization of the kind under discus
sion. As the graph of Figure 2 shows, performance is a 
function not only of the delay times, but of the fre
quency of accessing conflicts. These conflicts are a 
monotone function of the traffic on the switch, in
creasing sharply as the traffic increases. The cache on 
the Pc side of switch operates to decrease this traffic, as 
well as to avoid the delay times. There is one serious 
problem regarding the validity of the data in a system 
such as Figure 3, where multiple instances of data co
exist. In a system with p caches and an Mp, itis con
ceivable that a single address could be assigned p+ 1 
different contents. To avoid this problem by assuring a 
single valid copy would appear to require a large amount 
of hardware and time. Alternatively, the burden might 
be placed on the operating system to provide special 
instructions both to dump the cache back into Mp and 
to avoid the cache altogether for certain references. 

In a recent attempt to design a large computer for use 
in artificial intelligence (C.ai), we considered a large 
multiprocessor system (Bell and Freeman, 1971; 
Barbacci, Goldberg and Knudsen, 1971; McCracken 
and Robertson, 1971).* The system is similar to the one 
in Figure 1; in fact, the essential design of the Smp for 
the minicomputer-multiprocessor came from the C.ai 
effort. C.ai differs primarily in having 10-20 large Pc's 
with performance in the 5XI07 operation/sec class (e.g., 
the cache-based Pc being designed at Stanford, which 
is aimed at 10XPc(PDP-I0) power). An essential 
requirement for this large multiprocessor was the use of 
caches for each Pc in the manner indicated. 

Why then are caches not needed on the minicomputer
multiprocessor? Interestingly enough, there are three 
answers. The first is that the performance of mini
computers is sufficiently low, relative to the switch 
and the Mp, so that reasonable throughput can be 
obtained without the cache. The second is that the 
first answer is not quite true for the PDP-II Pc. To 
achieve a reasonable balance in our current design 
requires an upgrading of the bus driving circuits on the 

* Many people at CMU participated in the C.ai effort; a list 
can be found in the reports referenced. Furthermore, the C.ai 
effort was itself imbedded in a more general design effort initiated 
by the Information Processing Technology Office of ARPA and 
was affected by a much wider group. 

PDP-II. ** The third answer is that the benefits that 
accrue from a cache in fact hold for minicomputers as 
well. Recently a study by Bell, Cassasent and Hamel 
(1971) showed that a system composed of a cache and a 
fast minicomputer Pc was able to attain a fivefold 
increase in power over a PDP-8. The cost of the cache 
was comparable to the Pc, yielding a substantial net 
gain (i.e., for a minimal system the power increased by 
5 while the cost doubled). Thus, caches would un
doubtedly further improve the design of Figure 1 at a 
lower cost. Alternatively, one could simply add more 
Pc's, rather than increase the cost of the Pc by a cache. 

Multiple cache processors 

One additional design feature of the C.ai is worth 
mentioning, in addition to its basic multiprocessor 
structure and cache structure vis-a-vis the Smp. 

The general philosophy of the multiprocessor is that 
of functionally specialized Pc's working into a very 
large Mp. In the context of artificial intelligence, 
functional specialization of the entire Pc to a com
pletely specific system (such as the language, Lisp) 
seems required to exploit algorithm specilaization. * 
Thus, we engaged in the design of two moderate sized 
Pc's, one for Lisp and one for a system building system 
called L* (Newell, McCracken, Robertson and De
Benedetti, 1971). 

Figure 4 shows the basic PMS organization of one of 
these processors (actually the one of L*, but it makes 
little difference to the discussion at hand). The im
portant feature is the use of multiple caches, one for 
data and one for the microprogram. Two gains are to be 
obtained from this organization. On the performance 
side, the gain is essentially a factor of 2, arising from 
the inherent parallelism that comes from the lockstep 
between the data and instruction streams. The cache is 
indicated by the design decision to permit the micro
code to be dynamic. Thus, the second gain is in re
placing a deliberate system programming organization 
for changing the microcode with the statistical structure 
of the cache, thus simplifying considerably the total 
system organization (including the operating system). 

** Modification of these circuits constitutes the primary modifica
tion of the PDP-ll Pc for participation in the system. The only 
other modification is the use of two bits in the program status 
work to indicate extended addressing. 
* The argument is somewhat complex, involving the fact that 
specialization to artificial intelligence per se (and in particular to 
list processing) does not produce much real specialization of hard
ware. Not until 'one moves to a completely particular specification 
of internal data types and interpretation algorithms can effective 
specialization occur. 



IMP I 

Pc 

M.cache M.cache 
microprogram Instructions ,data 
(interpreter) (ML program) 

I 
control 

DM 
arithmetic unit 
processor state 

Figure 4-Multiple (two) cache system 

. The gains here are not overwhelming. But in the 
lIght of the many single cache organizations (Conti, 
1969). a~d non-cache dynamic microprogramming 
or~amzatlOns (Hu~son, 1970; Tucker and Flynn, 1971) 
bemg proposed, It seems worth pointing out. The 
concept could be extended to more than two caches in 
co~pu~ers t~at are pipelined, where additional paral
lelIsm IS aVaIlable in the controls. 

Register transfer modules 

Some time ago Wes Clark (1967) proposed a system 
of organization that he called Macromodules. These 
traded speed and cost to obtain true Erector set con
structability. For a given domain of application 
namely sophisticated instrument-oriented laborator; 
experimentation, a good case could be made that the 
trade-off was worthwhile. The modules essentially in
corporate functions at the register-transfer level of 
computer structure, thus providing a set of primitives 
substantially higher than the gates and delays of the 
logic circuit level. 

More recently, another module system has been 
created, called Register-Transfer-Modules (RTM'S)* 
(Bell and Grason, 1971). RTM's differ from Macro
modules at several design points, being cheaper (a 
factor of 5), slower (a factor of 2), harder to wire, and 
more permanent when constructed. On some dimensions 
(e.g., checkout time) not enough evidence is yet avail
able. Thus, they occupy a different point in a design 

* Also called the PDP-16 by DEC. 

Computer Structures 391 

space of RT modules. For our purposes here these two 
systems can be taken together to define an approach 
to a class of computer systems design. 

Register transfer modules appear to be highly 
effective for the realization of complex controls, e.g., 
instrument controls, tape and disk controls, printer 
controls, etc. They appear to offer the first real oppor
tunity for a rationalization of the design of these 
aspects of computer systems. Their strong points are 
in the rationalization of the control itself and in the 
flexibility of data str~ctures. 

An extremely interesting competition is in the offing 
between minicomputers and register transfer modules. * 
As the price of the minicomputer continues to drop, it 
becomes increasingly possible simply to use an entire 
C.mini for any control job. The advantages are low cost 
through standarization and hence mass production. To 
combat this the modular system has its adaptation to a 
particular job, especially in the data flow part of the 
design, thus saving on the total amount of system 
required and on the time cost of the algorithm. 

An important role in this competition is played by 
memory. If substantial memory is required, its cost 
becomes an important part of the cost of the total 
system. An Mp essentially requires a Pc and lor a 
minicomputer has been created. Stated another way: 
a minicomputer is simply a very good way to package a 
memory. Consequently, RT modules cannot compete 
with minicomputers in a region of large Mp. This 
extends to task domains that require very large amounts 
of control, since currently a memory is the most cost 
effective way to hold a large amount of control informa
tion. Thus, the domain of the RT modules appears to be 
strongly bounded from above. 

An interesting application of the above proposition 
can be witnessed in the domain of display consoles. 
First, substantial memory is required to hold the in
formation to be displayed. Thus, in essence, small 
computers (P.display-Mp) have been associated with 
displays. A few years back costs were such as to force 
time-sharing; each P . display serviced several scopes. 
But the ratio is finally coming down to 1-1, leading to 
simplification in system organization, due to the elimin
ation of a level of hierarchical structure. 

Our argument above, however, has a stronger point. 
Namely, a minicomputer (namely, a Pc-Mp organiza
tion) will dominate as long as there is already the 
requirement for the memory. Thus, the specialized dis
play processors are giving way to general organizations. 
In fact, it is as effective to use an off-the-shelf mini-

* Actually there may be a third contender, microprogrammed 
controllers. 



392 Fall Joint Computer Conference, 1971 

computer for the display processor as one specially 
designed for the purpose. Our own attempt to show 
this involves a PDP-II (Bell, Reddy, Pierson and 
Rosen, 1971). 

There is an additional reason for discussing RT 
modules, beyond their potentiality for becoming a 
significant computer structure. They appear to offer the 
impetus for recasting the logic level of computer 
structure. The register transfer level has slowly been 
gathering reality as a distinct system level. There 
appears to be no significant mathematical techniques 
associated with it. But in fact the same is true of the 
logic level. All of the synthesis and analysis techniques 
for sequential and combinatorial circuits are essentially 
beside the point as far as real design is concerned. 
Only the ability to evaluate-to compute the output 
given the input, to compute loadings, etc.-has been 
important. Besides this, what holds the logic level 
intact is (1) a comprehensible symbolism, (2) a clear 
relation of structure to function so a designer can 
create useful structures with ease, and (3) a direct cor
respondence between symbolic elements and physical 
elements. 

RT modules appear to have the potential to provide 
all three of these facilities at the register transfer level 
(rather than the sequential and combinatorial logic 
level). The ability to evaluate is already present and 
has been provided in several simulators (e.g., Darringer, 
1969; Chu, 1970). The module systems provide the 
direct correspondence to physical components, which is 
the essential new ingredient. But there is also emerging 
a symbolism with clear function-structure connections, 
so that design can proceed directly in terms of these 
components. For the Macomodules of Clark one can 
actually design directly in terms of the modules. With 
our RTMs we have been able to adapt the PMS nota
tion (Bell and Newell, 1971) into a highly satisfactory 
symbolism * It is too early to see clearly whether this 
conceptual event will take place. If it does, we should 
see the combinatorial and sequential logic levels shrink 
to a smaller, perhaps even miniscule, role in computer 
engineering and science. Actually, even if these modules 
do not cause such an emphatic shift in digital design, 
it is almost safe to predict this change solely on the 
basis of minicomputers and microprogrammed con
trollers being used for this purpose. This will lead to a 
decrease in the need for, and interest in, conventional 
sequential and combinatorial logic design. 

A cautionary note on microprogramming 

With the right shaped trade-off function on memory 
speeds, sizes and costs relative to logic, microprogram-

* Called Chartran in DEC marketing terminology. See Bell and 
Grason (1971) for examples. 

ming becomes a preferred organization, because of the 
regularity in design, testability and design flexibility 
that it offers. Memories of 105 bits must be available at 
speeds comparable to logic and at substantially lower 
cost per effective gate. With only 104 bits there is not 
enough space for the microcode of a large Pc. If memory 
is too slow or too costly, the resulting Pc's simply 
cannot compete with conventional hardwired Pc's in 
terms of computational-power/dollar. 

The conditions for microprogramming* first became 
satisfied with read-only memories (circa 1965). In the 
first major experiment, the IBM System/360, a variety 
of hardware was used at different performance levels 
of the series, all of it M.ro. Some of the memories 
permitted augmentation, and in fact this feature 
attained some significant use, e.g., the RUSH system 
of Alan Babcock (a Joss-like commercial timesharing 
system based on PL/I) which is able to be both cost
effective and interpretive by putting parts of the inter
preter into the M.microprogram of the 360/50. 

More recently read-write memories have become 
available at speeds and costs that satisfy the conditions 
for microprogramming. This leads, almost automat
ically, to dynamic microprogramming, in which the 
user is able to modify the microcode under program 
control. This allows his program to be executed at 
higher speeds. The effect is not quite to make the 
microcode the new machine language, for the trade-offs 
still do not permit 1061"..1107 bits of M.JLP, which is 
required for full sized programs. Thus, the original 
functional concept of microprogramming remains 
operative: a programmed interpreter and instruction 
set for another machine language, which occupies a 
much larger Mp. 

All this story is a rather straightforward illustration 
of the principle that computer structures are a strong 
function of the cost-performance trade-offs within a 
given set of technologies. Different regions in the space 
of trade-offs lead, not to parametric adjustments in a 
given invariant computer structure, but to qualitatively 
different structures. 

The cautionary note is the following. In our headlong 
plunge to discover the new organizations that seem to 
be effective in a newly emerging trade-off region, we 
must still attempt to separate out the gains to be made 
from the various aspects of the new system-from the 
new components, from the newly proposed organiza
tions, etc. The flurry of work in dynamic microprogram
ming seems to use to be suffering somewhat in this 
regard. The proposed designs (e.g., see Tucker and 
Flynn, 1971) appear to be conventional minimum 

* The microprocessor must operate at a speed of 4 to 10 times the 
processor being interpreted. 



computers with wide unencoded words. * They compare 
very favorably against existing systems (e.g., members 
of the 360 series), but when the performance gains are 
dissected they appear to be due almost entirely to the 
gains in componentry, rather than to any organiza
tional gains (e.g., Tucker and Flynn, 1971).* The cost 
of these systems is usually missing in such analyses. 

High per-
formance 

technology Mini-
microprocessor Model 50 computer 

n umber of instructions 8 11 (6) 5 
number of bits 512 224 (128) 80 
loop time 10 9 (6) 7 

(in memory accesses) 
memory bandwidth 640"-'3840 16 16 

(megabits/sec) 
time for 10 iterations 4.3 191 70 

(~ec) 

time using high 4.3 6.5(4) 3.5 
performance technology 
(,usec) 

() indicates improvement in coding over Tucker and Flynn. 

*There appears also to be some confusion in the application of the 
term "microprogram" to some of the proposed systems. The 
definition given by Wilkes (1969) is functional: a micropro
grammed Pc is one whose internal control is attained by another 
processor, P.microprogram. Thus, it is the cascade of two proc
essors, one being the interpreter for the other. Certain struc
tural features characterize current P.microprograms: wide words; 
the nature of the operations (control of RT paths); parallel 
evocation of operations, and explicit next-instruction addressing 
(to avoid machinery in the P.microprogram). Many of the 
proposed dynamic programming systems maintain some of the 
structural features, e.g., wide words, but drop the functional 
aspect. This is, of course, essentially a terminological matter. 
However, we do think it would be a pity for the term micro
programming to attach to certain structural features, independent 
of function, rather than to the functional scheme of cascaded 
processors, one the interpreter for the other. 
* A microprogrammed processor design using 1971 logic and 
memory technology was compared with IBM's 1964 Solid Logic 
Technology and core memory used in the 360 Model 50. Since 
the newer technology (50 nanoseconds/64 bits) was a factor of 
about 80 faster than the Model 50 (2000 nanoseconds/32 bits) 
the microprogrammed processor was somewhat (only a factor of 
45) faster. Even using the faster technology the microprogrammed 
processor's times for multiplication given by Tucker and Flynn 
were about the same as Model 50. 

The following table of a Fibonacci number benchmark given 
by Tucker and Flynn shows that the main advantage of micro
programming is with high performance technology. A micro
programmed processor has about the same number of instruc
tions and number of memory accesses. Due to the poor encoding 
of instructions a microprogram takes more bits (hence possiply 
costs more). By having a comparatively high memory bandwidth 
it can execute the loop rapidly, but given a model 50 or a mini
computer constructed with a 50 ns memory the execution times 
are about the same. 

Computer Structures 393 

Actually, there are signs of the watchmaker's delusion 
(Simon, 1969). A watchmaker, Tempus, attempted to 
construct watches out of very small components, but 
every time the phone rang with an order he was forced 
to start over. He got very few watches completed. 
His friend, Hora, decided first to build springs, releases, 
escapements, gears, etc., and then larger assemblies of 
these. Though he, too, was often called to the phone, 
he quite often had time to complete one of these small 
assemblies, and then to put these together to obtain an 
entire watch. 

To apply the moral: Large systems can only be 
built out of components modestly smaller than the 
final system itself, not directly out of much smaller 
components. The dynamic microprogramming pro
posals take as given the same micro-components as 
have existed priorly (gates and registers). They do not 
propose any of the intermediate levels of organization 
that are required to produce a large system. Thus, e.g., 
when they propose to put operating systems directly 
in microcode they are close to the watchmaker's 
delusion. Insofar as the response is "But of course we 
expect these intermediate levels of organization to 
exist," then their proposals are radically incomplete, 
since the operative concepts of the design are missing. 

The situation is even a little worse, for unlike con
ventional machine language organizations, micro
programmed processors are usually oriented to highly 
special technology, have multiple automatic units that 
have to be operated in parallel, can even perform in a 
non-deterministic manner, are location sensitive, and 
provide a combinatorially larger instruction set. 
Effective compilers and performance-monitoring soft
ware will be mandatory before users can effectively 
gain any order-of-magnitude increase in performance 
latent in the basic organization. Furthermore, since 
these processors are so technology oriented, it is difficult 
to guarantee that they will have successors or be mem
bers of compatible families. 

CONCLUSION 

We have touched on a number of aspects of current 
research in computer structures that appear to have 
possibilities for being important structures in the next 
half decade. Our examples-and our style of discussing 
them-suggest several basic points about the design of 
computer structures. Some of these have been stated 
already in earlier sections, but it seems useful to list 
them all together: 

(1) Computer design is still driven by the changes in 
technology, especially in the varying trade-offs. 



394 Fall Joint Computer Conference, 1971 

(2) Distinct regions in the space of trade-offs lead to 
qualitatively different designs. 

(3) These designs have to be discovered by us (the 
computer designers), and this can happen only 
after the trade-off characteristics of a new region 
become reasonably well understood. 

(4) Thus, our designs always lag the technology 
seriously. Those that are reaching for the new 
technology are extremely crude. Those that are 
iterations on existing designs, hence more 
polished, fail to be responsive to the newly 
emerging trade-offs. 

(5) Since the development cycle on new total systems 
is still of the order of years, the only structures 
that can be predicted with even minimal con
fidence are those already available in nascent 
form. The multiprocessor, cache and RT module 
organizations discussed earlier are all examples 
of this. 

(6) The design tools that we have for discussing 
(and discovering) appropriate designs are weak, 
especially in the domain over whi~h the struc
tures under consideration here have ranged
essentially the PMS level. 

(7) In particular, there is no really useful language 
for expressing the trade-offs in a rough and 
qualitative way, yet precisely enough so that the 
design consequences can be analyzed. 

(8) In particular (as well), design depends ultimately 
on having conceptual components of the right 
size relative to the system to be constructed: 
small enough to permit variety, large enough to 
permit discovery. The transient character of the 
underlying space (the available space of com
puter structures) reinforces the latter require
ment. The notion of M.cache is an example of a 
new design component with associated functions, 
not available until a few years ago. Even this 
small note shows it to be a useful component in 
terms of which designs can be sought. The 
potential conceptual revolution hiding in the RT 
modules provides another example. 

REFERENCES 

M BARBACCI H GOLDBERG M KNUDSEN 
A LISP processor for C.ai 
Department of Computer Science Carnegie Mellon University 
1971 
C G BELL R CADY H MCFARLAND B DELAGI 
J O'LAUGHLIN R NOONAN W WULF 
A new architecture for mini-computers-The DEC PDP-11 
AFIPS Conference Proceedings Vol 36 Spring Joint Computer 
Conference 1970 

C G BELL D CASSASENT R HAMEL 
The use of the cache memory in the PDP-8/F minicomputer 
AFIPS Proceedings of the Spring Joint Computer Conference 
1971 
C G BELL P FREEMAN et al 
A computing environment for AI research 
Department of Computer Science Carnegie-Mellon University 
1971 
C G BELL J GRACON 
The register transfer module design concept 
Computer Design pp 87-94 May 1971 
C G BELL A NEWELL 
Computer structures 
McGraw-Hill 1971 
C G BELL D R REDDY C PIERSON B ROSEN 
A high performance programmed remote display terminal 
Computer Science Department Carnegie-Mellon University 1971 
(For IEEE Computer Conference 1971) 
Y CHU 
Introduction to computer organization 
Prentice-Hall 1970 
W A CLARK 
M acromodular computer systems 
AFIPS Proceedings Spring Joint Computer Conference pp 335-
336 1967 (This paper introduced a set of six papers by Clark and 
his colleagues pp 337-401) 
C J CONTI 
Concepts for buffer storage 
IEEE Computer Group News March 1969 
J A DARRINGER ! 

The description, simulation and automatic implemenatation of 
digital computer processors 
PhD dissertation Carnegie-Mellon University 1969 
S S HUSSON 
Microprogramming: Principle.'l and practice 
Prentice-Hall 1970 
D MCCRACKEN G ROBERTSON 
An L* processor for C.ai 
Department of Computer Science Carnegie-Mellon University 
1971 
A NEWELL D MCCRACKEN G ROBERTSON 
L DEBENDETTI 
L*(F) manual 
Department of Computer Science Carnegie-Mellon University 
1971 
H A SIMON 
The sciences of the artificial 
MIT PRESS 1969 
W Strecker 
Analysis of instruction execution rates in multiprocessor computer 
system 
PhD dissertation Carnegie-Mellon University 1970 
A TUCKER M J FLYNN 
Dynamic microprogramming: Processor organization and 
programming 
Communications of the ACM 14 pp 240-250 April 1971 
M V WILKES 
Slave memones and dynamic storage allocation 
IEEE Transactions on Computers Vol EC-14 No 2 pp 270-271 
1965 
M V WILKES 
The growth of interest in microprogramming: A literature survey 
Computing Reviews Vol 1 No 3 pp 139-145 



COInputer Structures: Past, Present 
and Future (abstract) 

by FREDERICK P. BROOKS, JR. 

University of North Carolina 
Chapel Hill, North Carolina 

First, Blaauw's law of the persistence of established 
technology leads me to predict that both C.p.u. archi
tecture and technology will change little by 1975, and 
will be surprisingly similar in 1980. 

Second, magnetic bubbles or integrated circuits may 
at least give us memories in the 100 sec. range. These 
will force the complete abandonment of the fast-fading 
dichotomy between electronic memories, directly ad
dressed, and mechanical memories, treated as input
output. As the memory hierarchy becomes a con
tinuum, radically improved addressing techniques and 
block-moving algorithms will be required. 

Third, cheap minicomputers lead one to distributed 
intelligence systems, with minicomputers replacing disk 
control units, display processors, or communications 
adapters. Such systems promise to save c.p.u. core, 
save c.p.u. cycles, and simplify programming. But first 
attempts have saved few c.p.u. cycles and no core, and 
programming is worse. The answer seems to be to com
bine distributed intelligence-separate instruction 
fetching and interpreting mechanisma-with centralized 
memory. 

COInputer Structures: Past, Present 
and Future (abstract) 

by D. B. G. EDWARDS 

University of Manchester 
Manchester, England 

The machine being constructed at Manchester, 
M.U.5, has a number of interesting structural features 
which result from the general aim of designing a system 
to function efficiently with high level languages. 

The first feature is a 'Paging' system which is based 
on Atlas experience and improved to provide a large 
virtual address range (34 bits), good protection facilities 
and an ability to simultaneously handle a number of 

Computer Structures 395 

different page sizes. The next concept termed 'Naming' 
was introduced after extensive testing on Atlas of the 
pattern of operand accesses. A high percentage of ac
cesses is to a limited number of 'Named quantities' and 
the provision of a small associative buffer memory in
corporating a 'Stack' facility is able to significantly 
reduce references to the main store and hence improve 
performance. The third concept involves the use of 
da ta descriptors which extend the flexibility of operand 
accesses by defining elements of a data structure which 
can be variable in length or arranged in the form of a 
string. The final feature is the connection of both the 
processor and its associated main store to a communi
cation highway which links them to other units such as 
the Mass Core system, Disc backing store or even a 
second computer system. 

In the detailed implementation of the complete sys
tem further use of associative buffer storage is used to 
minimize the effect of jump orders on instruction ac
cesses and to readdress the storage units provided to 
give an element of 'fail soft' in that area. 

COInputer Structures: Past, Present 
and Future (abstract) 

by ALAN KAY 

Stanford University 
Stanford, California 

Computer Design in the seventies will be delineated 
by a number of past ghosts and present spectres. 

The fi~st is that IC manufacturers are highly moti
vated toward producing better "FORTRAN" com
ponents (faster linear addressed memories, adders, etc.) 
and thus most revolutionary designs will run FOR
TRAN more cost-effectively than the system for which 
they were intended. A traditional counter-example to 
this statement is the magic which can be done with 
CAMs. Unfortunately, the advent of cheap buffer 
storage largely obviates all but a masked search .in 
terms of speed and the necessity to load the CAM still 
seems to be a serious liability for overall utility. 

A second annoyance is also caused by the cheap 
buffer storage. It means that the effective memory 
(cache) cycle time is usually between 10 to 20 gate 
delays, which means that very little decoding can be 
done before a storage cycle is missed. Pipelining helps 



396 Fall Joint Computer Conference, 1971 

alleviate this problem a bit but is antagonistic to 
highly branched or recursive evaluators. This means 
that it is difficult to hide the data paths on a machine 
when attempting to emulate with microcode (which in 
fact, now becomes quite "visible" itself). 

A more serious problem to confront computer de
signers is the conspicuous absence of a new, more useful 
theory of evaluation on which to base a revolutionary 
design. There is some reason to believe that one such 
will appear in a few years, but for now, consequential 
processes which require essentially a B5500 environ
ment are still being reinvented and understood after 
10 to 15 years of life. 

The social problems of users and customers who are 
unable to adapt to the cost/size tradeoffs implied by 
new technology seem to be part of the general inability 
to transcend "McLuhanism." The Grosch theory of the 
utility of the large processor (etc.) has not redeemed 
itself with proof. A "super" processor may give 10 to 

20 improvement in speed; the elimination of secondary 
storage would improve many real jobs running in a real 
environment by 200 to 1000! 

Mini's have embarrassed the computer establishment 
by being very cost effective compared to the large 
(747?) machines. Besides being more reliable their sys
tems are not as bothered by the exponentially growing 
complexity problems involved in resource sharing that 
the dinosaurs face. 

The above implies the following to this discussant: 
it is now quite possible to give most users their own 
(mini) processor, some memory and a link to various 
file systems. Computer "utilities" (as with power) will 
rent a service to handle global needs. The increase in 
actual computing power to a user may be substantial 
enough to allow him a few years of blessed peace from 
"Improvitis" during which time he will finally be able 
to invent a new theory of algorithmic computation 
which is so desperately needed. 



A panel session-Computers in sports 

The User's Reaction to Football Play 
Analysis and Player Ranking ... Do 
They Make Any Difference? 

by GIL BRANDT 

Dallas Cowboys 
Dallas, Texas 

The Dallas Cowboys began to examine systematic 
ranking of college football players in the early 1960s 
using a computer. 

These rankings are employed in the common NFL 
draft held in the early part of the year, after the 
Superbowl. When the draft is in progress, there is not 
a great deal of time available to make a selection. This 
means the player selection ran kings must be available 
and provide a listing of the college players in an order 
most advantageous to the club. The computer was 
introduced into this ranking process to help eliminate 
many of the biases which existed previously. 

In the beginning, many coaches and members of the 
team management were skeptical of the computer pro
duced rankings. However, time has been in the favor 
of the computer, and as a result, most of the NFL 
teams now employ computer processing of the scouting 
information. The Dallas Cowboys stand behind their 
ranking system 100 percent. It has gained Dallas rela
tively unknowns, such as Calvin Hill, who was Rookie 
of the Year in 1969. The advantages should be obvious. 

The computerized method of scouting has also 
brought some interesting side effects into the overall 
scouting process. There is now a standard and compre
hensive form for all scouts to use. This is read directly 
by the computer. Scouts are now assigned to a particu
lar area or region, and it has become less necessary to 
have prospective athletes scouted by many scouts (al
though the more the better) since the computer pro
gram has built-in weighting factors on the scouts them
selves. 

The Dallas Cowboys coaching staff also utilizes a 
football play analysis system on a weekly basis. The 
main advantage of this computer system is to make 
available analysis of opponent's plays much earlier in 

397 

the week (typically on Monday after a Sunday game). 
The tendencies which are found can be incorporated 
into the practice scrimmage sessions to get the offense 
and defense teams familiar with the type of attack 
used by the next weekend's opponent. 

The computer is here to stay in professional football 
especially with the Cowboys. It was slow starting, but 
the coaches and team management are finally realizing 
it is an indispensible tool to aid in player selection and 
determine tendencies in an opponent's (or ones own) 
play sequence. 

Computers and Scoreboards 

by KEN EPPELE 

Datex Division 
Conrac Corporation 

Computer capability in scoreboard control offers 
several features: 

1. Data presentation in real time. 
2. High speed timing data may be gathered, pro

cessed and presented to the fans in familiar 
units: miles per hour, time behind, etc. 

3. Instantaneous comparison to statistical records. 
4. Automatic message formatting. 
5. High speed presentation, blinking, reversing. 
6. Message recall. 
7. Character generation including variable size 

characters, which aid flexibility and interest to 
message presentation. 

8. High speed switching concepts permit animation 
and slide presentation. 

Conrac Corporation has been applying computers to 
scoreboard display systems since 1967, when it de
livered a mobile golf trailer to IBM, which has been 
used on the PGA golf circuit. 



398 Fall Joint Computer Conference, 1971 

This was followed by the Oakland scoreboard which 
was the worlds first computer controlled electronic 
scoreboard to be installed in any major stadium. The 
computer was programmed to follow the play of the 
baseball game and develop up to the minute statistics 
during the course of the game. Each batter's average, 
for example, is shown when he comes up to bat and 
reflects his season to date average as of the last time at 
bat. The computer is also programmed so that a single 
entry can cause many events to occur. If, for example, 
the count is 3 and 2 on the batter with 2 outs, and the 
batter takes a third strike, the operator simply enters 
the strike code on the computer keyboard. Internally 
the computer updates the player and the team sta
tistics, charging the batter with the strike-out, crediting 
the pitcher with one. The computer also causes the 
ball, strike, and out indications on the scoreboard to 
return to O. It then updates the line score for the team 
just retired and automatically brings up the name and 
current average of the next batter. 

At Ontario Motor Speedway, Conrac installed the 
worlds first automatic timing, scoring and display 
system for automobile racing. Radio transmitters, each 
generating a unique frequency, are mounted on each 
car in the field. Antennas buried in the track sense these 
signals and time any car that crosses an antenna. Time 
is measured to ± one millisecond, which represents a 
distance of four inches at 200 miles per hour. This time 
data is processed by the computer and race order infor
mation is immediately displayed on in-field pylons which 
show the laps completed and the first nine car positions. 
During the race, computer print-outs make available 
more information, e.g. current order of the entire field, 
any car's fastest lap, average speed, and speed of the 
current lap, etc. Print-outs are distributed to the press 
and track announcers. 

The scoreboard for the Dallas Cowboys incorporates 
video data terminals. The computer is programmed to 
maintain current team and player statistics during the 
play of the game. At any time during the game, pre
formatted messages may be recalled by the operator 
with the up to the minute statistics automatically in
cluded in the message. Messages may be previewed by 
the scoreboard director and displayed on the board at 
his direction. 

The scoreboard system for the Stadium at Munich 
incorporates a minicomputer for primary control of the 
matrix scoreboard. This computer also communicates 
with a Siemens central computational center which in
cludes a large data bank for all of the Olympic sports. 
This establishes a focal point for dissemination of infor
mation not only to the facility conducting the event, 
but to the facilities for other events. The Conrac com-

puter system accepts these types of messages, stores 
them temporarily and presents them at the main 
Stadium under command of the local operator. Conrac 
is also supplying the worlds first Mobile Matrix Score
board system to be used for display at the Canoeing 
and Regatta events. The mobile equipment is designed 
such that it may be operated at one remote facility one 
day and at another remote facility the next. 

Computers have become an integral part of major 
scoreboard facilities and are virtually essential if they 
do nothing more than control the hardware in a flexible 
manner. Programming flexibility and ease of expansion 
allows for computer controlled scoreboards to accom
plish other functions, such as statistical analysis or 
comparison and data processing, in real time during the 
course of the sporting event. Conrac foresees continued 
use of computers in future scoreboard installations, 
with even greater emphasis in the real time data pro
cessing of the sport. 

Football Player Ranking SysteIns 

by ATAM LALCHANDANI 

Optimum Systems Incorporated 
Palo Alto, California 

The TROIKA player selection system has been the 
first breakthrough in the application techniques in the 
application of computer and statistical techniques in 
the area of personnel ranking in sports. The success of 
such a system can be evidenced by the fact that 23 of 
the 26 professional football clubs use a computerized 
system for guidance at the yearly draft meetings. 

Based on some of the concepts researched above, 
extensive work has been done in developing a gener
alized system for ranking personnel in areas distinct 
from sports. It is felt that the tool developed herein can 
be a valuable aid in the decision-making concerned with 
the hiring and promotion of employees in government 
and public institutions. Technological advances can be 
made in defining jobs and personnel and the resultant 
optimum matching of the two. 

OSI is in the process of marketing these ideas to 
industry and government and the next couple of years 
will show some concrete results in these areas. Cur
rently, OSI sees itself in the research and development 



stage, but it will not be long before we have an oper
ational tool that would be a useful addition to all levels 
of management. 

Portable Co:mputer Ti:ming, Analysis, and 
Display Syste:ms for Rowing Applications; 
Legal Proble:ms in Co:mputer Sport 
Syste:ms 

by KENT MITCHELL 

JAMCO, Inc. 
Palo Alto, California 

The firm JAMCO, Inc. has concentrated on making 
some of the lesser' known sports more popular, using 
electronic timing devices and display systems. The 
computer has been used principally (1) to store and 
retrieve historical information about the sport and its 
competitors, (2) to analyze data generated by auto
matic and semiautomatic interval timing equipment, 
and (3) to operate electronic display equipment as a 
visual aid to spectators. 

JAM CO's specific objective in rowing is to overcome 
certain spectator and press information problems, which 
are: 

1. The inability presently to view the entire 17,i 
mile long race from start to finish. 

2. The lack of knowledge about the personal and 
competitive backgrounds of the 400 to 500 oars
men who compete in major world-class regattas 
each year. 

3. The poor press coverage given rowing for the 
above reasons and because typical "official tim
ing" systems and methods for reporting results 
are inaccurate, unimaginative, misleading, and 
antiquated. 

There has also been recent interest in computer sys
tems which aid in competitive strategy and, as a result, 
attempt to predict the outcome of future competitions. 
Legal problems begin to appear when these techniques 
can actually affect the outcome. 

Sports governing bodies, professional and amateur, 
have already begun to consider these problems, and 
some regulation has resulted. The implementation of 
real-time analysis and display systems during compe-

Computers in Sports 399 

tition appears to be the area where the most regulation 
will be necessary. Additional restrictions may be im
posed when these electronic devices used to generate 
data are attached to the equipment. 

Co:mputers in Track 

by J. G. PURDY 

TRW Incorporated 
Sunnyvale, California 

There have been a number of scoring tables which 
have been developed for track and field. The purpose of 
these tables is to compare performances (via a point 
score) between the different events, a higher score indi
cating a better performance. Historically, the scoring 
table was introduced as a necessity for the 1912 Olympic 
Games where the first decathlon was staged. Here, the. 
scoring table provided a method to evaluate the best 
overall athlete in the 10 events of the competition. 

The official ruling body in track athletics, the Inter
national Amateur Athletic Federation (IAAF) , has 
adopted scoring systems in 1912, 1934, 1952, and 1962. 
Each succeeding scoring system was, supposedly, better 
than the previous system. Rule changes, new equipment 
and training methods greatly improved the perform
ances in some events while leaving others behind; this 
destroyed the "equality" of the point score. The newer 
scoring tables attempted to reestablish the equality of 
the point scores and often were· based on different 
principles. 

The time has come again for the reevaluation of the 
current scoring system. New records are being made 
which causes some inequality in the point scores. How
ever, the present tables were based on the physics of 
the performances only; physiological considerations 
were purposely ignored since the creators thought a fair 
system could be developed which was based on physics 
alone. 

My current research has attempted to model the 
physiological effort associated with a performance rather 
than just the physics. A rather sophisticated computer 
program has been written to generate the scoring tables 
for the different events in the many various required 
formats. It is anticipated that these new tables will be 
presented to the IAAF for possible ratification as the 
official decathlon scoring tables. 



400 Fall Joint Computer Conference, 1971· 

It should be pointed out that the computer is almost 
essential in this task. Analysis of the thousands of per
formancesand listing of the tables in the many different 
formats would almost be impossible without a computer. 

Prospects for Sophistication in Football 
Play Analysis 

by FRANK B. RYAN 

u.s. House of Representatives 
Washington, D.C. 

. It is a familiar task in football coaching ranks to 
analyze opponents from the point of view of trends and 
of statistical frequencies which might lead to a more 
confident decision on how to conduct game strategy. 
This analysis pervades the minds of football coaches at 
all levels but finds it fullest expression in the professional 
area. 

To put things in perspective, a review of current 
techniques is worthwhile. Computer-aided analysis is 
not new to professional football and had its beginnings 
some years ago when modern methods confronted the 
age-old problem of assimilating a large quantity of data 
efficiently and effectively. The usual procedure begins 
by encoding football information which is then con
verted to machine-compatible form. Reports analyzing 
informa tion covering several games are genera ted in a 
pre-structured format which invariably is finalized once 
and for all prior to the beginning of a season. Generally 
these reports produce simple frequency counts for a 
variety of situations and leave interpretation and 
weighting of results up to the coach. The really useful 

advantages of computer assistance apparently are only 
faintly recognized by most modern-day coaching staffs, 
including those who claim a heavy dependence upon 
this tool. 

There are many reasons for this current imbalance. 
Tradition, of course, plays an important role as well as 
the very human element of "teaching an old dog new 
tricks." In addition, many coaches believe that a simple 
approach must be the best approach. The main force 
here appears to be severe changes which computer aids 
impose on the mode of coaching operation. And yet these 
changes have not been supported fully by theoretical 
developments which would inspire confidence in the 
new methods. 

As a first step in attacking the general problems facing 
computer-aided strategy analysis today, a general re
trieval system, called PROBE, was conceived. The plan 
was to develop a system with great flexibility in three 
important areas: data base definition, report generation, 
and formatting of the output display. This system caters 
to the individual interests and methods of different 
coaching staffs and attempts to bring computer as
sistance to the coach, rather than the coach to the 
computer. At best this approach is intermediate in the 
view of providing modern technological aids to football 
strategy analysis. 

Looking ahead to the future, one wonders if the game 
of football can survive the impact of sophistication. 
There certainly is a point of diminishing returns which, 
however, has not yet been reached, and ultimately the 
flavor of professional football would appear to be in 
jeopardy from excessive analysis. To provide an ade
quate base for a sophistication in game strategy which 
does not compromise the game's basic appeal, there 
needs to be attention devoted to a number of areas, 
among them linguistics, decision theory, and the inter
play between team, mass, and individual psychologies. 
Interestingly enough, the game does and will continue 
to provide a fruitful model for fundamental studies in 
each of these areas. 



On the hybrid computer solution of partial differential 
equations with two spatial dimensions* 

by GEORGE A. BEKEY 

University of Southern California 
Los Angeles, California 

and 

MAN T. UNG 

Dillingham Environmental Company 
La J olIa, California 

INTRODUCTION 

For a number of years it has been suggested that one 
of the fruitful areas of application for hybrid computa
tion might lie in the study of distributed parameter 
systems.1 ,2 In principle, the combination of analog 
computer speed with the memory and logical capabili
ties of digital machines should make it possible to solve 
partial differential equations both efficiently and 
rapidly. However, most of the published work in the 
field has dealt only with linear problems in one spatial 
dimension and time, where the advantages and limita
tions of the particular methods do not stand out 
clearly. 

The purpose of this paper is to present a detailed 
analysis of three methods applicable to the hybrid 
solution of nonlinear parabolic partial differential 
equations with two spatial dimensions, and to apply 
two of these methods to a specific "benchmark" prob
lem. By using different methods to solve the same 
problem, their relative merit can be evaluated in proper 
perspective. 

REVIEW OF HYBRID METHODS FOR 
ONE-DIlVIENSIONAL PARTIAL 
DIFFERENTIAL EQUATIONS 

As a background to the study of two-dimensional 
systems, the major techniques for one-dimensional 
equations will be reviewed briefly. Consider a linear, 

* This research was supported in part by the U.S. Air Force 
Office of Scientific Research under Grant Number AFOSR 
71-2008. 

401 

one-dimensional diffusion equation 

a2U(x,t) aU(x,t) 
a·----

ax2 at 

with the following Dirichlet boundary conditions 

U(O, t) =g(t) 

U(L, t) =c(t) 

and the initial condition 

U(x, 0) =b(x) 

(1) 

(2) 

(3) 

Various alternative hybrid computer methods for 
solution of (1) differ primarily in the way in which the 
variables x or t or both are discretized, in order to ob
tain ordinary differential equations or algebraic 
equations. 

Discrete-space-continuous-time approximations 

In this method the x-domain is represented by dis
crete stations or nodes which divide the x-axis into M 
segments. * The nodes are numbered consecutively 
from 0 to M and Equation (1) is approximated by the 
system of ordinary differential equations 

dUi(t) = _a_ [Ui+1(t) -2Ui(t) + Ui-l(t) ] (4) 
dt (AX)2 

Ui(O) =bi; i= 1,2,3, ... , M-1 

* The segments are generally of equal length, but need not be. 
For example, in the semi-infinite domain 0 ~x < co it may be 
more convenient to divide the x-axis using a logarithmic or 
exponential scale. 



402 Fall Joint Computer Conference, 1971 

where, by convention, Ui(t) denotes U(iAx, t) and bi 
denotes b(iAx). If the number of stations M is not too 
large one can solve Equation (4) in parallel, entirely 
on the analog computer. 

C ontinuous-space-discrete-time approximation 

In this method the spatial variable x is kept continu
ous while the temporal variable t is represented by a 
sequence of discrete steps, nflt, n=O, 1,2, ... , P. Then 
a finite-difference approximation to Equation (1) may 
be written as 

d2Un(x) Un(x) - Un- l (x) 

dx2 aAt 

where, by definition 

Un(x) = U(x, nAt) 

Un(O) =gn 

Un(L) =Cn 

(5) 

This is a split-boundary-value problem whose solution 
consists of hyperbolic functions at each time step. It 
can be shown3 ,4 that direct solution of (5) by iterating 
the unknown initial condition dUn(O)/dt until the 
second boundary is matched leads to computational 
instability. 

Method of decomposition 

In order to avoid the stability problems inherent in 
the classical solution, Vichnevetsky5 introduced his 
Method of Decomposition which amounts to breaking 
Equation (5) into two stable first-order differential 
equations. One is integrated in the forward direction 
while the other along the backward direction. 

Another approach to the stability problem in Equa
tion (5) was used by Hara6 who transformed the prob
lem into one of optimal control. 

Monte Carlo methods 

Finally, Monte Carlo Methods7 ,8 have been used (in 
two and three spatial dimensions) for the evaluation 
of the variable U at a limited number of points in the 
space under consideration. 

The application of hybrid computers to the solution 
of two-dimensional problems is based on generalization 
of the first three methods discussed above. Three 
methods have been used successfully in solving two
dimensional partial differential equations: the "Com
ponent-Sharing Method," the "Explicit/Implicit 

Method" and the hybrid implementation of the Alter
nating-Direction Implicit procedure. 

THE "COMPONENT SHARING" METHOD 

This method is a generalization of the discrete-space
continuous-time procedure because only the spatial 
dimensions are discretized. The Component-Sharing 
method is designed to reduce the number of analog 
components required to solve all stations of the x-y 
plane in parallel. The idea is to divide the net into equal 
subdivisions so that there is enough analog equipment 
to simulate every node within one subdivision in paral
lel. Then the same analog circuits are used to simulate 
other subdivisions in a certain order until the whole 
net is covered. At each station we obtain an approxi
mation Ui,l(t) to the true solution. The superscript k 
refers to the iteration number. The procedure is to 
iterate across the medium again, solving each subdivi
sion serially, in the same order as designated above, to 
come up with a better approximation Ui,jk+l(t) based 
upon the initial and boundary conditions. In subsequent 
iterations, the values Ui,i(t) are the ones obtained from 
the previous computation. In this method the digital 
computer's role is that of control plus data storage and 
playback. The first attempt to use this method was 
carried out by Howe and Hsu9 on the IBM 7090 using 
a fourth-order Runge-Kutta formula to simulate the 
analog computer integration. 

Consider the following linear parabolic equation: 

with boundary and initial conditions 

U(O, y, t) =g(y, t) 

U (L, y, t) = c(y, t) 

U(x, 0, t) =h(x, t) 

U(x, L, t) =r(x, t) 

U(x, y, 0) =b(x, y) 

(6) 

(7) 

There are many ways of creating a net. For example, 
the shape may be square, rectangle, an entire row or an 
entire column. The last alternative is adopted in this 
paper. Allowing t to be the analog independent variable 
we end up with the following set of difference-differ
ential equations representing (6) for a= 1: 

dUi,l (t) /dt= P.Ui+l,l-l(t) +P.Ui-I,l (t) +AUi,i+lk (t) 

+AUi,i_lk(t) -2(P.+A) Ui,l(t) (8)· 



Hybrid Computer Solution of Partial Differential Equations 403 

for 

i=l, 2, 3, ... , M-1 

j=l, 2, 3, ... , N-1 

where J.' and A are defined as 

J.'= 1/(&1;)2 

A= 1/(~y)2 

Equation (8) indicates that we need one integrator per 
node on the i-j plane. If we have enough integrators, 
the whole column can be simulated on the analog com
puter, the same equipment being used sequentially to 
simulate columns i= 1, 2, 3, ... , M -1 in that order. 
During the first iteration, solutions for all but the first 
column must be assumed to provide a set of starting 
boundary conditions for each column. Each new itera
tion yields a closer approximation to the true solution to 
Equation (6). The solutions are said to be convergent 
whenever, for an arbitrary E>O, there exists a number 
K such that for all k> K and for all i, j and n 

I Ui}(n~t) - Ui}-I(ntlt) I <E (9) 

In practice, the computation is stopped as soon as, for 
a chosen E, Equation (9) is satisfied for the first time. 
The boundary conditions find their way into Equation 
(8) at all interior points adjacent to the edges. 
It can be shown that the solution is unconditionally 

stable.I5 

Possible improvements 

It is feasible to save memory space or shorten the 
execution time or both if a slightly different approach 
is taken. This is necessary because the simulation of 
one column at a time, as described, possesses some 
limitations. For example, we find it prohibitive to im
plement the method if j= 1, 2, 3, ... , 200. The need 
for a better plan leads us to working with a rectangular 
block of nodes instead of a whole column. The cluster 
shown in Figure 1 accounts for 1 XJ points but we 
need to use only one converter channel per outside 
node (marked by asterisks), or a total of [21 +2(J -1) ] 
channels. The potential of this scheme is fully realized 
at large values of I and J. For square blocks, we observe 
that while the number of nodes (J2) grows quadrati
cally with J, the number of converter channels required 
increases linearly, 4(J -1). Thus a lOX 10 block calls 
for only 36 DAC channels. Because the time histories 
of the interior nodes are not stored, the memory re
quirement drops to 36 percent of the total storage 
space when all interior points are to be kept in the 

i---*---*---*---*---*---*---i;:: 

1 ! · 
1 l . 
L* __ *_* __ * __ * __ * __ l i ~ J 
i=l i=2 ••.••.•.•..••.••• i:c:J 

Figure 1-A subdivision of the X-Y plane 

digital computer. From a macro point of view, the exe
cution time is also cut down to approximately 36 per
cent compared to the simulation of a single column at 
a time. We should reiterate that even though only 36 
percent of the converters are utilized the run time is 
not reduced to exactly 36 percent due to a fixed amount 
of overhead in the program. On top of this, some time 
is spent in initializing the interior points during the 
RESET cycle. The same DACs could be used for es
tablishing initial conditions. 

As described herein, the integration with respect to 
time was carried out continuously for 0 ~ t ~ tmax• If 
fmax is of long duration, the Component-Sharing method 
could be· beneficially applied to a fraction of the time 
tmax, say O~t~fmax/P, where p is an integer. After the 
solution converges for this interval we then 'move on 
and solve for U(x, y, t), tmax/p<t~2tmax/P, and so on. 
There should be an optimal p in terms of solution speed 
and accuracy for each problem. 

HYBRID IMPLEMENTATION OF THE 
ALTERNATING DIRECTION METHOD 

The Alternating Direction Implicit method was sug
gested originally by DouglaslO and Peace man and 
Rachford,!l and its digital computer implementation 
discussed in numerous papers.16-I9 Recently Bishop12 
demonstrated successfully an adaptation of the algo
rithm to hybrid computation. The basic Alternating 
Direction Implicit method can be used to solve Equa
tion (6) as follows: let the coefficient a= 1, and defill~ 

Ui ,;*= U(itlx,jtly, (n+%)tlt) (10) 

Then we can approximate Equation (6) by two differ
ence ~quations which are used in turn, over successive 



404 Fall Joint Computer Conference, 1971 

time steps, each of duration t:..t/2: 

Ui,;*- Ui,i,n _ 0 2[U *J+O 2[U J 
(t:..t/2) - x i,i 11 i,i,n 

Ui,i,n+l- U i,;* 
(tlt/2) 

for i=l, 2, ... , M-l 

for j=l, 2, ... , N-l 

(11) 

(12) 

Equations (11) and (12) are implicit in x and y re
spectively, resulting in systems of algebraic equations 
which can be solved using matrix inversion. 

By adapting Equations (11) and (12) to the hybrid 
computer we can entirely avoid matrix manipulation 
which accounts for the greater part of the time spent 
in solving the problem digitally. In order to simplify 
the analog circuits associated with this algorithm let 
us define, for ntlt ~ t ~ (n+ 1) t:..t 

Ui,i(t) = Ui,i(t) - Ui,i(ntlt) 

Ui,i(t) = Ui,i(t) - Ui,i( (n+Y2) tlt) 

and also define 

7ri,i(ntlt) = Ui+I,i(nt:..t) + Ui-I,i(ntlt) 

+ Ui,i+I(ntlt) + Ui,i-I(ntlt) 

-4Ui,i(ntlt) 

(13) 

Keeping the independent variable t continuous while 
discretizing x and y (tlx = t:..y) we can approximate 
Equation (6) as follows 

dUi,i(t) /dt= [(tlX)2J-l[Ui+I,i(t) +Ui-I,i(t) 

+Ui,i+l (t) +Ui,i-I(t) -4Ui,i(t) 

+ 7ri,i(ntlt) J (14) 

The hybrid computer implementation of the Alter
nating-Direction Implicit method revolves around two 
important steps designed to advance the time dimen
sion t by Y2tlt per step. 

Step 1: In this step we perform calculations that are 
implicit in the x direction. Let us modify Equation (14) 
to attain this goal 

dUi,i (t) / dt = [ (Ax) 2J-I[ Ui+I,i (t) - 2Ui,i (t) Ui-I,i (t) 

+ 7ri,i(ntlt) J+[ (t:..X)2J-l[Ui,i+1 (ntlt) 

- 2ui,i(ntlt) +Ui,i-I(ntlt) J (15) 

Every term inside the second square bracket of Equa
tion (15)· is zero by virtue of the definition on Equation 
(13). Using a system of coupled analog circuits we 

solve for Ui,i(t) 

(n+I/2).dt 
Ui,i(t) = [(tlX)2J-I f [Ui+I,i(t) -2Ui,i(t) 

n.dt 

+Ui-I,i(t) +7ri,i(ntlt) Jdt for 

i,j=l, 2, 3, ... , M-l (16) 

The system of equations depicted by (16) results in 
M -1 coupled analog circuits. Each analog circuit cor
responds to a subscript i. The quantities 7ri,i(ntlt) are 
forcing functions coming from the digital machine. The 
integration of (16) must be carried out M -1 times, 
corresponding to M -1 possible values of the subscript 
j. In other words, subscript i is taken care of in parallel 
while subscript j is solved serially. Step 1 advances the 
time dimension by Y2tlt, from ntlt to (n+Y2) tlt. 

Step 2: Starting with equation (14) again, we modify 
it to read 

dUi,i(t) /dt= [(tlx) 2J-l[Ui,i+l (t) -2Ui,i(t) 

+Ui,i-I (t) +7ri,i( (n+Y2) tlt) J 
+[ (ilx)2J-l[Ui+l,i( (n+Y2) tlt) 

-2Ui,i( (n+Y2) tlt) +Ui-I,i( (n+Y2) tlt) J 
(17) 

Similar reasoning to step 1 shows that the second half 
of the right-hand-side of Equation (17) is null. Inte
grate (17) to obtain Ui,i(t) 

(n+l).dt 
Ui,i(t) = [(t:..X)2J-l f [Ui,i+I(t) -2Ui,i(t) 

(n+I/2).dt 

(18) 

The same M -1 analog circuits used in step 1 are put 
to work again in step 2,. except the roles of the subscripts 
i and j are reversed. Note that the computation in 
step 2 is implicit in y and explicit in x. Also note that 
the hybrid implementation of the Alternating-Direction 
Implicit method precludes matrix inversion. Since a 
great part of the time is devoted to matrix inversions 
in the digital solution, the prospect of significant im
provement in the hybrid solution speed is potentially 
real. The change of variable from Ui,i(t) to Ui,i(t) and 
Ui,i(t) enables us to use the entire dynamic range of 
the analog integrators during each half time step, Y2t:..t. 

EXPLICIT-IMPLICIT METHOD 

This method is a generalization of the "method of 
decomposition" mentioned earlier in connection with 
discrete-time-continuous space approximations. The 
integration time of the analog computer is equated to 



Hybrid Computer Solution of Partial Differential Equations 405 

one of the spatial dimensions, say x, while y and tare 
discretized, thus producing a set of second-order differ
ential equations with split-boundary conditions whose 
solution grows without bound as x increases. The 
ExplicitjImplicit Method leads to the decomposition 
of the unstable second-order differential equation at 
each (y, t) node into two stable first-order differential 
equations. One of these is to be integrated along the 
x-axis and the other along the - x direction. To illus
trate this point, let us approximate Equation (6) as 
follows 

d2Uj ,n = _ Uj+1,n-l- 2Uj ,n-1 + Uj-l,n-l 
dX2 (1ly)2 

+ Uj,n - Uj,n-l (19) 
1lt 

X [Uj+l,n-l- 2Uj ,n_l + Uj-l,n-l] (20) 

Equation (20) is unstable if a direct approach is at
temped to solve it. Simply reversing the direction of 
integration13 won't help because dX2=d(-X)2. Rewrit
ing Equation (20) by indicating the dependence of 
Ui,jonx 

[d2Uj ,n(x)jdx2]-iFUj ,n(X) = -AUj+I,n-I(X) 

-VUj,n-I(X) -A Uj-l,n-l (x) (21) 

where 

1 
iF=-

1lt 

1 2 
v=----

1lt (1ly) 2 

All the terms on the right-hand-side of Equation (21) 
are known because they belong to the last time plane, 
(n-l) 1lt. Let us denote them by Rj(x). The solution 
of Equation (21) is thus explicit with respect to time. 
Dropping the temporal subscripts n whenever we imply 
the n1lt time plane, Equation (21) becomes 

In order to solve this equation we proceed as follows. 
First, let us solve the first-order ordinary differential 
equation 

dVj(x) jdx+ (iF)1/2Vj (X) =Rj(x) (23) 

This is a stable equation if it is integrated in the +x 
or forward direction. Secondly, define an equation that 

is stable in the backward (- x) direction 

dZj(x) jdx- (iF) 1/2Zj (X) = Vj(x) . 0::; x::; 1 (24) 

i.e., the independent variable x decreases from 1 to 0 
during each run. Instead of working on Equation (24) 
directly we solve the following expression 

dZj(x) jd( -x) - (iF)1/2Zj(X) = V j ( -x) (25) 

which is also integrated in the forward direction. Then 

d2Z j (x) jdx2-iFZj (x) 

or 

= [djdx+ (iF) 1/2][djdx- (iF)1/2]Zj(X) 

= [djdx+ (iF)1/2]Vj (X) 

(26) 

Hence Zj(x) satisfies the ordinary differential Equation 
(22) but not necessarily the boundary conditions. This 
is true for any initial values Vj(O) and Zj(M). For 
simplicity it is easy to choose V (0, j) = 0 and Z (M, j) = 

Oi also M = Xmax = 1. 
Define two homogeneous ordinary differential 

equations 

dWl(x)jdx+ (iF)1/2Wl(x) =O} 
O::;x::;1 

dW2(x)jdx- (iF)1/2W2(x) =0 

with the following initial values 

Wl(O) = W2(M) = 1 

(27) 

The equation for WI (x) is to be integrated in the for
ward (+x) direction while that for W2(x) in the back
ward direction (from X= 1 to x=O). Also let Uj(x) be 
composed of 

Uj(x) =Zj(x) +ajWl (x) +bjW2(x) (28) 

where aj. and bj are two constants to be evaluated 
later. According to Equations (26) and (27) this equal
ity becomes 

(d2jdx2_iF) Uj(x) =Rj(x) (29) 

Equation (29) indicates that the right-hand-side of 
(28) satisfies the ordinary differential Equation (22). 
The same right-hand-side of (28) can satisfy the 
boundary conditions Uj,n(O) and Uj,n(M) too, if we 
set 

U(O,j, n) =Z(O,j) +ajWl(O) +bjW2(0) 

U(M,j, n) =Z(M,j) +ajWl(M) +bjW2(M) (30) 

Equation (30) contains two unknowns, aj and b;, 
which can be readily determined. With aj and bj solved, 
Uj(x) can be directly computed from the combination 
of Zj(x), WI (x) and fV2(x) using Equation (28). 



406 Fall Joint Computer Conference, 1971 

I 
),' 

j=O 

1E-2.~ 
• 13 . t --- I=JBOUND 

3/13 

'--___ ..... _.J._ - --- - j=N 

Figure 2-Cross-section of the bar under consideration 

NONLINEAR TEST PROBLEM 

In order to compare the various methods, we have 
applied them to the solution of a nonlinear heat con
duction problem in a bar with the irregular cross
section shown in Figure 2, and described by 

a (U) [iJ2U /iJx2+iJ2U /iJy2] = au / iJt 

O~x, y~ 1, t~O (31) 

with U on the boundaries being uniformly at unity 
and with initial condition 

U(x, y, 0) = 1-sin1rxosin1rY (32) 

Note that the initial temperature has a jump discon
tinuity along the cutout of the cross-section. The 
thermal diffusivity is assumed to be given by 

a(U) =.8+.2U 

This problem is set up so as to have a temperature 
profile symmetrical about the main diagonal of the 
cross-section, in order to provide a convenient check 
on error propagation along the x-axis in various meth
ods. We will investigate the problem for 0 ~ t ~ .08 ~ 

second. During this transient period most errors are 
expected to occur. Also during this period the tempera
tures at most of the points reach 90 percent of their 
steady-state values. 

Component-sharing method 

This method leads to the system of difference
differential equations 

dUi,i/dt = a( Ui,i) [~Ui+l,i+~Ui-l,i+>'Ui,i+l 

+>.Ui,i-1-2(.U+>') Ui,i] (33) 

\...-~-------< DAC*(i I) 

Control Lint.· ift. . 

Figure 3-Component-sharing method for non-linear diffusion 
equation. In this figure 

Vi,i = [PUi+l,i+I'Ui-l,i+XUi,i+l +XUi,i-l] 

CONTROL is a pulse train starting at the beginning 
of each frame time. 

which are identical to Equation (8) except for the 
temperature-dependent term a( Ui,i)' It can be re
stated to read 

(34) 

where O',irepresents the quantity between the brackets 
in (33). Equation (34) produces the analog diagram 
in Figure 3. The complete program consisted of 12 
such building blocks corresponding to 14 points on the 
y-axis (the two exterior points are known boundaries). 

Figure 4 depicts the flowchart of this program. We 
have found that large errors are introduced if we care
lessly mix the discrete and the continuous signals to 

Figure 4-Flowchart for the method of component-sharing 
(Nonlinear diffusion equation) 



Hybrid Computer Solution of Partial Differential Equations 407 

form Vi,j in Figure 3. That is why the continuous 
analog coupling terms Ui,j-l and Ui,j+! are sampled 
before they are added to the output of the DAC. A 
storage block of 14 X 14 X 53 words is needed for the 
data of the program. The digital portion of the hybrid 
program, as written, will work for any nonlinearity. 
Variations occur only in the analog program where 
different functions have to be set into the DFGs. 
Directing the information flow between the analog com
puter and the mass storage is the main task of the 
digital computer. In practice it is not feasible to write 
one hybrid program to fit every' occasion because 
changes in the initial conditions and boundary condi
tions result in scaling problems. Digital computer 
users grow accustomed to the convenience of floating
point arithmetic. Hybrid programs, especially the ana
log portion, are restricted to a fixed-point regime. For 
example, Figure 3 should be rescaled if maxUi,j(t) <0.5. 
In that case, only a fraction of the dynamic range of 
the analog computer is fully utilized. As it stands, 
Figure 3 is not yet "optimally scaled" because 
Os Ui,j(t) s 1. In other words, only one-half of the ana
log computer dynamic range is covered by the variable 
Ui,j(t). We could have offset Ui,j(t) in such a way 
that its scaled value reads 

-1.0S2[Ui,j(t) -0.5JS 1.0 

This type of biasing of a variable is sometimes done 
when accuracy considerations override the extra ex
penditure of time and equipment. As the solution de
velops, the program types out the convergence error 
E for each iteration to inform the operator of the prog
ress being made. The quantity E was defined in Equa
tion (9) and in the current program 

E=max I Ui,i,nk
- Ui,j,nk

-
1 I 

for all i, j and n. It was found that, starting at the 
same initial guesses, the nonlinear problem converges 
at the same rate as its linear counterpart (a( U) = 1). 
One possible reason is the fact that the chosen non
linearity a( U) does not vary drastically with the 
temperature U. A typical computer output shows that 
the solution converges to within .1 percent in 20 
iterations. 

The implicit alternating direction method 

The application of this method to the benchmark 
problem is not available at this time. However, Bishop 
has a working program* on the performance of a gas 
storage reservoir, also a diffusion equation. He imple
mented a linear model of the reservoir in two spatial 
dimensions on the EAI 8900 hybrid computing system. 

For a grid of 15X 15 in the spatial dimensions and for 
14 time steps his program consumed 2.6 seconds, and 
his results agreed with comparable digital results 
within 1 part per 10,000. It is safe to assume that the 
execution time would remain essentially at 2.6 seconds 
for the nonlinear problem as well, if one is willing to 
handle the nonlinearity on the analog computer. The 
situation in this case is similar to that of the Com
ponent-Sharing method. All we need is to add some 
D FGs to the existing analog diagram. 

Solution of the test problem by the explicit/implicit method 

Equation (31) becomes 

d2Uj,n(X) /dx2= -oz,2[Uj,n-l(X) J 
+[Uj,n(X) - Uj,n-l(X) J/[a( Uj,n(X)) • atJ (35) 

The above expression can be put in the form similar 
to that of (22), but this time we have a system of non
linear differential equations. For j = 1, 2, 3, ... , N-l 

d2Uj,n(x) /dx2 - E>j( Uj,n(X)) • Uj,n(X) = Rj(x) (36) 

where 
E>j(Uj,n(X)) = [a(Uj,n(x)) ·atJ-l (37) 

Rj(x) = -AUj+!,n-l(X) -Vj(Ui,n(X)) Uj,n-l(X) 

-AUj - 1,n-l (38) 

and 
Vj(Uj,n(X)) =[a(Uj,n(x)) ·atJ-1-2>. (39) 

The Explicit/Implicit method is based upon the super
position principle in the decomposition procedure and 
in matching the boundary conditions of Uj,n(X), To 
apply this method we must linearize Equation (36). 
Linearization which yields a set of linear differential 
equations with varying coefficients, rests upon the 
search for a purely space-dependent coefficient v j (x) 
such that E>j( Uj,n(x) )~Vj(x). Once a suitable function 
Vj(x) is found the Explicit/Implicit method can be 
applied to the solution of the equation 

d2Uj,n(x)/dx2-vj(x) Uj,n(x) =Rj(x) (40) 

A predictor-corrector approach to this problem was 
suggested by Vichnevetsky.14 

Let the "predicted value" U i ,n * (x) be represented 
by the linear sum 

K 

Uj,n*(X) = L CkUj,n-k(X) (41) 
k=1 

where Ck are constants. Substituting Uj,n * into the 

* The information was supplied by Dr. Kenneth Bishop to the 
authors in a private communication. 



408 Fall Joint Computer Conference, 1971 

-- ------a ----- -f¥l- ----- -r _CQnlrq] l iue_ 
: ~ ~ NO from digital 
I i computer 

I I 
I t 

I W 
I I ; ~---- -----rn---~ 

I 
I 
I 
I 1-_-----------------, 

( ~) [4V j (X) 1 
25 100 

(~~,) 

I 
I 
t 

To ADC 

Rj(x)/500 or 8 . (x)/25 

from digital computer 

Figure 5-Explicit/implict method analog diagram.. Logic 
signals are shown by dashed lines. Mono is the abbreviation for 
monostable multivibrator 

right-hand side of Equation (37) yields 

Wj(x) = [a( Uj,n *(x)) • Llt]-l (42) 

A space-dependent term comparable to lIj(Uj ,n(X)) , 
say Vj(X) , must be found by using the same substitution 
as done in (42). With the help of wiCx) and Vj(x) we 
are prepared to solve for Uj,n(x) in Equation (40). The 
newly found Uj,n(X) can be considered as the "cor
rected" value. If I Uj,n*(X) - Uj,n(X) I is still deemed 
too large, we can always reinsert Uj,n(X) into the co
efficient (42) and again solve for yet another new 
value of Uj,n(X). The process can be repeated a number 
of times to improve the approximation. Hence the origi
nal nonlinear Equation (36) can be approached as 
closely as desired. 

Straightforward decomposition as done earlier is no 
longer permissible, since W is now a function of x. To 
solve the nonlinear problem we define 

(43) 

This is a Riccati differential equation. It can be shown15 

that its solution is well-behaved for the problem under 
consideration. We now apply the Explicit/Implicit 
method, using (Jj(x) instead of Wj(X)1/2, and obtain 

dZj(x) /dx-(Jj(x) ·Zj(x) = Vj(x) (45) 

It can be verified (by substitution) that Zj(x) actually 
satisfies the ordinary differential Equation (40). 

Figure 5 contains the analog diagram for one cell of 
the problem. The flowchart can be found in Figure 6. 

Results 

Since an analytical solution to the problem is not 
known, a reference solution Ui,j(t) was generated 
digitally using the implicit alternating direction method. 
We then chose to evaluate the hybrid solution Ui,j(t) 
by computing the criterion function 

E .. (t) = I U .. (t)-U· ·(t) I ~,J ~,J ~,J 

which is the absolute value of the difference between 
the digital and the hybrid solutions. The time histories 
of three points along the main diagonal of the x - y 
plane are singled out for our study. Point (1, 1) is 
closest to the upper left corner (see Figure 2); point 
(6, 6) is right at the center of the x-y plane and point 
(9, 9) on the main diagonal is closest to the cut-out. 
Figure 7 contains the error plots for these three points. 
It is evident that the accuracy of the two methods is 
of the same order of magnitude. 

The solution time (using the EAI690 hybrid com
puter) were: 

Component-sharing method-'-8 seconds 

Explicit-implicit method -8 minutes 

However, the latter time should not be taken as a 
norm for the explicit-implicit method. By allocating 

Figure 6-Explicit/implicit method flowchart 



Hybrid Computer Solution of Partial Differential Equations 409 

t=O second 
t= .078 

Component-Sharing Method 

• 06 

.04 

.02 

t 0 second 

Explicit/Implicit Method 
t .)73 

Figure 7-Errors in the nonlinear solutions. In this figure 

E {Ui,i(t)} == IAnalytical Ui,i(t) -Computed Ui,i(t)l. 

the solution of WI (x, y) and W2(x, y) to the analog 
computer, the 8 minutes can be reduced to approxi
mately 10 seconds. The all-digital solution on the small 
fixed-point digital computer system required 38 min
utes. Evidently, this time can be reduced drastically by 
using larger machines. 

DISCUSSION OF RESULTS AND 
CONCLUSIONS 

Based upon the experience encountered we draw the 
following conclusions about the merits of the two hy
brid methods examined in detail in this paper: 

Component-sharing method 

1. Iterations are needed because the starting values 
for the interior nodes are not known at the be
ginning of the computation. 

2. Solution is unfolded as a function of time. 
3. Unconditionally stable.I5 

4. Solution speed is limited. only by the digital 
computer. 

5. A general executive program can be written to 
handle both linear and nonlinear equations, 
even to accommodate a class of geometrical 
configurations. 

One severe drawback of this method is the large mem
ory requirement for any practical problem. 

Explicit/implicit method 

1. No iteration needed for linear partial differential 
equations. 

2. Solution is displayed as a function of one spatial 
dimension. 

3. Conditionally stable.I5 

4. Solution speed is limited only by the digital 
computer . 

5. A general executive program may be written 
but it must receive scaling information prior to 
execution. Rescaling is necessary when there is 
a change in flt, flx, fl.y or the nonlinearity. 

6. Digital memory requirement is confined to stor
ing one past time plane (or one dimension less 
than the Component-Sharing method). 

As for the hybrid implementation of the Alternating
Direction Implicit Method, it is too new to be judged. 
An exhaustive list of its properties can be obtained only 
after someone studies it carefully, in a hybrid environ
ment. However, some of its characteristics are evident: 

Hybrid alternating-direction implicit method 

1. No iterations needed. 
2. Unconditionally stable. 
3. Solution is piecewise continuous In the time 

dimension. 
4. High accuracy can be attained in the hybrid 

solution because we only integrate the change 
in the dependent variable using the full dynamic 
range of the analog computer. 

Accuracy comparisons between digital and hybrid 
methods are not meaningful, since hybrid computer ac
curacy is always limited by the limited precision of its 
analog components. While hybrid solution times are 
extremely short, the programming effort is considerably 
greater and requires knowledge of not only analog and 
digital computation but of the interface problems as 
well. 

Concluding remarks 

It can be concluded that the hybrid computer solu
tion of partial differential equations with two spatial 
dimensions is at best only a partial success, since it 
combines, to some degree, both the advantages and the 
disadvantages of the digital and the analog machines. 



410 Fall Joint Computer Conference, 1971 

That is, the hybrid solution receives the benefit of the 
speed of the analog computer and the memory and the 
logic of the digital computer, but it suffers from the ac
curacy limitation of the analog and interface hardware. 
One firm conclusion we can draw is that the hybrid ap
proach is justifiable only when the program is intended 
to be run many times, in order to offset the investment 
in programming and checkout. These conclusions are 
not startling in any way. In fact, since similar results 
had been obtained for hybrid computer solution of one
dimensional partial differential equations, the results 
we obtained were expe.cted. 

Unfortunately, it appears that hybrid computers are 
not a panacea for the difficulties of partial differential 
equations, which continue to challenge both analysis 
and computation. 

REFERENCES 

1 W J KARPLUS 
A nalog simulation-solution of field problems 
McGraw-Hill New York 1958 

2 G A BEKEY W J KARPLUS 
Hybrid computation 
John Wiley New York 1968 

3 S- K CHAN 
The serial solution of the diffusion equation using 
non-standard hybrid techniques 
IEEE Trans on Computers Vol 0-18 No 9 1969 

4 H WITSENHAUSEN 
Hybrid solution of initial value problems for· partial 
differential equations 
MIT Electronic Systems Lab Report No 8 1964 

5 R VICHNEVETSKY 
A new stable computing method for the serial hybrid 
computer integration of partial differential equations 
Proc SJCC 1968 

6 H H HARA W J KARPLUS 
Application of functional optimization techniques for the 
serial hybrid computer solution of partial differential 
equations 
Proc FJCC 1968 

7 W D LITTLE 
Hybrid computer solutions of partial differential equations 
by Monte Carlo method 
Proc FJCC 1968 

8 H HANDLER 
High-speed Monte Carlo technique for hybrid computer 
solution of partial differential equations 
PhD Dissertation Electrical Engineering Department 
University of Arizona 1967 

9 R M HOWE S K HSU 
Preliminary investigation of a hybrid method for solving 
partial differential equations 
Applied Dynamics Report 1967 

10 J DOUGLAS JR 
On the numerical integration of (iJ2ujiJx2) + (iJ2U/iJy2) =iJu/iJt 
by implicit methods 
J Soc Indust Appl Math Vol 3 No 1 1955 

11 D W PEACEMAN H H RACHFORD JR 
The numerical solution of parabolic and elliptic differential 
equations 
J Soc Indust Appl Math Vol 3 No 11955 

12 K A BISHOP 
Hybrid computer implementation of the alternating 
direction implicit procedure for the solution of 
two-dimensional parabolic partial differential equations 
AICHE Journal Vol 16 No 11970 

13 L N CARLING 
Hybrid computer solution of heat exchanger partial 
differential equations 
Annale de l' Association Internationale pour Ie Caicul 
Analogique (AICA) 1968 

14 R VICHNEVETSKY 
Serial solution of parabolic partial differential equations; 
the decomposition method for nonlinear and 
space-dependent problems 
Simulation 1969 

15 M TUNG 
Hybrid solutions to parabolic partial differential equations 
with two spatial dimensions 
Ph D Dissertation Electrical Engineering Department 
University of Southern California 1970 

16 J DOUGLAS JR C M PEARCY 
On convergence of alternating direction procedures in the 
presence of singular operators 
Numerische Mathematik Vol 5 1963 

17 C PEARCY 
On convergence of alternating direction procedures 
Numerische Mathematik Vol 4 1962 

18 J DOUGLAS JR 
Alternating direction methods for three space variables 
Numerische Mathematik Vol 4 1962 

19 J DOUGLAS JR A 0 GARDER C PEARCY 
Multistage alternating direction methods 
SIAM J Numer Anal Vol 3 No 41966 



Numerical solution of partial differential 
equations by associative processing 

by P. A. GILMORE 

Goodyear Aerospace Corporation 
Akron, Ohio 

INTRODUCTION 

In a number of recent articles the application of 
associative processing to a variety of data processing 
problems has been considered.1,2,3,4,5,6 In this paper we 
consider the application of the parallel arithmetic 
capability offered by associative array processors to 
the numerical solution of partial differential equations. 
A set of equations concerned with weather forecasting 
is selected as a representative problem to show the 
methodology used in applying associative processing 
technology. An associative array processor imple
mentation of a numerical solution to the equations by a 
time-marching process is developed for a 50X50 mesh 
and corresponding execution times are given. The 
solution yields the time-dependent behavior of three 
time and space-dependent variables which represent x 
and y components of wind velocity and height of a 
constant pressure surface. The associative array pro
cessor employed is the Goodyear Aerospace STARAN 
IV. Since its organization and operation are not widely 
known, the next section of this paper is devoted to a 
description of the associative array processor and its 
operation. 

THE ASSOCIATIVE ARRAY PROCESSOR 

General characteristics 

The Goodyear-developed Associative Array Processor 
(AP) is a stored program digital computing system 
~apable of operating on many data items simultaneously; 
both logical and arithmetic operations are available. 
rhe principal components of an AP system are as 
follows: (1) An associative memory array (AM) in 
which are stored data on which the AP operates. 
rypically, the AM may consist of 4096 words, each of 
256 bits. (2) A response store configuration for each 

411 

word of the AM, which provides arithmetic capability, 
read/write capability, and indication of logical opera
tion results. (3) An (optional) funnel memory of as 
many words as the AM, each word of 32 to 128 bits, 
depending on user need. The funnel memory provides 
the AP system with both high speed temporary storage 
and high speed I/O to external devices. Data transfer 
between the AM and funnel memory is on a serial-by
bit, parallel-by-word basis; data transfer between the 
funnel memory and external devices is on a parallel-by
bit, serial by word basis. (4) A data/instruction memory 
in which are stored the AP program, i.e., the list of 
instructions executed by the AP, and data items 
required by (or generated by) the AP but not main
tained in the AM. (5) A control unit which directs the 
AP to execute the instructions specified by the AP 
program; this control unit is similar to control units 
found in conventional computers. Communication 
channels are provided between the data/instruction 
memory and the sequential control unit and between 
both of these units and external devices. 

One other unit of the AP must be mentioned here, 
that unit is the comparand register (CR). The CR may 
contain as many bits as an AM word and is used both to 
transmit data into the AM in a parallel-by-bit, serial
by-word basis and to specify masking conventions for 
AP operations. 

A simplified representation of the AP is given in 
Figure 1. 

AP operations 

We are principally concerned with the parallel 
execution of arithmetic operations in the AP and, to a 
lesser extent, with internal transfer of data. An under
standing of the AP's parallel arithmetic capability can 
be facilitated by considering Figure 2 which depicts the 
word/field structure of a hypothetical 10 word, 20 bit 



412 Fall Joint Computer Conference, 1971 

DATAl 
INSTRUCTION 
MEMORY 

CONTROL 
UNIT 

Figure 1-8implified AP structure 

E XTE RNAL 
DEVICES 

AM. (For a full discussion of the AP's logical and 
arithmetic capability the reader is referred to Reference 
7.) 

In Figure 2, each of the 20 bit words has been 
(arbitrarily) divided into two 5 bit fields and one 10 bit 
field. Other field assignments could have been made 
and they need not be the same for all words. Field 
specifications are made by the programmer in ac
cordance with computational and storage requirements 
at a given stage of a program; the specification is 
logical, not physical and can be changed for any or all 
words at any point in the program by the programmer. 

FIELD 3 FIELD 2 FIELD 1 

,-20 _____ '_1 ,-1 0 __ 6--,--5 __ ---. ~- BIT NUMB E R 

t--------j----+------l - WORD 1 

,--------+-----f--------I - WORD 2 

'------------L-_---l __ ---.J - WORD 10 

Figure 2-AM structure 

If, for i=1, 2, ... ,10, we denote word i by Wi; the 
contents of field 1 of Wi by (Fli) ; the contents of field 2 
by (F2 i ); and the contents of field 3 by (F3 i ), then 
(at least) the following computations can be done in 
"parallel," that is, simultaneously by word, sequential 
by bit. (Such parallel computations are often called 
"vector" computations, since they involve like opera
tions on corresponding elements of two vectors of 
operands.) 

(Fli) EB (F2i) or (F2i) EB (FL) 

i=1,2, ... , 10/\EBE{+, -, *, +} 

The field into which the results of the operations are 
stored is specified by the programmer. For example, 
the results of the ± operations could be stored in either 
Field 1, Field 2, or Field 3. We denote this, for example, 
by: 

i=1,2, ... ,10 

or 

i=1,2, ... ,10 

or 

i=I,2, ... ,10 

In the first two specifications, the original values (Fli) 
or (F2i), respectively, would be destroyed; in the third 
specification (FL) and (F2i) would be unaltered. 

In . * or + operations, a double length product or 
quotient will be available. To save the double length 
result we would be restricted to placing the result in the 
"double length" field, F3. For example, 

i=I,2, ... ,10 

The original values (Fli), (F2i) would be unaltered. 
Operations such as those described above are referred 

to as "within word" arithmetic operations. We have 
also available "register to word" operations and 
"between word" operations. 

In register to word operations, the contents of a 
specified field of the comparand register, denoted by 
( CR), is used as an operand. A typical register to word 
operation would be: 

i=1,2, ... ,10 

or 

i=1,2, ... ,10 

In between word operations, the operand pairs derive 
from different words. For example, in the operation 

i= 1,2, ... ,8 



field 1 of word 1 is multiplied by field 1 of word 3 and 
the result placed in field 3 of word 1; field 1 of word 2 
is multiplied by field 1 of word 4 and the result placed in 
field 3 of word 2 ... ; field 1 of word 8 is multiplied by 
field 1 of word 10 and the result placed in field 3 of 
word 8. We could likewise specify an operation such as 

i=1,2, ... ,9 

We note that for between word operations, the 
"distance" between words from which operand pairs are 
derived is constant, that is, with each word i, we 
associate a word i±.!l. 

Such between word operations are executed in 
parallel but are more time consuming than within word 
or register to word operations. The increase in time is 
proportional to the distance .!l. 

In the preceding examples, operand pairs were 
derived from either AM word/field locations or the 
comparand register and results were stored in AM 
word/field locations. For AP systems incorporating a 
funnel memory, one element of each operand pair can 
be derived from the funnel memory and results can be 
stored in the funnel memory; operations taking place, 
as before, in parallel. Simple data transfer operations 
between the AM and the funnel memory of course 
proceed in a word parallel, bit serial fashion. 

As the reader may suspect, the bit serial nature of AP 
operations results in long execution times if computation 
is considered on a per word basis. The source of com
putational advantages for an AP lies in the AP's 
ability to do many, indeed thousands, of operations in 
a word parallel fashion and thus give, for properly 
structured computations, effective per word execution 
times which are very attractive as we shall see. 

In the following section we shall show how computa
tions required in the weather forecasting problem can 
be structured to take advantage of the AP's parallel 
arithmetic capability. 

A SIMPLIFIED WEATHER FORECASTING 
PROBLEM 

Problem statement 

The National Oceanic and Atmospheric Agency 
(NOAA), a Federal Agency which includes among its 
responsibilities the development of methods of weather 
forecasting, has provided Goodyear Aerospace with a 
math modelS which is a simplified version of the math 
model currently used in weather forecasting computa
tions. The math model consists of a system of difference 
equations which are the discrete version of a system of 

Numerical Solution of Partial Differential Equations 413 

partial differential equations. The simplified model is 
both interesting and useful in that it does in fact provide 
a representative propagation problem and the com
putations required for solving the problem are typical of 
the computations required for the model actually used 
in weather forecasting. We shall show that such com
putations may be structured for effective AP execution. 

The equations in the math model involve three time 
and space dependent variables u=u(x, y, t); V= 
vex, y, t); h=h(x, y, t) which give, respectively, the 
x component of wind velocity; the y component of wind 
velocity; and the height (above some reference) of a 
surface of constant barometric pressure. 

The system of differential equations is given by: 

au au au ah 
- +u - +v - -fv+g- =0 
at ax ay ax 

av av av ah 
- +u- +v- +fu+g- =0 
at ax ay ay 

ah ah ah (au av) -+u-+v-+h -+- =0 
at ax ay ax ay 

(1) 

The corresponding difference equations are: 

Xy 

Xy 

ht = - {uXYh:l+vXYhl/+hXY(uXY+V,/) } (2) 

The subscripts indicate partial derivatives; super
scripts denote spatial averaging; f and g are constants. 
These notational conventions are those of Dr. Shuman 
of NOAA. 

The equations are to be solved over an nXn (say 
50X50) uniform square mesh with spacing "d." Initial 
conditions specify, at each point of the mesh, values of 
u, v, and h at time to. The solution is specified by a 
marching (in time) procedure in which we approximate, 
for each variable, its time derivative at time tk = to + k.!lt 
and then predict its value at time tk+1 by a truncated 
Taylor series. For example: 

(3) 

An alternate marching method proceeds by com
puting, based on initial values at time to, values at time 
to+.!lt = t1, and then proceeding in a "leap frog" tech
nique. For example: 

(4) 



414 Fall Joint Computer Conference, 1971 

-21 -22 -23 -24 -25 

-16 -17 -18 -19 

-11 -12 -13 -14 

X X X X 
-6 -7 -8 -9 

X X X X 

1 -2 3 -4 5 

Figure 3-5 X 5 mesh 

Computations involved in the two marching methods 
are nearly identical; storage requirements for computer 
implementations differ in that in the first method, 
given by (3), a set of values for the variables u, v and 
h at only one time period is saved from step to step 
while the second method given by (4), requires saving 
sets of values at two time periods at each step. Selection 
of the second method may be dictated by numerical 
accuracy and stability considerations. 

Whatever marching procedure is employed, it is 
executed for each variable u, v and h at each interior 
point of the mesh, throughout the forecast period. 

In order better to expose the computational require
ments of a marching procedure we shall in the following 
item consider an illustrative example based on a 5X5 
mesh. 

Computation example 

For purposes of example we shall consider a solution 
of the simplified weather prediction problem over a 
5 X 5 mesh having the mesh point ordering con ven tion 
of Figure 3. 

We shall employ marching method (3), the resulting 
computations, programming, and timing being but 
little changed if method (4) is selected. 

For each variable u, v and h, the time derivative 
computation at each interior point of the mesh of 
Figure 3 will proceed in the following fashion. Consider 
point 7 which may be viewed either as lying at the 
center of the 4 surrounding points {2, 12, 6, 8} or 
viewed as lying at the center of the 4 surrounding 
"boxes" specified by the point sets {I, 2, 6, 7}, 
{2, 3, 7, 8}, {6, 7,11, 12} and {7, 8,12, 13}. The centers 

of these boxes are denoted by the x's of Figure 3. We 
shall choose the latter point of view and at each of the 
4 box centers (and for each variable) compute an 
approximation to the time derivative. The 4 computed 
values will then' be averaged and taken as the time 
derivative value at point 7. This procedure is repeated 
for each interior point of the mesh. 

Within each box the time derivative will be computed 
in terms of certain space derivatives, as indicated by 
Equation (2). For example, in computing Ut, the 
approximate time derivative of u, the approximate 
space derivative U x is required. The calculation of space 
derivatives is specified in a box-to-box fashion as 
follows. Consider the box {I, 2, 6, 7}. For this box 
center, the derivative of u with respect to x can be 
approximated by either 

or 

where Ui denotes the value of u at mesh point i, and 
d is the mesh spacing. If we average the two approxi
mations in the y direction, we have a better approxi
mation, namely 

Similarly, for the rest of the boxes formed by the 
first two rows of mesh points we have, moving left to 
right, the following approximations which we refer to 
as "Form 1." 

UxY = ~((Ua-U2) jd+ (us-u-r) jd) 

Uz
y= ~((U4-Ua) jd+ (U9-US) jd) 

UxY = ~((U5-U4) jd+ (UIO-U9) jd) "FORM I" 

Other space derivatives can be approximated in like 
fashion. 

It is evident that the computations of "Form I" are 
amenable to parallel execution. Each of the differences 
(U2-Ul), (U7-U6), (Ua-U2), .•• can be computed 
independently and hence in parallel; subsequently, the 
quotients and sums may be computed in parallel. 
Other space derivatives and averages appearing in 
Equation (2) similarly involve potentially parallel 
arithmetic operations. The question then arises as how 
best to exploit the parallelism inherent in the com
putations by proper implementation of the computa
tions on a computer system such as the AP which 



Numerical Solution of Partial Differential Equations 415 

offers parallel arithmetic capability. In the following 
section an AP implementation of Equation (2) for 
parallel execution will be developed. 

ASSOCIATIVE PROCESSOR 
IMPLEMENTATION 

In the preceding section it was seen that the com
putations involved in solving Equation (2) by a 
marching process offer the potential for parallel 
execution. In this section we consider the question as 
how best to store the required data in an AP and arrange 
the computations. We again use for example purposes a 
marching process for Equation (2) over the mesh 
of Figure 3. 

One could associate with each point of the mesh one 
AP word, and in designated fields of that word store 
current point values of the variables u, v, and hand 
results of intermediate computations required to com
pute approximate time derivatives Ut, Vt, and ht used in 
the marching process. Such a scheme would, however, 
have certain disadvantages as can be seen by examining 
the "Form 1" computations previously specified for the 
u~'Y space derivative computations. With such a storage 
scheme the differences (U2-U1), (U7-Ua), (U3-U2), ... 
can indeed be executed in parallel, but at the expense of 
between-word arithmetic operations in the AP; the 
subsequent division operation will require a register
to-word arithmetic operation followed (or preceded) 
by another between-word operation for the add 
(between words 5-distant in the 5X5 mesh example; 
between words n-distant in a general nXn mesh 
problem). Between-word operations (especially be
tween-distant words) should be minimized for optimal 
performance and further analysis of operations required 
for the marching process if the one mesh point per word 
storage scheme is employed reveals that excessively 
many between-word operations are required. Another 
storage scheme is suggested by the following con
sidera tions. 

The {u~'Y} calculations specified previously for the 
four "boxes" formed by the first two rows of the mesh 
can be rewritten, respectively, in what we shall call 
"Form 2" as follows: 

U~1I = ( (U2+U7) /2d- (U1 +Ua) /2d) 

U~1I= ((U3+US) /2d- (U2+U7) /2d) 

U~1I= ((U4+U9) /2d- (U3+US) /2d) 

uz1l= ((US+U10) /2d- (U4+U9) /2d) "FORM 2" 

If we were to define two vectors by VI = (U1, U2, U3, U4, Us) 

AP WORD F IEID 

6 5 4 3 2 
r--- ••• 

h6 h1 V6 v1 u6 u 1 

h7 h2 v
7 v2 u7 u2 

h8 h3 v8 v3 u8 u3 

h9 h4 v9 v4 u 9 u4 

h10 h5 v 10 v5 u10 u5 

u11 u6 

· · u12 u 7 

· . u13 u8 

u14 u9 

u15 u10 

u 16 u11 

· u17 u12 

· . u18 u13 

· · u 19 u14 

u20 u15 

h21 b16 v21 v16 u21 u16 

h22 b17 v22 v17 u22 u17 

h23 b18 v23 v18 u23 u18 

h24 b 19 v24 v19 u24 u19 

h25 b2() v25 v20 u25 u20 

Figure 4-Redundant AP storage scheme 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

and V2 = (Ua, U7, Us, Ug, UlO) then it is readily seen that 
the add operations of Form 2 are just those of the 
vector sum V = V 1+ V2• The subsequent divisions are 
given by V*= Y2dV and, finally, the space derivatives 
{uz'Y} are given by a "convolution" of the vector V* 
in which we subtract from the ith element of V* the 
(i-1)th element, i=2, 3, 4,5. Such vector operations 
are well suited to AP execution and suggest a storage 
scheme in which the data items {Ui, Vi, hd, i= 1,2, 
... , 25 (for the example) are stored in a redundant 
fashion as follows. In two fields of words 1 through 5 
we store respectively not only U1 through Us but also 
Ua through U10. Then the two fields of words 1 through 5 
will contain respectively the vectors VI and V2 pre
viously defined. In like fashion we shall store in 4 more 
fields of words 1 through 5 values for VI through VIO 

and hI through hlO. The first five words of the AP then 
contain all the values needed to compute time deriva
tives for the variables u, V, and h in the first row of 
"boxes" determined by the first two rows of the mesh. 
We can continue in this fashion by storing in second 5 
words of the AP, words 6 through 10, values of u, V, 

and h required for computation of time derivatives in 



416 Fall Joint Computer Conference, 1971 

the second row of boxes determined by the second and 
third rows of the mesh. We continue in like fashion till 
all mesh point values are stored. For the example 
problem this storage scheme is shown explicitly in 
Figure 4. In this scheme data are stored redundantly; 
the increased storage requirements being tolerated in 
return for increased computational speed. The increase 
in computational speed is gained by minimizing 
between-word operations in the AP and maximizing 
parallel computations. The parallel nature of the 
computations allowed by the redundant storage scheme 
is readily seen by considering Figure 5 in which is 
exhibited the three step sequence for computing 
{ - uxy} for the first row of boxes. (-UxY is computed 
since that is the quantity actually required in the time 
derivative computations; see Equation (2). It will be 
noted that the three steps correspond to the three 
vector operations previously described. The addition 
operation of the first step is a within-word AP operation 
which is done in parallel for all data pairs (Ul' Ua) , 
(U2, U7), ... , (us, UIO); the division operation of the 
secon<:l step is a register-to-word AP operation which is 
done in parallel for the intermediate data items (Ul +ua) , 
( U2 + U7), ... , (us + UIO). The third an d final step of the 
uxY calculation is a between-word AP operation (words 
a distance of only 1 away) which is done in parallel for 
the intermediate data items (Ul +us) /2d, ... , 
(U5+UlO) /2d. That the {uxY} computations for the 
first row of boxes can be done in parallel is evident. 
But a moment's reflection reveals that {uxY } computa
tions for all boxes can be done in parallel because of the 
redundant storage scheme. The uxY computations for 
the second row of boxes are of the same form as those 
for the first row, the only difference being that they are 
based on values Us, U7, ... , U15 which comprise the 
values of the variable U over the second and third rows 
of the mesh. 

Due to the redundant storage scheme, these values 
are stored in words 6 through 10. Likewise, in words 11 
through 15, and 16 through 20 are stored, respectively, 
values for the third and fourth, and fourth and fifth 
rows of mesh points. The {uxY} computations for the 
corresponding boxes are again of the same form as for 
the first row of boxes. We have then that under the 
redundant storage scheme the uxY computation for all 
boxes is specified by the same field wise operations and 
that within each of the three computational steps the 
computations for all boxes can be carried on in parallel. 
We note here that this is true not just for our 5 X 5 
example, but for arbitrary n X n meshes, and AP 
effectiveness increases with increasing mesh size. 

The same analysis applies to computations of spatial 
derivatives for the other variables v and h whose values 

over the mesh are likewise redundantly stored. The 
sets {vxY} and pixy} can, in turn, be calculated in parallel. 
Like parallelism exists for computation of space deriva
tives with respect to y, averaged in the x direction, say 
{u1,x} and spatial averages, say {UXY}. We see this by 
noting that, for the first box, 

UI/I'./ (U7-U2) /d 

UI/x= ((US-Ul) /2d+ (U7-U2) /2d) 

similarly, for the remainder of the first row of boxes 

UI/X= ((U7-U2) /2d+ (Us-Ua) /2d) 

UI/x = (( Us- Ua) /2d+ (U9-U4) /2d) 

u1/ = (( U9- U4) /2d+ (UIO- UIi) /2d) 

The respective spatial averages for the first row of 

St:~ 1 
U 

11 

Ul+U6 

U2+ U7 
u

3
+u

s 
U +u 

4 9 
u

5
+u lO 

u6 +u ll 
u

7
+u

12 
u

S
+u

13 
u

9
+u

14 
u

lO
+u

15 

(u1+u6 )/2d 
(u2 +u

7
)/2d 

(u3+u
8

)/2d 

(u
4

+ug )/2d 
(u

5
+u

lO
)/2d 

(u6 +ull )j2d 

(u7 +u12)/2d 

(u
S

+u
13

)/2d 

(ug +U
14

) /2d 

(u
lO

+u
15

)/2d 

(u t +u6) /2d-(u2+u7) /2d 
(u

2 
+u

7
) /2d- (u

3
+u

8
)/2d 

(u 3+u8) /2d- (u4 +ug)/2d 
(u4+Ug)/2d- (u5+ulO) /2d 
(u

5
+u

lO
)/2d 

(u6 +Ull ) /2d- (u
7

+u t2 )/2d 

(u7 +u l 2) /2d-( uS+u l3 )/2d 
(us +u

13
) /2d- (ug +u

l4 
)/2d 

(u9+u14 ) /2d- (u
lO

+u
l5

) /2d 

(u
tO 

+u
l5

)/2d 

Fie tds* 
6 

h6 

h7 

hS 

hg 
h lO 

nll 

hl2 
h 13 
ht4 
h

l5 

hl 

h2 

h3 

h4 

h5 

n6 

h7 

hS 

hg 
h

lO 

4 

v6 
v7 
v8 

Vg 
v lO 

vll 

v 12 
v l3 
v 14 
v

15 

* Complete field designation is as follows: 

Fields 
11 12 13 H 14 L 15 4 

Figure 5-Uzl1 computation 

2 

vl u6 ul 

v2 u7 u2 

v3 Us u3 
v 4 Ug u 4 
v5 u lO u 5 

v6 ull u6 
v7 u l 2 u7 
v8 ul3 u8 

v9 u t4 Ug 

v
lO 

u
15 

u
lO 

.. 

.. 

It 

.. 

3 



boxes would be simply 

uxy = «Ul+U6) 14+ (U2+U7) 14) 

uxy = «U2+U7) 14+ (U3+ US) 14) 

uxy = «U3+US) 14+ (U4+ U9) 14) 

uxy = « U4 +U9) 14+ (U5+UIO) 14) 

For these computations too we have p"arallel execution 
for all boxes; this is evidently true also for the variables 
vandh. 

The actual computation of the approximate time 
derivatives involves not only computing spatial 
derivatives and averages for the variables u, v and h 
over the mesh, but combining these in the fashion 
indicated by Equation (2). The combining operations 
too are amenable to parallel execution. An indication 
of this is seen by considering the product UXYuxY required 
in computing Ut. For each box we may store computed 
values for ux

Y and uxy in the AP word whose index is the 
same as the lowest indexed point of the box corners 
(i.e., with each box we associate its lower left corner). 
For the example computation we have in fact done this 
for uxY and as the spatial averaging equations indicate 
we can do the same for the computation of the uXY , 

using the original storage scheme of Figure 4. For each 
box then we have the corresponding values for uxY and 
UXY in two fields of the AP word associated with the box 
and for all boxes we may compute the product uxYuxY 

in a single within-word operation. Subsequent to the 
computation of a value for a variable at a new time 
step, a between-word data transfer operation must be 
executed due to the redundant storage scheme em
ployed. 

An AP program has been written for one complete 
updating of interior mesh points. The program assumes 
a funnel memory of 120 bits and is patterned after the 
computational procedure given in Reference 9. For a 
50 X 50 mesh, the total time required for one updating 
of the interior mesh points according to the difference 
Equation (2) is 3.5 milliseconds. This time is based on 
fixed point arithmetic on 20 bit fields. (Floating point is 
available via software and, if employed, overall execu
tion times will typically increase by a factor of approxi
mately 1.4.) Due to the parallel features of the AP 
implementation, this execution time will increase very 
little (within AP Ifunnel memory capacity) as the mesh 
size increases. The independence of execution time from 
n, the mesh size, is due to the fact that within the 
updating procedure only certain between-word data 
transfer operations are explicitly time dependent on n. 
This would allow a large AP of say 24,000 words of 256 
bits employing a 120 bit funnel memory to execute an 
update of all internal mesh points of a 150X150 mesh 

Numerical Solution of Partial Differential Equations 417 

in a time not more than 1 millisecond greater than the 
3.5 milliseconds time required for a 50 X 50 mesh. It is 
not a necessity to increase AP size as the mesh size 
increases, since the mesh can be divided into blocks and 
the updating procedure executed in a sequential by 
block, parallel within a block fashion. 

Other AP configurations can be employed for the 
updating procedure. For example, an AP with no funnel 
memory but with two words per mesh point would give 
execution times close to those given above. Such a 
configuration can be made transparent to the user who 
"sees" an AP with half the number of words and twice 
the number of bits per word. In such a configuration 
execution times increase slightly because certain 
operations which are apparently "within word" are in 
fact "between word"-words 1 distant. For the example 
problem the total storage requirements are not in
creased by such a configuration but storage capacity
some of it unused-is greater than the AP Ifunnel 
memory configuration since the AM word is 256 bits as 
opposed to 120 bits for a funnel memory word. The 
relative merits of the two configurations are of course 
user dependent. Also, an AP with a small, say 32 bit, 
funnel memory could be employed in conjunction with 
a conventional processor (CP) which would provide 
temporary storage for intermediate results and perform 
certain minor computations such as accumulating 
partial sums involved in computing time derivatives. 
For such a configuration, the data transfer between the 
AP funnel memory and the CP will markedly increase 
execution time but will have little effect on total storage 
requirements. For the 50X50 mesh problem the 
execution time for one update of interior mesh points 
would be 33.5 milliseconds for an AP ICP configuration 
which employed an AP with a 32 bit funnel memory tied 
to a CP such as the CDC 6600. One can also envision 
future systems in which each AP word is tied through 
the response store to one head of a large head-per-track 
disk. Such a configuration should prove quite attractive 
for a variety of applications. 

The execution times for both the AP ICP configura
tion and the stand alone AP compare favorably with an 
estimated time9 of 215.5 milliseconds for the same 
computations (that is, one complete updating of all 
variables at each interior mesh point) using an IBM 
360-65 with array processor (2938, model 2) . 

REFERENCES 

1 E E EDDEY 
The use of associative processors in radar tracking and 
correlation 
Proceedings National Aerospace Electronics Conference 
1967 



418 Fall Joint Computer Conference, 1971 

2 W C MEILANDER 
The associative processor in aircraft collision prediction 
Proceedings National Aerospace Electronics Conference 
1968 

3 A COSTANZO J GARRETT 
Applications of associative processors in an intercept radar 
system 
Proceedings National Aerospace Electronics Conference 
1969 

4 L C HOBBS, et al 
Parallel processor systems, technologies and applications 
Spartan Books New York 1970 

5 L 0 FULMER W C MEILANDER 
A modular plated wire associative processor 
Proceedings IEEE Computer Group Conference June 1970 

6 J A RUDOLPH L C FULMER W C MEILANDER 
The coming age of the associative processor 
Electronics Magazine Feb 15 1971 

7 ST ARAN IV programming manual 
Goodyear Aerospace Report GER-15096 1970 

8 National meteorological center memorandum 
File No 417 March 1967 

9 Implementation of numerical weather forecasting on a 360, 
Model 65 with an array processor (2938, Model 2) 
IBM Report 322-15001967 



Consistency tests for elementary functions 

by A. C. R. NEWBERY and ANNE P. LEIGH 

University of Kentucky 
Lexington, Kentucky 

INTRODUCTION 

The possibility of using consistency tests to determine 
the quality of an elementary function subroutine has 
been considered by several authors.1, 2, 3 Although none 
of the authors thought highly of the idea, our in
vestigations have led us to conclude that consistency 
tests do have a definite provable value in some situa
tions. The error in a subroutine has two possible 
sources: (a) range-reduction and (b) the reduced-range 
approximation. For instance, in approximating the sine 
of a large angle one reduces the problem to that of 
approximating the sine or cosine of an angle in a reduced
range-perhaps [0, 'IT' / 4]. Since the range-reduction 
process will then involve subtracting a large integer
multiple of an inaccurately represented 'IT' /2, it is clear 
that the reduced-range argument will be in error by a 
quantity which varies linearly with the original argu
ment. Since these range-reduction errors are un
avoidable and well understood, we have concentrated 
our efforts on consistency tests which will help to 
evaluate the quality of a subroutine in the reduced
range approximation. We give three examples. In each 
case the variable x is supposed to be within the reduced 
range; the tests are still valid without this condition, 
but there is a diminished likelihood of our bounds being 
realistic when x is outside the reduced range. 

SINE AND COSINE TEST 

We can construct a consistency test for the sine and 
cosine routine for 0~x<'IT'/4 based on the identity 
coS2 X+sin2 X=1. Let c, s denote cos x, sin x; let 
M (e), M (s) denote machine values for e, s, respec
tively, and let e', s' be the "admitted errors" in e, s, 
i.e., the manufacturer is prepared to admit that 
I M (c) - e I could be as big as e' but no bigger. If values 
for e', s' are not available to us we have a good cause for 
complaint, although our test can still yield meaningful 

419 

results using assumed values for e', s'. First we compute 
the residual r defined by (M(e))2+(M(s))2-1=r, 
and we assume that M(e) and M(s) are each wrong 
by a fraction t of the admitted error, and that the signs 
reinforced the error to build it up to the observed 
residual r. Our assumption then is (c+te')2+ 
(s+ts')2-1 =r, or 

t2(e'2+ s'2) +2t(ee'+ss') -r=O. (1) 

If tm is the root of (1) of smallest magnitude we can 
assert that either M (e) or M (s) is wrong by a fraction 
at least I tm I of the admitted error. This is a rigorous 
assertion, because throughout we have given the 
manufacturer the benefit of the doubt by assuming that 
the observed residual r was the result of small errors 
reinforcing rather than large errors cancelling. The only 
trouble is that we cannot solve the quadratic (1) 
because we do not have trustworthy values for c, s. 
To get around the difficulty we define a neighboring 
quadratic equation 

z2(e'2+ s'2) +2z(e'M(e) +s'M(s)) -r=O, (2) 

and let its root of smaller magnitude be zm; we attempt 
to relate tm, Zm. If we differentiate (1) with respect to 
the parameter e we obtain 

2t (::) (C"+8") + 2 (:) (cc' +88') + 2tc' = 0, 

hence 

(ic) = - -(t-(-e'-2+-s'-2~-c~-ce-'-+-s-S'-) . (3) 

Hence dt/de has the sign-t for the chosen argument 
range. From (1) we see that if r>O then tm>O. Hence 
from (3) (dt/de) t=tm <0, i.e., the positive root of (1) 
decreases if we increase the value of e. But increasing 
the value of e is precisely what we are doing when we 
replace e by M ( e) on moving from (1) to (2), because 
positive r implied M(e) >e. Similarly, the root will also 



420 Fall Joint Computer Conference, 1971 

diminish on replacement of 8 by M(s). We conclude 
that for r>O the root Zm of (2) is a close lower bound for 
the quantity tm• Unfortunately the case r<O is different. 
In this case tm <0 and from (3) (dt/dc) t=tm >0. The 
replacement of c by M (c) is like a decrease in the 
parameter c, implying an algebraic decrease in the 
(negative) value t, hence an increase in the magnitude 
of the smaller root. This gives us a bound on the wrong 
side of tm • To get a bound on the right side we must 
replace c by a computable approximation that is 
guaranteed ~c. Such a quantity is M(c) +c'; similarly 
we replace s by M(s) +s'. Hence, when r<O we have, 
in place of (2) 

Z2(C'2+ S'2) +2z(c'(M(c) +c') +s'(M(s) +s')) -r=O. 

(2') 

The quantity 1 Zm I, computed by (2) for r>O and by 
(2') for r<O, is a lower bound for 1 tm 1 and we can state 
that at least one of the quantities c, s is wrong by at 
least 1 zmC' I, 1 zms' 1 respectively. If no values are given 
for c', s' we can choose them at will. A particularly 
appropriate choice in this situation is c' = c, s' = s. 
Although these might seem unreasonably large 'errors,' 
this will be offset by the smallness of 1 tm I. On sub
stitution into (1) we shall obtain 

(4) 
and hence 

1 r 1 «1. (5) 

Ordinarily one is only interested in obtaining one 
significant figure of tm , and it would be a grossly in
correct subroutine that yielded r-values so large that 
the above two terms of the binomial series did not 
suffice. Having obtained tm , we can be sure that at 
least one of the following inequalities holds: 

1 M (c) - c 1 ~ 1 tm 1 c, IM(s)-sl ~ Itmls. (6) 

If one prefers to have the error bound measured 
against the observables M (c) , M (s) rather than against 
the unknowns, c, s, one can, for z, M (z) > 0 and 0 < T < 1, 
use the following fact based on the manipulation of 
inequalities: 

If 
1 M(z) -z I ~Tz, 

then 

I M(z) -z I ~TM(z)/(1+T). (7) 

By substituting I tm 1 for T and either c or s for z, the 
error bounds (6) can then be written in terms of 
observables M (c), M (s). This will generally involve· a 
slight weakening of the inequalities. 

EXPONENTIAL TEST 

A consistency test for an exponential routine can be 
made by selecting number pairs x, h, and defining 

M(ex)M(eh) 
M(ex+h) -1=r. (8) 

If the admitted error magnitudes for ex+h, eX, eh are 
a', b', c' respectively then the cQunterpart of (1) for 
this problem is 

t2b'c' +t(b'eh+c'ex+a' (1 +r)) -rex+h =0. (9) 

In order to obtain quadratics analogous to (2), 
(2') we modify (9) by substituting machine values 
for the exponentials when r>O, and when r<O we 
replace them by machine values plus admitted errors. 
The analogs of (4), (5) are 

t2+ (3+r)t-r=0, tm~ (3+r) (p- p2), p=r/ (3+r)2. 

(10) 

HYPERBOLIC FUNCTIONS 

As a final example we consider a slightly more 
complicated identity and we simplify the problem by 
ignoring the admitted errors and going straight to 
the determination of a relative error bound. For non
negative number pairs x, h we use the identity 
sinh (x+h) + sinh (x-h) =2 cosh h sinh x. If we as
sume relative errors of magnitude t and with signs chosen 
to have a reinforcing effect on the composite error, we 
obtain 

(M(sinh (x+h)) +M(sinh (x-h))) -1 

2M (cosh h)M(sinh x) 

l+t 
=r= -- -1. (11) 

(1-t)2 

This leads to 

2 t(3+2r) _r_ -0 
t - (1+r) + (l+r) -

(12) 

and 

r(l+r) 
p= 

(3+2r)2 . 

TESTING THE TESTS 

In order to see whether our tests would indeed give 
useful lower bounds in a practical situation, we per
formed several test runs on an IBM 360/65 using 



standard single-precision software4 for the test functions 
and double precision for the computation and processing 
of residuals. A description of the tests follows: 

The consistency test for the sine and cosine sub
programs was run over a range of values (0,2-10, 1r/4) 
for the argument x. The residual r was evaluated from 
the equation 

(M(cos x) )2+ (M(sin x) )2-1 =r 

for r>O, equation (2) was solved for the root of smaller 
magnitude tm• For r<O, equation (2') was used. The 
admitted absolute error bounds for the cosine and sine 
subprograms were 1.47 X 10-7 and 1.31 X 10-7 respec
tively. The maximum value for I tm I was found to be 
.512 at x= .700195. Therefore, at least one of cos x or 
sin x is wrong by at least .752X10-7, and .670X10-7 

respectively. The first bad binary digit provable by this 
technique occurs in the 23rd bit position. 

The consistency test for the exponential subprogram 
was run using Equation (8) to evaluate the residual r. 
Assuming relative errors of magnitude t, and with signs 
chosen to have a reinforcing effect on the composite 
error, we obtain 

M_( e_x)_M_(_eh
_) -1 = r = _( l_+_t_) 2 -1 

M(ex+h ) 1-t 
for r>O 

and 

(1-t)2 
r= ---1-1 

l+t 
for r<O. 

These lead to 

for r>O (13) 
and 

for r<O, (14) 

and the root of smaller magnitude in either case IS 

given by 

(15) 

The test was run over a range of values (h, 2-10, .5) for 
x and values of 2-6, 2-5, and 2-4 for h. The table below 
shows the results 

h Maximum liml 

. 41XlO-6 

.386X 10--6 

.369XlO--6 

x 

.02832 

.0332 

.124 

The' admitted value for the relative error bound is 
.465 X 10-6• The first bad binary digit provable by this 
technique occurs in the 21st bit position. 

Consistency Tests for Elementary Functions 421 

The consistency test for the sinh and cosh sub
programs was run over the same grid of values for x and 
h. The residual r was calculated using Equation (11) 
and the lower bound for the relative error was found 
from Equation (12). Care was taken that (x-h) ~O 
for all h, x. The table below shows the results obtained. 

h Maximum Itml 

. 159 X 10-6 

.212XlO-6 

.370XlO-6 

x 

.09180 

.0625 

.0625 

The admitted relative errors are 1.2X10-6 and 
1.31 X 10-6 for sinh and cosh respectively. 

The above test was rerun using the expression 
.5 (ex-e-x) with the library exponential routine to 
synthesize sinh x; hence low accuracy can be expected 
for small x-values owing to the subtraction of nearly 
equal quantities. The following table shows the results 
obtained: 

h Maximum Itml 

4.42 X 10-6 

2.36XlO-6 

2. 10 X 10-6 

x 

.02246 

.03223 

.08105 

The errors are seen to be much larger than in the 
previous run. We can conclude that this consistency 
test is thus able to detect a 'bad' sinh subprogram. 

CONCLUSION 

Although we had (and still have) no reason to doubt the 
manufacturer's word concerning the accuracy of the 
subroutines supplied, we note that our tests were able to 
prove errors of comparable magnitude to those that the 
manufacturer admitted. In one case the provable error 
was 89 percent of the admitted error. In view of this we 
feel it is safe to conclude that any manufacturer whose 
claims are at all extravagant can almost certainly be 
proved wrong on the basis of carefully constructed 
consistency tests alone. It is also worth noting that our 
tests were able to show up a badly coded hyperbolic 
function routine, since badly coded routines of this 
sort are said to be in circulation. 

In summary we would like to state our position on 
consistency tests: Firstly we do not advocate them as a 
substitute for an elaborate full-scale validation process; 



422 Fall Joint Computer Conference, 1971 

we merely note that there are many routines in cir
culation that have evidently not passed any stringent 
tests at all. Since few institutions possess the funds and 
manpower to do their own full-scale validation, there 
is a legitimate market for consistency tests which can 
quickly and cheaply give a rough indication of quality. 
Secondly we believe that in the literature, particularly,! 
there has been a tendency to underrate the potentialities 
of the consistency test. Too much importance is some
times attached to the fact that a subroutine can be 
grossly in error while exactly satisfying a mathematical 
identity. One can guard against being misled by this 
situation, partly by use of redundancy (using several 
different identities) and partly by common sense (i.e., 
by avoiding identities which the subroutine programmer 
is likely to have used in the given range). Cody2 gives 
additional advice on the choice of identity. Thirdly, 
although we believe that consistency tests deserve to 
be held in higher esteem than is commonly the case, we 

are anxious not to over-correct the situation. A con
sistency test can only provide lower bounds for errors. 
Such a test cannot possibly tell "the whole truth" 
about a subroutine; on the other hand, it will tell 
"nothing but the truth," and we think we have demon
strated that just this much information, delivered 
promptly and cheaply, can be very helpful. 

REFERENCES 

1 C HAMMER 
Statistical validation of mathematical computer routines 
Proc SJCC 1967331-333 

2 W J CODY 
Performance testing of function subroutines 
Proc SJCC 1969 759-763 

3 J F HART et al. 
Computer approximations 
Wiley New York 1968 

4 IBM Publication form C 28-6596-4 



Laboratory automation at General Electric corporate 
research and development 

by P. R. KENNICOTT, V. P. SCAVULLO, J. S. SICKO, and E. LIFSHIN 

General Electric Company 
Schenectady, New York 

INTRODUCTION 

The purpose of a laboratory automation system is to 
improve the quality and quantity of the work of the 
scientists who use it. An organization such as General 
Electric Corporate Research and Development pre
sents a large number of problems which are capable of 
being solved by laboratory automation. We wish to dis
cuss a system which was developed to solve many of 
these problems. We will first describe the computer 
facilities which are a part of the system. Next, we will 
describe some of the data communications equipment 
which has been developed to interface individual ex
periments to these computer facilities. Finally, we will 
describe three applications which illustrate the use of 
the laboratory automation system. 

The system we have developed is designed to be 
sufficiently flexible to accommodate a large number of 
different experiments. In the design, a premium was 
placed on hardware which is modular and easy to as
semble into a system for the automation of any particu
lar experiment. Since we have found it advisable for 
the scientist or engineer to take an active part in the 
implementation of the application software for his ex
periment, a premium has also been placed on system 
software features which aid a person who is relatively 
inexperienced in computer programming to quickly 
create and test his software. The Research Center con
sists of two locations approximately three miles apart 
in Schenectady together with a number of outlying 
locations in upstate New York. Consequently, data 
communications assume a greater importance in our 
system than would be the case with a laboratory auto
mation system dealing with a single central location. 

The history of laboratory automation at Corporate 
Research and Development goes back to the installa
tion in 1964 of the first on-site computer, a GE 225. 
The first laboratory automation experiments consisted 
of off-line recording of data on paper tape, processing 

423 

of the data being done on the 225 in batch mode. An 
on-line analog-to-digital converter was soon installed 
which permitted direct on-line recording and process
ing of analog data. With the upgrading of the 225 to 
a GE 265 time-sharing computer in 1966, it became 
possible to carryon the collection and processing of 
data without devoting an entire computer to the task. 

By 1967 the computing requirements had outgrown 
the 265 facilities, and it was decided to implement a 
special time-sharing system on a modified GE 600. This 
computer uses an addressing mechanism particularly 
convenient for a multi-user system. At that time, the 
success of the early laboratory automation experiments 
led to the decision to add a GE/PAC® 4020 process 
control computer as a real-time peripheral processor 
for the 600 to handle laboratory automation work. A 
PDP 9 handles graphics work for the complex (Figure 
1). To supplement these computer facilities a modular 
line of hardware devices was developed which enable 
a particular system to be quickly implemented. 

GE 600 SYSTEM 

The GE 600 serves the main computational require
ments for the Center.l It is a large scale computer with 
32 million words of random access storage. It offers 
the Center's engineers and scientists a convenient and 
flexible computer facility. A single file system serves as 
the data base for batch, remote batch, and time-sharing. 
Hence, users may access the same data files from any 
of these modes. 

The operating system is organized as a central execu
tive handling scheduling ~nd input/output. It supports 
a number of subsystems which handle the applications 
work. Among these subsystems are modules imitating 
the standard commercial offerings of General Electric 
and Honeywell Information Systems as well as modules 
supporting systems available only in the Center. 



424 Fall Joint Computer Conference, 1971 

Figure I-General Electric Corporate Research and Development 
computer facilities 

To facilitate programming, a variety of languages 
have been made available. Among these are FOR
TRAN, BASIC, TRAC, and ALGOL. A large library 
of statistical, mathematical, and numerical analysis 
routines supplement these languages. Various editors 
and debugging tools are also available. 

GE/PAC 4020 SYSTEM 

The GE/P AC 4020 supports a data logging system 
which is able to log several types of data being trans
mitted at varied rates from many users simultaneously 
in real-time. In addition, it supports high-speed paper 
tape input/output and on-line plotting for the complete 
computer complex. 

Data can be transmitted from an experiment to the 
4020 either in digital or analog form. Communication 
in digital form is in the asynchronous mode and in
cludes rates of 110, 300, 600, or 1200 baud. Provision 
is made for handling both forms of data either on in
house cables or over switched phone lines with the use 
of digital and analog modems. 

The operating system in the GE/P AC 4020 is orga
nized so as to optimize its real-time response. Thus, it 
will maintain its designed response time as the user 
load increases until it reaches the point of overload, 
whereas the more common type of time-sharing system 
simply reduces its response time gradually as the user 
load builds up. This design is necessary in a real-time 
peripheral processor such as the 4020 in order to avoid 
loss of data due to poor response time. 

The difference in approach to response time between 
the two systems results in the possibility that consider
able data may have to be stored in the 4020 before the 
600 can store it on its disc file. The data is temporarily 
buffered on the 4020 drum store before transmission 
over the memory interface in order to accommodate 
this storage requirement. 

Communication between the GE/PAC 4020 and the 
GE 600 takes place over a memory interface controller 
(see Figure 1). The GE/PAC 4020 can read from or 
write to the GE 600 core memory. Each computer can 
interrupt the other computer. A program exists in the 
600 which handles all the requests made by the 4020. 
This program writes data to the disc and prepares plot 
and paper tape punch files. 

Each computer can perform its functions independ
ently of the other. However, since the buffering capa
bility of the 4020 is limited, it cannot tolerate an 
extended outage of the 600. This is because the 4020 
must eventually transmit the data it collects to the 600 
for permanent storage on the disc. Once the data is 
stored on the disc it is available for access by user 
programs which run on the 600. 

In order to insure real-time service for all higher speed 
devices on the system, an automatic double buffering 
technique was employed in both hardware and soft
ware. This consists of assigning two buffer control 
words for each device or channel which has a high speed 
capability. The hardware was modified to automatically 
switch between the two buffer control words each time 
an operation on one of them was satisfied. The software 
was organized in a way which guarantees there will 
always be two read operations under way for these de
vices at any given time. This technique increases the 

Ut.HSOO BAUD 
MOf}EMS 
9CHANNfLS 

Figure 2-Data collection computer hardware 



time available to replenish the buffer control word 
from one sample time to N times the sample time 
where N is the number of samples in the buffer. 

GE/PAC 4020 HARDWARE 

The data collection hardware is shown in Figure 2. 
It consists of a special low-speed analog scanner han
dling the analog modems described below, a set of 9 
standard asynchronous communications interfaces 
which can be plug-adjusted to operate at speeds be
tween 110 and 1800 baud, the on-line plotter, paper 
tape I/O equipment, and the high-speed analog scanner 
serving the experiments hardwired to the computer 
system. 

Data in analog form is received at the GE/PAC 4020 
by this high speed scanner. (See Figure 3) This periph
eral was developed by the Design Engineering Group 
specifically for the laboratory automation system. The 
analog scanner was designed to place as much control 
as possible in hardware instead of software. Not only 
does this reduce software load, but, in a multi-user 
system, it also assures the individual user of a more 
uniform sampling rate for his data than would be pos
sible in a software-driven data collection system. It is 
capable of accepting 120 analog lines, although only 32 
have been implemented. Each line can be programmed 
to be turned off or to sample at one of the following 
data rates: 120, 60, 30, 15,7.5,3.75, 1.87, .937 samples 
per second. A specific block of core storage is dedicated 
to the high speed scanner control, with individual lines 
having their own specific locations for control words. 
Programming of the high speed scanner is accomplished 

Figure 3-High speed scanner 

Laboratory Automation 425 

by storing control words in this core area for starting, 
stopping, or specifying the sampling rate for each line, 
and then initiating the transfer of the entire block to 
the scanner control hardware. The information so 
transferred controls the scanner hardware until it is 
updated by another transfer of the control block. 

The sampling rate is under control of a master clock 
running at 4 MHz. The exact frequency is under servo 
control of the 60 Hz. line frequency. This enables the 
user who wishes to synchronize his experiment with 
the data collection system to do so by use of the power 
line frequency. 

When the command to commence sampling a line is 
received by the line control logic, a status signal is 
raised. Actual sampling does not begin, however, until 
a control signal is also raised. While the status signal 
can be used for this control signal, it is often more 
convenient to carry both signals to the user's site 
where they furnish status indications and control capa
bility. By the use of pulses of suitable length on the 
control line, it is possible for the. user to cau~e the 
sampling of a single datum, continuous samphng of 
data, or an end-of-file indication in the hardware for 
his line. 

The scanner has two stages of automatic gain con
trol. The first stage, which exists in each line, has two 
ranges, Xl and X64. It is set by the automatic ranging 
logic while the previous line is being sampled, thus 
allowing time for settling for the somewhat less expen
sive line amplifiers. The second stage, which is common 
to all lines, has three ranges, Xl, X4 and X16 giving a 
total of six ranges. Since the second stage must be set 
during the actual sampling time of a given line, it 
must have a faster settling time than the first stage. 

The line to be sampled is connected to the common 
amplifier and analog-to-digital converter by a field 
effect transistor multiplex switch. The line must be 
sampled in a time sufficiently short to allow all possible 
lines to be sampled at their maximum rate, i.e., 120 X 
120 samples/sec or 69.4 ,usec. The digital representation 
of the output of the common amplifier, together with 
the bits representing the ranging amplifier settings, is 
placed in core memory by cycle stealing. . 

The location in core where the data will be stored IS 

controlled by a word for each line stored in the dedi
cated scanner control block. This word has address and 
tally information, and is automatically updated by the 
scanner hardware after each sample. When the tally 
for a given line runs out, an interrupt is generated for 
that line and hardware provides an alternate buffer. 
Thus after the control information is transmitted to , . 
the scanner hardware, no additional software attentIOn 
is required until the interrupt indicates that a buffer 
is full. 



426 Fall Joint Computer Conference, 1971 

More than one input line on the High Speed Scanner 
can be assigned to a single user by placing pointers to 
the same buffer in the control word of each line. The 
data from each line will be stored sequentially in the 
core buffer, thus allowing the sampling of several vari
ables at once. By sampling the same variable on several 
lines, a sampling rate higher than the maximum 120 
samples per second can be realized. 

GE/PAC 4020 SOFTWARE 

The operating system on GE/PAC 4020 data logging 
system is based on the Real-Time Multiprogramming 
Operating System (RTMOS) of the General Electric 
Process Computer Department. RTMOS is a large 
grouping of programs and subroutines, available only 
on GE/PAC computers, that supervises the interaction 
of process events, time, computer peripherals, and the 
central processor of the computer.2 The core resident 
routines of RTMOS which perform scheduling, core 
management and related routines are the only parts of 
RTMOS used on the GE/PAC 4020 Data Logging 
System. An I/O system which supports time-sharing 
and a set of functional programs which supports the 
teletype command system were designed and imple
mented for this system. All data gathering, table manip
ulation, and utility programs were also developed for 
this system. 

The I/O system was designed so that all devices on 
the system use common feeder, driver, and interrupt 
handling routines. This is accomplished by associating 
a table with each device type. Depending on the device 
type presently being serviced, the proper table is ac
cessed and appropriate operations or subroutines are 
executed. In most cases, a new device can be imple
mented simply by creating a table for that device. 

An operating system running under RTMOS is or
ganized as a set of functional programs which can be 
scheduled and will run independently. In the data
logging system we have developed, two types of func
tional programs are found-applications programs and 
a type of program which supports the teletype com
mand system called a manager program. With each 
manager there is associated a group of commands. For 
each command in a given manager's list, there is a 
corresponding applications program. When a command 
is given to a manager from a user's teletype, the appli
cations program corresponding to that command is run 
by the manager. At the same time, the manager re
moves itself from core. When the ~pplications program 
terminates, it is automatically removed from core and 
the manager which was previously running is brought 
back and run again. Any applications program under 

a given manager can replace itself with another appli
cations program from that manager's list. 

The manager program concept enables new com
mands and their associated applications programs to be 
easily added to the system. Also, since one program 
can replace itself with another program, a program 
chain can be implemented. 

There are three basic tables which are used by the 
4020 operating system, the User ID table, the analog 
table, and the digital table. All users have their user 
identification, password, and billing number entered in 
the User ID table. Users who transmit data in the 
digital mode have an entry in the digital table. Simi
larly, users who transmit data in the analog mode 
through the high speed scanner have an entry in the 
analog table. The digital table indicates whether the 
user is a local user transmitting on a specific hard
wired line or a remote user transmitting over any 
available phone line. The analog table indicates which 
lines are assigned to a user and the sampling rate for 
each line. Automatic table manipulation is provided. 
Thus, new users can be brought on the system in a 
matter of minutes. Existing users of the analog system 
can change variables to be sampled or sampling rates 
simply by making a change in their table specification. 

In addition to these real-time data logging functions, 
three utility functions are performed by the GE/PAC 
4020. Data which have been produced off-line on paper 
tape can be sent to the 600 disc through the 100 frames/ 
sec paper tape reader. Data which have been refined 
on the GE 600 can be punched on paper tape on a 120 
frames/sec punch. On-line plotting of data is done on 
'the GE/PAC 4020 to relieve the GE 600 of this 
task. 

DATA COMMUNICATIONS 

We have described the computer facilities of our 
laboratory automation system. A second part of the 
system is the data communication facilities. It is much 
more difficult to standardize this part of the system 
because of the varying needs of the individual experi
ment and the fact that these varying needs impact 
more closely on the data transmission system than on 
the computer facilities. 

This variation of requirements from experiment to 
experiment is found in several forms. The output of 
some experiments is an analog signal such as the output 
of an amplifier, while the output of others is digital, 
such as the output of a scaler. The question of speed 
arises in two aspects in the design of the communica
tions for a particular experiment. First, the rate at 
which data is conveniently produced by the experi-



ment dictates the equipment to be used. If the rate is 
slow enough to allow transmission over the 110 baud 
channels characteristic of teletypes, the system required 
is much simpler than if higher rates are required. Sec
ond, the response to the experimenter dictates the 
form of the communications systems. It may be pos
sible to simply collect data and process it at the end of 
the experiment. This would result in a simpler system 
than if it were necessary to feed back processed data to 
influence the future course of the experiment. The 
amount of logic required at the experimental site is 
another aspect of data communications to be con
sidered. In order to effect enough time-saving to justify 
the effort required for automation, it may be necessary 
to automate much of the control of the experiment, 
while for other experiments simply collecting the data 
is sufficient. A final aspect of data communications de
sign is the nature of the experiment. If the experiment 
is to be performed only one or a few times, it will re
quire a simpler interface than one which will be rou
tinely performed many times. Small tasks which the 
experimenter does willingly a few times become onerous 
burdens when they must be repeated many times. The 
following is a description of the data communication 
hardware and software available to the staff which 
can be used with the computer facilities available at 
Corporate Research and Development. 

We have described the high speed scanner, the analog 
peripheral of the GE/PAC 4020. In support of this 
scanner, a cabling system has been installed which 
runs the length of the main building at the Center. 
This provides cable facilities close to the experiments 
and makes for a convenient way for the staff to con
nect their experiments to the laboratory automation 
system. Figure 4 shows the analog transmission system. 

Figure q.--ATIHIC}IT data transmission system 

Laboratory Automation 427 

Figure 5-Digital data transmission system 

Transmission is by individually shielded twisted pairs. 
While the user can connect to the system in a number of 
ways, the control terminal shown in the figure has 
proven convenient. Within the terminal is a light indi
cating the status of the line; logic to produce the appro
priate pulse length for single samples, continuous sam
ples, or end-of-file; and an amplifier with up to 60 db 
gain to aid in interfacing with the experiment. 

Figure 5 illustrates a family of the digital modules 
available for data collection and control. The experi
ment can supply data in either analog or digital form. 
Analog information is converted to digital form by 
either a digital voltmeter or by an AjD converter in 
the instrumentation control console. The digital data 
is sent on either the instrumentation control console or 
to a digital data controller. The latter device formats 
the data for either off-line recording or transmission to 
a computer by the high-speed communications termi
nal. Off-line recording can be done with paper tape or 
incremental magnetic tape. The high-speed communi
cations terminal serializes the data for transmission 
over asynchronous lines, and operates at either 110 or 
1200 baud. 

The functions of the digital voltmeter, digital data 
controller, and high speed communications terminal 
are all combined in the instrumentation control con
sole. This device finds its greatest use when informa
tion must flow both to and from the experiment. It can 
be interfaced to the GEjPAC 4020 or, if local control 
information is to be generated, to amini-computer. In 
cases where response time is not a factor, either the 
instrumentation control console or the high speed com
munications terminal can be interfaced directly to the 
GE 600, thus avoiding the additional step of the 4020. 



428 Fall Joint Computer Conference, 1971 

Figure 6-Digital data controller 

The digital data controller interfaces a variety of 
digital signals to the data communication media. Figure 
6 illustrates the data controller plug-in module with its 
housing. It can be programmed either manually or 
automatically. The input to the data controller is from 
one to eight sources of 4-wire BCD information, each 
having from one to eight decades. Output is eight-line 
ASCII code with even parity. Commas, carriage re
turn, and line feed characters are inserted where 
necessary. 

Figur~ 7 illustrates the high speed communication 
terminal plug-in module and its housing. The high 

Figure 7-High speed communication terminal 

speed communication terminal is used to interface the 
digital data controller to transmission line data sets. 
I t formats the data into bit-serial for asynchronous 
transmission at either 110 or 1200 baud. It can also 
receive serial data from the computer and format it 
into bit paraJlel for displays, plotters, and control sig
nals. The keyboard shown on the housing is used during 
the conversation mode with the 4020 Computer for 1200 
baud data logging. 

For those cases where it is inconvenient to use the 
dial-up communications network, an electronic system 
simulating a 1200 baud frequency shift keying system 
is available to be used with the in-house cabling system. 
The call-up for this system is accomplished by pushing 
a button. When the computing system responds, a light 
is turned on to indicate that the computer has re
sponded to the call. 

Figure 8 is an illustration of the instrumentation con
trol console. It contains a keyboard with a 64 ASCII 
character set, controls for systems configuration, and 
displays for computer commands. The control console 
is designed with a pair of data busses, and will accept 
five separate plug-in modules. Connections to the data 
bus are accomplished by depressing buttons on the 
front panel of the console. There are two data busses 
in the console. The output bus accepts data from one 
of four sources: the digital data controller, the binary 
A/D converter, the keyboard, or an external device. 
One of three transmission/recording devices can be 
connected to the output bus: the high speed communi
cation terminal, a mini-computer, or a teletypewriter. 
To set up a system, the operator selects one of the data 
sources and one of the transmission/recording media. 

Figure 8-Instrurnentation control console 



This connects a data source to a transmitting system 
with a recording medium. In the same way, the receive 
bus can accept data from the high speed communica
tion terminal, a mini-computer, a teletypewriter, or the 
keyboard. The receive bus can transmit data to either 
an external device or a digital-to-analog converter. The 
system controller plug-in module monitors data on the 
receive bus and decodes data for the console displays. 
The instrumentation control console with its data 
busses provides a convenient way to configure a data 
acquisition and control system. It is portable and 
quickly placed into operation. The plug-in module con
cept increases its flexibility. In addition, the ability to 
perform maintenance on the plug-in level increases the 
system up-time. 

While a variety of mini-computers have been inter
faced to the laboratory automation system, the ma
jority of our experience has been with the GE/P AC 
30. This is a 1 microsecond sixteen bit word machine 
with up to 16 k bytes of core store and an optional 
65 k disc. A variety of analog or digital peripherals are 
available for interfacing to experiments as well as the 
conventional I/O peripherals. A variety of software 
has been written for use on the GE/P AC 30. Included 
are programs for data collection, graphics display, 
stepping motor controllers, and 110 or 1200 baud data 
transmission. 

A peripheral which has proved useful in software 
development for the GE/PAC 30 is the TRICOM 
switch shown in Figure 9.10 This is an automatic three
way switch handling low-speed asynchronous communi
cations lines. It allows the operator to interface the 

Figure 9-TRICOM switch 

Laboratory Automation 429 

teletype with the 600 time-sharing system in order to 
utilize the editing facilities for writing his program. 
When the program is ready the user initiates an as
sembly and supplies names of any library subroutines 
required. When assembly is complete, the resulting 
binary code is loaded, together with library subrou
tines, into a pseudo-core image of the GE/P AC 30 in 
600 core. When this operation is complete, a special 
character switches the TRICOM to connect the 600 
to the 30 for transmission of the core image. When 
transmission is complete, the TRICOM switch con
nects the teletype to the 30 for running the program. 
Figure 9 also shows the path of data from the GE/PAC 
30 to GE/PAC 4020 to GE 600. 

APPLICATIONS 

The computer facilities and data communication 
equipment are the tangible parts of our laboratory 
automation system, but even more important are the 
people and facilities that make it work. The scientist 
or engineer wishing to automate his experimental work 
can find personnel familiar with the computer and data 
communication systems. These people are able to give 
applications advice or, if necessary, to design and im
plement extensions to these systems. Applications in
formation is also provided on a variety of measurement 
equipment available from an instrument pool. Finally, 
if special equipment is required, a model shop can 
assist in its design and fabrication. 

To automate each research or development project, 
a careful study is made to determine the data collec
tion and control requirements for each experiment. 
Based upon the specific needs for hardware and soft
ware, in many cases a system is assembled from the 
available digital and analog subsystems. If the in-house 
terminal hardware, software, and computer systems 
cannot adequately meet the data collection needs, addi
tional in-house development is undertaken or outside 
vendors are investigated. 

When the hardware portion of a laboratory automa
tion project is complete, the applications programs must 
be written. This is the responsibility of the experi
menter who will benefit from the project. We have 
found that, in general, it is easier for a scientist to 
learn the necessary computer programming to imple
ment his applications software than it is for a computer 
programmer to learn the necessary science to write the 
programs himself. This principle is particularly true 
when the programming is done in a time-sharing en
vironment such as ours. Following are descriptions of 
three experiments which have been automated and for 
which the application software has been implemented 



430 Fall Joint Computer Conference, 1971 

TABLE I-Additional Laboratory Automation 

(1) Infrared Spectroscopy 
(2) Nuclear Magnetic Resonance 
(3) X-ray Crystallography 
(4) Capacitance/Voltage Measurements on Semiconductors 
(5) Stress/Strain Relaxation Measurements 
(6) Optical Spectroscopy 
(7) Atomic Absorption Spectroscopy 
(8) Electronic Micro Balance 
(9) Gas Mass Spectroscopy 

in this manner. In addition to the three experiments 
defined in detail, Table 1 is a brief listing of other 
laboratory areas where automation has been in
corporated. 

SPARK SOURCE MASS SPECTROGRAPH3 

The spark source mass spectrograph is an instrument 
for analyzing trace impurities in electrically conducting 
solids. In some respects it resembles the more well
known emission spectrograph, but it is approximately 
1000 times more sensitive. In the course of an analysis 
it produces a photographic plate which contains the 
data from one sample (Figure 10). There are 16 ex
posures arranged horizontally along the plate. Each 
element in the sample being analyzed contributes a 
group of one or more lines in each exposure. The black
ening of each line depends on the amount of the particu
lar element in the sample. 

It is these lines which contain the information about 
the sample one wishes to recover. Two aspects of the 
plate suggest an automated system for the recovery. 
First, the individual lines vary in shape from place to 
place on the plate. Thus, it is necessary to sample a 

Figure 10-Spark source mass spectrograph 

number of points across a given line to obtain an ac
curate representation of the line. Second, the varia
bility of the photographic emulsion from plate to plate 
makes it necessary to derive the characteristic curve, or 
the relation between blackening of a line to the number 
of ions striking the line, from the plate itself. Fortu
nately, there is enough information on the plate to do 
this, but it entails a lengthy calculation. The automa
tion system enables one to sample the blackening of a 
line on the plate in sufficient detail to obtain an ac
curate representation of the line, to utilize isotopic 
ratio information derived from the plate to obtain the 
derivative of the characteristic curve, to solve the re
sultant differential equation for the characteristic 
curve, and to utilize the resulting information to con
vert the blackenings of the various lines on the plate 
into concentrations of impurities in the sample. Thus, 
there is a requirement for a system to collect analog 
data. The speed with which the micro densitometer can 
produce data is about 10 to 15 samples per second. It is 
not necessary for the resulting data to be fed back to 
the operator during the time he is collecting it, so the 
relatively large calculation can be done after the collec
tion has taken place. The application is a routine one, 
thus justifying some effort to make it convenient for 
the operator to use. 

In order to use the system the operator places a plate 
on the carriage of the microdensitometer, moves the 
carriage to position the line he wishes to record on a 
projection screen, and presses a switch indicating to 
the logic that the plate is ready for scan. The computer 
initiates and times the scan. During the scan the opera
tor enters on a teletypewriter the alphanumeric in
formation necessary to describe the line being scanned. 
Interlocks insure that a complete set of both analog 
and alphanumeric information is entered for each line. 
Analog information is transmitted to the computer 
center over analog cables where it is digitized and 
stored on bulk storage. The teletype is connected to 
the computer system in a current-loop circuit. After 
collection of the information, it is processed and the 
results returned to the operator over the teletypewriter 
circuit. 

The use of the system has resulted in an improve
ment in both the quantity and the quality of the work. 
Whereas before using the system, it required 16 hours 
to process the data on a plate, it now requires one 
hour-an improvement of a factor of 16. A group of 12 
laboratories participated in a round-robin analysis in 
which they each analyzed the same sample of copper. 
The average precision of all laboratories was 40 percent, 
while our laboratory reported results which proved to 
have a precision of 15 percent, an improvement of over 
a factor of two. 



THE ELECTRON MICROPROBE 

In the electron microprobe analyzer a beam of elec
trons from an electron gun is focused by magnetic 
lenses to a micron size spot on the surface of a specimen 
causing the emission of x-rays. Qualitative chemical 
analysis of the excited region can then be performed by 
scanning a crystal spectrometer to establish the wave
length distribution of the emitted radiation. Quantita
tive analysis involves tuning the crystal spectrometer 
to a specific wavelength corresponding to a particular 
element and counting the x-ray pulses emitted both 
from the specimen and a standard. Although standards 
of similar composition to the specimen provide the 
simplest method of calibration, i.e., by direct compari
son, they are usually not available, particularly at the 
homogeneity levels required for microprobe analysis. 
An alternative method which needs only the use of pure 
elemental or simple binary standards is based on theo
retical correction procedures which have been described 
extensively in the literature4 •5 and relate x-ray intensity 
to composition by equations of the form: 

where 

(

electron ) 
KA = C A X backscatter 

factor 

(

electron ) 
X penetration 

factor 

(

x-ray ) 
X absorption 

factor 

(

secondary x-ray) 
X fluorescent 

factor 

KA = the ratio of measured x-ray intensity of element 
A to that of an A standard with both intensities 
corrected for background, drift, and counter 
tube dead time and 

C A = the weight fraction of A. 

Since all of the above factors are themselves compli
cated functions of composition, the calibration equa
tion must be solved iteratively. Furthermore, intensity 
ratios of at least N - 1 components (N = the total 
number of components) are necessary and therefore 
N - 1 calibration equations must be solved simul
taneously. Since hand calculation for even a few data 
points in a binary system takes hours, a computer is 

Laboratory Automation 431 " 

Figure ll-Electron beam microprobe system 

essential for analysis of the multipoint multicomponent 
systems frequently encountered in practice. During 
the past ten years dozens of different computer pro
grams have been written to reduce computation times 
to minutes even for the most complex systems.5 

Since it is often desirable to map out the composition 
of a specimen an x-y matrixing system was developed 
for our Cameca microprobe which can be used to auto
matically control specimen position and collect digital 
x-ray data as shown in Figure 11. The system shown is 
for a single spectrometer, but is in fact connected to 
four spectrometers and a digital specimen current 
readout. In practice the region to be analyzed is man
ually positioned while being observed by an optical 
microscope coaxial with the electron optical system. A 
fixed number and size of x and y steps are selected 
(e.g., a 3 X 10 matrix with x steps of 2 microns and 
y steps of 5 microns). Operation of the system is then 
initiated by a switch on the data scanner. Amplified 
x-ray pulses from each spectrometer are converted to 
pulses of fixed size and time duration which are counted 
by scalers for a preset time. The parallel data from 
the scalers is serialized by the data scanner and trans
mitted to the teletype where the results are printed 
and a paper tape punched and/or the data is trans
mitted to aGE/PAC 30 computer through TRICOM. 
The operator can then call the 600 on time-sharing 
and transmit the data and any other information into 
a data file. The 30,000 word microprobe analysis pro
gram, GEMAGIC (written by J. Colby7 and modified 
by R. BolonS) can then be run in remote batch mode 
with the results either printed on a high speed printer 
in the computer room or returned on the teletype. 
Options are also available for plotting the results on a 
Calcomp plotter, an example of which has been re-



432 Fall Joint Computer Conference, 1971 

IOO~~~~~~--~~--~~--~ 

90 

80 

20 
x 

10 000 Xx 

00 x o t..oo<)Q..()'OO'OO<>O-=-OOCK)()JO'O"C:).()......(::>!l.I.!_~_-----L_o_o~~~~oo 00 

o 10 20 30 40 50 60 70 80 90 
DISTANCE (MICRONS) 

MICROPROBE ANALYSIS 
DIFFUSION PROFILE FIEDLER-CICCARELLI 

Figure 12-Electron beam microprobe diffusion scan 

drawn and shown in Figure 12 for a diffusion scan 
across a nickel aluminum coated, thorium-doped nickel 
alloy. 

PHYSIOLOGICAL MEASUREMENTS 

The last application we wish to discuss concerns 
some physiological measurements being made at the 
Trauma Unit of Albany Medical Center Hospita1.9 This 
is a single bed unit devoted to the care of, and research 
on, extremely seriously injured patients. Five measure
ments are currently being made on patients in the unit 
with the aid of our laboratory automation system by 
Dr. S. Powers and his staff. (Figure 13) 

Functional residual capacity of a patient's lung is a . 
measurement of the lung volume which is usable in 
respiration. The measurement is useful, for example, 
in reaching a decision regarding the use of a respirator 
for the patient. The measurement is made by abruptly 
switching the atmosphere being breathed by the patient 
from air to 100 percent oxygen and measuring the 
amt. of gas necessary to wash out the nitrogen from 
the air in the lung by oxygen. The information needed 
to calculate functional residual capacity is total gas 
flow from the lung which is measured by a positive 

displacement meter and the concentration of nitrogen 
in the expired gas which is measured by measuring 
mass 28 on a small mass spectrometer sampling the 
expired gas. 

The two signals are transmitted to the Center using 
analog modems over standard voice-grade telephone 
lines. There they are digitized by the 4020 and stored 
on 600 bulk storage. The calculation made on the data 
is an integration of the nitrogen concentration over the 
total volume of gas flow. To provide backup in the 
event of failure of the data collection system, an analog 
tape recording of the information is made at the same 
time the data are being collected. 

Two other measurements are made with the same 
system, but with different settings of the mass spec
trometer. These are oxygen uptake using mass 32 and 
carbon dioxide output using mass 44. These tests are 
typically measures of the patient's metabolism, but, in 
the case of shock patients, also give information regard
ing the patient's success in fighting trauma As the 
body reacts to a loss of blood, for example, it decreases 
the flow of blood to the extremities, resulting in a de
crease in oxygen uptake. As the body recovers, it in
creases circulation to the extremities, with a resulting 
increase in oxygen uptake. 

Another measure is pulmonary venous admixture. 
This is the percentage of blood flowing through the 
lung which is shunted through non-active tissue and 
consequently is not oxygenated. The measurement is 
made by calculating a mass balance for oxygen across 
the lung membrane. The required data are the gaseous 

Figure 13-Physiological tests 



oxygen and oxygen content of blood flowing into and 
out of the lung. The gaseous oxygen content is measured 
by the mass spectrometer system, while the blood oxy
gen content measurements are made with a blood 
oxygen analyzer. 

The fifth measurement is cardiac output. This is 
measured using a dye-dilution technique. A dye is in
-jected in the blood stream and the rate it is diluted is 
measured using a densitometer through which a portion 
of the patient's blood flows. 

A by-product of the automation of these tests is the 
ability to store the results in the computer files for 
later retrieval. It is thereby possible to obtain a record 
of all tests together with the trend of their results for 
a given patient. 

Each of these measurements is a standard physiologi
cal test, and nothing is remarkable about doing them 
per se. The interesting aspect of this work is that the 
tests are being made on patients actually in shock, and 
that the laboratory automation system aids in obtain
ing the results within 5 to 10 minutes from the time the 
tests are made. Thus the physician attending the pa
tient can make decisions regarding the care of the 
patient much more quickly, and, with the aid of the 
additional information furnished by these tests, more 
accurately. 

CONCLUSION 

As the above applications demonstrate, the laboratory 
automation system has permitted experiments which 
would not have been possible without it. While this in 
itself would permit us to view it as a success, a far 
more important aspect of the system impresses us. The 
development of the system has been evolutionary and 
will continue to be so. There is, for example, a require
ment now for synchronous communication channels 
between the mini-computers and the 4020. We find, 
however, that this evolution has been provided a 
framework in the form of the computer operating sys
tem and the data communications system about which 
to grow. Thus, a sound system design at the time these 
systems were first conceived has provided, and will 
continue to provide, direction for the orderly growth 
of our system into areas which we could not have 
foreseen at that time. 

Laboratory Automation 433 

ACKNOWLEDGMENTS 

We wish to acknowledge the assistance of J. Newell of 
Albany Medical Center Hospital in describing the 
physiological test application. The system we describe 
here would not have been possible without the contri
butions of many of our colleagues at the Corporate 
Research and Development Center. We take this op
portunity of acknowledging the work of a long list of 
contributors. 

REFERENCES 

1 R KERR A BERNSTEIN G DETLEFSON 
J JOHNSON 
Overview of R + DC operating system 
General Electric Report 69-0-355 1969 
A J BERNSTEIN J C SHARP 
A policy driven scheduler for a time sharing system 
Comm ACM 14-74 1971 

2 Anonymous 
GE/PAC 4020 RTMOS manual 
General Electric Company 

3 P R KENNICOTT 
A system for the quantitative evaluation of mass 
spectrograph plates 
14th Annual Conference on Mass Spectrometry Dallas 
1966 

4 R CASTAING 
Application of electron probes to local chemical and 
crystallographic analysis 
PhD Thesis Univ of Paris France 1951 

5 K F J HEINRICH Editor 
Quantitative electron probe microanalysis 
National Bureau of Standards Special Publication 
Washington Vol 298 1968 

6 D R BEAMAN J I ISASI 
A critical examination of computer programs used in 
quantitative electron microprobe analysis 
Anal Chern Vol 42 p 1540 1970 

7 J COLBY 
Quantitative microprobe analysis of thin insulating ftlms 
Adv X-Ray Anal Vol 11 p 287 1968 

8 R BOLON 
Private communication 
General Electric Company 

9 S R POWERS JR MD ET AL 
Analysis of mechanism of disturbed physiology in critically 
ill patients 
7th Annual Meeting of Soc of Engineering Science 
St Louis November 3 1969 

10 H HURWITZ 
Unpublished 
General Electric Company 





Multicomputer processing in laboratory automation* 

by c. E. KLOPFENSTEIN 

University of Oregon 
Eugene, Oregon 

and 

c. L. WILKINS 

University of Nebraska 
Lincoln, Nebraska 

INTRODUCTION 

Widespread availability of minicomputers in the 
scientific laboratory has become a reality in recent 
years. With the price and size reductions which have 
taken place, it is now practical to use these machines 
as routine tools in the laboratory environment. How
ever, in order to effectively implement this new research 
tool the scientist has had to learn its limitations as 
well as its capabilities. It is well-known by computer 
scientists that, in general, the trade-off made by 
programmers is memory size vs. speed of execution. In 
other words, the more memory the programmer has 
available, the faster running program he may write 
and, conversely, the less memory he has, the slower 
will be the execution times. While there are a great 
many qualifications to this broad generalization, it still 
represents a recognizable truth. 

Since memories available in the laboratory mini
computer are generally in the 4 to 12 K word range, 
the experimenter has had to painfully learn the lesson 
mentioned above. Attention to good programming 
practice has helped alleviate the problems of limited 
memory, but major problems still remain. Nowhere 
does this become more evident than in the program 
development stage. Traditionally, the minicomputer 
has employed multipass assembly procedures, usually 
utilizing a slow output device such as the teletype to 
produce program listings. In practice, it rapidly becomes 
apparent that such an assembly procedure is highly 
unsatisfactory in all but a very few cases. In this paper 
we will describe an alternate to this approach and a 

* We gratefully acknowledge support of the National Science 
Foundation through grants GJ-441 and GJ-393. 

435 

number of techniques to facilitate program debugging 
using simulation methods. Also, the use of high level 
languages will be discussed in order to show how the 
usefulness of the minicomputer may be maximized by 
offsetting its limitations. 

If we consider, first, the program assembly process, 
it is apparent that the rate-limiting step is input and 
output. The slow devices we are forced to use can easily 
insure that an assembly on a laboratory computer can 
take anywhere from several minutes to an hour or more. 
One solution would be to install high-speed peripheral 
devices (lineprinters, magnetic tapes, magnetic drums, 
disks, etc.) but, of course, these may easily cost more 
than the computer itself, so this approach is often un
satisfactory. Short of doing this, is there any way for 
the user to avoid being I/O limited in the critical 
program development and debugging phases? We 
believe the answer is yes. The following pages will 
describe software we have developed for one particular 
minicomputer, the Varian 620/i, to permit the pro
grammer to use a much larger computer system for 
much of his program development. To achieve this end, 
both an assembler and simulator have been written 
(in FORTRAN) to run on the IBM 360 to assemble 
620/i code, and to simulate the execution of the pro
grams thus produced. Additionally, high level language 
compiler development is under way. These compilers 
will operate in an analogous fashion, producing machine 
programs which will then directly execute on the smaller 
computer. While we are well aware that the techniques 
mentioned above have been in use by computer designers 
and manufacturers for years, no such widespread use 
has been evident among those who have recently dis
covered the usefulness of the small computer. as a 
laboratory tool. Accordingly, the end user rarely 



436 Fall Joint Computer Conference, 1971 

specifies the sort of software mentioned above and, 
consequen tly, little such software has been provided 
by minicomputer producers. ** 

We began, about two years ago, the development 
of a program to train chemistry students, both graduate 
and undergraduate, in the use of the small computer in 
the chemistry laboratory. Accordingly, small computers 
especially configured for this purpose were acquired and 
employed in the early stages of course development. 
Since we were using· 4K computers equipped with 
ASR 33 teletypes and fast paper tape I/O (300 cps read, 
120 cps punch) for instructional purposes, we noted at 
the outset that our student programmers would often 
spend 45 to 60 minutes assembling a program and 
comparable times for performing the elementary 
debugging associated with syntax errors, mispunches, 
and the like. We estimated that as much as 90 percent 
of the computer time was being used for program 
development, with only about 10 percent being used 
for running the experiments in laboratory data acquisi
tion and control which were our prime interest. This 
was clearly an unacceptable ratio and we immediately 
began to consider how we might make use of off-line 
(from the small computer) assembly and simulation 
techniques in order to improve the ratio and to free the 
laboratory computer for those tasks it does best. 

THE USE OF DAS 360 AND SIM 620 

Our solution was two programs, written in 
FORTRAN (DAS360 and SIM620) which would 
rapidly assemble and simulate 620/i code on the 
IBM 360. Now it became possible to provide far more 
adequate diagnostic messages (necessarily limited and 
cryptic in the Varian assembler) and to greatly facilitate 
the whole programming process. Students could now 
enter their programs via punched cards to the IBM 
360, operating in the batch mode, and have a program 
assembled in a few seconds, as well as have a listing 
returned with comprehensive diagnostic messages. At 
the University of Oregon, where a research computer 
equipped with IBM compatible magnetic tape was 
available, the student programs were assembled on the 
360, the assembled programs written on magnetic tape 
and the resulting tape transferred to the 620/i where 
the programs were dumped on paper tape and returned 
to the students along with the assembly listing for 
debugging or execution. At the University of Nebraska, 
students were permitted to use remote job entry CRT 

** This situation has changed rapidly and now this software is 
increasingly available. 

terminals (first IBM 2260, later Bunker-Ramo 2206 
terminals and the University of Nebraska Remote 
Operating System (NUROS) to enter their Varian 
620/i programs first to a disk file, then directly into the 
job queue for assembly. Students had the option of 
placing the assembled programs together with their 
error messages on a disk file for immediate viewing on 
the terminals in the chemistry building, and obtaining 
a printed listing later or, alternately, obtaining a 
printed listing only. Punched card output of the 
assembled programs was available to all students. Both 
the assembler and simulator were stored on the 360 
disk files and their execution could be invoked via a 
catalogued procedure in much the same way as a user 
would invoke any other program (e.g. the FORTRAN 
or COBOL compilers). Figure 1 contains a block 
diagram of the major components of the University of 
Nebraska system. In this way, it became possible to 
instruct far more students than could have conceivably 
been handled had we been restricted to the use of the 
small computer only. Furthermore, it was now possible 
for any student or faculty member at either of the 
Universities to make use of the programs, the only 
restriction being that they needed to have a valid 
accou t number to allow them to use the 360. Quite 
simple instructions for the use of both assembler and 
simulator were developed and freely distributed to any 
student who desired them. 

The simulator (SIM620) proved to be at least as 
useful as the assembler for the program debugging 

IBM 360/65 
BYTES 

t 2400 BAUD DATA SETS .. 
B-R 

STAND
ALONE 

CRT 

;-------.. 
I 
I 
I 
I 

: PAPER TAPE 
1-----------1 

0J 
MAG TAPE 
9TRACK. 
800 BPI 

VARIAN 

620/1 
8K 

I 1 
r-------,-I _--, ...-_-'-1_---, 

r 
VARIAN 

620/L 
8K 

DATA 
GENERAL 

SUPER NOVA 
4K 

~ 

BUNKER RAMO 
MULTISTATION 
CONTROLLER 

I l' 

VARIAN 
620/I 

8K 

I 
EXPERIMENTS 

! 

B-R 

CRT UNITS 

Figure I-Block diagram, University of Nebraska distributed 
computer system for chemistry 



Multicomputer Processing in Laboratory Automation 437 

phases. As we mentioned earlier, it was our observation 
that, initially, as much as 90 percent of the mini
computer time was absorbed by the process of program 
debugging. Since those using the computer were either 
(a) beginning students who had never seen a computer 
before, (b) researchers writing code for a specific 
research application (many of whom had never seen a 
computer before, either) , or (c) students and researchers 
engaged in the final check-out of completed programs, 
it was apparent that-short of buying many expensive 
peripherals or several more teaching computer systems
we were not going to be able to significantly change the 
debugging/experiment use ratio with laboratory com
puter systems. The obvious solution to the problem was 
to make use of the powerful, fast 360, insofar as possible. 
'Ve therefore developed a program which allowed the 
l:-::trger computer to simulate the operation of programs 
assembled for use with the laboratory computer. This 
simulator also allows the programmer to enter limited 
amounts of data in order to test the operation of his 
620/i program. The results of this simulation are quite 
useful and allow programs to be debugged very much 
faster and more efficiently than would otherwise be 
possible. A listing containing a full trace of program 
operation is produced. The contents of any or all 
operational registers before the execution of every 
instruction, the instructions executed and their memory 
locations may be included in this listing. At the Uni
versity of Nebraska, this listing can be placed on 
magnetic disk files at the computer center and viewed 
by the student on the chemistry department CRT 
terminals. In this way, the student has, in effect, a 
remote 620/i to use for program debugging. The in
formation thus obtained can be collected in a small 
fraction of the time it would otherwise take. Through 
use of the simulator, large numbers of students can 
simultaneously check programs for correct operation 
and only after they are reasonably certain their pro
grams are error-free do they need to use the laboratory 
computer. This makes possible the restriction of its 
use to the types of laboratory problems most important 
to successful implementation of the system in the 
chemistry laboratory. 

Once DAS360 and SIM620 had been successfully 
implemented, we turned our attention to improvement 
of debugging tools for that essential element of the 
experiments, the on-line testing phase. Particularly 
important for this is the availability of a fast effective 
means of interpretatively executing programs, changing 
and displaying core contents, and trapping certain 
conditions. With the 620/i, as with most small com
puters, utility programs to perform certain of these 
tasks were provided. In order to attain all the capa-

TECD 
BASIC 
DASIO 

SIM 620 
RT EXEC 

DEC PDP-IO 

I DAS360 ~ 
1 SIM 620 

IBM 360/65 

DAS 
PMTR 
AID 

BASIC 
FORTRAN 

CLASS 
VARIAN 620/I 

BASIC 
CALCTRAN 

NUROS 
PMTR 

BUNKER-RAM o 
MULTI-STATION 

CRT UNITS 

Figure 2-Interrelationships of software packages 

bilities we required it was, however, necessary to 
extensively modify the software provided by the 
manufacturer. The resulting program (AIDF) is 
described below. 

The basic premise behind the design of AIDF was 
that nearly all of the scientists and students who debug 
620/1 assembly programs can easily interpret machine 
code in actual format. Accordingly, a simulator
interpreter was prepared that provides complete 
program tracing and trapping facilities, with or without 
a teletype listing of the conditions of all registers before 
and after execution of each instruction. In this regard, 
listings similar to that provided by the 360 simulator 
are provided. However, since the programmer generally 
will use AIDF interactively, a much more flexible 
command set was made available. Provisions were 
made for listing and changing core from the teletype 
during execution of programs, as well as for simulating 
memory protection and features to pass control to 
command mode on execution of certain user defined 
"illegal" instructions. Also, the user can define certain 
unused operation codes to perform calls to his routines 
for fast non-interpretive execution. Multiply-Divide 
and other optional hardware are in this way emulated 
by the interpreter. To provide even more rapid de
bugging capabilities, all interpretive output may be 
directed to a storage oscilloscope. In this latter mode, 
execution rates of about 10 instructions per second with 
a full trace are attained. Using this debugging aid, 
students spend le~s wasted time at the computer 
console, and they have hard copy to carry away and 
survey at their leisure. Without AIDF, many fewer 
students would have access to the minicomputer for 
debugging assembly language programs. The inter
relationships of these various software packages as 
well as an I/O translator (PMTR) and some others are 
summarized in Figure 2. 



438 Fall Joint Computer Conference, 1971 

TABLE I-Basic Subroutines 

CALL 

A. For Analog Input 

CALL SADC, G, C 
Dual slope integrating 
ADC 
14-Bit-110 conv/sec 
Max 
CALL SADCF, C, S 

Succ. Approx ADC 

13 Bit-lOO Kc conv/sec 
Max 
CALL RADC, V 
CALL RADCB, S, N, 
A(I) 
CALL RADCT, V, T 

CALL RADCF, S, N, 
A(I) 

B. For Analog Output 

CALL ODAX, C, V 

CALL ODAC, X, Y 

C. For Scope Control 

CALL SCOPE 
CALL TELY 
CALL SIZE, S 

CALL POS, X, Y 

CALL ERASE 

D. X - Y Recorder Pen 

Control 
CALL PENU 
CALL PEND 

E. External Controls 

CALL EEXC, C 
CALL EXCD, C, D 

F. Senses 

CALL ISEN, C, A 

FUNCTION 

G=Gain 1=1,2=8,4=64, 
8=512 

C = Channel 1 = 1, 2 = 2, 4 = 3, 
8=4 

C=Channel 1=1, 2=2, 4=3, 
8=4 

S =Sense on DIO for block in 
start (0-7) 

Reads one value from DSIADC 
Reads N values at S points/sec 
into array A from DSIADC 
Simultaneously reads one value 
from DSIADC and the timer 
Equal RADS except for fast 
ADC 

Outputs V to DAC number C 
Channels 2 and 7 are 10 Bit 
DAC's 
Channels 4, 5, and 6 are 15 Bit 
DAC's 
Simultaneously outputs X and 
Y to Channels 2 and 7 and 
strobes 611 storage scope beam. 
Used for scope and X - Y re
corder drivers. 
(Range ± 500) 

All output goes to scope 
All output goes to teletype 
Sets scope characters to size S 
Usual size is 4 
Causes next character to be put 
at X - Y on scope (Range ± 500) 
Erases scope 

Lifts pen and waits one second 
Puts pen down and waits one 
second 

Strobes Channel C (0-7) on DIO 
Strobes Channel C (0-7) on 
Device D (0-63) 

Returns A = 1 if sense on 
Channel C of DIO is true, 
otherwise A = 0 

TABLE I-Continued. 

CALL 

G. Digital I/O 

CALL ODIO, W 

CALL RDIO, C, W 

CALL RCTR, C, T, A 

H. System Control 

CALL MAGT 

FUNCTION 

Outputs W to lamps and digital 
drivers on DIO 
Inputs from DIO to W from 
Channel C (0 = 16 Bit Buffer, 
1 = switches) 
Reads the digital counter on 
Channel C (1 or 2) for time T 
(1 or 10 sec) into variable A 

Loads Magnetic Ta pe Operating 
System 

HIGH LEVEL LANGUAGES 

We will now examine the potential usage of high 
level languages with minicomputers. The advantages 
of providing laboratory users with high level language 
capabilities are multifold. The most important is that 
the time between conception and execution of an 
experiment is reduced to a minimum, which not only 
increases the effective usefulness of the minicomputer, 
but also greatly reduces the "activation barrier" to 
scientists who have never used the small computer into 
trying various experiments. Likewise, it becomes 
possible to incorporate experiments that illustrate data 
acquisition techniques into laboratory courses which are 
already established in the curriculum of a university 
or college. 

One popular misconception held among those who 
have not previously used portable small computers 
(8K core with teletype I/O) is that high level languages 
such as BASIC and FORTRAN cannot be used for 
real-time applications due to their limited speed of 
execution and the large core storage space required for 
their use. However, in most experiments, the input data 
rate requirements are specified independently from the 
output requirements, and usually even the time between 
the input and output functions may be specified 
separately. Accordingly, for those applications where 
the timing requirements can be modularized, it seems 
reasonable to provide high level languages for coding the 
calculations, with assembly language sections or routines 
for input and output. Core storage remains a problem, 
but even with only 8K of core, programs with over 150 
FORTRAN statements can be supported. 

Provisions for calling subroutines are part of the 
languages FORTRAN and BASIC, and since these are 
the most commonly used compiler and interpretive 
languages today, we have provided a set of subroutines 
that allows the high level user access to virtually every 



Multicomputer Processing in Laboratory Automation 439 

peripheral device required for real-time computing. 
Table I lists these routines. The devices include clocks, 
timers, analog-digital converters, digital-analog con
verters, relays, lamp indicators, and the like. Electrical 
connections are provided through a standard front panel 
using VICI or Banana plugs so that students can easily 
and rapidly change experiments without requiring even 
a screw driver. Our experience indicates that even 
relatively demanding tasks, such as low resolution mass 
spectrometry data processing, can have the calculation 
and teletype input-output code written in FORTRAN. 

Student experimenters prefer to use the slower, but 
more interactive, Real Time Basic package. The most 
important feature of Real Time Basic is that programs 
can be written, tested, and modified interactively from 
an on-line teletype eliminating the compilation and link 
edit steps of FORTRAN. Statements are checked for 
correct syntax on loading rather than at run time to 
even further accelerate the rate of program develop
ment. The experiments we have developed for students 
to perform in BASIC range from analysis of gas 
chromatography data to complicated simulations in 
physical chemistry. A typical student-written program 
for acquiring and plotting 250 pairs of time and voltage 
readings (from a pH meter, in this case) is as follows: 

90 DIM V(250),T(250) 
100 CALL SADC,4,1 
110 FOR 1=1 TO 250 
120 CALL RADCT,V(I),T(I) 
130 CALL ODAC,V(I),T(I)/10. 
140 NEXT I 

The language CLASS (Computer Language for 
Spectroscopy Systems) was developed by Varian 
Associates to provide a simple programming medium to 
solve slow to medium speed on-line data collection and 
massaging problems. This string processing language 
provides an easy to learn system for instrument control 
and acquisition of lists of data-all arithmetic operations 
are performed in a double precision (31 bit) stack, and 
data may be stored in either single or double word 
formats. Programs are written as strings composed of 
macro calls which are executed interpretively. Any 
string or collection of strings can easily be defined by 
new macro names, or, old, unused macros may be 
deleted to free needed core space. All program generation 
steps occur interactively at the teletype immediately 
before an experiment. 

We have used CLASS to support acquisition and 
processing of data from various spectrophotometers and 
electron spin resonance spectrometers. 

The sample CLASS program given below demon
strates the code required to collect a 3000 point electron 
spin resonance spectrum in each of the possible pro-

POP-IO 
Timeshare 

360/50 
Batch 

3000 feet 
50,000 Baud 

Figure 3-Block diagram, University of Oregon distributed 
computer system for chemistry 

gramming modes. Effective use of the lowest string 
mode requires a complete understanding of the architec
ture of the language, whereas use of the highest level 
requires only instruction in the use of a teletype. 

TTY TTY TTY 
STRING RETURN EPR 
R24 PEND FILT2 
R77 END DEST 100 

• COLLECT STRTI 
R17 FILT2 END 5999 
C2 PUT GO 
R33 DEST 100 
A100 STRT1 
CI END 5999 
C5999 RIGHT 
R76 RIGHT 
R76 END 

• GO 
M 
GO 
Lowest "Assembly" Simple Macro Highest Macro 

Level Level Level 

On execution of the sample programs given above, 



440 Fall Joint Computer Conference, 1971 

the recorder arm would first be moved to the extreme 
left with the pen up. After that, the pen would be 
lowered, three thousand data points collected (at a rate 
of one point every two deciseconds) and the data 
plotted. For each data point the recorder would be 
stepped two recorder increments to the right. 

The maximum advantage in the use of linked com
puters is that expensive bulk storage capabilities need 
to be provided at only one location. At the University of 
Oregon, we are currently implementing a communica
tions network that will support direct transmission of 
data between several Varian 620ji computers and a 
centrally located Digital Equipment Corporation 
PDP-10 computer. The tremendous volumes of data 
generated in gas chromatographic mass spectrometer 
and Fourier infrared experiments is collected with an 

8K machine and transferred for computation to the 
PDP-10. The system hardware is outlined in Figure 
3. 

SUMMARY 

In this paper we have discussed an approach to labora
tory computing which allows the experimenter to take 
advantage of each of a variety of programming lan
guages and hardware facilities. Through use of the 
distributed computing systems described, it has been 
possible to serve a wide range of users ranging from the 
inexperienced student to the experienced researcher, and 
to allow them to make use of laboratory computers 
routinely. 



Enhancement of chemical measurement techniques 
by real-time computer interaction. 

by SAM P. PERONE 

Purdue University 
Lafayette, Indiana 

The small, dedicated, laboratory computer can 
provide enhanced capability for electro analytical mea
surement techniques in the chemistry laboratory. The 
work described here is based primarily on three recent 
publications by Perone, Jones, and Gutknecht.I ,2,3 

The particular electrochemical analysis techniques to 
which computerization has been applied are stationary 
electrode polarography (SEP) ,4 and the closely-related 
derivative voltammetry.5,6 However, the principles and 
methodology described should be generally applicable 
to other electro analytical techniques, and, perhaps, to 
chemical experimentation, in general. 

Certainly, one very important way in which the 
on-line digital computer can improve the capabilities 
of chemical measurement techniques is simply to 
provide automated experimentation, data assimilation, 
and straightforward data processing. This has been 
demonstrated amply already for electro analytical 
instrumentation.7,s,9 However, these approaches are 
bounded ultimately by the inherent limitations of the 
particular measurement technique. To take full ad
vantage of the dedicated computer, one should utilize 
its capabilities for rapid "intelligent" feedback and 
incorporate the computer into the experimental control 
loop, as shown in Figure 1. Thus, the computer could 
monitor the experiment; process the data as the experi
ment progresses; and, "intelligently" modify the course 
of the experiment to provide optimum measurement 
conditions. Of course, the "intelligence" is related to the 
programming skill and the experimental intuition of the 
programmer. Moreover, the transfer function for 
"intelligent" response will depend on the degree of 
sophistication and number of calculations and decisions 
which must be made in "real-time"-i.e., between 
successively acquired data points; also important are 
the computer's speed, and hardware arithmetic and 
logical capabilities. (A more quantitative discussion of 
response factors is given below.) 

The important feature of this latter approach-real-

441 

time computer optimization of analytical measure
ments-is that a measurement technique can be 
generated, which would be unattainable without the 
aid of an on-line computer. Moreover, in the process of 
developing this application, the experimenter must 
necessarily investigate systematically those experi
mental parameters which most critically determine the 
computer optimization of the measurement. This can 
be done only with the computer in the control loop. 
However, the results of these investigations then 
provide the foundation for the design of new instru
mental methods which might be implemented in
dependent of an on-line computer. These aspects of 
laboratory computer applications-real-time computer 
interaction with instrumentation, and computerized 
experimental design of interactive instrumentation
will be discussed below. 

RESPONSE FACTORS FOR REAL-TIME 
COMPUTER INTERACTION 

The response of the computerized control loop 
depicted in Figure 1 can be quantitatively evaluated. 
The analysis is similar in many respects to that applied 
in characterizing analog operational amplifier response. IO 

That is, one can describe a transfer function for the 
digital computer control element. This transfer function 
can be defined as the dependence of computer power 
on stimulus frequency. 

To define these terms, consider that a digital com
puter is a programmable device which executes 
arithmetic, logical, and input/output operations in 
sequential fashion. (References- 9, 11, and 12 may 
provide useful background on computer programming 
for laboratory applications.) Thus, computer power is 
directly proportional to execution time available. It is 
also directly related to inherent hardware capabilities, 
such as instruction execution time, micro-programming 



442 Fall Joint Comput~r Oonferen~e, 1971 

CPU 

Figure l-Block diagram of laboratory instrumentation with 
computerized feedback loop 

~haracteristics, input/output structure, etc. However, 
for a given computer and a specific experimental 
application, the critical variable is execution time 
available. 

The stimulus frequency, j, is simply the frequency at 
which the computer is '''poked'' by the experiment 
requesting some external service. In the simplest 
situation, f is the data acquisition frequency-the rate 
at which digitized data are made available to the 
computer from the experiment. 

Consider now the role played by the on-line computer 
during the execution of a given experiment. In some 
experiments, the computer's service, as each datum is 
made available from the digital data acquisition system, 
may involve only inputting the datum, saving it in 
memory, and some bookkeeping. Typical service time, 
T, may be 20 or 30 p.sec. In a more complex case, where 
some computational evaluation of the data, logical 
decisions, and possible experimental control operations 
may be required also in real-time, T may be considerably 
longer. This latter case is the type with which we are 
concerned here. 

N ow we can define a transfer function for a com
puterized system. The real-time computer power, P, 
can be equated to the available computational time 

between stimuli as given in Equation 1, 

(1) 

where P is in units of time. The dependence of P on f 
and T is shown graphically in Figure 2. The smallest 
value of P shown on the ordinate axis in Figure 2 
is 1.0 psec. 

The type of response analysis presented above is 
admittedly simple-minded. Nevertheless, it can be very 
useful in the design and implementation of computer
interactive instrumentation. Certain related factors 
must be considered, however. First of all, the dis
cussions here relate only to dedicated systems, where the 
computer is interfaced to a single instrument. Thus, it 
is assumed that the execution of the real-time service 
program begins "immediately" upon request from the 
interfaced instrument. In fact" there is some minimum 
response time, TO, required. The magnitude of TO depends 
on the computer hardware features and also depends 
on the programmer's choice of response mechanism. If 
he chooses to use the computer's J nterrupt System, TO 

may be as short as a microsecond. If he chooses to use 
program-controlled response, where the computer is 
programmed to sit in a loop waiting for a service request, 
TO may be several microseconds. 

3 

log P 
(p-sec) 2 

D 

3 

c 

4 
log f 

Figure 2-Dependence of real-time computational power on 
stimulus frequency 

A. T = 10-6 sec 
B. T = 10-5 sec 
C. T == 10-4 sec 
D. T = 10-3 sec 



Enhancement of Chemical Measurement Techniques 443 

A second assumption is that the computer is the 
slowest element in the control loop. That is, it is as
sumed that all analog instrumentation controlled or 
measured by the computer does not limit the overall 
system response. 

Another relevant consideration is that the value for 
service time, 7', used in any calculations should be the 
"worst case" value. That is, where alternative program 
pathways exist, assume that conditions will always 
require the longest path. 

SOME SAMPLE CALCULATIONS 

Consider now how one might use the system response 
analysis described above for the design of a particular 
experimental application involving real-time computer 
interaction. First, the essential elements of the minimal 
experimental service program-including the required 
input/output and bookkeeping instructions to be 
executed for each stimulus-must be established. The 
time required for these operations plus the minimum 
response time, 7'0, correspond to the minimum service 
time, 7'M. The transfer function for this value of 7'M 

establishes the real-time computer time available, 
7'A, where 

(2) 

Thus, the programmer can calculate 7' A for the specific 
data acquisition or service frequency, I, required in his 
application. Then, he must establish 7'R, the real-time 
computational time required to provide the desired 
calculations, decisions, and experimental control opera
tions to allow computer interaction with the experiment. 
The linear combination of the two programming seg
ments results in a total real-time service time, 7'T, where 

(3) 

If the programming is such that 7'R~7'A, the proposed 
application is feasible. Alternatively, for a given value 
of 7'T, one can calculate the maximum data acquisition 
frequency allowed. This can be obtained by setting 
P=O. Then, 1/1= l/lmax=TT. 

A specific example should illustrate the above dis
cussion. One computer system used by this author has a 
basic machine cycle time of 1.6 JLsec, and each instruc
tion is some integral multiple of this value. For a 
particular application, program-controlled service was 
used requiring a worst-case response, 7'0, of 4.8 JLsec. 
The additional minimal service programming required 
8 cycles, 12.8 JLsec. Thus, 7'M was 17.6 JLsec. The desired 
data acquisition frequency, I, was 10KHz. Therefore, 
the value of 7' A was computed from Equations 1 and 2 
to be 82.4 JLsec. Thus, the real-time interactive pro-

gramming had to have a worst-case execution time, 
7'R, less than 82.4 JLsec. This allowed programming 
requiring no more than 51 machine cycles. 

The following discussion presents a specific applica
tion of real-time computer programming for the 
enhancement of stationary electrode polarographic 
measurement capabilities. The work described is taken 
from Reference 1 and illustrates the implementation of 
principles discussed above. 

REAL-TIME COMPUTER CONTROL IN 
STATIONARY ELECTRODE POLAROGRAPHY 

Stationary Electrode Polarography, (SEP) , is a 
chemical analysis technique where solutions are 
analyzed by the measurement of electrolysis currents 
that flow when the cell voltage is swept. Despite its 
many desirable characteristics for automated analysis,7 
SEP is limited seriously for application to mixtures. 
Because of the continuous nature of the experiment, 
currents from easily-reducible species continue to flow 
and contribute to, distort, or mask currents measured 
for more-difficultly-reducible species. The non-ideal 
aspect of the technique is the fact that a continuous 
linearly varying potential is applied to the electrolysis 
cell, regardless of the composition of the sample. If the 
linear sweep were discontinuous, stopping briefly after 
each reduction step to allow the more complete dis
sipation of the easily-reducible species in the diffusion 
layer around the electrode, the interference with 
reduction steps for more difficultly-reducible species 
would be considerably diminished. However, such a 
discontinuous or "interrupted-sweep" experiment would 
require some foreknowledge as to the composition of 
the mixture--and this is not a likely situation in real 
analytical situations. 

The work of Perone, Jones, and Gutknechtl illus
trated how one can take advantage of the control 
capabilities of the on-line digital computer to overcome 
the resolution problems of stationary electrode polar
ography. The approach taken was to allow the computer 
to interact with the experiment in real-time to generate 
an interrupted-sweep experiment which was effectively 
"sample-oriented". Some details of that work will be 
presented here. 

Sample-oriented analysis-Interrupted sweep approach 

Resolution limits 

The theories of conventional stationary electrode 
polarography4 and stationary electrode polarography 
with derivative read-out5,6 allow the accurate prediction 



444 Fall Joint Computer Conference, 1971 

TABLE I-Vaules of Current Function Ratios, 
x (at)p/x (at)E, x' (at )p/x' (at)E, and x" (at)p/x II (at)E 

as Functions of (E -E1I2)a 

-150 1.813 6.044 15.01 
-175 1.991 7.983 24.08 
-200 2.153 10.18 35.03 
-225 2.299 12.54 50.26 
-250 2.436 15.02 68.00 
-275 2.563 17.63 88.90 
-300 2.671 20.22 115.6 
-325 2.788 22.99 144.5 
-350 2.896 26.16 172.6 
-400 3.096 32.28 241.0 
-450 3.304 38.90 330.0 

aSee References 4 and 5 for definition of symbols. 

of resolution limits. This can be done by calculating 
the theoretical ratio of the current functions at the peak 
and at some potential beyond the peak. Using the 
mathematical approaches outlined previously,4-6 and 
considering only reversible systems, this has been done 
for 0-, Ist-, and 2nd-derivative measurements.IS The 
results are shown in Table I. [The peaks chosen for the 
Ist- and 2nd-derivative current functions are the 
largest ones in each case-at n(E-EI/2) = 18.8 and 
-14.4 mY, respectively.] Note that the interference 
with a succeeding reduction diminishes considerably 
with derivative measurements and with increased 
potential separation of reduction steps; resolution 
increases with the order of the derivative; however, 
even with the derivative measurement, the resolution is 
not particularly good when reduction steps are closer 
together than about 300jn mY. 

Thus, considering arbitrarily a separation of 300jn 
m V and equal n- and D-values, it would be possible to 
resolve, with 5 percent contribution of the first reduction 
step to the second, concentration ratios of 1: 7, 1: 1,. and 
5.8: 1 for the 0-, Ist-, and 2nd-derivative measurements, 
respectively. These calculations are exclusive of any 
other background contributions, with the assumption 
that they are negligible or can be measured indepen
dently for correction. 

It would, of course, be possible to correct mathe
matically for the interference caused by overlapping 
reduction steps. However, a limit is reached with this 
approach when the interference is so great as to preclude 
even the recognition of a succeeding reduction step. In any 
event, this approach has been considered2 and will be 
discussed later. 

Cell 

Current Measurement 
and Differentiatar 

Instrumentation 

SEP-I 

Figure 3-System block diagram 

Details of Interrupted-Sweep Experiment 

The interrupted-sweep experiment involves a com
puter-controlled potentiostat (described in Reference 
1), and real-time analysis of fast-sweep derivative 
polarographic data. (A system block diagram is shown 
in Figure 3.) The computer continuously monitors the 
experimental output, is instantaneously aware of the 
occurrence of reduction steps, and can interrupt the 
linear potential sweep at an appropriate potential 
cathodic of each peak. The interrupt potential is held 
for a length of time computed to allow sufficient 
depletion of the electro active species in the diffusion 

I 

I I LIl' I 

1 !/ 
E 

E 

Figure 4-Comparison of normal and interrupted-sweep 
stationary electrode polarography 

A. Stationary electrode polarogram (W /0 interrupt) 
B. Stationary electrode polarogram (With interrupt) 

. C. Applied cell potential (W /0 interrupt) 
D. Applied cell potential (With interrupt) 



Enhancement of Chemical Measurement Techniques 445 

layer, and then the sweep is restarted. The interrupt 
delay time, T', is calculated in proportion to the mag
nitude of the reduction step, with the restriction that 
T' not be so long as to cause convection processes to 
occur or to allow significant electrolysis of the next 
electroactive species. Thus, the controlling potential 
function-which is basically a series of ramp-and-hold 
steps-will be different for each experiment, depending 
on the sample mixture and composition. The experiment 
is custom-tailored to the sample-i.e., sample-oriented. 
A simplified comparison of the continuous- and inter
rupted-sweep experiments is shown in Figure 4. A flow
chart of the computer-controlled experiment is given in 
Figure 5. The computer used in this work was a Hewlett
Packard Model2ll5A with l6-bit word size, 8,192-word 
core memory, 2.0 p.sec cycle time, and a hardware 
extended arithmetic unit. The data acquisition system 
included aI~-bit, 33 J.Lsec conversion-time analog-to
digital converter (ADC). The timing was provided by 
an external 10 MHz crystal clock scaled down to 1 KHz, 
which was the maximum data acquisition frequency, f, 

Real-Time 
Computations ,--------, 

1 I 
I I 

~----I~I ~ I 
I I 
I I 
I. I 
I I 
I I 
I I 
I I 
I I 
r I 
I I 
I I 
I I L__ _ __ --1 

Flowchart for Real-Time Computer-Optimized S. E. P. 

Figure 5--Flowchart for real-time computer-optimized SEP 

1"01'=---......-4 

E(t) E(t) 

Figure 6-Analytical measurements from first- and 
second-derivative voltametric data 
A. First derivative 
B. Second derivative 

used for all experiments. A detailed discussion of inter
facing and control logic is given in Reference 1. 

The information taken in by the computer is ex
tracted from either the Ist- or 2nd-derivative signal. 
Only the negative region of the derivative signal is seen 
by the analog-to-digital converter, and the measuring 
circuit is arranged so that only the largest peak in each 
case is the correct polarity. The result is shown in 
Figure 6. The computer is programmed to look for 
sharp peaks-above an arbitrary threshold-and to 
measure and store peak heights, peak areas, and peak 
locations in real-time. 

When a complete peak is observed-i.e., one which 
goes above threshold, goes through a sharp maximum, 
and then comes back down below threshold-the 
computer executes the maximum real-time program
ming, calculating the n-value, the potential at which the 
sweep should be interrupted, ED, and the delay time, 
T'. (The maximum total real-time programming time, 
TT, is about 800 J.Lsec.) Then the computer allows the 
sweep to continue (if necessary) until the desired 
interrupt potential (ED) is reached; the sweep is 
interrupted at this point for time, T'; the sweep is then 
reinitiated with the computer looking for the next 
reduction step, ready to reexecute a similar inter
rupted-sweep. (The delay time, T', is computed in 
proportion to the peak height, with the restriction 
that T' be between 100 and 1000 ms.) 

Advantages of real-time calculations 

Uses of Integral Data 

It was possible to integrate the derivative peaks 
(Figure 6) seen by the computer in real-time and to use 



446 Fall Joint Computer Conference, 1971 

TABLE II-Interrupt Potential Required for Specified Surface'Ratio, Co/CR 

o 
1/1 

-28.5/n 
1/3 

these integral data for analytical purposes, for cal
culating appropriate interrupt potentials, and to 
provide diagnostic information. The area under a peak 
is directly proportional to the peak height and, there
fore, to the concentration of electroactive species. 
Thus, the peak integral, Qp, is a concentration-dependent 
output. Moreover, should the peak location routine in 
the program fail because the derivative peaks are too 
noisy, broad, or small, the peak integrals will still be 
taken and provide a useful, reliable, source of analytical 
information. In addition, a peak area threshold is 
incorporated into the program, whereby the area of a 
given peak must exceed some arbitrary value before 
the computer will recognize a signal excursion as a 
bona fide reduction peak. This is a very useful processing 
parameter. 

In the case of 1st-derivative read-out, the value of 
the integral of the observed peak is equivalent to the 
peak height of the conventional stationary electrode 
polarogram. It has been shown previously that, for a 
reversible system, the ratio of the 1st-derivative peak 
height, I' p, to the conventional peak height, i p , is 
related to n6, as given by Equation 4, 

(4) 

where v is the scan rate in volts/sec. Thus, a deter
mination of the ratio of the derivative peak height to 
the peak integral can lead to an evaluation of n, and the 
computer is programmed to do this in real-time so that 
the information is available for interrupted-sweep 
decisions. This information is also useful for qualitative 
identification of species or for providing an error 
diagnostic if wrong n-values are obtained for known 
systems. 

A similar relationship exists between the n-value and 
the ratio of the 2nd-derivative peak height to the peak 
integral. The measured integral is equivalent to the 
difference between the positive- and negative-going 
1st-derivative peaks. The relationship can be calculated 
from previous theoretical data5 and is given in Equation 
5. (Note the error in Equation 2 of Reference 1.) 

(5) 

Thus, the n-value can be obtained from either the Ist
or 2nd-derivative measurements. For reversible pro
cesses, the computed n-value is accurate. For irreversible 
processes, the n-value at least reflects the broadness of 

-59.1/n 
1/10 

-l00/n 
1/50 

-118/n 
1/100 

-177/fl 
1/1000 

the peak, and this is useful for the interrupt potential 
calculations discussed below. 

Selection of interrupt potential 

In the interrupted-sweep experiment, the potential, 
ED, selected to be held during the delay period, T', 
is critical. The objective is to select a potential which is 
cathodic enough to deplete adequately the electroactive 
species in the diffusion layer. That is, the potential 
should be chosen such that the concentration ratio 
CO/CR , approaches zero at the electrode surface. 

The obvious problem is that selecting a value of ED 
cathodic enough to truly deplete the electro active 
species at the electrode would eliminate the possibility 
of observing a succeeding closely-spaced reduction. 
Thus, a compromise must be reached, and a knowledge 
of the n-value for the reduction step on which the delay 
is made is useful in selecting the appropriate interrupt 
potential. 

In this work, interrupted-sweep experiments were 
run with the interrupt potential (ED) selected by the 
computer after it has observed a complete derivative 
peak-i.e., when the derivative signal is going through 
zero. ED is selected relative to the potential, E z , at 
which the derivative signal goes through zero. The 
computer uses information provided initially by the 
operator in order to calculate ED-Ez. That is, the 
operator initially specifies n(ED-Ez); the computer 
determines nand E z , and then selects ED. Experiments 
are reported below where the operator-selected value of 
n(ED-Ez) was varied for a series of runs to observe 
the effect of ED on quantitative resolution. 

The influence of ED on the surface concentrations of 
species in the redox couple, 0 and R, is shown in Table 
II. The calculations for Table II are based on the 
Nernst equation and reversible behavior. Also, it 
should be noted that Ez-El/2 is -28.5/n mV for the 
1st-derivative measurement, and - 66.5/ n m V for the 
2nd-derivative measurement. 

Results 

Two different two-component systems were studied 
in this work. The first system consisted of TI(I) and 
Pb(lI) in 1.0M NaOH electrolyte. The half-wave 
potentials for these two species are separated by 



Enhancement of Chemical Measurement Techniques 447 

approximately 280 mY. The second system studied was 
that of Pb(II) and Cd(II) in a 2M ammonium acetate
acetic acid electrolyte. The El/2 separation for this case 
was approximately 150 mY. All runs were made at a 
scan rate of 1.00 V Isec. Data points were taken at 
1- or 2-m V intervals, and both the first- and second
derivatives of the reduction currents were observed 
for each system. 

Various experiments were applied to the two systems. 
These included normal SEP and interrupted-sweep 
SEP with computer-selected interrupt potential. The 
values of (ED-Ez) employed varied from Oln mV to 
values which resulted in noticeable charging spike 
interference. The delay time, r', for the first peak in 
each example was always near to or equal to 1000 msec., 
since the first peaks were always quite large. The 
results of these tests are summarized in Table III. Also 
included in these tables are the theoretical estimates of 
overlap error based on the data from Table I. 

TABLE III-Peak Derivative Measurements of Smaller Com
ponent with and without Computer Interaction for Binary Mix
tures. 

Mixture Condition ED-Ez, % Std., % Std., 
mV J I p Jp " 

30:1 wlo inter- 50.8a 92.6b 

Tl:Pb rupt 
II inter-

rupted-
sweep Oln 89.9 100.8 

II " -20/n 92.8 100.8 
" " -100/n 97.9 

10:1 wlo 
Pb:Cd interrupt 45.3 c 91.9/1 

II interrup- Oln 104.4 100.0 
ted-sweep 

II " -20/n 104.8 86.9 

" " -30/n 102.3 

100:1 wlo no peake 
Tl:Pb interrupt detected 88.71 

II interrup-
ted-sweep -40/n 70.8 101.0 

" " -100/n 83.5 102.9 

1000:1 wlo no peaku no peakh 
Tl:Pb interrupt detected detected 

" interrup-
ted-sweep -40/n " 78 

" " -100/n " 98 

Predicted errors: (a) -48.4%, (b) -5.2%, (c) -45.6%, 
(d) -8.2%, (e) -160%, (f) -17%, (g) -1600%, (h) -170%. 
(Predicted errors based on Table I and known concentration 
ratios.) 

Figure 7-First-derivative curves for 30:1 {Tl(I)]-[Pb(II)] 
system 
3.21 X 1O-4M Tl(l), 1.05 X 1O-6M Pb(II), 
1. OM NaOH 
Upper trace: W 10 interrupt 
Middle trace: With interrupt; ED-Ez= -lOin mV 
Lower trace: With interrupt; ED-Ez = -40/n mV 
The signals observed are: (A) Tl(I) signal; (C) Pb(II) 
signal; (B) and (D) charging spikes; and (E) and (F) 
current decay occurring during interrupt. 

The 1st-derivative data for the [TI(I) J- [Pb(II) ] 
system show continued improvement with increasing 
(ED-Ez). However, beyond (ED-Ez) = -1001n mY, 
some distortion apparently is caused by the charging 
spike of the restarted sweep overlapping slightly with 
the Pb(II) signal. 

The error due to overlapping reduction signals shown 
in the 2nd-derivative data for the [TI(I) J- [Pb (II) ] 
system is small even without the interrupted-sweep. 
(This is predicted, of course, from Table I.) The 



448 Fall Joint Computer Conference, 1971 

Figure 8-Second-derivative curves for 30:1 [Tl(I)] - [Pb(II)] 
system 
3.21X1O-4M Tl(I), 1.05X1O-6M Pb(II), 
100M NaOH 
Upper trace: W /0 interrupt 
Lower trace: With interrupt; ED - Ez = -10 /n m V 

improvement with the interrupted-sweep is significant, 
however. The experimental effects of the interrupted
sweep for both the first- and second-derivatives can be 
visualized in Figures 7 and 8. 

The first-derivative data for the [Ph (II) ] - [Cd (II) ] 
system, using the interrupted..;sweep experiment, show 
some contribution to the Cd (II) peak from the charging 
spike, even with small values of (ED-Ez). This inter
ference is illustrated in Figure 9, and results in a small 
positive error for the second peak. 

The width of the charging current spike for both the 
first- and second-derivative is observed to be approxi-

mately 100 m V. Thus, if ED is to be set cathodic of Ez, 
the end of the first signal peak and the start of the 
second signal peak must be at least 100 m V apart. This 
is a significant limitation on the interrupted-sweep 
experiment. 

The second-derivative data for / the [Pb (II) J
[Cd (II) ] system show better overall results than the 
first-derivative data. This was to be expected, on the 
basis of earlier studies,5.7 and the data of Table I. It 
was observed that for both systems the peak integral 
data, Q' p and Q" p, show greater error than the peak 

Figure 9-First-derivative curves for 10:1 [Pb(II)]-[Cd(II)] 
system 
1005X1O-4M Pb(II), 1ollXlO-6M Cd(II), 
2M NH40Ac, 2M HOAc 
Upper trace: W /0 interrupt 
Lower trace: With interrupt; ED-Ez= O/n mV 



Enhancement of Chemical Measurement Techniques 449 

height data. This is not unexpected, because the area 
from the peak base is missed when peak overlap occurs. 
Thus, peak areas should not be the primary source of 
analytical data. 

The results for [TI(I)]-[Pb(II)] 100:1 and 1000:1 
mixtures in l.OM N aOH show a considerable improve
ment in quantitative resolution when the interrupted-

Figure 100First-derivative curves for 100:1 [Tl(l)]-[Pb(II)] 
system 
2.68XlO-4M Tl(l), 2.63XI0-6M Pb(II), 
1.0M NaOH 
(Arrow shows Pb(II) peak) 
Upper trace: W /0 interrupt 
Middle trace: W /0 interrupt; sensitivity increased 

5X 
Lower trace: With interrupt, ED-Ez= -40/n 

m V; sensitivity same as middle trace 

sweep experiment is employed. For the 100: 1 mixture, 
the second peak is undetectable with a 1st-derivative 
read-out (see Figure 10). With the interrupted-sweep, 
however, not only is the second peak detectable, but 
the measured value comes up to 84 percent of the 
correct value, for 1st-derivative read-out, and 100 
percent for 2nd-derivative read-out. For the 1000: 1 
mixture the second peak is undetectable, even with a 
2nd-derivative measurement. EmploYing the inter
rupted-sweep experiment with 2nd-derivative read-out, 
however, reliable and quantitative detection could 
be obtained. 

Observations 

The work described here was intended to demonstrate 
that an on-line digital computer could be used to 
optimize an experimental measurement technique by 
real-time interaction with the experiment. The results 
clearly show a dramatic improvement in quantitative 
resolution of overlapping reduction signals, provided a 
minimum El/2 separation of about 150 m V is present. 
Thus, the optimized measurement is subject to at least 
this one severe limitation; but, nevertheless, appears 
quite useful. Most importantly, the principle of real
time computer-optimized measurements in electro
analysis was demonstrated by application to a real 
system. 

COMPUTERIZED EXPERIMENTAL DESIGN 
OF INTERACTIVE INSTRUMENTATION 

The experimental method described above illustrates 
the application of an on-line digital computer to 
generate, evaluate, and optimize a new electro analytical 
approach. The general-purpose laboratory computer is 
well-suited for this task because of the ease with which 
programmed control functions can be modified during 
the development of experimental control characteristics. 
However, having arrived at an optimum set of experi
mental control features the continued dedicated use of 
an on-line computer for routine application of the 
technique might not be economically feasible. Thus, a 
more practical approach should be taken to adapt the 
technique developed with the general-purpose computer 
system for routine laboratory application. In another 
publication,3 Jones and Perone described the incorpora
tion of the optimum parameters determined from the 
earlier work,! summarized above, into a specialized 
instrument designed to generate the interrupted-sweep 
experiment without the need for an on-line computer. 
This later work3 demonstrated the value of the com-



450 Fall Joint Computer Conference, 1971 

puter-controlled experimentation for the design of 
interactive experimental techniques that can then be 
hardware-implemented. It also demonstrated that 
many programmed control operations can be converted 
easily to hardware logic and analog functions by using 
medium-scale integrated circuit (MSI) modules.14 

The optimum parameters selected from the earlier 
work were incorporated into a device in which few 
manual operations were needed and which, as a result, 
would implement the technique for most, but not all, of 
the cases studied. Detailed descriptions of the instru
mentation and approach are presented in Reference 3. 
Essentially the same functions as in the computerized 
technique were provided, but some changes were made. 
Only the 2nd-derivative peak height, I" p, was used to 
extract quantitative information. The first-derivative 
zero crossing E' z was used for qualitative identification, 
rather than the peak center of the 1st- or 2nd-derivative 
which was used in the computer-controlled technique. 
This was because of the ease with which the zero crossing 
could be detected with a hardware comparator. The 
peak width of the second derivative was used as an 
indication of n5, rather than the ratio of the peak height 
to its integral as in the earlier work. This was because 
the 2nd-derivative peak-width measurement was much 
easier to accomplish with hardware and gave very 
reproducible results. The interrupt time delay was 
proportional to the second-derivative peak height, as it 
was for the computerized approach, and was again 
limited to between 100 and 1000 msec. Because the 
earlier work had shown that adequate resolution could 
be obtained up to at least 100: 1 mixtures for ED=Ez , 
no provision was made in the hardware device for 
adjusting ED-Ez in normal automated operation. 

When the hardware instrumentation approach3 was 
compared with the computerized experimentation of the 
earlier work, l several observations were made. First, the 
analytical results and limitations were essentially 
identical for the two approaches. The only exception 
was that the hardware instrumentation failed for a 
1000: 1 mixture. This was because the hardware device
used a slightly less sensitive-though more reliable
peak detection method. Also, quantitative resolution 
of 1000: 1 mixtures would require minimum peak 
separations of about 250/n mV and a value of ED-Ez 
of -IOO/n mVI. Because the hardware device was 
designed for completely automated operation, ED was 
set to always equal Ez, and this allowed application to 
any system where peaks were separated by 150 m V or 
greater, up to peak ratios somewhat greater than 100: 1. 

The limitations mentioned above reflect the objective 
of hardware development. The device was built to 
handle most analytical situations with a minimum of 

operator manipulations. Moreover, the cost was only 
about five percent of the computerized system. The 
device is much simpler to operate than the computerized 
instrumentation because only the initial cell potential, 
amplifier gain, and sweep mode (with or without sweep 
interrupt) need to be specified by the operator before 
an experiment. Nevertheless, it provides truly inter
active instrumentation. 'Although the feedback is less 
flexible or "intelligent" than in the computerized 
system, it is optimized. In addition, the hardware 
device offers one other distinct advantage over the 
computerized approach. The sweep rate of the com
puterized system was limited by the time necessary to 
perform the real-time calculations. This amounted to 
about 800 J.Lsec between data points, which limited the 
data rate to about 1 KHz. If data are taken at each 
m V during the sweep, this limited the sweep rate to 

"about IV/sec. In the hardware device, this limitation 
does not exist as the hardware can perform several 
logical, arithmetic, storage, and control operations in 

, parallel; thus, less real-time steps are required. With 
proper modifications to the potentiostat, current 
follower, differentiators, and filters, the interrupted
sweep experiment could be run at sweep rates of 
100 V /second. With appropriate scaling of T', this would 
allow much shorter experimental times and might be 
useful for the analysis of unstable systems. 

The most important point here, though, is that the 
hardware instrumentation could not have been designed 
readily without the prior investigative study! using the 

Figure ll-SEP curves for Real 1:1 [In(III)]-[Cd(II)]system 
Peak Potential Separations 48 mv. 
3.84XlO-6M In (III) , 3.95 X 1O-6M Od(II), 1.0M HOI 
Voltage range shown: -0.300 -+ -0.800 v. vs. 

S.C.E. 
Maximum peak current: 3.7 p.a. 



Figure 12-SEP curves for synthetic 1:1, 1:5, and 5:1 mixtures of 
[In(IIl)] -[Cd(Il)] 

Peak potential separations 38-42 mv. 
Voltage range shown: -0.300 -+ -0.800 v. vs. 

S.C.E. 

Enhancement of Chemical Measurement Techniques 451 

on-line general-purpose computer. The optimum design 
parameters-as well as the very feasibility-of the 
interrupted-sweep technique were evaluated with the 
computerized experimentation. 

COMPUTERIZED RESOLUTION OF 
CLOSELY-SPACED PEAKS IN STATIONARY 
ELECTRODE POLAROGRAPHY 

The experimental work described above demon
strated how computerized instrumental interaction 
could improve the quantitative resolution capabilities 
of SEP. However, that approach fails for peaks separated 
by less than ,about 150 mY. An alternative approach 
must be used to handle electro analytical samples where 
SEP peaks are more severely overlapped. One approach 
taken has been presented by Gutknecht and Perone.2 

The approach involved extracting the analytical 
information from SEP data using mathematical 
deconvolution techniques. An empirical equation was 
developed which describes the general stationary 
electrode polarogram for a wide variety of electro active 
species. The function is fit to a number of standard 
polarograms, and the constants of the function, as 
specifically determined for each species, are stored in 
computer memory. Upon analysis of an unknown 
mixture, these constants are used to regenerate the 
standard curves, a composite of which is then fit to the 
unknown signal. In the fitting process, account is taken 
of overlap distortion as well as experimental fluctuation 
of peak potentials. 

The small computer was used to perform several 
different functions in the development of the on-line 
electro analytical system. Primary among these were 
experimental control, timing, synchronization, and data 
acquisition functions. In addition, with the aid of an 
oscilloscopic display system, off-line simulation studies 
were carried out to evaluate empirical equations 
developed for later on-line data processing. Finally, 
the computer was used to process SEP data acquired 
on-line for qualitative and quantitative information. 
The processing approach proved especially valuable for 

Upper trace: 4.80X10-6M In(lll), 4.94XlO-6M 
Cd(Il), loOM HCI 
Maximum peak current: 4.8 p.a. 

Middle trace: 0.960XlO-6M In(IIl), 4.94X10-6M 
Cd(Il), loOM HCI 
Maximum peak current: 3.0 p.a. 

Lower trace: 4.80XlO-6M In(IlI), 0.988XlO-6M 
Cd(Il), 1.0M HCI 
Maximum peak current: 3.5 p.a. 



452 Fall Joint Computer Conference, 1971 

the analysis of mixtures of similar concentrations where 
the overlap was so severe as to preclude visible recogni
tion of the individual signals. 

A discussion of the numerical deconvolution approach 
is beyond the scope of this paper, and the reader is 
referred to the original work for details.2 However, a 
brief summary of the results of that work can be 
presented. 

It was shown that for mixtures of similar concen
trations of In(III) and Cd(II) in 100M HCl, with a 
peak potential separation of 48 m V, it was possible to 
detect and quantitatively resolve the overlapped peaks 
with relative errors the order of 1 to 2 percent. A 
polarographic trace for a 1: 1 mixture is shown in 
Figure 11. The approach was applicable to mixtures 
with concentration ratios as great as 10: 1. 

To establish the limiting peak separation which could 
be handled by the deconvolution technique, syntheti
cally generated polarograms of In(III)-Cd(II) mix
tures were used where peak separations were varied. 
The limiting peak separation was found to be about 
40 m V. Mixtures with concentration ratios as great as 
5: 1 could be qualitatively identified and quantitatively 
resolved with about one to two percent relative errors. 
By contrast, simple simultaneous equation calculations 
led to relative errors the order of 10 to 35 percent. 
Moreover, the visual detection of the two individual 
peaks was not possible, as shown in Figure 12. 

It should be obvious that the numerical decon
volution approach and the computerized interaction 
approach are complementary in many ways. The latter 
is applicable to widely-spaced peaks with large con
centration ratios; the former is applicable to very 
closely-spaced peaks, but can handle more limited peak 
ratios. Both approaches represent a significant enhance
ment of measurement capabilities in stationary elec
trode polarography. 

CONCLUSIONS 

Certain observations should be made here. First of all, 
real-time computer interaction with experimentation is 
not the answer to all measurement problems. In some 
cases, in fact, it makes the problem worse. For example, 
the interrupted-sweep approach is completely in
appropriate for SEP measurements of closely-spaced 
reduction peaks. One is tempted to generalize and state 
that the interactive approach fails when the interaction 
distorts the fundamental processes of interest. It was 
shown here how one might use the numerical analysis 
capabilities of the small computer for solution of these 
measurement problems. 

A second point is that one may not need to devise a 
real-time interaction scheme to achieve computerized 
optimization of experimental measurements. A perfectly 
adequate approach might involve an iterative method 
where the computer is programmed to analyze the data 
from a completed experimental run; make decisions 
regarding modification of controlled parameters for 
improved measurements; and then reinitiate the 
experiment under new conditions. 

A third point to be made here is that, as demonstrated 
above, it may not be necessary to require a digital 
computer for implementation of real..;time interactive 
instrumentation. However, the investigation of the 
approach and the establishment of the optimum mode 
of interaction are greatly facilitated by the on-line 
digital computer. Subsequent hardware implementation 
of the approach can be straightforward and economical. 

A final observation to be made here is to attempt to 
define in general the experimental situations where 
real-time computerized interaction is advantageous 
and/ or necessary for optimization of measurements. 
These situations seem to include those where separate 
dynamic experiment-associated chemical or physical 
processes occur which interfere with the measurement 
of interest at a particular time during the experiment. 
If the interfering processes can be independently 
evaluated by real-time computations, computerized 
interaction may be advantageous. If post-mortem 
analysis of unoptimized experimental measurements 
does not provide adequate information for subsequent 
experimental modifications, real-time computer inter
action may be necessary for optimization. 

It would be presumptuous on the part of this author 
to describe specifically how other measurement tech
niques might be optimized by real-time computer 
methods. Only the experienced worker skilled in 
the particular analytical method has the appropriate 
understanding and intuition for proper experimental 
design. However, several analytical methods have been 
recognized as being amenable to optimization by real
time computer . measurements. These include gas 
chromatography,IS kinetic and other clinical methods of 
analysis,16.17 as well as coulometric analysis.Is Un
doubtedly, many such applications will be developed 
in the near future. 

ACKNOWLEDGMENTS 

The support of the National Science Foundation, 
Grants No. GP-8677 and GP-21111, is gratefully 
acknowledged. 



REFERENCES 

1 S P PERONE D 0 JONES W F GUTKNECHT 
Analytical chemistry VoI411154 1969 

2 W F GUTKNECHT S P PERONE 
Analytical chemistry Vol 42 906 1970 

3 D 0 JONES S P PERONE 
Analytical chemistry Vol 42 1151 1970 

4 R S NICHOLSON I SHAIN 
Analytical chemistry Vol 36706 1964 

5 S P PERONE T R MUELLER 
Analytical chemistry Vol 372 1965 

6 C V EVINS S P PERONE 
Analytical chem1'stry Vol 39 309 1967 

7 S P PERONE J E HARRAR F B STEPHENS 
R E ANDERSON 
Analytical chemistry Vol 40 899 1968 

8 G LAUER RABEL F C ANSON 
Analytical chemistry Vol 39 765 1967 

9 G LAUER R A OSTERYOUNG 
Analytical chemistry Vol 40 30A 1968 

Enhancement of Chemical Measurement Techniques 453 

10 Handbook of operational amplifier applications 
Burr-Brown Research Corporation 
Tucson Arizona 1963 

11 Introduction to programming 
Digital Equipment Corporation 
Maynard Massachusetts 1969 

12 S P PERONE 
Journal of chromatographic sdence Vol 7 714 1969 

13 P E REINBOLD 
MS thesis Department of Chemistry 
Purdue University Lafayette Indiana 1968 

14 J S SPRINGER 
Analytical chemistry Vol 42 23A 1970 

15 R G THURMAN K A MUELLER M F BURKE 
Journal oj chromatographic science Vol 977 1971 

16 G E JAMES H L PARDUE 
Analytical chemistry Vol 41 1618 1969 

17 G P HICKS A A EGGERT E C TOREN JR 
Analytical chemistry Vol 42 729 1970 

18 F B STEPHENS F JAKOB L P RIGDON 
J E HARRAR 
Analytical chemistry Vol 42 764 1970 





The television/computer system-The acquisition and 
processing of cardiac catheterization 
data using a small computer* 

by H. DOMINIC J. COVVEY, ALLAN G. ADELMAN t CLARENCE H. FELDERHOF, 
PAUL MENDLER, E. D. WIGLE and KENNETH W. TAYLOR 

Toronto General Hospital 
Toronto, Ontario, Canada 

INTRODUCTION 

One of the prime objectives of cardiovascular research 
is to assess the functional state of the heart especially 
the left ventricle, its main pumping chamber. The 
functional state of the left ventricle is determined by 
its dimensions,! volume,2 the velocity of wall move
ment,3 the intracavity pressure,4 and the wall tension 
and stress.5,6,7,8 

This paper describes a semi-automated technique for 
obtaining parameters which indicate the functional 
state of the heart from left ventricular cineangiograms 
(35 mm. X-ray cine films of the heart taken while in
jecting a contrast material into the pumping chamber) 
and simultaneously recorded intracardiac pressures. 
Doing the measurements necessary to obtain function 
data is tedious and time consuming as dimensions must 
be measured from each frame of a cine angiogram of the 
left ventricle taken at 60 frames per second over several 
seconds, and correlated with the instantaneous cavity 
pressure. Displaying resultant function parameters in 
an intelligent fashion is also critical if they are to be 
useful to the clinician. 

Two years ago the Cardiovascular· Laboratory at 
Toronto General Hospital undertook to quantitatively 
assess the functional state of the human left ventricle. 
The resources available to this department dictated 
that any application of data processing equipment be 
modest, and that the equipment be housed within 
existing space. We, therefore, chose a small computer, 
optimizing on both the low cost and expandibility of a 
local on-line system and the availability of software, 
peripherals and interfacing electronics. This equipment 

* Work supported by the Ontario Heart Foundation and 
Toronto General Hospital 

455 

in conjunction with a standard broadcast television 
system provides a powerful data acquisition and pro
cessing facility which occupies one office in the unit and 
has the capacity to deal with the large volume of multi
formatted da.ta (digital, analog, pictorial, patient rec
ords) resultant from heart investigation procedures. 

The total cost of the system has been about $100,000 
for hardware and $20,000 for personnel. I t is being 
used for resea.rch and development and is more sophisti
cated than necessary for routine work. For routine work 
a simpler configuration can be used. For example, a 
minimum system might include: a PDP-8/E ($5,000), 
a teletype ($1,700), disc or tape ($8,000-$10,000) in
terfacing ($2,000-$4,000), and some basic television 
equipment ($5,000), or not more than $27,000. 

Other techniques have been developed for obtaining 
this information. They range from totally automated 
border recognition and dimension extraction sys
tems9,10,1l to hand measurements.12 ,13 Between these ex
tremes, there are: (a) semi-automated systems similar 
to ours,14,16 (b) a light pen system15 and (c) various 
techniques for obtaining border coordinates by stand
ard X-Y position digitizers or scanners.17 ,18,19,20 

Totally automated systems invo1've long setup pro
cedures, the digitization of entire pictures, and the 
presentation of this data to a large computer for analy
sis. This is often slow and extremely expensive. On the 
other hand, manual measurements are tedious, time 
consuming and the resultant data often requires some 
machine processing. 

Three systems similar to ours23 have been developed. 
Two use a dimension measuring interface similar to the 
one described in the text and illustrated in Figures 3-7: 
( 1) the Bugwatcher, 21 which uses a much more expen
sive computer, is very similar to ours in design, but is 
not used for cardiovascular work, and (2) an analog 



456 Fall Joint Computer Conference, 1971 

T.V. 

TERMINAL 

H. S. PRINTER 
+ 

GRAPHICS 

DIGITAL 
+ 

ANALOG 
SIGNALS 

~-ME-RA---I-------------------~ 

T.v. CAMERAS 

NUMBER 

MAG. TAPES 

H.S. READER 
+ 

PUNCH 

Figure 1-Diagram of the Television/Computer System. The computer (DEC PDP-S/l) can transfer data to or receive it from a 
number of peripherals (see Table II, text). The television system is composed of a master synchronization generator and sync and video
distribution circuits (see Table I, text for details). In addition, there are the interfaces which connect the computer and television sys
tems. These include: the dimensional analysis interface (DAI), the light pen and light pen interface (LPI) and the analog-digital (A/D 
and D / A) converters. Certain peripherals are shared by both systems, permitting easy communication between them. 

system,22 which, although real-time operation appears 
possible, suffers the limitation of having to depend on 
an expensive video magnetic disc and of making only 
area, length and one left ventricular width available as 
data. The third15 uses a light pen similar to that de
scribed here, but employs a scan converter and storage 
oscilloscope instead of a magnetic disc recorder for re
freshing the display, and is less flexible in use. 

THE TELEVISION/COMPUTER SYSTEM 

The system we have designed (Figure 1) is based 
upon interfacing a television system with a small com
puter. The television system (Table I) (standard 525 
line broadcast equipment), is inexpensive but very 
flexible. We use television as a brightness/voltage, di
mension/time converter for pictures. In addition, 
available television circuits permit a number of useful 

functions, e.g., selecting parts of a picture for examina
tion, changing the quality of a picture, superimposing 
windows or other signals on a picture, recording tele
vised signals, and presenting calculated or plotted data. 

The main features of this work are the interfaces 
which permit the analog signals from the television 
system to be converted into digital format for input to 
the computer and allowing the computer, in turn, to 
communicate with the television system. The interfaces 

TABLE I-The T.V. System 

The main sub-elements of the Television System are: 

1. Monitors (CONRAC, SONY, H/P) 
2. Number and bar generating circuits 
3. Television cameras (SHIBADEN) 
4. Magnetic Tape (SONY 2") 
5. The Vista 1 H 
6. The Video Disc 



TABLE II-The Computer System 

The computer peripherals available to the 4K PDP-SjI are: 

1. Magnetic tape (DEC, TU-55) 
2. 32K Magnetic Disc (DEC, DF-32) 
3. AID, DjA converters, relay drivers, pulse inputs (DEC, 

AXOS) 
4. Oscilloscope display (TEKTRONIX, RM 503) 
5. Teletype (ASR-33) 
6. ISO LPM printer and graphic output terminal (LEIGH, 

ALPHAGRAPHIC) 
7. 4S00 Baud CRT terminal (INFOTON, VISTA 1 H) 
S. Video disc via the AXOS (COLORADO VIDEO, VIDEO 

PLOTTER) 

ensure that the dimension data measured from each 
television line in a picture are identified with that line, 
and are presented to the computer at an acceptable 
rate. 

The computer, a 4K PDP-8/1 (recently upgraded 
to 8K) has available to it a number of standard periph
erals (Table II) for inputting and outputting the data 
and for combining dimension data with other measure
ments during catheterization. 

VIDEO TAPE RECORDER 

EBSJ -<>-g -y 

CINE PROJECTOR 

~~~ 
CINE SCREEN 

Figure 2-A diagram of the cineangiographic system used in 
these studies. The X-ray image of the left ventricle is brightened 
electronically and a 35 mm. cine camera photographs the images 
at 60 frames per second. The image is also relayed via a television 
camera to a television monitor and a video taperecorder. The cine 
film is later projected by a 35 mm. projector onto a screen where 
the left ventricular silhouette can be outlined. If the spatial 
relationships of the various interfaces are kept constant, the only 
variable affecting magnification in the system is the midplane 
of the left ventricle. 

The Television Computer System 457 

Figure 3-Cutouts, and pictures from film or videotape can be 
measured by the DAI. The video signal from these pictures is 
adjusted by means of the camera control and presented to the 
DAI for analysis. A special effects window, which allows the 
manual selection of a portion of the picture for analysis, is mixed 
with the video signal and appears on the monitor. The switching 
waveform from this special effects window is input to the DAI. 
The DAI can feed back the measured image to the monitor and 
transfer the measurements to the computer which can display, 
record or print the dimensions. 

Presently, these measurements are made after the 
films obtained during cardiac catheterization are pro
cessed and returned to the unit. This entails a delay of 
about 24 hours before the catheterization data is avail
able. However,· ultimately our aim is to obtain data 
directly from video tape recordings of the angiogram 
and to play back the results ·into the television system 
during the catheterization.22 ,23 

CARDIAC CATHETERIZATION 

Cardiac catheterization is done by introducing 
catheters (small, 2 mm. O.D., tubes) into the periph
eral arteries or veins and advancing these into the 
heart chambers. The catheters are used to record pres
sure or to inject radio-opaque material to obtain high
contrast serial X-ray pictures of the chambers of the 
heart. In left ventricular function studies, one catheter 
is used for injecting contrast material and one for 
monitoring pressure. The main data obtained from this 
procedure are: (a) sequential films of the left ventricle 
(left ventricular cineangiograms) and (b) the analog 
left ventricular pressure recording. 

In our work the angiograms have been recorded on 
35 mm. cine film at 60 frames per second directly from 
an image intensifier (Figure 2). However, it is also 
possible to process full-size films from a high-speed film 



458 Fall Joint Computer Conference, 1971 

ONE LINE 
OFA TV SCAN 

SPECIAL EFFECTS 
WINDOW 

RIGHT 
EOOE 

t------+-53.5 ~s -+----4 

CLOCK 
OUTPUT 11"""""'111111 

LE TH 

VIDEO VOLTAGE 
FROM ONE TV. LINE 

Figure 4-Schematic diagram showing how measurements are 
obtained from a television picture. When a line of the T.V. scan 
crosses the left edge of a dark image, a fall in the video voltage 
below a Schmitt trigger threshold starts a lOMHz clock, when the 
line crosses the right edge of the image the rise in the video voltage 
stops the clock. The number of clock pulses is proportional to the 
width of the image and the number of television lines crossing the 
image is proportional to its length. The threshold can be adjusted 
to define the edge of the image and a special effects window allows 
manual selection of the area of the picture which contains the 
image to be measured. 

changer for greater detail or 16 mm. cine film of the 
televised X-ray image (kinescope recording) when tele
vision format would be advantageous for presenting 
other data on the frame. The pressure is recorded on 
photosensitive paper in an Electronics for Medicine 
oscillographic recorder, and also directly on film. 

LEFT VENTRICULAR FUNCTION DATA 

Dimension data 

The Dimensional Analysis Interface (DAI) 

Dimensions are measured from 35 mm. cine film pro
jected onto paper by a stop frame projector (Tage 
Arno). A technician outlines the ventricle in each 
frame, draws axes on the outlines, cuts them out and 
puts them one-by-one on a light box where they are 

viewed by a television camera. Alternatively, dimen
~ions may be measured directly from eaQh 35 mm. cine 
frame (Figure 6). The results obtained directly from 
film are less consistent than those obtained from cut
outs. However, with model studies,25 the differences 
between measurements from film and cutouts were not 
significant. 

The television image is input to the Dimensional 
Analysis Interface (DAI). The dimensional analysis 
interface measures the width of the image on each tele
vision line by a threshold technique and (Figure 4) 
makes the width and corresponding line number avail
able to the computer. The way this is done is shown 
in detail in Figures 3-6. Programs calibrate the mea ... 
sured widths and length (proportional to the number of 
television lines crossing the left ventricular image) and 
calculate scaled widths, the area, the length and volume. 
The latter is calculated assuming that the left ventricle 
is circular in latitudinal cross-section.26 The raw data 
is output on paper or magnetic tape (Figure 7). The 
tape record is later processed by programs which com
pute wall tension, stress, velocity and plot any selected 
dimension data. 

VIDEO 

COMPUTER READY • 

FIELD DRIVE 

BLANKING • 
SPECIAL EFFECTS 

VIDEO 

REMOTE 
THRESHOLD 

ADJUST 

OUTPUT 

GATES C 

AND 0 
M 

LEVEL P 
U 

CON- T, 
E 

VERTERS R 

Figure 5-Schematic diagram of the DAI. Voltage transitions 
in the video signal turn on or off a Schmitt trigger which has an 
adjustable threshold. The output of the trigger is gated with the 
signals from the computer, with the television FIELD drive and 
BLANKING signals, and with the switching waveform from a 
SPECIAL EFFECTS generator. When these input conditions 
are satisfied, the time the trigger is on for each television line is 
measured by the number of clock pulses accumulated in a "width" 
register and is fed back to the television monitor as a bright line 
(Figure 6). The line number is recorded in a second register. At 
the end of each line during which the clock was on, the output 
control transfers the width and line registers to their respective 
buffers and indicates to the computer that it is ready for a 
TRANSFER REQUEST. When a TRANSFER REQUEST is 
received by the output control, the contents of the buffers are 
copied into the computer accumulator through a series of output 
gates and level converters. 



The Television Computer System 459 

Figure 6-Cutout (top) and film (bottom) television images (left) along with a representative video waveform (center) and the feed
back images from the DAI (right). The "window" surrounds both the television and feedback images. The video waveform is from the 
brightened line that crosses the upper part of the images. The video waveform of the cutouts has sharp edges, high contrast and is uniform, 
whereas that of the film has a diffuse edge, lower contrast and is not uniform. The result is that the measurement of the cutout is much 
more accurate and objective than that of film and that small changes in the threshold of the trigger will alter the measured size of the 
film image but will have little effect on the measured size of the cutout. 

The light pen and light pen interface (LPI) 

Because obtaining cutouts for use by the dimensional 
analysis interface is tedious and time consuming, the 
light pen and light pen interface were developed to 
input the left ventricular border directly to the com
puter and to further reduce the time involved in pro
cessing dimension data. With the light pen, the image 
of the left ventricle displayed on a television monitor 
from 35 mm. film or video tape, is outlined manually, 
the coordinates of the border being input by the inter
face directly to the computer. This system is illustrated 
in detail in Figures 8-10. Two monitors are used in 
practice, one to allow viewing of the picture with ade
quate contrast, the other for use as a "tablet". All the 
operator needs to do is advance the film frame he 

wishes to process, outline the border as he recognizes it 
by eye, and indicate to the computer that the border 
is complete. The video disc constantly refreshes the 
track of the light pen and keys this into the picture the 
operator is viewing. The computer is interrupted 60 
times per second to accept the X and Y coordinate of 
the position of the light pen. Multiple terminals are 
thus easily accommodated even by a small computer. 

A nalog signals: pressure 

The trace Dlarker 

When first using the dimensional analysis interface 
(DAI) to process cutouts, pressures were obtained from 



460 Fall Joint Computer Conference, 1971 

VOlZ 

OUTPUT TO DISPLAY 

PUNCH OR OR 

MAG TAPE PRINT 

WVOl 

RAW 
DATA 

CALCULATE 
DIMENSIONS 

PRINT 

RAW 
DATA 

CALC~LATE 

PRINT 
CALIBRATION 

FACTORS 

Figure 7-These are flow charts of two programs: VOLZ which 
calculates the dimensions of images and WVOL which calculates 
the calibration factors. The latter can be run in a repetitive mode 
to check the operation of the system and detect electronic faults. 
Because of the high data rates, both VOLZ and WVOL simply 
store the measured widths and their corresponding line numbers 
in assigned memory areas until the buffers are full. Thus, several 
scans of the same image are available. Checks are done to ensure 
that no lines were missed and that each discrete image is chosen 
from the several scans stored in memory. This is done by checking 
for sequential line numbers. 

the oscillographic tracings on which the time of occur
rence of each cine frame was marked (Figure 11). A 
line was drawn by hand from each mark to the left 
ventricular pressure tracing and the pressures read off, 
calibrated and tabulated by hand. This method of ob
taining instantaneous pressures was used on 80 cases 
in conjunction with the DAI and cutouts. It is tedious 
and involves many possible inaccuracies. In particular, 
there is the possibility of losing the time correlation 
between the cine frames and the pressure tracing. 

To ensure correlation between the film frames and 
the instantaneous left ventricular pressure it is neces
sary to guarantee that neither the oscillographic paper 
nor the film has stopped. Also, frames and trace 
marker pulses must be counted accurately until the 
heart cycle of interest is reached. To assure us of the 

HORIZONTAL VERTICAL 
CO-ORDINATES 

COMPUTER 

00 
FILM 

Figure 8-The track of the light pen placed against a monitor 
displaying a blank, bright raster (monitor ~ 1) can be recorded by 
the video disc. This track may be keyed (SEG KEY) into the 
output of a television camera which is viewing a . cine film 
(monitor ~ 2), permitting an operator to outline areas of interest 
in the picture viewed by the television camera. Simultaneously, 
the digital horizontal and vertical coordinates of the position of the 
light pen can be output to the computer by the light pen interface. 

FIELD --..---+----'--'="-=="------1 

LPP's 

BLANKING~>-------<>_______t 

Figure 9-Schematic diagram of the light pen interface (LPI). 
The FIELD drive pulse clears the HCR (Horizontal Coordinate 
Register) and the VCR (Vertical Coordinate Register) and 
provides input conditions to the CLOCK GATE and the 
INHIBIT. During a television line the BLANKING signal 
provides a condition to the INHIBIT. At the beginning of each 
line the BLANKING adds a count to the VCR if the VCR GATE 
is not inhibited and starts the clock if the CLOCK GATE is 
not inhibited. The output of the clock is recorded in the HCR. 
If a light pen pulse (LPP) does not occUr before the end of a line, 
the BLANKING clears the HCR through the LINE CLEAR 
GATE. If an LPP occurs during a line, a Schmitt trigger (ST) 
turns the INHIBIT on. The latter INHIBITS the VCR gate, 
the LINE CLEAR GATE and the CLOCK GATE effectively 
freezing the contents of the HCR and VCR. The INHIBIT also 
provides a signal to the output control indicating to the computer 
that the contents of the HCR and VCR are available for transfer. 



The Television Computer System 461 

Figure lO-The track of the light pen on a blank, bright raster (top, right). This track has been keyed into a picture of a left 
ventricular cineangiogram (bottom left) and imaged by a television camera onto a second monitor (top left). By using the bright, blank 
raster as the drawing tablet and by following the border as it appears on the picture, the operator has been able to outline the left 
ventricular silhouette (bottom right) with the recorded track. 

simultaneity of the two records, a second trace marker 
was added which has every tenth mark accentuated 
and which uses this accentuated mark to place a bright 
dot 011 every tenth film frame. In this way the number 
of errors due either to stopped recordings or counting 
mistakes has been greatly reduced. 

The fraIne :marker 

Another way of removing the correlation and frame 
counting problems is to place the pressure directly on 
the film frame and number the frames. For ease and 
flexibility this was done by keying the analog pressure 



462 Fall Joint Computer Conference, 1971 

\J \J 
, A 

Figure ll-Pressure is recorded using a Statham pressure 
gauge and displayed on a channel of the Electronics for Medicine 
oscillographic recorder. Along with the pressure trace there are 
two markers, one recording the output of a photodiode-fluorescent 
screen combination in the pulsed X-ray beam and one redisplaying 
this and accentuating every tenth pulse to facilitate counting up 
to the particular heart cycle desired. Each pulse corresponds to 
the exposure of a cine film frame. A mark also appears on every 
tenth film frame to ensure trace-to-film correlation. 

For manual digitization of the pressures a line is drawn using 
these markers as' a reference, and the point at which the line 
intersects the pressure tracing recorded in units of height. These 
values are later calibrated to true pressure. The change-over to 
semi-automatic digitization involves sampling the recorded 
pressure waveform at the time of occurrence of the peaks on the 
marker channel. 

Figure 12-Block diagram of the numerical pressure display on 
film. The pressure (appearing as a voltage waveform) is filtered to 
remove high frequency noise, and, at a resetable time after the 
beginning of each television field, is sampled and analog-to-digital 
converted to a Binary Coded Decimal number. This number is 
decoded to 7-segment format. The number generating circuits 
then create numbers on the screen by keying a bright pattern into 
the video at the position set by the horizontal and vertical 
position controls. 

signal (displayed as a horizontal bar), the frame num
ber, and the digital value of the pressure into the video 
output of the X-ray system (Figure 12) and kinescope 
recording this on 16 mm. film. Alternatively, an optical 
system is being developed to superimpose these signals 
directly on the 35 mm. cine film. The pressure bar 
may be measured automatically by the DAI. The 
numerical indication of pressure is useful for manual 
keyboard entry into the computer while using the 
LPI. In each case, the computer calculates true pres
sure after being given the appropriate scale factors. 

CONCLUSION 

It should be noted that this system may be useful in 
other areas where dimensional or geometrical analysis 
of pictures is desired, e.g., area measurement of plane 
objects (DAI), or measurement of the shape and size 
of chromosomes (LPI). In addition, analog data pre
sented as bars in a television picture or as televised 
graphs or traces may be handled very easily; in the 
first case automatically through the DAI or, in the 
second, manually through the LPI. The LPI may also 
be used to count and mark objects in a picture. 

Lastly, the entire computer system is available as a 
general purpose laboratory data acquisition and pro
cessing system. We have used it for regional myocardial 
blood flow measurements, for the processing of Xenon 
washout curves from the lungs, for statistical analysis, 
for plotting, for digitizing selected television lines and 
for the analog-to-digital conversion of electrocardio
grams. 

Using the television/computer system we have pro
cessed, in a 372 month experimental run, the pressures 
and dimension data from one complete cardiac cycle 
(60-100 frames) for each of 80 patients. Other routine 
studies are under way on both normal left ventricles 
and on pre':' and post-operative left ventricular func
tion. The Cardiovascular Unit at Toronto General 

Figure 13-Pictures of a television monitor with the pressure 
bar and the numerical display mixed with the X-ray video. The 
number on the left in each picture is the frame number, the one on 
the right is the numerical value of the pressure. Two different 
frames have been simulated to show how the display would look 
for two different pressures. 



Figure 14A-Mrs. M's ventricle exhibits very poor contraction, 
a more rounded shape (more spherical than cylindrical) and 
relatively no change in the long axis length or widths perpendicular 
to this axis. 

The Television Computer System 463 

Figure 14B-Mr. T's ventricle has excellent left ventricular 
contraction, an elongated shape (more cylindrical than spherical) 
and major changes in the long axis and widths. 

Figures 14A and 14B-Geometry. Four frames from a left ventricular cineangiogram are shown, one at the end (end-systole) and one 
at the start (end-diastole) of the cardiac contraction cycle and two intermediate. 

Hospital averages 6 investigations per day. We have 
thus been able to process roughly 20 percent of the 
cases available at the Unit. Using the hand techrriques 
for measuring volume, we would have been able to 
process (obtaining volumes only) less than 5 percent 
of the available cases. It is projected that we will be 
able to process 50-75 percent of the available cases with 
the total implementation of the light pen interface and 
the numerical pressure indication system. This increase 
can be achieved without the addition of any staff, and 
with no additional expenditures on hardware. Further
more, the system will be capable of providing more ad
vanced information to the clinical staff than is currently 
available. 

RESULTS 

To illustrate the kind of information generated by 
the system the results of studies done on 2 patients, 

one with very poor left ventricular function and one 
with excellent left ventricular function, are shown in 
Figures 14-19. Figure 14 shows that the poorly con
tracting ventricle exhibits little change in all dimen
sions (width, length and area), whereas the normal 
ventricle, shows marked reduction in its dimensions. 
Figure 15 illustrates that the left ventricular widths 
are larger and show little change from the start to the 
end of contraction in the poor ventricle compared to 
the normally contracting ventricle. Similarly, in Figure 
16, the poor ventricle's volumes are larger, the rise 
time slower, and variation smaller in contrast to the 
normal left ventricle. The pressures (Figure 17) show 
a slower rise time and a higher minimum pressure in the 
poor ventricle compared to the good one. The pressure
volume correlation shown in Figure 18 demonstrates 
that the stroke work (i.e., the work done in ejecting 
blood) is much smaller in the poorly contracting ven
tricle, that this work is done at a higher pressure in a 



464 Fall Joint Computer Conference, 1971 

TIME(MTHS Of THE SEC) 

Figure 15A-It should be noted in Mrs. M's width plots, that 
the values are large, that there is little change from end-systole 
(small widths) to end-diastole (large widths), and that the rise 
times are slow. The width at the base of the heart (the top, 
width 1) shows relatively better contraction compared to the 
other two widths. Width 3 (at the apex) is out of phase with 
number 1. These findings are in keeping with the visual findings 
of a lack of contraction in this area. 

1 

-
: .... 

, i.' 
i> 

,'.' 
.. 

:,'. ,> 
'~ 1 

.. '. 
, . 

t~ , 
I'· I 

:~ .. ~~,.". , 
~"'iV '''q 

4 i: ~ .: ~ " .' .~r~-I 
.. ' : \. '\11' Tf 

,:.'. 1 .',' \~ I--'f 
r , v ...." I l':: I , I' 

V~ 
A i I·' 1 

·f .~. 
... '. ,"' . ." 1 

.' v 1-1 
l', :, \' I. ' 

2 
!V r \if\I'I .. <:" iM irr"" 

., 

1 

... 
I' .. I:" ... i ,'.,. I'''''··· 

'. '. K'~ ~iD 
I ,. ," ',.' ... ,. , 

3 Iliillii 
., 

. , .. ,. .... , .. , . .. ,. 
... : 

1', :' I"" ,., il :' 
.' i 

Ii! .. : : i..' ' .' i 
0 5 IS lS 40 4S 5 

TIME ( M THS Of THE SEC) 

Figure 15B-In Mr. T's width plots, the marked change in 
widths is apparent. The rise times are fast, indicating vigorous 
contraction. All the traces are roughly in phase, indicating that 
BIll areas are contracting together. 

Figures 15A and 15B-Width plots. The plot of three widths from the left ventricle at 7.4:', 72, and % of the way along the long axis. 

larger chamber, and that little blood is ejected. This 
means that the poor ventricle has a mechanical disad
vantage relative to the normal ventricle. Finally, the 
wall tension (Figure 19) starts higher, rises more 
slowly, and remains higher longer in the poor ventricle 
compared to the good one, indicating that the poor 
ventricle uses more energy to do less stroke work. 

A ccuracy in these studies 

The accuracy of the measurements of the left ven
tricle is most affected by picture quality, e.g., if the 
border of the left ventricle is blurred, the position of 
the edge cannot be precisely determined. Various arbi
trary criteria may then be used to determine the edge 
automatically and each will produce different measure
ments of the size of the left ventricle. For this reason, 
we have chosen to rely on the eye to choose the border. 
The eye is superior to the machine in recognizing the 
boundary since it is very sensitive to small changes in 
contrast and since it uses the whole picture to assist in 

judging the border. This is put to use in the LPI and 
in the making of cutouts or the selection of the thresh-
old when using the DAI. J 

The DAI, when measuring films and cutouts from 
films of model ventricles, was generally within five per
cent of the true volume of the modeJ.25 In routine 
X-ray films, however, the measured size of the ventricle 
is very dependent on the threshold chosen. In these 
cases, the eye must be used to judge the position of 
the border. 

But, even the eye may find it difficult to choose a 
border, since the border may be very unsharp or ir
regular due to poor mixing of the radio-opaque dye and 
the non-uniformities of the wall itself. Some of these 
problems may be resolved by better injections, im
proved picture quality, more understanding of the 
attenuation of the X-rays by the contrasted heart, and 
more knowledge of the behavior of the left ventricular 
wall irregularities (trabeculae carneae and papillary 
muscles) during the heart cycle. Work needs to be 
done in all of these areas to improve the accuracy and 
meaning of the results obtained. This is particularly 



The Television Computer System 465 

. ,. i 1 Ii I 
i . 

!~ lllilllili " 

! ' , 

40 45 
TIME( 64THS OF THE SEC) 

1 I: 

55 60 65 

Figure 16-The volume curves. It should be y.oted that these curves are displayed on one sheet for convenience only and that they 
are not in phase, since the two hearts are beating at different rates. 

Mrs. M's ( ~ 1) ventricular volumes are large and there is little change in volume during contraction. The rate of change of volume 
is slow and the usual characteristic features of volume changes during a heart cycle are not evident. 

In Mr. T's (~2) curve there is a large change in volume with a good rise time. Although noisy, the curve seems to show a rapid-filling 
phase (frames 15-20), a reduced-filling phase (frames 20-27), atrial systole (the contribution of the contraction of the atrium) (frames 
36-43) and an ejection phase (frames 43-60). These features are not apparent in Mrs. M's ventricular volume plot. 

110 

100 

o 

Figure 17-Pressure plots. These are the pressure tracings for the tW{) ventricles. The curves are not in phase. The features that are 
.mportant are: Mrs. M's peak pressure is lower than that of Mr. T, whereas Mr. T'~ minimum pressure is lower than that of Mrs. M. 
~he .higher minimum .(di~to.lic) pressure in Mrs. M's ventricle is typical of a large, dilated, poorly contracting ventricle. Mrs. M's pressure 
~lse IS more gradual, mdlCatmg a more poorly contracting ventricle than Mr. T. 



466 Fall Joint Computer Conference, 1971 

--..... L.Y. INJ. 

P 

I. : MRS. M. 
s 

170 ~ 
R 
E 

160 (_HG) 

ISO 

140 

IJO 

I» 

110 AC 

I. 

90 

• 
70 

60 

so 

40 

JO 

11 . 1 . __ !"' ______ ; 

i i 
. -;--··'-·i 

o _ 1_1. _.: " i 1 
; I i . __ ... ; ••.. __ ._, __ "_ .. -1 

I. 110 III IJO 140 ISO 160 no I. 190 _ 210 no no 140 

VOLUME (eM 3 ) 

Figure 18A-The main features of Mrs. M's loop are that its 
area, which is proportional to the stroke work, is small. The 
volume' of blood ejected relative to the volume of the cavity is 
small. Moreover, the centroid of the loop is shifted upward 
(high pressure) and to the right (high volume) compared to a 
normal ventricle. 

\ 
\ 
\ 
\ 

; 
. , 

. : ,. 
" 

, 

Figure 18B-Mr. T's plot is characterized by a high stroke work 
(area enclosed by the loop) and a shift in the centroid of the loop 
downward and to the left as compared to Mrs. M. 

Figures 18A and 18B-Pressure-volume plots. Smoothed pressure-volume plots for Mrs. M and Mr. T. 

true now, as we would like to measure wall thickness 
accurately. 

Other errors in left ventricular measurements arise 
from changes in the X-ray system magnification (image 
intensifier), spatial distortion by the intensifier, film 
shrinkage, human error in outlining and cutting out the 
paper for the cutouts, the spatial orientation of the left 
ventricle when it is filmed, and the orientation of the 
cutout while being measured. Studies of these errors 
are in progress and techniques will be refined to reduce 
them. 

FUTURE OBJECTIVES 

The light pen and light pen interface are becoming 
operational on a routine basis. This speeds the process
ing time, allows more cycles per patient to be done, and 

provides more information per frame (the coordinates 
of the border are available and hence shape may be 
measured). With the ability to process a larger number 
of heart cycles per patient, we should be able to study 
the stressing effects of drugs and other inotropic agents, 
such as pacing, within a given angiogram or by repeat 
angiograms. This should provide further information 
about the functional state of the left ventricle. 

Meanwhile, a systematic study of the X-ray system 
and other factors affecting border recognition is being 
pursued. This should eventually provide us with better 
quality pictures. 

A number of projects are under way in the develop
ment of the television/computer system: 

(1) We will attempt to improve the automated sys
tem (DAI) by using more reliable border recog-



nition criteria (presently merely voltage thresh
old sensed by a Schmitt Trigger) and also by 
enhancing the image presented to it, finally per
haps carrying out rapid measurements on video
tape recordings and displaying the results during 
the catheterization. 

(2) We are planning a more efficient semi-automated 
system involving improvements to the LPI and 
the use of the DAI in conjunction with it; for 
exaniple, the LPI can be used to delineate areas 
to be quickly and automatically measured by 
the DAI (the left atrium and aorta may be cut 
off using the LPI, and the left ventricle mea
sured by the DAI) . 

(3) More use of automation in the handling of ana
log data is being attempted. 

(4) Weare considering the development of a video
densitometric system to provide two important 
measurements: (a) of the blood How, and (b) 

I 1 1 4 5 6 7 • 9 10 " 11 13 14 15 16 17 
FRAME OF SYSTOlE 

Figure 19-Wall tension plots. These plots of the wall tension 
of each ventricle are not in phase. The tension plots show Mrs. M 
starting at a higher tension than Mr. T, rising more slowly, 
peaking higher and later, and remaining higher longer than Mr. T. 
Mrs. M's curve is characteristic of a dilated poorly functioning 
left ventricle, and Mr. T's of a fairly normal ventricle. 

The Television Computer System 467 

of the depth of opacified objects (assuming that 
the density of an image is due to the depth of 
absorbing material in the path of the X-rays) . 

Presently, the system is being assessed as to its use
fulness in the clinical and biophysical studies now being 
carried out.27 It has, however, already been valuable in 
providing clinical data in the Cardiovascular Unit and 
may have many applications for measurements on 
pictures and analog signals elsewhere within the hospi
tal, in research, and in industry. 

ACKNOWLEDGMENTS 

The authors are grateful to the technical staff of the 
Department of Medical Engineering and Biophysics, 
particularly to Mr. Paul Mendler for his work on the 
DAI and LPI, to Mr. Roy Liggins for his excellent 
technical assistance, to Mr. Donald Mills for construct
ing the DAI, to Mr. Robert Kubay for building the 
trace marker circuits, to Mr. Robert Growcock for the 
digital number display construction, and to Mr. Franz 
Schuh and Mr. Louis Rostocker for their mechanical 
assistance. In addition, the authors would like to ex
press their appreciation to Mr. Eric Covington for his 
contribution to the programming, to Mrs. Yasna Polic, 
1\Irs. Ulla Nordin and the Department of Art as Ap
plied to Medicine for the diagrams, to Mr. Barry 
Bassett for the photographs in Figures 6, 10 and 13, to 
the Department of Medical Photography, Toronto 
General Hospital for photographing the figures, and to 
Miss Vivian Martin for her excellent secretarial assist
ance. This work was supported by the Ontario Heart 
Foundation and Toronto General Hospital. 

REFERENCES 

1 A BURTON 
The importance of the size and shape of the heart 
Vol 54 No 6 p 8011957 

2 H T DODGE W A BAXLEY 
Left ventricular volume and mass and their significance in 
heart disease 
The American Journal of Cardiology Vol 23 p 528 
April 1969 

3 E H SONNENBLICK W W PARMLEY 
C W URSCHEL 
The contractile state of the heart as expressed by the 
force-velocity relations 
The American Journal of Cardiology Vol 23 p 488 
April 1969 

4 I L BUNNELL C GRANT D C GREENE 
Left ventricular function derived from the pressure-volume 
diagram 
American Journal of Cardiology Vol 39 p 881 December 
1965 



468 Fall Joint Computer Conference, 1971 

5 J H GAULT J ROSS E BRAUNWALD 
Contractile state of the left ventricle in man 
Circulation Research Vol XXII p 451 April 1968 

6 H L FALSETTI R E MATES C GRANT 
D C GREENE I L BUNNELL 
Left ventricular wall stress calculated from one-plane 
cineangiography 
Circulation Research Vol XXVI p 71 January 1970 

7 A Y KWONG P M RAUTAHARJU 
Stress distn'bution within the left ventricular wall 
approximated as a thick ellipsoidal shell 
American Heart Journal Vol 75 No 5 p 649 May 1968 

8 D D STREETER R N VAISHNAV D J PATEL 
H M SPOTNITZ J ROSS E H SONNENBLICK 
Stress distribution in the canine left ventricle during 
diastole and systole 
Biophysical Journal VollO p 345 1970 

9 R NATHAN 
Digital video data handling 
Technical Report No 32-877 Jet Propulsion Laboratory 
California Institute of Technology January 5 1966 

10 D A WINTER B G TRENHOLME D MYMIN 
E L MYMIN 
Computer processing of videoangiographic images noise 
reduction image enhancement and data extraction 
Canadian Cardiovascular Society Conference October 
15-17 1970 

11 C K CHOW T KANEKO 
Boundary detection of radiographic images by a threshold 
method 
Unpublished manuscript received from the IBM 
Corporation Thomas J Watson Research Center 
December 1970 

12 R J GOERKE E CARLSSON 
Calculation of right and left cardiac ventricular volumes 
Investigative Radiology Vol 2 p 360 September-October 
1967 

13 M E SANMARCO S H BARTLE 
Measurement of left ventricular volume in the canine heart 
by biplane angiocardiography: accuracy of the method 
using different model analogies 
Circulation Research Vol XIV p 11 1966 

14 A G TSAKIRIS D E DONALD R E STURM 
E H WOOD 
Volume ejection fraction and internal dimensions of left 
ventricle determined by biplane videometry 
Federation Proceedings Vol 28 No 4 p 1358 1969 

15 P H HEINTZEN V MALERCYZCK 
J PILARCZYCK K W SCHEEL 
A new method for the determination of left ventricular 
volume by use of automatic video datfJ, processing 
Abstract American Heart Association 43rd Scientific 
Sessions 24th Annual Meeting 1970 

16 M R GARDNER H R WARNER 
Dynamic aortic diameter measurement in vivo 
Computers and Biomedical Research 1 p 50 1967 

17 C B CHAPMAN 0 BAKER J H MITCHELL 
R G COLLIER 
Experiences with a cinefluorographic method for measuring 
ventricular volume 
The American Journal of Cardiology 18 p 25 1966 

18 A JARLOV T MYGIND CRISTIANSEN 
Left ventricular volume and cardiac output of the canine 
heart 
Medical and Biological Engineering Vol 8 No 3 p 221 1970 

19 A H GOTT 
Cooperative heart study cardiac volume analysis 
SPIE Journal Vol 8 p 233 1970 

20 H T DODGE SANDLER D W BALLEW 
J D LORD JR 
The use of biplane angiocardiography for the measurement 
of left ventricular volume in man 
American Heart Journal 60 p 762 1960 

21 D DAVENPORT G J CULLER JOB GREAVER 
R B FORVAREL W G HANEL 
The investigation of the behaviour of microorganisms by 
computerized television 
IEEE Transactions on Biomedical Engineering Vol 
BME-17 No 3 p 2301970 

22 M L MARCUS W SCHUETTE W WHITEHOUSE 
J BAILEY D L GLANCY S E EPSTEIN 
A completely automated video tracing technique for the 
determination of dynamic changes in ventricular volume 
Abstract American Heart Association 43rd Scientific 
Sessions 24th Annual Meeting 1970 

23 H D COVVEY 
Measuring the human heart with a real time computing 
system 
Data Processing Magazine p 27 May 1970 

24 H D COVVEY A G ADELMAN 
C H FELDERHOF E D WIGLE K W TAYLOR 
The television/computer dimensional analysis interface 
Submitted for publication March 1971 

25 C H FELDERHOF A G ADELMAN 
H D COVVEY E D WIGLE K W TAYLOR 
Unpublished Data 

26 H D COVVEY 
The measurement of left ventricular volumes from T V with 
a PDP-8/I 
The proceedings of the Digital Equipment Computer 
Users Society Atlantic City New Jersey p 255 Spring 1970 

27 H D COVVEY 
A television/computer system for the rapid processing of 
x-ray pictures and analog signals in studies of the left 
ventricle 
Master of Science Thesis University of Toronto 
January 1971 



Cost benefits analysis in the design 
and evaluation of information systems 

by 1. LEARMAN 

Medical Systems Technical Services Inc. 
Rolling Hills, California 

INTRODUCTION 

In June of 1969, a report! was prepared for the Federal 
Hospital Council by the staff of the Health Care 
Technology Program of the National Center for Health 
Services Research and Development. The report en
titled Summary Report on Hospital Information Systems, 
has as primary objectives-"to give a broad view of 
the components of automated information systems, to 
briefly evaluate the cost and effectiveness of such sys
tems, and to estimate their future importance." 

In meeting the first and last objectives, the report is 
quite good and should be read by all who are interested 
in the field. It is in the areas of cost and effectiveness 
that the report is weak. This in no way should be con
sidered a reflection upon the authors, who fully recog
nize the paucity of data in these matters. In fact, the 
authors wisely address, first the moneys being spent 
on hospital information systems, and then indepen
dently, their general performance and acceptance. In
deed, among the quite excellently thought out con
clusions is the following: 

"The discrepancy which exists between the apparent 
success and enthusiasm for the use of the computer 
(sic) in the business and chemistry applications as 
opposed to the patient management areas suggest 
that the need for and utility of the computer were 
more easily recognized, which resulted in a high 
degree of motivation to see these projects through 
to a successful operational stage. It might then be 
assumed that the lack of success in other areas has 
been a result of an inability qn the part of our hospi
tals to precisely define either the need or practical 
utility that the computer can serve in other patient 
management areas. We would be willing to speculate 
that until such time as other medical services, inde
pendent of external pressures, are capable of first 
recognizing and then demanding more efficient utili-

469 

zation of their time and services, attempts to auto
mate these activities will continue to fail." 

It is the author's judgment that, concomitant with 
the increased recognition and demand of other medical 
specialties for computer applications is the need for 
reliable and acceptable methods of assessing the prac
ticality and effectiveness of those applications. The 
paper attempts to address such methods of assessment. 
Specifically, we will discuss absolute cost effectiveness
the measure of worth of applying technology to the 
enhanced transfer and processing of information. The 
segments of technology include analysis, design, im
plementation, operation and maintenance. These are 
measured in the utilization of available resources em
ployed to each technology segment-people, equipment, 
material and facilities. 

The paper will not address relative cost effective
ness-the optimization of resource selection. For such 
discussions, the reader is referred to a paper2 on the 
subject published by the author. In what follows, a 
case will be presented for the establishment of absolute 
cost effectiveness parameters during the planning and 
design of a hospital information system. 

THE ANALYSIS OF COST EFFECTIVENESS 
IN DESIGN 

The steps in cost effectiveness analyses take the 
following general sequence: 

• Selection of Domains of Analysis 
• Analysis of "Current" Operations 
• Determination of Absolute Cost Effectiveness 
• Relative Cost Effectiveness 
• Refinement of Absolute Cost Effectiveness 

Note the relative cost effectiveness (optimization of 



470 Fall Joint Computer Conference, 1971 

MANAGEMENT 
SYSTEMS 

Student Records 

Resource Allocation 

Personnel 

Payroll 
Administration 

MAJOR AREAS 

HOSPITAL 

Nursing Units 

Surgery 

Pharmacy 

Radiology 
Clinical 

INSTRUCTIONAL 
SYSTEMS 

Computer Aided 
Instruction 

Computer Managed 
Instruction 

Availability of 
Instructional 
Data 

Laboratories 
Accounts Receivable Medical and Dental 

Records 
Accounts Payable 
Purchasing 

Dietary 
Hospital Business 

Office 
Insurance Office 
Admitting and 

Patient Logistics 

Figure 1-Cost analysis, goal-hard reductions in required resources 

resources) is considered in the context of this paper as 
a refinement of the measure of worth. In the evaluation 
of cost effectiveness, this step would not be available. 

Domain of analysis 

In order to attain a valid measure of worth, it is 
essential to compare old apples to new apples or manual 
oranges to automated oranges. We call the sum of all 

ADMITTING CLERK 
PROCESS PRESENT 1974 

Reservations 3 3.6 
Bed Availability Check .33 .33 
Nursing Unit Check .33 .33 
Bed Control Card .33 .33 
Type Daily Admissions List .5 .6 
Type Transfer List .15 .18 
Notify Surgery and Nursing Units .15 .15 

of Room Change 
Check Discharges, Pull and Mark 1 1.2 

for Information Desk 
Emergency Admissions .25 .3 
Assign Bed and Notify Units 1 1.2 
Prepare Pre-Admit Form .5 .6 
Handle Patient Transfer Requests 1 1.2 
Call for Pre-Admit Information 10 12 
Search for Pre-Admit Information 5 6 
Type Admission Form 10 12 

TOTALS 33.55 40.02 
NUMBER OF PERSONNEL 4 5 

Figure 2-Result of cost analysis, current costs admissions and 
reservations information handling, current system in hours 
per day 

valid areas of measurement the domain of analysis. 
The criteria for selecting valid areas for current (man
ual, automated, or modeled) and new (improved 
manual or automated) information handling applica
tions are as follows: 

First, each application must have a common, de
finable entry and output. Second, the designed change 
must have some implication to benefits. Third, the 
application in the current system must have a func
tional equivalence relationship to the new system. 

Some examples may be in order: 

Application: Laboratory Order to the Lab 
Criterion I-Order entered at ward 1, order output 
at Lab 
Criterion 2-Faster turnaround time, reduce tran
scription, error. 
Criterion 3-The current system requires the physi
cian to write the order, the nurse to transcribe it, 
the ward clerk to send it through the tube, the secre
tary to log it, separate it, and send it to the proper 
department(s) . 
The new system may require the physician to enter 
the order directly into a device. The nurse and the 
proper laboratory department(s) receive it via out
put devices. But the function was equivalent. This 
would identify a valid area for our domain of analysis. 

PROCESS 

Reservations 
Bed Check 
Nursing Unit Check 
Bed Control Card 
Type Daily Admission List 
Transfer List 
Notify of Room Change 
Check Discharges for Information 

Desk 
Emergency Admissions 
Assign Bed 
Prepare Pre-Admit Form 
Handle Patient Transfer Requests 
Call for Pre-Admit Information 
Search for Pre-Admit Information 
Enter Admission Data 
Set Up Admit Package 
Notify of Patient Arrival 
Indicate if Admit Lab. 

TOTAL 
NUMBER OF PEOPLE 

ADMITTING CLERK 
1974 

1 
.1 

o 
o 
o 
o 
o 
o 

5 

.1 

.33 

.5 

.5 

.5 
10 
3 

.33 

.33 

21.69 
3 

Figure 3-Result of cost analysis-New system, admissions 
and patient logistics information system, requirements in hours 
per day 



Admissions Clerks 
1970 

4 
1971 1972 

4 4 

CURRENT SYSTEM 

1973 1974 1975 
5 5 .5 

Cost Benefits Analysis 471 

1976 1977 1978 1979 
5 6 6 6 

ADMISSIONS AND PATIENT LOGISTICS INFORMATION SYSTEM 
Admissions Clerks 

Admissions Clerks 
Annual Reductions 
Monthly Reductions 
5 Year Annual Average 
5 Year Monthly Average 
10 Year Annual Average 
10 Year Monthly Average 

4 

o 
o 
o 

$9,010 
750 

14,280 
1,175 

3 3 

1 1 
$7,000 $7,350 

585 615 

3 3 3 3 3 4 4 
DIFFERENCE TABLES 

2 2 2 2 3 2 2 
$15,000 $15,700 $16,500 $17,300 $26,000 $18,500 $19,500 

1,250 1,310 1,375 1,650 2,330 1,560 1,625 

Figure 4-Results of cost analysis, admissions and reservations cost comparisons 

Figure 1 lists the major functional areas in a teaching 
hospital where significant numbers of such areas of 
analysis have been found. 

Cost analysis-Quantitative benefits 

Hard savings 

For each area in our domain of analysis, a cost 
analysis is performed. The sequence is as follows: 

• Selection of Applicable Procedures 
• Determination of "Current" Resource Require-

ments \ 
• Statement of Growth Assumptions 
• Extrapolation of Resource Requirements to Oper

ational Era 
• Determination of "System" Resource Require

ments 
• Comparison of Extrapolated "Current" to 

"System" 

Each procedure in the area is defined together with 
the current required resources to accomplish the pro
cedure over an operational duration (minute, hour, 
shift, day, week, month). An extrapolation of required 
hospital resources is then determined for the same 
operational time frame as the new system (2 years 
hence, 5 years hence, etc.) . 

The new information system design will point to a 
different set of resources to accomplish the tasks. 
During this phase of the analysis, no attempt is made 
to include development and operational costs for the 
information system; only those differences in carrying 
out the tasks in the domain are compared. 

The cost entities inCluded in these analyses are per
sonnel salaries, overhead and fringe benefits; disposable 
material such as forms or cards; equipment capital 
costs, rentals, and maintenance; facilities requirements 

.. 

for offices, storage, equipment, etc. These cost entities 
must be established for both the extrapolated "current" 
operations as well as the "system" operations. 

Figures 2, 3 and 4 demonstrate the results of such 
an analysis for admitting clerks. 

Figure 2 demonstrates the procedures identified for 
analysis and the present and extrapolated labor. 

Figure 3 demonstrates the same procedures but 
with the labor resources required in the new system. 
Figure 4 compares the two and summarizes the po
tential hard savings. 

We use the term "hard" to describe cost savings 
which can be taken to the bank-reduction in person
nel, material, equipment. In Figure 5, the column 
labeled "Reduction Assumed" (R) includes all such 
savings in costs per full operational month. 

Partial tim.e savings 

The most common source of error found in reviewing 
cost effectiveness analyses, has been in the quantifica
tion of part-time labor savings. It is tempting to sum all 
the minutes and hours of partial time saved and to 
include the total in the quantitative benefits. The error 

Total In- Total Reductions Partial 
formation Potential Assumed Time 

Area Processing Savings (R) Saved (P) 

Business Office $ 20,050 $ 11,785 $ 8,300 $ 3,485 
Admitting 3,650 2,000 1,310 690 
Pharmacy 8,110 5,960 5,500 460 
Laboratory 25,142 12,315 9,700 2,615 
Nursing Units 127,400 85,400 15,000 70,400 
Surgery, 2,990 1,500 1,250 250 
Radiology 3,342 1,928 1,040 888 
Dietary 2,150 1,575 1,200 375 

TOTALS $192,834 $122,463 $43,300 $79,163 

Figure 5-Summary of cost analyses for selected major hospital 
entities, full operating system dollars per month 



472 Fall Joint Computer Conference, 1971 

in doing this is that it implies perfect management
certainly an ideal but never a reality. For it would 
mean that all of the partial times could be used fully 
in performing other functions resulting in equivalent 
benefits. We have found that an administrative effi
ciency factor should be used to weight such potential 
benefits properly. 

Figure 5 shows the relationship among four quantifi
able factors for major areas of a 400 bed hospital. 

"Total Information Processing" are those labor 
dollars spent in the current system within the domains 
of analysis. 

"Total Potential Savings" are all the hours of labor 
dollars saved by the new system. 

"Reductions Assumed" are the savings which we 
have called quantitative benefits (R). 

"Potential Time Saved (P)" are the partial hours 
of labor dollar savings. 

It is the last figure (P) which we will penalize by 
assigning a 33~ percent Administrative Efficiency 
Factor. In other words, for every hour of partial time 
saved, 20 minutes are utilized effectively. Note from 
the figure that the greatest P exists at the Nursing 
Units. 

Intangible benefits 

Perhaps the most difficult role of the analyst is the 
assignment of values to benefits which are not explicitly 
measured in terms of identifiable resources. One can 
simplify the problem monumentally by dividing such 
benefits into two general types: 

• Plausible Quantitative Measures-These can be 
associated with a product of the information flow 
which is in itself measurable. Examples of these 
are benefits which can be measured as factors of 
revenues or costs (improved bed utilization result
ing from more timely and effective bed reservation 
and surgery scheduling systems) . 

• Judgmental Criteria-These are the most difficult 
to measure and are used as supportive (or de
ciding) arguments when all measurable da.ta have 
produced a borderline or negative cost effective
ness picture. Examples include enhanced care of 
high risk patients, availability of processing power 
for research support, etc. 

Several examples of assigning quantitative values to 
intangible benefits are described below 

(1) If increased administrative effectiveness can be 
measured as a percentage of management time, 

that factor of administrative payroll can be 
taken as a benefit. 

(2) Increased bed utilization enhances the effective
ness of patient management. The resulting 
higher census and better scheduling can be 
measured as an increase in hospital revenues. 

(3) The transition to, and the operating environ
ment of, a new system can profoundly effect the 
rate of personnel turnover. The increase or de
crease of such turnover can be measured in 
terms of personnel acquisition costs. 

As implied in the last example, such measurements 
can produce negative results. The Quantitative Benefit 
(Q) is the sum of these measurements (L2 EiXi) and 
is given one-sixth the weight of the hard benefits. 

An equation for cost effectiveness (EjC) 

The analytic expression 

E j C is a function of time based upon the accrual of 
benefits and costs and can be expressed analytically as 
follows: 

EjC = jL B(t)dt 
o C(t) 

(1) 

where B (t) are the accrual of benefits, C (t) are the 
accrual of costs, and L is the life of the system including 
development and implementation. 

The author has used two approximations to this 
equation in performing cost effectiveness analyses. 

Approxhnation # 1 

EjC = (Cav)-l jL B(t)dt 
o 

= (Cav)-l L2 B(t) ~ L2 P(Bmax) (2) 
L L Cav 

where 

B = R + P max + Qmax 
max max 3 6 (3) 

The benefits and costs per month accrue over the 
years of development, implementation, and operation. 
Using Bmax as the fully accrued monthly benefits and 
Cav as the average monthly system costs over L years, 
one can approximate the integral such that 

EjC = L2 P(Bmax) 
L Cav 

where L2 P (4) 

equals the percentages per year of benefits accrued. 



In the example which follows, we have used an L of 
7 years and aLp of 4.5 (made up of .1, .2, A, .8, 
1, 1, 1). 

If 

E/C + L P(Bmax) 
L Cay 

(5) 

is greater than 1, the system is judged as cost effective. 
Examining the end points of this equation is an inter
esting exercise. Should there be no partial time saved 
(P) or qualitative benefits (Q), then the hard benefits 
(R) must exceed the total cost of the new system 
(Cav) over the system lifetime span. Cay includes all 
the costs of all the resources as indicated under Hard 
Savings in the discussion of Cost Analysis-Quantita
tive Benefits. Now let us assume no hard benefits and 
no qualitative benefits. Then the total partial labor 
saved would have to exceed three times the Cay. In our 
example from Figure 5, P equaled approximately 
$80,000. The average monthly cost of the major system 

. was $40,000. Without the other two factors exceeding 
$35,510, the system would not have been judged as 
cost effective since-

3 Cay = $120,000 

P = $80,000 

4.5( 80,000) = ~ = 0429 
7 120,000 21 

4.5(R + Q/6) .571 
7 40,000 > 

R + Q/6 > $35,510 

Then E/C > 1 

Although unlikely, the other extreme case would 
mean there were only qualitative benefits. Using the 
same example, Q would have to exceed $360,000 if 
Rand P were zero, in order for E/C to be greater than 1. 

The actual example turned out the following results: 

4.5 ( 80,000 185,000) 
E/C = 7 (40,000) 43,000+ -3- + 6 

4.5 (108000) 
280,000 ' 

485,000 
280,000 

= 1.73 

The following table indicates the cost effectiveness 

Cost Benefits Analysis 473 

values for our example under varying extremes: 

E/C 

R=O 1.04 

R = 0, P = 0 .64 

R = 0, Q = 0 043 

P=O 1.3 

P = 0, Q = 0 .69 

Q=O 1.12 

These figures indicate that for our example, cost 
effectiveness could not be achieved by considering one 
benefit category only and cost effectiveness could be 
achieved considering any two benefit categories. Ap
proximation # 1 was found to be most useful in deter
mining cost effectiveness of integrated hospital in
formation systems. 

Approximation # 2 

L 

RL P L LP (6) E/CL = - + - + -(QLmax) 
CL CL LCL 

where RL and PL are the cumulative benefits up to 
time L CL are the cumulative costs up to time L, 
QL ma~ are the full qualitative benefits being derived 
at time L, E/CL is the cumulative cost effectiveness 
calculated at time L, and L is an integer year of system 
life such that 0 < L :::; L max. 

Factors of Approximation #2 

RL 
(a) CL 

This is the cost factor; if RL is greater than C L, the 
system actually saves money. If the quality of per
formance is about the same, a system with RL greater 
than CL(RL/CL > 1) would be cost effective. 

L 

PL LP (Q) 
(b) 3CL + L(CL) 6 

This is the quality factor; if it is greater than zero, 
quality of performance will increase; if it is greater 
than one, the system is cost effective even if there are 
no cost savings. 

Example Using Approximation # 2 

For RL, PL and CL we have used real data from an 
actual analysis of a clinical laboratory system. 



474 Fall Joint Computer Conference, 1971 

L 

For L: P we used the following: 

1 

First year, PI .132 L:p = .132 
2 

Second year, P2 .4 L:p = .532 
3 

Third year, P3 .875 L:p = 1.407 
4 

Fourth year, P4 1 L: P = 2.407 
5 

Fifth year, P5 1 L: P = 3.407 
6 

Sixth year, P6 1 L: P = 4.407 
7 

Seventh year, P7 = 1 L: P = 5.407 
s 

Eighth year, Ps 1 L: P = 6.407 
9 

Ninth year, P9 1 L: P = 7.407 

for L we have used 1 through 9 
for Q we have used the following: 

1971 Management Payroll $500,000 
Management Effectiveness Increase .2 

QI = .2(500,000) = $100,000 

1971 Non-Professional Payroll = $2,020,000 
Operational Effectiveness Increase .09 
(accuracy, duplications, etc.) 

Q2 = .09(2,020,000) = $182,000 

280,000 

We have extrapolated Q according to the antici
pated growth of payroll. 

E/C _~ ~ .132 (280) 
1 -100.3 + 3(100.3) + 100.3 6 

=.1+.09+.06 
=.25 

E/C _ 54.8 139.6 ~ (590) 
2 - 243.1 + 3(243.1) +2(243.1) 6 

=.23+.19+1 
=.52 

E/C _ 147 294.8 1.407 (925) 
3 - 406.6 + 3( X 06.6) + 3( X 06.6) 6 

=.32+.24+.17 
=.73 

Figure 6-E/C years 1-3 

Cost effectiveness calculations 

Figures 6 and 7 show the cost effectiveness of the 
system for the first three years of operation. According 
to our definition, if the system had a life span of 3 
years, it would not be considered cost effective. 

In the fourth year, there is marginal cost effective
ness. For life spans of 5 through 8 years, the cost effec
tiveness is good. In the ninth year it becomes excellent. 

Analysis of the factors 

Figure 8 summarizes the factor values which make 
up the total cost effectiveness. 

The R factor, the cost savings, becomes marginally 
cost effective in 1978 and good in 1979. 

This says that the system actually pays for itself in 
real dollar tradeoffs starting with a life span of eight 
years. 

The P and Q factor, the qualitative benefits, do not 
become cost effective through the nine-year life span. 
This says that there must be cost savings for the sys
tem to be cost effective. 

315 432 2.407 (1275) 
E/C4 = 556.1 + 3(556.1) + 4(556.1) 6 

=.56+.26+.23 
=1.05 

441 566 3.407 (1630) 
E/C6 = 695.3 + 3(695.3) + 5(695.3) 6 

=.65+.27+.27 
=1.19 

622 712 4.407 (1805) 
E/C6 = 857.4 + 3(857.4) + 6(857.4) 6 

=.72+.28+.25 
=1.25 

E C _799 ~ 5.407 (2190) 
/ 7 - 901.1 + 3(901.1) +7(901.1) 6 

=.89+.32+.29 
=1.5 

E C _982 ~ 6.407 (2580) 
/ 8 - 939.1 + 3(939.1) + 8(939.1) 6 

= 1.04+.36+.37 
=1.77 

E C _ 1169 ~ 7.407 (2980) 
/ 9 - 962.1 + 3(962.1) +9(962.1) 6 

=1.21+.41+.42 
=2.04 

Figure 7--E/C years 4-9 



P&Q 
YEAR R FACTOR FACTOR E/C 

1 .1 .15 .25 
2 .23 .29 .52 
3 .32 .41 .73 
4 .56 .49 1 .05 marginal 
5 .65 .54 1.19 good 
6 .72 .53 1.25 good 
7 .89 .61 l.5 good 
8 1 .04 marginal . 73 1.77 good 
9 1.21 good .83 2 .04 excellent 

Figure 8-Analysis of E/C factors 

The E / C column adds the two factors for the result
ant cost effectiveness. 

Approximation # 2 has been found to be most useful 
when the system life is not certain or when the accrual 
of benefits are known with more certainty as for a 
specific hospital area. 

The application of judgmental criteria 

Candidly, the relationship between the Cost Effec
tiveness equation and the Judgmental Criteria depends 
very much on the particular institution. In one case, 
the equation will or will not lend support to a hospital 
management and staff already convinced of the de
sirability of an automated information system and its 
potential to patient care and hospital efficiency. 

On the other hand, such judgmental aspects could 
tip the scales in either direction whem E/C approxi
mates 1. 

In any case, the cost effectiveness analysis provides 
the data and the insight for optimal decision making. 

EVALUATION OF SYSTEM E/C 

It is one thing to a priori design a cost effective sys
tem; it is another matter to determine the validity of 
the design by an evaluation of cost effectiveness after 
the system hasbecome operational. In the main body 
of this paper, the author has attempted to present a 
case for the establishment of E / C parameters during 
the design. One of the arguments is to optimize the 
design. Another is to provide management with decision 
making tools. The third argument relates to evaluation. 
Without the data gathering pursuits of the design 
phase, the evaluation would have little with which to 
compare since the former "current" operation would 
have vanished. 

The first step in the evaluation is the updating of 
the domain of analysis. In the great majority of the 

Cost Benefits Analysis 475 

cases this is actually an expansion. Since the design 
phase, new applications will have emerged through 
improved technology or continued enlightenment of 
hospital personnel as to the potential benefits of the 
system. 

The determination of system cost effectiveness 
starts with establishing the criteria for evaluation. They 
include the benefits expected from the design as well as 
unpredicted benefits or negative influences . 

The other major criterion is the actual system cost. 
The determination of system cost will be a matter of 
record. The hospital can establish separate cost codes 
for all information system equipment, personnel, facili
ties, material, etc. 

The determination of benefits will require the same 
kind of analysis performed during the design study on 
the current system. Measurement parameters will 
include: 

• Personnel Time-the effort required to perform 
the activity. 

• Classification of Personnel-the task may be per
formed by different classifications than previously. 

• Transit and Cycle Times-most related to the 
qualitative measurements. 

• Stagnation Points-the new system can have its 
own bottlenecks. 

• Patient Status Factors-average stay, census, etc. 
• Resource Allocations-reductions or increases in 

personnel, equipment, material, etc. 
• Qualitative Assessments-selective survey. 

Essential to the evaluation is the data collection 
methodology a. d the resources utilized for data 
gathering. 

The control data for "current" operations and their 
domain equivalents for "system" operations should be 
gathered by the regular hospital staff. The new system 
will impose a set of unique man-to-man and man-to
machine interactions which will require trained ob
servers. Both the "current" and "system" operations 
will require test and simulation models where data de
scribing the effect of perturbations and contingencies 
can be examined. Finally, acceptance and comfort of 
the new system will require opinion and judgmental 
data collections from patients, practitioners, etc. 

The steps in the evaluation are exactly the same as 
outlined for the Absolute Cost Effectiveness. 

• Cost analysis of operational system. 
• Compare with current (extrapolated) system from 

design study-results in Rand P. 
• Determine qualitative benefits-Q. 



476 Fall Joint Computer Conference, 1971 

• Determine actual costs to develop, operate and 
maintain the system C 8' 

• Select the best approximation and calculate E/C. 
• Acquire judgmental assessments. 

SUMMARY 

The absolute cost effectiveness analyses described in 
this paper result in a set of decision enhancing esti
mates regarding the worth of developing an informa
tion system. Implied in these data are the following 
criteria: 

(a) Experience in hospital operations. 
(b) Cognizance of current and anticipated informa

tion systems with hospital applicability. 
(c) An information system design philosophy and 

plan with associated cost estimates. 
(d) An existing library of departmental data. 

Depending on the extent to which the criteria are 
met, an absolute cost effectiveness analysis and in-

formation plan can be performed in 2 to 4 months. In 
essence, the analysis provides balance sheets. It enables 
hospital management to attain a firmer understanding 
of the potential implications of the technology to the 
institution. It allows decision makers at every level a 
better picture of available design alternatives. And 
finally, it can provide the data to analyze the impact 
of the system during actual operation. In short, if used 
properly, cost effectiveness analysis can help take us 
out of the "pin the tail on the donkey" era of hospital 
information system design and implementation and 
provide the means for judging the impact of the system 
when in full operation. 

REFERENCES 

1 NCHS-RD-69-1 
2 I LEARMAN 

Relative cost effectiveness analysis in the evaluation and 
selection of hospital information systems 
Presented at the Stony Brook Symposium on HSC 
Information Systems March 1970 



Factors to he considered in 
computerizing a cliIlical chemistry 
department of a large city hospital 

by R. MOREY, M. C. ADAMS and E. LAGA 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

INTRODUCTION 

The present biochemical testing facilities at Boston 
City Hospital perform about one million tests per year. 
To handle this workload with present personnel and 
equipment, the facilities must impose certain un
desirable constraints on those who request tests and, in 
general, must limit the services which can be provided 
and the data which can be accumulated for subsequent 
analysis. These constraints ultimately imply a reduction 
in the health care available for patients. 

The operation of the test facilities can be divided into 
three categories-input, processing, and output, or: 

Receiving, identifying and placing samples; tran
scribing the tests appropriate to each sample; and 
assigning appropriate groups of tests to the test 
equipment. 
Setting up equipment, assembling samples, and 
running tests. 
Reducing data from tests; recording and storing data 
for future reference; and transmitting results to the 
requester. 

The first phase of the program was to address the 
input and output categories relative to a specification of 
improvements which can be introduced into the existing 
test facilities of the hospital. 

The essential objective of the program was to provide, 
in a relatively short period of effort, specification for a 
clinical chemistry operation of significantly increased 
effectiveness. The specification was to be applicable to 
existing clinical chemistry operation and consistent 
with a long-term program of continued improvement in 
service, reliability and cost savings. Thus, the short
term consideration must be consistent with the long
term goals. 

477 

To accomplish the above objective, a comprehensive 
set of requirements was established at the outset of the 
proposed program in conjunction with the Boston City 
Hospital. These requirements were based on an inten
sive analysis of the present clinical chemistry operations 
and took into account current and projected user needs, 
accumulated experience in the hospital, and experience 
obtained in operating comparable systems. 

Concurrent with the development of requirements, 
the operational flow in the present facility was delineated 
and cost data collected and analyzed in relation to 
the requirements established to determine future needs. 
Appropriate existing systems and equipment were evalu
ated relative to needs and recommendations based upon 
available funding prepared for use as a basis for imple
mentation 

In relation to the approach outlined, managing the 
"throughput" was a major aspect of the program. The 
operation had to be designed to handle a normal stream 
of tests as well as to respond to "demand" tests. The 
testing process had to be rigidly controlled to assure 
reliable results. The entire operation was under constant 
supervision and monitoring; including feedback con
trols, abnormality signalling, test-interference protec
tion, and comparison of results against known stand
ards. 

The hospital biochemical laboratory nowadays 
performs the majority of the requeste~ analyses by 
automated equipment. Except for specialized tests, and 
in small hospitals, manual methods have been super
seded by automated and semi-automated· methods. 
Blood chemistry tests are being called out in an ever
increasing manner to aid diagnosis and to monitor a 
patient's condition during his stay in a hospital. When 
an analysis becomes very complex, automation is often 
the only means to· develop a consistent and repeatable 
analyses. 



478 Fall Joint Computer Conference, 1971 

The hospital laboratory staff must translate chart 
values typically obtained on a recorder into values 
expressed in concentration per unit - volume. This 
requires mathematical or graphical manipulation and 
interpretation including calculation of base line drift in 
which errors can occur due to fatigue or inattention. 
The staff must prepare daily log sheets, laboratory 
summary and statistical reports, and quality control 
reports and the possibility of errors always exists. 

These procedures are all clearly within the capability 
of. currently available computing systems. A solution 
would be to utilize an on-line system (hardware/soft
ware) that provides the above services during the time 
of actual specimen processing. 

The laboratory at BCH is inundated with large 
numbers of specimens every morning requiring multiple 
sorting to prepare them for testing by automatic 
analytical instruments. There is always the possibility 
present of lost identification of the, specimen, the test 
and even of the patient. 

The tests themselves are now automated and this is 
the only way a laboratory can keep up with the volume 
of tests but another imbalance is caused by non-auto
mation of the data input and output and record keeping 
causing a reduction in the advantage obtained from the 
technological advances in instrumentation. 

Lame in an article in Laboratory Medicine, N ovem
ber, 1970, states that a survey of ten clinical laboratories 
concluded that a minimum of 20 percent and more 
likely 30 percent of the technologist's time was being 
spent in performing clerical duties. Our study at BCH 
indicated that the 30 percent figure is a good estimate. 
Writing test reports, keeping log books, labeling 
vacutainers and test tubes, preparing work sheets, hand 
and slide rule calculations, billing, updating patient 
files, answering telephone enquiries, are but a few of the 
clerical duties being performed in a typical clinical 
laboratory. 

It is evident that the solution to this problem may be 
found by examining other industrial and research 
operations where the introduction of data processing 
and the use of a dedicated on-line computer has been 
most beneficial. 

The doctor's prime requirement is a supply of up-to
date information concerning his patients. Test requests 
are initiated by the doctors who desire clear, concise 
laboratory reports of the results obtained. To provide 
this capability using a laboratory data handling system, 
the laboratory staff must be able to enter information 
on test results into the system. Also queries as to the 
status of on-line instruments and the contents of 
patient files must be entered. Similarly, test procedures 
must be capable of modification as procedures are 
changed in the normal course of laboratory develop-

ment. In addition, routine reporting of test results on 
each patient and documentation of laboratory work 
performed can be initiated by the system itself or may 
be requested by the laboratory operating staff. 

A computer will function well only in an organized 
system. A comprehensive system analysis such as was 
carried out for BCH and is delineated later in this report 
is an essential prerequisite prior to computerization to 
determine the most efficient procedures to use. 

The disadvantages of computerization are concerned 
with cost, the transition period and the development of 
operating procedures in case the computer system goes 
down due either to a power failure or some mechanical 
or software problem. 

Another disadvantage in computerizing the clinical 
laboratory is the tendency to treat computerization as 
an end, rather than a means. 

It is possible in the interim stages that a computerized 
system will add to the cost rather than reducing the 
overall cost of the laboratory but in general, hospitals 
which have automated, have found this to be short 
range objection. There may also be resentment in that 
the laboratory will be dependant on outside vendor 
personnel from the supplier of the system. One solution 
would be to use the hospital electronic data processing 
personnel as an interface between the laboratory and 
the system vendor or even to utilize a programmer on 
the laboratory staff. When laboratory personnel under
stand the operation and run their own computer 
system, feelings of distrust and antagonism should be 
overcome. 

One essential requirement for any laboratory system 
is that it must have a high degree of reliability to 
consider the results significant and be worth the expense 
financially and personnel-wise. 

A projected use for the computer once the reliability 
of the hardware and software are verified is for the use 
of the system in differential diagnosis. The computer 
will be able to extend and provide backup for the 
physician's medical decision-making ability. It could 
be used to generate such differential diagnosis on the 
basis of the laboratory data and to be able to generate 
lists of additional tests to be done to generate more 
specific diagnoses. Such adaptation of computer 
science would affect both the quality and cost of 
health care. 

SYSTEMS ANALYSIS OF EXISTING 
OPERATION AT BCH (1970) 

A flow chart indicating the major operational steps in 
the Clinical Biochemistry Department of the Boston 
City Hospital (BCH) is shown in Figure 1. This in-



m 
[::::1=I>OC ...... <::> __ 181011 

D. AC'l'lf1'rYPOIft 

Figure I-Flow chart of operations 

cludes (a) test requesting, and specimen collection 
which are performed by ward personnel; (b) acces
sioning of samples and of request forms, preparation of 
worklists and result lists, and administrative logging, 
which are performed by technical and clerical staff of 
the laboratory; (c) analysis, computation of results and 
transcription of results to report forms which are per
formed by the analysts; (d) sorting of results by patient 
and wards and creation of alphabetical long-term files 
which is done by the clerical staff of the laboratory. 

In the following Tables and Graphs the present and 
future workload as it relates to in- and out-patient 
services is considered within-laboratory work scheduling 
of the staff and its analytical performance and some 
aspects of bUdgeting. Next will be discussed some of the 
discrete operations involved in the requesting, acces
sioning, analyzing and data processing steps of the 

r-.. 
In 
Q 
x 
'-' 

400 

300 

o 200 
~ 
.J 

.... 
Z 
UI 

~ .100 
a: 

~ ~IN-PATIENTOA\'S 
~ OUT-PATIENT viSITS 

Figure 2-BCH-CC: Annual patient load (1960-1970) 

Computerizing Clinical Chemistry Department 479 

1000 
TEST UNIT LOAD 

0 
UJ 

~ 
TEST LOAD 

800 ~ 
z 
0 

~ 
r--. ~ .., 600 ::l 
Q < 

x y----"--' 
0 

§ 
400 x: 

25 /--3 

200 

/958 1960 1965 1970 
\ 

Figure 3-BCH-CC: Annual chemistry load (1958-1970) 

-PREDICTIONS .. 

3+ -

& REQUEST LOAD 
I I I I 

I I I I I 

1960 1965 1970 1975 IQ80 
YEAR 

18 

Figure 4-BCH-CC: Annual chemistry load forecast 
(1969-70) 



480 Fall Joint Computer Conference, 1971 

100 

50 

10.0 

c 9 5.0 

t; 
w 
I-

1.0 

-r 

-,... 

-r 

--

-f-

0.5 1--

I 

I 

I 

I 

I 

I 
I 

1958 

I I ~ 
I I I 

TEST LOAD PER IN-PATIENT ADMISSION 

--.. ESTIMATED 
WORK LOAD 

..,~-....-

_ .. 

-------I I I 

I I I 
TEST LOAD PER IN-PATIENT DAY 

.--- ...... -.. 
,. . • ....... 

I I I 

I I I 
TEST LOAD PER OUT-PATIENT VISIT 

~ .-
,r_.#' 

,-- .. . r' 

~ I I 
I I I 

1960 1965 1970 

Figure 5-BCH-CC: Annual test load, by patient (1958-70) 

entire operation. This will be followed by a discussion of 
characteristics of hardware, software and peripheral 
equipment currently available from different computer 
manufacturers. Alternative proposals for introduction 
of a computer-assisted system for on line monitoring 
of Auto-Analyzers and for preparation of cumulative 
reports will conclude this section. 

The recent decrease in utilization of both in- and 
out-patient facilities of BCH is shown in -Figure 2. 
This has been accompanied by a steadily increasing 
request load, test load and/or test-unit load, * (Figure 
3) in Clinical Biochemistry. If the test load keeps rising 
at the current rate, there will be an increase from the 
present 1 million tests per year to about 1,500,000 tests 
per year by 1975 and to 2,000,000 tests per year by 
1978-79 (Figure 4). Test load for chemistry per out
patient visit is still about 710 less than in-patient day. 
The latter is expected to rise faster in the next decade 
than the former (Figure 5). A breakdown of the 

* Test units are tests weighted by U.S. Veterans Administration 
AMIS Test Weighting System. 

chemistry load by test for the 1958-70 period and its 
breakdown in automated and non-automated tests 
shows an increasing demand for tests and the increasing 
use of automated tests during this period (Figure 6). 
About 3 automated tests are responsible for 25 percent 
of the load, about 6 for 50 percent, about 9 for 75 
percent and about 13 for 90 percent Figure 7). This is 
indicative of a high volume operation with a rather 
limited diversification in terms of tests offered. The 
latter situation obviously creates a more acute demand 
for computer assistance than a more diversified, low
volume operation. 

Monthly variations in test load for day-, evening-, 
and night-shifts in 1970 are shown in Figure 8. By the 
end of 1970, about 10 percent of the work load was 
performed on the SMA 12/60s. Workload on Mondays 
occasionally is twice as large as on any other single day 
of the week. Average test load per request is from 8 to 
10 depending on day of week and month of the year 

a 
9 
tn 
uJ 
I--

__ NON- AUTOMATED 

SDK _ AUTOMATED 

60K 

40K 

201< 

1958 1960 1965 
YEAR 

SCOOT - LDH (112) 
oe BILIRUBIIII I 

---4 TOTAL PROTEIN-
ALBUMIN 1 
ALKALINE 
PHOSPHATASE 

CALCIUM 
PHOSPHORUS 

AMYLASE 
URIC ACID 

1970 

Figure 6-BCH-CC: Annual automated test load, by test 
(1958-70) 



o 

% OF LOAD 

00 N 
-+- ---t -I- I I 

UREA 
III 

CREATININE 
I 

I POTASSIUM 

I SODIUM 

I 
CHLORIDE 

I 
CO2 

I 
GLUCOSE 

I 
LDH 

I [[]] 0 TRAN 

-l -l 

I 
lJl 
-'-f ~ BILIRUBIN 

Z r 
0 

I 
:j ~ r 

TOTAL PRO"TEIN 

0 
J7 

I {] ALSUMIN 

I AU( PHOSPH,6;I"'&sE. 

I CALCI UM 

I 21 PHOSPliORU5 

----+-------- j- -----_t__ 

Figure 7A-BCH-CC: Fractional test load ranking, 
by test (1969) 

(Table I). The Medical Services are responsible for 
about 50 percent of requests and about 60 percent of 
tests performed. The remainder of the requests originate 
from the Surgical Services, Clinics, and Outpatient 
Services (Figure 9). 

Within-laboratory work scheduling for analysis, 
administrative personnel and supervision is shown on a 
time basis for different shifts and work assignments in 
Figure 10. In total, about 96 analytical man-hours are 
available per day. Two-thirds of these are spent on true 
analytical work and one-third on clerical jobs. About 
32 man-hours per day are available for administrative 
and supervisory assignments. 

At a current 95 percent level of test automation in 
the laboratory, a total of 14 analysts performed about 
70,000 tests per analyst-year, which is above the 
national average for hospital laboratory performance. 

From the available budget figur-es, it appears that 
the operational cost for the annual test load of about 

Computerizing Clinical Chemistry Department 481 

'10 OF" LOA.D 

0 

PoMY LAS E 

URIC ACID 

CHOLESTEROL 

ACI D PHOSPI-\A,AS 

SODIUN\ (URINE) 

POTASSIUM (URINE) 

LA"TEX 

BSP 

ELECTROPHLORESIS 

eHLORI D'E" (URINE) 

SALICYLATE.S 

THYMOL 

OTHER iE-S"S 

Figure 7B-BCH-CC: Fractional test load ranking, 
by test (1969) 

TABLE I 

BCH - DAILY CHEMISTRY TEST LOAD* (1970) 

WEEK-DAY WEEK-END 

All Day Day Day N· ht S 
Routines Emergencies Emer~encies aturday Sunday 

SAMPl:,o.!l'-~-1)A.o. 

Average 

Minimum 

Maximum 

Average, as 
0/0 all-day 

406.7 

291 

656 

100 

TEST LOA 0_ 
Average 

Minimum 

Maximum 

4,052 

Average, as 
0/0 all-day 

2,396 

5,903 

100 

AVERAGE TEST I QAP 
PER SAMPL~ 9.9"6 

*March 1970 

298 

210 

512 

54.5 

40 

72 

73.27 13.40 

3,498 292 

1,998 208 
5,186 369 

86.33 7.20 

11.73 5.35 

54.2 

41 

72 

13.32 

262 

190 

348 

6.47 

4.83 

136.2 96.4 

44 68 

183 170 

712 

511 

879 

405 

324 

566 

5.23 4.20 



482 Fall Joint Computer Conference, 1971 

:r: 
I-
z 
0 
~ 

"'" 0 
<t 
9 
tn 
~ 

lOOK 

8DK 

DAY 
ROUTINES 

60K 

40K 

SMA 1'2/60 
20K 

SPECIAL~ 

OL-~~~~~~~~~~~~~~==~~ 
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

1970 

Figure 8-BCH-CC: Monthly chemistry test load (1970) 

900,000 tests in 1969 was about $250,000. Average cost 
per test amounted therefore to about $.28. 

Test requesting is done by using three types of 
request forms (Table II). This is a check-off form with 
an Addressograph-Multigraph card embossing system 
for patient identification. This type of form and other 
factors determine the pattern of test requesting. Only 
about 20 percent of test requests are for single tests or 
for test-group run in parallel on multichannel analyzers. 
The majority of test requests (75 percent) require 
sample splitting for analysis in a number of single or 
multi-channel analyzers. The frequency of requests for 
single tests and test groups indicates the small number 
of tests which do not require sample splitting. The 
frequency of requests for single tests or test groups for 
the same tests requested in combination with other test 
groups indicates the variety of permitted test group 
combinations. Figure 11 shows the frequency of tests 
requested per request, the mean being about eight tests 
per request. This list may serve as a guideline for 
selection of those requests which would be more effi
ciently handled by a 12- or 16-channel analyzer, thereby 
eliminating time and errors involved in multiple 
sample .. splitting. 

Accessioning of request cards and samples for routine 

~ 
f-
Z w 
u 
0:: 
uJ 
0... 

BO 

60 

40 

20 

REQUEST LOAD TEST LOAD 

• OUT-PATIENT 

~CLlNICS 

OJ] SURGICAL 

m MEDICAL 

TEST-UNIT LOAD 

DAY DAY NIGHT DAY DAY NIGHT DAY DAY NIGHT 
ROUTJNE ~unNE ROUTINE 

STAT STAT STAT STAT STAT STAT 

Figure 9-BCH-CC: Fractional daily chemistry load, 
by service (1970) 

test starts with the assignment of an accession number 
to both card and tubes. Tubes are placed in racks on a 
long bench on top of a sheet of paper. Accession number 
and requested tests for the accession is written down on 
the sheet of paper. After centrifugation, serum is 

WOI>KS.HlrTS, WEEkPAY (12Hz) ~~~~~~~~~~~~~~~~~ 
SATIJA.o.o.y (2) 

SU>jDA.y (2) 

BLOOD COLLECTION, PEAK. 

A.CCESSIONING 

SAMPl.E~"T'a--.. 

WORKLIST PREPERAT"lON (:2) 

AliIDANALYZER TESTS (ID) 

SEMIAUTOMATED 1'1OSTS (1) 

"""NIJI'L TE.STS (1) 

RESULT5ENTEREDO" W~KUsr(12) 

PATIENT FILE 50,.,.1>1" (a) 

RE5I.)~T C~RD COMPl-ETIeN (12) 

RESULT CARp cptt::c.K. (1) 

RESULT CAI<D cOw. ... noN (3) 

R£.St.J~i CAIOD RE.-FIL.ING (3) 

RESULT ~ WARP·1>!ST~o~ (1) i 

oMiii'~ fT177J17ii"V'EiAi:i<.wic,'';;;7177777771t'LZll II 711 11177 ( aI 
(Idi vI77ZZ771IJ(2) , : 

fZZZZJ 
~IVZ/; ROUTINE! / I dZl11 
V7R<O-TIMEIA~ ~?!<~~ 

W/! fJ;)(l/J/I//I/TIJ 

'-E31':~;·.·; I 

a" 
"NALY5!,~ 12Z1 
~~:~~Rf: .~ I1IID j 

REA&EIlT P~ION/M'''TENI.N(£(i2; I 
iELEPIICNE ~,PEA(S (3); IlTIIIID 

ISC;PH'."VR .:I! 
1 ____ _ 

~---t- -Ik -t -i--·--~ ~ -·~--·-·t--r-~ -t~ 
NOON 

Figure 1Q-BCH-CC: Work scheduling by staff (1970) 



1 

> 
III: 

Iii 
~ w 
::I: 
U o iii 

1 11 BIOCHEM. DATE: ____ ·I TABLE II 

I PREYIOUS <HEMIS'RY NAME 

I YES~ I NO ~ 

BCH-CC; 'FEST 
REQUEST FORMS 

>1 USE ADDRESSOGRAPH PLATE OR WRITE LEGIBLY I ! ! 
~Ir-~-.---r------~-.--_'--'-------~~--~~------~ 

~1r-+--+--4-------~-1--~T~~~T+-------~~--+_~------~ 
gll-+-·+---+----1I-+--+--+----4-+----1--t------I 

iiil 
1r+-+-+----~~~~---+4--+--4---~ 

~1r-t-+=-t---------lI--+-t--t----If--+--+~---lI 

~ I 2391. L..:::"--L ________ 1L-.L:.::.:..J.~-L-______ ---1l----1__=.~=_:.L-_____ _ o, __ ~_ 

21 !2-=:::,~!. 
1 

YES 0 DATE HOSP ,#: 

3 

ill 
I- 200 
~ 
J a 
lY 
U-
0 

U 
~ 100 :) 

S' 
rt 

NoD WARD 

I OIA("NOSIS SERVICE' 

!!!~ ... Ir~-r---r--~~~~~~~~~~~~~~~~ _ USE ADDRESSOGRAPH PLATE OR WRITE LEGIBLY! ! ! 
y CODE 

:e SWEAT 
_UWIr-+--+~~PT~-r------------~_+--+_~pNHA~~------------~ _ ELECTRO· 

PHORESIS 

QI ~~~L~im'~ FIBRINOGEN 
mlr-+--+~~CF~~--·----------~-+--+-OO-N-GO-R-ED~------------~ 

1 SU lPHA (S~~~~fV) : 

I 
13~IM. DATE: ___ 1 

I PREVIOUS CHEMISTRY INAME 

I 
¥EOn HOSP • 

NO 0 ___________ _ 

>1 OIAGNOSI •• ________ _ 

~_Ir-r--.---r-------4~---.--r-------~-,--r--,---------.... r CODE ,; CODE TEST RESULTS 

NOTE: 
EMERGENCY REPORTS WILL 8E TELEPHONED TO SERVICES UPON COMPLETION. 

NAME AND SERVICE SHOULD APPEAR ON .rEeIMEN AS WELL AS ON THIS FORM 

W\EDIAN MEAN MODE. 

MEAN - 7.79 
MEDI"N= '" MODE = 10.5 

10 15 

TE5TS PER REQUE.ST (N°) 

Figure ll-BCH-CC: Frequency of multiple test 
requests (1970) 

20 

Computerizing Clinical Chemistry Department 483 

TABLE JI1 

BCH: CilEMISTRY IN'STRl'MEt-::TATIOiX (1!)70) 

Instrument Sampler 

1. Bun 

2. Creatinine 

3. Glucose 

4. Uric Acid 

5, Sodium 

6. Potassium 

7. Chloride 

8. Carbon Dioxide 

9. Bilirubin 

10. Total Protein 

11. Albumin 

12. Alkaline Phospho 

13. LDM 

14. SOOT 

15. Amylase 

16. Calcium 

17. Phosphorus 

18. Profile. chemical 
19. Prothrombin Tim ~ 

20. Sodium Urine 

21. Potassium, Urine 

22. Trace Metals 

23. Cholesterol 

24. Acid Phosphatase 

25. Electrophoresis 

AA-colorl 

AA-color 

AA-color 

AA-flamej 

AA-fiame I 
AA-color 

AA-coloLl 

AA-col°rt 
AA-color ! 
AA-colo~l 
AA-color 

AA-color-I 

AA-color~ 

AA-color 

AA-colorl 

AA-coloD 

SMA 12/60 

IL. fhmel 
IL. nam~ 

PE, AAS 303 

Coleman, Jr. 
III 

Coleman, Color

BM - Analytrol -
GM - Digiscreen 

Recorder Dialysis Samples % Repeats Criteria for 
Per IIr.i Repeats 

# SHde.\,{.ires 

90 <50, >300 

70 
NA. Cl 

5-10 Discrepancy 
5-10 

5-10 

10-15 

5-10 >8 

5-10 

5-10 

70 15-20 >1125 

70 15-20 

10-15 > 1. 400 

15-20 <85 > 12. 5 

15-20 <20 > 10 

NA 

IBO 

180 

manually transferred to a serum tube on which the 
accession number has been transcribed. Sample splitting 
from serum tube to Auto-Analyzer cups is done 
manually, using work lists to select serum samples and 
to list the sequential position number of the sample on 
the Auto-Analyzer sample tray for each accession 
number. Results are collated after the Auto-Analyzer 
run from recorder chart and final results are manually 
computed from the raw data. The obtained results are 
matched to cup number, next to accession number and 
finally to the patient's name before final transcription 
on the report form. 

100 

/r- TEST-UNIT LOAD 

80 I 
%AUTOMATION 

/ 
I 

~ 
/ 

~ / 
'-' 60 / 
l- I z 
uJ I / ~ I / w / / ~ 

40 / 
/ 

/ 
/ 

/ 
/ 

20 
/ 17 17 17 17 NUMBER OF / AUTOMATED 

TEST 
PROCEDURES 

0 

1958 1960 1965 1970 

YEARS 

Figure 12-BCH-CC: Percentage automation of test load 
(1958-70) 



484 Fall Joint Computer Conference, 1971 

Table III lists the currently available instrumenta
tion in the laboratory. Eighteen analog Auto-Analyzer 
channels are potential candidates to be multiplexed in 
an on-line computer-assisted data handling system. 
The sampling rates for different tests are indicated. 
Also shown is the percentage of repeat tests and the 
criteria used for repeating an analysis. Figure 12 
indicates the number of automated tests procedures and 
the percentage of test and test unit-load which is 
automated. 

For routine specimens, the time delay between receipt 
of the sample and result leaving the laboratory is about 
eight hours. One report form goes to the patient's chart 
and one to the Billing Office. Long term files for both 

in- and out-patients are kept in the laboratory using 
another duplicate of the report forms filed alphabeti
cally. File retrieval is done manually. Requests for 
retrospective cumulative retrieval have obviously to be 
limited because of limited available personnel to perform 
the task. No separation exists in the file structure 
between active and inactive patient-files. 

DESCRIPTION OF AVAILABLE LABORATORY 
COMPUTER SYSTEMS (1970) 

A standard procedure was established for evaluating 
the various turnkey systems available at present. All 

TABLE TV 

HARDWARE CHARACTERISTICS OF 12 COMPUTER SYSTEMS (1970) 

BSl ! Con- DEC I DNA Info- IBM ! IBM! IBM IBM IBM I Medi 1 Spear I 
Clin- comp Clin- ;CLS tronics 360/40 1130: 1800 1080 Syst/17 tech ' Class: 
Data I Lab-12 CL II Batch 

I 
300-B: 

Turn-Key System yes yes yes yes yes no no no no yes Iyes ; yes 

Computer in Lab yes yes yes yes yes no yes yes no yes Ino yes 
I 

Purchase Price ($) 188,600 165,000 151,083 175, 000 175,em 500, em 90,em 250,(0) 24, em ' i i165,em 

Rental Price($)(Mo. ) 4,350 2, 000 4, 400- 600. 

Maint. Contract ($) 
10, em 

after first year 550 

No. Autoanalyzer 
NA* Channels 16 32 24 16 40 NA NA NA NA 28 

Time to Complete 
Installation (Mo. ) 9 3 4-6 4 6 12 4 4 4 12 !2 4 

Computer PDP-8 Micro- PDP-12 2700 PDP-12 360/ 1130 1800 1080 :Syst/ :PDP-12 Spear 
Syst.800 Ray- 40 7 I 

! 
theon 

Operating Installations 13 0 2 6 4 5 7 7 0 • 13 

(Jan. 1971) 

Total Responsibility yes yes yes yes yes nO no no no yes yes 
by Vendor 

Factory On-Job yes yes yes yes yes no no no no yes no : yes 
Training 

Teletype Terminals yes only yes yes only 

Specific Console 
Terminals yes no yes yes no no no no no NA 

CRT Terminal no no yes no no no no no no NA yes yes 
---.~.-'-"'~.' ._ .•.•... -
Power Requirement 

BTU Generated by 
equipment/hr. 

User Group Available 
for Consultation yes no no no no no no no no no no yes 

* Standard Configuration 



Computerizing Clinical Chemistry Department 485 

TABLE V' 

SOFTWARE CHARACTERISTICS OF 12 COMPUTER SYSTEMS* (1970) 

BSL Con- Dec DNA 
Clin- Comp Clin- CLS 
Data I Lab 12 

Patient Directory yes no yes yes 

Specimen Collection yes yes no yes 

Test Work List yes yes yes yes 

Load List yes yes no no 

Ward Report yes yes yes yes 

Day Report yes yes yes yes 

Que ry Report yes no yes yes 

Abnormal Value Report no no no no 

Unfinished Procedures Rpt yes no yes yes 

Quality Control Report yes no yes yes 

Daily Statistical Report yes no yes no 

Billing Report yes yes yes no 

Cumulative Rpt. for Days yes no yes yes 
7 - 7 7 

Management Report yes no no yes 

EDP Compatibility no no no no 

IBM Retrieval Programs no no no no 

Sample Identification Sys. no no no no 

Computer Manufacturer no no no no 
acts as Consultant 

*Standard Configuration 

known vendors in the field were evaluated together with 
other computer manufacturers who have shown an 
interest in entering the clinical chemical computeriza
tion field. 

The initial step was to obtain relevant literature on 
the systems. A preliminary evaluation was made after 
reading this information to determine the applicability 
of such systems to the requirements of BCH. An 
important segment of this evaluation was to ensure that 
the companies had the proper software to meet all or 
most of the BCH requirements. This included Day 
Reports, Cumulative Reports, Patient File, Quality 
Control, Work Lists, and other types of miscellaneous 

! 

Info- IBM IBM IBM IBM IBM Medi- Spear 
tronics 360/40 1130 1800 1080 System Tech Class 
CL II Batch 7 300-B 

no no no yes yes no no 
I 

no no no yes no no yes 

yes no no yes yes yes yes 

yes no no yes no no no 

yes no no yes yes no yes 

yes no no yes yes no yes 

yes no no yes no yes yes 

no no no no no yes yes 

no no no no no no yes 

no no no no no no no 

yes no no no no no yes 

no no no yes no yes yes. 

no no no yes no yes yes 
- - - 7 - 6 16 

no no no no no no no 

yes no no yes no no ? 

no 

no 

no 

no no no no no 

no no no no no no . 

no ' no no no no no yes 

programs available to support a clinical laboratory 
operation. 

The second step after familiarization with the 
literature was to request a representative from the 
company to come and give a presentation of their 
system. Generally this presentation was given by a 
technical person from the Bio-Medical Department 
rather than a salesman. The presentations augmented 
the technical data previously sent, showing a typical 
hospital arrangement, the consoles available and typical 
format of chemical and patient data output. There 
was a discrepancy in that in certain cases the literature 
stated that certain software was available but the 



486 Fall Joint Computer Conference, 1971 

TABLE VI 
INPUT !OUTPUT /STORAGE CHARACTERISTICS OF 12 COMPUTER SYSTEMS (1970) 

BSL : Concomp! DEC DNA I {¥b~ics! 3d"&J'i0' IBM! IBM! IBMI IBM I Medi- tq~~§ 
Clin-Data I ' Clin-Lab 12 CLS : CL II i Batch: 1130 I 1BOO! lOBO! Syst/17, tech 300-B 

I. Data Input Equipment 

1. Mark Sense Cards yes 

2. Port-a-Punch Cards no 

3. Bar-Coded Cards no 

4. Keyboard Terminal yes 

5. Key-Mat. Terminal no 

6. CRT at CPU yes 

7. CRT-Remote no 

B. Teletype, at CRU . yes 

9. Teletype, Terminal no 

10. Specific Purp. Term. yes 

I. Data Output Equipment 

1. Teletype yes 

2. Kleinschmidt Printer yes 

3. Line Printer yes 

4. Plotte r no 

II. Data Storage 

1. DEC-Tape 

2.IBM 
Tape 

3. Disc 

yes 

. no 

, yes 

I 

no 

yes 

no 

no 

no 

no 

no 

yes 

yes 

no 

yes 

no 

yes 

no 

no 

yes 

yes 

yes 

no 

no 

no 

no 

yes 

yes 

yes 

yes 

no 

yes 

no 

yes 

no 

yes 

no 

yes 

presentation indicated that some programs were still 
under active development. This is understandable 
because the verification of software without an expen
sive in-plant simulation for the verification of programs is 
extremely difficult. As proof, the Apollo flight programs 
are still finding bugs after six years and millions of 
dollars worth of verification testing. 

The vendors were carefully questioned as to the 
operating characteristics of the computer including air 
conditioning requirements, the preventive procedures 
maintenance and the response time for emergency 
service. 

The third step in our evaluation was to try to visit 
representative systems in a hospital. This was difficult 
as in most cases the systems were in process of being 
installed, they were of an early configuration that was 
not representative of later designs or they were in
stalled but not operational. 

CONCLUSIONS 

In general most of the systems were similar as far as cost 
and type of software available. The major factor that 

no no no no yes 

no no yes ; yes ; yes 

no no no no ; no 

no no no yes no 

no no yes yes • yes 

no no no no no 

no no no no no 

yes yes no no no 

no yes no no. no 

yes no no no no 

yes yes no no no 

no ,no no no no 

yes no yes yes yes 

no no no no no 

no yes no no no 

no no yes yes yes 

no yes yes 'yes yes 

no no 

yes no 

no . no 

no ,no 

yes yes 

no no 

no no 

no no 

no no 

no no 

no no 

no no 

yes yes 

no no 

no no 

yes yes 

yes yes 

no 

no 

no 

no 

no 

no 

yes 

no 

no 

no 

no 

no 

yes 

no 

: no 

no 

no 

yes 

yes 

yes 

no 

no 

no 

yes 

yes 

no 

yes yes 

no : yes 

yes yes 

separated the companies was the number of working 
systems which they had in the field which is directly 
proportional to the length of time they have been 
marketing systems. The number of systems operating 
is thus not an efficient means of evaluating the com
panies. Evaluation therefore must be based on the 
service that the individual companies will provide with 
their equipment. 

A general survey of 12 computer systems available 
in 1970 with respect to hardware characteristics (Table 
IV), the accompanying software (Table V) and the 
associated input-output storage devices (Table VI) 
has been compiled. 

AVAILABLE LABORATORY COMPUTER 
SYSTEMS (1970) 

A form was circulated to hospitals with known 
installed systems. A request was made for their com
ments on the equipment as installed in the Clinical 
Laboratory and it was emphasized that this was in no 
way to be connected with the user by name. 



An analysis was made on the returns for the various 
systems. 

It was noted that the longer a particular system has 
been marketed the higher the probability that deficien
cies have been rectified. It is only when major changes 
are incorporated such as substituting disk storage for 
tape storage that major difficulties are found by a 
particular user. 

Also the efficiency with which a particular system is 
used is bound up with the attitude of the technicians 
and the dedication with which the laboratory director 
endeavors to integrate the system into his operation. 

It was shown that it is essential that a systems 
analysis as has been performed at BCH be carried out. 
The type of hospital, i.e., teaching versus non-teaching, 
also is important in estimating the number of tests per 
patient that are to be carried. A further observation is 
that the time for complete integration of the com
puterized system into the work schedule of the labora
tory can be excessively long. Again this is probably a 
reflection of software efficiency and technician accepta
bility. The down time is noted to be excessive in a 
number of cases which indicates that the laboratory 
must always maintain the capability of switching to a 
manual mode when this need arises. 

ACCESSIONING AND POSITIVE SAMPLE 
IDENTIFICATION SYSTEMS (1970) 

At this time there is no positive sample identification 
system which would be practical for Boston City 
Hospital. This is due to the fact that Boston City does 
not have a collection team but leaves the collecting of 
the blood up to the individual ward nurses. This would 
require a large investment at each collecting station for 
equipment to mark the samples. An embossed card can 
be used for sample I.D., reference Figure 13. This can 
be done in the following way: the form is imprinted with 
patient's name which is human readable, and patient's 
I.D. and ward number in machine readable form. The 
blood is drawn and a request for test is attached to the 
vacutainer. These are now sent to the lab where the 
technician will assign an acquisition number and mark 
in the number on the mark sense card. The container is 
placed under the assigned number on the work table 
and the cards are collected and fed through the card 
reader. The computer then makes up the work list 
which\tells the technician which specimen, by acquisition 
number, is to be placed in which location in the sample 
loader. Upon completion of the tests the computer will 
type out the ward report which will have the patient's 
I.D. number and the test results. The reports are then 
sent to the wards where the nurse will assign the test to 

Computerizing Clinical Chemistry Department 487 

WAllO 

LAB 

-------a-----

t 

\ 

o 0 0 ~ 0 0 0 AUTOANALmRS 

BUN NO. I WOIIK Ll ST 

POS I 
POS 2 STANDARDS 
POS3 IIId 
POS 4 CONTROlS 
POS5 
POS 6 IlANl( 
POS 7 101 

Figure l3-Sample accessioning and identification scheme 

the patients according to their patient I.D. With this 
method all queries will be by patient I.D. number 
only. There will be no flagging of out of normal limits 
because patient's age and sex are unknown. If working 
without the patient's name is satisfactory, this method 
is a very fast and efficient way of getting positive simple 
identification. If the patient's name is required the 
technician can type in the patient's data. On most 
systems about four entries a minute can be made. 
Another way of accomplishing this is to have the wards 
send a copy of their collection lists the night before so 
that the people on the night shift in the lab could update 
the patient's data for the following day. This would 
take care of all patients except the out-patient and stats 
which would have to be entered upon receiving the 
blood sample in the lab. Tables VII and VIn repre
sent a survey taken of available schemes by different 
manufacturers. 

RECOMMENDATIONS 

There are several ways to computerize the lab at 
BCH. These depend on the degree of involvement of the 



488 Fall Joint Computer Conference, 1971 

TABLE VII SAMPLE ACCESSIONING SYSTEM (1970) 

Positive Patient 
IdentHication Tab 

Request Card 

A~7:~~:n 
and Engineering 

Armband with Patient 
Hospital I. D. NO/Bar 
Code: Bar Code trans
cribed through trans
cription device on vacu
tainer heat sensitive 
label 

Spear 

Underdevelopment 

Technicon 
AA II Idee 

Vickers 
M~OO 

Special Flat 
1.5mlvial 

Identicon:~ American Cyanamid 
Identiscan TMIOO OMS System 

Dupont 
Automatic Clinical 

Analyzer 

Damon 
Engineering 
Microtainer 

~~r;;:le Container Electrostatically printed Under development Vertical preprinted bar 
code on Jdee label 

Vertical Hollerith, pre- Vertical Hollerith. Retro-reflective Fluorescent vertical 
on Vacutainer label from 
Armband 

punched on tab card post-punched on 
label fixed to 
special vial 

horizontal bar code bard code on label 
on label 

Sample Accession
mg 

Hospital NO Bar Code Under development 

Request Card 
Accessioning 

Centrifugation 

Serum 
Transfer System 

Transcribed from 
Vacutainer Label to 
transfer tube AA cup 
via transcription device 

Test Container Code AA cup carrying elec· 
trostatically imprinted 
BarCode 

Sampler 

Digits 

'~Under Development 

Technicon AA sampler 
1I,II1 
(40 positions) 

. Monmouth Modification 

NIA = No Information Available 

HPCa~ ~eader 

~~e~UPCarrYing Idee 

~~c~~icon AA ~ampler ~;chnicon AA sampler 

(40 positions) (40 positions) 

Under development Reflection Scanner 

Prepunched tab card 
attached to transfer 
tubelAA cup 

Pre-accessioning via 
telephone/computer 

Computer Controller 
sequential serum aspira
tionfrom original 
sample tube in single/ 
dual channel Auto 
Analyzers from con
tinuou:;belt. Optical 
control of sampling 
depth 

Original sample 
container carrying 
prepunchcdtab number 

No sampler needed 

aboratory with the installation and the projected 
utilization of the equipment after installation. Do they 
want a turnkey system, like another instrument, which 
will help them in their existing workload or do they 
hope to expand and use the computer system for other 
functions? Reference Figure 14. 

If a turnkey system only is required our recom
mendation is that they proceed with plans to purchase a 
system from either Digital Equipment or SPEAR. 

TABLE VIII 

TEST REQUEST AND SAMPLE IDENTIFICATION SYSTEM 

Code 

Installations 

Admissions 
Plate Punch 

I
Addresso
graph 

Multigraph 

Bar Code 

BCH 

6400 

Nursing Station Punch A&M 12-45 

Service Area Punch 

Tab Card 

Bar-To-Hollerith 
Conversion Unit 

Dial-To-Hollerith 
Conversion Unit 

Simultaneous Bar/Markl 
Hollerith Reader 

Hollerith-Compatible 
Card Reader 

No 

A&M 9620 

NA 

NO 

NA 

H-P 
'Hewlett- i IBM 
jPackard 

IHollerith Pch 

Dial Code ipo~~:~PunCi1 

COPAC 

Hollerith 

Card 
Telephone 
Activated -

Image Request Sys. 

NA NA 

BSL 
1 ~ _ c. Med _.Ct s~~~~;:~ai ltfonmouth _ I Spear S.F.,Cahf. ~~yo Clinic County Hospl 

NA I NA 

No Yes 

Not 
Needed 

NO IBM 2956 

HP2761A IBM 
Optical 

Mark Reade 
Card Reader 

Templa ~anders 
Punch 501 Plate Punch 

Templa 
Punch SOlT 

Selecta 
Punch 5082 

No 

Not 
Needed 

Not 
Needed 

Not 
Needed 

BM Card Rd 
HP2761A 

OMR 

NA 

NA 

Not 
Needed 

Not 
Needed 

Not 
Needed 

Not 
Needed 

NA 

NA 

NA 

NA 

Not 
Needed 

Not 
Needed 

Not 
Needed 

Not 
Needed 

Sequential accession Under development Under development 
number, post-punch-
~~a~n label fixed to 

Under development Under development 

Special vial holder Under development Under development 

Sequential serum Under development Under development 
aspiration from 
original sample tube. 
Optical control of 
sampling depth 

Original sample Under development Under development 
container carrying 
post punched number 

Vickers M300 Under development Under development 
sampler 
(300 positions) 

Transmission Scan- Reflection Scanner UV -fluorescence 
Scanner 

Sequential accession 
number entered on 
identification card 

:!t:~~e~ut~ special 

Vacutainer-Holder 

Dupont sample cup 
with attached identi
fication card 

Linear sample/re
agent pack set input 
tray 

Photographic repro
ductionofIDinforma
tion from ID ca rd 
attached to sample to 
report form 

Sequential accession 
number entered on 
identification card 

::~~~~ed to mic ro-

If the lab plans on imaginative use of the computer 
system, it is felt that a Bio-Engineer should be hired. 
With this person on the staff, the use of the equipment 
would be greatly enhanced. This technical person would 
assist the director in whatever he might require in the 
areas of new test procedures or new programs. An 
interesting development along this line is noted by 
Doctor Lame in Laboratory Medicine, November, 1970, 

Figure 14-Logic diagram for implementation of a computer 
system of BCH (1970) 



AUTOANAlYZfR 
COMPUTED 
RESIl.TS 

Figure 15-Basic data acquisition system 

MANUAL TEST INPUT 
PATIENT DATA 
TEST REQUEST 

Figure 16--Advanced computer system 

c 

.S 
0 ~ ~ 

~~ cO :~ ~ ~~a 

'" Q. 
~ g-~ ~ ~~ 

....!o o «:Ul ou£ 

'" '" I til 

1 
c 

.~ '" " 
~ ~ '" 

.;::: 
'" " ~ " " " 0 ~ 
0 

t-< :r: t-< :r: :r: 

~ ci ~ ~ ~ ~ z 

Worklist Preparation 2 1.5 1.5 

Autoanalyzer Tests 10 5.5 5.5 5.5 

Semiautomated Tests 7.5 7.5 1* i 7.5* 

IManual Tests 1* I 4* 

!Besults Entered on 
IWorklist 

12 3.5 12 2.5 

rPatient File Sorting 2.5 2.5 ! 0 

1~~~Ult Card Comple- 12 12 i 0 

Result Card Check 

ijReSUlt Card Corela-
tian 
fResult Card Refiling 2.5 2.5 

Result Card Ward .75 
Distribution 

.75 .75 

Maintenance N/A 

Telephone Call 

TTY Inputs N/A N/A .2 .5 2.5 

Computer N/A N/A 

215 173 56 
* More time tI'echnicUm Techniclan Technician 

available for Hours Hours Hours 
new tests 

TABLE IX 

"C " '" '" ~[s 
]~! 

'" .~ 
1 

~ ~ 
g 

t-< :r: 
ci ci z Z 

5.5 

1* 7.5" 

1* 2" 

p 

2 

.2 

46 
Techni<tian 
Hours 

Analyst-Hour Savings by Different Computer Configurations 

Computerizing Clinical Chemistry Department 489 

Figure 17-Integrated computer system 

who says that his savings did not come from relieving 
technicians from their mounting clerical duties but from 
the use of the computer as a lab management system. 

If maximum involvement is what the lab desires, 
they should proceed in the following manner. 

Negotiate with a contractor such as D.E.C.; IBM; 
or B.S.L., for a simple data acquisition system which 
will do the peak detecting from the auto-analyzers and 
print out the results and prescribed measurements on a 
teletype. An example of this type of system is shown in 
Figure 15. This would eliminate some of the technicians' 
clerical work and reduce the mounting workload. 

The next phase would be to hire a Bio-Engineer who 
will familiarize himself with lab operations and require-

TABLE X 

Cost Analysis of Computer Configurations * ! 

Acquisitlon :::iystem Time Shared System In-Lab Dedicated 
ComEuter 

)EC (Basic) Meditech DEC Advanced 

BSL Chern Lab 
Spear 
BSL (Chern Lab) 

IBM System 7 (ClinLab) 
DNA 

2000 Include in Cost $8000 

50,000 75,000 200,000 

52,000 150,000 208,000 

54,000 225,000 216, 000 

56,000 300,000 224, 000 

58,000 375,000 2:12,000 

68,000 750,000 312,000 

Prices are averages for the different groups. 

Equipment can be leased from a commercial leasing company 
at a cost of approximately $34. 00 per thousand or a 36 month 
lease, or $22. 00 per thousand on a 60 month lease. 



490 Fall Joint Computer Conference, 1971 

ments. The computer system can now be expanded by 
adding computer memory and expanding the software 
to include patient file. This would enable the lab to 
produce the required reports, ward reports, cumulative 
reports and billing data. 

Expansion can be accomplished in several ways. One 
way is for the lab to have a stand-alone system. I{ this 
is what the lab prefers, the contractor can expand the 
basic lab system to an advanced system. (Figure 16.) 
An alternative approach which we prefer would be more 
complex but give better service and be more flexible, is 
to have a regional computer station set up whereby the 
other labs in the hospital as well as other departments 
could use a dedicated computer in their area with 
direct tie-in to the larger computer or regional com
puter (Figure 17). This would eliminate the duplication 
of patient files and programming. It would also aid in 
that there would be a core of software experts who 
could help the individual labs to use their facility more 
efficiently. These people should be from the in-house 
EDP personnel. An advantage of this would be a large 
data bank from which all types of statistical studies 

could be made. As more users were connected to the 
regional computer the cost would be spread out among 
the different departments and their budgets would be 
lowered. 

If enough users were available it would become 
practical to have teletypes of CRT type terminals at all 
the nurses' stations, and also at admissions and con
venient places throughout the hospital. At present it 
would not be practical for any lab to support such large 
satellite-type terminals for just one particular type of 
lab data. With everyone using it, it would become very 
practical. 

From Table IX it is seen that with any configuration 
the savings in technician salaries will more than offset 
the cost of equipment within three years. Table 9 was 
drawn up assuming 100 percent efficiency which cannot 
be achieved immediately and the excess in technician 
capacity could be utilized for running more chemical 
tests. 

Table X represents different financial ways of com
puterizing the operation and indicates cost over a ten 
year period for different configurations. 



Integrated information system 

by J. C. PENDLETON 

McDonnell DlYUglas Astronautics Company 
Huntington Beach, Calif 

INTRODUCTION 

With computer hardware, we hear various computers 
described as second generation, third generation, etc. 
This means that the technology used to build these 
computers has developed through several distinct 
stages. Generally, each new stage has brought with it 
order of magnitude increases in price-performance. 

Computer-based information system technology has 
gone through similar stages. However, while current 
hardware is in the third generation and is moving into 
the fourth, information system technology appears to 
be attempting to break out of the second generation.! 
As a result, most current computer-based information 
systems are not meeting users' needs, particularly 
timely response and the availability of coordinated 
outputs.2, 3, 4 

It is suggested that the users' needs can be met by 
means of Integrated Systems and Data Bases.5,6 These 
terms are used with a great deal of imprecision and 
misunderstanding. "Integrated Systems" is particu
larly troublesome in this respect since there are several 
aspects of Management Information Systems that can 
be integrated. In addition, these aspects can be inte
grated separately or in combination. Therefore, this 
paper first defines and describes these terms, discusses 
the various types of integration and relates integration 
to data bases. Then it discusses the rationale for 
Integrated Information Systems and Data Bases and 
describes the hardware-software architecture needed 
to support an Integrated System with a Data Base. 

ALTERNATIVE INFORMATION STRUCTURES 

There are a number of alternative philosophies for 
structuring computer-based information systems. These 
alternative structures stretch from completely Inte
grated Information Systems to completely Independent 

491 

Information Systems and including all combinations in 
between. 

Independent information systems 

As the name implies, Independent Information 
Systems are independent of each other. In the pure 
form, no information would pass directly from! one to 
another. If the output from one became the input to 
another, the user would hand transcribe the data to be 
keypunched. lEach system would have all input being 
keypunched and all output printed. 

Independent Information Systems lead to the con
ventional data base architecture. The term "data base 
architecture," as used here, describes the files which 
make up the data base, the way they are organized, the 
way they are accessed for maintenance and retrieval, 
including the hardware and software needed to perform 
these functions. Currently, the typical data base is 
made up of a large number of files which are stored on 
magnetic tape. Generally, each file is independent of 
the other files. Each file is accessed for maintenance and 
retrieval by its own set of programs. Frequently, 
maintenance and retrieval are performed on the same 
run. Generally the outputs of each system tie back to 
the inputs. Typical systems are shown in Figure 1. The 
examples shown represent the different ways that data 
can enter or leave the computer system. 

In an environment in which each information system 
is independent of the others, the data contained in the 
data base is generally available only to the "owner" of 
the information system. In addition, there is a certain 
amount of overlap among the various information 
systems. This increases the cost of processing, increases 
the cost of storage, and may cause inconsistencies in 
the data. Frequently, the reports produced by the 
various systems are not directly useful. Rather, the 
reports form a "data base" from which useful informa
tion is manually derived by the user. 



492 Fall Joint Computer Conference, 1971 

OUTPUT USERS 

Figure 1-Typical current architecture 

Integrated information systems 

At the other extreme is the Integrated Information 
System.7,s However, when the concept of Integrated 
Information Systems is analyzed, it is apparent that 
there are several functions that can be integrated. 
These functions can be integrated in varying degrees 
and in addition, combinations of functions can be 
integrated. As a result, there are an almost endless list 
of different varieties of integration. In order to simplify 
the situation for analysis and evaluation, the number 
of alternatives has been reduced to nine. These nine 
types of integration are discussed below. 

1. Integrate the Data Into Data Bases 
This means that instead of the data residing in a 
number of unrelated files, the data are stored in 
planned fashion in order to provide retrievals. 
The exact fashion the data are stored in depends 
on the results to be achieved. The data can be 
stored to reduce redundancy, facilitate main
tenance, expedite access, reduce storage costs, 
etc. 
The result of integrating the data into data bases 
is that the outputs available to the user (re
trievals) are integrated. This means that the 
user can get all of the information he needs 
about a task, event, etc., as a unit. He does not 
have to get one piece of information from one 
place and another piece from another place. 
Data for the user is arranged so that all of the 
information he needs to know about a particular 
topic is presented as a unit no matter where it 
originated. For example, three items· of concern 
on most aerospace contracts are cost, schedule, 
and technical performance. Cost, schedule, and 

performance can be considered independently 
from each other. For example, the actuals for 
each can be compared with the corresponding 
estimates or budgets. However, this doesn't tell 
the whole story. Each factor must also be con
sidered in light of the other factors. Being 
overspent and ahead of schedule might be good, 
but being overspent and behind schedule is 
something else. Thus, it is desirable to integrate 
the various pieces of information about a partic
ular topic so as to form a more complete story. 

2. Integrate Data Processing Functions 
In this model, applications are no longer in· 
dividual computer programs. The functions 
performed by these programs are now per
formed by a group of functionally-oriented 
modules. For example, data capture is handled 
by a common input processor, regardless of the 
source of the data. 
Another function handled in common for all 
systems is data management. The data manage
ment system works with and maintains two 
different sets of files. One set of files contains the 
actual data in the data base. The other set of 
files contains information about the data bases 
such as definitions of the data elements as well 
as information about the structure of the data 
base. 
Other functions which can be handled in common 
are inquiry-display, output generation, and 
terminal management. 
Implementation of this type of integration 
requires an investment in software before any 
application can be implemented because most 
of the applications will use many of the same 
basic software components. 

3. Integrate Data Flows 
In most companies, there is a natural flow of 
information. In a manufacturing company, for 
example, the start is in engineering. Then, the 
mainstream flow of product information is to 
manufacturing planning, manufacturing, and 
testing. Financial informatiol). would have a 
different natural flow. When we speak of 
integrating the data flows, this means to divide 
the company's system of information flows into 
modules in a planned way so that the outputs of 
a processing module can be used directly as the 
inputs to other modules. In addition, all data 
which is needed downstream in the processing 
is collected at the source. 

4. Integrate the Data into Data Bases and also 
integrate Data Processing functions. (1 and 2 
Combined) 



Integrated Information System 493 

TABLE I-Evaluation of integration alternatives 

IMPLEMENTATION IMP OP USER IMP lop USER OUTPUT ACCURACY AMOUNT OF WEIGHTED 
ALTERNATIVES COST COST COST SCH. SCH. RESPONSE COMPLETE- & INTEG. PLANNING TOTAL 

I NESS OF OUTPUT REQUIRED 

1. Integrate D.B. Only 4-20 4-28 1 7-29 4-2X-18 8-80 5-50 6-30 4-20 315 
I 

2. Integrate DP Functions 4-20 4-28 1-7 3-15 I 6-18 2-20 3-30 6-30 4-20 188 
Only I 

3. Integrate Data Flows 4-20 4-28 2-14 4-20 5-15 2-20 7-70 6-30 4-20 237 
Only 

4. Integrate DB and DP 2-10 2-14 8-56 2-10 9-27 9-90 6-60 8-40 2-10 327 
Functions 

5. Integrate DB and Data 2-10 2-14 9-63 2-10 7-21 9-90 9-90 8-40 2-10 348 
Flows 

6. Integrate DP Functions 2-10 2-14 4-28 2-10 7-21 3-30 8-80 8-40 2-10 243 
and Data Flows 

7. Integrate D.B., DP 0-0 0-0 10-70 0-0 10-30 10-100 10-100 10-50 0-0 350 
Functions and Data Flows 

8. Simulate Integration 8-40 8-56 6-48 8-40 0-0 7-70 0-0 0-0 8-40 288 
with Integrated Outputs 

9. Continue same as present 10-50 10-70 0-0 10-50 1-3 0-0 0-0 0-0 10-50 223 

Weighting Factor 5 7 7 5 3 10 10 5 5 

NOTE: The left-most number is the value on a scale of 0-10. The right-most number is the weighted value. 
Ten is the most desirable (unweighted) evaluation. 

5. Integrate the Data into Data Bases and also 
integrate Data Flows. 

6. Integrate Data Processing functions and also 
integrate Data Flows. 

7. Integrate the Data into Data Bases, integrate 
the Data Processing functions, and integrate 
Data Flows. 

8. Integrate the Outputs 
This alternative simulates an integrated data 
base from the users' standpoint, by giving him 
the same retrieval capacity he would likely have 
in an integrated data base. This can be done by 
using integrating networks, by copying files, or 
by using retrieval programs like Informatics 
Mark IV. 

9. Perform No Integration (Continue with In
dependent Systems) 

Evaluation of alternative8 

Not all of these alternatives are equally desirable 
from a cost-benefit standpoint. There are a number of 
ways to evaluate these alternatives. For convenience, a 
simple numeric rating system is used here as shown in 
Table I. The left column of the table shows the nine 

alternatives. The headings of the remaining columns 
represent the criteria by which the alternatives are 
being evaluated. Each implementation alternative is 
evaluated on a scale of 1-10 for each criteria. The value 
10 is the most desirable. Then, each value is weighted 
with the most important criteria receiving the largest 
weight. The weighting factors are shown in the last 
row. The last column on the right represents the 
weighted total for each alternative. 

Based on this evaluation, alternatives 1, 4, 5, and 7 
appear to be the most attractive. Alternative 8 is also 
attractive because it could serve as a bridge to help 
move from Independent Systems to Integrated Systems. 
Since alternative 7 represents the ultimate in integra
tion, the following discussions of integration are based 
on that alternative. 

COMPARISON OF ALTERNATIVES 

Independent information 8Y8tem8 

Advantages 

1. Each system is designed and implemented 
independently. 



494 Fall Joint Computer Conference, 1971 

2. Failure of one system generally doesn't affect 
the others. 

3. Only simple programming, software and hard
ware technology are required. 

4. New systems can easily be added without 
affecting other systems. 

5. Security, back-up, and recovery are easily 
handled. 

Disadvantages 

1. Response for non-standard outputs is generally 
inadequate. 

2. Reports requiring coordinated data are difficult 
to produce. 

3. Extracting corresponding data from different 
files is generally difficult. The needs of the users 
are not always being adequately fulfilled because 
the data they require is in separate, independent 
files. 

4. Outputs of systems tend to form data bases 
from which useful information is manually 
extracted. 

5. The systems tend to be inflexible with respect to 
producing new outputs. 

6. Outputs of one system may have to be manually 
fed in as input to another. 

7. The same data may be stored in several places 
(and one place may be inconsistent with the 
other place). 

8. Inconsistencies may be introduced because 
editing requirements and definitions may vary 
from system to system. 

9. The exact meaning of data is often ambiguous 
because data with the same name in different 
systems is not identical. 

Integrated information systems 

Advantages 

1. Integrated systems can provide service to users 
with a response appropriate to the requirement. 

2. Integrated systems can provide more useful 
service to users and coordinated reports become 
technically feasible. 

3. Integrated systems reduce data errors and 
inconsistencies caused by having the same 
information in two or more places. Data am
biguities are reduced. 

4. Integrated systems allow data retrievals to be 
uncoupled from data acquisition and file main
tenance. This permits changing the systems with 

I 

minimum impact on the user and changing one 
part of a system without impacting other parts. 

5. Integrated Information Systems save money and 
are more cost effective considering: 
a. The cost saving in user clerical processing. 
b. The value of having the needed information 

on time. 
c. The cost saving resulting from having correct, 

non ambiguous and consistent data. 
6. Makes inquiry systems feasible, which in turn, 

increases the availability of data. 
7. When coupled with an inquiry system, Inte

grated Systems allow the user to stop using the 
computer printout as a data base. With an 
inquiry system, the user does not have to print 
out voluminous reports to protect himself 
because he may need to know. 

8. Integrated systems provide an opportunity to 
install extensive checking on data entry. 

9. Manual transcription of data for reentry can 
be eliminated. 

10. New outputs can readily be produced. 

Disadvantages 

1. The design of Integrated Systems is more 
difficult because the system must be designed as 
a whole unit rather than as a collection of 
independent parts. In addition, correction of 
design errors tends to be more difficult. 

2. Since there is less data redundancy, and since 
there may be considerable coupling between 
different sets of data, the propagation of un
detected errors can cause a lot of damage to the 
data base. 

3. A higher level of hardware and software tech
nology is required for Integrated Systems. As a 
result, hardware and software for Integrated 
Systems costs more than the hardware and soft
ware for Independent Systems. 

4. Security, back-up, and recovery can be problems. 

Comparison summary 

Independent Systems are generally simpler and, as 
a result, are easier to implement and operate. However, 
they don't always meet the real needs of the user. 
Integrated systems generally have an involved concept 
and are difficult to implement. However, the payoff 
is that they can provide a more useful and responsive 
service to users. It is difficult to make accurate and 
meaningful generalizations about the comparative cost 
of the two systems. However, it is probably safe to say 



that a really useful and responsive service to users can 
be provided less expensively by an integrated system. 

THE TOP MANAGEMENT VIEW 

Thus far, we have seen the case for Integrated 
Information Systems from the working levels of a 
company. There is also a case to be made for Integrated 
Systems from top management point of view. From this 
standpoint, the central question regarding integrated 
systems is not which is the best way to store and process 
data, but rather what is the best way to manage the 
company? The information system should reflect the 
way the company is to be managed. If the chief execu
tive wishes to manage the company as a number of 
separate entities, then Independent Information Sys
tems are to be preferred. If he wishes to manage the 
company as an integrated unit, then the information 
systems should be organized as an integrated unit. If 
certain parts of the company are best managed as 
independent units and others are best managed as 
integrated units, then a mixed strategy is to be pre
ferred. 

To help identify the role of information systems in a 
company, let's review the way that companies develop. 
At the beginning of the Industrial Revolution, busi
nesses were run by individual entrepreneurs who did the 
planning, selling, producing, accounting, and other 
necessary jobs.9 The basic data and information needed 
to carry out these duties were filed in the entrepreneur's 
head. His data processing system was integrated because 
there was a central source of information from which 
sprung all policies, plans, and decisions. However, the 
tasks began to grow more complex and he couldn't 
handle all of them himself. He hired people to help him 
and then set up functional responsibilities, such as 
accounting, production, engineering, and assigned 
people to these various functions. But as business 
evolved, the entrepreneur found he could not train 
people himself. Colleges and universities offered to 
assist in this task. As university curricula were de
veloped, fences began to appear which were to become 
the functional boundaries within a business-the 
accounting profession was formed, the advertising 
profession, etc. 

This is not to say that these functional boundaries 
were logical in nature, it just happened to be the way 
they were recognized within a business organization. 
With the entrepreneur, we had a natural integrated 
system, but the growth of functional boundaries 
determines the kind of data utilized by the various 
groups and tends to limit the scope of the problems and 
the vision of the individuals tackling these problems. 

Integrated Information System 495 

It is for this reason that we find the computer helping 
with engineering problems, manufacturing problems, 
accounting problems, etc., and not necessarily with the 
company problems. The head of each organizational 
unit is concerned with his own parochial interests which 
tend to take precedence over the broader company 
VIew. 

This suggests a real challenge for management 
information systems designers. The information systems 
must somehow provide the various functional heads, 
as well as top management, the information they need 
to coordinate their activities to achieve the same 
effectiveness as the single entrepreneur. The integrated 
systems concept is a prime vehicle for accomplishing 
this-emphasizing that while the whole is made up of 
parts, the parts must not be of such a specialized and 
unique character that their function as part of the 
whole is forgotten. 

There have been benefits from computerizing 
individual application areas and this will continue to 
be the case. However, the real benefits and payoff from 
computerization will come from systems which recog
nize the interconnection of subsystems, the common 
base from which they draw their input, and the mean
ingful and integrated management reports which form 
the "action" output of the system. 

Thus, from this standpoint, we see that an integrated 
information and control system is a management
oriented system conceived and designed as a single, 
total entity to operate and control an entire organiza
tion. It does not evolve as a result of the dev,elopment 
of many more or less independent applications. In an 
integrated system, the individual applications must be 
designed to meet the needs of a restricted area of the 
organization, but with the whole organization in mind. 
This results in a system welded together by data flows 
where unneeded redundancy in data storage and the 
transmission of useless information from one area to 
another are eliminated. 

AN INTEGRATED SYSTEM ARCHITECTURE 

In a large manufacturing company, such as an 
aerospace company, there is a great diversity of 
activities and functions. Many of these functions are 
tied closely together. However, other groupings of 
functions and activities appear to be rather loosely 
connected from an information systems standpoint. 
This is not because these groups are really independent, 
but rather the links are so complex and nebulous that 
an integrated system which includes them is beyond 
present system technology. 

As a result, there is a need for a mixed strategy in 



496 Fall Joint Computer Conference, 1971 

which the main activities of the company ~re inte
grated, in addition to providing for independent 
systems. With this in mind, a system architecture is 
designed which provides for both Integrated and 
Independent Systems. 

To do this, some new terminology is required and 
this will be discussed first. 

Mainstream data 

The main purpose of keeping data in an on-line data 
base is to make it available for inquiry. Some data files 
are logically interconnected while other data files are 
logically independent. The data files that are closely 
interconnected are called mainstream files. The other 
files are called independent files. The mainstream files 
reside in the mainstream data base. 

Generally, mainstream data is closely associated 
with the cost, schedule, and performance aspects of the 
design, manufacture, and test of end-items to be 
delivered to customers. 

Data entering the computer for the first time is 
called source data. Labor hours, as entered on a time 
card, are source data. A table relating budget function 
to work-in-process element, shop order, and department 
is source data. A table relating shop order to contract is 
source data. Source data can also be defined as data 
entering the computer system on which no prior logical 
nor algebraic process had been performed. Sometimes, 
data is received from a vendor which, by its nature, 
would not be considered source data in our own shop. 
However, by convention, this type of data will be 
included in the collective term "source data". 

Mainstream source data is that source data which is 
required to generate and maintain the mainstream 
files. Mainstream systems are those groups of computer 
programs which generate and maintain mainstream 
files. Generally, mainstream systems are connected 
together by data flows between the mainstream files. 
A mainstream system reads information from the 
mainstream data base, processes it in some fashion, 
and places the results back into the mainstream data 
base. 

Independent files are maintained by independent 
systems. Data required by the independent systems may 
come from the mainstream data base or may come in as 
source data. Independent systems do not alter any data 
in the mainstream data base. Independent files may be 
queried through terminals, and data in independent 
files can be related to the data in the mainstream data 
base only through the independent system. 

The mainstream data base 

The developrp.ent of an Integrated Information 
System requires that basic information be gathered 
from key source documents and used throughout the 
system. It is also important to develop basic master 
files which are used in common by the various sub
systems. These common master files are referred to as 
the Data Base. 

The Data Base holds all relevant information about a 
company's operation in one readily accessible group of 
files. These files are arranged so that duplication and 
redundancy are minimized. Information concerning 
on-going activities is captured once, validated, and 
entered into the Data Base. Normally, the Data Base is 
subdivided into the major information subsets which are 
needed to run a business. Each subset corresponds to an 
Integrated Information System. The key element in the 
Data Base concept is that all parts of a subsystem 
utilize the same Data Base in satisfying their informa
tion needs. 

The Mainstream Data Base has the following 
characteristics: 

1. Data redundancy is minimized; this 
a. reduces processing cost, 
b. reduces storage cost, 
c. reduces data inconsistencies, and 
d. reduces misunderstandings about the mean

ing of data. 
2. Data organization is unified in the sense that all 

information about an entity (person, end-item, 

Figure 2-Integrated system architecture summary 



event, department) is available to anyone with a 
"need to know". 

3. Data is available on a timely basis. 
4. Data is accurate. 
5. Inquiries and responses can be handled by a 

terminal. 
6. All the mainstream data is contained in the data 

base. However, the data base may be physically 
divided into sub-data bases. 

Pictorial representation 

In the Integrated System Architecture Summary 
shown in Figure 2, the files have been integrated into a 
group of functionally-oriented data bases on direct 
access storage devices.10 In this model, most applica
tions are no longer individual computer programs. The 
functions performed by these programs are now per
formed by a group of functionally-oriented modules 
which are described below. The paragraph numbers 
correspond to the numbers in the boxes of Figure 2. 

1. Users. The users are not part of the computer 
system, but they interface with it. As a result, 
they are shown here to provide a more complete 
picture. 

2. Input Processor. Data captured for the data base 
is handled by a common input subsystem, 
regardless of the source of the data. A number of 
different ways of getting source data into 
machine-readable form are available. After the 
source data is entered into the data base, it is 
then available for inspection by the user and 
also available for processing by the various 
mainstream systems. The data which results 
from the mainstream systems are placed into 
the data base where they are available to the 
user. 

3. Terminal Management System (TMS). All 
communication between terminals and the 
remainder of the system is handled through a 
single interface called the Terminal Management 
System. 

4. Data Base Management System (DBMS). All 
communication with the Data Base is through a 
single data base management system. There 
may, however, be several data paths between the 
DBMS and the data base. The DBMS works 
with and maintains two different sets of files. 
One set contains the actual data in the data base. 
The other set contains information about the 
data base, such as definitions of the data elements 
and information about the structure of the data. 

Integrated Information System 497 

5. Mainstream Systems. The processing of data is 
handled by individual modules in much the same 
fashion as at present. Data is obtained from the 
Output Bus. The results are returned to the 
Data Base on the Input Bus. "Bus" is used here 
in the sense of a connector through which any 
data can be received or dispensed. 

6. Inquiry and Output Processor. Requests for 
reports are received either directly from the user 
or from a mainstream system. After compilation, 
the reports are sent back over the terminal 
network or by the batch processes, as appropriate. 

7. Independent Systems. As explained previously, 
not all of the users' requirements dictate the use 
of a central data base. The non-integrated 
requirements are satisfied by Independent 
Systems. 

Functions of the modules 

The previous section described the general functions 
of the module. This section goes into more detail. The 
numbers in the boxes in Figure 3 correspond to the 
numbered comments below: 

1. Users 
Different groups of users have different relation
ships to the computer system. In this model, 
they are grouped into two types: "Input" users 
and "Output" users.4 The Input user can also be 
called the "Operational" user. The Output user 
is a composite of the "Management Control" 
user and the "Strategic Planning" userY 
a. Input Users. The Input users supply the 

mainstream source data to the data base. 
They also get back housekeeping reports de
scribing data errors, file accuracy, processing 
problems, etc. Input users are responsible for 
insuring that the Data Base is complete, 
accurate, and current. 

b. Output Users. The Output users are the 
people for whom the data base is maintained. 
They can make inquiries to the data base by 
means of a· terminal or batch request. Re
sponses to their inquiries can be returned to 
the terminal or through the batch output 
generator. 

2. The Input Subsystem 
a. The Input forms are prepared as a result of 

the natural process of doing work. They are 
not especially prepared for the purpose of 
data base input. Both new master records and 



498 Fall Joint Computer Conference, 1971 

MAINSTREAM 

DATA 

BASE(S) 

(4A) 

DATA 

BASE 

MGMT. 

SYSTEM 

(4B) 

OPERATIONAL USER 

-, 

Figure 3-Integrated system architecture detail 

information about events (transactions) are 
entered through this subsystem. 

b. Data preparation includes keypunch, key 
stations, OCR, or other central facility 
transcribing devices. 

c. In addition to the input forms, source data 
may be captured by means of terminals. 
These can be two-way terminals like the IBM 
2740 or 2260 or can be one-way terminals like 
badge readers. With the two-way terminals, 
the user can receive feedback regarding the 
correctness of the data entered. This is not 
possible with the one-way terminal except in 
a very limited sense. 

d. The function of the Input Editor is to prevent 
erroneous data from entering the data base 
and to provide feedback to the Input User 
regarding the accuracy of the data being 
entered. For example, if the user tries to enter 
alphabetic data in a field defined as numeric, 
he would receive an error message. The Input 
Editor should reside in the same computer as 
the Terminal Management System. 

e. Not all terminals are necessarily on-line to a 

computer. Some of them may transmit data 
to a central site where it is written on mag
netic tape or other machine-readable medium. 

f. Not all of the data received by the Input 
Subsystem is necessarily entered immediately 
into the Data Base. It may be stored in a 
holding queue for batching or other purpose. 

g. The Generalized Input Processing System 
takes each piece of source data, associates it 
with the appropriate identifications, and stores 
it in the data base. 

h. Not all of the input for all applications can be 
handled by the Generalized Input Processing 
Subsystem. Input for a particular application 
may, if desired, be processed by a Customized 
Input Processing System when the general 
system is inadequate. 

3. Terminal Management Subsystem (TMS) 
The TMS handles all communications between 
the terminals and the rest of the system; e.g., 
polling, receiving, transmitting, etc. The TMS 
block is shown at several spots on the chart. 
These boxes are connected with a dotted line 
to indicate that they are all part of the same 



TMS. The TMS can be implemented as a 
stand-alone computer or as a part of a larger 
computer. 

4. Data Storage and Management Subsystem 

a. The purpose of the Mainstream Data Base is 
to provide a repository for the mainstream 
data. However, additional housekeeping data 
is also stored with the mainstream data. The 
housekeeping data consists of the names of 
the data elements whose values are stored in 
the mainstream data base, the locations where 
the values are stored as well as information 
about the data storage organization. For 
convenience in maintenance and usage, the 
Mainstream Data Base can be logically 
divided into sub-data bases. 

b. The Data Base Management System is the 
channel by which data is entered into or is 
fetched from the data base. The DBMS 
tr~nslates the logical READs and WRITEs 
into physical addresses and causes the data to 
be transmitted and checked. 

c. All subsystems are considered to communicate 
with the DBMS, and hence, the Data Base, 
by means of the Input and Output Busses. 
Any information in the Data Base is available 
on the Output Bus (provided access restric
tions are met). 

d. Derived information, as created by an 
Application Process, enters the Data Base 
from the Input Bus. No subsystem other than 
the Mainstream Systems can put information 
on the Input Bus. 

5. Mainstream Systems 
Mainstream systems are computer programs or 
groups of computer programs that generate 
derived data from source data and/ or other 
derived data. Most of the existing computer 
programs would become mainstream systems in 
this architecture. Mainstream systems are not 
normally permanently resident in the main 
computer memory. They are kept in a library 
and called when needed. There is no limit to the 
number of Mainstream Systems. 

a. The actual processing is carried out in a 
processing module. 

b. In addition to the source and derived data 
(master records and events) from the Data 
Base, a number of table or other control 
inputs may be required; e.g., Federal, State, 
and Local tax tables. 

c. Generally, the processing results in one or 

Integrated Information System 499 

more housekeeping reports. These reports 
describe the accuracy and completeness of 
the processing. 

6. The Inquiry and Display Processor Subsystem 

a. The Display and Inquiry Terminals are the 
devices used by the user to retrieve data from 
the data base. Output resulting from requests 
can either be displayed on the terminal or 
sent out over the batch processing system. 
Physically, these terminals may be the same 
as the input terminals, but they don't neces
sarily have to be. 

b. The Display and Inquiry Processor interprets 
the requests received from the terminals and 
causes the request to be satisfied either by a 
display on the terminal or by transmission to 
the Output Generator for batch processing. 

c. The Output Generator receives requests for 
reports either from the Display and Inquiry 
processor or from a mainstream system. The 
Output Generator selects the required data 
from the Data Base, resequences the data if 
necessary, summarizes and prepares the 
reports. 

d. The reports produced by the Output 
Generator generally go back to the Output 
User. 

e. Requests for reports are placed on the 
Request Bus by the Mainstream Application 
Systems. 

7. Independent Systems 
Independent Systems are inherently simpler and 
less costly than Integrated Systems when the 
power of an Integrated System is not required. 
Thus, the architecture contains Independent 
Systems to meet those less stringent require
ments. While only two Independent Systems are 
shown, there can be any number. 
Independent Systems are similar to Mainstream 
Systems in the sense that they are specific 
application-oriented. However, they differ in 
several respects as indicated in the explanation 
of the following modules. 
a. Independent Systems can use information 

from the main data base, but cannot put 
information into the main data base. The 
Independent System processor module gener
ally executes in the batch mode, although it 
could operate in the time-sharing mode. 

b. Independent Systems may have their own 
input which does not become part of the 
source data in the main data base. 



500 Fall Joint Computer Conference, 1971 

c. Input can also be entered by means of 
terminals, if desired. These terminals can be 
physically the same terminals as used else
where in the system, but they don't have 
to be. 

d. Independent Systems can create and maintain 
their own exclusive data bases. The file can 
be resident on disk, drum, tape, etc. 

e. The Independent System reports can go back 
to the Input or to the Output User. 

REFERENCES 

1 RICHARD G CANNING 
What is the status of MIS 
EDP Analyzer Vol 7 No 10 Oct 1969 

2 RUSSELL L ACKOFF 
Management misinformation systems 
Management Science Vol 14 No 4 December 1967 

3 NORBERT L ENRICK 
Why management information systems fail 
ASTME Vectors 6th Issue 1969 

4 T WILLIAM OLLE 
MIS: data bases 
Datamation Vol 16 No 15 Nov 15 1970 

5 JOHN DEARDEN 
How to organize information systems 
Harvard Business Review Mar-Apr 1965 

6 PAUL COLLINS 
The utilization of real-time management information systems 
in the aerospace industry 
Presented to Institute of -Management Sciences 
Los Angeles 20 Oct 1970 

7 ROBERT G MURDICK 
MIS development procedures 
Journal of Systems Management Dec 1970 

8 WILLIAM M ZANI 
Blueprint for MIS 
Harvard Business Review Vol 48 No 6 Nov-Dec 1970 

9 JEROME KANTER 
The computer and the executive 
Prentice Hall 1967 

10 RICHARD G CANNING 
Trends in data management part 2 
EDP Analyzer Vo19 No 6 June 1971 

11 ROBERT N ANTHONY 
Planning and control systems 
Harvard University Press 1965 



A machine independent fortran data 
management software system for 
scientific and engineering applications 

by IAN HIRSCHSOHN 

Integrated Software Systems Corporation 
San Diego, California 

INTRODUCTION 

Increasing interest in management information systems 
had led to much activity in developing techniques and 
software for data management.1 ,2,3 Virtually all of the 
attention has been focused on the specific needs of 
commerce. Elaborate data structures have been de
veloped for accessing the same information via many 
different attributes4 ,5,2 and considerable attention has 
been given to the acquisition of data from multiple 
terminals operated by unskilled clerks.6 

In spite of this flurry of activity, little attention ap
pears to have been given to the specific data manage
ment needs of the scientific and engineering communi
ties. The development of automated data acquisition 
instruments interfaced to magnetic tape recorders or 
on-line computer channels has led to a data explosion 
in many fields. There is a real need to be able to sift, 
catalogue and store this data with a minimum of tears 
and a maximum of efficiency. Unlike commerce, sci
entific data does not usually have multiple attributes 
and is characterized more by its sheer volume and non
standard format. Thus an elaborate data structure is 
usually superfluous and flexibility in handling is 
paramount. 

Most of the data management packages presently in 
existence were developed specifically for commerce and 
are highly inflexible in handling non-standard data 
manipulations, which renders most of them almost use
less to the scientist and engineer. 

This paper will describe the details of a software 
system called DISSCUS (Disk Integrated Software 
System for the Control of Utility Storage) written by 
the author specifically for the management of scientific 
and engineering data. DISSCUS 7,8 is fully operational 
on the UNIVAC 1230/490 system at the Naval Under
sea Center in San Diego. It has been designed to be as 

501 

machine and hardware independent as possible and 
has been written as a system of interlinked FORTRAN 
IV subroutines. 

The author does not propose to present any new con
cepts in data management, he simply seeks to coach 
the relevant existing concepts in terms of the neglected 
needs of the scientist and engineer. 

This paper is oriented toward the poorly informed 
scientific programmer rather than the knowledgeable 
EDP professional. The terminology is specifically de
fined and existing jargon is deliberately avoided in 
order to focus on the problem rather than differences 
of definition. The only claims made by the author for 
the system is that it is simple, flexible and works. 

REQUIREMENTS FOR SCIENTIFIC AND 
ENGINEERING DATA MANAGEMENT 

Before discussing any details of the software, it is 
instructive to formulate the basic data management 
requirements of the scientific and engineering communi
ties. The author will attempt later in this paper to try 
to correlate the features of DISSCUS with those re
quirements. In order to provide some basis for propos
ing the requirements, they will be derived from four 
diverse problems whose needs are common to a vast 
range of problem areas. 

Linear programming 

This involves processing many large matrices, usually 
of different sizes, which cannot all fit into core simul
taneously. They are frequently too large to fit into core 
as a unit and must then be partitioned. Similar diffi
culties are often experienced in problems involving 
linear algebra, factor analysis or analysis of variance. 



502 Fall Joint Computer Conference, 1971 

For this type of problem the data management system 
should possess the ability to:· 

(i) transfer blocks of data of different length to and 
from bulk storage at random, 

(ii) identify the blocks through suitable indices, 
preferably alphanumeric names, 

(iii) group blocks of data (corresponding to matrix 
partitions) under a single index and be able to 
operate on both individual blocks and entire 
groups. 

Contour plotting9 

In most contour plotting applications involving em
pirical data, the surface interpolation technique is ar
bitrary and in many cases the user may be aware of a 
"bump," discontinuity or slope condition of which the 
mathematics is not. IO For elaborate contour charts the 
computation time is usually large and recomputing the 
entire plot just to change the layout can be expensive. 
Thus it is desirable to be able to edit parts of a contour, 
delete and add contours, and store entire charts in such 
a way that they can be retrieved or edited later. These 
needs are common to the whole class of data-base 
graphics, e.g., topography, cartography and charting 
physical properties. To be useful for these problems the 
data management system should, in addition, possess 
the ability to: 

(iv) transfer a file of data blocks from bulk storage 
to tape and restore the file upon request, 

(v) delete or insert data blocks, 
(vi) retrieve data blocks sequentially (for plotting 

contours) . 

Text editing 

In order to be able to manipulate the text of manu
scripts, papers or manuals it is desirable to be able to 
insert, add, delete or replace individual words, sen
tences, paragraphs, subsections and whole chapters. It 
is also desirable to be able to keep copies on tape and 
retrieve the text sequentially for printing. Deletion of 
large quantities of text, at random, ultimately leads to 
a large accumulation of discarded fragments that could 
cause overflow of the bulk storage limits. It is therefore 
desirable to be able to compact. the non-redundant 
text. Considering paragraphs or subsections as data 
blocks, the data management system should also have 

the ability to: 

(vii) "garbage collect," i.e., remove discarded data 
blocks, 

(viii) add, delete or insert segments within a block. 

Time series analysis 

The statistical analysis of seismic recordings, elec
troencephalograms, electrocardiograms and anemom
eter recordings by computer presents singular problems 
in manipulating data records on existing magnetic 
tapes produced by laboratory or field recorders.ll Bad 
records are often present due to equipment malfunction 
or operator error and frequently the data requires com
plex unpacking, scaling and calibration.I2 The needs of 
this problem are common to a rapidly increasing com
munity of users utilizing automated digitized data ac
quisition from a wide variety of measuring instruments. 
The data management system should also possess the 
ability to: 

(ix) assemble a contiguous file of data records from 
arbitrary run sequences of records and/or files 
on a user's tape, 

(x) index records or store them without extraneous 
headers (should the user wish to use his own 
reading routines), 

(xi) form a library of data files on a single tape with 
facility for cataloguing the content and nature 
of each file, 

(xii) massage user records prior to transfer, with a 
standard action, e.g., real to integer conver
sion, or return the record to the user for manip
ulation should he so desire. 

CONSIDERATIONS IN DESIGNING 
PRACTICAL AND REALISTIC SOFTWARE 

The worth of software is best measured, not by the 
sophistication of its instructions, nor by the elegance of 
its algorithms, but by the satisfaction of its users. It is 
far too common to find software that is sophisticated, 
elegant and impractical. It appears to be the vogue to 
concentrate on the computer sciences aspects of the 
software rather than its ease and effectiveness in solv
ing a diversity of real problems. A package that is 
simple to use, clearly documented and easily interfaced 
to other software is far more useful than a slick, con
text-free language that attempts to be all things to all 
users. If the latter provides little facility for interfacing 



Machine Independent Fortran Data Management Software System 503 

other software its use will often be limited to under
graduate instruction in computer sciences. 

The guidelines used in the development of DISSCUS 
were that it should: 

(1) be capable of interfacing a user's FORTRAN 
program with a minimum of effort, 

(2) be as machine independent and flexible as 
possible, 

(3) incorporate as much error diagnostic facility as 
possible and spare no error messages, 

(4) provide facility to return control to the user, 
should he so desire, wherever feasible, 

(5) require minimal user knowledge of the operating 
system, 

(6) not require any special jobs to be run, 
(7) have instructions that can be easily summarized, 
(8) assume as much as possible if not told otherwise 

by the user, 
(9) use a minimum of parameters, with mnemonics 

wherever possible, 
(10) avoid jargon in its documentation and specif

ically define all terms. 

Based on these "ten commandments" the usual ap
proach of writing an interpreter with instructions read 
from cards was rejected because it violates (1) and (6) 
totally. Arguments advanced for this approach are that 
the user needs no familiarity with the host language and 
that an instruction syntax can be devised that is more 
compatible with the application as in the case of LISP, 
SNOBOL and LISTAR. In practice, however, violation 
of (6) is a nuisance and (1) will preclude its use for a 
vast range of applications. Furthermore it is the au
thor's experience that it is relatively straightforward 
for even a mediocre programmer to write a customized 
program to interpret cards and make the necessary 
subroutine or precompiler calls. 

A pre-compiler has flexibility of instruction format, 
but is highly dependent on the operating system and 
also violates (2) and (6). 

The remaining approach is that of a procedure or 
subroutine package. FORTRAN was selected as op
posed to ALGOL or PL/l because although the latter 
are prettier languages, the real world tends to speak 
FORTRAN in spite of all its idiosyncracies. 

This approach usually leads to long parameter 
strings to cover all the options, in violation of (9). In 
order to avoid this, the author configured DISSCUS 
instructions as a system of subroutine and function 
modules which are linked through several labelled 
COMMON blocks.lO As further instructions are speci
fied, their parameters are transmitted through the 

COMMON blocks. This technique divides the param
eters among several routines and avoids redundant 
specification. One problem with this technique is that 
as the user's program becomes more sophisticated, the 
number of subroutine calls increases to a point at which 
they are difficult to follow.10 As a compromise, the 
author wrote a string interpreter that could interpret 
a Hollerith string into component instructions. Thus 
the instruction modifiers could be specified as a· single 
string, for example :** 

CALL TPEFIL ('SOURCE = MYTAPE (UNIT = 2, 
KEY = 1234)*NAME OF FILE=FILE5* 
RECORDS = 2-30, 55, 60-80*FILES = 1-6*WORDS/ 
RECORD=500*MODE=REAL$') 

This technique allows the instructions to be specified 
in a format that is easily understood by the user and 
reaps many of the benefits of an interpreter and pre
compiler without violating any of the basic guidelines. 
It does, however, make it difficult to modify the param
eters during program execution. To avoid this DISS
CUS permits alternate specification of the parameters 
as an array of triples, so that the above example could 
also be specified as7 : 

DIMENSION INSTR( 42) 

{

INSTR (1) = 'SOUR' 
Triple 1 INSTR(2) = 'MYTAPE' 

INSTR(3) =' (' 

{

INSTR(4) ='UNIT' 
Triple 2 INSTR (5) = 2 

INSTR(6) = ',' 

{

INSTR(7) ='KEY' 
Triple 3 INSTR(8) = 1234 

INSTR(9) = ,*, 

{

INSTR (13) = 'RECO' 
INSTR(14) =2 
INSTR(15) ='-' 

{

INSTR(16) ='RECO' 
INSTR(17) =30 
INSTR(18) = ',' 

{

INSTR(19.) ='RECO' 
INSTR(20) =55 
INSTR(21) =',' 

INSTR( 42) = '$' 
CALL TPEFIL(INSTR) 

Operator 
Argument 
Separator 

Operator 
Argument 
Separator 

(B) 

** All interleaving blanks and the characters) / and. are ignored. 



504 Fall Joint Computer Conference, 1971 

The instructions are considered as triples having the 
form: 

Operator = Argument 

Only the first three characters of the operator phrase 
are interpreted; the rest are ignored.7 The triples may 
be interspersed in any order provided that the separa
tor is not a (. 

This alternate technique is more cumbersome even if 
the DATA statement is used, but allows the user to 
compose or modify his parameters with ease. Another 
method of specification is to use the FORTRAN 
statement-ENCODE.7 Unfortunately many FOR
TRAN compilers do not recognize the ENCODE 
statement so that the triples method was devised 
as an alternative in order to maintain machine in
dependence. 

The argument strings are not discussed in detail in 
this paper; they are used in examples where necessary. 

ASSUMPTIONS MADE ABOUT THE 
COMPUTER SYSTEM 

In designing DISCUSS it was assumed that a system 
on which it could be implemented has the following 
lr.Unimalfeatures: 

(a) a FORTRAN IV compiler which implements 
the full specifications of USASI FORTRAN IV, 

(b) a bulk storage random access device such as a 
disk, drum or bulk core, 

(c) three, or more, magnetic tape drives preferably 
capable of transferring a buffer asynchronously 
with computation. * 

These minimal features are to be found on most 
medium and large scale computers and even a large 
number of small scale computers. No assumptions 
were made regarding the optimum length of disk or 
drum sectors. These lengths are set internally and the 
software system can be r~oriented to a given random 
access device with ease. DISSCUS accesses and posi
tions the disk or drum and the tapes through a hier
archy of internal positioning and read/write routines. 
The latter are written in such a way that if the system 
can provide sophisticated software for these functions, 
it can be incorporated relatively easily. The author as
sumed a minimum system tape package namely
read/write a buffer of given length or position forward/ 
back by files/records and return status. 

Many larger installations have provision in their 

* Bulk disk can be used instead of tapes. 

operating systems for ascertaining parameters such as 
record length or byte size, so that some of the DISSCUS 
specifications may be unnecessary in these cases. The 
author has found through bitter experience, that al
though tailoring software to a sophisticated system may 
be expedient, the software will die with the system and 
he assumed as little as possible. 

BASIC ORGANIZATION OF DISSCUS 

The fundamental unit of DISSCUS is a data segment; 
this is defined to be a block of data having arbitrary 
length and content that can fit into core as a complete 
unit. A data segment could be a matrix, a matrix parti
tion, a contour line (or a part of it), a subsection of 
a manuscript or an interval of a time series. 

A collection of segments is termed a file. A file could 
be a map, a contour plot, a manuscript or a time series. 

Files are assembled in a data silo. Thus a single 
tape is usually used for a data silo, but a silo could 
also be kept on disk or drum. 

DISSCUS is organized into three distinct, but con
nected, sections so that the features of one can be used 
without familiarity with the others. 

Segment management is concerned with the storage 
and retrieval of data segments within a specified file. 

File management is concerned with the transfer of 
files to and from a data silo. 

Data manipulation is used to operate on data within 
a given segment, for example, compressing and decom
pressing the segment treated as string of characters, or 
building list structures within it. 

SEGMENT ADDRESSING 

If an index is assigned to each segment as required 
by (ii) above, keeping track of the indices presents a 
problem, particularly in contour plotting and ~ext 
editing in which the number of segments may run Into 
thousands. It is therefore unfeasible to maintain a 
single table of indices in core. If the table is kept in 
bulk storage, an efficient look up scheme is desirable 
due to the high temporal cost of bulk storage refer
ences. One efficient technique that is frequently used is 
hash addressing13 whereby an item is located in a table 
by computing an address based on the index value. 
In the class of problems considered by the author, the 
natural grouping of segments provides the key to a 
more efficient scheme, namely referencing each segment 
by two indices-the name of the group and its name 
within the group as illustrated in Figure 1. 

This scheme has the disadvantage that two indices 
must be used in referencing a segment, but in practice 



Machine Independent Fortran Data Management Software System 505 

it is more natural to think of a segment as part of a 
contour, chapter, matrix or other group. This scheme 
does have several additional benefits-firstly segments 
in different groups can have the same name without 
ambiguity, secondly entire groups can be manipulated 
naturally as units, e.g., entire contours, chapters or 
matrices may be retrieved or deleted in a single opera
tion. It does not preclude elaborate data structures 
such as that of LISTAR4 because these can be de
veloped as trees or rings of pointers contained within 
one, or more, segments pointing to others. 

Problems such as time series analysis and contour 
plotting are naturally oriented toward sequential stor
age and retrieval. For these problems advantage can be 
taken of the ability of many devices, such as tapes, to 
store or retrieve asynchronously with computation and 
thereby decrease the job time significantly. This led the 
author to provide two modes of segment management
random and sequential. 

In random segment management the segments may 
be operated upon at random regardless of their order of 
storage, whereas in sequential management, the seg
ments must be processed in order of storage. If, for 
example, the groups in Figure 1 were stored in order 
from left to right, it is permissible to operate on seg
ments-A(2) , 300FT (CURVE2), 1(1), QQ(G), 
A(lA) and 1(2) in that order only in random mode; 
if the mode is sequential the order must be AC1A), 
A(2), QQ(G), 1(1), 1(2), 300FT(CURVE2). 

A random segment file is usually processed by a bulk 
storage device, whereas a sequential file is usually 
processed through tape. If the sequential operations 
only involve retrieval or the creation of a new file, just 
one tape is necessary, otherwise both a current file tape 
and an updated file tape are necessa~y. 

SEGMENT OPERATIONS 

Most segment operations are performed by a set of 
FORTRAN functions. The reason for using functions 
rather than subroutines for most of the operations, is 
that a function provides a cheap and ready method for 
returning an error condition or other information to 
the user. 

Define quantity to be either a group or a segment 
and list to be the respective existing file or group. 

The basic operators that are available (together 
with their mnemonics) are: 

Add ADD 

Delete DRP 
Insert INS 

Adds the quantity to the end of 
the list 
Deletes the quantity from the list 
Inserts the quantity after a speci
fied quantity on the list 

GROUPS 
A QQ 1 3RD 300FT 

o 

G Curve1 

2 

Curve3 
Segments 

Figure l-Segmen-t addressing scheme 

Retrieve GET Transfers the quantity to a buffer 
area or array supplied by the user 

Replace RPL Deletes the quantity and replaces 
it by another, i.e., a combined 
DRP and INS 

Edit EDT Overwrites an existing quantity 
by another with no deletion 

Stack BEG Adds the quantity at the begin
ning of the list 

Retrieve Next NXT Transfers the next quantity on the 
list, following the last GET or 
NXT, to a given buffer. 

The quantity is denoted by another mnemonic as 
follows: 

NDE 
LST 
NSQ 
LSQ 

random group 
random segment 
sequential group 
sequential segment. 

Combining the quantities mnemonic with that of the 
operator yields the function name for the desired 
operation. 

Table I summarizes the standard functions and their 
arguments; use of this technique is best illustrated by 
the examples that follow. 

Example 1. A linear programmer wishes to store two 
partitions PART1 and PART2 each having 1000 



506 Fall Joint Computer Conference, 1971 

TABLE I-Standard Segment Management 
Functions and Arguments 

Random by Sequential by 

Group Segment' 
Suffix Prefix NDE LST 

Group 
NSQ 

Segment 
LSQ 

Add ADD 
Delete DRP 
Insert INS 
Retrieve GET 
Replace RPL 
Edit EDT 
Stack BEG 
Retrieve 
Next NXT 

Argument Number 
Index Arguments 

a 1 

a 
a 
b 
d 
b 

a 

c 

e 
g 
f 
g 
f 
f 

c 

a 
a 
b 
d 
b 

a 

c 

Parameter List 

(DELETED or NEW GROUP) 

f 
e 
g 
f 
g 
f 
f 

c 

b 2 (NEW GROUP, PRECEDING or 
REPLACED GROUP) 

c 

d 
e 
f 

g 

2 

3 
2 
4 

i') 

(BUFFER ARRAY, ARRAY 
LENGTH) 

(GROUP, BUFFER, LENGTH) 
(GROUP, SEGMENT) 
(GROUP, SEGMENT, BUFFER, 
LENGTH) 

(GROUP, NEW SEGMENT, 
PRECEDING or REPLACED 
SEGMENT, BUFFER, LENGTH) 

words, later retrieve them as a unit in the work space 
IWORK, operate on them and then overwrite the 
existing partitions with the new partitions. The in
struction sequence might be: 

IDUMMY = NDEADD ('DIST') 
IDUMMY=LSTADD('DIST', '1ST', 

PART1, 1000) 
IDUMMY = LSTADD('DIST', 2, PART2, 

1000) 
IDUMMY = NDEGET('DIST', IWORK, 

2000) 

Operate on IWORK 

IF(LSTEDT('DIST', '1ST', IWORK, 
1000).LT.O)GO TO 100 

IF(LSTEDT('DIST', 2, IWORK(1001), 
1000) .GE.O) GO TO 200 

100 PRINT 101 
101 FORMAT('ERROR IN DISSCUS OP.') 

STOP 
200 CONTINUE 

NDEADD defines a new group DIST and the two 
calls to LSTADD tack the partitions onto DIST. 
NDEGET retrieves the group as a unit and LSTEDT 
edits the existing partitions. The first 4 calls do not 
make use of the function argument whereas the last 
two will terminate the job if an error occurs. Unless 
told otherwise (see below), DISSCUS will print any 
errors and proceed. The mode of the index names is 
unimportant as long as they are single computer words. 

Example 2. The user of Example 1 now wishes to in
sert the partition PART1 before the segment 1ST and 
PART2 after 1ST. He then wishes to transfer the 
group, segment by segment, to form a new group
TIMES. 

1= LSTBEG('DIST', 0, PART1, 1000) 
1= LSTINS('DIST', 'lA', '1ST', PART2, 

1000) 
1= NDEADD ('TIMES') 
1= LSTGET('DIST', 0, IWORK, 1000) 
J=l 

300 1= LSTADD('TIMES', J, IWORK, 1000) 
1= LSTNXT(IWORK, 1000) 
J=J+1 
IF(J.GE.O)GO TO 300 

This example illustrates the use of sequential re
trieval by LSTNXT without having to bother with in
dex names; LSTGET is necessary, however, to start 
the ball rolling. Note the use of the error condition 
(negative value) for testing for the end of the operation. 

Use of the sequential mode, activated by the prefices 
NSQ and LSQ, follows the same pattern as their coun
terparts NDE and LST. In this mode, however, the 
files are generally on tape and it is necessary to specify 
either the source or destination silo, or both, depending 
on whether a new file is created, an existing file is read 
or a file is an update to an existing file. BEGSQ (see 
Table II) is used to initiate operations on a sequential 
file and ENDSQ terminates operations on the file as 
illustrated by: 

Example 3. A time series analyst wishes to drop 
segment TIME2 and then insert a 250 word segment 
from the array BLOCK after the segment TIME5 
in the series with group having the name HEART. He 
then wishes to create a new series LUNGS after 
HEART, composed of 50 segments of 400 words each 
w.hich he will read himself. The current file with name 
JONES is on silo W ARD3 and the updated file is to be 
placed on W ARD5. Finally he wishes to retrieve and 
operate on the 20 segments following TIME5. 



Machine Independent Fortran Data Management Software System 507 

CALL BEGSQ ('SOURCE SILO = W ARD3* 
DESTINATION = WARD5*NAME OF 
FILE = JONES$') 

I = LSQDRP ('HEART', 'TIME2') 
I = LSQINS ('HEART', 'TIME6', 'TIME5', 

BLOCK, 250) 
I=NSQINS('LUNGS', 'HEART') 
DO 100 J = 1,50 

READ 400 words into IWORK 

100 I=LSQADD('LUNGS', J, IWORK, 400) 
CALLENDSQ 
CALL BEGSQ ('NAME = JONES* 

SOURCE = W ARD5$') 
DO 200 J = 1,20 
IF (J .EQ.l) I = LSQG ET ('HEART', 

'TIME5', IWORK, 400) 
IF(J.GT.l)I=LSQNXT(IWORK, 400) 

Process segment in IWORK 

200 CONTINUE 
CALLENDSQ 

TABLE II-Additional Subroutines and Functions 
for Segment Management 

(see References 7 and 8 for argument lists) 

Name 

NDEMOR(c)* 

NSQMOR(c) * 

NDEADG(e)* 
NDEING 
RSTGRB 

BEGSQ 
ENDSQ 

PRTSQ 
CLRDSK 
PRTDSK 

DMPDSK 

GETDSK 
ERROFF 
ERRPRT 
ERRSTP 
SQ TO RA 

RA TO SQ 

Purpose 

Retrieves another portion of a large random 
group 
Retrieves another portion of a large sequential 
group 
Adds a group with garbage as first segment 
Inserts a group with garbage as first segment 
Discards current garbage chain and starts 
anew 
Initiates sequential operations 
Terminates sequential operations on current 
file 
Prints a map of segment names for a file 
Clears the current disk file 
Prints a map of segment names for current 
disk file 
Transfers the current disk file to a specified 
silo 
Transfers a disk file from a silo to disk 
Suppresses printing of error messages 
Resets ERROFF to print errors 
Causes job termination if an error occurs 
Converts a specified sequential file to current 
disk file 
Converts a current disk file to a sequential file 

* See Table 1 for argument lists. 

The retrieval operation could not be done immedi
ately following the update because HEART lies before 
LUNGS and this would violate the rule of sequence; 
this necessitates terminating the update with ENDSQ 
and then initiating a new sequence using BEGSQ. The 
argument strings for BEGSQ are self-explanatory and 
silos are discussed further in the File Management 
section below. 

The contents of segments deleted from the current 
random file (henceforth referred to as the disk file) by 
NDEDRP, LSTDRP, NDERPL or LSTRPL are 
added onto the end of a "garbage chain." The current 
garbage chain can be turned into the first segment of 
new group by NDEADG or NDEING (see Table II). 
This facility can be very useful for many applications, 
for example: 

Example 4. To edit a manuscript held in the disk 
file a user wishes to form a new chapter (group), 
CHAP8, out of the contents of chapter, CHAP2, and 
paragraphs PARA3 and PARA2 of chapter, CHAP7. 
The instruction sequence could be: 

I=NDEDRP('CHAP2') 
I=LSTDRP('CHAP7', 'PARA3') 
I=LSTDRP('CHAP7', 'PARA2') 
I=NDEADG('CHAP8', 'PARA1') 

The garbage chain becomes a single segment with 
namePARAI. 

Working through the garbage chain rather than a 
retrieve-store-drop-insert sequence is both simpler and 
more efficient. 

Frequently, in using NDEGET or NSQGET, the 
sum of the contents of the segments of a group may be 
too large to fit into the workspace available. In this 
case the rest of the group can be retrieved one portion 
at a time by using NDEMOR or NSQMOR (see 
Table II) respectively until the group is exhausted. 

An image of the contents of the disk file can be trans
ferred to a silo by using DMPDSK (see Table II). 
Alternatively a disk file image can be restored from a 
silo using GETDSK, e.g. 

CALLDMPDSK('DEST.=TAPE5*NAME= 
PLOT5$') 

CALL GETDSK('SOURCE=TAPE2*NAME= 
PLOT3$') 

writes the current disk file contents onto silo TAPE5 
as the file PLOT5 and sets the disk file to the image 
held by file PLOT3 of silo TAPE2. This facility is 
powerful for drawing elaborate plots, for example in 
drawing a contour plot on a map with political boundar
ies it is not necessary to hold the entire mess as a single 



508 Fall Joint Computer Conference, 1971 

file-the coastlines could be one file, the political 
boundaries a second and the contour plot a third; 
furthermore all the files need not be on the same silo. 

When many operations are performed on the same 
file it is easy to lose track of the groups and segments 
in the file. PRTDSK and PRTSQ print a map of the 
groups and segments in the disk file or a sequential 
file respectively. 

The routines SQ TO RA and RA TO SQ convert a 
sequential file to the current disk file or vice versa, 
respectively. This facility provides a simple means for 
garbage collection as demanded by requirement (vii) 
above, e.g., the sequence 

CALL RA TO SQ('DEST=A TAPE*NAME= 
DUMMY$') 

CALL SQ TO RA('NAME = DUMMY*SOURCE = 
A TAPE$') 

causes the disk file to be written onto the silo, A TAPE, 
with all superfluous fragments removed by RA TO SQ. 
SQ TO RA writes the same file back onto the disk 
minus all garbage. 

The other subroutines in Table II are self-evident 
and will not be elaborated further. 

DATA SILO FUNDAMENTALS 

Maintaining silos on tape requires designing the 
software system around the physical and practical 
limitations of tape. The first anomaly of tape is that if 
a data block, or record, is written into the middle of a 
tape file, generally the next record is unreadable even 
if the update has the same length as the original. 
Second, the time to position the tape to a specified 
record and file is usually long. Third, tapes are ex
tremely prone to parity errors. There is also the prac
tical consideration that the data contained on the silo 
may be valuable and if an error occurs during the up
date, the original data should be preserved at all costs. 

In order to alleviate these criteria, DISSCUS has 
two types of silo-a transactions silo and a master silo. 
Each silo is identified by a header record at the begin
ning of the tape, containing the type and name of the 
silo; in addition the user may assign his own key to the 
silo. Before any operation is performed on the silo, 
DISSCUS checks to see whether the tape is a valid silo 
and that the name and key agree with those specified. 
Writing on a master silo is strictly forbidden except 
when an update is made and then only on the updated 
version, so that if the update should fail the original is 
still intact. Transactions silos are used for writing disk 

file images and sequential segment files; a file may only 
be added at the end of the last file written. There is no 
restriction on reading from a silo provided that it 
passes the validity checks. Files may be transferred 
from a transactions to a master silo as described in the 
next section. 

The actual tape records of a silo file usually have 
uniform length to simplify reading. Thus sequential 
file segments may be broken across several records or 
suitably blocked, but this is transparent to the user. 

Each file on the silo has a unique name and the silo 
maintains a directory of the names of its files as well as 
a catalogue containing a summary of the file contents, 
e.g., the type of file, number of records, record length, 
date and job number of making. The catalogue of a 
master silo is more extensive than a transactions silo 
and has facility for storing and editing user remarks, 
as well as other basic information such as the number of 
bytes/word, byte length, date and job number of last 
update, original source tape and mode of storage. 
DISSCUS carefully checks the directory and catalogue 
of a silo before reading from it, to see whether the file 
exists and the operation is valid. The author deliber
ately made DISSCUS as detail conscious as possible, 
because he has yet to find a user who kept a completely 
current notebook of the exact contents of all his tapes. 
Time and again the author has seen users waste hours 
of computer time analyzing the wrong data and he is 
one of the worst offenders. 

Finally, in order to satisfy requirement (x), the 
directory and catalogue for a master silo are held sepa
rate from the data files. 

TABLE III-Summary of File Management Subroutines 
(see References 7 and 8 for arguments) 

Name 

NEWSLO 
SETSLO 
XECSLO 
PRTSLO 
TPEFIL 

ADDRCS 

XFRFIL 

DRPFIL 
REMARK 

PRTOFF 
SETFIL 
LSGNXT 
LRCNXT 

Purpose 

Turns a tape into a silo 
Initiates a silo update 
Executes the silo update 
Prints a map of an existing silo 
Creates a contiguous file from a list of records 
and files on a specified user tape 
Adds or splices a list of records and files from 
a user tape into an existing file 
Transfers a file from another silo to the 
update 
Deletes a file from the update 
Adds, deletes or inserts a remark line on the 
silo catalogue 
Suppresses printing of summaries 
Initiates retrieval from a user made file 
Retrieves an arbitrary segment from a user file 
Retrieves a record from a user· file 



Machine Independent Fortran Data Management Software System 509 

FILE MANAGEMENT OPERATIONS 

All file management operations must be conducted 
on a legitimate silo. An arbitrary tape can be con
verted into a silo by NEWSLO (see Table III), e.g., 

CALL NEWSLO('TRANS. SILO= 
TAPE4(KEY = C5GA) $') 

creates a transactions silo with name TAPE 4 and as
signs it the key C5GA. Once the silo has been created 
it is available for operations such as disk file image 
transfer or sequential segment operations. Frequently 
it is desirable to transfer important files from a trans
actions silo to a master silo, this is done by performing 
an update, e.g., 

Example 5. The user wishes to transfer the file 
JONES from silo WARD5, PLOT5 from silo TAPE5 
and PLOT3 from silo TAPE2 onto a new master silo 
SILOl: 

CALL NEWSLO('MASTER=SILOl(KEY = 
1234) $') 

CALL SETSLO('NEW SILO= SILOI (KEY = 
1234)$') 

CALL XFRFIL ('SOURCE = W ARD5* 
NAME = JONES$') 

CALL XFRFIL ( 'NAME = PLOT5*SOURCE = 
TAPE5$') 

CALL XFRFIL ( 'NAME = PLOT3*SOURCE = 
TAPE2*INSERT AFTER FILE = JONES$') 

CALL XECSLO(O, 0, 0) 

NEWSLO turns SILOI into a master silo with key 
1234. SETSLO initiates the update and defines the 
participating silos. If the silo was assigned a key, this 
must be specified in parentheses after the silo name 
regardless of the operation. The update instructions 
(XFRFIL in this case) are stored as an internal disk 
file and executed by XECSLO. Note that the physical 
position of a file can be specified by using the INSERT 
instruction as illustrated in the third call to XFRFIL. 

Building up the update instructions as a disk file and 
then executing them has several advantages over per
forming the instruction as it is encountered. Firstly, the 
user does not have to follow a rigid sequence in specify
ing the instruction subroutines and this may be vital 
in some problems in which the instruction information 
is not available at the time at which the instruction 
would otherwise have to be called. Secondly, if there is 
any error in an instruction no tape operation takes 
place, saving an incredible amount of time in practice. 
Thirdly, the directory and catalogue can be fully up
dated before execution and can therefore be placed 

conveniently at the head of the master silo. Finally, if 
the tape controller is capable, the internal tape posi
tioning operations can be optimized to look ahead on 
the list of instructions and position idle tapes ahead of 
time, resulting in enormous time savings. 

One of the most useful features of the file manage
ment section is its facility for handling users' data 
tapes as required by (ix) and (xii), e.g., 

Example 6. A user wishes to add several files derived 
from his tapes MYTAPE and RUN5, to SILO 1 of 
Example 5 as specified by the sequence: 

\ 

CALL NEWSLO('MASTER=COPYl$') 
CALL SETSLO('OLD SILO=SILOl(KEY = 

1234) *NEW SILO = COPYl$') 
CALL TPEFIL('NAME ASSIGNED = EXPT4* 

WORDS/REC = 150*BYTES/WORD = 8* 
BITS/BYTE = 4*RECORDS = 50*MODE = 
TWOS COMPL.*FILES= 1,7,20-50,7,5, 1-10* 
SOURCE TAPE = MYTAPE$') 

CALL TPEFIL ('SOURCE = RUN 5*RECORDS = 
1-500, 600-650*FILES = 2-7*DROP 
RECORDS = 50, 65, 100-150, 605, 620-640* 
WORDS = 250*NAME= EXPT2*INSERT 
AFTER = JONES$') 

CALL TPEFIL ( 'NAME = CONVI *SOURCE = 
MYTAPE*MODE=REAL*ORIGINAL REC 
LEN G. = 150*WORDS = 600*RECORDS = 
100*ACTION = USER$') 

CALL REMARK ('4TH EXPT$', 'NAME= 
EXPT4$') 

CALL REMARK('PACKED STORAGE$', 
'NAME = EXPT4$') 

CALL REMARK('UNPACKED STORAGE$', 
'NAME = CONVl$') 

CALL ADDRCS('RECORDS= 10-35*FILE=9* 
ACTION = REAL TO INTEGER*NAME= 
EXPT2*SOURCE = RUN5$') 

CALL REMARK('COMBINED RECORDS$', 
'NAME = EXPT2$') 

CALL NEWSLO ('MASTER = COPY2 (KEY = 
AG2)$') 

CALL XECSLO(IWORK, 1200, 'COpy 
SILO = COPY2 (KEY = AG2) $') 

NEWSLO turns COPYI into a master silo with no 
key and SETSLO initiates the update with SILOI as 
the original and COPYI as the updated silo. The first 
call to TPEFIL adds a file having name EXPT4 with 
150 words per record, containing 8 bytes/word, of 4 
bits each in twos complement. * The file is to be trans
ferred from the user's tape MYTAPEand is to consist 
of the first 50 records from each of the files 1, 7, 20 to 
50, 7, 5 and 1 to 10, concatenated in that order. The 



510 Fall Joint Computer Conference, 1971 

second call to TPEFIL illustrates the use of the DROP 
option, i.e., records 50, 65, 100 to 150, 605 and 620 to 
640 will be deleted during the transfer of the record 
sequences from the files 2 to 7 of the user's tape RUN5; 
the file will be inserted after the existing file JONES 
(on SIL01). The third call to TPEFIL illustrates the 
user interaction facility. In this case records consisting 
of 150 words each are to be read from the first file of 
MYTAPE (default FILE is file 1). After each record 
is read DISSCUS calls a user supplied subroutine with 
the name USER having the contents of the current 
record, the file name, original record number, and origi
nal file number as arguments. The user may then per
form whatever operations he pleases on the record. 
Upon return to DISSCUS it is transferred as a 600 
word record to the update silo and the fact that each 
word is a real number is noted. 

The calls to REMARK each add a line of user re
marks to the silo catalogue for the file named in its 
argument. ADDRCS adds a further set of records to 
the file EXPT2 previously initiated and each word of 
every record is converted from real to integer before it 
is written onto COPYl. 

XECSLO actually performs the instructions which 
were hitherto stored in the disk file. IWORK is a work
space buffer with at least 1200 words to accommodate 
two of the longest records to be encountered, viz., 600 
words for file CONVl. 

During an update, a summary of each instruction is 
printed to insure that there is no misunderstanding and 
the directory and catalogue are printed at the conclu
sion of the update. This printing can be suppressed by 
PRTOFF and PRTSLO can be used if a map of the 
contents of an existing silo is desired. The new silo 
tape is rewound at the end of the update and checked 
for hardware induced errors. 

SETFIL may be used to initiate subsequent re
trieval of information from a file constructed by 
TPEFIL and LSGNXT or LRCNXT are then used to 
retrieve a single block of information. LSGNXT re
trieves the next segment of data of specified length re
gardless of whether it crosses record boundaries, 
whereas LRCNXT retrieves the next record. These 
routines are provided for the user's convenience, but he 
is free to use his own. 

DATA MANIPULATION 

This section is still under development. Currently 
routines exist for compressing and decompressing seg
ments consisting of card image blocks, and for string 

* These specifications may be unnecessary on installations on 
which they can be retrieved from the system. 

manipulation. These routines are straightforward and 
will not be elaborated further. 

It is anticipated that at the time this paper is pre
sented, routines will exist for forming segments con
sisting of tree and ring structures for pointers to other 
segments. This would be useful for problems requiring 
elaborate data structures, but would not impose un
necessary overhead or complication on the majority of 
users who do not need such capability. 

NOTES ON THE IMPLEMENTATION OF 
DISSCUS 

DISSCUS combines many techniques described in 
detail in previous literature4.5,14 so that only a brief 
description of these techniques is given. 

For the random mode segment operations, DISSCUS 
uses a paged virtual memory scheme.14 Bulk storage, 
or disk, is divided into N pages, n of which reside in 
core (see Figure 2). A fresh data chunk of length x is 
placed in the core page, j, for which the available space 
Sj'?x and (Sj-x) ~ (Sk-X) for any k~n otherwise 
a fresh page is used, i.e., the packing is as tight as 
possible. A clock count is incremented with each virtual 
memory reference and demand for a page not in core 
releases the core page whose clock count T l < Tk for all 
k~nandk¢l. 

Page No. ~t8~c:::~~~::.8 L 
Clock Count I~..L...II:=~~-_-~D:~===O T 
Page Space I I I I [:::~=D~=~~D S 

Core Pa 
, ,--~ m

------ ----~ 

SP.aCe ,/' new 
avaLlable I _____ x ____ data 

------------------ ---- ---- ------~ 
DLsk Pages 

Figure 2-Paging of bulk storage 



Machine Independent Fortran Data Management Software System 511 

Large random mode segments are split into chunks 
across several pages.14 The segment address table14 for 
only one group resides in core at one time. The chunks 
are linked as a multilist structure5 of back pointers as 
depicted in Figure 3. Back pointers are used rather 
than forward pointers because this saves referencing 
the disk to update the forward pointer of the last chunk 
of the group. Thus the multilist structure parallels an 
inverted file structure5 represented by the segment ad
dress table. Forward and backward pointers are kept 
between the group headers themselves to facilitate in
sertion and deletion of groups. The signs of the chunk 
address are used to separate them into segments rather 
than maintaining extra pointers, in order to save core. 

The back pointers are needed for the garbage chain 
operations and their overhead is negligible. The exten
sive file management capability encourages the user to 
break up his data into several different files which often 
alleviates any need for special garbage collection and 
compromises the need for expensive disk residency for 
a large single file. 

The sequential segment operations are based on an 
index sequential scheme5 as illustrated in Figure 4. The 
segments are stored on consecutive records of uniform 
length and a table of pointers to the first record of 
each group is kept in core. 

The random mode routines are used for storing the 
silo update instructions. Each file represents a group 
and its particulars are contained in the first segment. 

GROUP TAIL POINTERS 

_~~~==~EMl=~~~~~~_-_-_D 1 held 
GROUP HEAD POINTERS • 

~~~~~~~(s]==~~~~~~~~D Ln core 

C2~IL2 
I 
I 
I 
I 
I 
I 

~~~M 

SEGMENT ADDRESSES 

CHUNK 
NAME ADDRESSES 

A. _ M NO. OF ITEMS 

B-1 LAST 
C + C _ SEGMENT 

D 

- C3 } 
- C2 SEGAMENT 

+ CI 
TABLE HOLDS 

GROUP C 

Figure 3-Random segment management 

Master SLLo 

[ 

-. SILO IDENTIFICATION 
--'- RECORD 

DIRECTORY ] DIRECTORY OF 
FILE : FILE NAMES 

I 

I 

CATALOGUE 
FILE 

t PARTICULARS FOR 
---1 FILE A 
tPARTICULARS FOR 
:..-1 FILE B 

.---.;;;;;;;;;;a.......,fPARTICULARS FOR 
--.J LAST FILE 

==I REMARKS FOR A 

~ REMARKS FOR B 

Figure 4-Sequential segment management 

Each call to REMARK or ADDRCS adds an update 
segment to the group. The facility of the random mode 
operations for inserting, deleting and adding groups or 
segments is very handy for inserting, deleting or adding 
file instructions and enables splicing of records into ex
isting files simply by inserting and editing the necessary 
instruction segments. XECSLO converts the update 
instructions into a task list of actual tape positioning, 
reading and writing operations, which is stored as 
another group. The task list can then be optimized to 
position idle tape drives if the hardware is capable of 
it. The task list is then executed to form the updated 
silo. 

Figure 5 shows the composition of a transactions silo. 
The directory of file names is the last file and is over
written and restored when a new file is added. It is 
not kept at the beginning of the tape because it could 
not be updated when a new file is added. 

Figure 6 shows the composition of a master silo. The 
file particulars are stored as consecutive records of uni
form length to facilitate reading and the variable 



512 Fall Joint Computer Conference, 1971 

length user's remarks are blocked at the end of the 
catalogue file. 

CONCLUSION 

DISSCUS provides a modular utility software system 
that is adaptable to most applications. In those areas 
in which it has limited capability, its design enables the 
user to utilize as much of it as he sees fit and program 
whatever else he needs. For example, problems requir
ing elaborate data structures can be handled adequately 
by maintaining the trees and rings as separate segments 
with suitable pointers to the segments containing the 
actual data. This relieves the user of the chores of 
paging and segmentation and provides him with the ad
ditional capability of file management. 

To the casual observer, DISSCUS may not seem to 
provide any service not currently available in the Job 
Control Language of some systems such as OS/360. 
A primary motivation for writing DISSCUS is the ex
treme difficulty (if at all possible) involved in changing 
the specifications or sequence of the control instructions 

TransactLons SLlo 
FILE 1L SILO IDENTIFICATION 

FILE 2 

A 

FILE 3 

B 
FILE MARKr-

LAST FILE[ 

., PARTICULARS FOR 
--1 FILE A 

t PARTICULARS FOR 
---.i FILE B 

DIRECTORY 
IDENTIFIER 

DLrectory 
OF FILE NAMES 

Figure 5-Transactions Silo organization 

POINTERS TO 1ST RECORDS 

.------.......... = ~ ~ ~ ~ ~ ~ ~ -------~ ~ = ~~ ~~ -_-_D 
TABLE HELD IN CORE 

RECORD 
1 

RECORD 
3 

Group 1 

SEGMENT 1 

SEGMENT 2E 
SEGMENT 3 

RE~ORD Group 2 

Figure 6-Master Silo organization 

during program execution. Dynamic interaction with 
these instructions is unavoidable in many scientific ap
plications and seemingly versatile Master Control 
Languages are usually a source of considerable frustra
tion in these areas. 

The author hopes that this paper will help stimulate 
interest ,in providing practical, user oriented software. 

REFERENCES 

1 A W HOLT 
Data structure theory and techniques 
Management Information Services 
Box 5129 Detroit Michigan 48236 

2 I FLORES 
Data structure and management 
Prentice Hall 1970 

3 P J FRY 
Managing data is the key to MIS 
Computer Decisions January 1971 pp 6-10 

4 A ARMENTI et al 
LIST AR-Lincoln information storage and associative 
retrieval system 
AFIPS 1970 Spring Joint Computer Conf Vol 36 
pp 313-322 



Machine Independent Fortran Data Management Software System 513 

5 G G DODD 
Elements of data management systems 
ACM Computing Surveys 1 2 June 1969 pp 117-133 

6 T L CONNORS 
ADAM -A generalized data management system 
AFIPS 1966 Spring Joint Conf Vol 28 pp 193-203 

7 DISSCUS beginner's manual 
Integrated Software Systems Corp 
4131 Jewell Street San Diego California 92109 

8 DISSCUS ~ntermediate manual 
Integrated Software Systems Corp 
4131 Jewell Street San Diego California 92109 

9 S P MORSE 
Computer storage of contour map data 
ACM Proc 23rd Nat Conf 1968 (P-38) pp 45-51 

10 I HIRSCHSOHN 
AMESPLOT-A higher level data plotting software system 
Comm ACM 13 9 Sept 1970 pp 546-555 

11 C H GIBSON R R LYON I HIRSCHSOHN 
Reaction product fluctuations in a sphere wake 
AIAA Journal 8 10 Oct 1970 pp 1859-1865 

12 I HIRSCHSOHN 
TURBSTAT time series analysis 8ubroutines 
AMES Department UCSD La Jolla California 92037 

13 R J BELL C H KAMAN 
The Linear quotient hash code 
Comm ACM 13 11 Nov 1970 pp 675-677 

14 P J DENNING 
Virtual memory 
ACM Computing Surveys 2 3 Sept 1970 pp 151-188 





Requirements for a generalized 
data base management system 

by A. C. PATTERSON 

Bankers Trust Company 
New York, New York 

Several approaches to generalized data base manage
ment systems have been documented for the benefit of 
the data processing community. Perhaps the two most 
significant reports are Codasyl's Data Base Task Group 
Report issued in October, 1969, and revised in April, 
1971, and the joint GUIDE/SHARE Data Base 
Managemen t System Require men ts. Each report 
brings with it its own distinct jargon to our already 
over-developed Tower of Babel. Although the reports 
often advocate similar solutions to the data manage
ment problem, there is a clear difference in emphasis 
and dominant philosophy. Perhaps the most imme
diately obvious difference between the two reports is 
that Codasyl has specified an actual COBOL syntax for 
the implementation of a data base management 
system (DBMS) and the GUIDE/SHARE report has 
simply defined the requirements the data processing 
community would impose on implementors of DBMS's. 

The GUIDE/SHARE report is the result of work 
carried out over a twenty month period beginning in 
1969 and culminating in the November, 1970, document. 
The committee was comprised of representatives from 
more than forty companies engaged in diverse activities 
from banking to armed forces, life insurance to machine 
manufacture, and government agency to university. 
It is reasonable to assume, then, that the requirements 
set forth by the committee are indeed representative of 
the requirements of the data processing community at 
large. 

The GUIDE/SHARE committee was charged to: 

Define the users functional requirements for a 
data base oriented system. The group does not 
intend to concern itself with implementation 
methodology at this time. 

The document which summarizes the committee's 
thinking neither pretends nor intends to describe an 
existing system or one currently in development. The 

515 

report is in no way intended as system specification. 
Some of the requirements may not even be imple
mentable under the current hardware and software 
technologies. The report is rather intended to state a 
group of requirements the universe has placed on data 
base management systems of the future, both near and 
long range. The committee felt that to limit its thinking 
to concepts effectively realizable on currently available 
hardware and within the reasonably primitive software 
technology of today would be to limit the value of the 
work by assuring its obsolescence upon publication. 
Furthermore, it has been the intention to advance the 
state of the data base art by providing a forum where 
data base related concepts could germinate and burgeon. 

Examine first the functions which are basic to a data 
base management system. First, there is a Data Base 
Descriptive Language (DBDL) which fulfills among 
others, the data definition function. The Data Base 
Manager (DBM) is the supervisory function carried 
out by hardware and software which coordinates all 
components of the system. The Data Base Command 
Language allows a user to make requests within the 
Data Base Management System. The Data Base 
Administrator is a function responsible for the definition, 
organization, protection, and efficiency of the data 
base(s) of an enterprise. It is a function performed by 
humans using, among other things, the facilities pro
vided by the Data Base Management System. Hence, 
we have the components of the system: DBDL, DBM, 
DBCL and DBA. And, of course, there must be physical 
data to be manipUlated, and that named collection of 
units of physical data which are related to each other in 
a specified manner is a data base. 

The Data Base Management System has data 
independence as a primary design criterion. Data will 
be structured in physical storage in a logical and non
redundant manner, insofar as practical. As new pro
cessing requirements imply new structures, dynamic 
restructuring of the physical stores will be possible 



516 Fall Joint Computer Conference, 1971 

without impacting the current processing. Not only will 
"access" to data be simple, versatile, and secure, but its 
rules will be easy to learn and present few problems 
during its integration with a current system. It will 
achieve data independence for the user, data relata
bility, data non-redundancy, data integrity, security, 
and performance. 

Data independence removes the burden of access 
strategy from the application programmer which frees 
him to do the job he does best-programming. The 
programmer should not concern himself with data 
formats or structures but rather with procedures and 
data manipulation. How and where the data are 
stored is to him immaterial. What relationships the 
data he is using have with other data which he is not 
using should not be his concern. The DBMS allows the 
programmer to concentrate on doing his procedural 
description well. 

Data non-redundancy has several virtues which 
recommend it. Costly storage facilities should not be 
taxed with the responsibility for keeping duplicate data 
elements nor should a system be taxed with the main
tenance responsibility for redundant data items. Where 
several different logical record occurrences have an 
identical data item value, a relationship should be 
maintained, where feasible, to assure that the mate
rialization of the logical data item always is made from 
the same physical representation in the physical store. 
Duplicate data values in the physical store must be 
minimized or eliminated. 

Through control facilities incorporated in the DBMS, 
data integrity will be provided. There must be a 
reasonable assurance that data and relationships are 
maintained accurately. For instance, this requirement 
includes the necessity for a facility to propagate changes 
to all derived data elements when a component of the 
derived data element is changed. If X, Y, and Z are 
data elements derived according to the following 
equations: 

X=A+B 

Y=B*C 

Z=Y+D 

a change to B (which is a "real" data element as are 
A, C, and D also) effects a change to X, Y, and Z. 
These changes must be accurately reflected not only in 
derived data element values, but also in any asso
ciations the derived data elements enjoyed based on 
their values. A derived data element is a physically 
stored element derived through some algorithm from 
one or more data elements. 

The DBMS will provide security for data based on 
installation specification. Security in the system is 

essentially bidimensional: sensitivity of data, and 
authority of user or requestor. The given installation 
may place security restrictions on individual data items, 
specific combinations of data items (for instance, one 
user may be allowed to see salary averages, but only 
when more than five salaries are part of the computation 
of the average or he may be allowed to see age without 
name and vice versa), and of course restrictions may 
be placed at any higher, more general level of the DB 
such as the logical file level. 

Because many of the ways in which the system 
performs may be specified by the installation, and 
because user exits to the DBMS will be provided at 
appropriate points, the DBA will be able to optimize 
the system's performance. Consistent, measurable, and 
tunable performance of a system of this magnitUde 
is a critical design level consideration. It is primarily 
the performance criteria which obviate the immediate 
wholesale implementation of the GUIDE/SHARE 
DBMS. 

At this point, it is appropriate to examine in some 
detail the major components of the system, that is the 
DBA, DBDL, DBM, and DBCL. The requestor's view 
of the DBMS is critical. He interfaces directly with two 
components-one is human (the DBA) and one is that 
hardware/software combination, the DBM. The re
questor first communicates with the DBA to have data 
definitions entered into the Data Base Directory. The 
Data Base Directory (or DBD) is a part of the DB 
itself and contains all information pertaining to ac
cessibility of data. That information includes: 

• physical to logical mappings (or physical record 
descriptions) ; 

• logical to physical mappings (or logical record 
descriptions) ; 

• relationships and associations among data elements 
and items; 

• security and authorization required at the data 
level; 

• miscellaneous information pertaining to the main
tenance of and access to the data. 

The DBA uses DBDL to enter data definitions and 
their associations and relationships. The language is 
non-procedural. It defines, states, or describes to the 
DBM how the DBM may operate on data. Once the 
definitions are entered in the DBD, the Requestor may 
proceed with his access to the DB. 

Then, the Requestor communicates with the DBM 
using the DBCL. The Data Base Command Language, 
itself non-procedural, states requests in a form that 
DBM can interpret. Included as primitive functions in 
the language are the approximate equivalents in current 



Requirements for Generalized Data Base Management System 517 

data management systems of: (1) Open; (2) Retrieve; 
(3) Replace; (4) Add; (5) Delete; and (6) Close. A 
primitive command, once invoked, requires by defini
tion no further intervention by the Requestor until its 
function has completed. Primitives operate only at the 
logical data level. Any physical ramifications resulting 
from the invocation of a DBCL primitive are created 
by DBM and remain unknown to the Requestor. 

Available with each primitive command is a parameter 
list where the Requestor may supply further qualifica
tions for his request. Among the items he may specify 
are: (1) a logical file name; (2) logical record name or 
names; (3) data area name; (4) a communications 
area where DBM and Requestor may transfer informa
tion to each other, such as status of request, exit routine 
addresses, and the like; (5) self-imposed data access 
restrictions to be used when DBCL primitives are 
executed. Where parameters are not specified in a given 
primitive, reasonable defaults will prevail. For instance, 
if no file name is provided in the "open", SYSIN may 
be assumed for an input file and SYSOUT for an output 
file. System-provided default values may be replaced by 
particular installations at a time approximately 
equivalent to system generation (SYSGEN) . De
pending upon the Requestor's own authority or 
security clearance to access the DB, the sensitivity or 
security level of the data he wishes to access, and the 
defined relationships and associations of this data 
supported in the DBD, he may access the DB in any 
number of ways. Before the Requestor may begin 
accessing the DB, he must alert the DBM that he 
intends to use the system. This operation in DBMS is 
roughly equivalent to OPEN in current data manage
ment systems. The more information the Requestor 
provides DBM with at OPEN, the less information he 
will have to provide with each subsequent command. 
Also, the more DBM knows at OPEN about the kinds 
of access the Requestor intends, the greater the effi
ciency with which DBM can satisfy the requests in 
subsequent commands. In short, the longer specifica
tions are deferred, the more it costs. The following are 
two of the ways of accessing data: (1) retrieve a record 
occurrence of a file based on record identifiers (some
thing like keys in currently implemented data manage
ment systems); (2) record qualifiers. Clearly, the more 
description the Requestor provides to the DBM 
through DBCL the greater the likelihood of a unique 
"hit", or at least a reduced population of records which 
satisfy the retrieval criteria. 

A few examples of the kinds of qualifications the 
Requestor might provide are: (a) record identifiers such 
as account number or part number; (b) qualifiers such 
as NEXT (nextness for a given logical file being 
described in the DBD). Other qualifiers available to the 

Requestor are previous, first, last, nth, a relationship 
name, a search procedure name where the procedure has 
been developed by the given installation, and Boolean 
expressions using AND, OR, NOT, BETWEEN, 
EQUAL TO, NOT EQUAL TO, GREATER THAN, 
and LESS THAN. Qualifications used for record 
searches may be predefined, named, and stored in the 
DBD or may be explicit with each command. Deletion, 
Replacement (that is, update), or Addition may be 
done only when the record being operated upon can be 
uniquely identified. That is, a record was retrieved 
based on certain qualifications, but more than one 
record in the file satisfies all the selection criteria, the 
record could not be updated (that is, replaced with 
modifications) or deleted. Only unique occurrences of 
logical records can be added to a file. The three cate
gories of data used in almost any data base system, 
namely, the logical data, the entity, and the physical 
data, are also present in the GUIDE/SHARE DBMS. 
The largest unit of physical data is the Data Base. The 
most general reference to the concept of entity is the 
word itself. The DBM is that portion of the . system 
(along with the DBA) which understands the entity 
concept. That is, DBM knows that both physical and 
logical data are organized around an entity or entity 
type. The entity is any person, place, thing, or event of 
interest to the enterprise. An entity type is a so-called 
classified entity, where an entity has been specifically 
identified as a particular type, such as employees, 
departments, vendors, tractors, sales, and so on. The 
entity construct is any association of entity record types 
and the entity relationships which connect them. When 
an entity construct has been named, it loses its general 
connotation to become an entity record type. 

There are three types of or levels where relationships 
can exist-logical, entity, and physical. The physical 
and logical relationships are self-explanatory. The 
entity relationship is defined as a named relationship 
that exists between two entities of the same or different 
entity types, such as that between employees and 
departments. The physical correspondences for the 
logical file are data set, form extent, and space extent. 
The data set referred to here is roughly equivalent to 
the data set in current data management systems, or, 
more precisely, it is a named collection of stored records 
of one or more stored record types. A data set, in 
GUIDE/SHARE terminology, is a collection of one or 
more space and form extents. A space extent is a unit of 
contiguous space on some medium. A form extent is 
that portion of a data set in which all stored record 
occurrences are of the same stored record type-a 
physical subset of tl1e physical file. 

The logical record is the only record a program ever 
"sees." It is made up of one or more data items which 

, 



518 Fall Joint Computer Conference, 1971 

are materialized from data elements found in one or 
more stored records, and are moved from physical to 
logical arrangements and vice versa, according to 
descriptive information and attributes defined in one 
entity record. This information is stored in the DBD 
along with other information the DBMS needs to access 
data, and there is therefore no tangible entity record or 
entity record file. The entity record type refers to a 
named record, that is, a collection of entity field names 
that represents the attributes of a particular entity type. 

A logical record type is a specific collection of one or 
more data items. An occurrence of a logical record type 
is called a logical record. 

The stored record type bears the same relationship to 
its physical counterparts as the logical record type bears 
to its logical counterparts. 

A logical record occurrence is a particular instance of 
a specific group (one or more) of data items which make 
up a unique logical record. The stored record occurrence 
is similarly defined on the physical side. 

The data item is a unit of logical data which may be 
either an elementary or group data item. Effectively, it 
is the smallest named unit of logical data. A similar 
definition applies to data element. The entity field is a 
generic term referring to either an elementary or group 
entity field. An elementary entity field is a named field 
referring to an attribute of an entity. The group entity 
field is simply a named association of entity fields within 
an entity record type. 

An entity field type is a named entity field that 
represents some partiCUlar attribute of an entity type. 

The data item type is a specific data item; such as an 
account balance data item, as the stored data element 
type is a specific data element. Data item occurrence 
and data element occurrence are specific representa
tions of the values of units of data. Group data item and 
elementary data item fall under the generic term, data 
item, and are self-explanatory. 

The last concept to be addressed in some detail is the 
Data Base Descriptive Language. The entity concept 
has been explained and the interfaces between and 
among the DBM, DBA, DBCL, User or Requestor, 
and physical and logical data. The DBDL discussion 
should clarify the DBA function and how the DBM 
knows what to do with data. 

DBDL is primarily the instrument of the DBA 
function. This function uses- the language to define to 
the system the necessary physical, entity, and logical 
descriptors associated with a Requestor's needs. 
Although the Requestor may define certain logical 
data locally and temporarily if those logical data are a 
subset of existing entity descriptors, only the DBA may 
describe physical data. 

The DBA must describe data, define relationships, 
define mappings, define security and specify per
formance measurements. These functions may be 
fulfilled using the DBDL. DBDL statements are 
interpreted by the DBM and the derived descriptors 
are stored in a directory (DBD) which is maintained 
as part of the Data Base. This, then, is the major sup
porting element of data independence. 

The DBDL provides the DBA with the means to: 

• Describe the physical and logical characteristics of 
the data base. 

• Describe the relationships which exist between the 
various components of the data base. 

• Describe the rules by which the DBM resolves the 
differences between the physical data and the 
logical data (processed by the application pro
gram). 

• Describe the rules by which the DBM performs 
security and integrity checks to prevent un
authorized and destructive access to the data base. 

• Subset the DBMS and organize the data base to 
control costs while optimizing performance. 

• Monitor and control the day-to-day operation of 
the DBMS. 

There are some constraints placed on the DBDL. 
First, it must be an independent language and not an 
extension of current host languages. It must be an 
extensible language, or one which will provide the 
primitive functions which can be combined and ex
panded to fulfill new requirements as they evolve. 
DBDL is a descriptive and not a procedural language. 
The DBDL is, however, capable of identifying pro
cedure written in a procedural language by the user 
which is to be invoked in particular instances, but 
DBDL cannot describe the procedure itself. 

Appropriate defaults are provided in DBDL but with 
the facility to restate defaults or to override them at a 
number of different times in the course of processing 
the DBMS. 

The facility to name units of data on all levels (in
cluding field, group, file, data set) and define relation
ships allows the DBD to contain more than one version 
of each descriptor and define the conditions under which 
each is to be used. Alias names are supported as well as 
names with degrees of qualification, or indexed names. 
This latter facility is provided to reduce ambiguity. 

DBDL will define identifiers for records or so-called 
key fields. Alternate identifiers are provided for. Data 
attributes and alternative data attributes with rules for 
their uses are specified in DBDL. 



Requirements for Generalized Data Base Management System 519 

Among its most important functions, the description 
and definition of logical data relationships in DBDL 
ranks high. These relationships may be among any 
number of levels of data (elementary, group, etc.), 
any number of levels of entity definition, and any 
number of units of data. The only relationships which 
the application programmer must be aware of are the 
logical ones between a logical record and its data items 
and between and among logical records. 

The DBDL allows the DBA to define membership 
and association rules for files. It also allows the DBA to 
specify rules for additions and deletions, security re
quirements, propagation requirements, and the sequence 
in which logical records will be added to the file. 
Propagation requirements may include something like 
this: a man was in the personnel department and was on 
the salary committee. To be on the salary committee, 
he must also be in the personnel department. The man 
transfers to data processing and his department code is 
updated. He will automatically be removed from the 
salary committee if the DBA has specified the general 
rule via DBDL. 

Repeating group and elementary data items (in
cluding the zero case) may be described in DBDL and 
interrelationships between and among the files may be 
defined. Mappings may be defined which are con
sistent with the host language. 

It is through DBDL that the DBA defines entity 
fields, record types, constructs, and relationships along 
with the data and function attributes for each entity 
level. Real, virtual, and derived fields are described 
in DBDL. 

Entity relationships may be defined in terms of 
entity fields, record types, constructs and any other 
appropriate entity relationships. There are a number of 
other facilities which the DBDL provides, especially 
regarding mappings, space use, indexes, planned data 
redundancy, security, integrity, performance and 
control, and so on. These other facilities are more fully 
described in the GUIDE/SHARE November, 1970, 
report. 

The time frame envisioned for the implementation 
of a DBMS which satisfies the requirements in the 
GUIDE/SHARE report is about five years. However, 
there are in existence today some systems which 
satisfy some of the requirements. It is not anticipated 
that any implementor will fulfill all the requirements 
in a first release. Rather, a system reflecting all the 
requirements will begin by satisfying a subset of them 
and then evolve into the sophisticated system proposed 
by GUIDE/SHARE. The continually advancing hard
ware technology will, to a degree, determine how soon 
some of the proposed features will be made available. 

Perhaps the most important idea that the data 
processing community must digest and accept is that 
there should be one standard philosophy applied to any 
DBMS development by any implementor. This 
philosophy must intelligently address the concepts of 
data independence, data integrity, data relatability, 
data non-redundance, as well as others. It remains to 
bring together the various groups which have worked 
on DBMS definition and to then develop a single, 
standard approach to data base-one which can be 
accepted by the data processing community at large. 
It will not be an easy task, but it must be done. 

BIBLIOGRAPHY 

1 Data description and access 
ACM SIGFIDET Workshop Proceedings November 1970 
Available through ACM 

2 R M BALZER 
Dataless programming 
Conference Proceedings F JCC 1967 

3 R G CANNING 
EDP Analyzer Vol 8 Nos 2345 1970 Vol 9 Nos 561971 

4 Report to the programming language committee 
CODASYL Data Base Task Group April 1971 
Available through ACM 

5 A survey of generalized data base management systems 
CODASYL Systems Committee May 1969 
Available through ACM 

6 Feature analysis of generalized data base management 
systems 
CODASYL Systems Committee May 1971 
Available through ACM 

7 M E D'IMPERIO 
Information structures: Tools in problem solving 
Journal of ACM SIGFIDET Vol 1 No 2 December 1969 

8 R W ENGLES 
A tutorial on data base organization 
IBM Ref TROO.2004 March 1970 

9 Data base management system requirements 
Guide/Share 
Guide Secretary Distribution (GSD-23) January 1971 
A J Burris Secretary The Northern Trust Co Box N 
Chicago Illinois 60690 
Share Secretary Distribution (SSD-208) December 31 
1970 Share Secretary 
Share Inc Suite 750 25 Broadway New York New York 
10004 

APPENDIX 

GLOSSARY 

Access Method. A routine external to the application 
program that performs storage and retrieval of physical 
data. 



520 Fall Joint Computer Conference, 1971 

Access Strategy. An algorithm by which stored records 
are identified and located. 
AP. Application Program (mer) 
Association. A non-directed relationship that defines 
a collection of zero or more units of data based on some 
specified criteria. The occurrences of units of data 
within the collection mayor may not be ordered. 
Binding. The firm association of an attribute of data 
with the application program. 
Checkpoint. The act of capturing the state of units of 
data and those application programs operating on them 
for the purpose of reconstructing the data and re
starting the programs. 
Command. A generic term referring to either a primitive 
command or a compound command. The DBCL 
facility through which the DBM functions are invoked 
by an application program. 
Communication Area. That area embodied within an 
application program that permits communication 
between the application program and the DBM. 
Compound Command. A DBCL command which is a 
combination of primitive commands and procedural 
logic. 
Data Area. That area in the application program which 
contains the logical data. 
Data Base. A named collection of units of physical 
data which are related to each other in a specified 
manner. 
Data Base Administrator (DBA). A person or persons 
given the responsibility for the definition, organization, 
protection and efficiency of the data bases for an enter
prise. 
Data Base Command Language (DBCL). A language 
whose statements are used to invoke the DBM facilities. 
Data Base Descriptive Language (DBDL). A language 
whose statements are used to describe all units of data 
to the DBMS. 
Data Base Directory (DBD). A collection of descriptors 
of all units of data that are available to the DBMS. 
These descriptors are derived from DBDL statements. 
Data Base Management System (DBMS). The data 
processing system consisting of the tri-partite inter
action between the Requestor, the DBA, and the DBM. 
Data Base Manager (DBM). A combination of hard
ware and software which controls and processes all 
requests for data in the data bases. 
Data Element. The smallest named unit of physical 
data stored on some medium. 
Data Independence. The concept of separating the 
definitions of logical and physical data such that 
application programs need not be dependent on where 
or how physical units of data are stored. 

Data Integrity. The concept that all units of data must 
be protected against accidental or deliberate in
validation. 
Data Item. A unit of logical data which can be either an 
elementary data item or a group data item. 
Data Name. A name given to units of data for the 
purpose of uniquely identifying that unit of data. 
Data Set. A named collection of stored records of one or 
more stored record types. More precisely, a collection 
of one or more space and form extents. 
DB. Data Base(s). 
DBA. Data Base Administrator. 
DBCL. Data Base Command Language. 
DBD. Data Base Directory. 
DBDL. Data Base Descriptive Language. 
DBM. Data Base Manager. 
DBM S. Data Base Management System. 
Derived Data Element. A data element whose value is 
derived from the values of other data elements by a 
specified algorithm. 
Descriptors. The detailed definition of all units of data 
as represented in the DBD. 
Elementary Data Item. The smallest named unit of 
logical data available to a program. 
Elementary Entity Field. A named field which refers to 
an attribute of an entity. 
Entity. A person, place, thing or event of interest to 
the enterprise. 
Entity Construct. An association of entity record types 
and the entity relationships which connect them. An 
entity construct when named becomes another entity 
record type. 
Entity Field. A generic term referring to either an 
elementary entity field or a group entity field. 
Entity Record Type. A named collection of entity field 
names that represents the attributes unique to a partic
ular entity type. 
Entity Relationships. A named relationship that exists 
between two entities of the same or different entity 
types. 
Entity Type. A particular kind of entity. For example: 
employees, departments, vendors, sales, etc. 
Exclusive Control. A facility to prevent multiple con
current interactions with a specific unit of data in the 
data base such that the integrity of the data is pre
served. 
File. named collection of occurrences of logical records 
which may be of more than one logical record type. 
Form Extent. That portion of a data set wherein all 
stored record occurrences are of the same stored record 
type. 
Format. A formal description of a unit of data that 



Requirements for Generalized Data Base Management System 521 

contains information about its length, base, scale, 
precision, representation, etc. 
Group Data Item. A named association of data items. 
Group Entity Field. A named association of entity fields 
within an entity record type. 
Hierarchy. A set of directed relationships between two 
or more units of data; such that some units of data are 
considered owners while others are members. This is 
distinguished from a network in that in a hierarchy, 
each member can have one and only one owner. 
Host Language. The programming language used to 
write the application program. A program written 
using this language contains DBCL statements that 
invoke DBM functions. 
Identifier. A unit of data whose value uniquely identifies 
an occurrence of that unit of data or a different unit of 
data. 
Journal. A record of all environmental conditions and 
changes relative to the data bank. It may include time 
and date stamps, user identification, attempted security 
breaches, changes to a data base, etc. 
Linkage. A mechanism for connecting one unit of data 
to another. 
Logical Data. That data which the application program 
presents to or receives from the DBM. 
Logical Record. A collection of one or more data item 
values. More specifically, an occurrence of a logical 
record type. 
Logical Record Type. A specific collection of one or 
more data items. 
Logical Relationship. The relationship that exists 
between two units of logical data. 
Materialize. The act of making logical data available 
to the application program. 
Member. See membership 
Membership. A directed relationship connecting one 
unit of data called the owner to another unit of data 
called the member. 
Network. A set of directed relationships between two or 
more units of data such that some units of data are 
considered owners while others are members. Unlike a 
hierarchy, each member may have more than one owner. 
Occurrence. A specific representation of the value of a 
unit of data that is usually associated with a value 
called its identifier. 
Own Code. Specialized routines developed by an 
installation to perform functions not provided for by 
the Data Base Manager. 
Physical Data. That data which the Data Base Manager 
stores on, or retrieves from, some medium. 
Physical Record. That data accessed by the hardware 
from some medium with a single access. 

Physical Relationship. The relationship that exists 
between two or more units of physical data. 
Primitive Command. A DBCL command which can be 
executed without further intervention by the applica
tion program. 
Profile. A subset of descriptors in the DBD that relates 
to something of interest to the DBA such as a program 
or a user. 
Qualifier. Criteria used to select a logical record. 
Real Data. A logical unit of data that has a physical 
unit of data as a counterpart. 
Redundancy. A situation where there are multiple 
occurrences of a particular unit of data in a data base. 
Relationships. A generic term referring in this docu
ment to either one of two kinds of relationships: 
membership and association. 
Requestor. An individual desiring to use the data in 
the DBMS. 
Security. The concept that units of data can be altered, 
viewed or processed only by users who have the proper 
authority and the "need to know". 
Self Defining Data. A unit of data whose description 
appears with its occurrence. 
Shared Control. A facility that allows multiple con
current interactions with a specific unit of data in a 
data base. 
Space Extent. A unit of allocated space on some medium 
which is contiguous. 
Span of Control. That period of time during which the 
application program has exclusive or shared control of 
a specified unit of data. 
Stored Record. A collection of one or more data element 
values. More specifically an occurrence of a stored 
record type. 
Stored Record Type. A specific collection of one or more 
data elements. 
Structure. A generic term which refers to the aggrega
tion of units of data, their formats and their relation
ships. 
Unit of Data. A generic term denoting a named con
ceptualization of logical data and physical data. The 
units of logical data are: 

• data item 
• logical record 
• logical relationship 
• file 

The units of physical data are: 

• data element 
• stored record 



522 Fall Joint Computer Conference, 1971 

• physical record 
• physical relationship 
• data base 
• form extent 
• space extent 
• data set 

User. A generic term referring to the Requestor or 
the DBA. 
User Exit. A DBM facility that permits an installation 
to execute its own code. 
Virtual Data. A logical unit of data that is materialized 
and does not exist as a physical unit of data. 



User engineering principles for interactive systems* 

by WILFRED J. HANSEN 

Argonne National Laboratory 
Argonne, Illinois 

INTRODUCTION 

The 'feel' of an interactive system can be compared to 
the impressions generated by a piece of music. Both 
can only be experienced over a period of time. With 
either, the user must abstract the structure of the sys
tem from a sequence of details. Each may have a 
quality of 'naturalness' because successive actions fol
low a logically self-consistent pattern. Finally, a good 
composer can write a new pattern which will seem, 
after a few listenings, to be so natural the observer 
wonders why it was never done before. 

Just as a composer follows a set of harmonic prin
ciples when he writes music, the system designer must 
follow some set of principles when he designs the se
quence of give and take between man and machine. 
This paper reports a set of principles-called user en
gineering principles-which where employed while 
designing the Emily text editing system. These princi
ples evolved during the course of the project, but were 
originally based on the author's experiences with a num
ber of other text editing systems.2 ,3,4,5 

In text editing applications, the user sits at a console 
and creates, views, or modifies a document, be it pro
gram, speech, article or a chapter of his next book. 
Here the computer is a tool for the creative worker 
and the emphasis must be on capturing his thoughts 
with minimal interference. More common in commer
cial environments are interactive systems designed as 
tools to coordinate the work of many clerical workers. 
Examples are order entry, point-of-sale, inventory con
trol, defense surveillance, and the like. The principles 
outlined below, though originally intended for creative 
work, are equally applicable to clerical work. Some
times more so, because clerks may not have the com
mitment of the creative worker. 

* The work reported here was supported by the U.S. Atomic 
Energy Commission. The text is taken from the second and 
fourth chapters of the author's thesis. l 

523 

One restriction on a few of the principles below is 
that they apply to systems with display devices for 
output. This is essential, because a basic principle is 
tha t the system respond to the user as fast as possible. 
A visual display can present more information in less 
time than available hardcopy devices. The 'economy' 
of the terminal device must be weighed against the 
cost of attention-wander-time as the user interacts 
with the system. Other than the terminal, cost is not 
a problem in the application of these user engineering 
principles. In general, they dictate features that are in
expensive to design into a system. They are, however, 
often expensive to include after implementation is 
under way. 

Disciplines similar to user engineering have been 
called human engineering, human factors, and ergo
nomics, but these terms most often refer to analog 
systems like airplane cockpits where the pilot guides a 
process. User engineering applies to digital systems 
where the goal is to store or retrieve information. D. 
Engelbart6 refers to these principles as 'User Feature 
Design.' His point is that this term emphasizes that 
the features are being designed for the user rather 
than the other way around. In fact, though, any inter
active system will require retraining of the users and 
some systems-like Emily-may require the user to 
alter thinking habits of many years standing. (But let 
there be no mistake, the author is deeply committed 
to a policy of modifying the system to fit the user.) 
Other sets of user engineering principles have been re
ported by L. B. Smith7 and J. G. Mitchell.s Their sug
gestions are compatible with those below, but less 
comprehensive. The reader should also read R. B. 
Miller's papeJ.~9 in which he attempts to estimate a 
maximum permissible response time in seventeen inter
active contexts. 

The user engineering principles in the second section 
below are illustrated by reference to the Emily text 
editing system. For this reason, the Emily system is 
sketched in the first section. More complete descrip-



524 Fall Joint Computer Conference, 1971 

1 <STMT> DO <ARITHV> = <ARITHX> TO 

<ARITHX>; <STMT*> END; 

2 <ASGN STMT> 

3 <STMT*> : <STMT> 

4 <ASGN STMT> : <ARITH> <ARITHX> ; 

5 <ARITHX> : <ARITH> 

6 <ARITHV> 

7 <NUMBER> 

8 <ARITHX> + <ARITHX> 
I 

9 <ARITHX*> : <ARITHX> 

10 <ARITHV>: <ARITH> 

11 : <ARITH> «ARITHX*» 

12 <ARITH> IS AN IDENTIFIER 

13 <NUMBER> IS A CONSTANT 

Figure I-Portion of syntax for PLjI 
Each rule specifies a possible replacement for the non-terminal to 
the left of the colon. If the left side is omitted, it is the same as the 
previous line. Rules 12 and 13 specify special classes of terminal 

symbols 

tions are available elsewhere. 10 ,1 ,11 Emily has been im
plemented for an IBM 2250 Graphic Display Unit, 
model 3. The 2250 displays lines and characters on a 
12" by 12" screen. The user can give commands to the 
system with a light pen, a program function keyboard, 
and an alphameric keyboard. 

THE EMILY SYSTEM 

Emily is primarily intended for construction and 
modification of computer programs written in higher 
level languages. Many such systems exist, but all 
existing systems require the programmer to enter his 
text as a sequence of characters. With Emily, the user 
constructs his text by selecting choices from the menu 
to replace certain symbols in the text. For example, 
the symbol (STMT) might be replaced by 

DO (ARITHV) = (ARITHX) TO (ARITHX); 
(STMT*) 

END; 

Replaceable symbols begin with '(', end with ')', and 
contain a name that usually has some relation to the 
meaning of the string generated by the symbol. Such 
symbols are called non-terminal symbols, because of 
their role in the Backus-Naur Form (BNF) notation 
for describing programming languages.12 

In BNF a syntax for a formal language has three 
parts-a set of terminal symbols, a set of non-terminal 
symbols, and a set of syntactic rules. The terminal sym
bols are those characters and strings of characters 
(punctuation, reserved words, identifiers, constants) 
that can be part of the completed text. The non
terminal symbols are a specific. set of symbols intro
duced only to help describe the structure of the formal 
language. Every non-terminal symbol must be replaced 
by terminal symbols before the entire text is complete, 

I <STMT>I 

DO I <ARITHV» 

<STMT*> 

END; 

DO I <ARITH>I 

<STMT*> 

END; 

<ARITHX> TO <ARITHX>; 

<ARITHX:r TO <ARITHX>; 

DO I = I <ARITHX>I TO <ARITHX>; 

<STMT*> 

END: 

1 

10 

12 

7 

13,7,13,3,2 

DO I = 1 TO 20; 

I<ASGN STMT>I 

END; 

DO lITO 20; 

S S + A(I); 

END; 

4 

12,8,5,12,6,11, 
12,9,5,12 

Figure 2-Steps in the generation of a DO loop 
In each step, the non-terminal in the rectangle is replaced 

according to the rule whose number appears at the right 



User Engineering Principles 525 

DOkmm?=~TO~' 
ENOl 

DO~=~TO~' 
END, 

,. <CO"MENT) ., 
<ASGN STrH) 

<PROC> 
DO, <STMH> END, 
DO <vAR> = <ITER SPE ••• 
IF <ltTX> THEN<STf1T> 
RETURN, 
ALLOCATE <ALlOt IT'" •.. 
<110 STI11) 

MORE 

EDITING FilE: TEXT 

<."ITH) 
<NUttIER> 
.<ARITHX> 
<BIlX> 
<ARlTHX> + (ARITHX> 
<AIt 1 THX>*<ARI THX> 
<Aftl THX> .... <ARITHX> 

EDITING FilE: TEXT 

1* <COtH1ENT> _, 
DECLARE <OECl El'" 
CALL <ENTRYNI'1><ARG*> I 

DO WHilE «BITX»' < ••• 
00 <ARITHV> = <ARITH ••• 
IF <11Tx> THEN<STtlT) .•. 
RETURN «EXP». 
FREE <Flit!;;, ITEM">; 

<ARlTHV> 
«ARITHX» 
-<A.RITHX> 
<CHARK> 
<ARlTHX> - <A.RITHX> 
(ARI THX>I (lRl THX> 

<ARITH> 
<S1"U(I*>. ("!fITH) 
<ENTRYNI'1> 
<PTlb->(ARITH> 
<PTR>-><STRUCT"). (Alf ... 
<PTR>-><A'U TH) «AR I .•. 
<PTR>-><STRUCT'>. <AR ••• 

EDITING FilE: TEXT 

DOI~ 
END, 

<ARITH) = <ARITHX); 
<YAIIf) = <t=:xPR). 
<BITY> = <81 TX); 
<PTRY) = <PTRx); 

EDITING FilE: TEXT 

<A"ITH) «ARlTHX"» 
<StRUCT*).<ARlTH) « 
<ENTRYNf'1) «llfG"» 
<5TRU(1*>. <PTR>-><AR •.• 
<STRUt1*>. <PTR>-><ST •.• 
<STRU(1*>. (PTR>-><AR •.. 
<STRUCTt'). <PTR)-)<Sl ••• 

<ARITHY) = <ARtTHX); 
<VAR*> = <~XPR>: 
<CHARY) = <CHARX): 

ENTEIIt <Alit I TH> _ 

DO I = , TO 28, 
$ = $ .. A nh 

'NDJ 

EDITING FilE: TEXT 

Figure 3-Generation of a DO loop with Emily 
These photographs show the same steps as shown in Figure 2. The menu displays all the choices available in the implemented PLjI 
syntax. An arrow indicates the syntax rule the user will select next. Up to twenty-two lines of text may be shown in the text area, 

so it appears empty with only 3 lines 

but the only allowable replacements for a given non
terminal are specified by the syntactic rules. In 
each rule, the given non-terminal is on the left followed 
by a colon followed by the sequence of symbols that 
may replace the non-terminal. As an example, Figure 1 
shows a portion of the syntax for PLjI. Figure 2 shows 
a DO loop\generated using this syntax. 

It is important to note that a string generated ac
cording to a syntax is not simply a sequence of char
acters, but can be divided into hierarchies of substrings 
on the basis of the syntactic rules. Each non-terminal 
in the sequence of symbols for a rule generates a sub
sequence. The DO statement in Figure 2 can be one 
of a sequence of statements in some higher DO loop 
and can also contain a subordinate sequence of state
ments (generated by {8TMT*». Replacement of a 
non-terminal by a rule can be thought of as replacing 
the non-terminal with a pointer to a copy of the rule. 

The non-terminals in this copy can be further replaced 
by pointers to copies of other rules. In a diagram each 
syntactic rule used in the generation of the string is 
represented by a node (a rectangle). The node contains 
one pointer to a subordinate node for each non-terminal 
in the syntactic rule. The subordinate node is called a 
subnode or a descendant, while the pointing node is 
called the parent. 

Emily text structure 

Text in the Emily system is stored in a file, which 
may contain any number of fragments. Each fragment 
has a name and contains a piece of text generated by 
some non-terminal symbol. Generated text is physically 
stored in a hierarchical structure like that described 
above. Each node is a section of memory containing 
(a) the number of the syntax rule for which this node 



526 Fall Joint Computer Conference, 1971 

was generated, and (b) one pointer to each subnode. In 
a completed text, there is one descendant node for each 
non-terminal in the syntax rule and the pointer to a 
descendant is the address of the section of memory 
where it is stored. If no text has been generated for a 
non-terminal symbol,there is no subnode and the cor
responding pointer is replaced by a code representing 
the non-terminal symbol. If a subnode of a node is an 
identifier, the pointer points at a copy of the identifier 
in a special area. All pointers at a given identifier point 
to the same copy in this identifier area. Other than 
identifiers, each node is pointed at exactly once within 
the text structure. This guarantees that if a node is 
modified, only one piece of text is affected. 

Notice that punctuation and reserved words do not 
appear in this representation of text. Instead, they can 
be generated because the syntax rule number identifies 
the appropriate rule. Two tables in Emily contain 
coded forms of the syntax rules. One table, called the 
ab8tract 8yntax, controls the hierarchical structure of 
generated text. It specifies which syntax rules can re
place a given non-terminal symbol and the sequence of 
non-terminal symbols on the right-hand-side of each 
syntax rule. Another table, the concrete syntax, tells how 
to display each rule; it includes punctuation, reserved 
words, and formatting information like indentation and 
line termination. 

Creating text 

The Emily user creates hierarchical text in a series 
of steps very similar to Figure 2. In each step the right 
side of a rule is substituted for a non-terminal symbol. 
Before the user creates any text, the fragment contains 
a single non-terminal symbol. In the case of Figure 2, 
that symbol is (STMT). The user sees the result of 
each step on the 2250 display. Figure 3 shows the steps 
of Figure 2 as they appear on the screen. 

While using the Emily system the 2250 screen ap
pears to be divided into three areas: text, menu, and 
message. The text area occupies the upper two-thirds 
of the screen and displays the text the user is creating .. 
The lower third of the screen is the menu where Emily 
displays the strings the user can substitute in the text. 
The bottom line of the screen is the message area, where 
Emily requests operands and displays status and error 
messages. 

Non-terminal symbols** in the text area are under
lined to make them stand out. One of the non-terminals 

** When it is displayed, a non-terminal is the end (or terminal) 
of a branch of the hierarchical structure. It is called a non-termi
nal because it must be replaced with a string of terminals before 
the text is complete. 

is the current non-terminal and is surrounded by a 
rectangle. The menu normally displays all strings that 
can be substituted for the current non-terminal. These 
strings are simply the right sides of the syntax rules 
that have the current non-terminal on the left. 

When the user points the light pen at an item in the 
menu Emily substitutes that item for the current non
terminal. Usually, the substitution string contains 
more than one non-terminal and the new current non
terminal is the first of these. The user can also change 
the current non-terminal by pointing the light pen at 
any non-terminal in the display. Emily moves the rec
tangle to that non-terminal and changes the menu ac
cordingly. When the current non-terminal is an identi
fier, the menu displays identifiers previously entered in 
the required class (some of the classes for PLjI are 
(ARITH), (CHAR), and (ENTRYNM»). The user 
may select one of these, or he may enter a new identifier 
from the keyboard. Constants are also entered from the 
keyboard. 

Viewing text 

Since text is stored hierarchically within Emily, it 
can be viewed with operations that take advantage of 
that structure. The user may wish to descend into the 
structure and examine the details of some minor sub
structure. Alternatively, he may wish to view the 
highest levels of the hierarchy with substructures repre
sented by some appropriate symbol. Both of these 
viewing operations are possible with Emily. 

The symbol displayed to represent a substructure is 
called a holophra8t. This symbol begins and ends with 
an exclamation mark and contains two parts separated 
by a colon. The first part is the non-terminal symbol 
that generated the substructure and the second part is 
the first few characters of the represented string. Fig
ure 4 shows three examples of holophrasts. Note that 
contraction to a holophrast only changes the view of 
the file and it does not modify the file itself. Moreover, 
the user never enters a holophrast from the keyboard; 
they are displayed only as a result of contracting text. 

The user contracts a structural unit in the display 
by pushing a button on the program function keyboard 
and then pointing at some character in the text. The 
selected character is part of the text generated by some 
node in the hierarchical structure. The display of this 
node is replaced by a holophrast. If the user points at 
a holophrast, the father of the indicated node contracts 
to a holophrast which subsumes the earlier one. To ex
pand a holophrast back to a string, the user returns to 
normal text construction mode and points the light pen 
at the holophrast. 



The operations to ascend and descend in the text 
hierarchy are also invoked by program function but
tons. To descend in the hierarchy the user pushes the 
IN button and points at a part of the text. The selected 
node becomes the new display generating node; subse
quent displays show only this node and its subnodes. 
The OUT button lets the user choose among the an
cestors of the display generating node and then makes 
the selected ancestor the new display generator. 

System environment 

At Argonne National Laboratory, the 2250 is at
tached to an IBM 360 model 75. The 75 is under con
trol of the MVT version of OS/360. Unit record input/ 
output is controlled by ASP in an attached 360/50. The 
360/75 has one million bytes of main core and one 
million bytes of a Large Capacity Storage Unit. 

The Emily system itself requires 60K bytes of main 
core (the maximum permitted for a 2250 job at Ar
gonne) and about 400K bytes of LCS. Emily is written 
in PL/I and uses the Graphic Subroutine Package to 
communicate with the 2250. Files for Emily are stored 
on a 2314 disk pack. Emily is table driven and can 
manipulate text in any formal language. To date, 
tables have been created for four languages: PL/I, 

+----+~7~-----(~---- punctuation 

!~:pO ~ =) 

r L first N characters of 

non-terminal that 
generated string 

DO I = 1 TO 20; 

!STMT:S = S +! 

END; 

DO lITO 20; 

string represented by 
this holophrast 

S !ARITHX:S + A(I!; 

END; 

Figure 4-Examples of holophrasts 
All three examples show the DO loop, but each has been. con
tracted differently. The user may change N, the number of 
characters of the substring. In the examples, N is seven 

User Engineering Principles 527 

GEDANKEN,13 a simple hierarchy language for writing 
thesis outlines, and 'a language for creating syntax 
definitions. 

USER ENGINEERING PRINCIPLES 

The first principle is KNOW THE USER. The system 
designer should try to build a profile of the intended 
user: his education, experience, interests, how much 
time he has, his manual dexterity, the special require
ments of his problem, his reaction to the behavior of 
the system, his patience. One function of such a profile 
is to help make specific design decisions, but the de
signer must be wary of assuming too much. Improper 
automatic actions can be an annoying system feature. 

A more important function of the first principle is to 
remind the designer that the user is a human. He is 
someone to whom the designer should be considerate 
and for whom the designer should expend effort to pro
vide conveniences. Furthermore, the designer must 
remember that human users share two common traits: 
they forget and they make mistakes. With any inter
active system problems will arise-whether the user is 
a high school girl entering orders or a company presi
dent asking for a sales breakdown. The user will forget 
how to do what he wants, what his files contain, and 
even-if interrupted-what he wanted to do. Good sys
tem design must consider such foibles and try to limit 
their consequences. The Emily design tried to limit 
these consequences . by explicitly including a fallible 
memory and a capacity for errots in the intended user 
profile. Other characteristics assumed are: 

curious to learn to use a new tool, 
skilled at breaking a problem into sub-problems, 
familiar with the concept of syntax and the general 

features of the syntax for the language he is using, 
manually dextrous enough to use the light pen, 
not necessarily good at typing. 

Throughout the following discussion, reference is 
made to 'modularity' and 'modular design.' These 
terms refer to the structure of the program, but have 
important consequences for user engineering. A modu
lar program is partitioned into subroutines with dis
tinct functions and distinct levels of function. For 
instance, a high level modular subroutine implements 
a specific user command but modifies the data structure 
only by calls on lower level modules. To be useful for 
the general case, the lower modules must have no func
tions dependent on specific user commands. In the 
Emily system, for example, there are user commands to 
MOVE and COpy text and there are low level routines 



528 Fall Joint Computer Conference, 1971 

User Engineering Principles 

First principle: Know the user 

Minimize Memorization 

Selection not entry 

Names not numbers 

Predictable behavior 

Access to system information 

Optimize Operations 

Rapid execution of common operations 

Display inertia 

Muscle memory 

Reorganize command parameters 

Engineer for Errors 

Good error messages 

Engineer out the common errors 

Reversible actions 

Redundancy 

Data structure integrity 

Figure5-User engineering principles 

for the same functions. These low level routines always 
destroy the existing information at the destination, 
but the user commands are defined to move that exist
ing information to the special fragment *DUMP*. The 
low level routines must be called twice (destination~ 
*DUMP*; source~destination) to implement the user 
commands, but these same routines are used in several 
other places in the system. Designing adequate modu
larity into a system requires careful planning at an 
early stage, but pays off with a system that takes less 
time to implement, is easier to modify, and can be de
bugged with fewer problems and more confidence of 
success. 

Specific user engineering principles to help meet the 
first principle can be categorized into 

MINIMIZE MEMORIZATION, 

OPTIMIZE OPERATIONS, 

ENGINEER FOR ERRORS. 

The principles are outlined in Figure 5. 

Minimize memorization 

Because the user forgets, the computer memory 
must augment his memory. One important way this 
can be accomplished is by observing the principle 
SELECTION NOT ENTRY. Rather than type a character 
string or operation name, the user should select the 
appropriate item from a list displayed by the computer. 
In a sense, the entire Emily system is based on this 
principle. The user selects syntax rules from the menu 
and never types text. Even when an identifier is to be 
entered, Emily displays previously entered identifiers; 
though the user must type in new identifiers. Because 
the system is presenting choices, the user need not re
member the exact syntax of statements in the language, 
nor the spelling of identifiers he has declared. Moreover, 
each selection-a single action by the user-adds many 
characters to the text. Thus if the system can keep up 
with the user, he can build his text more quickly than 
hy keyboard entry. 

The principle of 'selection not entry' is central to 
computer graphics and by itself constitutes a revolution 
in work methods. The author first saw the principle in 
the work of George14 and Smith 7 but has since observed 
it in many systems. The fact is that a graphic display
attached to a high bandwidth channel-can display 
many characters in the time it would take a user to 
type very few. If the choices displayed cover the user's 
needs, he can enter information more quickly by selec
tion. Ridsdale15 has reported a patient note system used 
in a British hospital that is based on the principle of 
selection. In this system, selection is not by light pen 
but by typing the code that appears next to the de
sired choice in the menu. 

Experience with Emily suggests that keyboard code 
entry is better than light pen selection because of two 
user frustrations. First, the menu does not provide a 
target for the light pen while the display is changing; 
and second, the delay can vary depending on system 
load. With keyboard codes, the user can go at full 
speed in making selections he is familiar with, but 
when he gets to unfamiliar situations he can slow down 
and wait for the display. Thus, his behavior can travel 
the spectrum from typing speed to machine paced 
selection. 

The second principle to avoid memorization is 
NAMES NOT NUMBERS. When the user is to select from 
a set of items he should be able to select among them 
by name. In too many systems, choices are made by 
entering a number or code which the system uses to 
index into a set of values. Users can and do memorize 
the codes for their frequent choices, though this is one 
more piece of information to obscure the problem at 



hand. But when an uncommon choice is needed, a code 
book must be referenced. Symbol tables are understood 
well enough that there is no excuse for not designing 
them into systems so as to replace code numbers with 
names. In Emily, there are names for files, fragments, 
display statuses, syntaxes, and non-terminals. Con
ceivably, the user could even supply a name to be dis
played in each holophrast. In practice, though, so 
many holophrasts are displayed that the user would 
never be done making up names. For this reason, the 
holophrast contains the non-terminal and the first few 
characters of the text-a system generated 'name' with 
a close relation to the information represented by that 
name. 

It is also possible to forget the meaning of a name, so 
a system should also provide a dictionary. System 
names should be predefined and the user should be al
lowed to annotate any names he creates. The lack of a 
dictionary in Emily has sometimes been a nuisance 
while trying to remember what different text fragments 
contain. 

The next principle, PREDICTABLE BEHAVIOR, is not 
easy to describe. The importance of such behavior is 
that the user can gain an 'impression' of the system and 
understand its behavior in terms of that impression. 
Thus by remembering a few characteristics and a few 
exceptions, the user can work out for himself the details 
of any individual operation. In other words, the system 
ought to have a 'Gestalt' or 'personality' around which 
the user can organize his perception of the system. In 
Emily all operations on text appear to make it expand 
and contract. Text creation expands a non-terminal to 
a string and the viewing operations expand and con
tract between strings and holophrasts. This commonal
ity lends the unity of predictable behavior to Emily. 

Predictable behavior is also enhanced by system 
modularity. If the same subroutine is always used for 
some common interaction, the user can become accus
tomed to the idiosyncracies of that interaction. For 
instance, in Emily there is one subroutine for entering 
names and other text strings so that all keyboard inter
actions follow the same conventions. 

The last memory minimization principle is ACCESS TO 

SYSTEM INFORMATION. Any system is .controlled by 
various parameters and keeps various statistics. The 
user should be given access to these and should be 
able to modify from the console any parameter that he 
can modify in any other way. With access to the system 
information, the user need not remember what he said 
and is not kept in the dark about what is going on. 
Emily provides means of setting several parameters, 
but fails to have any mechanism for displaying their 
values. This oversight is due to a failure to remember 

User Engineering Principles 529 

that the user might not have written the system. 
Another such oversight is a failure to provide error 
messages for many trivial user errors. Even worse, the 
'MULTIPLE DECLARATION' error message origi
nally failed to say which identifier was so declared. This 
has been corrected, but should have been avoided by 
attention to the 'Access to system information' principle 
of user engineering. 

Optimize operations 

The previous section stressed the design-the logical 
facilities-of the set of commands available to the user. 
'Optimize operations' stresses the physical appearance 
of the system-the modes and speeds of interaction and 
the sequence of user actions needed to invoke specific 
facilities. The guiding principle is that the system 
should be as unobstrusive as possible, a tool that is 
wielded almost without conscious effort. The user 
should be encouraged to think not i~ terms of the light 
pen and keyboard, but in terms of how he wants to 
change the displayed information. 

The first step in operation optimization is to design 
for RAPID EXECUTION OF COMMON OPERATIONS. Be
cause Emily text is frequently modified in terms of its 
syntactic organization, a dat~ structure to represent 
text was chosen so as to optimize such modification. 
The text display is regenerated frequently, so consider
able effort was expended to optimize that routine. More 
effort is required, though; it is still slow largely because 
a subroutine is called to output each symbol. Less fre
quent operations like file switching do not justify special 
optimization. Lengthy operations, however, should 
display occasional messages to indicate that no diffi
culty has occurred. For instance, while printing a file 
Emily displays the line number of each tenth line as it 
is printed. 

As the system reacts to a user's request, it should 
observe the principle of DISPLAY INERTIA. This means 
the display should change as little as necessary to carry 
out the request. The Emily DELETE operation re
places a holophrast (and the text it represents) with a 
non-terminal symbol. The size and layout of the dis
play do not change drastically. Text cannot be· deleted 
without first being contracted to a holophrast, thus 
deletion-a drastic and possibly confusing operation
does not add the disorientation of a radically changed 
display. The Emily display also retains inertia in that 
the top line changes only on explicit command. Some 
linear text systems always change the display so the 
line being operated on is in the middle of the display. 
Because the perspective is constantly shifting, the user 



530 Fall Joint Computer Conference, 1971 

is sometimes not sure where he is. The Emily automatic 
indentation provides additional assistance to the user. 
As text is created in the middle of the display, the 
bottom line moves down the display. Since this line is 
often not indented as far as the preceding line, its 
movement makes a readily perceptible change in the 
display. 

One means of reducing the user's interaction effort is 
to design the system so the user can operate it on 
'MUSCLE MEMORY.' Very repetitive operations like driv
ing a car or typing are delegated by the conscious mind 
to the lower part of the brain (the medulla oblongata). 
This part of the brain controls the body muscles and 
can be trained to perform operations without continual 
control from the conscious mind. One implication of 
muscle memory is that the meaning of specific inter
actions should have a simple relation to the state of 
the system. A button shoul~ not have more than a few 
state dependent meanings and one button should be 
reserved to always return the system to some basic con
trol state. With such a button, the muscle memory can 
be trained to escape from any strange or unwanted 
state so as to transfer to a desired state. In Emily the 
buttons of the program function keyboard obey these 
principles. The NORMAL button always returns the 
entire system to a basic state waiting for commands. 
Other buttons have very limited meanings and it is 
almost always possible to abort one command and in
voke another simply by pushing the other button (with
out pushing NORMAL first). 

A second implication of muscle memory for system 
design is that the system must be prepared to accept 
commands in bursts exceeding ten per second. (Typing 
100 words per minute is 10 characters per second. A 
typing burst can be faster.) It is not essential that the 
system react to commands at this rate, because inter
active computer use is characterized by command 
bursts followed by pauses for new inspiration. But if 
command bursts are not accepted at a high rate, the 
muscle memory portion of the brain cannot be given 
full responsibility for operations. The conscious brain 
has to scan the system indicators waiting for GO. Com
mand bursts from muscle memory account for the un
suitability of the light pen for rule selection as discussed 
under 'selection not entry.' 

In addition to optimizing the interaction time, the 
system designer must be prepared to REORGANIZE 

COMMAND PARAMETERS. Observation of users in action 
will show that some commands are not as convenient 
as their frequency warrants while other commands are 
seldom used. Inconvenient commands can be simplified 
while infrequent commands can be relegated to sub
commands. Such reorganization is simplified if the origi-

nal system design has been adequately modularized. 
High level command routines can be rewritten without 
rewriting low level routines and the latter can be used 
without fear that they depend on the higher level. 

A good example of command reorganization in Emily 
has been the evolution of the view expansion commands. 
In the earliest version, pointing the light pen at a holo
phrast expanded it one level, so that each of the sub
nodes of the holophrast became a new holophrast. With 
this mechanism, many interactions were required to 
view the entire structure represented by aholophrast. 
Very soon the system-designer/user added a system 
parameter called 'expansion depth.' This parameter 
dictated how many levels of a holophrast were to be 
expanded. To set the expansion depth, the user pushed 
a button (on the program function keyboard) and 
typed in a number (on the alphameric keyboard). It 
soon became obvious that users almost always set the 
expansion depth to either one or all. Consequently, two 
buttons were defined, so that the user could choose 
either option quickly. Later, the button for typing in 
the expansion depth was removed and that function 
placed under a general 'set parameters' command. Fur
ther experience may show that only the 'expand one 
level' button is required. It would take effect only 
during the next holophrast expansion. At all other 
times, holophrasts would always be expanded as far as 
possible. 

Engineer for errors 

Modern computers can perform billions of operations 
without errors. Knowing this, system designers tend to 
forget that neither users nor system implementers 
achieve perfection. The system design must protect the 
user from both the system and himself. Mter he has 
learned to use a system, a serious user seldom commits 
a deliberate error. Usually he is forgetful, or pushes the 
wrong button without looking, or tries to do something 
entirely reasonable that never occurred to the system 
designer. The learner, on the other hand, has a power
ful, and reasonable, curiosity to find out what happens 
when he does something wrong. A system must protect 
itself from all such errors and, as far as possible, protect 
the user from any serious consequences. The system 
should be engineered to make catastrophic errors diffi
cult and to permit recovery from as many errors as 
possible. 

The first principle in error engineering is to provide 
GOOD ERROR MESSAGES. These serve as an invaluable 
training aid to the learner and as a gentle reminder to 
the expert. With a graphic display it is possible to pre-



sent error messages rapidly without wasting the user's 
time. Error messages should be specific, indicating the 
type of error and the exact location of the error in the 
text. Emily does not have good messages for user 
errors. Currently, the system blows the whistle on the 
2250 and waits for the next command from the user. 
Each error is internally identified by a unique number, 

I and it will not be difficult to display the appropriate 
message for each number. 

It is not enough to simply tell the user of his errors. 
The system designer must also be told so he can apply 
the principle ENGINEER OUT THE COMMON ERRORS. If an 
error occurs frequently, it is not the fault of the user, 
it is a problem in the system design. Perhaps the key
board layout is poor or commands require too much 
information. Perhaps consideration must be given to 
the organization of basic operations into higher level 
commands. 

Emily provides several means of feedback from the 
user to the system designer. (Though for the most 
part, they have been one and the same.) A log is kept 
of all user interactions, user errors, and system errors. 
There is a command to let the user type a message to 
be put in the log and this message is followed by a 
row of asterisks. When the user is frustrated he can 
push a 'sympathy' button. In response, Emily displays 
at random one of ten sympathetic messages. More im
portantly, frustration is noted in the log and the system 
designer can examine the user's preceding actions to 
find out where his understanding differed from the sys
tem implementation. 

'Engineering errors out' does not mean to make them 
impossible. Rather they should be made sufficiently 
more difficult that the user must pause and think be
fore he errs. In Emily, time consuming operations like 
file manipulation always ask the user for additional 
operands. If he does not want the time consuming 
operation he can do something else. To delete text, the 
user must think and contract it to a holophrast. This 
means that large structures cannot be cavalierly 
deleted. 

A single erroneous deletion can inadvertently remove 
a very large substructure from the file. To protect the 
user the system must provide REVERSIBLE ACTIONS. 
There ought to be one or more well understood means 
for undoing the effects of any system operation. In 
Emily, a deleted structure is moved to *DUMP*. If 
the user has made a mistake, he can reach into this 
'trash can' and retrieve the last structure he has de
leted. (Deletion does destroy the old contents of 
*DUMP*.) A more general reversible action mechanism 
would be a single button that always restored the state 
existing before the last user interaction. Emily has no 

User Engineering Principles 531 

such button, but the QED system16 supplies a file con
taining all commands issued during the console session. 
The user can modify this file of commands and then 
use it as a source of commands to modify the original 
text file again. 

Besides helping the user escape his own mistakes, 
error engineering must protect the user from bugs in 
the system and its supporting software. Modular design 
is important to such protection because it minimizes 
the dependencies among system routines. The imple
menter should be able to modify and improve a routine 
with confidence that his changes will affect only the 
operation of that routine. Even if the changes introduce 
bugs, the user will be protected if the designer has ob
served the principles of redundancy and data structure 
integrity. 

REDUNDANCY simply means that the system provides 
more than one means to any given end. A powerful 
operation can be backed up by combinations of simpler 
operations. Then if the powerful operator fails, the user 
can still continue with his work. Such redundancy is 
most helpful while debugging a system, but very few 
systems are completely debugged and any aids to the 
debugger can help the user. As an adjunct of redun
dancy, the system must detect errors and let the user 
act on them, rather than simply dumping memory and 
terminating the run. In Emily, the PLjI ON-condition 
mechanism very satisfactorily catches errors. They are 
passed to a subroutine in Emily that tells the user that 
a catastrophe has occurred and names the offending 
module. Control then returns to the normal state of 
waiting for a command from the user, who has the op
tion to continue or call for a dump. 

A system should provide sufficent DATA STRUCTURE 
INTEGRITY that regardless of system or hardware trouble 
some version of the user information will always be 
available. This principle is especially applicable to 
Emily where most of the information is encoded by 
pointers. A small error in one pointer can lose a large 
chunk of the file. Some effort has been spent ensuring 
that errors in Emily will not damage the part of the 
data structure kept in core during execution. But if an 
error abruptly terminates Emily execution (such errors 
are generally in the system outside Emily) the file on 
the disk may be in a confused state. Currently, the only 
protection is to. copy the file before changing it, but 
there are file safety systems that do not rely on the 
user to protect himself, and one of these should be 
implemented for Emily. 

Protection and assistance for the user are keywords 
in user engineering. The principles outlined in this 
paper are not as important as the general approach of 
tailoring the system to the user. Only by such an ap-



532 Fall Joint Computer Conference, 1971 

proach can Computer Science divest the computer of 
its image as a cold, intractable, and demanding ma
chine. Only by such an approach can the computer be 
made sufficiently useful and attractive to take its place 
as a valuable tool for the creative worker. 

ACKNOWLEDGMENTS 

I am grateful to Dr. John C. Reynolds and Dr. William 
F. Miller. Any success of the Emily project is due to 
their persistent advice and encouragement. 

REFERENCES 

1 W J HANSEN 
Creation of hierarchic text with a computer display 
Argonne National Laboratory ANL-7818 Argonne 
Illinois 1971 

2 J McCARTHY D BRIAN G FELDMAN 
J ALLEN 
T HOR-a display based time sharing system 
AFIPS Conf Proc Vol 30 (SJCC) 1967 pp 623-633 

3 W WEIHER 
Preliminary description of EDIT2 
Stanford Artificial Intelligence Laboratory Operating 
Note 5 Stanford California 1967 

4 DEC LIBRARY 
PDP-6 time sharing TECO 
Stanford Artificial Intelligence Laboratory Operating 
Note 34 Stanford California 1967 

5 STANFORD UNIVERSITY COMPUTATION 
CENTER 
W ylbur reference manual 
Campus Facility Users Manual Appendix E Stanford 
California 1968 

6 D C ENGELBART 
Private communication 
Stanford Research Institute Menlo Park California 1971 

7 L B SMITH 
The use of man-machine interaction in data-jitting problems 
Stanford Linear Accelerator Center Report 96 Stanford 
California 1969 

8 J G MITCHELL 
The design and construction of flexible and efficient 
interactive programming systems 
Department of Computer Science Carnegie-Mellon 
University Pittsburgh Pennsylvania 1970 

9 R B MILLER 
Response times in man-computer conversational 
transactions 
AFIPS Conf Proc Vol 33 (FJCC) part 1 1968 pp 267-277 

10 W J HANSEN 
Graphic editing of structured text 
in Advanced Computer Graphics R D PARSLOW 
R E GREEN editors Plenum Press London 1971 
pp 681-700 

11 W J HANSEN 
Emily user's manual 
Argonne National Laboratory Argonne Illinois 
forthcoming 

12 J W BACKUS 
The syntax and semantics of the proposed international 
algebraic language of the Zurich ACM-GAMM 
conference 
Proc International Conf on Information Processing 
UNESCO 1959 pp 125-132 

13 J C REYNOLDS 
GEDANKEN-a simple typeless language based on the 
principle of completeness and the reference concept 
Comm ACM Vol 13 No 5 1970 pp 308-319 

14 J E GEORGE 
Calgen-an interactive picture calculus generation system 
Computer Science Department Report 114 Stanford 
University Stanford California 1968 

15 B RIDSDALE 
The visual display unit for data collection and retrieval 
in Computer Graphics in medical research and hospital 
administration R D PARSLOW R E GREEN editors 
Plenum Press London 1971 pp 1-8 

16 K THOMPSON 
QED text editor 
Bell Telephone Laboratories Murray Hill New Jersey 1968 



Computer assisted tracing of text evolution 

by W. D. ELLIOTT, W. A. POTAS and A. VAN DAM 

Brown University 
Providence, Rhode Island 

INTRODUCTION 

Many situations exist in which convenient access to 
the detailed evolutionary information associated with 
a text's development is desirable: 

(1) The principal author of a paper edited by a 
number of people, perhaps within the context of 
a group project, might desire to see who made 
what changes and comments. 

(2) Many periodicals retain the entire evolutionary 
development of each article, so that all of the 
changes leading to the development of a final 
version can be identified in case, for example, a 
resulting article is legally challenged. 

(3) There are many instances when an author would 
like to be able to determine the exact nature of 
his editing changes. One example is that of an 
author who wants to study how his thoughts on 
a particular issue have evolved and matured 
over a period of time or who wants to determine 
how an error has crept into his writing. Another 
example is the case of an individual who has 
written a computer program (a particular kind 
of text) for use on one computer system and who 
must then convert the program to run it on 
another system. If he later improved this new 
edition and then discovered he had to run the 
improved program under the old system, some 
manner of noting all the individual changes 
made to the original would be important in order 
to separate the conversion changes from the im
provement changes. 

Conventionally, manuscripts are written by editing a 
series of hard copy rough drafts until a final version is 
produced, where the creation of each new draft typi
cally entails many changes of wide-ranging complexity. 
If a writer desires to compare the changes between two 
different drafts for phraseology or content, wishes to 

533 

review the manner in which his treatment of a topic 
has changed during the course of editing, or must de
termine how or when during editing an error has been 
introduced into his text, his marked-up hard copy 
drafts (if they have been saved) provide a rough means 
of tracing the way in which his text developed. Several 
other attributes of hard copy are the portability of hard 
copy drafts, the ability to easily access material any
where within these drafts, and the ability to identify 
different editors or distinguish between different edit
ing passes on the basis of handwriting style or color of 
ink. 

The principal disadvantage of hard copy editing is 
its tendency to lead to congestion when many changes 
are made to a single draft. As a result, a writer may be 
inhibited from making further editing changes to a 
draft because of the increase in information density on 
a page which is fixed in size. Fixed page size also en
cumbers a writer in making editing changes which in
volve points on different pages, such as moving or 
copying text from one place to another. Furthermore, 
the changes indicated on any single draft may be suffi
ciently convoluted that the evolutionary nature of the 
changes may become difficult to discern. A writer faced 
with such a mass of editing changes could either con
tinue to edit the same draft, in which case the text 
would become even more illegible, or he could fre
quently start new drafts to insure a legible presentation 
of the evolutionary information. Creation of a plethora 
of drafts would, however, impair later access to the 
developmental changes because of the necessity of 
searching through the great number of drafts. 

The conventional method employed to deal specifi
cally with evolutionary information uses revision bars, 
vertical lines placed in the margin of a text to call at
tention to newly made changes. Although revision bars 
show the points of change more clearly than heavily 
edited hard copy drafts, evolutionary information asso
ciated with overlapping editing changes is obscured. 
For example, whenever several editing changes within a 



534 Fall Joint Computer Conference, 1971 

given portion of the text overlap, the revision bars for 
the edits merge and the distinction between the individ
ual editing changes is lost. A more significant drawback 
to revision bars is the loss of all deleted text, any an
notative information explaining editing changes, and 
information concerning the description of the individual 
edits (the context in which changes were made, in 
particular). This information could be partially pre
served by annotating the revision bars with information 
specifying what the indicated changes were, who made 
each change, and when each was made and why. (As 
an example, D. C. Englebart's NLS computer assisted 
editing systeml provides a facility for storing the 
initials of the last person to edit a given statement as 
well as the date and the time of the editing session.) 
However, the loss of any deleted material and the gen
eral inability to see exactly what changes were made 
without comparing separate drafts remain inherent 
problems in any revision bar system. 

Computer based editing systems such as NLS and 
HES2 have been developed which provide a writer with 
excellent facilities for online composition and editing of 
his text. Despite their high degree of sophistication, 
none of these systems have the ability to retain any 
significant degree of evolutionary information concern
ing a text's development. Except for Englebart's NLS 
system which provides the limited facilities noted 
above, the only manner in which text editing systems 
provide evolutionary information concerning a text's 
development is by allowing printing or offline storage 
of intermediate drafts which must be manually com
pared in order to identify specific changes. 

Although hard copy, revision bar, and current com
puter aided editing systems cannot individually provide 
optimal capabilities for both editing and evolutionary 
tracing, each does have its own particular advantages. 
It is the purpose of this paper to consider how facilities 
for tracing the evolution of a changing text can be inte
grated with the facilities provided by advanced cur
rently existing computer aided text editing systems to 
produce a more comprehensive writing system. 

A COMPUTER AIDED WRITING SYSTEM 
WITH EVOLUTIONARY TRACING 

In contrast with the above methods, the next system 
to be considered is capable of preserving the finely de
lineated details of a text's evolution without requiring 
the retention of separate drafts. This system, computer
ized of necessity and using an interactive graphics 
terminal for system/user interface, has been imple
mented by the authors. The record of a text's evolu
tionary development is accumulated by storing a com-

plete description of each editing operation, as the 
operation is performed, into the system's internal data 
structure representation of a text. For example, text 
which an author has deleted and which does not sub
sequently appear on the display screen is retained in the 
internal data structure as part of the system entry for 
that change. The system identifies all changes by editor 
and date, and allows an editor to optionally associate 
explanatory annotation with any change. 

The online storage and CPU requirements needed to 
support a system providing access to the evolutionary 
development of a text are of necessity quite large, since 
each edit recorded in the system requires that a signifi
cant amount of information be stored, including all 
"deleted" material, and since the total amount of in
formation grows commensurately with the number of 
editing operations performed. Additionally, the display 
is called upon to present a substantial amount of in
formation to the user, resulting in a relatively dense 
presentation. Although the system has its inherent 
shortcomings, it does possess two distinct advantages 
over currently available editing methods-computer 
assisted editing which offers both convenient editing 
functions (including insert, delete, substitute, move and 
copy) and immediate display of the updated text, and 
use of the accumulated evolutionary information to 
provide both passive review facilities for examining 
prior editing changes and a set of more advanced active 
review facilities which enable the user to modify specific 
editing changes ex post facto. 

PASSIVE REVIEW 

Although this system is able to accumulate a com
plete record of editing changes made to a text, the 
measure of the system's usefulness is its ability to pre
sent this information to the user so that he can easily 
deal with the text and its stored evolutionary informa
tion. The system facilities described below provide an 
"instant replay" capability for displaying in any of the 
basic display modes the development of selected por
tions of a text, with a number of options available to 
filter the material to be displayed. Normal display al
ways shows a clean, updated version of a text, incor
porating all applicable changes, while proofreader dis
play shows a previous version of the text and super
imposes stylized markings, functionally similar to a 
proofreader's blue-pencillings, to indicate the changes 
transforming this version into the version normal dis
play would show. 

Since an entire text does not in general fit on the 
display screen, the spatial review facility allows a user 
to scroll through his text until that particular portion 



is displayed which he wants to examine. Random access 
to locations in a text, as contrasted with the sequential 
nature of spatial review, is provided by allowing a user 
to associate an identifier with a specific location in his 
text. When subsequently requested, the system dis
plays the text starting at the location associated with a 
selected identifier. 

Because each successive editing change stored in the 
system defines an incrementally different version of a 
text, the aggregate of information available is sufficient 
to recreate the historical sequence of versions corre
sponding to the successive transformations of the origi
nal text. The system provides a chronological review 
facility by allowing a writer to request that any par
ticular version from this historical sequence be dis
played, using either display mode. In proofreader 
display mode, another feature is the ability to show the 
transformation of any selected version into any later 
version. Whenever an editor chooses to examine the 
sequential transformation of his text from an earlier 
version into a more recent version, he can indicate 
whether or not the system is to confine itself to the 
chronological changes in a particular section or whether 
it is to jump from one location to another in displaying 
the chronologically successive changes to the entire 
text. If individual changes are being chronologically 
reviewed in the latter manner and an editing change 
involving multiple text fields, such as a move (text 
deleted in one location and copied elsewhere), is en
countered, the system will by default show the spatial 
area containing the deleted text associated with that 
change. If the user desires to see the spatial area con
taining the other field, he can issue a simple system 
command. 

In order to allow an author to review by editor the 
changes made in a text, the system can filter out all 
editing changes which have not been made by a se
lected editor, and display in either proofreader or 
normal display mode only those editing changes or 
versions which that editor has produced. 

DISPLAY AND DATA STRUCTURE 
FACILITIES 

As suggested above, a particular display may con
tain a substantial amount of information, especially in 
proofreader display mode. The effort to prevent a dis
play from becoming congested and thus preserve its 
legibility resulted in the provision of several system 
facilities dealing with this area. 

First, design of the display modes provided by the 
system had to take into account the limitations im
posed by the large amount of information to be dis-

Computer Assisted Tracing of Text Evolution 535 

played and the requirements of the graphics terminal 
employed. Consequently, the design emphasis was on 
creating a display format which would be as straight
forward and canonical as possible. A complete descrip
tion of the display modes appears in Appendix 1. 
Briefly, for proofreader display, the display screen is 
divided into two major sections, with one section dis
playing the text with embedded proofreader marks, and 
the other containing descriptive information identifying 
the changes indicated by the proofreader marks (in
cluding when and by whom the changes were made) . 

Second, the system is designed to associate user
specified priority levels with each editing change. In 
preparing a proofreader display, only those changes 
with a priority greater than a chosen limit are displayed 
with ,the stylized proofreader markings. Remaining 
changes are incorporated into the displayed text but 
are not separately indicated. This edit priority facility 
is designed to prevent the display from becoming con
gested with proofreader-marked and annotated editing 
changes of a minor nature (spelling corrections, for 
example). Otherwise, not only might the significant 
edits tend to be eclipsed on the display screen by a 
mass of minor ones, but the system itself might have 
difficulty in creating the display since the high density 
of edits could tax the capability of the display screen 
to simultaneously show both the proofreader-marked 
text and the descriptive information associated with 
each change. 

Another system capability which reduces the number 
of edits to be displayed is the ability to specify that 
particular editing changes are to physically alter the 
text without being traced. Since no information per
taining to physically executed changes is stored in the 
system, such changes can never be reviewed or modified. 
Physical execution of editing changes is thus particu
larly well suited for minor corrections which do not 
warrant the retention of tracing information. 

Physical execution in a single edition text not only 
contributes to display clarity, but reduces system over
head as well by eliminating the necessity of dealing 
with the internally stored editing information. If the 
evolutionary development of a text has become static 
after a period of time and the traced information asso
ciated with each editing change is no longer needed, 
the user may specify that all traced edits (or all editing 
changes up to some particular one) be physically exe
cuted. Additionally, a user can request that a copy of 
the current internal data structure (comprised of the 
text and its evolutionary information) be placed into 
archival storage before physical execution takes place. 
If the need to reference information concerning earlier 
editing changes ever arose again, the user could call 
this file into the system and examine it as before. In 



536 Fall Joint Computer Conference, 1971 

effect, this procedure produces a series of files similar 
to a sequence of hard copy drafts, while retaining the 
evolutionary information intact and readily accessible. 

ACTIVE REVIEW 

The active review facilities provide means for a user 
to modify the current state of his text by altering the 
effect of prior editing changes. The three principal 
types of modification are nullification of a past editing 
change (in which case the current text is altered to 
appear as though the nullified editing change had never 
occurred), reacceptance of such a nullified edit, or 
physical execution of a prior change, whether active or 
nullified. With active review, an author can reject and 
thereby nullify the effect of an editing change which 
he later determines to be counterproductive or which, 
for example, has inadvertantly deleted a portion of his 
text. Consequently, no ideas can ever be permanently 
lost from a manuscript unless a writer specifically re
quests that particular edits be physically executed. 

With the addition of these facilities, an author always 
has five possible actions available to him for dealing 
with his text. He can make a new editing change and 
have it either traced or physically executed, or he can 
nullify, reaccept, or physically execute a prior change. 
In order to keep nullified editing changes accessible for 
possible reacceptance, a third display mode, full dis
play, is provided which has the same form as proof
reader display, but which identifies nuflified edits as well 
as currently active editing changes. Since a writer fre
quently deals with a number of editing changes which 
logically fall into particular groups or categories (all 
changes in a section of text, all changes in tense, etc.), 
the system provides the ability to group an arbitrary 
number of editing changes so that active review 
modification will be applied to each edit specified in the 
group when the group itself is referenced. Although new 
editing changes must always be performed on the latest 
(or current) version of text, modification of any past 
editing change or a group of editing changes can be done 
without regard to the chronological order in which the 
edits were originally performed. 

Because active reveiw provides for modification of 
editing changes already made, the fact that edits are 
not necessarily independent of each other must be 
taken into account when the system performs active 
review modification of any particular edit. Any pair of 
editing changes in a text may be either spatially unre
lated or overlapping. If two edits are spatially unre
lated, then active review or physical execution of 
either has no effect on the other. If not, the edits are 
implicitly related because chronologically later editing 

changes depend on the context established by earlier 
editing changes. Changing an antecedent edit by active 
review thus has an impact on spatially related later 
edits. If, for example, a number of relatively minor 
substitutions were made to a section of text inserted in 
a previous version, a user would probably want all of 
these substitutions to be nullified if the enclosing insert 
was nullified. However, if the changes were of a more 
substantial nature, possibly substituting whole para
graphs for already existing text, the user might want 
this material to be retained even if the enclosing insert 
were to be nullified. The coupling mechanism provided 
by the system to control the interaction between spa
tially overlapping editing changes gives the user the 
ability to choose either of these coupling arrangements, 
as appropriate, for any particular set of related edits. 

The coupling mechanism employs two coupling fields 
for each editing change. The emanate scope value associ
ated with an edit specifies whether or not modification 
of this edit by active review will be allowed to affect 
any spatially overlapping edits. Conversely, the receive 
scope value associated with an edit specifies whether 
text associated with that edit itself is to be changed 
when active review modification of an overlapping edit 
is made. In order for any modification of the text 
associated with an overlapping edit to take place, both 
of the following conditions must be satisfied: the edit 
to be modified must emanate scope and the overlapping 
edit must receive scope. An example of how edit coupling 

The following sequence of changes is made to a section of text: 

1 Text is moved from "MF" to "MT" 

2 "51" is substituted for "SD" 

3 The move (1) 1S nullitied. 

If the coupling between the move and the substitute specifies 

that the overlappin':l substitute is to be subjected to the same 

lIIod1ficatiolJ as the move (positive coupling), then nUllific~tion of 

the move will cause the substitute to be nullified. Otherwise, the 

material inserted by the substitute· will remain as pact of the 

current text (ne':lative coupling). 

SCHEMATIC: 

f.XAMPLE: 

CHANGE 1 

CHANGE 2 

CHA:"GE 3: 
POS. COUPLING: 
NEG. COUPLING: 

MF 

f(1 
scenic View in the pack 

view in the scenic park 

view in the baseball park 

scenic View in the park 
scenic View in the baseball pack 

Figure l-Edit coupling example 



can be employed is given in Figure 1. The effect of 
physical execution on overlapping edits coupled so that 
modification of one is to affect the other should par
ticularly be noted. When an editing change is physically 
executed, overlapping portions of spatially related edits 
coupled in this manner to that change are likewise 
physically executed. Consequently, because physical 
execution of an edit results in the loss of evolutionary 
information which cannot be reconstructed, the user 
must be especially certain that all edits overlapping an 
edit to be physically executed have the intended cou
pling values. The ability to interrogate and/or alter 
both the coupling specification fields of an edit and its 
priority level is provided. User modifiable defaults for 
edit priority, coupling field values, and other parameters 
associated with new, traced editing changes are pro
vided by the system so that a user need supply only a 
minimum of information when making any particular 
change. 

The concept of active review may be better under
stood by considering the following model. The text 
initially input into the system prior to editing defines a 
base text relative to which all future editing changes 
are made. Whenever a user specifies that an edit is to 
be performed, two modifications to the internal data 
structure are made by the system. The editor's initials, 
the date, and any annotation explaining the change are 
stored in that part of the data structure reflecting the 
chronology of editing changes. All information concern
ing the scope of each editing change and the operation 
performed, along with any new material added to the 
text or moved within it, is incorporated inline into the 
base text. The chronological components of all editing 
changes can be thought of as a chronologically ordered 
set of editing information, to be termed an edit vector. 
The active review facility provides the ability, through 
edit rejection, to selectively eliminate edits from an edit 
vector. By performing new editing changes or re
accepting nullified changes, additional edits are included 
in an edit vector. In this way, the edit vector becomes 
a selector on the chronologically ordered set of all 
editing changes, indicating which ones are active (non
nullified) and thus take part in defining the current 
text version. 

In terms of this model, the way in which a version 
of the text is prepared for display is indicated in Figure 
2. To create a proofreader display, the display processor 
uses the information contained in both the edit vector 
and the base text to display a version with proofreader 
marks for all active edits above a user specified priority 
level. The edit vector acts as a selector by allowing 
changes to be incorporated into the version of text dis
played only if they are specified in the edit vector. It is 
important to note that only the spatial portion of the 

Computer Assisted Tracing of Text Evolution 537 

DISPLAY GENERATING SUBSYSTEM 

DISPLAY 

PROCESSOR 

CHRONOLOGICAL 
VERSION 
SELECTOR 

Figure 2-Display generating subsystem 

text to be immediately displayed needs to be processed 
in this manner. 

Chronological review, in this light, consists merely of 
truncating the edit vector at some point, implicitly 
nullifying all succeeding editing changes. Review by 
editor is accomplished by implicitly nullifying all 
changes in an edit vector which have not been made by 
the selected editor. In this case, only versions of the 
text created as a result of this editor's changes may be 
displayed, and only changes made by this editor will be 
shown in the proofreader display mode. Spatial review, 
while utilizing an edit vector to define the version of 
text to be displayed, neither explicitly nor implicitly 
affects an edit vector. 

MULTIPLE EDITIONS 

Another major facility provided in this system is the 
ability to define multiple, distinct text editions which 
utilize a single, common text data structure. In the 
above model, this corresponds to the maintenance of 
multiple edit vectors. This multiple edition facility is 
particularly well suited for use by a group of collab
orating authors. Each author can maintain his personal 
edition based on the common data structure, selecting 
editing changes for incorporation into his edition via 
active review and adding new changes to reflect his 
particular contribution and style (with or without 
direct consultation with his colleagues). A composite 
document can later be produced through comparison of 
the individual editions and selection of those editing 
changes representing the best content and phraseology 
of the group (subject to final editing touches). Alterna
tively, a single author can use this feature to maintain 
separate editions of a text which are substantially simi
lar but which differ in presentation to meet the needs 
of different audiences. 



538 Fall Joint Computer Conference, 1971 

Besides employing editing functions and the facilities 
of active review to alter a particular edition, the mul
tiple edition facility allows a writer to create a new 
edition by copying another edition (including its text 
and evolutionary information). Whenever an editor 
initiates additional editing changes to a particular 
edition after multiple editions have been created, he 
must specify directly or by system default which edi
tion(s) are to be updated (i.e., to which edit vector(s) 
this edit is to be appended) . Each new editing operation 
is automatically nullified in those editions not specified 
to receive the change. 

Whenever a text has more than one edition defined 
on it, physical execution of editing changes is performed 
in an altered manner. In order to comply with the 
two requirements that all editions be based on a 
common data structure and that active review changes 
in one edition not affect any other edition, virtual 
rather than physical execution is employed. Further
more, virtual execution allows all changes initiated in a 
multiple edition environment to be accessible in all 
editions. As far as a user can tell, the results of virtual 
execution and physical execution are the same in that 
editing changes will never again be displayed with 
proofreader markings and may never be further modi
fied in the affected edition. The difference is that 
evolutionary information associated with virtually exe
cuted changes must be retained even though each such 
edit appears to be physically executed. Virtual rather 
than physical execution is always performed when the 
physical execution function is specified and more than 
one edition of a text exists. New editing changes vir
tually executed in specified editions are treated as nulli
fied editing changes in all other editions. In this manner, 
provision is made for later acceptance of such changes 
into any of the other editions. When an already existing 
editing change is physically executed, no modification 
is made to this change in other editions. 

Except as noted above, all information concerning 
each edit is stored by the system in such a manner that 
changes performed by an editor in one edition do not 
appear in any other edition. In particular, an edit can 
have a different priority or different scope coupling 
parameters in each edition. A further feature of the 
system is the ability to spin off any edition as the base 
text for a separate data structure, either with informa
tion concerning all but virtually implemented editing 
changes intact or with physical· implementation of all 
edits in accordance with the edit vector for that edition. 

In comparing separate editions, it is convenient for 
a writer to have some method for associating locations 
in one edition with those in another. The system ac
complishes this by providing a spatial coupling facility 
which allows a user to associate a location in each of 

several editions with a single identifier. After establish
ing such locations, a user examining text near a coupling 
point in one edition can employ the coupling to examine 
the material at the corresponding location in another 
edition. Such coupling designated by the user is in addi
tion to the natural coupling inherent in the data struc
ture--unless specified otherwise, whenever the user 
switches editions, he automatically sees the text in the 
same general spatial area. 

CONCLUSION 

It is the principal objective of this particular com
puterized writing system to present in one-implementa
tion many of the separate advantages favoring other 
kinds of editing systems. By providing writers with this 
new, generalized writing system characterized by ease of 
editing and both review and use of evolutionary in
formation, it is hoped that writers' abilities to create 
texts may be significantly augmented. 

Any implementation realizing these facilities, by the 
nature of the system's massive information storage and 
processing requirements, places a heavy demand on 
computer system resources. Although further advances 
will be made in computer hardware capabilities and in 
the creation of display presentations which are more 
human factored, the current experimental implementa
tion of this writing system is significant because it will 
allow determination of the extent to which the ability 
to passively review and actively modify evolutionary 
information does augment the writing process. It also 
provides for establishment of criteria against which the 
effectiveness of other means for displaying a text's 
evolution can be judged. 

ACKNOWLEDGMENTS 

The authors wish to express their appreciation to 
William P. Braden, John V. Guttag, and Daniel E. 
Stein for their contributions to the design of the com
puter assisted writing system described herein. 

REFERENCES 

1 D C ENGELBART and W K ENGLISH 
A research center for augmenting human intellect 
Proceedings AFIPS 1968 Fall Joint Computer Conference 
Part 1 1968 

2 S CARMODY W GROSS T NELSON D RICE 
A VAN DAM 
A Hypertext Editing System for the/360 
Proceedings 2nd Annual Conference Computer Graphics 
University of Illinois Urbana Illinois 1969 



APPENDIX I 

DISPLAY FORMATS 

A user can choose to view his text in any of three 
modes of display-normal, proofreader, or full display. 
Normal display consists simply of a text area in which 
an updated version of the text is displayed in double 
spaced ragged-right lines, and a prompt area at the 
bottom of the screen in which system messages for the 
user are displayed. 

The proofreader display (Figure AI) consists of a 
text area, a descriptor area, and a prompt area. The 
text for the chronological version of a particular edition 
is comprised of not only text presented by normal dis
play but also text associated with active (non-nullified) 
deletions; proofreader marks are superimposed to 
identify editing changes. A line is drawn through all 
deleted text in order to distinguish it from current text, 
and vertical lines are embedded in the text to delimit 
the spatial scope of each editing change. When the 
vertical line denotes the beginning of a scope, it rises 
to meet a horizontal line above the text line; when it 
denotes the close of an edit's scope, it drops to meet a 
similar horizontal below the line of text. 

The descriptor area provides detailed information 
about the editing changes displayed and is comprised 
of marginal areas on both sides of the text, a tag block, 

DESCRIPTOR AREA ~ 

~RGINAL TEXT MARGINAL 
BLOCK AREA BLOCK 

TAG BLOCK 

ANNOTATION BLOCK 

PROMPT AREA 

Figure AI-Proofreader and full display format 

Computer Assisted Tracing of Text Evolution 539 

1. SEE TAG 1 The princilPa~ AmeDifrcan source of SEE TAG 2 

2. 3I;4SI,4S0 thE!! ideas IO~ thef professional 4SI;4S0,3I 

3. 5MD reformers was the ~i1itary 5MD 

4. 6SI;6S0 Iiiilightenmentla9~g_sl in Enq1and. 6SI;6S0 

TAGS: 
1. lSI; ISO; 2SI; 2S0 
2. 1SI;lS0; 2SI; 2S0 

ANNOTATION: 
1. SUBSTITUTE; 170; WOE; 4/7/71; SI: 1/1; SO: 1/1 
2. SUBSTITUTE; 213; WAP, 4/8/71; SI: 1/1; SO: 1/1 * 
3. INSERT; 73; WAP, 1/5/71; 2/2 
4. SUBSTITUTE; 215; WOE; 4/8/71; SI: 2/2; SO: 2/2 * 
5.~ 108; AVO; 2/1/71; MI: 6/6; MO: 3/3 * 
6. SUBSTITUTE; 234; AVO; 5/4/71; SI: 4/4; SO: 4/4 

FUNCTION IGNOREO: NEW CHANGES MUST BE MAOE TO CURRENT VERSION 

Figure A2-Sample proofreader display 

and an annotation block. In the left margin, editing 
changes beginning their scope on a line are identified by 
short codes indicating their edit type. Similarly, the 
closing scopes of editing changes are identified in the 
right margin. The order in which these codes are listed 
corresponds to the order in which the edit scope de
limiters occur on each line. If there is insufficient space 
to list a given line's codes in the appropriate margin 
area, this information is placed in the tag block and a 
reference to this tag is made in the margin. 

The annotation block contains a fuller, description of 
each change, including the edit number, the editor's 
initials, the date of the change, and an indication where 
each end of its scope lies. Figure A2 indicates how a 
representative proofreader display appears. 

Full display presents the text and all editing changes, 
whether nullified or active, which are included in the 
version of the particular text edition displayed. In order 
to distinguish between accepted and nullified edits, text 
within the scope of the former is displayed in small 
letters whereas that of the latter is shown in capital 
letters. This display, as contrasted with the proofreader 
display, uses lines drawn through text to identify not 
only text deleted by active edits, but also text inserted 
by nullified edits. 

The following example illustrates the manner in 
which an edited line of text would be displayed in each 
of the three display modes. For the sake of clarity, the 
example has been chosen so that the edits have no over
lapping scopes. The initial text to be edited is the phrase 
"hard copy editing". The first change is to insert" text" 



540 Fall Joint Computer Conference, 1971 

NORMAL DISPLAY: evolutionary editing 

PROOFREADER DISPLAY: IhaFEi eej;l~evolutionarYl editing 

FULL DISPLAY: JhaFEi eepYjevolutionary~ EDITING! 

Figure A3-Display mode example 

after "copy", resulting in "hard copy text editing". 
Then "evolutionary" is inserted after "copy" produc
ing "hard copyevolutionary text editing". "Hard copy" 
is then deleted, resulting in "evolutionary text editing". 
Finally" editing" is deleted, resulting in "evolutionary 
text". If upon reviewing his edits the writer accepts his 
second and third edits while rejecting the first and 
fourth edits, the edited line would appear on the three 
displays as shown in Figure A3. 

APPENDIX II 

INTERNALS OF THE SYSTEM 

A text's internal data structure consists of two major 
and a number of ancillary areas, all of which are arbi
trary length segments and program pageable to disk. 

The two main areas are the text area, which contains a 
linear string of text with embedded edit codes defining 
the nature and scope of each editing change, and the 
edit area, which gives the location in the text of each 
edit and contains additional information concerning the 
execution status and priority of each traced edit in 
each text edition. 

Every time a traced editing change is performed, the 
text pertaining to that change is bracketed inline by a 
pair of edit codes and an entry is made in the edit 
area. The correspondence between edit codes and the 
related edit area entry is maintained by the use of edit 
numbers. The edit's start code, besides delimiting the 
scope of a change, contains the bulk of the information 
describing an edit which is required by the display 
processor. This information consists of the edit number, 
an index into the table containing any annotative in
formation pertaining to the edit, the type of editing 
change, and the priority, nullification status, virtual 
execution status, and the emanate and receive scope 
values for the edit in each edition. The edit's end code, 
which contains only the edit number, merely delimits 
the end of the scope of a change. Each page in the text 
area has a header which lists those edits whose scope 
overlaps from the previous page. Consequently, the 
display processor must only go back to the beginning of 
a page in order to determine text to be displayed in any 
spatial area. 



Planning computer services for a complex environment 

by JOHN E. AUSTIN 

Harvard University 
Cambridge, Massachusetts 

INTRODUCTION 

A responsibility that is being faced by more and more 
corporations, research laboratories, universities, govern
ment agencies, and other large complex organizations is 
that of providing effective computer services from a 
variety of sources to serve a multiplicity of user needs. 
At Harvard University this problem has been faced for 
a number of years and various planning processes have 
been developed to cope with it. In the 1970-71 academic 
year a new office was created, the Office for Information 
Technology, with planning and coordination of com
puter services as its first priority. 

The University at that time had an IBM 360/65 in 
its Computing Center providing batch processing, 
timesharing, and process control services through a 
central batching room and a number of remote job 
entry stations. There was also a 360/30 operated by the 
Comptroller's Office. In addition to these two facilities, 
there were a number of smaller computers located in the 
various departments, and considerable use of time
sharing services purchased from commercial vendors. 
At the time the Office for Information Technology was 
created the Computing Center was incurring deficits 
because of a downturn in research funding and because 
of shifts of interest to other forms of computing services. 
Because of the uncertainty about the future, the Office 
was asked to analyze the usage of computing in the 
University and to propose alternatives for services. 

This paper summarizes part of the analysis and 
several of the alternatives that were proposed. The 
actual choices and implementation processes involved 
considerable negotiation. But for non-technical ad
ministrators of any complex endeavor to make a decision 
that has a number of technical ramifications, they must 
have a point of departure and this .paper represents 
just that. 

The choices, as they would be for the corporation, 
research laboratory or government agency, involved 
neighboring institutions, which in Harvard's case is the 

541 

Massachusetts Institute of Technology (MIT). They 
also involved commercial services. The criteria for 
selection, in the last analysis, were a combination of 
cost-effectiveness to the University and flexibility for 
the users. 

CLASSES OF COMPUTER USE 

We found it convenient to divide uses of computers 
at Harvard into six basic classes: User written program 
compilations/executions, Use of package programs, 
Large scientific production, Administrative production, 
On-line data collection and process control, and On-line 
interaction. The adequacy of these descriptions can be 
argued, but they show up as groups in the statistics 
derived from the 360/65 at the Harvard Computing 
Center, as well as in discussions with faculty and 
administrative groups throughout the University. An 
individual can be a member of different classes at 
different times in that, for example, an administrative 
or scientific production job requires program com
pilation at some previous point in time. 

The following sections will discuss characteristics 
and volumes of these types and outline alternative 
sources of services. 

User written program compilations/executions 

The largest user class . of batch processing at the 
Computing Center in numbers of jobs per day is 
represented by the person who has written a 
FORTRAN program and wishes to have it compiled 
and, frequently, executed. He typically requires less 
than 150k bytes of core and during a typical week he 
had an average turnaround time of 23 minutes. This 
class accounts for 36 percent of the number of jobs at 
the Computing Center. 

It is more difficult to measure the extent to which this 
use is made of the commercial timesharing system. 



542 Fall Joint Computer Conference, 1971 

At the Harvard Business School (HBS) it is probably 
less than 10 percent. In the Faculty of Arts & Sciences 
(FAS) it may be as high as 90 percent. The reasons are 
pedagogical: the F AS students are learning how to 
program, the HBS students are learning how to analyze 
management problems. 

Some members of this user class also have available 
to them certain other facilities. There are the IBM 1620 
computers available to users at the School of Public 
Health, in the Biophysics and Chemistry departments. 
Members of the Physics Department can use the XDS 
Sigma 7 located there. 

The needs of this user class can be generally described 
as follows: 

Rapid turnaround time on an unscheduled basis is 
frequently important. If the individual is working on 
a project, he usually wishes to get on with it as 
quickly as possible. In the case of students, it may be 
vital to the completion of an assignment. 

Means of providing this service can depend on the 
size and computational requirement of the program. 
If it is small and requires small amounts of core and 
CPU time, timesharing offers the obvious advantage 
of being able· to complete the task, including several 
iterations, in one session. If the program is large in 
the number of coded instructions or in the amount of 
data to be processed or in the amount of output to 
be produced, then batch processing can be cheaper. 
In some cases a combination of terminal access to a 
system with a deferred batch execution is the best 
method. 

Service alternatives 

This user class could be served in several ways. For 
the batch user whose mode of entry is punched cards 
and whose principal output is paper listings, a relatively 
convenient card reader/printer station is sufficient, the 
location of the central processor not being important. 

For many users it is essential to have a consulting 
service available at the reader/printer station to help 
them with problems they encounter in attempting to 
run their programs. The range of this service will be 
that currently covered by the programming assistants 
at the Computing Center. In addition, it is important 
that a source of information and advice on all features 
of the system be available to the user. 

For the timesharing user in this class whose mode of 
entry is typing on a keyboard in his own work place, 
ease of remote access to the system, reliability, and 
fairly fast response are his main concerns. He would 
like to be able to depend on the time when he can get on 

the system, to know that it will remain operational, and 
know that he can get his work accomplished within a 
reasonable time. 

Use of package programs 

The next largest user class, and one that is growing, 
is the person who comes to the computer to use a 
program that has been prepared by someone else. This 
may be a statistical program like Datatext or SPSS, or 
it may be a structured presentation of a large data base 
like the King Charles County Case or the Management 
Game at the Business School. The user in this class may 
bring his own data to be processed by the package 
program, or he may be given a decision-making aid in 
which both the logic and data are part of the package. 
This user is seeking a service that is more than simple 
computation. The computer (and its associated soft
ware) is responding to the user in terms related to his 
kind of work. 

At the Computing Center this currently represents 
about 12 percent of the jobs. On the timesharing system 
this class represents most of the HBS usage (90 percent) 
and a small but growing amount of FAS usage (10 
percent) . 

The service needs of package program users vary 
greatly depending on the size, computational require
ments and intended use of the package. For some 
packages used mainly by a local subgroup of users these 
functions will be performed locally but for packages of 
more general interest it may be determined that the 
package is of such universal appeal as to be managed 
centrally. 

Service alternatives 

By and large this usage class is not interested in 
proximity to the central processor. Since the results are 
the main concern, and since packages are frequently 
obtained from many different service sources, a rule of 
thumb would be that cost-effectiveness to the user 
should dictate where the computing is done. 

Program packages are in one of the fastest growing 
segments of the computer market. It is also one of the 
areas in which universities make major contributions 
and can profitably share their results. Because of the 
diversity of systems used throughout the academic and 
commercial worlds, it is important to the potential 
package program user that he not be constrained from 
obtaining this service because it will not run on the 
system he is required to use. 

It should be not-ed that the requirements for package 
development are different from those of package use. 



Planning Computer Sel"Vices for Complex Environment 543 

There is a general fear that if service requirements are 
met solely from outside sources, the resulting incon
veniences will inhibit experimentation and development 
of new packages. 

Large scientific production 

This usage class may overlap with the package 
program user to some extent. Its distinguishing char
acteristics are that it uses large amounts of core and/or 
CPU time relative to input/output. The programs may 
be lengthy and by running again and again with new 
data, solve complex problems in chemistry, physics, 
astronomy, and other sciences. 

This usage class does not represent a large number of 
jobs at the Computing Center (about 4 percent), but 
the demands on the resources are such that the costs 
incurred to serve them are high; and their portion of 
income to the Center is also significant. Of the approxi
mately 320 active customers of the Center in a recent 
month, twenty of them provide 50 percent of the 
income. 

Historically it was the large, governmen t-su pported 
scientific project that was the high priority user of the 
Computing Center. Other activities are beginning to 
catch up in volume and dollars with this usage class, 
but government-supported work still tends to get con
siderable attention because of the general overhead 
component of the research contract. 

The needs of these users are: 

Large resources. They will use high speed process
ing and large quantities of core in abundance. 
Programs will tend to conform to the largest dimen
sions of the system, whatever they are. 

Reasonable rates. Most of these users have access 
to government-financed computing centers. When the 
local rate is too high, the differential will overcome the 
inconveniences of going elsewhere to get the work 
done. Members of this class will do as much com
puting as they can get money for. 

Reasonably convenient access to the machine. 
Most of these users have a high technical skill, need 
very little help from the staff, would like to use the 
computer as they do any lab equipment. 

Service alternatives 

This class uses batch processing almost exclusively 
because large CPU/large core jobs do not blend well 
with a multi-user environment. Satisfactory service 
could be obtained from a number of sources including a 
Harvard-operated center, MIT, or a government-

financed center. To the extent that this class is directed 
to other centers there is the risk that they will feel 
unsupported by the University. 

Administrative production 

One of the best understood and most visible classes 
of computer usage in a university is that of administra
tion. These users have several things in common: they 
all face deadlines which they must meet; they can 
schedule most of their work long in advance; and they 
have considerably more input/output relative to 
computation than any other type of user. In addition, 
there is considerable need for security of files and for 
the operational environment to be protected against 
unauthorized access. 

At the present time about half of the Harvard 
administrative jobs are run at the Comptroller's Data 
Processing Center on the 360/30 and half at the 
Computing Center. The Comptroller's workload is 
mostly his own with some work being done for the 
Personnel Office, Widener Library, and others. The 
Computing Center jobs are those of the Printing 
Office, the Press, the Medical School, the Development 
Office, the Admissions Office, the Law School, the 
Division of Engineering & Applied Physics, Widener 
Library, the Registrar of the Faculty of Arts & Sciences, 
and the Business School. 

The needs of the administrative production class are: 

Dependable scheduling. They must be able to rely 
on completion of their jobs at the appointed time. 

Security. Files and output must be protected 
against unauthorized access. 

Data control. More attention to operational con
siderations is required of administrative work. 

This could be a growing area of interest at Harvard. 
The possibility of having a comprehensive information 
source will enable the Deans and the budget officers 
of the various departments to plan better and to 
monitor and to analyze their operations throughout 
time. 

Service alternative5 

As a user of batch processing, the administrative 
production class requires a machine with a high level of 
disk, tape, and printer capacity to do the work. Tech
nically there is no compelling reason to have the 
machine located in or near the administrative offices. 
In most places it happens to be so located and there 
would probably be a strong desire to have at least a 



544 Fall Joint Computer Conference, 1971 

high speed card reader/printer station in the ad
ministration building for Harvard administrative 
production. 

It is important to recognize that this work requires 
the mounting and storage of many reels of tape and disk 
packs under tightly scheduled conditions. Operator 
error can be both painful and costly, as would theft or 
other forms of abuse. Any combined center doing ad
ministrative work, whether Harvard-operated or else
where, would have to make very careful provision for 
this aspect of the operation. 

On-line data collection and process control 

There is a class of computing at Harvard that is 
much less visible than the others but is certainly a 
sizable one. There are a number of laboratories in which 
a part of the instrumentation consists of a small com
puter to collect experimental data or control experi
mental processes. In some cases these same computers 
analyze and display the data with plotters, printers or 
CRT displays. 

The most important current consideration in this 
class is the service provided by the Computing Center 
to the Cambridge Electron Accelerator. The commit
ment made by the CEA was 10 percent of the total 
dollar amount pledged to support the Center this year. 
The arrangement is that when the accelerator is actively 
conducting its colliding beam experiments, the 360/65 
acts as a high speed data collector at the end of a cable 
directly connected to the accelerator. The data is 
processed in lOOk of core in the 360/65 and displayed 
on units back at the CEA facility. The important 
elements in the relationship are the direct connection 
over a high speed cable, continuous on-line operation 
for long periods (of up to two weeks), the cycle time of 
the 360/65 CPU and the lOOk of core. 

It is essential to the CEA that a computer with a 
speed of at least that of a 360/50 and lOOk of core be 
available at the end of a high speed cable for the life of 
the colliding beam project. The service alternatives are 
quite limited from a practical standpoint, because the 
reprogramming required to run on another machine 
would be added delay and expense. 

On-line interaction 

Interactive timesharing is the class of computer use 
that has had the most growth, the most problems, and 
is in the opinion of many people the most important 
class for the future. It is not an exclusive class in that 
program compilation and use of program packages are 
the primary timesharing activities. Its distinctive 

feature is the opportunity for the user to interact con
versationally (as they say) with a program. Because of 
that, and because the service sources have to be thought 
of in different terms, it tends to be considered as a 
separate kind of computing. 

Experience with commercial timesharing service at 
Harvard has been that the demands have exceeded the 
supply very early in the life of any contract. There 
have been many difficulties in getting the level of 
service that we thought we were contracting for, but 
in spite of those difficulties many, many thousands of 
terminal connect hours have been used. Members of 
the several faculties predict that the demand will 
increase by at least 50 percent next year. 

The Computing Center announced its CALL/360 
service early in February, but there has not been enough 
time to tell whether that service will be used to its 
capacity. Continuance of CALL/360 beyond the 
Spring Term depends on user response and billings. 

The needs of individual timesharing users are those 
previously mentioned: reliability and responsiveness. 
In the University community there are several larger 
needs: 

Capacity. As demands grow, they continually 
exceed the ability of anyone system to satisfy them. 
When several sources are used, there is a problem of 
storing programs and files on multiple systems, and 
if they are different, there is the problem of in
compatibility. 

Languages and other software subsystems. The 
Harvard community has not only large demands but 
a diversity of needs for different computer language~ 
and package programs. These are not always available 
on one system, and one system cannot always 
operate effectively if it tries to offer services at too 
many levels. 

Variety. Compared with batch processing, time
sharing can be a much more pleasing mode of opera
tion. For this reason classes of users now content 
with batch processing may convert to timesharing, 
and it will be necessary to partition the class of 
timesharing users into finer categories. 

These categories are the same as the ones above, 
namely: 

User program compilations/executions. It is ex
tremely convenient (to the point of inducing care
lessness) to write programs in the timesharing mode 
because editing, testing, correcting can follow each 
other rapidly. 

Package programs. The possibility of having a 
library of commonly used programs should remove 



Planning Computer Services for Complex Environment 545 

the need of having small computers such as the IBM 
1620s since many of the programs are small and the 
users don't need a computer all the time. Many of 
the data analysis· packages are more useful when run 
in timesharing mode. These will also require setting 
up, maintaining, and retrieving from large data 
bases. 

Large scientific production. Although users will 
not sit and wait for such jobs to be done, the initiation 
and control of such jobs may be done by remote 
access to the computer. 

Administrative production. It is convenient to 
update the information in files and to do editing of 
such files on-line. The capability of doing on-line 
analyses by timesharing is then available. 

Service alternatives 

There is such a diverse set of needs for timesharing 
that one source is probably not the best solution to 
the problem. 

A contract with a commercial service corporation is 
one alternative for one type of service. For . next year 
there are various other alternatives or additions 
possible. We could replace the commercial service with. 
another timesharing vendor. We could try to renegotiate 
the present contract at a lower level and supplement it 
from another vendor. We could install one or more 
small basic one-language timesharing machines like the 
HP-2000 for the use of beginning programming stu
dents. We could offer CALL/360 on a more extended 
basis if the trial use on the 360/65 proves effective. 
There is also the possibility of some service available 
from MIT on Multics. 

In any case, more timesharing service than is now 
available will be required for next year and in the years 
to come. Furthermore, we predict that other usage 
classes will tend to convert gradually to on-line systems 
as such systems acquire greater capacity, become more 
reliable and evolve into networks. 

ALTERNATIVES FOR PROVIDING 
COMPUTER SERVICES 

The minimum risk alternative 

A general review of all six classes of computer use 
points up the two fixed obligations for Harvard-operated 
computers: the service to the CEA and theadministra
tive production, which at this point is mainly the work 
for the Comptroller. There has to be a computer with 
the speed of a 360/50 at the end of the cable stemming 

from the CEA and a 360/30 or its equivalent to serve 
the administration with input and output under 
administrative control. These obligations are both 
technically and organizationally based. All other 
services could be procured from other sources. 

During the month of February this possibility was 
explored with two batch processing computer service 
sources: MIT and a commercial vendor. The user 
classes under consideration were user written program 
compilations/ executions, use of package programs, and 
large scientific production. 

In our analysis of rates we found that the jobs run by 
the Harvard Computing Center in January would have 
cost about .9 times as much at MIT and 1.3 times as 
much at the commercial vendor. We tried to consider 
the logistical problems in getting that volume of work 
done at these two places, and found that the work 
being submitted from IBM 2780 RJE stations could be 
processed much as they are now with a few changes in 
the job control cards. The large problem would be 
handling the work now submitted at the Computing 
Center batching room. In all likelihood we would have 
to provide a very high speed I/O terminal (on the 
order of a 360/25) in addition to regular courier service. 
We would also have to provide assistance to users as we 
do now and have at least one systems programmer who 
knew the other system thoroughly. 

At the same time, the Office for Information Tech
nology would help find other sources of both batch 
processing and timesharing services, as is done now, for 
special needs. If large scientific production users could 
get a better deal at the AEC financed center, arrange
ments for a remote job entry station could be made 
for them. 

This alternative has the least financial risk to the 
University in that it involves the lowest fixed-cost 
arrangement that can be made. It also carries with it a 
more complicated management problem in making all 
these services effective (as has been the case with the 
timesharing service contract this year) . 

The minimum change alternative 

Given the utilization rates on the 360/65, it is the 
opinion of the Computing Center staff that the Uni
versity needs a machine of that size to do the work that 
needs to be done. Replacement of the 360/65 by the 
recently announced IBM 370/155 has a number of 
unquestionable advantages. 

The hardware costs for an equivalent machine 
are lower. 

The design of the 370/155 and its peripherals 



546 Fall Joint Computer Conference, 1971 

provide for a greatly enhanced file handling capa
bility. 

The 370/155 could emulate the 360/30 DOS 
operation run by the Comptroller, and therefore, 
eliminate the need to either do a quick conversion of 
his system or to keep the 360/30 beyond this next 
summer. The conversion to OS/360 would continue, 
but at a more thoughtful pace. 

All of the present users of the 360/65 at the 
Computing Center could continue to get services with 
no disruption whatsoever, including the service 
provided to the CEA. 

This alternative has at least two possible versions: 

A 370/155 configured to meet the batch processing, 
load of a 360/65 only could be installed in the Com
puting Center building. This would be a simple 
replacement of the 360/65. 

The only major technical problems to be overcome 
in this case are those connected with emulation of the 
360/30 prior to the Comptroller's conversion to OS. 
Many of those DOS programs require operator 
intervention which complicates life in a multi
programming environment. 

The second version of this alternative would be to 
put the 370/155 on the fifth floor of the administra
tion building in the area now occupied by the 
Comptroller's 360/30. On that same floor there would 
be space for a separate I/O area for the Comptroller. 
There would then be a fast I/O station in the batching 
room at the Computing Center building to handle the 
work submitted there. 

This version has the advantage of giving greater 
security to the hardware and to the files which would 
be an improvement from an administrative point of 
view. It has the disadvantage of having to provide a 
path for the CEA service over the broad band com
munication cable from the Computing Center to the 
administration building. 
This alternative, in either of its versions, is a con

tinuation of the Computing Center concept as it exists 
now but at a lower cost. There would still have to be a 
procurement of special services-particularly time
sharing services-from other sources. 

The integrated center alternative 

An alternative building on the previous one would be 
to structure a system that would combine batch and 
remote batch processing with a timesharing service. 
The 370/155 is designed to take advantage of multiple 
channels and high speed disks for both batch and on-line 

file handling. With the addition of 500k bytes of high 
speed core a 50 terminal CALL/360 system and CRBE 
would be able to run with minimum interference with 
the batch stream. In about a year IBM's new Time 
Sharing Option may be running under OS and could 
provide a significant new form of computer access. 

The advantage of this alternative would be a sub
stantial increase in timesharing capability for those 
who needed only BASIC or FORTRAN at a medium 
cost. There might also be a number of users who would 
welcome TSO when it becomes available. 

LONG-RANGE IMPLICATIONS 

What do these alternatives point to beyond the 
immediate planning period? 

The minimum risk alternative suggests that 
Harvard wishes to relinquish a large part of its 
computer services operations business. It also opens 
the way for a combined center with MIT if that 
should be desirable for the two institutions. 

The risks of this alternative are that control of 
service quality would be in someone else's hands and 
this could have repercussions among the many 
computer users who judge a university on its re
sources. On the other hand, it is just as likely that 
such a move could be among the first of many such 
moves by universities located in urban areas where 
diverse computer services are locally available. It is 
no longer true that computing is an exotic activity 
requiring a research and development environment. 
While the field is still undergoing great change, there 
is reason to believe that buying services as needed 
will prove more beneficial to the educational and 
research institution than attempting to support them 
at a very high level internally. 

The minimum change alternative suggests that 
there is a cost-effective-Ievel-to be determined by 
financial commitments from users-at which some 
internally provided services can be maintained. Just 
as we continue to have a Buildings and Grounds 
Department and a Printing Office, so we should have 
a computer service center where University needs 
can be met by resources managed by other University 
staff. There is an opportunity to influence priorities, 
to control costs and to dictate what services and 
service levels will be provided. In addition, the 
administrator gets the security and control that his 
files require. 

In the years ahead, we would be saying, there is a 
continuing need for this and it is part of the overall 
service component of a university. 



Planning Computer Services for Complex Environment 547 

The integrated center alternative suggests that the 
services of a single fast processor can handle a variety 
of computing needs effectively and it may well be 
demonstrated that it can. The advantages are that 
one management takes care of everything and that is 
much less wasteful than having several faculties each 
doing their own thing. 

The costs of getting services from many sources 
would be higher in some cases and lower in others. The 
advantages of diversity would have a cost in incon
venience. The maintenance of a resource center is a 
hedge against fluctuations in the marketplace. Every
thing has its price. 

BIBLIOGRAPHY 

1 D N FREEMAN J R RAGLAND 
Response-ejficiency trade-off in a multiple university system 
Datamation pp 112-113 March 1970 

2 F WARREN McFARLAN 
Problems in planning the information system 
Harvard Business Review pp 75-89 March-April 1971 

3 CHARLES MOSMANN EINAR STEFFERUD 
Campus computing management 
Datamation pp 20-23 March 11971 

4 ANTHONY RALSTON 
University EDP: Get it all together 
Datamation pp 24-26 March 1 1971 

5 MICHAEL M ROBERTS 
A separatist's view of university EDP 
Datamation pp 28-30 March 1 1971 





A high performance computing system for time critical 
applications 

by T. J. GRACON, R. A. NOLBY and F. J. SANSOM 

Control Data Corporation 
Sunnyvale, California 

INTRODUCTION 

The increasing complexity of current time critical 
computer applications has generated requirements for 
large scale, general purpose, digital computers in real
time systems. Yet, few real-time applications can 
singly provide the economic support for such a major 
system. This high computational capability-reason
able cost/study need has led to the development of 
systems that are capable of running two or more time 
critical jobs concurrently, in addition to local batch 
processing, remote batch, communications, and inter
active graphics. 

This paper discusses recent design improvements* 
in such systems. The new design handles the two most 
important system tasks in a multiprogramming real
time system (CPU time scheduling, and real-time data 
interface) through a hardware real-time monitor which 
schedules tasks (interrupts) using a relative urgency 
algorithm and an extension of the central memory of 
the system to provide for data input/output. Also 
provided is the means to guarantee job integrity so that 
up to 15 time critical jobs can run concurrently. 

The system is currently being implemented for the 
Naval Air Development Center, Johnsville, Pennsyl
vania, for use in supporting research and development 
activities in the field of naval aviation. The computer 
application areas include real-time man-machine simu
lations, acoustic research signal processing, a quick
response capability for Southeast Asia problems, direct 
support of operational systems, a batch processing and 
graphic capability for general scientific and engineering 
problems, management information, and computerized 
NIF accounting. 

* While some of the concepts providing the philosophy and 
theoretical basis for these designs have been previously reported 
(see Reference 1), this paper reports the first known implementa
tion of them in a system. 

549 

SYSTEM DESIGN 

Time critical tasks-response 

An application is said to be time critical if it demands 
a response within a fixed time after it has received 
a stimulus (i.e., interrupt). 

The system responds in two ways. It first must sense 
the interrupt, and capture all data needed to process the 
task associated with the interrupt. Then it must 
perform the processing required and have the results 
available within the required time. In most hybrid 
systems, devices such as sample/hold units and. data 
buffers are provided in the interface to automatIcally 
store the current values of the needed variables at the 
time of the interrupt. The system maintains the 
responsibility for sensing the interrupt and perfor~~g 
the required computation on this captured data Within 
the time tolerance allowed. 

The extension to a multiple interrupt job is straight
forward. A good system will recognize all active inter
rupts and schedule the required tasks so that each 
task is completed when the interrupting system needs 
the results. 

Note that in a system which guarantees that all 
interrupts will be processed within the required time, 
there is no reason for a preferential (priority) treatment 
of any interrupt. Internally, the system often has to 
select between conflicting requests while scheduling the 
tasks and does so through a time-dependent priority 
rule ~valuation. This CPU scheduling algorithm is 
hardware implemented in a special unit named the 
Hardware Real Time Monitor which is discussed later. 
The same interrupt task may have different priorities 
depending on the state of all requests at that time. 
This is an internal procedural matter, and the user has 
no need to specify priorities between his tasks. 

In fact, letting the user specify priorities for interrupt 



550 Fall Joint Computer Conference, 1971 

processing in a multiple job environment causes difficul
ties. For example, where a priority tree is to be shared 
among simultaneous users, the users must meet and 
decide by committee which interrupts are assigned to 
each job. Inevitably, each job finds itself running in an 
environment with other jobs that have interrupts of 
higher priority than its own. The result is of course 
that a job's successful execution is dependent on the 
benevolence of the other jobs concurrently in execution. 
Since the allocation of interrupts between users who are 
resident simultaneously within the system will vary as 
jobs enter and leave the system, it becomes impossible 
to guarantee consistent results from multiple runs of 
the same program. 

To prevent any possible interjob interference, central 
processor time must be properly allocated. Before a 
time critical job is allowed to start, the system must 
guarantee that it can coexist with the time critical jobs 
presently running. The method used in the NADC 
system of analyzing this situation is a static scheduler 
system program which is run prior to the job being 
allowed into real-time status. This program compares 
the worst case requirements of the time critical job 
requesting initiation against the worst case require
ments of time critical jobs running in the system. 
Control card information such as frame time (FT), 
required compute time (RCT) , and the number of 
analog and digital channels being converted each frame 
time provide the static scheduler with sufficient in
formation to determine if the requesting job will fit, 
without conflict. into the system. 

If the petitioning time critical job will possibly 
conflict with other running time critical jobs, it will not 
be allowed to enter the system. Of course, the system 
operator has ultimate control over all jobs in the system 
and can suspend a running job to release time if the 
facility manager decides to assign a higher priority to 
the requesting job. 

Once the new job is allowed in the system, the task of 
maintaining job integrity is reduced to a task of 
monitoring the individual interrupts for violation of the 
parameters supplied on the job card. The monitoring is 
done automatically in the Hardware Real Time 
Monitor. 

Time critical tasks-data handling 

Traditionally, real world data has been handled in a 
time critical system in a manner similar to I/O data in 
a conventional computing system. The data is captured 
by the A/D conversion gear under the guidance of a 
device controller and then transmitted through a 
normal input channel into some buffer from which it is 

operated on by the CPU. Output is performed in a 
similar manner with data loaded into buffers from which 
it exists on a data channel through a device controller 
and into the D/ A gear. 

The approach, while proven workable in a large 
number of systems, has some drawbacks. It requires 
that a portion of the systems I/O capability be devoted 
to, or at least be on short call notice, to the real-time 
instrumentation, limiting the amount of normal I/O 
processing that can be done. Normally, the systems 
I/O facilities were designed for non-real-time data 
transfer and have inherent design traits such as low 
bandwidth and a time consuming "activate" require
ment which limit their performance in a time critical 
applications environment. 

To alleviate some of these problems, a special I/O 
port was designed for the N ADC system. This unit, 
called DADIOS for Direct Analog Discrete Input/Out
put System, exists as an extension of central memory. 
Every A/D and D / A channel in the system has a one 
word storage buffer which is directly addressable by the 
CPU. The data conversion is controlled by a com
bination of timing and interrupt signals from HRTM 
and channel addressing capability within DADIOS. 
The net effect of the system is that real-time data can 
be transferred into and from the virtual central memory 
without requiring any CPU time or standard I/O 
resources. Other capabilities include hardware fix/float 
conversion and program controllable allocation of 
pooled instrumentation to jobs. The use and design of 
DAD I OS are discussed later. 

SYSTEM OPERATION 

The job processing analysis presented in this section 
begins with a variety of scheduling algorithms, and the 
aspects of job entry, including control card require
ments, job control, and system monitors. Data transfer 
and any required analog control across the interface 
during a time critical run is discussed, followed by 
methods employed in the system under discussion to 
recognize interrupts and cause the CPU to begin pro
cessing the interrupt-specified task. 

Interrupt philosophy and scheduling 

Before discussing the hardware and software concepts 
utilized in this system, it is necessary to define "inter
rupt response" and "scheduling." 

In a conventional signal real-time job environment, 
the response to an interrupt will normally be quoted as 
the time from interrupt stimuli until CPU action is first 
initiated (assume interrupt is highest priority). The 



first action taken by the CPU is usually the initiation of 
the data conversion cycle. Even in this environment, 
this is not the most meaningful measure of interrupt 
response. Rather, response should measure the period 
from stimuli until results are obtainable. This response 
is, then, an "outside world" response which also is a 
function of CPU speed and the manner of treatment of 
interrupts within the system. Outside world response 
requirements are usually dictated by the problem which 
is generating the interrupt. The important parameter is 
not how fast the machine can get the CPU working on 
the highest priority interrupt, but rather the period of 
time in which the machine will guarantee finishing the 
interrupt routine for each interrupt specified. 

In the multi-real-time job environment, interrupt 
response is again best specified by the outside world 
response, that is, from stimuli to completion of results. 
Since we are dealing with multiple real-time users, 
levels of interrupt take on a different meaning, for the 
response requirements of each of the multiple users 
must be satisfied. A requirement thus exists to devise an 
algorithm that will schedule interrupts into the CPU. 
There are two requirements for the execution of this 
algorithm: 

• Outside world response will be guaranteed to meet 
the requirements specified by the user. 

• Absolute integrity between jobs must exist. That 
is, any attempted CPU overruns of one job may 
create problems in that job, but must not be 
allowed to affect another user's CPU allocations in 
the system. 

This algorithm is broken into two portions. The first is 
termed a static portion (Static Scheduler-non-real
time), and the second is called a dynamic portion 
(Dynamic Scheduler-real-time). The Static Scheduler 
ensures that job mixes with potential conflicts in system 
resources do not coexist in· the machine. The schedule 
is determined in batch mode prior to the job entering 
real-time status. The scheduling is performed with the 
worst-case conditions of the algorithm utilized in the 
Dynamic Scheduler; a worst case fit of the real-time 
job entering the system is calculated and compared to 
the worst case conditions of all real-time jobs presently 
running in the system. If the job fits, it is allowed to 
proceed into real-time; otherwise, the user is notified 
that system resources are not available. 

To realize the importance of dynamic scheduling it 
must be viewed as a task of monitoring jobs for viola
tions of specified parameters. The Static Scheduler 
had determined, prior to job entry into the real-time 
state, that the job would fit within all restraints of the 
dynamic scheduling algorithm used, provided the job 

High Performance Computing System 551 

abides by the parameters used in statically scheduling it 
into the system. The specified parameters (RCT, 
Tolerance, Period) are dynamically monitored by the 
Dynamic Scheduler and any job which attempts to 
violate any of these parameters is flagged and aborted 
for one Period. This action prohibits the job from 
interfering with any of the others in the system. 

When a job is put into real-time, the Dynamic 
Scheduler takes over the scheduling of interrupts in 
the system. 

Many algorithms for dynamically scheduling the 
CPU have been devised, and three of the more common 
methods are presented in the following discussion. 

Time slicing 

The time slicing algorithm is perhaps the easiest to 
understand. As indicated by Figure 1, a specified period 
of CPU time is assigned to specific jobs in a fixed 
pattern every revolution (R) of the time slice wheel. 
Interrupts for a specific job have priority only during 
that job's time slice. For example, if the CPU is ac~ive 
in time slice A, only interrupts associated with job A 
will be allowed into the CPU. The priority of interrupts 
within job A will be determined by the priority structure 
of its hardware or software interrupt tree. When time 
slice B is reached, all work on interrupts for job B will 
have priority. Any unused time, of course, will be 
assigned to batch work. 

The time slicing algorithm basically attempts to 
synchronize several events by slicing all events into 
many synchronous subevents. A goal in this algorithm 

R 
REVOLUTION 

Figure 1-Time slicing algorithm 



552 Fall Joint Computer Conference, 1971 

REAL COMPUTE TIME 

I 
r- RCT ---I 

I I CPU I 
\- FRAME TIME (FT) -I 

Figure 2-LTTG-JB parameters 

is to make the revolution (R) of the time slicer very 
small, such that response to the multiple users is fast. 
The inherent system overhead is a practical problem 
encountered when the system is forced periodically to 
jump from one job to another. The time slicing al
gorithm can be easily implemented with either a soft
ware or hardware monitor. 

Least-ti:m.e-to-go job basis 

The least-time-to-go job basis (LTTG-JB) sched
uling algorithm enters a factor of complexity over time 
slicing into the process of scheduling, but also provides 
a more efficient scheduling mechanism (it can be 
illustrated that time slicing is a synchronous subset of 
LTTG-JB). The two parameters required per job 
scheduled are as follows (Figure 2) : 

I 
I· 

• Frame Time (FT) -This is the scheduling frame 
time which is often identical to the problem frame 
time. However, if multiple interrupts are used in a 
job, the scheduling frame will usually be equated to 
the most critical interrupt in the job . 

• Real Compute Time (RCT)-The RCT is the 
total CPU time specified per FT for the servicing of 
all interrupts which may require service during 
that FT. Actually, the CPU time will be split 
into many segments, but the composite of these 
segments will not be allowed to exceed the RCT 
specified (see Figure 3) . 

The above parameters will be supplied by the user 

/ RO ~ 
Acpu~ I 

FT -1 
. Figure 3-Real compute time 

JOB J I I --________ ---' FT 3 UNITS, RCT = 1/2 UNIT 

JOB 2 • 1 ----------_---1 FT ~ 4 UNITS, RCT 1/2 UNIT 

JOB 3 --------_--11 FT ~ 5 UNITS, RCT ~ 2 UNITS 

Figure4-Job specifications 

in a FORTRAN call to the Static Scheduler to deter
mine worst case job fit. If the job is allowed into real
time mode, these parameters will then determine which 
job has priority at a given instant of time by calculating 
which job has the least-time-to-go before CPU cal
culations for a particular frame must be complete. 

Explanation of this algorithm is best given by 
illustration. Assume a three job situation where 
specifications of FT and RCT for each job are as 
indicated in Figure 4, and each job consists of a single 
interrupt. As illustrated in Figure 5, job priorities are 
rescheduled every job frame sync time. The priority 
level of the job is determined by the time left until the 
end of that job frame. Thus, the job with the least
time-to-go will have priority 1, the job with the next 
least-time-to-go is given priority 2, and so on. If a job 
attempts to use more CPU time than specified as RCT 
for that job, the system will abort CPU utilization of 
that job until the next frame. This ensures system 
integrity by preventing one job from affecting another. 
This algorithm can also be easily implemented by hard
ware or software. Many 6000 time critical simulation 
systems have been implemented utilizing a dynamic 
software scheduler. 

JOB A ~ • ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

JOB B t. ~ ~ t. • ~ t. • t. 

JOBC t_ \.- ~ 1_ t_. '- t_ 

BATCH •• • •• - - • •• -
Indicates the time when the interrupt occurs. 

.D. Indicates amount of CPU time devoted to a particular job. 

Figure 5-Least time to go-Job basis dynamic scheduling 



Least-time-to-go interrupt basis 

The basic least-time-to-go interrupt basis (LTTG
IB) scheduling algorithm is identical to LTTG-JB with 
the exception that every interrupt of each job is 
scheduled. For example, assume a system running with 
three jobs, each job using ten interrupts. In this ex
ample, the LTTG-JB algorithm would schedule against 
a single specified FT which is short enough to provide 
the response required by all ten interrupts in the job. 
Also, the specified RCT will contain total job RCT 
requirements for all interrupts in the job. Thus, sched
uling is performed against the three groups of job 
parameters. 

When utilizing the basic LTTG-IB algorithm, FT 
and RCT are specified for each interrupt; therefore, 
scheduling in this example would be performed against 
all thirty groups of interrupt parameters. 

Up until this point, discussion has been of a basic 
LTTG-IB algorithm which utilized the FT and RCT 
parameters specified in the section on LTTG-JB. This 
algorithm, however, lends itself to a more powerful 
scheduling mechanism by redefining the two parameters 
of FT and RCT into three parameters called Tolerance, 
Period, and Real Compute Time (Figure 6). 

• Tolerance (T)-The parameter that "least-time
to-go" is scheduled against. In the synchronous 
periodic situation, T will usually be equivalent 
to FT in the basic L TTG-JB algorithm. 

• Period (P)-Specifies the minimum period in 
which this interrupt can occur again. For periodic 
synchronous interrupts, P will usually equal T. 

• Real Compute Time (RCT)-The total CPU 
time specified to be completed in the T allowed. 

These parameters provide efficient scheduling of 
normal periodic synchronous interrupts, periodic inter
rupts demanding fast response times, and also allows a 
means for the scheduling of asynchronous interrupts. 

The following example illustrates the scheduling this 
algorithm provides. Assume a two-job system with two 
interrupts per job and parameters as defined in Figure 
7. Recall that T is the parameter that "least-time-to-go" 

:-----,,1 U£J--LRCT --+-___ ~ 
~LERANC~ PERIOD (P) ------l.~1 

Figure 6-Tolerance parameter 

High Performance Computing System 553 

J RCT 1/2 UNIT, T3 UNITS, 

I 
P'B UNITS 

----i .. -t (PERIODIC, FAST RESPONSE) 

A2 tRaJ I 
~T~ 

6 Bl@J 
~ ~ I' __ T -==1-.-1 

RCT- 1 UNIT, TP-4 UNITS 

(PERIODIC) 

RCT' 2 UNITS, T=I'--5 UNITS 

(PERIODIC) 

B2 NRCT, I 
_ _ RCT 1/4 UNIT, T=1 UNIT, :.,J II" 10 UNITS I-L .... l ____ . ____ I' ----lIASYNCHRONOUS) 

Figure 7-Tolerance, period, and real compute time, job examples 

is scheduled against, and P is the parameter which 
prevents an interrupt from being scheduled more 
frequently than the user has specified. Figure 8 illus
trates a dynamic scheduling of the system. Again, it is 
to be pointed out that the system will not allow an 
interrupt to overrun its RCT specifications, and all 
unused CPU time is available for batch work. 

The quantity of parameters (up to 64 in the current 
implementation) which must be scheduled against one 
another makes implementation of this algorithm by a 
software scheduler impractical. The hardware imple
mentation of this scheduler is presented later. 

CPU exchange process 

Each independent job running in the system requires 
that a number of items of information be saved and 

Al ~ ~ ~ ~ t. ~ ~ .t ~ ~ 5~ 

A2 f. t. t. t. t. t. t • .. t. 5S 

BI t • _ t... t... i- t. t •• t... I. 

82 L k I~k ~ I I----- P ----II---- P --

BATCH 

PRIORITY 11:11 il rp~ I ~ll ~ I ~ M ~ I :~ ~~:lml:q :q ~ 
} Indicates the point in time when the tolerance = O. This is the reference against 

which the interrupts are scheduled. In cases where Tolerance equals Period, 
the symbol ~ is not 

Figure 8-Dynamic scheduling 



554 Fall Joint Computer Conference, 1971 

maintained. Such information includes the contents of 
all CPU registers, the control card buffer, the buffer 
containing the job's history of events, messages, 
charges, the time limit and times consumed, and many 
other flags relating to the status of the job. 

Because information for each job is independent of 
other jobs, the items are grouped into control points. 
An active job is always signed on at a unique control 
point, and all software related requests and operations 
within the system are linked to the respective control 
point. 

The time critical operating system normally provided 
runs seven control points (1 through 7) for user jobs 
and utility operations. (A version of the operating 
system which provides for 15 control points is avail
able.) The system maintains other control points for 
internal operations. Each of the seven control points 
can run an independent job using any desired external 
equipment without interference, up to the limits of the 
system resources. Any number of these control points 
may be used to execute concurrent real-time jobs 
providing sufficient resources are available. 

The Exchange Jump instruction is used by the system 
for interrupting the CPU. This instruction allows a 
complete exchange of the CPU executing environment 
in 5 J.'sec. For this reason the Exchange Jump is used 
for the processing of interrupt routines and for sharing 
the CPU by control points. 

The system reserves space for one Exchange Jump 
package for each control point. The CPU registers for 
a control point which is not executing (idle, waiting 
for I/O, or waiting for a higher priority program to 
complete) are stored in this exchange package area. 
Additional Exchange Jump packages may be defined by 
the system programmer, one for each requested inter
rupt. When that interrupt occurs, the system initiates 
the user's interrupt routine by using that interrupts 
exchange package. 

In the hardware monitor system all incoming inter
rupts are recognized by the hardware real-time monitor 
(HRTM). A hardware scheduler in the HRTM 
schedules the new interrupt against the ones currently 
in the schedule using the LTTG-IB algorithm. If a CPU 
task change is indicated, the EXJ controller in the 
HRTM locks out all batch processing exchange and 
requests and issues the EXJ instruction through a 
hardware modification directly to the CPU. 

Theory of operation of real-time jobs 

A job is submitted with the real-time parameter 
(RT) on the job card to distinguish the job from normal 
batch jobs. The real-time job is then held in the input 

queue until it is directed to a cleared control point. 
The job usually consists of three records. The first 
record contains control cards. For each group of special 
equipment to be used by the job, a file must be created 
using the standard REQUEST control card. Other 
control cards are used to perform tasks associated with 
the job. The second record contains the program. Files 
used by the program must be defined in the program. 
The third record is the data record. It must contain the 
real-time control cards in addition to any other neces
sary data. A job enters real-time mode with a 
FORTRAN call (SIM RUN). Prior to placing the job 
in real-time mode, the system determines if the program 
will adversely affect other real-time jobs by performing 
the static schedule check and a check for availability 
of interrupt hardware. If other jobs will not be affected, 
and if the requested hardware is available, the system 
accepts the job into real-time status, clears all inter
rupts associated with the job, and control of the 
execution of the time critical job is passed to the 
Hardware Real Time Monitor and Central Resident 
Monitor (CRM). 

After acceptance into real-time and upon occurrence 
of an interrupt, the following sequence of events is 
initiated: 

• The hardware monitor begins decrementing the 
interrupt's tolerance counter. 

• The interrupt is passed on to DADIOS where all 
channels associated with that interrupt are con
verted. 

• An "End of Convert" signal is passed on to HRTM 
which causes the start of scheduling. 

• HRTM performs the dynamic schedule comparing 
the remaining tolerance of all tasks waiting for or 
using the CPU. 

• If the remaining tolerance for this task is less than 
all others, HRTM issues an exchange jump to 
CRM. 

• CRM receives the number of the most critical task 
from HRTM and, after performing certain ac
counting functions, places it in execution. 

When the task completes execution, it returns to 
CRM by calling from FORTRAN (SIM WAIT or 
SIM IDLE), which informs HRTM that processing 
for this interrupt is complete for this period. 

If HRTM detects an RCT overrun (i.e., a task 
attempting to use more than its assigned CPU time) 
from real-time status, or if a synchronous interrupt 
attempts to interrupt too often, an error condition 
occurs and the action taken is dependent upon the mode 
selection in the original FORTRAN SIM RUN call. 

The user may exit from real-time mode by calling 



SIM STOP or by encountering some unrecoverable 
error condition. After exiting, the user's control point 
returns to batch mode. He may now do post-processing, 
or he may return to real-time by calling SIM RUN. 

Time critical programming language 

The standard CDC FORTRAN Extended Compiler 
has been modified to distinguish between normal 
variables and those that are assigned to DADIOS 
(virtual memory). The compiler distinguishes between 
the individual DADIOS channels (ADC's, DAC's, 
etc.) as well as the particular function on each channel 
(Le., with or without fix/float conversion). Finally, 
interrupt definition can be specified. The user is able to 
address DAD I OS channels either directly or indirectly. 
The linking of indirectly addressed channels is ac
complished at run time so that changes in physical 
channel assignment can be made without requiring 
recompila tion. 

Interrupt specification 

Interrupts are specified by the statement form: 

INTERRUPT 

(I=n, H=m, S=i, R=x, T=y, P=z, E=j) 

where 

n=logical interrupt number. 
m=hardware interrupt number. 
i=interrupt set number. 
x=required compute time for the interrupt (in units 

of 10 }Lsecs) . 
y=tolerance of the interrupt (in units of }Lsecs). 
z = period of the interrupt (in units of 10 }Lsecs). 
j = external interrupt indicator. 

The set designator allows a means to define an 
interrupt with several "sets" of descriptors (RCT, 
PER, TOL). At the beginning of a real-time job, all 
sets of interrupt descriptors are statically scheduled 
against all other sets of interrupt descriptors in the 
system. If the schedule is successful, it allows the user 
to switch from one set of descriptors to another during 
real-time without having to reschedule. 

Loader control card 

The entry point for a particular interrupt is specified 
by the loader control card 

INTSEGM(n) 

High Performance Computing System 555 

where 

n is the logical interrupt number. 

The loader control card INTSEGM is recognized by 
the compiler if it appears between subprograms. 
Compiler processing places it in the desired position on 
the binary output file. The loader, in turn, associates 
interrupt number-n with the next entry point it en
counters, and places this information in a table for use 
at initialization time. An example of its placement is 
presented later in this section. 

DADIOS variable specifications 

Variables to be assigned to DADIOS channels are 
specified in labeled common blocks. The functions to be 
performed (fix/float) are based on the type of the 
variable (integer, real, etc.). 

DADIOS variables are handled differently, in that 
instead of allocating core to these variables, DADIOS 
channel addresses are assigned to them. When these 
variables are used (at run time), hardware will route 
the data over the appropriate channels to/from the 
DAC/ ADC's, etc. 

The variables are specified by the statement form: 

*ADCn 

*DACn 
COMMON/ /kl' }al' "', {k i • }ai 

*IDISn 

*ODISn 

where 

n is an integer constant specifying a DADIOS unit 
number (l~n~4); 

k i is an (optional) integer constant which specifies 
the channel (relative to the first channel for this 
type) to be associated with the following ai 
(default = 1); 

ai are variable names, array names, or array declara
tions in which one, two, or three constant dimen
sions are specified. 

DADIOS variables can be typed either implicitly by 
the labeled COMMON statement or explicitly by the 
TYPE statement, as standard FORTRAN conventions 
allow. The type (integer or real) is reflected in the 
variables address (1 bit). The hardware then determines 
whether or not conversion is to be made. 

In order to obtain the desired interrupt/element 
association, the main program must contain specifica
tions for all interrupts to be used. For each interrupt, 



556 Fall Joint Computer Conference, 1971 

the interrupt statement must be followed by the 
associated DAD lOS variable statements. 

Subroutines associated with each interrupt are 
required to have the corresponding DADIOS variable 
statements, but do not require the interrupt statements. 

Example: 

PROGRAM TEST (INPUT, OUTPUT, HFILE) 

NOTE 1 

DIMENSION
DATA-

INTERRUPT (1= 1, H= 1, R= 1000'1 
T=2500, P=2500) 

COMMON/*ADCl/ A(32) 
COMMON/*DAC/33, B(32) 

INTERRUPT (I = 2, H = 3, R = 500'1. 
T=2500, P=3000) 

COMMON/*ADC2/C(32) 
COMM ON /*ID IS I/ID (10) 

EXECUTABLE STATEMENTS 

END 

INTSEGM(I) 

SUBROUTINE INTI 
COMMON/*ADCl/ A(32) } 
COMMON/*DACl/33, B(32) 

END 

INTSEGM(2) 
SUBROUTINE INT2 

COMMON/*ADC2/C(32) 

COMMON/*IDISl/ID(10) 

END 

NOTE 2 

NOTE 3 

NOTE 4 

NOTE 5 

NOTE 6 

NOTE 7 

NOTE 8 

NOTE 1: Information pertaining to the hybrid en
vironment is maintained in file HFILE for 
system usage. 

NOTE 2: (Logical) interrupt 1 is to be associated 
with hardware interrupt 1, an internal 
interrupt (by virtue of default value of 
omitted E parameter), hence synchronous, 

to have an RCT of 10 ms, a TOLERANCE 
of 25 ms, and a PERIOD of 25 ms. The 
first 32 ADC elements of DADIOS unit 1, 
as well as the 32 DAC elements, starting at 
element 33, of the same DADIOS unit. are 
to be associated with interrupt 1. 

NOTE 3: (Logical) interrupt 2 is to be associated 
with hardware interrupt 3, also syn
chronous, and is to have an RCT of 5 ms, 
tolerance of 25 ms, and a period of 30 ms. 
The first 32 ADC elements of DADIOS 
unit 2 and the first 10 input discrete 
channels (each 16 bits wide) of DADIOS 
unit 1 are to be associated with this inter
rupt. 

NOTE 4: This loader directive will associate the 
primary entry point of subroutine INTI 
with interrupt 1, and will cause all un
satisfied externals, up to this point, to be 
satisfied. 

NOTE 5: This is a duplication of the element speci
fication to establish addresses for the 
DADIOS variables A and B for this (inter
rupt) subroutine. 

NOTE 6: This loader directive will associate the 
primary entry point of subroutine INT2 
with interrupt 2, and will cause all un
satisfied externals, since the last INTSEGM 
directive, to be satisfied. 

NOTE 7: These statements establish addresses for 
DAD lOS variables C and ID for this sub
routine. 

NOTE 8: In addition to standard end-of-program 
processing, all unsatisfied externals since the 
last INTSEGM directive will be satisfied. 

HIGH PERFORMANCE LINKAGE
HARDWARE 

The High Performance Linkage System as shown in 
Figure 9, uses a DADIOS (Direct Analog Discrete 
Input Output Subsystem) to gain fast data transfer, 
an ACS (Analog Control Subsystem) to control any 
analog devices in the system, a HRTM (Hardware 
Real Time Monitor) to efficiently schedule "inter
rupts" into the system together with a CB (Control 
Board) to tie system control functions together. The 
tie of the system to the 6000 mainframe for data 
transfers is via a Data Bus Extension modification to 
the mainframe and a Bus Adapter which allows up to 
four 6000 CPU's to access the linkage. The tie of the 
interrupt scheduling structure of the HRTM to the 
6000 mainframe is via an exchange jump modification 



to the mainframe. These devices are discussed in the 
following paragraphs. 

Mainframe modifications and bus adapter 

The Data Bus Extension modification to the main
frame extends the central memory bus to the outside 
world and contains the hardware to allow this extension 
to function as an extension of central memory of the 
6000 mainframe. The Bus Adapter adapts this extended 
memory port (together with identical ports on up to 
four 6000 mainframes) to the DADIOS, HRTM, and 
ACS. This device's function is primarily one of timing 
and resynchronization. 

The Exchange Jump modification to the mainframe 
provides an external port into the exchange jump 
mechanism of the 6000 mainframe. 

Dadios 

The DADIOS is a multi-programmed linkage sub
system which allows n jobs (n::; 15) running in the 
system to concurrently utilize DADIOS for data con
version. Note, that the system may connect to as many 
as 4 CDC 6000 or CYBER 70 mainframes. DADIOS 
is a combination of linkage modules providing the 
following capabilities: 

• Simplified programming for data transfer to/from 
central processor unit and DADIOS on extended 
central memory read and write buses. 

• Access from peripheral processors via standard 
data channel for setup. 

• Individual assignment of channels (in groups of 8) 
with each job number under program control 

DATA BUS 
EXTENSION 

CDC 
6000 SERIES 
COMPUTER 

EXCHANGE 
JUMP 

CAPABILITY 
FOR ADDITIONAL 
COMPUTERS 

SETUP 

-INTERRUPTS 

USER DATA 
(ANALOG & 
DISCRETE) 

(FOR DATA TRANSFER AND CONVERSION TIMING) 

USER INTERRUPTS 

TIMING SIGNALS FOR USER'S USE 

DADIOS - DIRECT ANALOG DISCRETE INPUT OUTPUT SUBSYSTEM 
HRTM - HARDWARE REAL TIME MONITOR 
CB - CONTROL BOARD 
ACS - ANALOG CONTROL SUBSYSTEM 

Figure 9-High performance linkage system 

High Performance Computing System 557 

DATA BUS 
EXPANSION 

8000 SERIES 

COMPUTER 

ACCESS EXPANSION * 

JOB NUMBER 
FROM HRT .. 

DATA 
MODULES 

EXPANSION 
ALLOWED TO I. 
Of ANY TYPE 

IN ..... UIllDiTI 
.1IUA1. 

COIIDtT'OII'M 

* ~~~~o: TO FOUR 8000 SERIES COMPUTERS 

** EXPANSION TO SIXTEEN UNIT. 

Figure 10-DAD lOS 

(element reservation of ADC's, DAC's and dis
cretes). 

• Data integrity between concurrently processing 
jobs. 

• Program selectable hardware fixed-to-floating point 
conversion for all ADC channels. 

• Program selectable hardware floating-to-fixed point 
conversion for all DAC channels. 

• Intermixing of various types of instruments. 
• Expansion capability. 

An overall block diagram of DADIOS is shown in 
Figure 10. DADIOS can be addressed from the CPU 
and pass data to or from the CPU through the Bus 
Adapter and Data Bus Extension. 

The Bus Adapter and Data Bus Extension are 
transparent in that they do not change addresses or 
data in any way. In effect, DADIOS communicates 
directly with the CPU with its primary· purpose being 
to pass data between the outside world and the CPU. 
The path of DAD lOS via the Data Channel is primarily 
used for DADIOS setup. 

As indicated by Figure 10, DADIOS is comprised of 
a series of modules which can be configured into a 
linkage system as required. Brief descriptions of each 
module indicated in Figure 10 are given in the following 
paragraphs. 

Address :module 

Any channel in each of the input or output modules 
can be addressed. The address carries a bit to indicate 
which fixed-to-floating point or floating point to fixed 
point conversion is to be done. 

Float and unHoat :module 

Sixteen-bit fixed point data words are converted into 
60-bit floating point words (and vice versa) in this 
module. 



558 Fall Joint Computer Conference, 1971 

Integrity lDodule 

Integrity between jobs is provided by this module so 
that one job cannot interfere with the operation of 
another job in any way or at any time. For example, 
the module prevents a user from altering data in any 
channel not assigned for his use. ' 

Data lDodules 

Four types of Data Modules (Serial Input, Parallel 
Input, Serial Output, Parallel Output) can be provided. 
Each module provides buffering for 16 data words each 
16-bits wide. Data can be routed to or from these 
modules through the Float and Unfloat Module or 
directly from the CPU or instruments. 

The data flow through the DADIOS system is 
illustrated by the following paragraphs. 

Data input 

Since data is not stored in central memory, but 
rather in the DADIOS interface, the sequence of events 
for acquiring the data is straightforward. 

1. A sync pulse for the interrupt is issued to the 
DADIOS system. 

2. DADIOS has the capability to utilize one AID 
converter per analog channel. In this case, the 
interrupt would issue a start convert pulse to all 
channels previously assigned to that interrupt 
'and they would all convert simultaneously. 
When data conversion is complete, the data can 
essentially be thought of as residing in central 
memory. 

If a multiplexed analog system is used as 
instrumentation on DADIOS, the interrupt will 
place the applicable sample and hold units into 
hold mode. The multiplexer-converter would then 
start converting the analog data and placing it 
into the applicable digital buffer for that channel. 
When all channels associated with the interrupt 
have been converted and the data is contained 
in the digital buffer, the data is directly ad
dressable from the central processor. 

3. Memory references by the CPU can now act on 
the data contained in DADIOS, and the refer
ences will indicate whether the data is to be 
presented in the CPU in fixed or floating point 
format. 

Data output 

Again it is important to understand that DADIOS is 
an extension of central memory. The registers of the 
D I A converters and the discrete signal buffers serve as 
CM locations into which data can be written. The 
sequence for writing the data is as follows: 

1. The program executing in the CPU writes data to 
the first rank register of the addressed D I A or 
discrete location. (A bit in the address will 
indicate whether or not the data is to be con
verted from floating-to-fixed point via the 
floating-to-fixed hardware.) 

2. The sync pulse will transfer data from first to 
second rank registers. In the case of analog 
channels, the second rank data is converted and 
presented as an analog voltage. 

Analog control subsystem (ACS) 

For systems where control of analog computing 
devices (i.e., analog computers) is required, the ACS 
concept has been developed to allow this control to be 
accomplished by the central processor. As indicated by 
Figure 9, ACS is also treated as an extension of central 
memory. Thus, if a mode is to be changed, a pot or 
digital coefficient unit is to be set, a DVM reading is to 
be made, etc., these operations are initiated by writing 
into the ACS section of "extended memory" and any 
information to be received from the analog device is 
received via reading from the ACS section of "extended 
memory." 

Hardware real-time monitor 

The Hardware Real Time Monitor (HRTM) is 
designed to provide faster response to external inter
rupts of real-time jobs than can be done with a software 
monitor system. This is accomplished by performing the 
detection and dynamic scheduling between external 
interrupts in hardware circuits. The following capa
bilities are provided with the HRTM: 

• Scheduling and monitoring of up to 15 concurrently 
executing real-time hybrid simulation jobs. 

• Dynamic scheduling between all interrupts on a 
"least-time-to-go interrupt basis." 

• Assignment of any interrupt to any job, providing 
more efficient usage of external interrupts. 

• Use of three scheduling parameters (real compute 
time, tolerance, frequency of occurrence) to allow 
more CPU time for real-time jobs. 



• A maximum of 64 external interrupts (a minimum 
of eight, expandable in groups of eight) , terminated 
on a control board (for user termination). 

• Availability of providing data to allow time
accounting on an interrupt basis. 

• Access to HRTM via Data Bus Extension (used 
for central monitor information and error status 
to central monitor and user). 

• Access to peripheral processor via standard data 
channel for setup and monitor functions. 

• Error detection circuitry to prevent one time 
critical job from interfering with another. 

Syste:m design 

A diagram showing how the HRTM fits into a real
time system is shown in Figure 9. The HRTM can gain 
access to the CPU by directly providing an exchange 
jump to the mainframe. The CPU has the ability to 
read directly from the HRTM through the extended 
memory via the Read/Write Bus Adaptor. Any PPU 
may setup the HRTM and input status information via 
the Data Channel Adapter. The HRTM receives all 
interrupts and returns all control signals to a control 
board. 

Syste:m description 

An overall block diagram of the HRTM is shown in 
Figure 11. 

Error detection 

The Error Detection circuitry is necessary to ensure 
that one user does not interfere with another. The 
enable/ disable logic will prevent any unused interrupts 
from requesting processing. The following parameters 

TO 
RWBA 

TO 
EXCHANGE 

JUMP 

6000 SERIES DATA ~HANNEL 

Figure I1-HRTM block diagram 

PERIOD-O 

High Performance Computing System 559 

DADIOS 

1- :~R~P~ - -- - :-C:~~D~E - - - - - - - --1 
I (INDICATES CONVERSION COMPLETE) : ~ 
I 

EXTERNAL 
INTERRUPTS 

.....!T=OL..::..:= 0'----+_-----.1 CONTROL USER 
PATCH 
PANEL 

I----'-'-TlM...;.cIN.c.::G_ USE~ A1 

I 

INTERRUPT 

START SCHEDULE 

LINES 
I 
I 
I 
I 
I 
I 

BOARD 
LOGIC 

INTERRUPTS 

TIMING SIGNALS 

EXTERNAL 
INTERRUPTS 

I 
I 

L-_J--'----.;T:.:::IM::::.ING~ __ USER An 

I 
L- _______ ~~~ ~~ _______ _ 

6000 
DATA 

CHANNEL 

SETUP 

Figure 12-Control board 

are monitored and if any errors are found, the job is 
removed from real-time. 

• The required compute time of each interrupt is 
monitored and countered down. If the RCT for 
an interrupt counts to zero and the computation 
is not complete, the job is considered in error and 
it will not he allowed to continue until its next 
frame. The user will not be notified of this condition 
and he can take any action he wants; however, it 
is noted that not allowing him to continue until the 
next frame protects other users from feeling any 
effects of his overrun of his schedule. 

• The occurrence period for each interrupt is moni
tored, and if interrupts occur faster than the 
specified period, the job is considered in error. The 
HRTM will not allow interrupts to be scheduled 
faster than the specified period. User will be 
notified of the error condition. 

• Error signal lines from the DADIOS interface 
system are sent to the HRTM via the control 
board. These are errors which occur if the operating 
program attempts to write out toa DAC or output 
discrete, or read an ADC or input discrete assigned 
to another job number. They are brought to 
HRTM so errors can be associated with the 
interrupt which had them. 

Control board 

The Control Board (CB) is the device in the linkage 
system which allows the system to be tailored to a 
particular user's needs. 

All Period and Tolerance Parameters (used for 
generation of synchronous time frames) from and 
interrupt schedule lines to the HRTM, user external 
interrupt signals, timing signals to user, and interrupt 



560 Fall Joint Computer Conference, 1971 

PERIPHERAL 
POOL 

INTERRUPTS INTERRUPTS 

~oo ~----____________________________ ~ 

Figure 13-N ADC computing system 

signals to the DADIOS are terminated on the Control 
Board. Figure 12 indicates typical ties to the Control 
Board. 

The basic reason for the Control Board is to adapt the 
flexibility of the system to the user's needs. The more 
flexible the user wants to be, of course, the more com
binations of paths between the user, DADIOS, and 
HRTM will exist and the more complicated the Control 

Board will be. Examples of some of the basic functions 
that can be provided by the proper use of the Control 
Board are: 

• Ability under program control to assign any 
interrupt source to a particular portion of DADIOS 
equipment. 

• Ability to assign an interrupt source either to an 
external source or to an internal source (usually 
a Tolerance = 0 or Period = 0 signal from HRTM) . 

• Ability to hold up the scheduling of an interrupt 
until the data has been converted. This is ac
complished by: 

1. The incoming interrupt is sent to DADIOS to 
initiate any conversion which is to take place. 

2. After all conversion is complete, the ac
knowledge signal is sent from DADIOS to 
the Control Board and then to HRTM to start 
the dynamic scheduling of this interrupt. 
This process permits the conversion of data 
to completely take place prior to involving 
the CPU with the interrupt task and prevents 
the occurrence of a CPU wait for data dead spot. 

The NADC cOInputing systeIn 

The Naval Air Development Center, Johnsville, Pa., 
is acquiring a large computing complex to perform time 
critical simulation studies as well as scientific batch 
processing. The NADC configuration is shown in 
Figure 13. 

The complex is currently expanded to handle eight 
interrupts in each HRTM and 128 channels and 
128 D / A channels in the dual 6600 complex. 

REFERENCES 

1 M FINEBERG 0 SERLIN 
Multi-programming for hybrid computation 
Proceedings 1967 Fall Joint Computer Conference 

2 Time critical simulation systems-General information 
manual 
Control Data Publication No 44629200 



Effective corporate networking, organization, and 
standardization 

by PAUL L. PECK 

The MITRE Corporation 
McLean, Virginia 

INTRODUCTION 

As investment in automatic data processing systems 
has increased, methods to improve the productivity of 
these systems have constantly been sought. One of the 
most promising methods is networking-the integration 
of a number of independent data processing installations 

( connected by data communications to provide improved 
data processing support for the linked installations. 

This paper discusses the advantages of networking, 
addresses the advantages of utilizing homogeneous 
configurations in establishing a corporate ADP network 
and presents a management concept and a proposed 
network standards guide which it is believed will 
promote the acceptance, growth and effectiveness of 
the corporate ADP network. 

BACKGROUND 

Corporate network development has been hindered 
by compatibility limitations. Traditionally, data pro
cessing has been considered a support function, and 
decisions on the level and type of data processing 
support were made at the installation level not at the 
corporate level. In many companies there was a ten
dency to deplore the proliferation of incompatible com
puter systems and data banks as new systems were 
installed, but to do nothing to achieve compatibility 
since this was not a corporate objective. Compatibility 
denotes the ease with which a program running on one 
system can be transferred to another or the ease that 
data generated in a particular system format can be 
utilized by another system. A popular conception is 
that compatible computer systems will accept programs 
written in standardized languages and perform the 
same computations producing the same results from 
the same data. Because of compatibility limitations, the 
option of quickly and economically creating an efficient 

561 

corporate network with its associated advantages of 
workload sharing, data sharing, program sharing, 
remote service, program exchange and joint program 
development was closed to corporate management. 

The incompatibility among systems produced by 
different vendors, as well as incompatibility among 
successive systems produced by the same vendor, stems 
from differing approaches to hardware and operating 
system design and is magnified at each installation by 
configuration differences, utilization of assembly rather 
than procedure-oriented languages, and the introduc
tion of installation-peculiar operating procedures. 1 ,2 ,3 ,4 

Much of the existing hardware incompatibility stems 
from differences in character/word lengths, internal 
computer codes (BCD, ASCII, EBCDIC, etc.), 
boundary alignment considerations (padding, packing, 
justification, etc.) , error checking techniques and 
numeric representation alternatives (binary, floating 
point, etc.) . 

In addition to these hardware differences, basic 
software differences exist in the areas of operating 
systems and languages. Each manufacturer provides a 
specific operating system to use with his hardware. 
These operating systems offer widely differing services 
in procedure-oriented language and utility support, 
hardware support, file management and input/output 
control, systems services and job control. Assembly 
languages differ extensively with regard to the size and 
nature of the instruction sets and optional features 
provided. 

Data compatibility as such rarely exists. Existing 
corporate data banks are often not compatible because 
each installation data base was developed using unique 
hardware and software. The basic data definitions, data 
formats, and data structures were designed to satisfy 
local, not corporate requirements. This has necessitated 
the development of either special data bases or special 
programs for format translation to satisfy reporting 
and interface requirements. Standard means of de-



562 Fall Joint Computer Conference, 1971 

scribing data elements and standard approaches to 
data bank development have not been used in the past. 

To highlight the extent of the incompatibility that 
presently exists (even among systems designed to 
support a common objective), consider the following 
facts determined in the analysis required to support the 
World Wide Military Command and Control System 
(WWMCCS) procurement which will upgrade the 
processing capabilities of up to 109 existing ADP 
centers. According to Phil Hirsch,5 the ADP centers 
to be included in the WWMCCS procurement "are 
supported by 30 different programming languages 
(dialects are ignored), and 802 separate programs. At 
least 75 percent of these are in machine-dependent code, 
primarily Autocoder. There are 20 FORTRAN pro
grams, 8 in COBOL, and 272 in JOVIAL, which may 
or may not be standardized dialects. . . . Today each 
WWMCCS installation is largely self-contained. The 
workload is handled on a batch basis, using local data 
bases. Although installations are interconnected, the 
terminals usually are off-line devices." 

Since the WWMCCS systems to be replaced range in 
age from one to 10 years, this situation is probably 
similar in type, if not in scale, to that found today in 
many large, decentralized corporations. 

FACTORS THAT EASE THE 
IMPLEMENTATION OF NETWORKING 

Although procedure-oriented languages (POLs) such 
as FORTRAN (the de facto scientific programming 
language) and COBOL (the standard commercial 
programming language) were developed to facilitate 
programming and to ease system-conversion problems, 
programmers can now code in languages that are 
somewhat independent of hardware. Therefore, the use 
of these languages eliminates many compatibility 
limitations. Program transferability was further pro
moted when ANSI sanctioned standard specifications 
for FORTRAN and COBOL. 

With the advent of third generation equipment, 
intra-system compatibility (compatibility among sys
tems produced by the same manufacturer) became 
realizable. Compatibility is a major design objective of 
and is widely promoted by all major computer manu
facturers. For example, in 1964 IBM announced the 
System/360, its new line of compatible computers. 
Since the System/360 was designed for both upward and 
downward compatibility, a significant step toward 
intra-system compatibility had been taken. IBM's new 
series, the System/370, offers intra-system compati
bility and is compatible with the System/360 series. 
Control Data Corporation explicitly states that pro
grams designed for the CDC 6000 Series will operate 

on any CDC 6000 Series configuration. Furthermore, 
Control Data has announced that its new system; the 
CDC 7600,will be compatible with the 6000 Series. 
RCA stresses that its Spectra 70 Series, in addition to 
being upward and downward compatible, is compatible 
with the IBM 360 Series. 

System/360 plug-to-plug compatible magnetic disk 
drives, magnetic tape drives, and large core storage 
units are now available from independent peripheral 
manufacturers. Plug-to-plug compatibility means that 
the new device is physically and electrically inter
changeable with the IBM peripheral, that neither the 
peripheral nor the equipmen t to which it connects 
requires any modification to effect the replacement, and 
that no modifications are required to the operating 
system and user programs.6 Thus, a network consisting 
of IBM systems can maintain its compatible status and 
still take advantage of peripheral development which 
provides price-performance benefits. 

Perhaps the most significant developments have 
taken place in the area of data communications. Data 
transmission is growing at a tremendous rate with a 
corresponding decrease in its costs as the Bell System 
improves its digital transmission capability. Private 
microwave links for data communications are being 
developed by Microwave Communications, Inc. and 
Datran. Digital multiplexer and modem advances 
which have made possible more efficient utilization of 
existing carrier channels for data communications were 
spurred by the FCC decision in the Carterfone case 
which permitted the attachment of customer-provided 
data sets.7.8.9.10 

Significant research has been conducted in the areas 
of routing, buffering, synchronization, error control, 
reliability and computer-communications interface. 
The ARPA network has developed a separate com
munications processor, the Interface Message Processor 
(IMP) to connect host computers to the telephone 
network. The Interface MEssage Processor is an 
augmented, ruggedized version of the Honeywell 
DDP-516, and includes 12K 16-bit words of core 
memory, 16 multiplexed channels, 16 levels of priority 
interrupt and logic supporting host computers and high 
speed modems. Since the ARPA network is a heteroge
neous network (a network of dissimilar systems), 
special hardware interfaces have been developed to 
connect the IMPs to a wide variety of different hosts. ll 

The MERIT network is engaged in similar research and 
has developed a similar communications processor ,12 

NETWORKING 

Networking is the integration of a number of in
dependent data processing installations connected by 



Effective Corporate Networking, Organization, and Standardization 563 

data communications to provide improved data pro
cessing support for the linked installations. Existing 
networks include the TUCC Network, the Control Data 
Cybernet Network, the Octopus Network, the TSS 
Network, the ARPA Network and the MERIT 
N etwork.1l- 18 

Network advantages 

Potential benefits of networking include improved 
operational efficiency, increased availability of re
sources, improved ADP backup capability, and possible 
reductions in ADP support costs. Since alternate data 
processing resources are available, a user may realize 
an improvement in turnaround time by submitting his 
job to another network node when the local facility is 
saturated. Integration of activities is inherent in net
working; consequently, the growth of common, com
patible programs, data bases, and data formats will be 
promoted and duplication of effort will be reduced. 

Corporate data processing costs should decrease 
because of higher system productivity resulting from 
the increase in workload sharing, program sharing, data 
sharing, joint program development and program 
exchange between installations. Workload sharing, the 
transmission (either manually or automatically) of a 
discrete job entity to another ADP installation for 
execution, tends to eliminate the extremes of under
utilization and overloading of individual installations. 
Program sharing and data sharing are variations of 
workload sharing. Data sharing permits a user to send 
his programs to another installation for the purpose of 
utilizing data there. Program sharing enables a user to 
take advantage of programs at other installations by 
sending his data to the program. In all types of sharing 
the output is returned to the user at his location. Both 
data sharing and program sharing minimize use of 
communications facilities. Communications traffic is 
further· reduced by remote service which enables the 
user to utilize both a program and data at another 
installation and receive the output at his location. 
Program exchange is the exchange of techniques, sub
routines or complete programs which can be used with
out incurring the expense of additional modification. 

Since successful implementation of networking has 
led to improvements in processing capability and to cost 
reductions,I3,14,15 corporate officers responsible for data 
processing should seriously consider the implementation 
of corporate ADP networks. 

No quantitative studies of the advantages of net
working are cited because I have not been able to find 
any. The difficulty in quantifying the utility of net
working arises because of the general unavailability of 

data. Even when data is available, ongoing network 
development makes it difficult to determine how much 
of the improvement in effectiveness is due to imple
mentation of the network and how much is the result of 
tuning the system. However, as an indication of the 
utility of networking the reader should consider the 
experience of the TUCC Network. 

The Triangle Universities' Computation Center 
(TUCC) was established in 1965 as a cooperative 
venture among three maj or North Carolina universities: 
Duke University, North Carolina State University 
(NCSU), and the University of North Carolina (UNC). 

The TUCC network is a homogeneous network 
(similar systems are linked), the center of which is a 
System 360/75 with one million bytes of high speed core 
and two million bytes of Large Capacity Storage, 
operating under OS/MVT. There are approximately 
100 terminals (high, medium, and low speed) in the 
network. The high speed terminals are a 360/50 and an 
1130 at UNC, :;1360/40 at NCSU and a 360/40 at Duke. 
The 360 systems are multi-programmed with a partition 
for local batch work and a telecommunications partition 
for TUCC remote I/O services. The medium speed 
terminals are IBM 2780s (or equivalents) and 1130s, 
and the low-speed terminals are teletypes, IBM 2741s 
(or equivalents) and IBM 1050s. / 

According to M. S. Davis, former director of TUCC, 
the primary incentive for establishing the TUCC 
Network was economic. The network was formed 
because it was believed that a larger ADP system 
serving the three major universities would provide 
economy of scale and reduce the effect of the shortage 
of competent systems programmers.15 The question is 
often asked if the three universities are better off with 
the network than if each university had upgraded its 
individual ADP system. TUCC officials have estimated 
that if the net hardware cost of the Model 75 were 
divided three ways, each member would have an 
additional $10,800 per month with which to upgrade his 
existing system. Each university could then install a 
Model 50 with 256K memory and a 2314 disk file. The 
network, however, is realizing substantially more 
power than would be available with the three separate 
systems. The throughput of the Model 75 alone is 
about six times that of a Model 50.13 

Advantages of homogeneous networks 

Networking is not a panacea; however, if several 
decentralized data processing facilities require up
grading in the same time period, the acquisition of 
common hardware and software is recommended so 
that corporate management will preserve the capability 



564 Fall Joint Computer Conference, 1971 

of combining these facilities into a network with 
minimum expenditure of resources and time. 

It is recognized that significant effort is being directed 
toward establishing heterogeneous networks, e.g., the 
ARPA Network and the MERIT Network. However, 
these networks are research-oriented, not profit
oriented. In each of these networks, special com
munications processors, network control systems and 
communications-computer interfaces have been de
veloped. In both networks extensive effort has been 
directed toward establishing a network protocol and 
the MERIT network has proposed the development of 
a standard data description language to facilitate 
transmission of data between computers, systems and 
programs and to provide a convenient and complete 
format for the storage of data and its associated 
descriptor information. Development and implementa
tion of a standard data description language would 
significantly reduce compatibility limitations, however, 
information interchange between dissimilar systems 
presents many problems19 ,20,21,22 and some lead time 
must be anticipated before such a capability will 
be implemented. 

Workload sharing, program sharing, data sharing, 
program exchange and joint program development are 
easier to implement in a homogeneous network because 
program modification and data translation hardware 
and software can be kept to a minimum, the cost of 
developing interface hardware and software can be 
minimized, and network protocol is easier to imple
ment. 

An often-voiced disadvantage of a homogeneous 
network is that the user is not provided the opportunity 
to utilize special hardware and software capabilities 
provided by other vendors. Presently, to take ad
vantage of the special capabilities of a dissimilar system 
the user tailors his program to comply with the hard
ware and software requirements of the dissimilar 
system. The user must familiarize himself with the 
hardware, 'software, and operating idiosyncrasies of 
the dissimilar system to effectively utilize its capa
bilities. Consequently, the need for these special 
capabilities must be scrutinized by corporate officials 
and alternative means of providing these capabilities 
considered. For example, in the long run it may be 
more economical to lease time on the dissimilar sys
tem or to use a standard system even though it may 
not be best suited for processing certain types of pro
grams. 

In summary, homogeneous networks are best able to 
satisfy corporate networking requirements because a 
minimum expenditure of resources and time is required 
to implement the network. 

ORGANIZING FOR EFFECTIVE CORPORATE 
NETWORKING 

Although common hardware and operating systems 
provide a foundation for the quick and economical 
development of networks, corporations must establish 
a corporate ADP focal point which will be responsible 
for the development and maintenance of a network 
standards guide. The need for a corporate ADP focal 
point and the utility of a network standards guide in 
implementing a network will be evident to anyone who 
has attempted to run programs at one installation that 
were developed elsewhere. Since the individual com
puter installations in a network are frequently staffed 
by professionals of dissimilar backgrounds and since the 
goals of the member ADP installations tend to be 
parochial rather than corporate, some means of 
facilitating communication and cooperation among the 
installations is required. A network standards guide 
defining corporate standards serves as a common 
reference point for all installations. 

The formation of corporate ADP networks has been 
hindered by the absence of a corporate focal point for 
standardization. As evidence of this situation, consider 
that in general: 

• short-term individualized solutions, rather than 
common applications programs have been de
veloped; 

• standard programming approaches to specific 
classes of applications have not been developed; 

• standardized benchmarks for the evaluation of 
programming approaches do not exist; 

• ANSI standard procedure-oriented languages are 
not utilized; 

• a variety of documentation techniques exists; and 
• compatible data banks are rare. 

The creation of a Corporate ADP Coordinating Office 
and a Corporation User Group will ease the solution of 
these problems and facilitate integration of individual 
ADP installations into a corporate network. 

Corporate ADP coordinating office 

This office, which reports directly to the corporate 
data processing director is responsible for developing 
corporate ADP policy and for providing direction and 
assistance in the establishment and maintenance of a 
corporate ADP network. Since the corporate data 
processing director is responsible for controlling and 



Effective Corporate Networking, Organization, and Standardization 565 

• Develop the network standards guide. 
• Develop benchmarks for the comparison of various 

approaches to the solution of vital corporate problems and 
evaluate these approaches. 

• Develop and maintain a library of corporate program 
documentation. 

• Provide a vehicle for the dissemination of information among 
the decentralized facilities. 

• Review corporate ADP system needs. 
• Monitor and provide assistance in corporate ADP procure

ment and efforts. 

Figure I-Functions of the corporate ADP coordinating office 

coordinating all data processing activities, the 
Corporate Data Processing Office personnel will serve 
as functional staff with implied line management power 
because of the authority of the corporate data pro
cessing director. Suggested functions of this office are 
listed in Figure 1. 

No organization is recommended because specific 
organizational relationships will be developed in 
accordance with the management concepts of the 
corporate data processing director. Two networks with 
centralized management are the Octopus Network and 
the Cybernet Network. The Computation Department, 
Lawrence Radiation Laboratory, University of Cali
fornia/Livermore has overall responsibility for opera
tion of the Octopus network and maintains separate 
project groups for software design and development, 
program evaluation, documentation dissemination and 
standards development and maintenance. All activities 
in Control Data Corporation's Cybernet Network 
including hardware/software development, resource 
accountability, and documentation development and 
dissemination are controlled by the Data Services 
Division. 

A major function of the Corporate Data Processing 
Office is the development and enforcement of the 
detailed standards that comprise the network standards 
guide. This office is responsible for: 

• determination of the type and degree of stan
dardization required; 

• implementation of the standardization program; 
and 

• management of the program. 

To ensure successful implementation of the network, 
the network standardization program must have the 
complete backing of the corporate data processing 
director, the importance that he attaches to the net
work standards guide must be well publicized and the 
most effective means of initiating the network stan-

dardization program must be determined. The two basic 
methods of initiating the network standardization 
program: the phased implementation approach and the 
one-step implementation approach must be evaluated. 
The advantages of each approach (decreased costs, 
increased effectiveness, etc.) , the probability and cost of 
implementing each approach, and the impact on net
working and current installation activities must be 
determined. If the phased implementation approach 
proves to be the better choice, the areas to be stan
dardized must be specified and a phasing schedule 
developed. 

The network standards section of the Corporate ADP 
Coordinating Office will be responsible for the imple
mentation and management of the standardization 
program. This continuing effort includes the review, 
modification, and enforcement of existing standards and 
initiation of new standards as they are needed. Further
more, to combat organizational parochialism and a 
breakdown of the network due to blurring of responsi
bilities, this office must continually review the relation
ship of individual computer systems to the network to 
ensure that the overall interests of the company are 
being maintained. The Corporate ADP Coordinating 
Office thus serves as the network control mechanism. 

Corporation user group 

To ensure the effectiveness of the network stan
dardization program, a users' group is needed. This 
users' group, composed of key installation representa
tives, will advise and assist the Corporate ADP Co
ordinating Office in integrating the decentralized ADP 
facilities into a corporate network. As such, one of 
their prime functions is to help develop the network 
standards guide. This participation should encourage 
coordination and communication among the decen
tralized installations, thus making it easier to establish 
the network standardization program. Once the network 
is established, this group will continue to support the 
Corporate ADP Coordinating Office by proposing and 
reviewing network standards as required. 

NETWORK STANDARDS GUIDE 

Interchangeability of programs and data is funda
mental to economical networking and interchange
ability is a function of standardization. 

Standardization is the process of developing,re
viewing, promulgating, and enforcing guidelines for 
controlling the performance of the discrete elements 



566 Fall Joint Computer Conference, 1971 

Operating Standards 

• Network Protocol 
• Configuration 
• Job Preparation 
• Job Processing 
• Job Termination 

Software Standards 

• System Analysis Standards 
• Programming Standards 

Management Standards 

• Data Conventions 
• Program Classification Rules 
• Networking Rules 
• Utilization, Review, and Modification Rules 

Figure 2-Network standards guide outline 

which interact in the operation of a system. Within an 
installation, ADP standards facilitate integration of 
system elements (hardware, software, procedures), 
make possible reductions in both operating and soft
ware costs, ease long range planning, and are a vital 
element in increasing flexibility. Standards increase the 
ability of an ADP installation to respond to changing 
operational needs. 

Similarly, just as installation standards are needed to 
integrate the discrete system elements, network stan
dards are required if installations are to be integrated 
into a network. 

The network standards guide will consist of the 
following three categories of. standards: operating, 
software, and management. Figure 2 is a proposed 
outline for the network standards guide and indicates 
how these categories might be further subdivided. 

Operating standards 

Operating standards include network protocol, con
figuration rules, job preparation, job processing, and 
job termination procedures. Network protocol is the 
operating rules and procedures to be utilized in the 
receipt, processing, and transmission of programs and 
data initiated at other installations. Included here are 
error control procedures, message transmission tech
niques, and methods of determining and specifying 
program priorities. 

Configuration rules are needed to ensure that a 
nucleus of hardware and software compatibility is 
maintained among the network installations. Although 
each decentralized installation is required to maintain 
this degree of compatibility, it is recognized that certain 
installations may require special purpose hardware or 
software (e.g., large core storage, graphics systems and 

text processing systems) to satisfy local needs. The 
addition of these special capabilities is encouraged, 
however, the Corporate ADP Coordinating Office 
should determine if these capabilities can be effectively 
utilized by other installations and develop standards for 
their use if it proves necessary. The maintenance of 
software compatibility requires continuous monitoring 
of vendor modifications to the operating system and 
the support software. Because of the number and 
variety of special features and peripherals available, a 
strictly enforced configuration control policy is needed 
if system compatibility is to be maintained. For 
example, to maintain hardware compatibility the 
required computer configuration must be defined and 
channel assignments and device addresses must be 
standardized. 

Job preparation standards include procedures for 
preparing both the input data and the programs re
quired for a data processing run. Programs should be 
categorized and common job submission and job control 
statements developed. Inherent in the development of 
these common control statements is the assumption 
that common default options will be specified for each 
run category. At program compilation time, a pro
grammer usually has several options which affect 
ancillary aspects of the compilation (e.g., optimize or 
do not optimize the resulting machine language. pro
gram; list or do not list the assembly language code). 
If the programmer does not specify any options, 
standard default options'are invoked. 

Job processing refers to all job functions performed 
by the computer operator from initiation through 
termination of a programming run. Initiation involves 
the preliminary set-up of all peripheral devices, the 
initial setting of console switches, and the actual run 
initiation procedure. Execution includes any additional 
set-up activity that can be overlapped, listing of un
usual events and operator messages, and operator 
responses to interrupts and error conditions. 

Job termination standards refer to take-down 
procedures utilized under both ordinary and abnormal 
conditions, control of installation data, and disposition 
of computer results. 

Software standards 

Software standards refer to those practices which 
systems analysts and programmers use in their daily 
work. Adherence to these standards promotes resource 
sharing and facilitates communication between the 
systems design, programming, and user functions. 
Systems analysis standards are those practices that ease 
the preparation of the system specification. The level of 



Effective Corporate Networking, Organization, and Standardization 567 

detail of a good system specification is such that the 
structure, functions, flow, and control of the system is 
defined so that a programmer can readily program, 
test, and implement the system. 

Programming standards are those guidelines used by 
programmers in their daily work. As data processing 
capability has increased, the methods of best utilizing 
this capability have changed. To increase the overall 
effectiveness of ADP support, good programming 
standards are necessary. Modular program design 
techniques (so that the program can be handled as a 
series of subtasks), standard programming approaches 
to the solution of well defined applications, and common 
testing and checkout procedures should be utilized. 
Frequently, a number of software programs are avail
able for solving certain types of problems (e.g., square 
root and trigonometric conversion routines) . The 
development of benchmark tests to evaluate these 
approaches will promote efficiency since the advantages 
and disadvantages of each technique will be determined 
and a network standard will be developed. 

It is generally agreed that there is a need to provide 
information on what a program is supposed to do and 
how it does it. Recognizing this, ADP installations have 
independently developed a variety of program docu
mentation guidelines, resulting in a lack of real stan
dardization in documentation. Programming docu
mentation consists of recording the detailed logic and 
coding of a program. Entire books have been written 
on programming documentation,23,24 and documentation 
standards have been established by ANSI. At a mini
mum, programming documentation should consist of a 
summary change log, general program description, 
logical and mathematical description, detailed program 
flow charts, detailed program, file, and data descrip
tions, an assembly listing, a run book (providing calling 
sequences and job control and configuration require
ments, etc.). 

Management standards 

Before the operating and software standards dis
cussed above can achieve maximum effect, a framework 
must be developed for their utilization. This framework 
will consist of general policies to promote conformity of 
usage and will ultimately determine the effectiveness 
of networking for workload sharing, program sharing, 
data sharing, remote service, program exchange, and 
joint program development. 

Management standards can be categorized as data 
conventions, programming classification rules, net
working rules, and utilization, review and modification 
rules. 

Data conventions 

Data conventions ease data exchange because they 
insure that the data itself is consistent. 

Standardization guidelines are needed in the areas of: 

• data element definition; 
• terminology; 
• definitions of values and constants; 

• data names; 
• data exchange formats; and 
• data file structures. 

The ASCII (American Standard Code for In
formation Interchange) code should be used for all data 
to be transferred between facilities in order to reduce 
the number of code translation programs each facility 
must maintain and to ease the installation of non
compatible terminals if the need should arise in the 
future. Common data exchange formats will further 
reduce the complexity of the translation programs. 

Program classification rules 

One of the benefits of networking is that common 
program development and program exchange will be 
encouraged. If program exchange is to be effective, the 
amount of effort required to search for available pro
grams, sub:r:outines, and approaches must be reduced. 
Each ADP installation must therefore categorize its 
programs. After this has been done, either standard 
categories, with clear definitions of what is included in 
each classification, could be developed and all programs 
classified; or each facility could distribute copies of its 
categories, category definitions, and the programs which 
fall into each category. Program classification (a first 
step in eliminating duplication of effort) is essential if 
common program development and program exchange 
are to yield maximum gains and if software conversion 
costs are to be kept to a minimum. 

Networking rules 

Guidelines must be developed which describe the 
administrative practices and technical restrictions 
required in a network environment. These include 
priority determination rules, restrictions on the mixing 
of languages within a program, incentives to use ANSI 
FORTRAN and COBOL, and configuration rules which 
restrict programmers to utilization of a subset of the 
available facilities (core, peripherals, etc.). 



568 Fall Joint Computer Conference, 1971 

Utilization, review and IDodification rules 

These management standards define the conditions 
under which the various standards apply, the review 
cycle and the steps in the standards modification 
process. Utilization rules must consider the needs of the 
network yet make allowances for the differences which 
exist between installations. For example, installation
peculiar programs need not be subject to the strict 
rules which apply to programs which will either be run 
at or utilized by other ADP installations. The standards 
section of the Corporate ADP Coordinating Office 
together with the Corporation User Group, should 
develop and implement formal review and modification 
procedures. 

IMPLEMENTATION OF THE NETWORK 
STANDARDS GUIDE 

The implementation of a standardization program for 
a single installation requires a significant amount of 
preparation and a great deal of marketing ability. 
Additional difficulties are encountered when standards 
are to be developed that apply to more than one ADP 
facility. These difficulties are magnified when the 
separate facilities are to be integrated into a network. 
In order to facilitate the introduction of the network 
standards guide, the following plan is suggested: 

(1) Form a standardization team consisting of 
competent representatives from each installa
tion which is to be assimilated into the network. 

(2) Announce the standardization program with a 
letter from corporate headquarters and a 
personal visit by the corporate data processing 
director to each decentralized ADP installation. 

(3) Develop an outline for the network standards 
guide (e.g., an expansion of Figure 2). 

(4) Submit the outline to the ADP installation 
managers. 

( 5) Develop the actual standards: 
• survey existing standards; 
• determine which standards should be kept 

and improved; 
• develop the new standards which are needed; 

(6) Submit these standards for review and approval 
by the ADP installation managers. 

(7) Distribute copies of the standards to all staff 
members of all ADP facilities. 

(8) Arrange open meetings at each installation so 
that the corporate· data processing director and 
the members of the standards section and 

Corporation User Group can explain how the 
standards program was developed. 

(9) Initiate training for each ADP installation staff 
group (programmers, operators, etc.) which 
will be affected by the standards. 

(10) Implement the standards. 
(11) Establish a formal network standards review 

committee composed of corporate and in
stallation data processing personnel. 

(12) Enforce the standards: 
• incentives to abide by the standards should 

be given to each ADP facility by the Cor
porate ADP Coordinating Office; 

• incentives should also be given to staff 
members of each ADP facility by their 
managers; and 

• continual monitoring and guidance should be 
provided by both the Corporate ADP 
Coordinating Office and the managers of the 
decentralized installations. 

SUMMARY 

The benefits of workload sharing, program sharing, 
data sharing, remote service, program exchange, and 
joint program development are such that networking 
should be seriously considered by corporations with 
decentralized ADP facilities. Effective networking 
provides improved capability, improved operational 
efficiency and possible reductions in ADP support costs. 

Corporate network development has been limited in 
the past by compatibility limitations, however, the 
effect of these limitations has been diminished by the 
development of families of compatible computer 
systems. Homogeneous networks are proposed as the 
best method of satisfying corporate networking require
ments because a minimum expenditure of resources and 
time is required to implement the network. 

Effective networking requires extensive standardi
zation. It is recommended that a Corporate ADP 
Coordinating Office and a Corporate User Group be 
formed. The establishment of a Corporate ADP 
Coordinating Office will provide a focal point for 
implementation and management of the network and 
the creation of a Corporation User Group is funda
mental to the creation and continued updating of a 
relevant network standards guide. 

The network standards guide may be divided into 
operating standards, software standards, and manage
ment standards. The latter part of this paper details the 
functions to be standardized and suggests a plan for 
implementation of the network standards guide. 



Effective Corporate Networking, Organization, and Standardization 569 

ACKNOWLEDGMENTS 

The author is grateful to J. J. Powell, P. H. Messing, 
J. J. Peterson and S. A. Veit for their many suggestions 
and thoughtful review of this paper. 

REFERENCES 

1 J GOSDEN et al 
Achieving inter-ADP center compatibility 
The MITRE Corporation MTP-312 May 1968 

2 J A WARD 
A panel session-software transferability 
Proceedings of the AFIPS Spring Joint Computer 
Conference Vol 34 pp 605-612 1969 

3 K SATTLEY R MILLSTEIN S MARSHALL 
On program transferability 
RADC Technical Report TR-70-217 November 1970 

4 P L PECK 
The implications of ADP networking standards for 
operations research 
Proceedings of the U.S. Army Operations Research 
Symposium pp 269-2811969 

5 P HIRSCH 
WI M MIX: It's the biggest, but will it be the best 
Datamation pp 84-90 October 1969 

6 C R FROST 
IBM plug-to-plug peripheral devices 
Datamation pp 24-34 October 15 1970 

7 R A OHARE 
Modems and multiplexers 
Modern Data pp 58-79 December 1970 

8 J E BUCKLEY 
A survey of communication tariff developments 
Datamation pp 127-132 December 1969 

9 A R WORLEY 
Practical aspects of data communications 
Datamation pp 60-66 October 1969 

10 S J KAPLAN 
The advancing communication technology and computer 
communications systems 
Proceedings of the AFIPS Spring Joint Computer 
Conference Vol 32 pp 119-133 1968 

11 F E HEART et al 
The interface message processor for the ARPA computer 
network 
Proceedings of the AFIPS Spring Joint Computer 
Conference Vol 36 pp 551-567 1970 

12 E M AUPPERLEE 
MERIT computer network hardware 
Courant Institute of Mathematical Sciences Computer 
Network Seminar November 30 1970 

13 F P BROOKS JR J K FERRELL T M GALLIE 
Organizational financial and political aspects of a 
three-university computing center 
Proceedings 1968 IFIP Congress Vol 2 pp 923-927 1968 

14 D N FREEMAN J R RAGLAND 
The response-efficiency tradeoff in a multiple-university 
system 
Datamation pp 112-116 March 1970 

15 M S DAVIS 
Economics-point of view of designer and operator 
Proceedings of the Interdisciplinary Conference on 
Multiple Access Computer Networks pp 4.11-4.17 
April 1970 

16 W J LUTHER 
Introduction to cybernet 
Courant Institute of Mathematical Sciences Computer 
Network Seminar November 301970 

17 J G FLETCHER 
Livermore time sharing system-part 1: octopus 
Computation Department Lawrence Radiation Laboratory 
University of California/Livermore December 1970 

18 B HERZOG 
MERIT proposal summary 
MERIT Computer Network February 1970 

19 H SMELTZER H FICKES 
Information interchange between dissimilar systems 
Modern Data pp 56-67 April 1971 

20 C S CARR S D CROCKER V G CERF 
Host-host communication protocol in the ARP A network 
Proceedings of the AFIPS Spring Joint Computer 
Conference Vol 36 pp 589-597 1970 

21 A K BHUSHAN R H SHOTY 
Procedures and standards for inter-computer communication.q 
Proceedings of the AFIPS Spring Joint Computer 
Conference Vol 32 pp 95-104 1968 

22 J L LITTLE C N MOOERS 
Standards for user procedures and data formats in 
automated information systems and networks 
Proceedings of the AFIPS Spring Joint Computer 
Conference Vol 32 pp 89-94 1968 

23 M GRAY K R LONDON 
Documentation standards 
Brandon/Systems Press 1969 

24 D WALSH 
A guide for software documentation 
Inter-Act Publications 1969 





Multi-dimensional security program 
for a generalized information retrieval 
system 

by JOHN M. CARROLL, ROBERT MARTIN, LORINE McHARDY, and HANS MORAVEC 

University of Western Ontario 
London, Ontario, Canada 

INTRODUCTION 

G IRS is a generalized information retrieval system 
which permits the creation and modification of a data 
base, as well as the retrieval of specified data from the 
base. 

This system is data independent and flexible so that 
the user can fit it to his particular application. Its 
structure is as equally applicable to the storage of 
abstracts of technical reports as it is to personnel files. 
A multilevel protection scheme guarantees security of 
information against unauthorized examination or 
modification. 

The basic model for data storage is a single-page 
typewritten record, which can be entered into the file 
with minimal restrictions placed on its structure. This 
format has been found useful for storing personnel 
records, inventory records, quality-control records, and 
bibliographic entries for information storage and 
retrieval systems. 

The multi-dimensionality of the system's security 
provisions arises from the fact that password or pass
words assigned to users determine 

(1) which subset of ten available processing func
tions they can exercise (level 1 protection), 

(2) on which portions of records (items) they can 
exercise these functions (level 2 protection), and 

(3) which records they are privileged to work with, 
or conversely, which records are locked against 
them (level 3 protection). 

Thus data protection is provided at two levels (2 and 
3). Associated with each item name is a protection 
code which applies to the particular item in all records. 
A particular item, say, Salary in a personnel file, may 
be protected so that only certain persons may examine 

571 

that item in any record. This is level 2 protection. In 
addition, each item in each record has a protection 
code applying only to that one item. Thus, while a 
person may be authorized to examine the Salary item 
in general, he may be prevented from examining the 
salaries of his superiors by virtue of the protection on 
these items within specific record's. This is level 3 
protection. 

The system is programmed in Fortran for maximal 
portability among computer systems, although it is 
presumed that routines will be written in an appropriate 
assembly language in the interest of system efficiency 
and flexibility at a particular installation. 

DATA STRUCTURE 

Any number of data bases can exist simultaneously, 
each identified by a unique file name. As shown in 
Figure 1, a file consists' of a series of records, each of 
which consists of a set of items. The items are further 
subdivided into elements, the smallest unit of in
formation in the structure. 

A file can contain up to 99,998 records, each of which 
is identified by a 5-digit record number. Each record is 
further divided into items, with the restriction that all 
records in a file have the same number of items and that 
they be present in the same order in all records. 

Each item has a unique name within the file, and 
consists of an integral number of lines (1 to 10) of 72 
characters each. Further, the total number of items in a 
given file must not exceed 10, and the total number of 
lines in a record must be less than or equal to 20. Each 
item can be subdivided into elements by use of de
limiters. 

The items are numbered from 0 to 9, and the lines 
within an item are also numbered from 0 to 9. Each 
line in the record is therefore identified by a 7 -digit 



572 Fall Joint Computer Conference, 1971 

File 

· ". Record • • • 

. , . Item··· 

• •• • • • 

Element 
Figure 1-Structure of the data base 

number, consisting of the 5-digit record number, a 
I-digit item number, and a I-digit line number within 
the item. 

These restrictions were imposed after observing that 
the quantitative data in many files can be summarized 
on a single typewritten face sheet. More narrative data 
can be held on tape and retrieved in batch for trans
mission in hardcopy form. Note that an item can include 
several related data elements; elements are coalesced 
into items on the basis of security considerations. 

In a specific implementation record size could easily 
be made larger if desired. 

Two sample data structures are shown in Figure 2. 
The first is an example of the use of this structure to 
store abstracts of technical papers. The record consists 
of 4 items, "TITLE," "AUTHOR," "PUBLISHER," 
and "ABSTRACT," comprising 1, 2, 1, and 10 lines 
respectively. The first of these is not subdivided into 
elements, while the last three are. The second example 
shows a personnel record format using 6 items and a 
total of 12 lines. The data used to create a new data 
base must be contained in a disk file in card image 
format organized as shown in Figure 3. 

The data file is to be written as fixed length Fortran 

records of 80 characters in ASCII mode. This file can be 
read using the random access mode of PDP-I0 Fortran. 
To avoid confusion, the term "record" will refer to one 
of these 80 character records. The term "data record" 
will refer to one of the user's input data records identi
fied by a five-digit number. The file is divided into two 
parts-a 70 record header, followed by the user's data. 
A diagram of the structure is given in Figure 4. 

The header is fixed length and contains all the 
information necessary to access the data. Its content 
areas follow: 

Records 1-10; passwords and protection keys, 5 
sets/record 

TITLt:: • ••.• title of paper •••••••• 

AUTHOR: last name initials corporate author 

city now with 

PUBLISHER: name city pub date Lib. Congress # 

ABSTRACT: keywords abstract text ••••.••••••••• 

NArlE: 

ADDRESS: 

NUl-mER: 

VITA: 

I1EDICA:::': 

HISTORY: 

(l' .. ) 

last first middle position 

street city 

Soc. Ins. # OHSC # employee # union # 

date of birth place of birth next of kin 

relationship address 

physical handicaps, 

allergies, 

etc. 

job record •.•••••••••••••••• 

(B) 

Figure 2-Sample data structures: (a) format of a record for 
storing bibliographic entries; (b) format of a personal record 



Records 11-50; 4 lines per item containing the item 
name, # lines in the item, level 2 
protection code, and up to 24 element 
names. 

Records 51-70; index to data records containing 
(data record #, Fortran record #) 
8 pairs/record. 

The index is set up to reference every 160nth record 
where n is the value given on the record count card. 

ACCESS PROCEDURE 

To access the system, it is necessary to log into the 
PDP-10/50 host system. This requires use of a project
programmer pair and password. The user then copies to 
the disk the Generalized Information Retrieval System 

password count card 

Ipassword detail cards 

item count card 

litem detail cards 

record count card 

Irecord detail cards 

termination card 

Figure 3-Card input for creation of a file 

Fortran 
Record # 1 

10 

11 

12 

13 

14 

15 

50 

51 

70 

71 

Multi-dimensional Security Program 573 

paSSWdllprotl!paSSWd? Iprot? I ...... } 
................... \ passwdso I protso 
item naln; # lines ! prot ! / / / / / 

] element nrn
1 

! element nrn 2 T . 

. I element nrn24 

item name 1# lines I prot I / / / / / 1 

j 
rec# I inde1 rec# I index! -

I rec# I index ..". 

da ta record 1 

data record 2 
etc. 

Figure 4-Format of a data file 

passwords 
and 

associated 
protection 
keys 

iteml 

details 

item2 

itemlO 

H 

E 

A 

D 

E 

index to R 
data 

records 

DATA 

file and the particular data base file he wishes to use 
(unless the user is going to create a new file). 

If the desired file is found (or a new one created), 
GIRS will request: 

"PASSWORD?" 

The user must then type in his password for the G IRS 
system. Conventional print inhibit provisions for pass
word protection are provided by the host system. 

The password is matched against a list made up from 
password detail cards. 

There are as many cards as indicated on the password 
count card. Each of them has the following format: 

Col. 1-2 blank 
3-7 password 

8 blank 
9-12 level 1 protection key 

13 blank 
14-17 level 2 protection code 

18 blank 
19 level 3 protection code 



574 Fall Joint Computer Conference, 1971 

Columns 20-80 are normally blank although columns 
20-33 may be utilized in connection with an alternative 
scheme for level 3 protection. 

LEVEL 1 PROTECTION 

The level 1 protection key is the sum of the key values 
for those functions that the user whose password this 
is can use. 

CREATE 0 TOTAL 8 
SEARCH 1 INSERT 16 
DISPLAY 2 REMOVE 32 
END 4 MODIFY 64 

ACCESS 128 
PROTECT 256 

These functions are described as follows: 
CREATE-is used to create. a new data base. It is 
available to any GIRS user. If a user enters the name 
of a data base which is not found, GIRS will assume 
the user wishes to create a new data base and CREATE 
is the only command that will be accepted; conversely, 
if a specified file is found, the system will disallow the 
CREATE command, making it impossible accidentally 
to destroy an existing file by its use. 
SEARCH-is used to scan parts of the data base for 
certain character strings. On completion of a search, a 
summary of successes will be given in the form: 

'SEARCH SUCCESSFUL IN RECORD NNNN ... ' 

Any item which the user is not privileged to see will be 
ignored in the search summary. 
DISPLA Y -i~ used to display information from the 
data base. Any volume of information can be displayed, 
from a single element to a complete file. Large volumes 
of output will ordinarily be run on a batch terminal. 
All data displays are consistent with the level 2 and 
level 3 protection codes. Items which the user is not 
authorized to see are ignored. 
END-is used to exit from the system. 
TOTAL-is used to aggregate the contents of a defined 
numeric element over a specified set of records. 

The variables are the same as in the SEARCH and 
DISPLAY commands. If the element defined is non
numeric, an error response will be generated. A 'blank' 
option aggregates data over the entire set of records. 
Level 2 protection is observed although data aggregates 
are obtained irrespective of level 3 protection codes 
except where the set of records defined contains six or 

less. In this case, a response is generated advising the 
user to employ the DISPLAY command. 
INSERT-is used to insert either entire items or entire 
records. 
REMOVE-makes it possible to remove an entire 
record or an entire item (i.e., one item from each record) 
from the file. The record number is then free for reuse. 
When removing an item, the remaining items are re
numbered. This renumbering is independent of the 
level 3 protection code. 
MODIFY-is used to change an item in a specified 
record. The user must specify the item name, record 
number, and new contents. 
ACCESS-is used to change the list of passwords and 
associated protection keys for the file. Its use will 
normally be restricted to one or two persons only. It 
provides two options: to add a new password and its 
protection keys, or to delete a password. To modify the 
keys for an existing password it is necessary first to 
delete the password, and then reinsert it with new keys. 
PROTECT-is used to change level 2 and 3 protection 
in the file; its use should be restricted to one or two 
users. The command has an ITEM option used to 
change a level 2 protection, and a RECORD option 
used to change a level 3 protection. If the ITEM 
option is omitted, protection is changed for all items in 
the RECORD named. 

As an example of the use of level 1 (function) protec
tion: a user privileged only to search a file for statistically 
aggregated information, that is, not permitted to see 
individually identified information, would have the 
level 1 code 

CREATE' 
SEARCH 
END 
TOTAL 

LEVEL 1 CODE 

LEVEL 2 PROTECTION 

000000000 
000000001 
000000100 
000001000 

000001101 = 13 

The level 2 protection key is the sum of the level 2 
protection codes for those items which the user can 
access, as given on the item detail cards. 

As an example of the use of level 2 (item) protection: 
a user who is privileged only to work with items 1, 5, 
and 9 of each record would have the level 2 code: 

ITEM 1 
ITEM 5 
ITEM 9 

LEVEL 2 CODE 

0000000001 
0000010000 
0100000000 

0100010001 = 273 



Item detail cards comprise a set of one or more cards 
for each item in the record. The first card of each set 
contains the following data: 

Col. 1-10 
11 

12-13 
14 

15-18 

19 
20-80 

item name 
blank 
# lines in the item (1-10) 
blank 
level 2 protection code which should be 
either a power of 2, or 0 for an item 
which all users can access 
blank 
element names (1-10 characters each) 
separated by backslashes and ter
minated with a dollar sign ($) [maxi
mum of 24 element names] 

For example, the item detail card for the fourth item of 
example (b) in Figure 2 would be: 

VITA 02 0128 BIRTH DATE\BIRTHPLACE\ 
NEXTOF KIN\RELATION\ 

ADDRESS $ 

LEVEL 3 PROTECTION 

The level 3 protection code is set to correspond to the 
security clearance of the user. He can see items of 
records whose protection code is less than or equal to 
the level 3 protection code stored with his password. 

Record detail cards contain the actual data in the 
following format: 

Col. 1-5 record number 
6 item number (0-9) 
7 line number within item (0-9) 
8 level 3 protection code (must be same 

for all lines in one item). User can 
access item if his level 3 protection 
key is 2 this value. 

9-80 item contents 

These cards must be sorted in ascending order on 
columns 1 to 7, when creating a new data base. 

OPTIONAL SYSTEM TO LOCK RECORDS 

An additional system for level 3 protection permits 
locking all items of selected records against certain 
users. This system is based on the principles of modular 
algebra and permits mapping a need-to-know security 
plan into the access system. 

Multi-dimensional Security Program 575 

Figure 5-Mapping of a security plan involving three ~ajor 
users with their subusers, and provision for information mter
change among major users 

Each user is given a pair of divisors (bases) and a 
pair of remainders (moduli). Every record number the 
user desires to access is tested for both congruences 
before the user is privileged to see it. 

In the security plan illustrated in Figure 5, there are 
three major users (A, B, C) which might stand for the 
accounting, personnel, and production departments of a 
firm. The records which are the exclusive property of 
each major user are partitioned into exclusive subsets, 
which might correspond to: personnel administration, 
wage and salary administration, training, etc., fO.r the 
personnel department. In addition, there are Inter
section or shared-channel sets to facilitate exchange of 
information between users AB, AC, BC, and all major 
users. 

Columns 20-33 of the password cards can be utilized 
to store access codes (divisors and remainders) required 
to access particular sets of records: 

20 
21-23 
24 
25-26 
27 
28-30 
31 
32-33 
34-80 

blank 
divisor # 1 
blank 
remainder # 1 
blank 
divisor #2 
blank 
remainder # 2 
blank 



576 Fall Joint Computer Conference, 1971 

TABLE I-Partitions of 10,000 Record Numbers 

Record 
Level 3 Key Records Numbers 
D 1, R 1, D 2, R2 Accessible Assignable Utilization 

2 0 5000 2667 Major user A 
3 0 3333 1334 Major user B 
5 0 2000 667 Major user C 
6 0 1667 1333 Shared channel, users 

A&B 
10 0 1000 667 Shared channel, users 

A&C 
15 0 667 333 Shared chann el, users 

B&C 
30 0 333 333 Shared channel, users 

A,B&C 
2 0 13 0 205 205 Subuser A-I 

2 0 13 12 205 205 Subuser A-13 
3 0 11 0 121 121 Sub user B-1 

3 0 11 10 121 121 Sub user B-11 
5 0 7 0 95 95 Subuser 0-1 

5 0 7 6 95 95 Subuser 0-7 

Table I illustrates the results of partitioning 10,000 
record numbers. A record number is selected from a 
computer-produced list of the members of each set and 
subset so that the number can be accessed by the major 
user, subuser, or combination of users who have the 
specified need to know. Of course, additional passwords 
can be issued to give various subusers access to partition 
sets, which can function as common channels for 
information interchange among them. Note that major 
user A can access 5,000 records. Out of this set, 2,667 
records belong to A exclusively; they cannot be seen by 
any other major user. User A, however, can allocate 
these records among his subusers (designated by the 
alpha-numerics Al to A13) ; they are parcelled out at 
the rate of 205 records per subuser. These records can be 
seen only by User A and the subuser designated. (Of 
course, A can hold back a few sets of records for his 
exclusive use--becoming, actually, his own subuser.) 

User A also has the use of 1,333 records; which he 
shares with User B; only Users A and B can see these 
records. 

User A can also use records taken from the set of 667 
records that he shares with C; only Users A and C can 
see these records. 

Finally, User A has the use of records taken from a 

common set of 333 records; these records can be seen by 
all three major Users; A, B, and C. 

PROVISION FOR ENCIPHERMENT 

There are two points at which this system remains 
vulnerable to unauthorized entry: a user possessing the 
general project-programmer pair and password required 
by the PDP-I0 software to access the GIRS system can 
make use of the peripheral interface program to assign 
the entire G IRS file to some display device; and a wire
tapper can intercept the transmission of confidential 
file information to a legitimate user at a remote terminal. 

Use of an on-line crypto system can protect the files 
at these points. The item contents from on record 
detail cards will be stored in enciphered form for items 

'whose sensitivity requires such precaution. Decipher
ment can be accomplished at programmable remote 
terminals; for such items, only enciphered contents will 
be transmitted over telecommunications lines or be 
accessible by the peripheral interface program. 

A suitable deciphering scheme has been described 
(1). Essentially it consists of adding modulo 2 to the 
cipher text stream the bits of the key string used to 
encipher it. The key string is regenerated and correctly 
synchronized by using an arithmetic congruential 
pseudorandom-number generator whose seed string 
(i.e., ring contents) are produced by a second generator 
whose operation is specified by a password-which may 
be the same as used to gain access, or be totally 
different. In the CRYPTO mode, the output received 
in answer to a DISPLAY command would be stored on 
the disk of the programmable terminal-in this case, 
a PDP-8I. 

CONCLUSIONS 

This generalized information retrieval system provides 
a test bed for continuing experimentation with security 
provisions for multiple-access computer communica
tions systems. By such experimentation, it is antici
pated that the optimal trade offs between security and 
economy can be determined for a wide range of in
formation retrieval applications. 

REFERENCES 

1 J M CARROLL P M McLELLAND 
Fast "infinite-key" privacy transformation for resource 
sharing systems 
AFIPS Conference Proceedings FJCC Vol 27 pp 223-230 
1970 



2 D F BOOTH 
File security for a shared file, remote-terminal system 
Conf. on Computers: Privacy and Freedom of 
Information Queens University Kingston Ontario 
May 21-24 1970 

3 T D FRIEDMAN 
The authorization problem in shared files 
IBM Systems Journal Vol 9 No 4 pp 258-280 1970 

Multi-dimensional Security Program 577 

4 L J HOFFMAN 

Computers and privacy: a survey 
Computing Surveys Vol 1 No 2 pp 85-103 1969 

5 W J STUBGEN M A SHEPHERD 

A real-time information editing and retrieval system 
Department of Computer Science University of Western 
Ontario London Ontario May 1970 





Insuring confidentiality of individual 
records in data storage and retrieval 
for statistical purposes 

by MORRIS H. HANSEN 

Westat Research, Inc. 
Rockville, Maryland 

Much has been written about the question of privacy 
and the need for the protection of confidentiality of 
individual records in data storage and retrieval systems. 
The ability to insure confidentiality is a prime tool in 
the protection of privacy. The goal of this paper is to 
summarize from the point of view of a statistician some 
of the aspects and principles of confidentiality and 
some of the implications of these principles for com
puter-based storage and retrieval systems for statistical 
purposes. The remarks will have special relevance to 
open retrieval systems, that is, retrieval systems in 
which customers for information retrieval are the 
general public, or perhaps specified agencies or groups 
or individuals, and these customers can retrieve any 
desired statistics from the confidential records in the 
files subject to a review to insure that the output con
forms to prescribed rules designed to avoid disclosure 
of individual information. These rules may be con
cerned with the minimum number of cases on which an 
individual statistics or frequency count is based or with 
other aspects, as is discussed later. The access to the 
data may be restricted to certain authorized types of 
data through control passwords or keys. 

MEANING OF CONFIDENTIALITY 

What is meant by confidentiality needs clarification. 
An obvious meaning is that the individual records, 
with the names or other identifying information 
included, will not be made available to other than 
authorized persons. But beyond this the definition of 
what is adequate protection of confidentiality needs 
further clarification. 

The Census Bureau has a well-established and well
earned record for preservation of confidentiality of its 
records. Much of this paper will draw on the Census 

579 

Bureau experience as an illustration. With the great 
concern of the Congress and others over the potential 
for invasion of privacy in statistical information sys
tems, and especially the proposed and much-discussed 
federal statistical data center, it is useful to examine 
how the Census Bureau has come to be widely accepted 
as a model in the confidentiality protection given to its 
records. It will be seen that the experience points to 
serious and as yet unresolved problems, and that the 
problems are especially difficult for a storage and 
retrieval system such as a federal data center with 
access to statistical summaries by persons not au
thorized to see the individual confidential records. 

The Census law (Title 13, U.S.C., Sec. 9-a-2) provides 
that there shall not be " ... any publication [or other
wise make information available] whereby the data 
furnished by any particular establishment or individual 
under this title can be identified." 

Various interpretations can be made of this language. 
One is that no inference can be made about the results 
reported by any individual. This is not a tolerable 
interpretation. At the other extreme, the law cannot 
reasonably be interpreted to mean that there is no 
violation of confidentiality provided the name or 
address (or other specific identification such as Social 
Security number) is not associated with the information 
and made available. 

A reasonable as distinguished from a rigorous or 
literal interpretation of the language of the law is 
required if any statistics are to be published. * For 
example, the publication of an aggregate of retail sales 
for hardware stores ina county reveals that no in-

* Here and elsewhere in this paper the term "publication" refers 
to any means of making information available to persons who do 
not have authorized access to the confidential records and who are 
not subject to penalties for disclosure. 



580 Fall Joint Computer Conference, 1971 

dividual hardware store had sales of a greater amount 
than this aggregate, and this much is revealed about 
each individual hardware store. Similarly, sometimes 
the existence (or nonexistence) of an item in each report 
can be inferred from the publication of statistical 
aggregates. Thus, the fact that in an age distribution 
for a specified area from a population census no person 
is reported as over 75 years of age reveals for each 
individual person that his age was reported as under 
75 years.** In publishing statistics for large areas such 
considerations may be of little consequence. But in 
publishing statistics for smaller and smaller areas the 
problem increases, and the primary role of the decennial 
census is to produce small area statistics. Especially 
statistics are needed and produced from the decennial 
Censuses of Population and Housing for counties, 
cities, towns, census tracts, and even city blocks within 
cities or other communities. The storage and retrieval 
of geographically detailed statistical information may 
also be a primary goal of other information systems 
based on a set of administrative records or integrated 
from administrative systems and perhaps also from 
statistical surveys. 

Years of experience and precedent in publishing 
statistics by the Bureau of the Census without serious 
problems suggest the acceptability of the rules and 
principles that have been followed to avoid unreasonable 
disclosure of data for individuals in statistical aggre
gates. However, the computer adds new capabilities as 
its capacities and applications increase, and these may 
call for reexamination and some new rules and prin
ciples. It is desirable to get recognized, in applying 
past principles and in developing any new ones, and as 
has been illustrated in the above discussion, that if any 
statistics are to be published nondisclosure cannot be 
absolute. Rules for nondisclosure are necessarily based 
on an interpretation of what is reasonable, and sup
ported by precedents and past experience. 

SOME PRINCIPLES AND QUESTIONS FOR 
GUIDING NONDISCLOSURE IN 
PROTECTING CONFIDENTIALITY 

Some relevant principles or questions concerning 
rules for protecting confidentiality of individual records 
will be presented. Clear and unequivocal answers may 
not exist. Nevertheless, reasonable decisions have been 
made and must be made, in order to publish census and 
other statistical results. 

** Additional illustrations are presented in 1. 

What constitutes protection against exact or 
approximate disclosure? 

Protection against exact or approximate disclosure of 
specific items of information in a record must be pro
vided. However, "approximate" disclosure must be 
interpreted or defined. Issues concerning the approxi
mate disclosure of magnitudes, as distinguished from 
frequency counts, involve some special considerations. 

Illustration: In some studies the Census Bureau has 
interpreted the disclosure of a magnitude, X, as not to 
be an approximate disclosure when the range of inter
pretation is of the order of (.75 to 1.5) X. Frequencies 
in a distribution may automatically meet this condition 
if intervals are broad enough for the upper limit of the 
interval to be at least double the lower limit, as in the 
following illustration: 

Number of employees 
Less than 5 

5-9 
10-24 
25-49 
50-99 

100-199, etc. 

Under this rule even an individual case may be reported 
in such an interval without making an approximate 
disclosure. Of course the individual is not identified, but 
frequencies as low as 0, 1, 2 or 3 are shown in such 
intervals, as in employment size classes for retail stores, 
by type, within a county, for example, and a person 
with commonly available local knowledge may be able 
to identify a particular store identified by a frequency 
of 1, and its reported employment within the range of 
the class interval. 

Effect of sensitivity of the information 

Should disclosure rules take some account of the 
sensitivity of the information, and be more restricted 
with highly sensitive information than with less sensi
tive information? Some information loses sensitivity 
with time; some may not, or the sensitivity may 
increase with time. Some information is essentially in 
the public domain. These factors should, and in fact, 
do have some impact on the confidentiality treatment, 
but still without completely specified formal rules. * For 

* Alan F . Westin has expressed a need for developing a classifica
tion system for personal information to identify types that need 
various degrees of control. See, for example, Privacy and Freedom 
(Atheneum, 1967).2 



example, is there any point in regarding the size of a 
family or a household (which often is known to everyone 
in the neighborhood) as equally confidential as the 
income of the head of the household? Similarly, should 
the industry code derived from the types of production 
reported by a manufacturing company be protected as 
confidential, when often the company spends much 
money to let the public know of the types of products it 
makes or the services in which it is engaged? Should 
the number of employees reported for a plant be 
protected as equally confidential as the reported sales? 

Such questions may have more difficult implications 
than is readily apparent. Thus, in some instances the 
number of persons in a household may indicate illegal 
occupancy to a landlord or to housing code authorities. 
Again, the industry in which a company is classified may 
affect the rate of taxation for unemployment com
pensation. If a company is classified in a high-risk 
industry instead of a lower-risk one, and if the industry 
code derived from a confidential statistical report of a 
company is made public, will it influence the company's 
tax rate? 

Disclosures with supplemental knowledge or collusion 

Is it necessary to provide protection against dis
closures that can be achieved by collusion, or by 
supplemental knowledge in addition to one's knowledge 
of his own affairs? A common rule in avoiding dis
closure is that there must be at least three nontrivial 
cases aggregated in a cell (based on aggregates of 
magnitudes) so that, for example, a business respondent 
will not know his competitor's response. Presumably it 
is not feasible, and the Census Bureau accepts the 
principle that it is not feasible, to protect against 
disclosure by collusion. Otherwise, again, nothing 
could be published. However, the issue of possible dis
closure through taking advantage of supplemental 
knowledge needs further attention, especially in view 
of the computer capabilities. There is an important 
difference between analysis to achieve disclosures, 
with and without the computer. Consider, as an illustra
tion, a cross-tabulation made in great detail. 

Assume 10,000 persons in a file for an area, and 
information for each person on 50 characteristics 
(something like the results of the questions in a 1970 
Population and Housing Census sample questionnaire) . 
Suppose that the record includes some characteristics 
with two alternative responses, as for sex. Others may 
have three, five, ten, or twenty alternative classifications 
(as with ten intervals for an age tabulation). A question 

Insuring Confidentiality of Individual Records 581 

such as occupation may be recorded and tabulated in 
100 or many more classes. 

If we assume 10 of the questions have 2 alternatives, 
10 of the questions have 3 alternatives, 
10 of the questions have 5 alternatives, 
10 of the questions have 10 alternatives, 
10 of the questions have 20 alternatives, 

and if we conceive of a cross-tabulation in the fullest 
possible detail of these 50 questions the number of 
possible cells becomes 210X31OX51OX2010= 1()38 cells, 
which is an astronomical number. It is likely that in 
such a detailed cross-tabulation each person would be 
unique, with each cell showing a frequency of zero or 1. 

A cross-tabulation of only five of these questions 
(one from each of the indicated numbers of alterna
tives) would yield a tabulation with about 6,000 cells, 
so that a population of 10,000 would have an average 
of 1.7 per cell in such a tabulation. Of course, many 
cells may be impossible or blank, and some cells might 
have several cases. Nevertheless, tabulations in such 
detail may make it feasible for a person or organization 
(such as a welfare or taxing agency or a credit bureau) 
with certain of the same information on some of the 
people to identify many of them in the tabulation and 
ascertain other information for them. With a computer 
the comparison and identification become far more 
feasible. Consequently, consideration must be given to 
the amount of detail in which tabulations will be made 
available in order to preserve confidentiality. Or should 
and can any possible violations of confidentiality be 
ignored that can be achieved only through the use of 
extensive supplemental information? In the computer 
age this seems unreasonable. 

Some interesting discussion and examples of prin
ciples and procedures for using collateral information 
to extract information for individual records from a 
statistical data bank with retrieval allowed only for 
statistical aggregates, and by obtaining legitimate 
responses to queries, are given in an article by Hoffman 
and Miller. 3 

The presence of errors, or differences in time reference 
or in the treatment of individual items of information 
in two sets of records, is common. Such errors or 
differences would make more difficult the problem of 
using collateral information to extract individual 
information from statistics derived from a set of 
confidential records used for statistical purposes. 
However, with sufficiently extensive and detailed 
independent information available to use in identifica
tion, and even in the presence of such errors or differ
ences, the probability of correctly identifying a person 



582 Fall Joint Computer Conference, 1971 

and picking up the desired confidential information 
increases as the number of cells in a cross-tabulation is 
increased, or with appropriately designed queries of 
increasing detail. 

Indirect disclosures 

Indirect as well as direct disclosures must be con
sidered, and these can be a major source of difficulty. 
Thus, suppose a small county has six hardware stores, 
and that a city within the county has four of them. If 
retail sales are published for the county, and also for the 
city (we assume each would individually meet dis
closure requirements) an indirect disclosure occurs. 
Each of the two stores in the balance of the county 
could directly determine his competitor's sales by taking 
the difference between the county statistics and the 
city statistics. Thus, if disclosure is to be avoided the 
data for the city can be made available, and not the 
county, or for the county and not the city. Indirect 
disclosures should be avoided, at least in any sensitive 
type of information. 

Priorities need in statistics subject to indirect 
disclosure restraints 

The consequences of indirect disclosures are that 
priorities are necessary in determining which statistics 
will be made available and which will not, in order to 
avoid making available some relatively unimportant 
information and thereby subsequently denying statistics 
that have highly important uses. The providing of 
information forecloses making information available 
for an alternative, as illustrated above. As another and 
more serious illustration, it is often true that in the 
Manufactures or Business Censuses information can be 
shown for a state total, or for a metropolitan area total, 
but not for both, and many similar situations arise. 
Exactly the same kinds of problems can arise in the 
publications of Population and Housing Census data, 
especially for small areas where the frequencies get 
small. In these Censuses, however, some of the data 
may be less sensitive, and disclosure analysis may not 
need to be pressed as rigorously. For sensitive data, 
however, the question becomes: how should one deter
mine the priorities? Obviously, it is public interest and 
utility that should be determining, but this problem 
poses many questions beyond the scope of this dis
cussion. Of particular importance, however, is the 
consequence that the priority problem means that the 
first comer, who may have a limited use or need in 

terms of public interest, may foreclose the possibility of 
later retrieval of other more important information. 
The question of priorities adds great complexity to the 
design of any such retrieval system for information 
that is subject to confidentiality restraints. 

Random modification of data to avoid 
approximate disclosure 

There has been some consideration of random 
modification of data within the range of, for example, a 
factor of .5 to 1.5, with the choice of factor within the 
range made at random, as a means of avoiding approxi
mate disclosure. With this approach an actual report 
of 850 employees in an establishment might be modified 
to become 595 = 850 (.7) where the .7 was chosen at 
random from the interval .5 to 1.5. The average effect 
of such modifications on simple aggregates or averages 
would be relatively small (over a large experience) and 
numbers so modified in reports can be subjected to less 
rigorous disclosure rules or even no disclosure analysis. 
In the case of attributes the approach must be modified 
to change some fraction of ones to zeros and of zeros to 
ones, where changes are made at random in ways that 
do not unduly violate internal consistency of the data 
for the individual record. 

The impact may be more serious with cross
tabulations where the independent variables-those 
used in sorting into various classes or cells-have been 
so modified. In this latter case a bias is introduced that 
mayor may not be serious in its magnitude. Such a bias 
is not necessarily reduced simply by increasing the 
number of cases within a class. 

The random modification of data to avoid approxi
mate disclosure has been considered extensively for 
various ~pplications in the Bureau of the Census over 
the past decade or more, but has actually been applied 
to a very limited extent, so far as I am aware. It has 
developed and been discussed independently, and again, 
with limited applications, as a means of preserving 
confidentiality in retrieval or publication of informa
tion.4 ,5 This approach deserves more exploration. It may 
be that an announced program of random modificatIon 
of a relatively small fraction of the records selected at 
random can accomplish much in avoiding disclosure for 
all of the records in the set. 

Disclosure with statistical information from samples 

If information in some statistics is based on a sample 
of a population, the chance of disclosure is reduced, and 



the thinner the sample, the less the chance of disclo
sure in statistical tabulations of a given amount of de
tail. 

For a small enough sampling fraction, even if dis
closure rules are not fully observed, the chance of 
pay-off may be small enough to make prohibitive (as a 
practical matter) the cost of taking advantage of the 
potentials for disclosure. 

In recognition of this principle the Census Bureau 
decided to put in the public domain the statistical data 
recorded for each household from the 1960 Census for 
a 1 in 1000 sample of households after deleting certain 
information from the records that would facilitate 
identification. Of course the name and address were 
deleted. In addition, geographic identification was 
deleted below the level of broad city-size class within 
geographic divisions of the country (there are nine 
geographic divisions, each consisting of several states) . 
In addition, some extreme cases were modified for 
sensitive types. of information so that, for example, the 
upper boundary of income reported may have been 
reduced. Beyond this, the full household information 
was included in a magnetic tape file on a set of punched 
cards for the 1/1000 sample, including the housing 
information and the full listing of individual household 
members, with the information reported for each 
individual member. The purpose was to make it feasible 
for various users to make their own summaries or cross
tabulations or correlations to meet a wide range of 
needs. It was a great success, with a largB number of 
users of the tape putting it to many uses that could not 
be served directly by the Census tabulations. 

From the point of view of confidentiality, anyone who 
has a supplemental source of more limited information 
but that duplicates a number of the items of information 
in the Census file for individuals or families or house
holds for some part of the population could use that 
information to identify many of the individual cases in 
this sample that were also in his file. Of course he could 
expect to find less than 1 in 1000 of the cases in his file, 
but for those found he would then have identified the 
additional information in the 1/1000 file. 

Suppose, for example, that a credit bureau had 
records for a "chunk" of the population in a metro
politan area, including, perhaps, information on age for 
the head of the family, the number of persons in the 
family (not necessarily the same as in the household), 
occupation of the head of the household, whether the 
home was owned or rented, and the value of the home 
or the amount of the rent paid. With such information, 
and even with errors and with differences in time 
references in both sets, he might run his tape against 
the Census 1/1000 sample tape, perhaps for a larger 

Insuring Confidentiality of Individual Records 583 

area or areas, and identify with a fairly good chance of 
success (but with much less than certainty) the cases 
in the 1/1000 file that were also in his records. He 
would thereby acquire the additional Census informa
tion for the identified cases (including misinformation 
for cases that were misidentified). But it would cost 
him a considerable amount both in efforts and dollars, 
and at the very best he could expect to find a pay-off 
of less than 1/1000 in the sense of obtaining Census 
information for the cases in his file. The possibility of 
misuse arises only in the case of someone with a file of 
supplemental information that is sufficiently relevant 
for some subgroup of the population. Even then the 
pay-off presumably would be very small because of the 
presence of errors and time reference differences in each 
source, and the great effort in relation to the number of 
successful matches (and of course he would not know 
which of his linked records were the unsuccessful 
matches). The pay-off might be small not only because 
of the very small fraction of "finds," but also because 
the information in the Census records, in general, is 
not all that sensitive. 

Presumably because of such factors no evidence has 
come to light of any such misuse. At the same time the 
1/1000 sample has served many highly useful purposes, 
so much so that the Census Bureau is proposing to 
extend the program along the same lines for 1970, and 
to increase the size of sample from 1/1000 to 1/100. 

Disclosure of disclosure rules 

There is some thought that rules for disclosure should 
not be disclosed, and that the availability of the rules 
will increase the ability of one who wishes to arrive at 
desired disclosures through analysis of the information 
that is made available. On this principle, apparently, 
the Bureau of the Census has not published its various 
disclosure rules in full, although some of the rules 
are more or less obvious, and have been made avail
able. 

SOME IMPLICATIONS FOR AN OPEN 
RETRIEVAL SYSTEM 

There is need to bring the issues of confidentiality as 
related to storage and retrieval of information into 
fuller discussion. The implications of some of the points 
and principles that have been made above may not be 
obvious, and study and exploration are needed. 



584 Fall Joint Computer Conference, 1971 

There is no basis for simply assuming that an all
powerful software system can be designed that will take 
care of the problems of preserving confidentiality in a 
national statistical data center if one were to be created. 
Obviously, such a software system cannot be designed 
until the principles and specific rules of what constitute 
disclosure and nondisclosure are agreed upon. U nless ~ 

the principle of reasonable disclosure, instead of no 
disclosure, is adopted, it appears that little or no 
information could be made available. If the principle of 
reasonable disclosure is adopted, it will be necessary to 
define what constitutes reasonable disclosure. 

It also must be determined how far the disclosure 
system will protect against the potentials for disclosure 
that are made possible by the use of extensive supple
mental information acquired through other sources. 
The availability of such supplemental information can 
make it feasible to extract increasing amounts of 
confidential information by making increasingly detailed 
tabulations or queries, as illustrated earlier, as well as 
from records such as the 1/1000 sample. Unless the 
system makes no attempt to protect the disclosure of 
additional information from sources that have extensive 
and detailed supplemental information, the disclosure 
rules may have to be so designed that little of the kinds 
of anticipated uses from, say, a national statistical data 
center could be served. 

A particularly difficult problem is that of indirect 
disclosure, through comparisons or analyses of succes
sive tabulations or results of queries. With disclosure 
analysis that takes account of indirect disclosures 
many requests might have to be drastically curtailed 
after a few initial uses. If there were no auditing for 
indirect disclosure anyone could specify changes in the 
classifications or specifications for a sequence of 
tabulations in such a way as to reveal, after analysis, 
the desired characteristics of many or all· of the in
dividual records. Some computer programs have been 
prepared for dealing with indirect disclosure analysis, 
and are in use in the Bureau of the Census, but the 
complexities in a system of open access (subject to 
restraints on disclosures) seem enormously challenging. 
A system of recording who has retrieved information, 
what kinds and how much, for post-audit on a judg
mental basis may offer a sufficient protection, especially 
if a rule of reason is used. 

But suppose the problem of indirect disclosure is 
solved (and in theory, at least, it appears that it can be 
solved). The problem of priorities still remains. Must 
all high-priority statistics be listed in advance? Is this 
feasible? If not, minor or trivial uses of the data may 
override the subsequent possibility of acquiring in
formation the need for which was not originally foreseen. 

One unimportant use may foreclose any possibility of 
providing information on an urgent and unforeseen 
current problem. 

The issue of priorities is not a new one, as we have 
seen. It exists in a system in which there is no general 
access to the stored records. It appears that the problem 
may be greater in a system that allows access without 
going into a judgment filter of evaluating public interest 
and need, or potentials for foreclosing future uses, as is 
now done in the Bureau of the Census activities. This 
problem may be a sufficiently serious one to foreclose 
effective development of anything like a federal 
statistical data center or data bank that retains con
fidential records in storage, and permits access by the 
public or specified groups to statistical tabulations that 
are audited lor disclosure by computer software. The 
priority problem remains even if other problems prove 
manageable and can be brought under control. 

There is need for fuller discussion of some of these 
issues by scientific and professional groups. It is not 
sufficient for these discussions to be conducted sepa
rately and in isolation. There is need for interchange 
using some organized approaches arranged to discuss 
the issues and problems. 

REFERENCES 

1 P HIRSCH 
The world's biggest data bank 
Datamation May 1970 pp 66-73 

2 A F WESTIN 
Privacy and freedom 
Atheneum New York 1967 

3 L J HOFFMAN W F MILLER 
Getting a personal dossier from a statistical data bank 
Datamation May 1970 pp 74-75 

4 R F BORUCH 
Educational research and the confidentiality of data 
ACE Research Reports Vol 4 No 41969 

5 R F BORUCH 
Maintaining confidentiality of data in educational research: 
a systemic analysis 
American Psychologist Vol 26 No 5 May 1971 pp 413-430 

6 I P FELLEGI A B SUNTER 
A theory for record linkage 
Journal of the American Statistical Association Vol 64 
No 328 1968 pp 1183-1210 

7 I P FELLEGI 
On the question of statistical confidentiality (unpublished) 
Revision of a paper given at the 1970 annual meetings 
of the American Statistical Association 

8 The computer and invasion of privacy 
Hearings before a Subcommittee of the Committee on 
Government Operations House of Representatives 
89th Congress Second Session July 26-28 1966 



9 C KAYSEN chairman 
Report of the task force on the storage of and access to 
government statistics 
Executive Office of the President Bureau of the Budget 
October 1966 

10 Privacy and the national data bank concept 
35th Report by the Committee on Government 
Operations 90th Congress 2nd Session House Report 
No 1842 August 2 1968 

Insuring Confidentiality of Individual Records 585 

11 E V COMBER 
Management of confidential information 
AFIPS Conference Proceedings Vol 35 1969 Fall Joint 
Computer Conference 

12 M H HANSEN 
Some aspects of confidentiality in information systems 
Papers from the Eighth Annual Conference of the Urban 
Regional Information Systems Association Louisville 
Kentucky September 1970 





The formulary model for flexible 
privacy and access controls* 

by LANCE J. HOFFMAN 

University of California 
Berkeley, California 

INTRODUCTION 

This paper presents a model for engineering the user 
interface for large data base systems in order to main
tain flexible access controls over sensitive data. The 
model is independent of both machine and data base 
structure, and is sufficiently modular to allow cost
effectiveness studies on access mechanisms. Access con
trol is based on sets of procedures called formularies. 
The decision on whether a user can read, write, update, 
etc., data is controlled by programs (not merely bits 
or tables of data) which can be completely independent 
of the contents or location of raw data in the data base. 

The decision to grant or deny access can be made in 
real time at data access time, not only at file creation 
time as has usually been the case in the past. Indeed 
the model presented does not make use of the concept 
of "files," though a specific interpretation of the model 
may do so. Access control is not restricted to the file 
level or the record level, although the model permits 
either of these. If desired, however, access can be con
trolled at arbitrarily lower levels, even at the bit level. 
The function of data addressing is separated from the 
function of access control in the model. Moreover, each 
element of raw data need appear only once, thus allow
ing considerable savings in memory and in maintenance 
effort over previous file-oriented systems. 

Specifically not considered in the model are privacy 
problems associated with communication lines, electro
magnetic radiation monitoring, physical security, wire
tapping, equipment failure, operating system software 
bugs, personnel, or administrative procedures. Crypto
graphic methods are not dealt with in any detail, 
though provision is made for inclusion of encrypting 

* Prepared for the U.S. Atomic Energy Commission at the 
Stanford University Linear Accelerator Center under Contract 
No. AT(04-3)-515. 

587 

and decrypting operations in any particular interpreta
tion of the model. 

Specific interpretations of the model can be imple
mented on any general-purpose computer; no special 
time-sharing or other hardware is required. The only 
proviso is that all requests to access the data base must 
be guaranteed to pass through the data base system. 

ACCESS CONTROL METHODS 

Access control in existing systems 

In most existing file systems which are concerned 
with information privacy, passwords1 •2 are used to pro
vide software protection for sensitive data. Password 
schemes generally permit a small finite number of spe
cific types of access to files. Each file (or user) has an 
associated password. In order to access information in 
a file, the user must provide the correct password. 
These methods, while acceptable for some purposes, can 
be compromised by wiretapping, electromagnetic radi
ation monitoring, and other means. Even if this were 
not the case, there are other reasons3 why password 
schemes as implemented to date do not solve satis
factorily the problem of access control in a large com
puter data base shared by many users. 

One of these reasons is that passwords have been 
associated with files. In most current systems, informa
tion is protected at the file level only-it has been 
tacitly assumed that all data within a file is of the same 
sensitivity. The real world does not conform to this 
assumption. Information from various sources is con
stantly coming into common data pools, where it can 
be used by all persons with access to that pool. A prob
lem arises when certain information in a file should be 
available to some but not all authorized users of the file. 

In the MULTICS system4 for example, if a user has 
a file which in part contains sensitive data, he just can-



588 Fall Joint Computer Conference, 1971 

EXISTING FILE SYSTEM DESIRABLE FILE SYSTEM 

A c 

B 

• Unnecessarily Duplicated 
Information 

B 

D Access Control 
Information 

Figure I-Use of computer storage in file systems 

c 

not merge all his data with that of his colleagues. He 
often must separate the sensitive data and save that 
in a separate file; the common pool of data does not 
contain this sensitive and possibly highly valuable data. 
Moreover, he and those he permits to access this sensi
tive data must, if they also wish to make use of the 
nonsensitive data, create a distinct merged file, thus 
duplicating information kept in the system; if some of 
this duplicated data must later be changed, it must be 
changed in all files instead of only one. Figure 1, taken 
from Hoffman's survey5 of computers and privacy, 
graphically illustrates this situation by depicting mem
ory allocation under existing systems and under a more 
desirable system. 

The file management problems presented and the 
memory wastage (due to duplication of data) tend to 
inhibit creation of large data bases and to foster the 
development of smaller, less efficient, * overlapping 
data bases which could, were the privacy problem really 
solved, be merged. 

Several years ago Bingham7 suggested the use of 
User's Control Profiles to associate access control with 
a user rather than a file. This allows users to operate 
only on file subsets for which they are authorized and 
to some extent solves the memory wastage problem. 
Weissman has recently described a working system at 
SDC which makes use of security properties of users, 
terminals, and files.8 He presents a set-theoretic model 
for such a system. His model does not deal with access 
control below the file level. 

Hsia09 has recently implemented a system using 
authority items associated with users. Hsiao's system 

* A simple cost model for information systems is presented by 
Arvas.6 He there derives a simple rule to determine when it is 
more efficient to consolidate files and when it is more efficient to 
distribute copies of them. 

controls access at the record level, one step beneath the 
file level. In it, access control information is stored in
dependently of raw data, and thus can be examined or 
changed without actually accessing the raw data. 
Hsiao's system and the TERPS systemlO at West Sus
sex County in England are two of the first working 
systems which control access at a level lower than the 
file level. 

Access contro l in proposed systems 

Some other methods have been proposed for access 
control but not yet implemented. These include , ... 
Graham's schemell which essentIally aSSIgns a senSI-
tivity level to each program and data element in the 
system, ** another which allows higher-level programs 
to grant access privileges to lower-level programs,12 and 
still others which place access control at the segment 
leveP3,14 via machine hardware and "codewords". These 
methods may prove acceptable in many contexts. How
ever, they are not general enough for al! situations. If 
distinct sensitivity levels cannot be assIgned to data, 
as is sometimes the case, Graham's scheme cannot be 
used. The other methods, while working in principle on 
a computer with hardware segmentation, seem in
feasible and uneconomical on a computer with another 
type of memory structure such as an associative mem
oryI5,16,17,18,19 or a Lesser memory.20 These objections 
are covered in more detail elsewhere.5 

Desirable characteristics for an access control method 

I t seems desirable to devise a method of access con
trol which does not impose an arbitrary constraint 
(such as segmentation or sensitivity levels) on data or 
programs. This method should allow efficient control of 
individual data elements (rather than of files or records 
only). Also, it should not extract unwarranted cost in 
storage or elsewhere from the user who wants only a 
small portion of his data protected. The method should 
be independent of both machine and file structure, yet 
flexible enough to allow a particular implementation of 
it to be efficient. Finally, it should be sufficiently modu
lar to permit cost-effectiveness experiments to be 
undertaken. We would then finally have a vehicle for 
exploring the often-asked but never-answered question 
about privacy controls, "How much does technique X 
cost?" 

We now present such a method. 

** Evidently this scheme has now been implemented. 



Formulary Model for Flexible Privacy and Access Controls 589 

THE FORMULARY METHOD OF ACCESS 
CONTROL 

We now describe the "formulary" method of access 
control. Its salient features have been mentioned above. 
The decision to grant or deny access is made at data 
access time, rather than at file creation time, as has 
generally been the case in previous systems. This, to
gether with the fact that the decision is made by a 
program (not by a scan of bits or a table), allows more 
flexible control of access. Data-dependent, terminal
dependent, time-dependent, and user response-depend
ent decisions can now be made dynamically at data 
request time, in contrast to the predetermined decisions 
made in previous systems, which are, in fact, subsumed 
by the formulary method. Access to individual related 
data items which may have logical addresses very close 
to each other can be controlled individually. For ex
ample, a salary figure might be released without any 
identification of an employee or any other data. 

For any particular interpretation, the installation 
must supply the procedures listed in Table I. These 
procedures can all be considered a part of the general 
accessing mechanism, each performing a specific func
tion. By clearly delimiting these functions, a degree of 
modularity is gained which enables the installation to 
experiment with various access control methods to ar
rive at the modules which best suit its needs for effi
ciency, economy, flexibility, etc. This modularity also 
results in access control becoming independent of the 
remainder of the operating system, a desirable but 
elusive goal. 8 While the formulary model and its central 
ACCESS procedure remain unchanged, each installa
tion can supply and easily change the procedures of 
Table I as desirable. These procedures are all specified 
in the body of this paper. 

The basic idea behind the formulary method is that 
a user, a terminal, and a previously built formulary 

TABLE I-Procedures Supplied by the Installation 

FOR EACH INTERPRETATION, INSTALLATION 
MUST SUPPLY 

• AT LEAST ONE TALK PROCEDURE 

• CODING FOR THE ACCESS ALGORITHM 

• PRIMITIVE OPERATIONS 
• FETCH 

• STORE 

• AT LEAST ONE FORMULARY, CONSISTING OF 

• CONTROL PROCEDURE 

• VIRTUAL PROCEDURE 

• SCRAMBLE PROCEDURE (may be null) 
• UNSCRAMBLE PROCEDURE (may be null) 

• A FORMULARYBUILDER PROCEDURE 

(defined below) must be linked together, or attached, 
in order for a user to perform information storage, re
trieval, and/or manipulative operations. At the time 
the user requests use of the data base system, this 
linkage is effected, but only if the combination of user, 
terminal and formulary is allowed. The general linking 
process is described later in this section. 

Virtual memory mapping hardware is not required to 
implement the model but the model does handle sys
tems equipped with such hardware. It is assumed that 
enough virtual addressing capacity is available to 
handle the entire data base. Virtual addresses are 
mapped into the physical core memory locations, disc 
tracks, low-usage magnetic tapes, etc., by hardware 
and/or by the FETCH and STORE primitive opera
tions (see below) for a particular implementation. 

Definitions and notation 

The internal name of a datum is its logical address 
(with respect to the structure of the data base). The 
internal name of a datum does not change during con
tinuous system operation. 

Examples: 

(1) A "tree name" such as 5.7.3.2 which denotes 
field 2 of branch 3 of branch 7 of branch 5 in 
the data base 

(2) "Associative memory identifiers" such as (14, 
273, 34) where 14 represents the 14th attribute, 
273 represents the 273rd object, and 34 repre
sents the 34th value, in a memory similar to the 
one described by Rovner and Feldman.21 

A User Control Block, or UCB, is space in primary 
(core) storage allocated during the attachment process 
(described below). It contains the user identification, 
terminal identification, and information about the 
VIRTUAL, CONTROL, SCRAMBLE, and UN
SCRAMBLE procedures of the formulary the user is 
linked to. (An entity with the same name and used 
similarly has recently been presented independently in 
a non-implemented model by Friedman.22) 

Usually this information is just the virtual address 
of each of these procedures. The virtual addresses are 
kept in primary storage in the UCB since a formulary, 
once linked to a user and terminal, will probably be 
( oft-) used very shortly. The first reference to any of 
these addresses (indirectly through the UCB) will 
trigger an appropriate action (e.g., a page fault on some 
computers) to move the proper program into primary 
storage (if it is not there already). It will then pre
sumably stay there as long as it is useful enough to 



590 Fall Joint Computer Conference, 1971 

TALK, THE CONVERSATIONAL STORAGE AND RETRIEVAL PROCEDURE 

DATA 

DATA BASE 

o PRIMITIVE OPERATIONS 

1275C9 

Figure 2-User/data base interface 

merit keeping in high-speed memory. The virtual ad
dre.sses of procedures of a formulary cannot change 
while they are contained in any UCB. This constraint 
is easy to enforce using the CONTROL procedure de
scribed below which controls operations on any datums 
including formularies. Each UCB always is in high~ 
speed primary storage in the data area of the ACCESS 
procedure. 

The ACCESS procedure 

All control mechanisms in the formulary model are 
invoked by a central ACCESS procedure. This AC
CESS procedure is the only procedure which directly 
calls the primitive FETCH and STORE operations 
and which performs locking and unlocking operations 
on data items in the base. All requests for operations 
on the data base must go through the ACCESS pro
cedure. 

The ACCESS procedure is a very important element 
of the formulary model. It is described in full detail 
and its algorithm is supplied below. 

The user communicates only indirectly with AC
CESS. The bridge (see Figure 2) between the system
oriented ACCESS procedure and the application
oriented user is provided by the (batch or conversation) 
storage and retrieval program, TALK. 

TALK, the application-oriented storage and retrieval 
procedure 

To access a datum, the user must call upon TALK, 
the (nonsystem) application oriented storage and re-

trieval procedure. TALK converses with the user (ro 
the user's program) to obtain, along with other in
formation, (1) a datum description in a user-oriented 
language, and (2) the operation the user wishes to 
perform on that datum. TALK translates the datum 
description in the user-oriented language into an in
ternal name, thus providing a bridge between the user's 
conc~ption of the data base and the system's conception 
of the data base. The TALK procedure is described in 
more detail below. 

F ormularies-what they are 

A formulary is a set of procedures which controls 
access to information in a data base. These procedures 
are invoked whenever access to data is requested. They 
perform various functions in the storage, retrieval, and 
manipulation of information. The set of procedures and 
their associated functions are the essential elements of 
the formulary model of access control. 

Different users will want different algorithms to 
carry out these functions. For example, some users 
will be using data which is inaccessible to others· the , 
name of a particular data element may be specified in 
different ways by different users; some users will 
manipulate data structures-such as trees, lists, sparse 
files, ring structures, arrays, etc.-which are accessed 
by algorithms specifically designed for these structures. 
Depending on how he wishes to name, access, and con
trolaccess to elements of the data base, each user will 
be attached to a formulary appropriate to his own 
needs. 

Procedures of a formulary 

In this subsection, we describe the procedures of a 
formulary. These procedures determine the accessi
bility, addressing, structure and interrelationships of 
data in the data base dynamically, at data request 
time. They can be arbitrarily complex. In contrast, 
earlier· systems usually made only table-driven static 
determinations, prespecified at file creation time. 

Each procedure of a formulary should, if possible, 
run from execute-only memory, which is alterable 
only under administrative control. The integrity of the 
system depends on the integrity of the formularies and 
therefore the procedures of all formularies should be 
written by "system" programmers who are assumed 
honest. These procedures should be audited for program 
errors, hidden "trap doors," etc., before being inserted 
into the (effective) execute-only memory under ad
ministrative control. Failure to do this may result in 
the compromising of sensitive data, since an unscrupu-



Formulary Model for Flexible Privacy and Access Controls 591 

lous programmer of a formulary could cause the formu
lary to "leak" sensitive information to himself or to his 
agents. 

A formulary has four procedures: VIRTUAL, 
SCRA1VIBLE, UNSCRAMBLE, and CONTROL. The 
first three are relevant but not central to access con
trol; the decision on whether to grant the type of access 
desired is made solely by the CONTROL procedure. 
The first three procedures are explicitly included in 
each formulary for three reasons: 

. (1) to centralize in one place all functions dealing 
with addressing and access control; 

(2) to give the model the generality necessary to 
model existing and proposed systems; and 

(3) to provide well-delimited modules for cost/ 
effectiveness studies and for experimentation 
with different addressing schemes and access 
control schemes. 

a. The VIRTUAL procedure. VIRTUAL translates 
an internal name into the virtual address of the corre
sponding datum. VIRTUAL is a procedure with two 
input parameters: 

(1) the internal name to be translated 
(2) a cell which will sometimes be used to hold 

"other information" as described below. 

VIRTUAL returns 

(1) the resulting virtual address 
(2) a completion code (1 if normal completion) 

Recall that enough virtual addressing capacity is 
assumed available to handle the entire data base. 
Virtual addresses are mapped into the physical core 
memory locations, disc tracks, low-usage magnetic 
tapes, etc., by hardware and/or by the FETCH and 
STORE primitive operations for a particular imple
mentation. 

b. The SCRAMBLE procedure. SCRAMBLE is a 
procedure which transforms raw data into encrypted 
form. (In some specific systems, SCRAMBLE may be 
null.) SCRAMBLE has two input parameters: 

(1) the virtual address of the datum to be scrambled 
(2) the length of the datum to be scrambled 

SCRAMBLE has three output parameters: 

(1) a completion code (1 if normal completion) 
(2) the virtual address of the scrambled datum 
(3) the length of the scrambled datum 

Note that if an auto-key cipher (one which must access 
the start of the cipher-text, whether or not the informa
tion desired is at the start) is used, all of the informa
tion encrypted using that cipher, be it as small as a 
single field or as large as an entire "file," must be 
governed by the same access control privileges. There
fore, some applications may choose to use several (or 
many) auto-key ciphers within the same "file." It is 
inefficient and usually undesirable to scramble data 
items at other than the internal name level, e.g., 
scrambling as a block (to effectively increase key 
length) the data represented by several internal names . 
In cases where internal names represent data which 
fit into very small areas of storage, greater security 
may be obtained by other methods (e.g., use of nulls). 

We do not discuss encrypting schemes in this paper. 
The interested reader is referred to work by Shannon,23 
Kahn,24 and Skatrud.25 

c. The UNSCRAMBLE procedure. UNSCRAM
BLE is an unscrambling procedure which transforms 
encrypted data into raw form. (In some specific sys
tems, UNSCRAMBLE may be null.) UNSCRAMBLE 
has two input parameters: 

(1) the virtual address of the datum to be un
scrambled 

(2) the length of the datum to be unscrambled 

UNSCRAMBLE has three output parameters: 

(1) a completion code (1 if normal completion) 
(2) the virtual address of the unscrambled datum 
(3) the length of the unscrambled datum. 

d. The CONTROL procedure. CONTROL is a pro
cedure which decides whether a user is allowed to per
form the operation he requests (FETCH, STORE, 
FETCHLOCK, etc.) on the particular datum he has 
specified. CONTROL may consider the identification 
of the user and/or the source of the request (e.g., the 
terminal identification) in order to arrive at a decision. 
CONTROL may also converse with the requesting user 
before making the decision. 

CONTROL has two input parameters and two out
put parameters. The two input parameters are: 

(1) the internal name of the datum 
(2) the operation the user desires to perform 

The two output parameters are: 

(1) 1 if access is allowed; otherwise an integer 
greater than 1 

(2) "other information" (explained below). 



592 Fall Joint Computer Conference, 1971 

In some specific systems, data elements may them
selves contain access control information. Consider 
three examples: 

Example 1. 

DATUM I R IW 130 bits of actual data I 
If bit R is on, DATUM is readable. 
If bit W is on, DATUM is writeable. 

Example 2. 
SALARY I $25,000 I 

Reading or writing of salaries of $25,000 or over re
quires special checking. CONTROL must inspect the 
SALARY cell before it can do further capability check
ing and eventually return 1 or some greater integer as 
its first output parameter (see Figure 3). Note that 
return of an integer greater than 1 actually transmits 
some information to the user; if he knows that he will 
not be allowed to alter salaries which are $25,000 or 
over, a denial of access actually tells him that the 
salary in question is at least $25,000. In the formulary 
model, CONTROL can only make a yes or no decision 
about access to a particular datum. Any more complex 
decisions, such as one involving release of a count which 
is possibly low enough to allow unwanted identification 
of individual data26 (e.g., "Tell me how many people 
the Health Physics Group treated for radiation sick
nesses last year who also were treated by the Psychi
atric Outpatient Department at the hospital"), can 
only be made by a suitably sophisticated TALK 
procedure. 

Example 3. 

RecordN-1 

RecordN 

""'" Record N+1 

347 1346 storage units 
of actual data 

The record contains its own length (and, therefore, 
also points to its successor). This type of record would 
appear, for example, in variable length sequential rec
ords on magnetic tape and in some list-processing 
applications. 

In systems of this type, CONTROL might often 
duplicate VIRTUAL's function of transforming the 
internal name of a datum into that datum's virtual 
address. To achieve greater efficiency, CONTROL can 
(when appropriate) return the datum's virtual address 
as "other information." VIRTUAL, which is called 
after CONTROL (see the ACCESS algorithm below), 

can then examine this "other information." If a virtual 
address has been put there by CONTROL, VIRTUAL 
will not duplicate the possibly laborious determination 
of the datum's virtual address, since this has already 
been done. VIRTUAL will merely pluck the address 
out of the "other information" and pass it back. 

Note that CONTROL can be as sophisticated a pro
cedure as desired; it need not be merely a table-search
ing algorithm. Because of this, CONTROL can con
sider many heretofore ignored factors in making its de
cision (see Figure 3). For example, it can make decisions 
which are data-dependent and time-dependent. It can 
require two keys (or N keys) to open a lock. Also it 
can carryon a lengthy dialogue with the user before 
allowing (or denying) the access requested. 

CONTROL is not limited to use at data request 
time. In addition to being used to monitor the inter
active storage, retrieval, and manipulation of data, it 
can also be used at initial data base creation time for 
data edit picture format checking, data value validity 
checking, etc. Or, alternatively, one could have two 
procedures CONTROL1 and CONTROL2, .in two 
different formularies, F1 and F2. F1 could be attached 
at data input time and F2 at on-line storage, retrieval, 
manipulation, and modification time. 

Simultaneous use of one formulary by multiple users 

Note that the same formulary can be used simul
taneously by several different users with different ac
cess permissions. This is possible because access control 
is determined by the CONTROL procedure of the at
tached formulary. This procedure can grant different 
privileges to different users. 

~~~~~ 
R~"N __________________ ~~ ____________ ~ 

NOTE: L TIME- DEPENDENT .. ~ 

- 2. FEEDBACK LOOPS ,. • ,. • 

3. TWO - KEY SYSTEM 

Figure 3-A sample CONTROL procedure 



Formulary Model for Flexible Privacy and Access Controls 593 

Building a formulary 

Before a formulary can be attached to a user and a 
terminal, the procedures it contains must be specified. 
This is done using the system program FORMULARY
BUILDER. FORMULARYBUILDER converses with 
the systems programmer who is building a formulary 
to learn what these procedures are, and then retrieves 
them from the system library and enters them as a set 
into a formulary which the user names. The specifics 
of FORMULARYBUILDER depend on the particular 
system.*** 

The attachment process-the method of linking a 
formulary to a user and terminal 

In order to allow information storage and retrieval 
operations on the data base to take place, a user, a 
terminal, and a formulary which has been previously 
built using FORMULARYBUILDER must be linked 
together. This linking process is done in the following 
manner. 

At the first time ACCESS is called (by TALK) for 
a given user and terminal, it will only permit attach
ment of a formulary to the user and terminal (i.e., it 
will not honor a request to fetch, store, etc.). The at
tachment is permitted only if the CONTROL program 
of the default formulary allows. The default formulary, 
like all other formularies, contains VIRTUAL, CON
TROL, SCRAMBLE, and UNSCRAMBLE proce
dures. For the default formulary, they act as follows: 

CONTROL 

VIRTUAL 

SCRAMBLE 
UNSCRAMBLE 

CONTROL takes the internal name 
representing the formulary and de
cides whether user U at terminal T 
is allowed to attach the formulary 
represented by the internal name. 
U and T are maintained in the UCB 
and passed to CONTROL by 
ACCESS. 
VIRTUAL takes the internal name 
representing the formulary and re
turns the virtual address of the 
formulary. 
No operation. 
No operation. 

The ATTACH attempt, if successful, causes informa-

*** An extension to FORMULARYBUILDER which would 
allow a user to grant capabilities to other users, and then allow 
these users to grant capabilities to still other users, etc., has been 
proposed by Victor Lesser. The formulary model does not 
currently adequately handle this area of concern. 

tion about the formulary specified by the user to be 
read into the UCB (which is located in the data area 
of the ACCESS procedure). ACCESS then uses this 
information (when it is subsequently called on behalf 
of this user/terminal combination) to determine which 
CONTROL, VIRTUAL, SCRAMBLE, and UN
SCRAMBLE procedures to invoke. 

Independence of addressing and access control 

After the attachment process, the User Control 
Block (UCB) contains the user identification U, termi
nal identification T, and information about (usually 
pointers to) the VIRTUAL, CONTROL, SCRAMBLE, 
and UNSCRAMBLE procedures of a formulary. 
Whether the user can perform certain operations on' a 
given datum is controlled by the CONTROL program. 
The addressing of each datum is controlled by the 
VIRTUAL program. Addressing of data items is now 
completely independent of the access control for the 
data items. 

Breaking an attachm.ent 

An existing attachment is broken whenever 

(1) the user indicates that he is finished using the 
information storage and retrieval system (either 
by explicitly declaring so or implicitly by log
ging out, removing a physical terminal key, 
reaching the end-of-job indicator in his input 
card deck, etc.), or 

(2) the user, via his TALK program, explicitly de
taches himself from a formulary. 

Subdivision of data base into files not required 

Note that while the concept of a data set (or a "file") 
MAY be used, the formulary method does not require 
this. This represents a significant departure from previ
ous large-scale data base systems which were nearly all 
organized with files (data sets) as their major sub
divisions. Under the formulary scheme, access to in
formation in a data set is not governed by the data set 
name. Rather, it is governed by the CONTROL pro
cedure of the attached formulary. Similarly, addressing 
of data in a data set is governed by the VIRTUAL 
procedure and not by the data set name. Subdividing 
a data base into data sets, while certainly permitted 
and often desirable, is not required by the formulary 
model. 



594 Fall Joint Computer Conference, 1971 

Concurrent requests to access data-the LOCKLI ST 

The problem of two or more concurrent requests for 
exclusive data access necessitates a mechanism to con
trol these conflicts among competing users. This prob
lem has been discussed and solutions proposed by 
several workers.28 ,9,27 In the formulary model, data can 
be set aside (locked) dynamically for the sole use of 
one user/terminal combination in a manner similar to 
Hsiao's "blocking"9 using a mechanism known as the 
LOCKLIST. 

The locking and unlocking of data to control simul
taneous updating is an entirely separate function from 
the access control function. Access control takes into 
account privacy considerations only. Locking and un
locking are handled by a separate mechanism, the 
LOCKLIST. This is a list of triplets maintained 
by the ACCESS program and manipulated by the 
FETCH LOCK, STORELOCK, UNLOCKFETCH, 
and UNLOCKSTORE operations. Each triplet con
tains (1) the internal name of a current item, (2) the 
identification of the user/terminal combination which 
caused it to be locked, and (3) the type of lock (fetch 
or store). Any datum represented by a triplet on the 
LOCKLIST can be accessed only by the user/terminal 
combination which caused it to be locked. 

Data items which can be locked are atomic, i.e., 
subparts of these data items cannot be locked. This 
implies, for example, that if a user wishes to lock a tree 
structure and then manipulate the tree without fear 
of some other user changing a subnode of the tree, either 

(1) the tree must be atomic in the sense that its 
subnodes do not have internal names in the data 
base system, or 

(2) each subnode must be explicitly locked by the 
user and only after all of these are locked can 
he proceed without fear of another user changing 
the tree. **** 

The TALK procedure-details 

To access a datum, the user must effectively call 
upon TALK, the (nonsystem) application-oriented 
storage and retrieval procedure. TALK converses with 
the interactive user and/or the user's program and/or 

**** A more general and elegant method of handling concurrent 
requests to access data is being developed by R. D. Russell as 
part of a general resource allocation method. Much of the 
housekeeping work currently done in the formulary model can be 
handled by his method. 

the operating system to obtain 

(1) a datum description in a user-oriented language 
(2) the operation the user wishes to perform on that 

datum 
(3) user identification and other information about 

the user and/or the terminal where the user is 
located. 

Depending on the particular system, the user explicitly 
gives TALK zero, one two, or all three of the above 
parameters. TALK supplies the missing parameters 
(if any), converts (1) to an internal name, and then 
passes the user identification, the terminal identifica
tion, the internal name of the datum, and the desired 
operation to the ACCESS procedure, which actually 
attempts to perform the operation. 

Note that one system may have available many 
TALK procedures. A user requests invocation of any 
any of them in the same way he initiates any (non
system) program. Sophisticated users will require only 
"bare-bones" TALK procedures, while novices may 
require quite complex tutorial TALK procedures. They 
may both be using the same data base while availing 
themselves of different datum descriptions. As an ex
ample, one TALK procedure might translate English 
"field names" into internal names, while another 
TALK procedure translates French "field names" into 
internal names. This ability to use multiple and user
dependent descriptions of the same item is not available 
with such generality in any system the author is aware 
of, though some systems allow lesser degrees of this.29 ,3o 

Different TALK procedures also allow concealmeI\t 
of the fact that certain information is even in a data 
base, as illustrated in Figure 4. The remarks above 

WHAT PROGRAM? talkl 

TALKl HAS BEGUN EXECUTION. 

WHAT DATA WOULD YOU LIKE TO SEE? 

salary of robert d. jones 

YOU ARE NOT PERMITTED READ ACCESS 

TO THE ~ FIELD. 

CONTROL determined that the user was not 

permitted read access, causing this reply 

to be given by TALK1. 

WHAT PROGRAM? talk2 

TALK2 HAS BEGUN EXECUTION. 

WHAT DATA WOULD YOU LIKE TO SEE? 

salary of robert d. jones 

NO FIELD NAMED ~. 

TALK2 lntenUonally returned this reply 
to the user. 

Figure 4-Concealment of the fact that a data base contains 
certain information 



Formulary Model for Flexible Privacy and Access Controls 595 

about using different TALK procedures also apply if 
a system uses only one relatively sophisticated TALK 
procedure which takes actions dependent on the person 
or terminal using it at a given time. 

The ACCESS procedure-details' 

ACCESS uses the VIRTUAL, CONTROL, UN
SCRAl\1:BLE, and SCRAMBLE procedures specified 
in the UCB to carry out information storage and re
trieval functions. Its input parameters are: 

(1) information about the user, terminal, etc., de
fined by the installation. This information IS 

passed by the procedure that calls ACCESS; 
(2) internal name of datum; 
(3) an area which either contains or will contain the 

value of the datum specified by (2) ; 
(4) the length of (3) ; 
(5) operation to perform-FETCH, FETCH LOCK, 

STORE, STORELOCK, UNLOCKFETCH, 
UNLOCKSTORE, ATTACH, or DETACH. 
FETCHLOCK and STORELOCK lock datums 
to further fetch or store accesses respectively 
(except by the user/terminal combination for 
which the lock was put on). UNLOCKFETCH 
and UNLOCKSTORE unlock these locks. 
ATTACH and DETACH respectively create 
and destroy user/terminal/formulary at
tachments. 

(6) a variable in which a completion code is re
turned by ACCESS. 

ACCESS itself handles all operations of (5) except 
FETCH and STORE. For FETCH and STORE opera
tions on the data base, it invokes the FETCH and 
STORE primitives specified below. 

Note that some means must be provided to deter
mine which formulary is attached so the CONTROL, 
SCRAMBLE, UNSCRAMBLE, and VIRTUAL pro
cedures of that particular formulary can be invoked. 
One method is to have those procedures themselves 
determine which formulary is attached by examining 
data common to them and to the ACCESS procedure. 
These data are initially set by the ACCESS procedure 
and then are referenced by the other procedures. A 
working system using this method is illustrated in 
another report.31 An alternative method, if ACCESS is 
written in a more powerful language or in assembly 
language, would be to use a common transfer vector. 

Note that the procedures TESTANDSET and 
IDXLL and their corresponding calls can be removed 
from ACCESS if no user will ever have to lock out 
access to a datum which ordinarily can be accessed by 
several users at the same time or if the installation 
wishes to use another method to control conflicts 
among users competing for exclusive access to datums; 
this makes the procedure considerably shorter. Such a 
"no parallelism" version of the ACCESS algorithm is 
given elsewhere.31 

An ALGOL algorithm for the ACCESS procedure 
follows. This procedure is quite important and should 
be examined carefully. The comments in the algorithm 
should not be skipped, as they often suggest alternate 
methods for accomplishing the same goals. 

THE ACCESS ALGORITHM 

procedure access (info, intname, val, length, opn, compcode) ; 
integer array info, val; integer length, opn, compcode; 
begin COInInent If OPN = FETCH, VAL is set to the value of the datum represented by INTNAME. 

If OPN = STORE, the value of the datum represented by INTNAME is replaced by the value 
in the VAL array. 
If OPN = FETCHLOCK or STORELOCK, the datum is locked to subsequent FETCH or 
STORE operations by other users or from other terminals until an UNLOCKFETCH or 
UNLOCKSTORE operation, whichever is appropriate, is performed. 
If OPN = UNLOCKFETCH or UNLOCKSTORE, the fetch lock or store lock previously 
inserted by a FETCHLOCK or STORELOCK operation is removed. 
If OPN = ATTACH, the formulary represented by internal name INTNAME is attached to the 
user and terminal described in the INFO array. 
If OPN = DETACH, the formulary represented by internal name INTNAME is detached from 
the user and terminal described in the INFO array. 
VAL is LENGTH storage elements long. 
Note that a FETCH (STORE) operation will actually attempt to fetch (store) LENGTH 
storage elements of information. 



596 Fall Joint Computer Conference, 1971 

It is the responsibility of the TALK procedure to handle scrambling or unscrambling algorithms 
that return outputs of a different length than their inputs. 
ACCESS returns the following integer completion codes in COMPCODE: 

1 normal exit, no error 
2 unlock operation requested by user or terminal who/which did not set lock 
3 operation permitted but gave error when attempted 
4 attempt to unlock datum which is not locked in given manner 
5 cannot handle any more User Control Blocks (would cause table overflow) 
6 attempt to detach nonexistent user/terminal/formulary combination 
7 operation permitted for this user and terminal but could not be carried out since datum was 

locked (by another user/terminal) to prevent such an operation 
8 cannot put lock on as requested since LOCKLIST is full 
9 datum already locked by this user and terminal 

10 error return from VIRTUAL procedure 
11 operation on the datum represented by INTNAME not permitted by CONTROL procedure 

of the attached formulary 
12 end of data set encountered by FETCH operation. 

Note that by the time the user has left the ACCESS routine, the data may have been changed by another user 
(if the original user did not lock it). Note that ACCESS could be altered to allow scrambling and unscrambling to 
take place at external devices rather than in the central processor. 
Important: ACCESS expects the following to be available to it. The installation supplies these in some way other 
than as parameters to ACCESS (for example, as global variables in ALGOL or COMMON variables in 
FORTRAN)--

(1) ISTDUCB 
(2) NUCB 
(3) UCB 

(4) MAXUSERS 

(5) ITALK 

(6) LOCKLIST 

(7) MAXLLIST 
(8) CSI 

the default User Control Block. Its length is NUCB storage units. 
see (1). 
a list of User Control Blocks (UCB's) initialized outside 
ACCESS to ucb (1, 1) = -2, 

ucb (i, j) = anything when "-'(i = j = 1) 
UCB is declared as integer array [1 :maxusers, 1 :nucb]. 
the maximum number of users which can be actively connected to the system at any point 
in time. 
the length of the INFO array (which is the first parameter of ACCESS)--INFO contains 
information about the user and terminal which is used by ACCESS and also passed by ACCESS 
to procedures of the attached formulary. 
INFO[IJ contains user identification. 
a list of locks (each element of the LOCKLIST array should be initialized outside ACCESS 
to -1) LOCKLIST is declared as integer array [1 :4, 1 :maxllist]. 
the maximum length of the LOCKLIST. 
a semaphore to govern simultaneous access to the critical section of the ACCESS procedure 
(initialized to 1 outside ACCESS). 

ACCESS assumes that the variables FETCH, STORE, FETCH LOCK, STORELOCK, UNLOCKFETCH, 
UNLOCKSTORE, ATTACH, and DETACH have been initialized globally and are never changed by the 
installation; 
integer array iucb [1 :nucb], reslt [1 :length]; 
integer i, ii, islot, j, yesno, other, n, datum; 
integer procedure testandset (semaphore); integer semaphore; 
begin cOllllllent TESTANDSET is an integer function designator. It returns -1 if SEMAPHORE was in the 
state LOCKED on entry to TESTANDSET. Otherwise, TESTANDSET returns something other than -1. In all 
cases, SEMAPHORE is in state LOCKED after the execution of the TESTANDSET procedure, and must be 
explicitly unlocked in order for it to be used again. 



Formulary Model for Flexible Privacy and Access Controls 597 

TESTANDSET is used to implement a controlling mechanism to prevent conflicts among users competing for the 
same resource, as discussed in work by Dijkstra. 27 It will NOT prevent "deadly embraces". 32 No explicit code is given 
here, since the function is machine-dependent. 

This procedure can be removed if no user will ever have to lock out access to a datum which ordinarily can be 
accessed by several users at the same time or if the installation wishes to use another method to control conflicts 
among users competing for exclusive access to datums; 

<code> 

end testandset; 

integer procedure idxll (intname, opn) ; integer intname, opn; 
begin corn.rn.ent IDXLL, given an internal name INTNAME, returns the relative position of INTNAME on the 
LOCKLIST if the datum represented by INTNAME is locked in a manner affecting the operation OPN. Otherwise, 
IDXLL returns the negation of the relative location of the first empty slot on the LOCKLIST. If the LOCKLIST is 
full and the INTNAME/OPN combination is not found on it, IDXLL returns O. 

This procedure can be removed if no user will ever have to lock out access to a datum which ordinarily can be 
accessed by several users at the same time or if the installation wishes to use another method to control conflicts 
among users competing for exclusive access to datums; 
integer first empty ; 
j : = if opn = FETCH or opn = UNLOCKFETCH or opn FETCH LOCK then 1 else 2; 
idxll : = firstempty : = 0; 
for i : = 1 step 1 until maxllist do 

begin ii : = -i; 
if locklist [1, i] = -1 then firstempty : = i 

else if locklist [1, i] = intname and locklist [2, i] j then begin idxll : = i; 
go to RET 

end; 
if firstempty ~ 0 then idxll : = -firstempty; 
RET: 
end idxll; 

procedure ret (i); integer i; 

end; 

begin corn.rn.ent RET sets the completion code compcode to i and then causes exit from the ACCESS procedure; 
compcode : = i; go to FIN 
end ret; 

compcode : = 1; 
co:mrn.ent first let's see if we recognize the user/terminal combination in INFO; 
islot : = 0; 
for i : = 1 step 1 until maxusers do 

begin ii : = i; 
if ucb [i, 1] = -2 then begin corn.rn.ent end of list of ucb's; 

if islot = 0 then begin if ii ~ maxusers then ucb [ii + 1, 1] : = -2; 
go to XFER; 
end 
else go. to PRESETUP; 
end 

else if ucb [i, 1] = -1 then islot : = ii 
corn.rn.ent remember this slot if vacant; 

else begin for j : = 1 step 1 until italk do 
if ucb [i, j] ~ info [j] then go to ILOOPND; 

go to SETUPPTRS 
end; 



598 Fall Joint Computer Conference, 1971 

ILOOPND: 
end i loop; 

if islot = 0 then ret (5); COll1ll1ent cannot handle any more UCBs; 
PRESETUP: 
ii : = islot; 
XFER: 
for k : = 1 step 1 until italk do ucb [ii, k] : = info [k]; 
for k : = italk + 1 step 1 until nucb do ucb [ii, k] : = istducb [k]; 
SETUPPTRS: 
for i : = 1 step 1 until nucb do iucb [i] : = ucb [ii, i]; 
COll1ll1ent set up pointers to appropriate user control block for particular implementation. Note well: Setting up 
pointers to appropriate user control blocks is quite dependent on the particular system; 
COll1ll1ent We have now associated user and terminal with the user control block (representing a formulary) in 
relative position i of the UCB table; 
if iucb [nucb] =;t. intname and opn = DETACH then ret (6); 
COll1ll1ent attempt to detach user/terminal/formulary combination not currently attached; 
control (intname, opn, yesno, other); 
if yesno > 1 then ret (11); 
COll1ll1ent return 11 if CONTROL does not permit operation; 
if opn = ATTACH then begin ucb [ii, nucb] : = intname; go to FIN 

end; 
COll1ll1ent Note well: In many implementations, pointers to each procedure of the formulary (obtained by having 
VIRTUAL transform intname into a virtual address) might be put into the UCB upon attachment. In other, the 
philosophy used here of only putting one pointer- -to the formulary- -into the UCB will be followed. The decision 
should take into account design parameters such as implementation language, storage available, etc.; 
if opn = DETACH then begin COll1ll1ent detach formulary (this leaves an open slot in the ucb array); 

ucb [ii, 1] := -1; go to FIN 
end; 

if opn = UNLOCKFETCH or opn = UNLOCKSTORE then 
begin i : = idxll (intname, opn) ; COll1ll1ent find internal name on LOCKLIST; 
if i :::; 0 then ret (4); COll1ll1ent cannot find it; 
for j : = 1 step 1 until italk do 

if locklist [2 + j, i] =;t. iucb [j] then ret (2); 
locklist [1, i] := -1; COll1ll1ent undo the lock and mark slot in UCB array empty; 
go to FIN 
end unlock operation; 

TRY: 
if testandset (csl) = -1 then go to TRY; 
COll1ll1ent loop until no other user is executing the critical section below; 
COll1ll1ent ACCESS should ask to be put to sleep if embedding system permits; 
COll1ll1ent-------------------------------enter critical section for locking out datums----------------------; 
i : = idxll (intname, opn) ; 
COll1ll1ent get relative location of locked datum in locklist; 
if i > 0 then begin COll1ll1ent datum found on locklist so see if it was locked by this user and terminal; 

i := -i; 

for j : = 1 step 1 un til italk do 
if locklist [2 + j, i] =;t. iucb [j] then ret (7); 
COll1ll1ent data already locked by another user or terminal; 
if opn = FETCHLOCK or opn = STORELOCK then ret (9); 
COll1ll1ent datum already locked by this user and terminal, so return completion code of 9; 
end; 

if opn = FETCHLOCK or opn = STORELOCK then 
begin COll1ll1ent this is a lock operation; 



Formulary Model for Flexible Privacy and Access Controls 599 

if i = 0 then ret (8); comment cannot set lock since locklist is full; 
locklist [2, i] : = if opn = FETCH LOCK then 1 else 2; 
comment set appropriate lock; 
for j : = 1 step 1 until italk do locklist [2 + j, i] : = iucb [j]; 
comment place user and terminal identification into LOCKLIST; 
locklist [1, i] : = intname; comment place internal name on LOCKLIST; 
go to FIN; 
end lock operation; 

virtual (intname, datum, other, compcode); 
comment VIRTUAL returns in datum the virtual address of the datum specified; 
if compcode > 1 then ret (10); comment error return from VIRTUAL; 
if opn = STORE then 

begin comment store operation; 
scramble (val, length, compcode, reslt, n) ; 
if compcode > 1 then ret (3); 
comment operation permitted but gave error when attempted; 
comment now perform a physical write of n storage units to the block starting at reslt; 
store (datum, reslt, n, compcode) ; 
if compcode > 1 then ret (3) 
end 

else 
begin comment fetch operation; 
fetch (datum, reslt, length, compcode) ; 
if compcode = 2 then ret (12); comment end of data set encountered; 
if compcode > 1 then ret (3); 
unscramble (reslt, length, compcode, val, n); 
if compcode > 1 then ret (3); 
end fetch operation; 

FIN: 
comment-----------------------------Leave critical section for locking out datums-------------------------------------------------------- ; 
cs1 : = 1; 
end access; 

FETCH and STORE primitive operations 

The two primitive operations FETCH and STORE 
are supplied by the installation. These primitives 
actually perform the physical reads and writes which 
cause information transfer between the media the data 
base resides on and the primary storage medium (usu
ally, magnetic core storage). They are invoked only 
by the ACCESS procedure. 

The primitive operations cannot be expressed in 
machine-independent form, but rather depend on the 
specific system and machine used. They are defined 
functionally below. 

FETCH (ADDR, VALUE, LENGTH, COMP) 

This primitive fetches the value which is contained 
in the storage locations starting at virtual address 
ADDR and returns it in VALUE. This value may be 

scrambled, but if so unscrambling will be done later by 
UNSCRAMBLE (called from ACCESS) , and 
LENGTH is the length of the scrambled data. The 
value comprises LENGTH storage elements. Upon 
completion, the completion code COMP is set to: 

1 if normal exit 
2 if end of data set encountered when physical 

read attempted 
3 if length too big (installation-determined) 
4 if illegal virtual address given to fetch from 
5 if error occurred upon attempt to do physical 

read. 

STORE (ADDR, VALUE, LENGTH, COMP) 

This primitive stores LENGTH storage elements 
starting at virtual address VALUE into LENGTH 
storage elements starting at virtual address ADDR. 



600 Fall Joint Computer Conference, 1971 

The information stored may be scrambled, but if so 
the scrambling has already been done by SCRAMBLE 
(called from ACCESS), and LEN G TH is the length of 
the scrambled data. Upon completion, the completion 
code COMP is set to: 

1 if normal exit 
3 if length too big (installation-determined) 
4 if illegal virtual address given to store into 
5 if error occurred upon attempt to do physical 

write. 

A NOTE ON THE COST OF SOME 
PRIVACY SAFEGUARDS 

As mentioned above, a desirable property for an ac
cess control model is that it be sufficiently modular to 
permit cost-effectiveness experiments to be under
taken. In this way the model would serve as a vehicle 
for exploring questions of cost with respect to various 
privacy safeguards. 

Using the formulary model, an experiment was run 
on the IBM 360/91 computer system at the SLAC 
Facility of Stanford University Computation Center. 
This experiment was designed to obtain figures on the 
additional overhead due to using the formulary method 
and on the costs on encoding (and conversely the cost 
of decoding data). Early results31 seem to indicate that 
the incremental cost of scrambling information in a 
large computer data base where fetch accesses (and 
hence unscrambling operations) are relatively infre
quent is infinitesimal. 

It is easy to use the formulary model to carry out 
various other experiments dealing with relative costs 
of diverse encoding methods and data accessing 
schemes. We hope to do more of this in the future. 

SUMMARY 

We have defined and demonstrated a model of access 
control which allows real-time decisions to be made 
about privileges granted to users of a data base. Raw 
data need appear only once in the data base and arbi
trarily complex access control programs can be associ
ated with arbitrarily small fragments of this data. 

The desirable characteristics for an access control 
method laid out in the section on access control methods 
are all present (though we have not yet run enough ex
periments to make general statements about efficiency) : 

(1) No arbitrary constraint (such as segmentation 

or sensitivity levels) is imposed on data or 
programs. 

(2) The method allows control of individual data 
elements. Its efficiency depends on the specific 
system involved and the particular controls used. 

(3) No extra storage or time is required to describe 
data which the user does not desire to protect. 

( 4) The method is machine-independent and also 
independent of file structure. The efficiency of 
each implementation depends mainly on the 
adequacy of the formulary method for the par
ticular data structures and application involved. 

(5) The discussion above illustrates the modularity 
of the formulary mode. 

ACKNOWLEDGMENTS 

This paper is a condensation of a Ph.D. dissertation 
at the Stanford University Computer Science Depart
ment. The author is deeply indebted to Professor 
William F. Miller for his encouragement and advice 
during the research and writing that went into it. 
Many other members of the Stanford Computer Science 
Department and the Stanford Linear Accelerator 
Center also contributed their ideas and help, in par
ticular, John Levy, Robert Russell, Victor Lesser, 
Harold Stone, Edward Feigenbaum, and Jerome Feld
man. The formulary idea was initially suggested by the 
use of syntax definitions ("field formularies") for 
input/output data descriptions as described by 
Castleman.33 

REFERENCES 

1 P S CRISMAN (EDITOR) 
The compatible time-sharing system-a programmer's 
guide MIT Press Cambridge Massachusetts 1965 

2 J D BABCOCK 
A brief description of privacy measures in the RUSH 
time-sharing system 
Proc AFIPS SJCC Vol 30 pp 301-302 Thompson Book Co 
Washington D C 1967 

3 B W LAMPSON 
Dynamic protection structures 
Proc AFIPS FJCC pp 27-381969 

4 F J CORBATO V A VYSSOTSKY 
Introduction and overview of the Multics system 
Proc AFIPS SJCC pp 185-196 1965 

5 L J HOFFMAN 
Computers and privacy: a survey 
Computing Surveys Vol 1 No 2 pp 85-103 1969 

6 C ARVAS 
Joint use of databanks 
Report No 6 Statistiska Centralbyran Stockholms 
Universitet Ukas P5 Sweden 1968 



Formulary Model for Flexible Privacy and Access Controls 601 

7 H W BINGHAM 
Security techniques for EDP of multilevel classified 
information 
Document RADC-TR-65-415 Rome Air Development 
Center Griffiss Air Force Base New York 1965 

8 C WEISSMAN 
Security controls in the ADEPT-50 time-sharing system 
Proc AFIPS FJCC pp 119-133 1969 

9 D K HSIAO 
A file system for a problem solving facility 
Ph D Dissertation in Electrical Engineering University 
of Pennsylvania Philadelphia Pennsylvania 1968 

10 M G STONE 
T E RP S-file independent enquiries 
Computer Bulletin Vol 11 No 4 pp 286-289 1968 

11 R M GRAHAM 
Protection in an information processing utility 
Communications of the ACM Vol 11 No 5 pp 365-369 
1968 

12 J B DENNIS E C VAN HORN 
Programming semantics for multi-programmed computation 
Communications of the ACM Vol 9 No 3 pp 143-155 1966 

13 J K ILIFFE 
Basic machine principles 
MacDonald and Co London England 1968 

14 D C EVANS J Y LE CLERC 
Address mapping and control of access in an interactive 

computer 
Proc AFIPS SJCC Vol 30 pp 23-30 Thompson Book Co 
Washington D C 1967 

15 J A FELDMAN 
Aspects of associative processing 
Technical Note 1965-13 Lincoln Laboratory MIT 
Cambridge Massachusetts 1965 

16 R G EWING P M DAVIES 
A n associative processor 
Proc AFIPS FJCC 1964 

17 R G GALL 
A hardware-integrated G PC / search memory 
Proc AFIPS FJCC 1964 

18 J MC ATEER et al 
Associative memory system implementation and 
characteristics 
Proc AFIPS FJCC 1964 

19 J I RAFFEL T S CROWTHER 
A proposal for an associative memory using magnetic films 
IEEE Trans on Electronic Computers Vol EC-13 No 5 
1964 

20 V R LESSER 
A multi-level computer organization designed to separate 

data-accessing from the computation 
Technical Report CS90 Computer Science Department 
Stanford University Stanford California 1968 

21 P D ROVNER J A FELDMAN 
The Leap language and data structure 
Proc IFIP 1968 C73-C77 

22 T D FRIEDMAN 
The authorization problem in shared files 
IBM Systems Journa.l Vol 9 No 4 1970 

23 C E SHANNON 
Communication theory of secrecy systems 
Bell System Technical Journal Vol 28 pp 656-715 1949 

24 D KAHN 
The codebreakers 
Macmillan New York New York 1967 

25 R 0 SKATRUD 
The application of cryptographic techniques to data 
processing 
Proc AFIPS FJCC pp 111-117 1969 

26 W F MILLER L J HOFFMAN 
Getting a personal dossier from a statistical data bank 
Datamation pp 74-75 May 1970 

27 E W DIJKSTRA 
Cooperating sequential processes 
Department of Mathematics Technological University 
Eindhoven the Netherlands 1965 

28 A SHOSHANI A J BERNSTEIN 
Synchronization in a parallel accessed data base 
Communications of the ACM Vol 12 No 11 pp 604-607 
1969 

29 R S JONES 
DATA FILE TWO-A data storage and retrieval system 
Proc SJCC pp 171-1811968 

30 R H GIERING 
Information processing and the data spectrum 
Technical note DTN-68-2 Data Corporation Arlington 
Virginia 1967 

31 L J HOFFMAN 
The formulary model for access control and privacy in 
computer systems 
Report 117 Stanford Linear Accelerator Center Stanford 
California 1970 

32 A N HABERMANN 
Prevention of system deadlocks 
Communications of the ACM Vol 12 No 7 p 373 1969 

33 P A CASTLEMAN 
User-defined syntax in a general information storage and 
retrieval system 
in Information Retrieval The User's Viewpoint An Aid 
to Design International Information Inc 1967 





Integrated municipal information systems: Benefits for 
cities-Requirements for vendors 

by STEVEN E. GOTTLIEB 

BASYS, Inc. 
Wichita Falls, Texas 

INTRODUCTION 

The Fall Joint Computer Conference's call for papers 
this year says that, "The scope of the conference will 
encompass the entire information processing field." 
It goes on to say that the primary theme is "the use of 
computers to improve the quality of life." 

So many of the new projects we as individuals or as 
nations undertake today, we purport to be an activity, 
which, if accomplished, will improve the quality of life. 
If I appear to be suggesting that this phrase is a little 
overworked, then, indeed, I have made my point. The 
problem, however, is not with the phrase itself, but 
rather with the broad, all encompassing meaning the 
user frequently wishes to imply when he cannot ascribe 
specific benefits to the project in which he is engaged. 

I would, therefore, like to describe for you a few of the 
direct and indirect benefits which I see accruing from 
the USAC program and specifically from the Wichita 
Falls project to create an Integrated Municipal In
formation System. Before doing that, however, let me 
address the goal toward which we in Wichita Falls 
are striving. 

THE DEFINITION OF AN IMIS 
UNDERSCORES THE GOAL OF THE 
WICHITA FALLS PROJECT 

The USAC program is aimed at cities whose popula
tion is between 50,000 and 500,000. The Wichita Falls 
project is one of only two aimed at the development of 
what is called a total Integrated Municipal Information 
System (IMIS). 

Total-In this context, means that the system 
considers all aspects of municipal activity and includes 
such diverse things as: 

• The maintenance of criminal history information 
on previously convicted law breakers or of health 

603 

or welfare records for those persons receiving 
treatment or aid. 

• The generation and posting of utility bills 
• The posting of the general and subsidiary ledgers 
• The maintenance of land use records 
• The development and maintenance of the voter 

role 

Integrated-Refers to the development of a unified, 
multi-functional data base; that is, a data base shared 
by all the generators and authorized users of data 
within the municipal government. Frequently in cities, 
as in any large complex organization, there is a multi
plicity of requirements for the same data. Too fre
quently, however, these requirements are satisfied by 
each user independently collecting and storing the data 
for himself. The tax assessor, the fire department, and 
the building inspector, for example, all require similar 
information about buildings including such things as: 

• Address 
• Dimensions 
• Construction type 
• Number of access ways, etc. 

There appears to be no reason why this data cannot be 
collected by only one of these departments on a single 
inspection and made available to the others. Integrated, 
in the context of this system, then really includes not 
only the development of a unified, multi-functional 
data base, but also the development of unified multi
purpose data collection and dissemination methods. 

Municipal-Implies that the system concerns itself 
only with what is carried on by the city government. 
In this case, however, that's not an adequate definition. 
The city, though in many ways seemingly autonomous, 
has many interrelationships with other institutions. A 
city, for example, must interact with and be responsive 
to the needs of both the county and state in which it is 



604 Fall Joint Computer Conference, 1971 

located. Additionally, cities must also interface with 
outside organizations or special districts including: 

• Independent school boards 
• Water districts 
• Citizen or civic organizations 
• Councils of Governments 
• Economic development districts 

In addition to these and others, cities must also be 
responsive to the many reporting demands placed on 
them by the Federal Government. Municipal is meant, 
therefore, to include not only the organizational units 
internal to the city government but all organizations 
with which the municipality must interface. 

Information-Again, the scope of the word is broad 
and refers not only to the traditional information 
requirements of top management but perhaps more 
importantly to the information requirements of both 
middle management and those who carry out the day to 
day activities in which a city is engaged. 

System-This includes the aggregation into a single 
functioning mechanism of not only all the pieces to 
which I have referred but also one other key element. 
That is, most cities (in the 50-500,000 population 
range), unlike many other large complex organizations, 
do not real1y have a large number of single process (pay
roll and billing type) applications suitable for computer
ization. Those cities rather have many multiple process 
applications. There are many departments which need 
and process considerable information; that is, they act 
on a large number of information categories but they 
generally do so relatively infrequently. In Wichita 
Falls, a city of only 100,000, we have, for example, 
identified well over 6000 individual data elements 
which are used in multiple combinations and must be 
kept readily accessible. We have not, however, been 
able to identify any single transaction type beyond con
ventional utility collection which could be considered to 
have a high transaction rate. This imposes a few unique 
design considerations in that no one application's file 
requirements clearly dominate the data base design. 

To use their information effectively, cities frequently 
have to have a large number of people who "massage" 
the information, putting it in a form useful for mana
gerial decisions ranging from "what are my budget 
requirements for next year" to "which of the traffic 
signals should have preventive maintenance per
formed." The system we are building includes the first 
step toward the solution of this problem by making 
more effective use of the city's valuable personnel 
resources. This will be accomplished by allowing the 
computer to make some, and perhaps many, of the 
routine decisions which too frequently occupy so much 

of a manager's time. By way of example of such deci
sions, consider the time spent in determining: 

• Which properties in the city should be reappraised 
• Which vehicles and equipment now require pre~ 

ventive maintenance 
• What is the best schedule for preventive main

tenance considering skill requirements and avail
able resources 

• Which persons should be sent notifications of their 
failure to pay tickets or their need to come in for 
an additional medical examination 

With this perspective in mind, the goal of the 
Wichita Falls IMIS can be stated as the design, develop
ment, and implementation of a multi-functional data 
acquisition and storage system which is capable of 
making routine decisions required during the daily 
operation of the municipality. Toward this end, we in 
Wichita Falls have made considerable progress. 

TWO PHASES OF THE WICHITA FALLS 
PROJECT HAVE BEEN COMPLETED 

At this time our project is one-third over and we 
have completed both the Analysis and Conceptualiza
tion Phases and are well into the Design Phase. As part 
of an early demonstration to prove the feasibility of 
building and using an integrated data base in a munic
ipal environment, we will by November 1971 have 
implemented both an automated purchase order and 
vendor performance application, as well as an auto
mated tax assessment update application. 

TRANSFERABILITY IS A KEY ASPECT 
OF THE USAC PROGRAM 

Transferability is the principal justification for the 
Federal Government's funding the IMIS development. 
Transferability may be simply defined as the expecta
tion that the system, or at least significant parts of it, 
will be usable by other cities. 

Having progressed to the point we are today, I can 
say with assurance that there are worthwhile products 
already derived from the Wichita Falls project which 
in fact are transferable and could be used by other 
cities. These products can be viewed as belonging to 
one of three categories: 

• Concepts-The new ideas which have been de
veloped through the project 

• Methodology-The techniques which enabled us to 
develop our programs or concepts 



• Programs-The actual computer programs that 
result from the Development Phase 

A point to be made, however, is that the closer we 
get (on the above scale of products) to computer 
programs, the more difficult or lower the probability of 
direct transfer to another city, while the closer to con
cepts, the higher the transferability is expected to be. 

With the recognition, therefore, that one of the key 
issues in this project is the development of products 
which are transferable, let me discuss the relationship 
to other cities of two major products which have already 
been developed: 

• The Analysis Phase documentation 
• The Conceptualization methodology 

The documentation of the Analysis Phase of the 
Wichita Falls project, which is over 6500 pages and 
required some ten man-years to compile and produce, 
for the first time provided a comprehensive view of all 
the activities which go into making a "real" city work. 
It provides, to prospective city managers and other 
students of public administration, an additional 
perspective on the complexity of a successfully operating 
municipal government. 

Additionally, the documentation provided Depart
ment Heads and Division Directors in the City of 
Wichita Falls an opportunity to more fully examine the 
operations of their organizational unit. Further, it 
served as a "before" snapshot of municipal operations 
to be compared with an "after" shot from the resulting 
design, development, and implementation documenta
tion. This comparison will enable costs to be compared 
between some of the old and new systems. The final, 
but by no means least significant, benefit to be derived 
from the analysis is the fact that there is now a docu
ment available which another city can use as a basis on 
which it can perform a far less costly analysis of its 
:lwn activities. Specifically, another city need only 
prepare exception documentation for those activities 
which it provides and which are significantly different 
[rom those in Wichita Falls. 

The methodology we developed in the Conceptualiza
~ion Phase is referred to as the Top-Down Bottom-Up 
l\.pproach. This methodology enabled us to formulate a 
~eneral system design which, from what we have been 
tble to determine so far, should be transferable to a 
.arge number of other cities. 

The approach was as follows. Consider that the 
)urpose of a city, simply stated, is to provide public 
;ervices desired or demanded by its citizens or society. 
rhese services or functions, of which there are many, 

Integrated Municipal Information Systems 605 

include such things as: 

• Protecting the people from those who break the law 
• Providing water and sanitary services 
• Providing for the transportation of people and 

goods 

The total of these functions can be broadly grouped into 
four sectors (originally defined by USAC as sub
systems) : 

• Public Safety 
• Human Resources Development 
• Public Finance 
• Physical and Economic Development 

The functions themselves can be divided into com
ponents, and the components into applications in a 
typical hierarchical fashion similar to the organization 
of most municipal governments. This Top-Down 
hierarchy provides the overall functional framework 
which is to be served by the information system. To 
structure the information system, however, one must 
also look at the information requirements of each of the 
lowest level applications, including such things as: 

• Maintaining traffic signals 
• Determining if a given vehicle or person is stolen 

or wanted 
• Putting out fires 
• Processing platting changes 
• Issuing parade licenses 

If one then considers those applications which have 
common information characteristics one can begin to 
see the data exchange necessary for effective data 
sharing. 

In the Wichita Falls project we aggregated those 
operational applications with what appeared to be the 
highest number of common information characteristics 
into what we called a DISC, a Decision Information 
Set Center. A DISC is a hypothetical module containing 
many processes, all related to the same or similar data. 
The DISC provides a convenient means of simul
taneously considering the data and logical file require
ments of many information ally related applications 
(Figure I). It was found that DISCs could be defined 
in three levels: 

• Operational 
• Operational! Analytical 
• Analytical 

The lowest level or operational DISCs provide the 



606 Fall Joint Computer Conference, 1971 

USAC 
Subsystems Functions Components Applications 

Operational 
DISC's 

Operational/ 
Analytical 

DISC's 
Analytical 

DISC's Sectors 

Physical 
and Economic 
Development 

Public Finance 

Public Safety 

Town Planning 

Building 
Inspection 

Land Records 

Treasury 

Revenue 
Accounting 

Accounts 
Payable 

Building Code 
Administration 

Permit 
Processing 

Real Property 
Assessment 

Utility Services 

Inspection 
Scheduling 

Special 
Exception 
Request 
Processing 

Building 
Survey 

Inspection 
Reporting 

Real Property 
Update 

Real Property 
Appraisal 

Creation 
Of Tax Roll 

r-- ·U;;;:r;;n~portation Subsystem 

r----u~ban Environment Sub~ystem r U,banDevelopment Sub;;', .... 

1------1 

o 

~~==.-----. .------. 

Physical 
and Econol 
Developme 

Public Final 

h LaW Enf~...,.ment Sub.y,tem • J 
- - ; Public Safet 

Disaster Control Subsystem 

T. . . .r-- Human Devel~pment Subsyst~m---'" 

f Health Subsystem 

-------I Resources 
Human 
Resources 
Development 

Budgeting 
Real Property 
Delinquent 
Tax Processirig ~ 

Human 

- :ducation SUbSYS~m Developmen 

Welfare Subsystem -------I 

T 
Figure 1 

input to more analytical applications which could be 
aggregated into the higher level operational! analytical 
DISCs. Further, the output of these DISCs could in 
turn be aggregated into DISCs of exclusively analytical 
applications such as those associated with annual 
resource allocations or comprehensive planning. It was 
further found that the output of these analytical DISCs 
provided feedback to the first level operational DISCs, 
thus establishing essentially closed systems. These 
closed systems are, in effect, subsystems of the total 
IMIS. For the 1M IS postulated in Wichita. Falls, ten 
such subsystems were identified: 

• Public Finance 
• Disaster Control 
• Law Enforcement 

• Urban Development 
• Urban Transportation 
• Urban Environment 
• Welfare 
• Education 
• Health 
• Human Development 

The significance of the subsystem is NOT that there 
are ten, since a different aggregation of the operational 
applications could change the number of subsystems 
slightly, but rather that a city can be viewed, informa
tionally, as being comprised of a number of subsystems 
with associated data flows. 

From the viewpoint of transferability, the Wichita 
Falls project's Conceptualization Phase resulted in 



what we feel to have been a success. We have a concept 
and a methodology which are clearly transferable, but 
we also have a product, a general systems design which 
is also felt to be transferable, though clearly, modifica
tion will be necessary to accommodate, among other 
things, the variation in services provided by other cities. 

THE DESIGN PHASE HAS PROVIDED NEW 
AREAS OF STUDY FOR SOFTWARE 
VENDORS 

The Design Phase in which we are now heavily 
involved is beginning to provide some interesting 
problems for further study. Because we have not yet 
progressed far enough in the phase to discuss its prod
ucts, I have chosen to mention a basic design philos
ophy and comment on some areas in which I believe 
the computer industry should provide some additional 
guidance. 

Because of the complexity of the system to be built, 
and the desire to minimize data redundancy, while at 
the same time providing the data to multiple users, we 
chose to develop an integrated data base. In order to 
assist in the management of this data base, we further 
chose to implement a vendor supplied data base 
management system. The efforts of our project staff 
were then divided into three main areas: 

• Data Base Design 
• Application Design 
• Application Programming (this is actually part of 

the Development Phase) 

Clearly, neither of these areas can be considered in 
vacuum, nor do we really split the staff into three 
distinct groups. For the purpose of our discussion, 
however, it is appropriate to consider the three groups 
as operating independently but toward a common 
objective. 

Toward that end then, the application design teams 
provide programming specifications and detailed flow 
charts to the programmer group while concurrently 

Integrated Municipal Information Systems 607 

providing data requirements to the data base group 
which designs the base by establishing the files and 
associated linkages. This over-simplification thus 
enables me to separate out and address only the data 
base portion of the Design Phase. 

Initially, when we began the phase, I was surprised 
to find how little was generally known about data base 
management. Obviously, part of the problem lies in the 
fact that it is a relatively new field in which few people 
have had any experience. 

What is particularly unfortunate, however, is not 
how little is known about data base management, but 
rather how little is known and how little effort goes into 
understanding the functions of cities (a prime sales 
target for computer and software vendors). All too 
often I was told how a given system could handle any 
data base problem the City might have. The sub
stantiation was based on the fact that the system had 
just been implemented or was to be implemented by 
Company XYZ which, I was told, was bigger than 
Wichita Falls and had bigger files to work with. I 
have no doubt that most existing data base and file 
management systems are capable of handling relatively 
large files. I have considerable doubt, however, about 
their ability to efficiently process multiple, extensively 
linked files with individually low transaction rates and 
with the high number of different processes found in 
cities. What we have found thus far in our project 
(and the results are available to each of you) is that 
USAC-sized cities do in fact have unique data pro
cessing problems. It does not appear that these problems 
are necessarily more complex than those associated 
with industry. They are merely different. 

I suggest to you, therefore, that you have in cities a 
major and virtually untapped market place, one which 
you can and should serve efficiently by studying their 
needs and solving their problems. Do this not by looking 
at cities as non-profit companies whose needs can be 
served by the old products and methods developed in 
the past, but because of their importance and because, 
in fact, their problems are different, by a fresh ex
amination and by the development of products designed 
to meet their unique needs. 





Geocoding techniques developed by the census use study 

by CABY C. SMITH and MARVIN S. WHITE, JR. 

U.S. Census Bureau 
Los Angeles, California 

HISTORICAL PERSPECTIVE 

The Census Use Study (CUS) was established in 
September 1966 in New Haven, Connecticut. The 
emphasis of the study is on small area data, i.e., data 
relevant to areas smaller than a city. The CUS took 
the lead in geocoding by developing the DIME file and 
ADMATCH, an address matching system. The CUS 
at New Haven also developed the Health Information 
System to provide health planners with powerful 
statistical tools. In July, 1969, the Southern California 
Regional Information Study (SCRIS) was established 
in the Los Angeles area in order to transfer the experi
ence gained at New Haven to a large urban area. 
SCRIS is continuing the geocoding work begun at 
New Haven and has embarked into other fields, while 
continuing to improve existing computer programs. 
For instance, SCRIS has produced an IBM 360/0S 
and an RCA SPECTRA 70 version of ADMATCH. 
A computer mapping system was also developed at 
SCRIS from the basic research activities carried on at 
New Haven. Investigations have begun on several other 
fronts including an extension of a fallout shelter study, 
the Summary Tape Retrieval Information Processor 
(STRIP), a generalized file matching system, and 
several special purpose tools related to small area data 
and geocoding. In addition, the New Haven CUS and 
SCRIS have produced a series of publications on these 
and other related topics for public information. SCRIS 
is producing a series of transportation related publica
tions, which should be of interest to most transportation 
planners. 

GEOCO DINGl,2 

By geocoding we mean the process of attaching 
relevant geographic codes to data which has some less 
useful geographic codes. Usually this means converting 
street address to some area code, e.g., census tract 

609 

through ADMATCH, but may involve more com
plicated tabulations, such as from street intersections 
to police precinct. 

A wealth of data, useful for planners, is scattered in 
existing files, e.g., Assessor's files, welfare files, and 
motor vehicle registrations. Accessing the data is often 
difficult or impossible due to lack of useful geographic 
codes, confidentiality rules, etc. One can often surmount 
these barriers through geocoding, usually AD
MATCHing the data file to determine census tract and 
block from street address. 

An agency responsible for confidential information 
about individuals is frequently willing to release sum
maries by some large enough geographic area. The 
Bureau of the Census is a good example of such an 
agency. Census data on individuals is confidential and 
suppressed, but tabulations by block group, census 
tract and other geographic areas are released. The 
SCRIS staff has successfully geocoded a number of such 
files including welfare and building permit files. 

Often an agency will release tabulations of data by a 
geographic area important to that agency but not to 
other users. For example, welfare departments may 
release tabulations by welfare district, which probably 
do not conform to other statistical or planning zones. 
Worse, welfare district boundaries may change rapidly 
as caseloads vary and thus destroy histoical continuity 
and render analysis by other zones prohibitively 
expensive. Provided street address is available, geo
coding easily solves these problems. 

ADMATCHl,3 

ADMATCH was designed to perform this type of 
geocoding, obtaining some geocode like census tract 
from street address. ADMATCH operates by linking 
two logically connected files, a data file and a reference 
file (see Figure 1). The data file contains a street 
address (or range of addresses) and the interesting 



610 Fall Joint Computer Conference, 1971 

Pre
processor 
Program 

Sorting 
Process 

Matcher 
Program 

Geocoded 

(~~{:. ) 
~ 

Pre
processor 
Program 

Sorting 
Process 

Figure l-ADMATCH system overview 

data; the reference file, a geographic base file, contains 
street address and the corresponding geocodes. AD
MATCH has rendered a great deal of otherwise in
accessible data easily accessible. 

ADMATCH performs this file linkage in two phases. 
The Preprocessor analyzes a character string address 

according to syntax'and keywords specified by the user 
and creates a standardized version of the address called 
the "match key." The Matcher compares the data 
record match key to all the reference file records with 
the same street name and selects the best match. The 
best match is determined according to a weighting 
scheme determined by the user. Reliable performance 
and cost estimates for the IBM 360jDOS ADMATCH 
are available from CUS Report No. 14, Geocoding with 
ADMATCH: A Los Angeles Experience. The OS 
ADMATCH is much more efficient than the DOS 
version, but specific cost benchmarks are not yet 
available. 

GEOGRAPHIC BASE FILES 

The reference file required by ADMATCH is one of 
a class of files called Geographic Base Files (GBF). 
Since urban planning is so extensively related. to' 
geography, close attention should be paid to GBFs 
and their multitude of applications. A GBF is minimally 
an extended correspondence table for two or more 
geographic codes. However, a GBF may be much more 
complicated, viz., it may reflect any geography related 
structure or information. For example, street network 
and land use information may be contained in a suffi
ciently finely resolved GBF. 

There are a multitude of applications for GBFs. A 
very important application, providing linkage between 
otherwise incommensurate data, was already discussed. 
A GBF can serve as a geographic base for information 
systems in a number of ways. First, the desired in
formation (e.g., street or area maintenance information) 
can be coded directly into the GBF. Or a GBF could 
act as an index to another file or a series of files, i.e., the 
GBF might contain pointers to other files. The Address 
Coding Guide (ACG) is a GBF in wide-spread use. Each 
record in the ACG represents one block face and con
tains address range information and geocodes like 
census tract, county and place. 

The ACG was developed by the Bureau of the 
Census in part to facilitate the mail-out mail-in census 
but more importantly for us to provide a GBF with 
nation-wide standards. The Metropolitan Map Series 
(MMS), which serves as a source for ACG coding, was 
the first step in standardization on a nation-wide basis. 
Metro Maps are produced by the Census Bureau for 
each Standard Metropolitan Statistical Area (SMSA) 
in the United States. 

DIME4,2,5 

The Dual Independent Map Encoding (DIME) 
file is the most complete type of GBF developed to date. 



The DIME concept was developed and first imple
mented at the New Haven CUS. Each record in the 
DIME file represents a street segment bounded by a 
node at each end. Nodes are placed on a map (Metro
politan Map Series) at each interesting place, i.e., each 
street intersection, each intersection of a street with an 
important nonstreet feature like railroad crossings, and 
curves. Furthermore, the DIME file contains the 
coordinates of each node. The node and coordinate 
information renders the DIME file extraordinarily 
useful. The DIME file has all the applications of any 
GBF and a great deal more than most. In fact, as far as 
network related geographic features are concerned, the 
DIME file has the ultimate form for a complete GBF. 
It can contain all relevant information, provided it is 
finely enough resolved. For example, the DIME file 
contains geocodes for both left and right sides of the 
segment, such as block number, and may also contain 
street usage codes. 

Some of the most interesting applications for the 
DIME file are transportation related. Transportation 
planners routinely perform network and node analyses 
on traffic flow. The DIME file in conjunction with 
DAM (DIME Aggregation Manager), a system to 
abstract higher level networks, can be used to analyze 
traffic networks at any desired level of detail. SCRIS is 
presently investigating the possibility of producing 
from the DIME file, a network file for input directly to 
the Bureau of Public Roads Urban Transportation 
Planning system. Other transportation related applica
tions of the DIME file are automated routing of busses, 
etc., either real time or batch, traffic flow modeling, and 
intersection or node related studies. Nearly all police 
and traffic safety records are coded to intersection, like 
Hollywood and Vine. An intersection file can be con
structed from the DIME file. 

Since the DIME file contains coordinates for each 
node, a number of other applications are possible. 
Using the DIME file as a base for computer mapping is 
one of the more exciting applications. In fact, the CUS 
staff at both New Haven and SCRIS have mapped 
DIME files themselves for editing purposes. More will 
be said below about computer mapping. Areas and 
centroids can easily be calculated for areas bounded by 
streets, using the DIME file. The CUS is studying the 
feasibility, in terms of cost, of further DIME applica
tions. 

Two additional features of the DIME file should be 
noted. The DIME file offers special advantages for 
editing and updating. These boil down to the fact that 
the DIME file is an interconnected network of records 
and that these records are unequivocally tied down to 
specific lines on a map. 

Since DIME records are tied to maps, records may 

Geocoding Techniques 611 

be referenced with only the map as a source. Thus, the 
clerical step of finding a serial number or other key in a 
listing is eliminated. A significant source of errors and 
cost is also eliminated. In the case of an ACG file, for 
instance, a clerk must resolve ambiguities that arise 
when the same street name occurs on two faces of the 
same block by scanning a listing. 

The fact that DIME records form a connected link 
network means that topological edits may be per
formed. For example, DIME records may be chained 
around a block or census tract. Boundaries that do not 
close are flagged as errors and corrected. Since nodes 
occur at every intersection, no two segments repre
sented by DIME records should intersect. Whether 
two segments intersect is easily determined by a vector 
cross product calculation. Thus, nodes with incorrect 
coordinates can be located by noting that segments 
containing them intersect with others. 

COMPUTERIZED RESOURCE ALLOCATION 
MODEL (CRAM)5.6 

We have seen a number of applications for GBFs in 
general and the DIME file in particular. The most 
sophisticated application being developed by the CUS 
is the Computerized Resource Allocation Model 
(CRAM). Basically, CRAM is a generalized system for 
determining the service areas for a set of facility 
locations. In its most general form, service areas are 
constrained by facility capacities and travel times. 
CRAM is a refinement and extension of the NAPS 
(Network Allocation of Population to Shelter) system 
developed by System Development Corporation in 
connection with a CUS contract with the Office of 
Civil Defense. 

The system uses a DIME file as its network base and 
in addition requires demand and facility capacity 
inputs. The problems which can be attacked through 
CRAM run from simple fixed source districting 
problems such as school district boundaries, park 
planning, and site location to much more complicated 
problems of emergency vehicle routing, delivery or bus 
route planning and freeway location studies. 

CRAM uses a modified version of the Moore Shortest 
Path Algorithm to do its geographic analysis. The 
Moore technique (not CRAM's version) finds shortest 
paths between points using a point-to-point incidence 
matrix (with associated distances or costs) as its road 
map. In this technique, the network is viewed as a set 
of interconnected nodes, the connections being links. 
The DIME file, however, directly represents a set of 
interconnected links, the connections being nodes. 
The DIME file can be modified to fit the Moore tech-



612 Fall Joint Computer Conference, 1971 

nique easily enough, but there are advantages to 
modifying the technique to fit the DIME structure. 

The advantage in modifying the technique arises 
mainly in the allocation of demand. Demand on a 
facility is generally the number of persons desiring to 
use the facility. Information about numbers of persons 
usually relates to blocks or block groups-not nodes or 
links. However, the disaggregation of persons to links 
is much more reliable than disaggregation to nodes. 
This is true because links have length and the dis
aggregation may be varied according to length, but not 
for nodes. 

UNIMATCH7 

The applications for GBFs and file linkage in general 
are so extensive that SCRIS has begun the development 
of a generalized file linkage system-UNIMATCH. 
UNIMATCH is structurally similar to ADMATCH in 
that it consists of a STANDARDIZER and a 
MATCHER. However, UNIMATCH will not be 
limited to matching street address. Instead, street 
intersections, major traffic generators or any logical 
connection may serve to link two files. This generality 
is achieved by allowing the user to specify what fields 
to compare, what comparisons to make (e.g., character, 
numeric or parity comparisons), what significance to 
attach to a success or failure to compare and finally 
what action to take depending on the level of success of 
the comparison. That action might be further com
parisons or the copying of selected fields from one file to 
another. The impetus for designing and implementing 
UNIMATCH comes from transportation planning 
needs. Originally, the system was to be named TRAM 
(Transportation Related Address Matcher). Great 
efforts were made to name the system TROLLEY, but 
no suitable words to fit the acronym made themselves 
obvious. 

COMPUTER MAPPING8,9 

The CUS has investigated a variety of available 
computer mapping programs and has developed a 
mapping system-GRIDS (Grid Related Information 
Display System) at SCRIS to meet needs that were not 
being met. The existing computer mapping systems 
required quite a bit of programming ability, a good deal 
of data preparation, and in· many cases required large 
and expensive computing facilities. For these reasons, 
mapping of data was left mainly in the hands of 
draftsmen. For these same reasons, GRIDS, which is a 
system for producing inexpensive printer maps quickly 
and easily, was created. 

GRIDS is an especially good analytical tool for 
planners. Voluminous data is much more easily as
similated in map form and GRIDS handles finely 
resolved data especially well. Also, each map costs 
only $5 to $10. Furthermore, GRIDS will run on nearly 
any system with FORTRAN compiler-it has run on an 
IBM 360 model 30 with 32K bytes of storage. 

The finest unit of resolution for GRIDS is one grid 
cell. The system produces maps by dividing the area to 
be mapped into a network of rectangular grid cells. A 
grid cell may be as small as one printed character or as 
large as 55 X 55 characters. 

GRIDS is very flexible both in digesting input data 
and producing maps. There are three types of maps 
available: (1) shaded, in which data values are repre
sented by overprinted characters of varying darkness; 
(2) density, in which a character is splattered randomly 
throughout each grid cell with more characters repre
senting higher values; (3) value, in which the actual 
data value is printed in each cell. Figure 2 is an example 
of a GRIDS shaded map. 

GRIDS accepts as many as 8 input variables and 
2 coordinates to be mapped, provides for manipulation 
of the data in any desired way, and produces up to five 
different maps for each run. No previous preparation of 
the data is necessary and no knowledge of the data 
values is necessary. GRIDS provides for data manipula
tion through MAPTRAN, a built in FORTRAN-like 
programming language, or a user exit routine if neces
sary. 

GRIDS is especially easy to use because all specifica
tions are free format keyword type and there are many 
default values for the user with simple needs. 

GRIDS has many important applications. Because 
GRIDS is inexpensive and flexible, it is a very good 
analytical tool. GRIDS may also be used as a prelude 
to more cosmetic and thus more expensive computer 
mapping techniques. 

The CUS has also used, and is beginning a further 
study of, the Geospace Plotter. This plotter is a Cathode 
Ray Tube Photographic device with very good resolu
tion and a selection of 32 intensity levels. One may 
select either 100 or 200 dots per inch resolution, with 
each dot addressable. Geospace plotter maps approach 
the quality of maps produced by a draftsman. These 
maps are excellent for public display and published 
reports, e.g., to decision makers at all levels. 

The softw&re supplied by the Geospace Corporation 
called ALPACA is very similar to software for pen 
plotters. SCRIS is presently improving the efficiency of 
ALPACA, particularly for mapping applications. 
SCRIS is also developing a mapping system, which will 
be particularly useful with the DIME file. Figure 3, a 
Geospace Plotter map of New Haven using the DIME 



Geocoding Techniques 613 

POPULATICN OE~SITY I~ LA COUNTY 197C POP I SQ ~I SCRIS 

119.0113 117.5998 
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++* 

34.15661+ + 
+ 
+ 
+ 
+ 

34.63579+ 
+ 
+ 
+ 
+ 

34.51494+ 
+ 
+ 
+ 
+ 

34.39411+ 
+ 
+ 
+ 
+ 

34.27328+ 
+ 
+ 
+ 
+ 

34.15243+ 
+ 
+ 
+ 
+ 

34.03160+ 
+ 
+ 
+ 
+ 

33.91015+ 
+ 
+ 
+ 
+ 

33.18993+ 
+ 
+ 
+ 
+ 

33.66<;10+ 
+ 
+ 
+ 
+ 

33.54826+ 
+ 

1-
- -1-0£ -

-- I - I -

I-I f -

- 11-

--1-- -
--I~tt--

-----ltt-~ttI---
IIIltIJtttD~----lt»I 

---I-JItltlllltI--- --It I -
-Ittltrl_tI Irt~ttII- -ttl 1----
Iltlttrtttttl.ltJttrt»I -t--IJ~f--

- I-ttlltt~tltJ~~JJ»rttttlt-1 1IIItlttIII ----
- 1-- - IItHlttll- I"ttIIIttt'HI-tlttl-I-ttl-

1--- -If-tlttttrlrttttt»rIrtt-- IfUlfll1 I-fl
-1---t"'I"I*tJtIIDJIU»llli-tlt.tJ'tl- -litt 

-IItt~tJ.».t"'.DI.I».I»I»I.t~tJ.tJ~I-- -I-fitl 
- 1 - IItttl~~f¥ll»I'I.'.tn.IIIHtl l-nHItI~t-- - - H+l 

-111 •••• I0.»II.11111111.tll- IItftII-I--I 
t •••• tIIIIJ.lltItr---ttOttI -tJ--- I-I 
-t IttJl»» •• OI •• ».r •• ttltttJ 1-- I t I 
-II-t •• » ••••• rr.Ittiii-t.ltl---

J-IO.»'.D»»».DI»r».»tltttt 
ffI»J»tJID.,.»t»I».»I-Itt 
I» •••• ltIIIIJ.trJrIII 
tJ»t-Ilttt-I'DDtJI»I 
»Jttrt.llttfI-t •• tt 

IttItDIDI-tDlt-i'J
Iltllli-Dt--tu •• tII 

I - Itt--J----IJI 
--tl--

-1-

• .. 
+ .. .. 
... 
• 
+ 
+ 
+ 
• 
+ 
+ 

• .. 
+ 
+ .. 
+ 
+ .. 
+ .. 
+ .. 
+ .. 
• .. 
+ .. 
... 
• 
+ 
+ 
+ 

• 
+ 
+ 

• 
+ 
+ 
+ .. 
+ 
+ 
+ .. 
+ 
+ 
+ 

*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ •• +++++++++++++ •• * 

GRIDS --- (GRID RELATED INFORMATICN DISPLAY SYSTEM) 
POPULATIO~ DE~SITY FOR LOS ANGELES C(L~TY 197C 

FRC~ lS70 MEDLIST 
MSk 6/71 
SCHIS 

PGPULATICN I SQ ~IlE 

1********1 
<--10M 1--> 

MINIMUM CELL VALUE(S) 

MAXIMUM CELL VALUE(S) 

LEGEND: 

-------- IIIIIIII 
-------- IIIIIIII 
-------- IIIIIIII 
-------- IIIIIIII 
-------- IIIIIIII 

• 0000000 19<;<;.99<; 
1999.999 39<;9.'1q8 

FREQUENCY 261 151 

0.0 

O.222C65E as 

tt-H-H+t J.D ••••• 
tit-f·H++ .1." ••• , 
-fttt+-f+t ".nl •••• 
t+tt+ttt JI ••• I." 
iittiitt lIn •••• 

3C;<;9.9<;8 69C;9.9<;7 
6q99.991 11 qq9. 99 

192 192 

DEGREES LATITUDE NORTH 
DEGREES LONGITUDE WEST 

• ••••••• 
•••• 1111 

• ••••••• •••••••• 
I ••••••• 

11qq9.99 
22206.50 

58 

GRIDS 

Figure 2-Sample GRIDS output using the shaded option. The legend displays each shade used, the corresponding data 
value range and frequency (count of grid cells) for each shade 



614 Fall Joint Computer Conference, 1971 

Figure 3-Geospace plotter shading map (Taken from Census 
Use Study Report No.2, p. 41) 

file for the street network base, is a sample of the 
quality obtainable through these techniques. 

HEALTH INFORMATION SYSTEMlo,l1 

The Health Information System (HIS) was de
veloped in New Haven by the CUS. Many of the 
computer tools mentioned above are incorporated into 
the HIS. Initially, the HIS concentrated on maternal 
and child care but has now become a more general 
information system for many health related fields, such 
as social pathology and health care delivery systems. 
The purpose of the system is to pinpoint geographically 
those neighborhoods where there is a significant health 
risk and define the characteristics of the population to 
provide health planners with analytic tools for ap
proaching the solution of health problems. The HIS 
gathers data from a variety of sources and analyzes 
that data through advanced statistical techniques. 
Naturally, HIS techniques may be transferred to other 
fields such as education and crime. 

Briefly, the analysis proceeds as follows. Nearly 300 

data items are collected from such sources as the First 
Count Summary Tapes, Vital Records, Mental Health 
files, and the Mental Retardation Register. These data 
are linked through ADMATCH and summarized by 
block group. Correlational, factor and further multi
variate analyses are performed on the data to produce a 
few constructs or typologies. A topology is a synthesis 
of many items, ordered logically by their contribution to 
the whole. The resulting typologies themselves and 
maps displaying which block groups are typical for a 
given typology (i.e., which block groups rank in the top 
quartile among all the block groups with respect to this 
typology) are extremely useful to planners. 

The CUS plans to also perform cluster analyses on 
the 1970 data base to obtain a more homogeneous 
grouping of neighborhoods. A time-series analysis on the 
1967-1970 data will also be carried out. The emphasis 
will be on comparing changes in configurations of data 
items rather than just one dimensional comparisons. 
For example, illegitimacy is correlated with a number of 
other variables including family disorganization, high 
welfare roles, poor health of mother and child, and low 
socio-economic status. This time-series analysis will 
consider not only illegitimacy but the configuration of 
variables associated statistically with illegitimacy. 

The HIS is now being expanded to Los Angeles 
through SCRIS and UCLA. The HIS methodology is 
already being used in Nebraska and Iowa by the 
Comprehensive Health Planning Council there. The 
HIS is partially implemented in a dozen places around 
the U.S. 

PRESENT ACTIVITIES 12 

SCRIS is presently engaged in a wide array of special 
purpose activities to demonstrate many data processing 
capabilities to the planning community and to in
vestigate the effectiveness-cost relationship of these 
activities. Two of these, the Summary Tape Retrieval 
Information Processor (STRIP) and SCRIS Report 
No.5, will serve to indicate the nature of the in
vestigations. 

STRIP consists of several related programs to select 
Census Summary Tape records by geographic code and 
further select certain data items and produce tabula
tions of these items. STRIP operates in two phases. 
The first phase performs the selections and reformats 
the data to binary for more efficient processing later. 
Naturally, these intermediate data sets are available to 
the user for his own processing. The second phase 
produces set reports as specified by the user. 



Geocoding Techniques 615 

AGE-SEX PYRAMID 

PLACE 2125 PASADENA 

75 + XXXXXXXXX XXXXXXXXXX 
XXXXXXXXX XXXXXXXXXX 

70-74 XXXXXX XXXXXXXXXXX 
XXXXXX XXXXXXXXXXX 

65-69 XXXXXX XXXXXXXXXXX 
XXXXXX XXXXXXXXXXX 

60-64 XXXXXXXXX XXXXXXXXXXXX 
XXXXXXXXX XXXXXXXXXXXX 

55-59 XXXXXXXXXX XXXXXXXXXXXX 
XXXXXXXXXX XXXXXXXXXXXX 

50-54 XXXXXXXXXX XXXXXXXXXXXX 
XXXXXXXXXX XXXXXXXXXXXX 

45-49 XXXXXXXXXX XXXXXXXXXXXX 
XXXXXXXXXX XXXXXXXXXXXX 

40-44 XXXXXXXXX XXXXXXXXXX 
XXXXXXXXX XXXXXXXXXX 

35-39 XXXXXXXXX XXXXXXXXXX 
XXXXXXXXX XXXXXXXXXX 

30-34 XXXXXXXXXXXXX XXXXXXXXXXXX 
XXXXXXXXXXXXX XXXXXXXXXXXX 

25-29 XXXXXXXXXXXXX XXXXXXXXXXXX 
XXXXXXXXXXXXX XXXXXXXXXXXX 

20-24 XXXXXXXXXXXXXXXXX XXXXXXXX 
XXXXXXXXXXXXXXXXX XXXXXXXX 

15-19 XXXXXXXXXXXXXXX XXXXXXX 
XXXXXXXXXXXXXXX XXXXXXX 

10-14 XXXXXXXXXXXXXX XXXXXXXXXXXXXX 
XXXXXXXXXXXXXX XXXXXXXXXXXXXX 

5- 9 XXXXXXXXXXXXXX XXXXXXXXXXXXX 
XXXXXXXXXXXXXX XXXXXXXXXXXXX 

UNDER 5 XXXXXXXXXXXXXX XXXXXXXXXXXXX 
XXXXXXXXXXXXXX XXXXXXXXXXXXX 

PERCENT 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

POPULATION 

MEDIAN AGE 

MALE 

52149 

31.24 

TOTAL 

113327 

,,34.78 

FEMALE 

61178 

39.32 

RECORDS SUPPRESSED 0 

Figure 4-Age-sex pyramid for Pasadena, California (Taken from SCRIS Report No.5) 

SCRIS Report No.5, 1970 Census Data: Char
acteristics of Cities and Unincorporated Places, is a 
demonstration of how useful census data can be ac
cessed and displayed. The programs used to produce the 
report are being packaged for distribution. The report 
contains tabulations of certain demographic char
acteristics by place. These include white population, 
Negro population, rents and home values. Age-sex 
pyramids were also tabulated for each place. An age-sex 
pyramid is a two-way graph, percent male increasing 
to the left from the middle, percent female increasing 
to the right and age increasing vertically. Age-sex 

pyramids are used extensively by planners as they 
indicate information on the age and flavor of a com
munity. 

A careful examination of Figures 4 and 5, a sample 
from SCRIS Report No.5, reveals a great deal about 
Pasadena. Unfortunately, there is no information 
whether the ladies over 75 are little or not. 

SUMMARY 

The CUS is involved in a college of data processing 
activity all related to small area data and much of it 



616 Fall Joint Computer Conference, 1971 

PLACE 2125 PASADENA 

TOTAL POPULATION 113327 TOTAL DWELLING UNITS 47093 

RECORDS RECORDS 
DATA ITEM COUNT PERCENT SUPPRESSED DATA ITEM COUNT PERCENT SUPPRESSED 

WHITE POPULATION 90446 79.8 0 I-UNIT STRUC-
TURES 28431 60.4 0 

NEGRO POPULATION 18256 16.1 0 2 OR MORE UNIT 
STRUCTURES 18578 39.5 0 

INDIAN POPULA- MOBILE HOMES 80 0.2 0 
TION 281 0.2 0 

OTHER SPECIFIED OVER CROWDED 
RACES 3488 3.1 0 UNITS 2243 4.8 0 

REPORTED OTHER UNITS LACKING 
RACE 856 0.8 0 PLUMBING 

FACILITIES 984 2.1 0 
OWNER OCCUPIED UNITS LACKING 

DWELLING UNITS 19483 41.4 0 KITCHEN 
FACILITIES 1106 2.3 0 

-RENTER OCCUPIED POPULATION IN 
DWELLING UNITS 25170 53.5 0 OVERCROWDED 

UNITS LACKING 
PLUMBING 
FACILITIES 209 0.2 0 

VACANT DWELLING 
UNITS 2436 5.2 0 

VALUE OF OWNER OCCUPIED UNITS RENT OF RENTER OCCUPIED UNITS 

COUNT PERCENT COUNT PERCENT 

LESS THAN 5000 38 0.2 LESS THAN 40 321 1.3 
5000- 9999 299 1.7 40-59 1340 5.5 

10000-14999 1615 9.0 60-79 4490 18.5 
15000-19999 3322 18.6 80-99 5304 21.8 
20000-24999 3077 17.2 100-119 4103 16.9 
25000-34999 4417 24.7 120-149 4441 18.2 
35000-49999 2901 16.2 150-199 2512 10.3 
50000 + 2190 12.3 200-299 1258 5.2 

300 + 566 2.3 

MEDIAN 26300 MEDIAN 103 

RECORDS SUPPRESSED 0 RECORDS SUPPRESSED 0 

TOTAL RECORDS 1 

Figure 5-Selected 1970 Census data tabulations for Pasadena, California (Taken from SCRIS Report No.5) 

connected to geocoding and geographic analysis. A 
great deal of work has been done to provide planners 
with tools needed to analyze local and census data. 
ADMATCH has unlocked much information; 
UNIMATCH promises to unlock considerably more. 
The DIME file is the basis not only for file linkage 
through ADMATCH but also for computer mapping 
and quite sophisticated analyses and modeling such as 
CRAM. 

We conduct research at the CUS in close conjunction 
with planners and others actually using the data to 
make the results of our research immediately relevant 
to the needs of users. CUS research serves as a founda
tion for further research both by CUS and others. 

REFERENCES 

1--
ADMATCH users manual 
US Bureau of the Census 
Census Use Study Washington DC 1970 

2 J P CURRY G FARNSWORTH 
The DIME geocoding system 
US Bureau of the Census 
Census Use Study Report No 4 Washington DC 1970 

3 M JARO 
Geocoding with ADMATCH 
US Bureau of the Census 
Census Use Study Report No 14 Washington DC 1970 

4 R CRELLIN G FARNSWORTH 
ACG-DIME updating system: An interim report 



SCRIS Report No 4 
Los Angeles California 1970 

5 G FARNSWORTH 
DIME applications and the computerized resource 
allocation model 
American Statistical Association Joint Statistical 
Meetings Detroit Michigan December 29 1970 

6 G FARNSWORTH 
Computerized resource allocation model 
Unpublished paper SCRIS 1970 

7 M JARO 
Conversation concerning UNIMATCH 

8--
Computer mapping 
US Bureau of the Census 

Geocoding Techniques 617 

Census Use Study Report No 2 Washington DC 1970 
9 M JARO 

Grid related information display system: GRIDS 
To be published by the US Bureau of the Census 

10 J DESHAIES 
Health information system 
US Bureau of the Census 
Census Use Study Report No 7 Washington DC 1969 

11 J DESHAIES 
Conversation on recent health information system 
developments 

12--
1970 census data: Characteristics of cities and 
unincorporated places 
SCRIS Report No 5 Los Angeles California 1971 





URBAN COGO-A geographic-based land 
information system* 

by BETSY SCHUMACKER 

M assachusetis Institute of Technology 
Cambridge, Massachusetts 

INTRODUCTION 

COGO, a geometric problem solving system, has been 
in existence for ten years in its basic form and for four 
years in its more advanced form. COGO provides a 
command-structured language and a set of processing 
routines to define and describe such geometric objects 
as points, curves, courses, chains, and vertical profiles, 
and to perform geometric computations such as loca
tions and intersections to find new point coordinates. 
It also includes file capabilities to enable users to 
gradually derive problem solutions over a period of 
time as well as to provide the ability for different users 
to try different problem solutions against the same set 
of data. It provides dynamic memory management and 
dynamic program management as a subsystem of the 
ICES System. 

URBAN CO GO expands upon ICES CO GO in 
several ways: 

• New geometric objects can be defined, namely 
blocks, regions, networks, and three dimensional 
objects such as building and street overpasses 
and underpasses. 

• Expansion of file capabilities and the provision for 
hierarchies of files and subdivisions of files. 

• Graphical output capabilities including both soft 
and hard copy displaying of objects or groups of 
objects with or without translation, rotation, or 
magnification, density mapping, selective mapping, 
and detailed mapping with full annotations. 

• Graphical input capabilities by digitizing on a 
display screen or digitizing from hard copy on a 
flat-bed plotter-digitizer. 

* The work reported herein was supported in part by grant no. 
GK-25622X from the National Science Foundation. 

619 

• Data attribute capabilities to associate textual 
data (e.g., land use information) with any or all of 
the geometric objects. 

• Processing facilities for the data attributes to be 
able to sort, tabulate, or report on such data, and 
groupings and analyses to perform statistical tests 
on such data. 

It is the author's belief that the combination of the 
original COGO concepts and the expansions sum
marized above form the basis for URBAN CO GO to 
provide the base and the direction for urban information 
systems of the future. 

GEOMETRIC OBJECTS 

The geometric objects currently allowed in the 
system are 

points 
curves 
courses 
chains (or parcels) 
profiles 
networks 
blocks 
regions 

Points 

Points are the basic geometric unit of the system and 
have absolute values associated with them. Points are 
identified by number and can have x, y, and z co
ordinates stored as their values. 



620 Fall Joint Computer Conference, 1971 

STORE POINT 17 X 113.21 Y 7521.831 Z 37.512 

Points can be identified and have values stored for 
them by use of the STORE command (above) or by 
use of any of the LOCATE or INTERSECT com
mands (below) or by digitizing them on a graphic 
display unit or on a plotter digitizer unit. 

LOCATE 512 FROM 17 DISTANCE 153.91 
BEARING N 37 23 E 
INTERSECT CHAIN 'A' WITH NETWORK 
'C' POINT 801 

Curve8 

Curves are also absolute objects, are identified by 
number, and are either circular arcs, circles, or spiraled 
arcs with circular arcs. They are planimetric and are 
defined by storing or by digitizing. 

Network8 

Networks are relative objects and are identified by 
an 8-character name. Networks consist of links which, 
in turn, are defined by begin and end nodes which are 
point numbers. Links can be singly-directional or dual
directional and can vary from network to network. 
Networks can be defined by storing or digitizing. 

Cour8e8 

Courses are relative objects defined by the point 
number at each end. They are identified by a four
character name and defined by storing or digitizing. 

Chain8 

Chains are relative objects, identified by an 8-char
acter name, and defined by storing or digitizing. Chains 
consist of points, curves, and courses, either with 
continuous boundaries or with gaps. While chain is the 
general name for this object, a more specific name for 
some applications is parcel, which name the system 
recognizes as a synonym for chain. The word parcel 
implies the same thing as a parcel of land which is the 
smallest legally recognized unit of land. 

The points and curves which define a chain locate the 
chain in space; the sequence of the items which define 
it (i.e., the sequence of the points, curves, or courses) 
define the topology of the chain. 

STORE CHAIN 'A' POI 159 CURVE 7 POI 
153 CUR 91 

Blocks 

Blocks are relative objects identified by an 8-char
acter name and defined by storing. Blocks consist of 
chains. One example of a block is a street block which 
consists of parcels (chains) of land. 

STORE BLOCK 'D' CHA 'B' 'A' 'F' CHA 'G' 

Regions 

Regions are relative objects identified by an 8-char
acter level and an 8-character name. Any number of 
levels of regions may be defined and stored. A first level 
region consists of blocks, a second level region consists 
of first level regions, etc. This capability permits the 
user to go from very fine geometric data to very gross 
geometric data (in terms of size) in any way he wishes. 

Object grouping 

Standard parcels of land may be stored as chains, 
street blocks containing these parcels may be stored as 
blocks, census tracts containing these blocks as first 
level regions, counties containing these census tracts as 
second level regions, states containing these counties as 
third level regions, the country as a fourth level region. 

Users interested only in gross areas may start out 
with census tracts as chains, counties as blocks, states 
as first level regions. 

In other words, by designing the system so that the 
user can be very accurate at the base level, any gross
ness of accuracy is also possible merely by defining the 
base levels to be something different. Thus, in the first 
use above point coordinates are stored as accurately as 
they can be measured by surveying and everything else 
has the same accuracy. 

Thus, the accuracy achieved is not what the system 
imposes upon the user, but what the user himself im
poses by his choice of base level and his own needs. 

DATA ATTRIBUTES 

Data attributes can be associated with any of the 
geometric objects. The allowable categories of attri
butes and range of values for these are defined as 
essentially a system setting for a particular execution of 
the system. The system setting aspect of this definition 
permits different groups of users to access the same 



geometric data base with their own associated attribute 
data. Thus urban planners, transportation analysts, 
city managers, utility company inspectors, etc., can all 
use the same base geometric data of a city but utilize 
that attribute data which is meaningful and useful 
to him. 

The allowable names for these attributes and the 
range of values each may have permits (1) the user to 
use nomenclature which is familiar to him and (2) the 
system to do editing "for free" on this data while it is 
being stored, updated, modified, or accessed. 

Definition 

The definition of allowable categories of attributes 
can be performed at the beginning of each execution, 
or can be defined once and stored on a file and then 
utilized for any number of executions by giving the 
name of the file to use at the beginning of an execution. 

Figure 1 illustrates how allowable categories of data 
attributes and their valid values are defined for chains 
(in this case, land parcels). The allowable categories 
are as shown in Table I. 

Figure 2 illustrates a similar definition but this time 
for links of street networks. 

Both illustrations include the request to file the 
allowable categories so that they can be used in future 
executions merely by giving the name of the file with 
the command OOGO. 

OOGO 'UG2' 'UGOAT' 

TABLE I-Allowable Attributes for Parcels 

name meaning range of values 

STREETNO street number of any integer value 
parcel 

WARD ward in which integer 4, 5 or 9 
parcel occurs 

BUILDING is there a building YES or NO 
on the parcel 

TYPE type of material of BRICK, WOOD, 
the building STONE, or 

CONCRETE 
STORIES n umber of stories any integer value 

in the building 
USE type of use of the APARTMENT, 

building MERCANTILE, 
etc. 

MIXED if mixed use, more any alphanumeric 
detail about it value 

LAND VALUE assessed land value any integer 
BUILDING assessed building any integer 
VALUE value 
OWNER name of owner any alphanumeric 
YEAR year in which any integer 

assessment was 
made 

URBAN OOGO 621 

DE~ INt CATluORY CHAIN 
ADD 1 'STRELTNO' aNT 
ADD 2 'WARD' tiN aNT 

4 
5 

* 9 
ADD 3 'SUILD.Nu' ~IN ALPHA 3 

YlS 
NO 

* ADD 4 'TYPl' ~IN ALPHA 8 
BRICK 
HOOD 
STONt. 

* CONeRE. Tf:. 
ADD 5 'STORILS' .NT 
ADD b 'USt' ~IN ALPHA 14 

APARTfvH:.NT 
MlRCANTILt. 
CHURCH 
O~tICE 

SINllLE. 
STORE. 
I-OUNDAT.ON 
SCHOOL 
LODbiNu HOUSE. 
CLUB 
HALL 
DORMiTORY 
bARAllL 
VACANT LOT 
PARK. Nb LOT 
POLeCi:. STATION 
tiRE. HOUSL 
SUB~JAY STAT I ON 
HOTEL 
PO S T 0 I- f· I (, E 
LIBRARY 
tv11 XE:.D 

* ADD 7 'MIXED' ALPHA 24 
ADD 8 'LAND VALUE' INT 
ADO 9 'BUaLD,Nb VALUl' INT 
ADD 10 'QWNlR' ALPHA 32 
ADD 11 'YlAR' INTEbtR 
LIST 
t-aLE:. 
E.ND DE.I-,Nl 

Figure l-Category definition for chains 



622 Fall Joint Computer Conference, 1971 

OttiNE:. tAT LaNK 
ADO 1 'NAME' ALPHA 12 
ADO 2 'TYPt' tiN ALPHA ti 

* 

STRf..E.T 
ALLt.Y 

ADD 3 
ADD 4 

'~JIOTH' 
'LANE.S' 

o 

RE:.AL 
tiN • NT 

1 
2 
3 
4 

* AOD 5 'PARKINb' ~IN ALPHA 5 
Lt.tT 
RIl:JHT 
BOTH 

* ADD 6 I LOvJ NUM' 
AD 0 7 I H I b Ii N Ufv\ ' 
LIST 
t I La:. 
t:.ND Dt.taNl 

INT 
aNT 

Figure 2-Category definition for links 

Storage 

Actual attribute values for specific objects, e.g., for 
specific chains, are stored through use of the STORE 
TEXT command. Figure 3 shows some texts being 
stored for some land parcels, the allowable categories 
of which are the same as defined previously (in Figure 
1). Once stored, the data attributes can be modified by 
using the UPDATE TEXT command,. deleted via the 
DELETE TEXT command, summary listed via LIST, 
or printed by PRINT TEXT. 

The attributes can be used for such things as sorting, 
selective tabulation, creation of statistical sample 
vectors, selective displaying or plotting, display or plot 
annotation, and density mapping. Such use is further 
described in the respective functional sections. 

Any number of categories of information may exist for 
any particular object type and any number of object 
types may have categories defined for them. 

GRAPHICAL INPUT/OUTPUT 

Graphical capabilities exist for both input, output, 
and identification, using a "soft-copy" device (inter-

active display unit) or a "hard-copy" device (fiat-bed 
plotter/digitizer unit) or any combination thereof. 
The initial work on the system has separated the soft 
from the hard by essentially assuming that gross 
sketching and/or gross figure definition is performed 
on the soft device. These separations are not system 
imposed but rather decisions made as to the use of the 
devices dictated by the units themselves, and probably 
would hold true for most display and plotter units on 
the market today. 

Hardware 

The device used in developing the system is shown in 
Figure 4. It consists of an interactive storage tube 
graphic display, a keyboard, a printer, a fiat-bed 
plotter/digitizer, and a digitize function keyboard. 
Probably, the most unique and functionally useful 
thing about the unit is the fact that the whole set of 
basic units (i.e., display, keyboard, printer, plotter/ 
digitizer, and function keyboard) are all parts of the 
same unit, i.e., all controlled by one control unit and 
require but a single hook-up channel to a computer, be 
it telephone link to a remote computer or a direct 
attachment to a local dedicated computer. 

STORE TlXT tHA '1092' 
'STRLUNO' 532 
'I'JARD' 4 
'8U.LDINu' 'YtS' 
'TYPt' 'SRIC .. K' 
'STORILS' 4 
'USL' 't·1LR(..ANT. Ll ' 
'LAND VALUL' j8S30U 
'dUllD.Nu VAlUL' 914700 
'mJNLR' 'NUJ lNuLAND t·IUTLJAL L. t l .IJSURAIJ(..L C.Of,PANY' 
'YLAR' 19t.i4 
l.NO 
o Tl.XT ("HA '1092-1' 
'STRU HJO' sua 
'liARD' 4 
'SUILDINu' 'YE.S' 
'TYPE' 'BR.(..K' 
'STUR I t.S' 4 
'USt.' 'MLRtANTILL' 
'LAND VALUL' 144000 
'dU.LOINu VALUE' 135000 
'm-JNt:.R' 'NHI LNbLAND t'lUTUAL lI .. L t NSURAN(..l tOttPANY' 
'YEAR' 1960 
LNO 
o TlXT tHA '1093' 
'STHE.ErNO' 490 
'~JARD' 4 
'BUILDtNu' 'YLS' 
'TYPt:.' '8RI(..K' 
'STOR ItS' 4 
'USt:. I 't-1ER("ANT. Ll ' 
'LAND VAlUt.' 30000U 
'dUtlDINb VAlUl' 37000U 
'mJNlH' 'Nl\J ENulANO t,lUTUAL L I h ,r~SURA1J(.l (..OI,IPANY' 
'¥tAR' 1967 
lND 

Figure 3-Storing of textual attributes for chains 



Figure 4-Interactive display and plotter/digitizer 

Even though the design and development of the 
URBAN COGO system and the graphics part in 
particular has been done using the specific device 
described above, the system has been designed to 
permit the use of any such hardware as long as it can be 
driven in a functionally similar manner. Merely by 
using a COGO system setting command, and having 
the appropriate interface programs to physically drive 
the units, achieves compatibility with other plotters 
and interactive displays. 

SET SYSTEM PLOTX 30.0 PLOTY 24.0 
UNITP 0.001 

The set system command can also be used to limit the 
size of the plot (as above) or of the display, thus per
mitting different plotter table sizes, different storage 
tube sizes, and different physical paper sizes on the 
plotter. The UNITP parameter tells the system what 
the size of a plotter unit is, in this case, .001 inch. 

Graphic input 

Inputting of information from the digitizer (flat-bed 
digitizer) is most powerful. 

DIGITIZE {~} POINT n SCALE 

{
length } ORIENTATION 

length PER VALUE 

{

X value Y value} 
direction DATUM 

POINTm 

URBAN COGO 623 

The digitize command puts the user into digitize 
mode and sets up basic values to be used in the ensuing 
storing of the digitized points. n is the point number at 
which the system is to begin storing points. The 
SCALE parameters define the scaling to be performed 
in translating from digitizer coordinates to actual 
coordinates. It can be given as 200 PER 1 meaning 
perhaps 200 feet per inch or it can be given as 200 per 
whatever length is digitized as two points after the 
command is given. The ORIENTATION defines what 
rotation is to take place upon the digitized points prior 
to storing them and can be given as N 0 E where the 
corresponding direction of due north on the map which 
is being digitized is defined by 2 points digitized after 
the command is given. 

The last parameter, that of DATUM, defines a base 
point about which translation, rotation, and scaling are 
to occur. The values define the actual coordinates (if 
POINT m option is used, the coordinate values of 
stored point m are used) of the base point and the 
digitizer coordinates of that point are defined by 
digitizing it after the command is given. 

Thus, after issuing the command with its appropriate 
parameters and digitizing 5 or 3 points (5 if SCALE 
length is given, 3 if length PER value is given-[2 for 
scale], 2 for orientation, 1 for datum), the system is 
ready to start accepting digitized information to 
translate, rotate, and scale it, and then to store it. 

Any kind of allowable geometric object from points 
to chains and points to networks can be defined and 
stored in this way. Tp enable the user to tell the system 
what object or objects he wishes to define, the function 
keyboard is used. Its template for this command is 
currently defined as shown in Table II. 

Fcn. Key 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

16 

TABLE II-Function Key Definitions 

POINT 
COURSE 
CURVE 
CHAIN 
NETWORK 
LINK 

Action 

END OF OBJECT 
END OF OBJECT CLASS 
PLOT everything digitized up to this point 
DISPLAY everything digitized up to this point 
NAME the last object by keying in from keyboard 
TEXT (or label information) is to be located at 

next point digitized and the textual information 
itself entered from the keyboard 

RETURN to the standard keyboard command 
environment 



624 Fall Joint Computer Conference, 1971 

TABLE III-Digitizing Sequences 

Function key 4 
Digitize point 
Digitize point 
Function key 3 
Digitize 5 points 
Function key 7 
Function key 2 
Digitize 2 points 
Function key 7 
Function key 7 
Digitize point 
Function key 3 
Digitize 3 points 

Function key 7 
Digitize point 
Function key 7 
Function key 8 
Function key 5 
Function key 6 
Digitize 6 points 
Function key 6 
Digitize 2 points 
Function key 8 
Function key 16 

The functions are hierarchical in that once the chain 
key is pushed, everything that follows, be it points 
digitized or combinations of point, curve, course func
tion keys and digitized points, will be stored as one chain 
until the end of object or end of object class key is 
pushed. Thus, the sequence in Table III will store 2 
chains and 1 network. 

The objects digitized in Table III consist of, respec
tively: 

chain 1: 2 points, 1 curve, 1 course 
chain 2: 1 point, 1 curve, 1 point 
network 1: 5 links composed of 6 points, 1 link com .. 

posed of 2 points 

If no name is given by the user (as above), the system 
will automatically assign unique names to all objects 
defined. 

The plot and display functions are very useful to the 
user by enabling him to take spot checks on what he 
has done so far without removing him from digitize 
mode. 

It has been found that the accuracy obtained from 
inputting coordinate data in this fashion is entirely 
dependent upon the amount of time the user wishes to 
take to accurately position the cross-hair over a position 
to be digitized. With enough care, accuracy to better 
than .01 inch can be achieved. 

Graphic output 

A wide variety of graphical output capabilities exist 
in the system and will be expanded upon in the future. 
Straightforward plotting or displaying of geometric 
objects was the first graphic capability implemented. 
All objects, points, courses, curves, chains, blocks, 
regions, of any level, and networks, can be drawn and 
translated, rotated or magnified. It is thus possible to 

display a large section of the city, home in on a particu
lar subarea of interest through one or many repeated 
magnifications, and then get a hard copy plot of the 
area of interest. Figures 5 and 6 show results of a dis
play and a plot, respectively, of several blocks of a city. 

A display or a plot can be annotated with the name 
of each object on it, be it all point numbers or all chain 
names or all block names, etc. The user can also point 
to an object and have its name or number drawn. Stored 
attributes about the plotted or displayed objects can 
also be drawn. Figure 7 shows a block of a city plotted 
and then annotated with the names of the parcels in the 
block and the· use of each of the parcels as recorded in 
the assessor's office. The caption "mixed" means that 
the parcel has mixed usage. Figure 8 shows a plot of 
what each mixed usage is, drawn so as to use the sheet 
as an overlay. 

A selective draw can also be done, whereby the user 
requests all of a certain object type whose data attri
butes satisfy certain criteria to be displayed or plotted. 
Figures 9 and 10 illustrate this capability. The first 
figure is a display of all chains in a section of a city 
whose land value is greater than $75,000 or whose 
building value is greater than $150,000. The second 
figure is a display of all chains in the same section of a 
city whose land value is greater than $75,000 and whose 
building value is greater than $150,000. 

Just as objects which are drawn in a standard fashion 
can be annotated, so can objects that are selectively 
drawn. Figure 11 shows the result of a selective plot and 
an annotation. The plot requested was all chains in a 
section of a city whose land value is greater than 

Figure 5-Display of several blocks 



$100,000. That plot was then annotated with the chain 
names and the land value for each chain. 

Another graphic capability is density mapping. Sets 
of ranges of values for an attribute of chains, blocks, or 
regions can be drawn, each set with a different shading 
line. Figure 12 illustrates this by showing different 
ranges of land value for parcels in a block of a city. The 
ranges chosen for this were 1,000 to 10,000 designated 
by 1?Z2l, 10,000 to 25,000 designated by J:SSSI, 25,000 
to 75,000 by~, and 75,000 to 500,000 bylIITl. This 
capability can be used on the display as well as the 
plotter. 

III 
II 

J1 

Figure 6-Plot of several blocks 

URBAN COGO 625 

I 1~47 

I-J.~_{'j fv1IXE.D 
MIXED lI48 

j APA~T~ENT 

I 

L<;' _< 7 
A.CJA~T''1E·_NT 

11 ..{..{ b -------1 

IA~:!\RT~ENT 

I 
11 3:"{ 5 
jMIXED 

I 
13:..{4 
MIXED 
13:"{"{ 
MIXED 
13:"{Z 
MIXED 
1 3:"{ 1 
MIXED 
i3:~O 

5INGi-F_ 

13:Zg 
MIXED 

>0-
1]1AI 
>f\j 
flJrn 
-I 
3: 
r'1 
z 
-I 

LIlt-
HIAI 
zm 
~D r-
rn 

iI4g 
~J I ~~ G i- F_ 
1. ~ t.j [J 

SINGi-L 

1 I"J 1 
SINGi-L 
1~5C::: 
StNGi-L 

13:53: 
5INGi-L 

1 3: t:.j 4 

~INGi-L 

13:55 
:'JINGi-L 
13:5b 
SINGLE 

no
IIAI 
CLfl 
flJ[l1 
n 
I 

Figure 7-Annotated plot of a city block 

i 
i 
I 

! 
I 

Statistical charts and graphs can also be drawn. 
They are described in the section about the statistical 
capability of the system. 

Additional graphical capabilities are planned for the 
system but not yet implemented. Full mapping capa
bilities including full or partial dimensioning and 
symbol labeling is planned. Examples of such use are 
tax mapping and utility network schematics. Planar 
perspectives of three dimensional objects is also 
planned. Usage for these includes skyline perspectives 
along a street and multi-tiered transportation and 
utility networks. 



626 Fall Joint Computer Conference, 1971 

> > 
1] 1] 

> > 
][] ][] 

-i -I 
:t :t 
1"'1 1"'1 
Z Z 
-i -I 

U1 U1 

STORE OF"" F"" I-£: ~: -i 
0 0 
][] ]IJ 

M M 

~TDRE DF"F"ICE: 

"P"RTMENT STORE 

"P"RTMENT STORE 

"P"RTMENT STORE. 

AP"RTMENT STORE 

"PARTMENT STORE 

I\P"RTMENT STORE 

Figure 8-Annotated overlay of mixed usage 

A great deal of emphasis is being placed upon the 
graphical capabilities of the system. It is the author's 
opinion that this will prove to be one of the major 
features of URBAN COGO. 

STATISTICAL ANALYSES 

URBAN CO GO currently has the capability to 
perform parametric and non-parametric statistical 
analyses on groups of data attrihutes. Sample vectors, 
upon which the analyses are to be performed, can con-

Figure 9-Selective display on land value 

sist of raw data (the actual attribute values) or of data 
formed through groupings, exclusions, inclusions, 
additions, subtractions, multiplications, divisions, 
powers, etc., upon the raw data. Besides the standard 
statistical values, the system can perform the following: 

Non-Parametric 
Chi-square analysis 
Kolmogorov-Smirnov test 
Mann-Whitney U test 
Kendal Rank Correlation test 

Figure 100Selective display on land value 



URBAN COGO 627 

--------------- ---------------------------------

--0 
LIJD 
"N 
M~ 

r,;~g7l 
1174000 
i 
L--_ 

1
1 ~B~ 

,180000 

I L-______ _ 

~--~~"-----J -11 ~B 7 

l~:7500 

1~12l 
1 b'33:DD I 

'--__ J 
r 0 

1

1II 0 

D° 
IV! ~ 

l -; ~ 

o 
"0 
OD 
M~ 

N 

1~5B 
12Sg00 

0 0 
1II0 1'-0 
OlLD Ol~ 
N: Nt--
~ ~ ~ ~ 

I 
112gb 

127g 
277800 

i
l4g0DOD 0 

Ulo 
010 
N~ 

~ ________ L_ __ ~~rn~~ 

Figure ll-Annotated selective plot 

Parametric 
Variance, covariance 
Correlation 
Regression 

Additional analyses, such as time senes and factor 
analysis, are planned. 

X S[ALE 41 PER IN[H 
Y S[ALE 41 PER IN[H 

Using the statistical subset of URBAN COGO, it is 
possible, through combining, rejecting, creating new 
vectors with the results of analyses, and so forth, to 
combine and aggregate in almost any way to any level 
required, starting at even the most raw level. Capabili
ties exist for the sample vectors to be saved in a file 
so that statistical investigation and analysis can be 
done at the user's leisure. 

I . 

Figure 12-Density plot on land value 



628 Fall Joint Computer Conference, 1971 

The statistical subset also provides the user with the 
ability to graphically portray a vector or group of 
vectors. Graphs, scatter diagrams, and histograms can 
be drawn on the printer, the display, or the plotter. 
Figures 13 and 14 illustrate the plotting of a graph and 
a histogram, respectively. The first is a graph of the 
land values of all parcels in a section of a city. The 
second is a histogram of the use of the parcels in a 
section of a city. 

PROCESSING FUNCTIONS 

Various processing facilities have been included. 
ICES CO GO contained the ability to locate points in 
the XY plane in many ways, including: 

-at a given distance and direction from another 
point 

-at the intersection of 2 lines 
-at the intersection of 2 curves 
-at the intersection of a curve and a line 
-as a projection onto a course or a curve 
-at a given distance along a course or curve 

~RAPH OF LAND VALUE IN CHAIN 

COUNT 

Ell Z:ZD 

Z:Ol 

ZBb 

Zb':J 

Z5Z 

ZZ:5 

ZIB 

ZOI 

184 

Ib7 

ISO 

J:n:: 

I I b 

':J':J 

8Z 

bS 

48 

Z:I 

I Il,." , "" 
14 

0 Z 
=FIf'l""-1-'4'-l-'-¥'-l-4-!-'-+-!-t---+' --+'t-+-t--++++ -f4- I I I I I I I 1-+Y-+--1 

~ 4 5 b 7 8 g 

X-AXIS I~IDDDDD 

Figure 13-Statistical graph plot on land value 

L J U N T 
151-:-

IA1+ 

In...;... 

125-1-

119i 

ill~ 

I 

Im-r 
1 

95 -+-

8 /-1-

~I~ r~GRAM Dr USE 

Figure 14-Histogram plot on usage 

URBAN CO GO has expanded upon this to enable the 
user to intersect higher level objects and store the 
points of intersection as new points. Networks, chains, 
and blocks can all be intersected with similar objects, 
e.g., network with network, or with other objects, 
e.g., network with block. 

It is planned to expand upon the location capability 
as well as the intersect capability to move along any 
planar slice in 3-space when the three-dimensional 
object capability is implemented. 

Translation and rotation of networks, chains, and 
blocks are also provided with the ability to do so on 
any of the three standard planes-XY, XZ, or YZ. 
Thus, with this capability, a user may store groups of 
objects in their own local coordinate system and when 
they are fully checked, translate and rotate them to a 
more global coordinate system. 

Tabulation 

Tabulation facilities are also available and can easily 
be added to for any specific use of the system. General 
capabilities such as selective tabulation of objects whose 
data attributes satisfy certain criteria, or the sorting of 



a class of objects on one or more data attributes are 
now part of the system. Major report generation could 
easily be added to the system, but is highly user and 
type-of-data dependent. An illustration of one such 
report is the generation of tax bills for the assessors 
office. Adding this capability would be very easy once 
the format for the bills has been defined. It is easy to 
foresee many facilities being added to the system in the 
area of report generation, but primarily by and for a 
specific set of users. 

CENSUS DATA 

Many potential users of URBAN COGO will want to 
interface with census programs and to use census data. 
Commands and their associated programs are being 
developed to be able to retrieve any or all of the data 
on a census tape and store it in a defined way in the 
URBAN COGO data base. This facility is being 
developed so that not only census data can be retrieved 
and used in this way but almost any kind of data that 
a user might want to utilize in the system. 

The retrieving and the defining of the correspondences 
between the original data and its URBAN COGO 
counterpart is structured so that attribute data as well 
as geo-data (such as that used in the DIME system) 
can be handled. 

It is foreseen that this capability will be one major 
way in which users will be able to interface other 
systems with URBAN COGO. 

EDITING 

There is one very important fall-out of the work done 
to date on the system, namely the ability of the system 
capabilities to be used for data editing, data error 
detection, and self-checking. The features which have 
proved very useful for error detection are: 

-the definition of allowable categories of data and 
the allowable values these attributes may have; 

-the display and plot facilities to catch errors in 
the definition of geographic objects; 

-the sorting and statistical tabulation commands 
to find objects for which no data is stored or for 
which only partial data is stored. 

The fact that a user can essentially use the system 
to check the system is of major import, and the fact 
that it is provided as fall-out (by design) is also of 
major importance. It is most likely, however, that this 
fact will only be recognized through use. 

USAGE SAMPLING 

URBAN COGO 629 

The potential uses for and users of the system are 
many and varied. A brief summary of some follows: 

-City Government: tax billing, analyses of effects 
of tax changes, mapping, management reporting, 
area redevelopment; 

-State Government: transportation route location 
and analysis, congressional districting, main
tenance of highways and highway signs; 

-Utility Companies: maintenance, location of 
manholes, prime power supplies, utility network 
mapping; 

-Consulting Companies: transportation studies, 
airport location studies, urban planning; 

- Legal Services: title searching. 

The specific uses of the system are potentially too 
numerous and varied to describe. Perhaps the best 
source is the imagination of each user. 

SUMMARY 

While it is believed that the URBAN COG a system 
described above provides the base for a new kind of 
urban information system, it is also believed that much 
work still remains to be done with it in order to prove 
this belief. Two maj or areas still remain to be re
searched. 

-the design and development of a new file struc
ture 

-the use of the system in some specific applications 

This work is planned to be performed in the coming 
year. 

The author believes that the building of the system 
upon geographic data as its base and the heavy emphasis 
of graphical capabilities in the system will prove to be 
the way-of-the-future for urban information systems. 

ACKNOWLEDGMENTS 

The URBAN COGO system reported on above is being 
developed by the Urban Geometrics project of the 
Urban Systems Laboratory of the Massachusetts 
Institute of Technology. The author would like to 
acknowledge the advice and wisdom of Professor C. L. 
Miller, Director of the Laboratory, who originated the 
COGO system and who formulated the original concept 
of URBAN COGO. The author would also like to 
acknowledge those M.LT. students (all of whom are 
members of the Chi Phi Fraternity) who are and have 
worked hard and diligently on making the system a 
reality. 



630 Fall Joint Computer Conference, 1971 

The URBAN COGO project is currently being 
supported, in part, by a grant from the National Science 
Foundation. Previously, the project was sponsored in 
part by grants to the Urban Systems Laboratory from 
the Ford Foundation and the IBM Corporation. 

BIBLIOGRAPHY 

1 A J CASNER W BLEACH 
Cases and text on property 
Little Brown and Company Boston 1969 

2 F E CLARK 
A treatise on the law of surveying and boundaries 
The Bobbs-Merrill Company Indianapolis 1939 

3 M CLAWSON C L STEWART 
Land use information 
Resources for the Future Inc The Johns Hopkins Press 
Baltimore 1965 

4 R T HOWE 
Fundamentals of a modern system of land parcel records 
Department of Civil Engineering University of 
Cincinnati May 1968 

5 LOCKHEED MISSLES AND SPACE COMPANY 

California statewide information system study 
Sunnyvale California July 1965 

6 C L MILLER 
Engineers' guide to ICES-COGO I 
Department of Civil Engineering Report No R67-46 
Massachusetts Institute of Technology August 1967 

7 B SCHUMACKER 
An introduction to ICES 
Department of Civil Engineering Report No R67-47 
Massachusetts Institute of Technology 1967 

8 B SCHUMACKER 
URBAN COGO users' guide 
Urban Systems Laboratory, Massachusetts Institute of 
Technology June 1970 

9 Census use study reports 
US Bureau of the Census Reports Nos 1 through 11 
Washington DC 1970 

10--
Urban and regional information systems: support for 
planning in metropolitan areas 
US Department of Housing and Urban Development 
Washington DC October 1968 

11--
Operational and maintenance manual for interactgraphic 1 
Computervision Corporation Burlington Massachusetts 
October 1970 



Understanding Urban Dynamics* 

by GERALD O. BARNEY 

Center for Naval Analyses 
Arlington, Virginia 

INTRODUCTION 

As indicated by published reviews and unpublished 
criticisms, some readers have had difficulty in under
standing several of the most important points of Urban 
Dynamics** by Professor Jay W. Forrester. The book 
contains several stumbling blocks. For example, certain 
pet theories that for years have been thought to be 
important in the dynamics of an urban area are scarcely 
even mentioned (e.g., transportation, crime, pollution, 
discrimination and suburbs). Also, several measures of 
urban characteristics appear to be sufficiently different 
in the model from those found in real urban areas to 
distract one's attention from the main points of the 
book. But there is a message in Urban Dynamics, and 
when it is comprehended, these stumbling blocks 
become less significant. This paper is intended to help 
the reader of Urban Dynamics to understand the 
message of the book and to see beyond many of the 
criticisms that have been made. 

WHAT IS URBAN DYNAMICS? 

Urban Dynamics is an analysis of how the urban 
system operates and how it can be more effectively 
managed. The development of large concentrations of 
relatively unskilled persons and the blighting effect 
these concentrations have on our people and cities are 
the primary issues discussed in the book. The analysis is 
based on a computer model which, in the most general 
terms, simulates the interactions among population, 
housing, employment (industry) and municipal 
serVIces. 

The urban system is an example of what has become 

* Dr. Barney is employed by the Center for Naval Analyses of the 
University of Rochester, 1401 Wilson Boulevard, Arlington, 
Virginia 22209. This paper was written while Dr. Barney was on 
leave at the Massachusetts Institute of Technology. 
** Published by the MIT Press, Cambridge, Massachusetts, 1969. 

631 

known as a "complex system"-a system whose 
behavior is dominated by multiple-loop, non-linear 
feedback processes. Mathematical analysis is not too 
helpful in understanding complex systems since their 
non-linear properties are as yet very difficult to treat 
analytically. Currently, the only successful method of 
dealing with systems as complex as the urban system is 
experimentation-with the actual system or with some 
representation of the actual system. In the case of the 
urban system, most of the experimentation is done with 
a mental representation-the mental image (or model) 
we each have of how the urban system operates. 

Our public officials are constantly performing 
experiments with their mental models as they evaluate 
proposed changes and additions to laws and policies. 
Although most public officials are probably not ex
plicitly aware of it, their experiments involve three 
separate and distinct steps. The official first brings to 
mind his latest mental image of how the system operates; 
he then uses his mental model to deduce the effects of 
the proposal; and finally he judges his deduction of the 
effects against his set of values and goals. In the past, 
it has not been too important to distinguish these three 
steps, but as the policy and legislative issues become 
more complex, it is increasingly important to know 
whether disagreements over a given proposal stem from 
different conceptions of how the system works, from 
inaccurate or inconsistent deductions of effects, or 
from more basic differences of values and goals. 

In turning to the computer for assistance, we are 
forced to consider each step separately. Our mental 
image must be developed and expressed in a language 
that can be used to instruct the computer. Any con
sistent, explicit mental image of any system can be so 
expressed. Our mental images are the results of our 
experiences, and expressing these experiences explicitly 
for the computer permits others to examine, correct, 
and comprehend our mental images and to contribute 
to a broader understanding through their different 
experiences. Given the expression of our mental image, 



632 Fall Joint Computer Conference, 1971 

the computer can point out inconsistencies, determine 
sensitivities, and deduce implications much more 
accurately than can the human mind-and without 
changing the ground rules part way along as the human 
mind is so prone to do. 

But probably the most important contribution the 
computer makes is that it forces us to give separate 
consideration to questions of values and goals. Given 
the implications of a proposed change in a law or 
policy, we are forced to ask if this is what we want, if 
this is consistent with our values, and if this brings us 
any nearer our collective goals. With finite resources, 
cities can't be everything to everyone. Given a better 
understanding of the options available and the effects 
of any given proposal, debate must then center on the 
desirability of the effects and the values necessary for 
judging desirability. 

By passing laws and changing policies, our public 
officials are making changes in the very structure of 
our society. To be of assistance in the analysis of the 
questions they face, a model must not only reproduce 
the behavior of a city in a general sense, it must also 
correctly reflect the basic causal mechanisms at work. 
Many basically different models can reproduce urban 
history, but a model that is to be used to examine the 
effects of change in structure must correctly reflect 
all of the important causal mechanisms-some of which 
are not yet easily measured. This is a formidable re
quirement, and success for now must be measured not 
against an absolute standard of accuracy but rather 
against our only alternatives-inexplicit mental models 
or intuition. 

THE HEART OF THE MODEL 

The Urban Dynamics Model is an explicit expression 
of a distillation of several mental images. Its subject is 
the causes of urban decay-the concentration of large 
numbers of relatively unskilled people in urban areas, 
and all the attendant problems. In the model, just as in 
real cities, people migrate in and out and move among 
the socio-economic classes (Forrester defines three such 
classes: Underemployed, Labor, and Management
Professional) in response to a variety of conditions, 
including population, housing, employment, and 
municipal services. The heart of the model is the 
enumeration and description of the multitude of urban 
conditions which influence migration and economic 
advancement. 

The concept of "attractiveness," the central idea 
behind Forrester's description of migration, is frequently 
misunderstood. Attractiveness is not an indication of a 
city's beauty but rather a measure of a city's drawing 

and holding power for people in the three socio-econornic 
classes. Although a city's attractiveness is generally 
different for the Underemployed, Labor, and Manage
ment-Professional populations, there is an attractive
ness for each of the three classes determining the rates 
at which they are drawn to the city and how effective 
the city is in holding them there once they arrive. 
Forrester inadvertently confuses many readers when he 
gives the attractiveness indicators the following three 
apparently unrelated names: Attractiveness for Migra
tion Multiplier (AMM) , Labor Arrival Multiplier 
(LAM), and Management Arrival Multiplier (MAM). 
The identical modeling function of the three attractive
ness multipliers is indicated in Figure 1. 

The attractiveness multipliers are especially impor
tant in that they reflect the population's response to a 
variety of "incommensurables." Population, housing, 
housing programs, economic advancement potential, 
public expenditures and employment opportunities are 
reduced to a common scale or commensurated (differ
ently for the three classes) to give a composite attrac
tiveness for each class. For example, attractiveness for 
the Underemployed population increases with increased 

Underemployed Labor 
~=*~==t or Management- Professional ~=~;== 

, , 
" 

Population 

/ 
/ 
I 
\ , 

...... 

Population 
Housing Stock 
Housing Programs 
Advancement Potential 
Public Expenditures 
Employment Opportunities 

Figure I-A flow diagram summarizing how the attractiveness 
indicators are used to influence the arrivals and departures for the 
three socio-economic classes (see Urban Dynamics, pages 134,160 

and 165) 



housing programs, economic advancement potential, 
public expenditures, and employment opportunities, 
but decreases with increased Underemployed population 
(reflecting more competition for jobs, housing, etc.). 
Wherever differences in attractiveness exist, the popula
tion gradually migrates to the more attractive area, 
and the changed population distribution gradually 
reduces the difference in attractiveness. 

Significant differences in attractiveness can exist 
only across boundaries where migration is restricted 
(e.g., between cities in Mexico and California). Within 
the United States, however, attractiveness is essentially 
constant. When all components of attractiveness are 
considered, New York City, Chicago, Colorado Springs, 
and Bend (Oregon) have very nearly equal attractive
ness for a given socio-economic class. 

Another important part of the model is the descrip
tionof the factors that determine how fast people 
advance from Underemployed to Labor and from 
Labor to Management-Professional. The rate of 
advancement from Underemployed to Labor (UTL) is 
particularly important, since it is only through this 
transition that the Underemployed can escape poverty. 
The conditions that influence UTL are total labor and 
underemployed jobs, Labor and Underemployed 
populations, education level of Underemployed, job 
training programs, and the ratio of Labor (teachers) 
to Underemployed (students). 

THE FAILURE OF CURRENT URBAN 
PROGRAMS 

The importance of the advancement and attractive
ness concepts can be seen in Forrester's analysis of 
current urban programs. In actual practice, these 
programs generally have a similar and characteristic 
development pattern: an initial period of slight improve
ment and generation of hope, followed within a few 
years by readjustments within the urban system which 
result in a loss of gained ground and general disillusion
ment of the Underemployed. The net result has been 
increased concentrations of Underemployed, continually 
decaying conditions, and growing hostility of the 
Underemployed toward the "System" and toward the 
"Establishment" that they think controls the "System." 
Actually, as Forrester's analysis shows, the failure of 
our urban programs is due not to the control of the 
establishment, but rather to a collection of feedback 
processes that are at work within the system and are 
almost beyond the influence of the establishment. The 
advancement and attractiveness concepts are important 
in understanding the operation and effects of these 
feedback processes. 

Understanding Urban Dynamics 633 

Reduced 
attractiveness 

for 
Underemployed 

Reduced 
capacity of 

Underemployed to 
develop their own 

environment 

Reduced 
advancement and 

employment 
potential for 

Un deremp loyed 

Reduced 
attractiveness to 

Management- Professionals 
Labor and 
business 

competition for 
available land; 

less land available 
at higher prices 

Programs stort 
improving conditions 

for the 
Underemployed 

Increased 
a ttracti veness for 
the Underemployed 

perceived. 

Migration 
into the area 

increases slightly; 
slightly fewer 
are leaving. 

Increase 
congestion and 

crowding 

Increased 
pressure for 

Underemployed 
housing 

Figure 2-Illustration of two negative feedback loops which tend 
to undermine the effects of direct aid to the underemployed 

There are many interacting feedback processes that 
cause urban problems to feed on themselves and make 
failures of our urban programs, but in a highly simpli
fied way, two of the most dominant interactions are 
illustrated in Figure 2. Shortly after the initiation of 
any given program (housing, food, health, job training, 
etc.) , conditions for the Underemployed do measurably 
improve, and the improvement encourages continuation 
of the program. In time, the increased attractiveness of 
the area is evident to the Underemployed, and, as a 
result, a somewhat larger number move into the area 
and a somewhat smaller number leave than would 
have, had the attractiveness not increased. There 
follows a period of somewhat expanded growth of the 
Underemployed population in the area, and this 
population growth increases the pressures on the avail
able schools, housing, 1 employment opportunities, 
shopping and recreational facilities, and transportation 
systems. The effects of this first feedback loop are felt 



634 Fall Joint Computer Conference, 1971 

within a few years when the increased crowding and 
congestion begin to drop the total attractiveness back 
toward what it was before the program was started. 

The effects of the second feedback loop are delayed 
by another few years. The enlarged Underemployment 
population, which resulted from the initial success of 
the program, increases the demand for Underemployed 
housing. As a result, Underemployed housing competes 
more and more vigorously for available land. This 
competition not only takes vacant land but preserves 
very decayed housing stock that might otherwise be 
destroyed to permit an alternative .land use. The in
creased demand for Underemployed-housing land-use 
drives up the cost of land for Labor and Management
Professional housing-thus reducing the attractiveness 
of the area for these two populations. This reduced 
attractiveness for Labor and Management-Profes
sionals, combined with the more intense competition 
for land, implies more business expenses, fewer business 
opportunities, and increased difficulties for all forms of 
business activity. Declining business activity reduces 
the advancement potential for the Underemployed. 
The lowered advancement potential in turn diminishes 
the chances of the Underemployed escaping from the 
urban poverty trap, destroys their chances of improving 
their living conditions, and increases their frustration 
and hostility. 

THE PROBLEM AND FORRESTER'S SOLUTION 

The really basic problem is this: Given the existence 
of feedback processes which tend to counter the effects 
of direct improvements, how can a city best improve 
the lot of its Underemployed with the limited resources 
it has available? Forrester's approach to this problem is 
significantly different from many approaches used in 
the past. He does not start by stating what cities 
should be like but rather asks the very practical 
question: In what ways can the urban system be made 
to operate differently? The effects of changing the way 
the system works are then investigated with the model, 
and the "best" alternative is recommended. 

But "best" for whom: the rich, the poor, the absentee 
landlords, the stock brokers? What values are to be 
used in judging the possibilities? Forrester doesn't 
explicitly discuss the values he uses, but implicit in his 
discussions of the alternatives are two values: the 
solution must be lasting (decades at least) as opposed 
to temporary (a few months to a few years), and the 
solution must lead to increased upward economic 
mobility for the Underemployed. Others (slumlords, 
for example) might have different objectives and values 
to use in evaluating the results of the computer runs, 

but the values behind Forrester's discussions deserve 
careful consideration. Temporary solutions have pro
duced much disillusionment, frustration, and resent
ment among the urban poor, and while the poor may 
not be able to agree on which particular urban co:q.di
tions are most in need of improvement, increased 
upward economic mobility provides them with both 
hope and freedom of choice. 

Forrester's choice for the best way to revive a 
decayed urban area is to demolish five percent of the 
slum housing stock (some of which would have been 
destroyed anyway and much of which is already 
vacant) each year and to provide business encourage
ments that increase new enterprise construction 40 
percent over what would have occurred under the 
same conditions without the added incentives. The 
demolition need not involve active intervention by the 
city; it is probably best accomplished through changes 
in tax laws and zoning. The increased availability of 
land improves the attractiveness of the area to business, 
Labor, and Management-Professionals. This in turn 
results in an upsurge in the demand for labor, which in 
turn increases the opportunities for upward economic 
advancement for the Underemployed. As the area 
becomes more of a place for the Underemployed to get 
ahead, its attractiveness to the Underemployed begins 
to increase, and if unchecked, a new Underemployed 
inmigration (and a resulting demand for Under
employed housing) would within a few years increase 

. competition for the available land to the point that 
business opportunities (and the associated advance
ment potential for the Underemployed) would again be 
decreased. In Forrester's solution, *** attractiveness 
and migration are limited by reduced housing stock 
available to the Underemployed. 

COMMON MISUNDERSTANDINGS 

Forrester's proposed program of slum housing 
demolition provides an interesting demonstration of 
need for more than intuition in predicting the dynamics 
of urban systems. Intuitively it would seem that slum 
housing demolition could do nothing but make housing 
scarcer and ultimately drive the Underemployed out of 
the area. At first glance, the analysis from the model 
also seems to support these conClusions, in that the 
ratio of Underemployed to Underemployed-housing 
increases significantly. But something else is happening. 
The net immigration of Underemployed increases by 
almost 4,500 persons per year, a factor of approxi
mately 450. Why? Because even though housing is 

*** See Urban Dynamics, Section 5.7. 



tighter, the increased business activity and potential 
for economic advancement actually make the area very 
attractive to the Underemployed. 

It seems paradoxical that reduced housing makes it 
possible for more Underemployed to migrate into the 
area. In spite of the increased influx, the Underemployed 
population actually decreases by 10 percent because 
many more are advancing into the Labor population. 
The net annual-advancement-rate from Underemployed 
to Labor rises from about 5,500 to just over 9,000 
persons per year, 165 percent of the old rate. In con
trast to the urban renewal programs of the fifties, this 
program works slowly and does not completely disrupt 
and destroy whole communities. In Figure 3, the 
effects of the program on population movements to, 
from, and within the urban area are illustrated. In 
addition to being economically viable, the area is now 
an efficient upgrader of the population. The overall 
effects are indicated in Table 1. 

OMISSIONS? 

The Urban Dynamics work has been criticized for the 
omission of a variety of factors that are alleged to be 
central to the urban problem. Influences of the suburbs, 

4.194 net 
departures per year 

5,841 net 
departures per year 

8 net 
arrivals per year 

6,640 net 
departures per year 

8.871 net 
departures per year 

4,453 net 
arrivals per year 

r---------------------j 
: Management-Professional 551 births : 
I 7 I , 31 0 per year i 
I 1 I 3,643 net 1 

I advancements per year J 

I 1 
I 3,986 births I 

l 392,550 per year I 
I 5,498 net l 
I advancements per year I 
1 . I 
I Underemployed 5,490 bIrths I 
I 377,310 per year : 
L ______________________ ~ 

BEFORE REVIVAL 

r----------------------, 
I I 
I Management-Professional 775 births I 

I 108,720 per year l 
i 5,865 net I 
I advancements per year I 
I I 
I 5,570 births I 

599,990 per year I 
1 
I 
I 
I 

9,166 net 
advancements per year 

I Underemployed 4,713 births 1 
: 335,930 per year I 
L ______________________ ~ 

AFTER REVIVAL 

Figure 3-Equilibrium population flows before and after revival. 
The dashed lines represent the boundary of the urban area 

Understanding Urban Dynamics 635 

TABLE I-Changes in the Population Mix and Land Use 
Distribution Resulting from Slum-housing Demolition 

and Industry Encouragement 

Land used for income-
producing activities 
(acres) 

Land used for housing 
(acres) 

Ratio of housing-land to 
income-producing land 

Management-Professional 
population 

Labor population 
Underemployed population 
Total population 

Equilibriuml 

Mode 

5,800 

75,700 

12.96 

71,000 
393,000 
377,000 
341,000 

Revival2 

Mode 

8,600 

77,900 

9.05 

109,000 
600,000 
336,000 

1,045,000 

1 This is the starting-point for all runs in chapter five, 
2 See chapter five, section 5.7. 

Percent 
Difference 

+50% 

+ 3% 

-30% 

+50% 
+50% 
-10% 

+200% 

transportation systems, discrimination, pollution, and 
"external driving forces" are among the factors fre
quently cited. Although some of these factors are very 
important to certain urban phenomena, the urban 
dynamics model already contains enough detail to 
produce the urban phenomenon about which the book 
is written: the concentration of large numbers of 
relatively unskilled people in decaying sections of our 
cities. Additional details are likely to make an already 
complex model more confusing, and unless they can be 
shown to be required to produce the problem under 
study, extra details are probably best left out. Some 
comments on several of the frequently-noted "omis
sions" are given in the following paragraphs. 

First, Urban Dynamics does not assume (as has been 
asserted) that the dynamics of urban areas are in
dependent of depressions, world wars, technological 
change, earthquakes, and other "external driving 
forces." What Urban Dynamics does assume is that the 
management of a given urban area has little or no 
influence on the external forces acting on the area, and 
that, come what may, urban areas must be managed as 
effectively as possible. Although uncertainties may 
dictate a more or less cautious advance, Urban Dynamics 
asserts that effective urban management is possible in 
spite of uncertainties. The effectiveness of urban 
management seems to be limited not so much by an 
inability to predict the future course of external driving 
forces as by an inadequate understanding of the time
dependent consequences of the many non-linear feed
back processes at work. 

Concerning suburbs and their effects, it should be 
noted that every city is in competition with its environ-



636 Fall Joint Computer Conference, 1971 

ment (that is, the remainder of the nation) for people 
and industry. A city's suburbs are a part of its environ
ment, and this basic competitive influence of the 
suburbs on a city is included in the attractiveness and 
migration concepts of the model. A city's suburbs are 
different from the remainder of its environment only 
in that they are close enough to the city to allow sub
urbanites to commute to jobs in the city without 
actually living in the city. 

The definitions of the attractiveness indicators and 
the system boundary are closely related to the suburbs 
question. In defining the term "urban area" and in 
specifying the system boundary , Urban Dynamics 
assumes that the population both lives and works in 
the "urban area" inside the system boundary. In 
determining the migration rates, the attractiveness of 
the area as a place to work is not differentiated from 
the attractiveness of the area as a place to live. Day
time and nighttime populations are equal. In this 
approximation, some very important effects can and 
have been studied. It is interesting to note, however, 
that the conditions resulting from Forrester's solution 
(good business activity, many job opportunities, a 
shortage of housing-especially for labor (Labor-to
Housing Ratio = 1.332» are exactly the conditions that 
lead to tremendous highway-expansion programs and 
suburban growth. An expanded suburban population 
that is allowed to enjoy the attractiveness of the city as 
a place to work and to enjoy the attractiveness of the 
suburbs as a place to live would probably have a 
significant impact on Forrester's recommended solu
tion. Without expansion, the model cannot analyze 
this impact. The book does, however, suggest ways of 
minimizing the effect. 

Although racial discrimination has declined during 
the last decade, it is still a significant problem for many 
Americans-but not their only (and perhaps not even 
their most serious) problem. But through preoccupation 
with the discrimination issue, there is danger of losing 
sight of a basic obstacle to the economic recovery of the 
victims of discrimination. Discrimination in the past 
has put many more blacks than whites into the U nder
employed category, and now this imbalance makes the 
basic problem of the Underemployed appear to be a 
problem of discrimination. But the problems of Watts 
and Harlem have common roots with the problems of 
Appalachia. The Underemployed-black or white-are 
trapped by the same basic mechanism. If today we 
could completely eliminate all discrimination (and who 
could deny that a significant amount still exists), the 
Underemployed black's problem would not be solved. 
As an Underemployed person, the "System" would 
keep him right where he is in the inner city ghetto, 

with virtually no hope of escape. Urban Dynamics 
describes the basic obstacle to his advancement and 
indicates how, and at what cost, the "System" can be 
made to work for the Underemployed, black and white. 
U nti! the feedback processes at work in the System are 
better understood by our leaders and by the general 
public, many obstacles to the advancement of Under
employed blacks will continue to be easily confused 
with discrimination. 

Although it cannot be called an omission, the 
"infinite environment" approximation has concerned 
many people. The urban area of the model is located in 
an "environment" which acts as an infinite source (or 
sink) for people of the three socio-economic classes. 
Migration rates depend only on the relative attractive
ness. The attractiveness of the environment is independ
ent of the number of people that are drawn from it or 
added to it. More specifically, this approximation enters 
the model through the assumption that, on an annual 
basis, an urban area for periods of at least 50 years can: 

(1) draw the equivalent of 1 percent of its Under
employed population from its "environment," 

(2) deposit into its "environment" about 1.5 percent 
of its Labor population, 

(3) deposit into its "environment" about 6 percent 
of its Management-Professional population, 

without significantly altering conditions in the "environ
ment." One city, critics argue, can probably do this, but 
if all cities were doing this (as they might if Forrester's 
solutions were adopted as federal policy) conditions in 
the "environment" would change. It is then argued 
that the ensuing changes in relative attractiveness 
would lead to different conditions than those suggested 
in Forrester's analysis. 

Since the departing Labor and Management
Professional population could well be used in starting 
new communities (which will be needed if our popula
tion continues to grow as assumed in the model), the 
most likely change in the environment would be a 
drying up of the source of Underemployed. This seems 
unlikely to destroy the usefulness, of Forrester's sug
gestion. 

THE MESSAGE 

In spite of its first appearance, much of what Urban 
Dynamics says closely resembles what urban experts 
have been saying for years. There is nearly complete 
agreement, for example, that the fundamental char
acteristics of a decayed urban area are an inappropriate 
population mix and an economically unsatisfactory 



distribution of land use. Without Managers and 
Professionals to recognize opportunities and to organize 
income producing activities, and without a large Labor 
population from which skills can be learned, it is not 
surprising that the economic advancement of the 
Underemployed living in decayed urban areas is rather 
limited. Yet relatively inexpensive shelter, welfare 
income, televised entertainment, public transportation, 
and municipal services attract the Underemployed into 
our urban poverty traps. As the number of U nder
employed in an area increases, many small changes 
interact to shift land use toward housing and away from 
income-producing activities. This is another way of 
describing what Forrester calls excess housing. This 
mode of operation in which problems feed upon them
selves and in which the Underemployed are trapped for 
generations is widely agreed to be The Urban Problem. 

The new and important contributions that Urban 
Dynamics makes are in three areas. First, it describes 
the basic characteristics of the urban system which 
cause decay to feed on itself. This phenomena is com
plex and not easily summarized, but a particularly 
important aspect of it is the close coupling between 
land use and population mix. As is very clearly illus
trated in the book, neither land-use nor population-mix 
can be managed independently. A change in one always 
produces a change in the other. Municipal responsi
bility for land-use management has long been recog
nized, but the fact that every land-management and 
municipal-service decision affects the relative attrac
tiveness of the area to the various socio-economic 
elements of the population (and thus determines the 
population mix) has only rarely been openly discussed. 
Urban Dynamics discusses this point quite openly and 
points out how land-use policies, tax laws, assessment 
practices and zoning procedures playa major role in 

Understanding Urban Dynamics 637 

bringing together the population-mix we find in our 
slums. 

A second and related contribution is the analysis of 
the failure of past urban programs to achieve any 
lasting impact on the basic problem. Urban renewal 
(as practiced in the fifties) and the relocation of 
Underemployed in low-rent suburban housing have 
either completely destroyed and replaced a community 
or transplanted the Underemployed to a new location 
where they are needed and wanted no more than they 
were before the relocation. These brute force solutions 
do not recognize and deal with the basic causes of the 
difficulties and can lead to nothing more productive 
than localized temporary improvements. 

The final and most significant contribution of Urban 
Dynamics is that it provides an approach through which 
even a single city, acting alone, can make a lasting and 
significant impact on the distribution of land-use and 
the population-mix in its blighted urban areas. The 
solution does not involve pushing the Underemployed 
out but rather gradually attracting Management, 
Labor, and business back. This approach requires 
patience, tenacity and understanding, but it treats 
the problem rather than the symptoms. Lasting solu
tions will be achieved only when the underlying feed
back processes are recognized and dealt with. Some 
basic changes and new responsibilities for municipal 
management are required, but only if we establish as 
our goal the rebalancing of both the population-mix 
and the distribution of land-use to maximize the upward 
economic mobility of the Underemployed, can we hope 
to eliminate the frustrations of our inner-city U nder
employed and the explosive atmosphere that ac
companies their disillusionment. In that cities have 
open to them an effective, independent, and imperative 
course, they are truly "masters of their own fate." 





Bankmod-An interactive decision aid for hanks 

by WOLFGANG P. HOEHENW ARTER and KENNETH E. REICH 

Bank Administration Institute 
Park Ridge, Illinois 

INTRODUCTION 

Use of mathematical modeling techniques to assist 
bank management in managing the sources and uses 
of funds has become the subject of increasing bank re
search effort. This emphasis on use of modeling tech
niques stems from a concern that planning and manag
ing for a sustained increase in bank profits is becoming 
increasingly critical. 

A recent studyl showed that while bank profits 
tripled in the decade 1958-1968, much of this increase 
is due to unusual factors such as rising interest rates, 
reduction in excess liquidity and the impact of now dis
continued accounting practices. The improvements re
.sulting from these factors will not be available to the 
industry for future profit growth. In addition, this 
study and others2.3 forecast that the nature of credit 
demand and deposit supply will also change signifi
cantly. To maintain profitability, bank management 
will therefore have to revise their concepts about bal
ance sheet structure and utilize techniques which 
permit banks to assume more risk in their mix of assets 
and liabilities. Furthermore, they need to improve the 
profit margin on funds managed through more oppor
tunistic lending and investment policies and more 
sophisticated funds management techniques.l 

For these reasons, Bank Administration Institute 
has undertaken a multi-stage project to develop a 
series of balance sheet management models. The initial 
prototype, now in the testing and demonstration phase, 
is described in this paper. Following an introductory 
discussion of decision-making problems in banks, the 
paper outlines the approach BAI has taken and de
scribes the major features of the model, including the 
handling of the man-machine interface. 

CLASSIFICATION OF MANAGEMENT 
PROBLEMS FACING BANKS 

Managing a bank consists largely of continually de
termining the mix of sources and uses of the bank's 

639 

funds in order to maXlffilze long term performance 
while simultaneously satisfying certain constraints4 of 
the regulatory agencies. These constraints are designed 
primarily to protect depositors. From the stockholder's 
perspective, future performance is defined in terms of 
the expected future return and the uncertainty associ
ated with that return. Stated another way, manage
ment must choose the appropriate combination of re
turn and risk which maximizes performance from the 
view of the stockholders. To achieve this optimum 
trade-off between risk and return, management must 
make a variety of decisions which directly or indirectly 
affect the mix of sources and uses of funds. 

For purposes of applying modeling techniques, de
cisions can be classified into three types: 

Long term strategic decisions 

These relate primarily to the overall level and direc
tion of the bank's business. Examples include: 

• Introduction of major new services 
• Expansion of physical facilities 
• Implementation of marketing programs 
• Recruitment and development of personnel 

Major decisions in these areas tend to be made rela
tively infrequently, have a gradual impact on bank 
performance and are usually made only after lengthy, 
in-depth studies. It would be desirable to have models 
to aid in these decisions as they substantially determine 
the ultimate growth and profitability of the bank. 
However, the large amount of necessary information 
required, the difficulties in quantifying the interrela
tionships among the many variables, and the uncer
tainties involved make this task extremely difficult. 

Intermediate term balance sheet management decisions 

These decisions relate to average levels of sources 
and uses of discretionary funds for periods of a month 



640 Fall Joint Computer Conference, 1971 

or more in length and a planning horizon of perhaps 
one to two years into the future. Examples include: 

• Balancing anticipated sources and uses of funds to 
meet liquidity and captial adequacy constraints 
while maximizing profitability. 

• Allocating funds between loan and security port
folios and, within these portfolios, among asset 
units of various types, maturities and yields. 

• Determining appropriate adjustments to make if 
actual flows of sources and uses of funds deviate 
significantly from the expected. 

These decisions are made relatively frequently and 
have both an immediate and long term impact on bank 
performance. In the long run, the overall yield on assets 
held and the cost of funds used are affected. In the short 
run, a decision to reallocate assets could result in sell
ing securities at a substantial gain or loss thereby 
drastically affecting earnings for that reporting period. 
In contrast to the problems of modeling long term 
strategic decisions, these decisions require relatively 
less information, which in turn is much less resistant to 
quantification. 

Short term money management 

If balance sheet management is concerned with the 
bank's average position in very short term funds over 
a span of time, money management is concerned with 
handling of daily fluctuations around this average. 
Models for these latter decisions seem to offer limited 
opportunity for profit improvement because of the 
relatively small percentage of total assets involved in 
short term funds. 

BANKMOD I: modeling intermediate term, balance 
sheet management decisions 

Based upon this analysis of hank management de
cisions, BAI has decided to concentrate on modeling 
the balance sheet management problem with particular 
emphasis on the management of the security portfolio 
and borrowed or purchased funds. This problem is sus
ceptible to quantification while at the same time offer
ing potential for a significant payout. 

USE OF DISCRETE SIMULATION APPROACH 

Much of the earlier work on balance sheet or asset 
management models was based on optimization tech
niques.5 ,6 The asset management problem resembled 
the resource allocation problem in industry and at-

tempts were made to apply linear programming tech
niques to its solution. With bank asset management, 
however, serious difficulties arose in properly quantify
ing the many variables and their interrelationships and 
in adequately specifying an objective function. Ac
ceptance was further hindered by difficulties in gaining 
management understanding of the optimization ap
proach, its benefits and its limitations. Additionally, 
decision-makers had fears of becoming obsolete and 
being replaced by some mechanized decision process. 
It is not surprising, therefore, that asset management 
optimization models have not been widely accepted. 
The effort expended in their development has, how
ever, been useful in contributing to a better under
standing of the problem. 

The intoduction of time-sharing with conversational 
capabilities permits use of interactive simulation to 
handle problems not readily amenable to optimization 
techniques. This approach eliminates the need to ex
press a manager's judgment in the form of a utility 
function to drive an optimization model. Rather, with 
interactive simulation, the manager is included in the 
solution-finding process. He can ask "what if" ques
tions and use his judgment to evaluate the answers. 

In bank balance sheet management, finding the 
"best" possible policy requires evaluating often con
flicting components of performance. For example, an 
increase in profits may coincide with a deterioration in 
the bank's liquidity and capital positions (i.e., cause 
the bank to be considered less "safe" from the de
positor's point of view). It is simpler to provide the 
banker with information on the effects of various asset 
management policies and use his expertise to select the 
appropriate solution. The banker's judgment is brought 
to bear upon the problem of selecting the most desirable 
trade-off between profit and safety. 

This approach greatly simplifies the problem, re
ducing both development and running costs. -It is also 
attractive to management in that the decision making 
process in the simulation . corresponds to that used in 
the real world. This understanding of the decision 
process facilitates management acceptance of the simu
lation results. In contrast, bank managements have 
apparently been more reluctant to accept the prescrip
tions of an optimization model because of failure to 
understand how such decisions are developed and an 
unwillingness to have a machine appear to take over 
the management role. 

DESCRIPTION OF BANKMOD 

The previous sections have shown need for a decision 
aid for managing the balance sheet and outlined the 



approach BAI is taking to it. This section describes the 
resulting model. The paper will not discuss the under
lying mathematical structure which cannot be treated 
adequately in the space available here. The interested 
reader is referred to special literature on banking, 
especially Gray, Kenneth B., Jr., "Managing the Bal
ance Sheet: A Mathematical Approach to Decision 
Making," Journal of Bank Research, Spring, 1970, 
which presents a mathematical structure related to 
BANKMOD. 

Overview of the model 

The model is a "what if ... ", or statement projection 
model. Basically, it is a financial reporting system 
computing future bank statements resulting from the 
impact of environmental changes and user decisions on 
the initial state of the bank. These financial statements 
and various analytical reports provide the banker with 
the information he needs to select the most appropriate 
decision strategy. 

Prior to running the model, the user develops a set 
of environmental assumptions consisting primarily of 
his forecast of future interest rates and of deposit and 
loan levels. He also enters the initial state of the bank 
including balance sheet and portfolio data. 

With the assumption set and the initial state of the 
bank the simulation can be run without user decision. , 
The model then computes income, takes maturities, 
and adjust loans and deposits to the forecasted levels. 
An excess or deficit of funds is handled by sale or pur
chase of Fed funds. 

While the simulation can be run without any user 
decisions, normally the banker would interact with the 
simulation. This interaction of the user and the model 
is illustrated in Figure 1. 

His decisions would include reinvestment of funds be
coming available (rather than simple handling through 
Fed funds), portfolio shifts for yield and appreciation, 

f 

Figure 1-Interactive simulation process 

Bankmod 641 

n = n + 1 
and/or Next Named Assumptions not satisfied 

Sat.isfied 

Figure 2-Iterative development of the optimal decision set 

purchasing funds (e.g. issuing CDs), and changing 
the bank's financial leverage. Upon completion of a 
simulation run, the user can save the decision set and 
use it in a subsequent simulation where modifications 
to that decision set can be made. Successive iterations 
can be run until the decision set is considered to be 
reasonably optimum. 

At this point another feature of the model can be 
utilized to test the decision set against different assump
tions about the environment. Figure 2 illustrates how 
this feature of the model operates. 

The user, after developing a satisfactory set of de
cisions for the most likely environment, then tests this de
cision set against assumption sets which represent devia
tions from the expected (e.g., higher loan demand and 
interest rates, lower loan demand and interest rates). 
This permits the decision set to be tested for its sensitivity 
to deviations of the economic environment from that 
which is expected. This sensitivity analysis is performed 
simply by calling in an alternative assumption set and 
running the saved decision set against it. Should analy
sis reveal that the decision set is not sufficiently hedged 
against adverse changes in the environment, the de
cision set can be modified appropriately. 

Structuring BANKMOD into decision periods and 
decision points 

To make BANKMOD conform as much as possible 
to reality and still be manageable, the planning horizon 
with which the banker is concerned is divided into a 
specified number of periods of uniform length (e.g., 
month, quarter). Within a period the model considers 
the environment to be constant. Balance sheet changes 
occur only at the points separating the periods (the 
"decision point"). 

In reality, however, not only does environment 
change continuously, but decisions are also made con-



642 Fall Joint Computer Conference, 1971 

Reality 

Real State 

Lf----~ Simulation 

Point 

Period 

Figure 3-Continuous and discrete environment 

tinuously rather than at discrete decision points. Thus 
the concept of a steady state during the period intro
duces an element of artificiality with some slight dis
tortion of income computations. However, this distor
tion is not considered to be of consequence for several 
reasons. First of all, forecasts of deposit and loan levels 
are assumed to be the averages prevailing during the 
period. Second, although security maturities are con
sidered to occur at the end of the period during which 
they actually occur, the income distortion is minor. The 
discrepancy in earnings is limited to the difference be
tween the yield of the maturing security and the rate at 
which the proceeds of the matured security would be in
vested, this difference multiplied by the time between 
actual maturity date and the end of the period. 

In any event, deviations due to the decision period 
convention are small compared to potential errors in 
the rate and level forecasts embodied in the assumptions. 

Balance sheet updating 

When the simulation is run all adjustments to the 
balance sheet can be considered as occurring at the 
decision points. These adjustments are of two kinds: 
automatic and user decisions. 

Income 

~ Yield * t 

( Period--~) 

Figure 4-Effect of decisions at discrete points 

Several types of automatic adjustments occur: 

• Deposits and loans are adjusted to the levels fore
casted in the assumption set. 

• Securities, CDs, and other borrowed funds with a 
maturity structure are matured automatically. 

• Certain balance sheet categories are adjusted in 
relation to others. For example, reserve is set 
automatically to the legal minimum required by 
deposits. 

• Other categories are adjusted to reflect accrual of 
income. For example, book value of securities is 
adjusted to reflect amortization of premiums and 
accretion of discount. Equity is adjusted to reflect 
earnings. 

These changes occur regardless of any decisions by the 
user. 

Adjustments also occur as the result of user decisions. 
These include: 

• Purchase or sale of securities. 
• Issuance of large, negotiable CDs. 
• Sales of capital notes or debentures. 
• Issuance of stock. 

These decisions can generate further adjustments of 
the automatic type. For example, a decision to issue 
CDs will also cause an automatic adjustment in 
reserve. 

Because the net effect of automatic adjustments and 
user decisions are unlikely to be exactly offsetting, any 
discrepancy between a change in the source of funds 
and a change in the use of funds is handled by the 
purchase or sale of Fed funds. Excess funds earn at 
the Fed funds rate; a deficit is charged at the Fed 
funds rate. 

Performance reporting 

The major feedback to the user in the interactive 
simulation process is the system of reports available 
from the model. These reports resemble those which 
would normally be furnished by a bank's accounting 
system. They provide information on operating income, 
security gains and losses, the composition of the balance 
sheet, status of the portfolio and a variety of analytical 
ratios. One set of reports provides information regard
ing performance and status for the period being simu
lated and highlights the impact of the user's decisions 
for that period. These reports are designed to aid the 
user in further decision-making. The second group of 



reports shows results for the entire simulation horizon 
to facilitate comparing the results of one simulation 
with another. 

Uses of the model 

The BAI simulation model is especially helpful in 
aiding management decision-making because it provides 
a consistent, comprehensive technique for examining 
sets of decision alternatives under a variety of assump
tions about the economic environment. Specifically it 
aids management in analyzing a set of decisions accord
ing to the following criteria: 

• Change in average yield earned on securities (paid 
for purchased funds) . 

• Related effect on liquidity and capital adequacy of 
portfolio changes to improve yield. 

• Cost of providing funds through sale of securities 
if supply of funds is inadequate to meet forecasted 
demand. 

• Opportunity to improve earnings performance by 
aggressively managing the security portfolio for 
market appreciation. 

• Improvement in earnings resulting from changing 
the leverage of the bank (ratio of assets to equity). 

The model is therefore designed to quickly summarize 
performance and balance sheet status according to 
these criteria and to evaluate a decision strategy and 
its sensitivity to changes in the economic environment. 

SYSTEM DESIGN 

Since BAI is an organization supported by a majority 
of banks in the U. S., it was of the highest priority to 
develop a model which would help not only a few very 
large banks but which would also be of use to medium
sized and smaller banks as well. This requirement has 
been recognized in several ways. A bank using BANK
MOD can tailor a model to fit his bank by including 
only those balance sheet categories, and associated 
routines, which are appropriate to his bank. In addi
tion, the model is designed to run on a nationwide 
time-sharing system thereby enabling any bank to ac
cess the model by simply installing a terminal and 
paying for the necessary CPU and connect time. 

The interactive simulation process described above 
is embedded into a very powerful system with several 
large programs working together. The individual pro-

Bankmod 643 

FM 15:53 07/02171 

FRB MEMBER (Y,N) 1Y 

OPTIONAL BALANCE SHEET CATEGORIES (I FOR INCLUDE, 0 FOR DELETE) 

ASSET 

DUE FROM-FOREIGN 
MONEY MKT LOANS 
ASSET-CO'S 
ACCEPT'S&COMM'L PAPER 
TREASURY BILLS 
AGENCIES 
TRADING SECURITIES 

LIABILITY 

CD'S-STATE&lOCAL 
CD'S-MONEY MARKET 
EURODOLLARS-REG.D 
EURODOLLARS-REG.M 
HOLDING CO. PAPER 
CAP NOTES 

ENTER LOAN GROUPS: 

(I,D) 10 
(1,0) ?D 
(I,D) 10 
(1,0) ?D 
(1,0) 11 
(I,D) 1 I 
(I,D) 10 

Cl,D) ?I 
(l,D) ?D 
(I,D) ?D 
(1,0) ?D 
(1,0) ?D 
Cl,D) 10 

NAME (ONE WORD) ABBREVIATION (TWO LETTERS) 

1INSTALLMENT 
1REAL-ESTATE 
1eOMM' L-MET RO 
1COMM'L-NATIONAL 

IN 
RE 
eM 
CN 

ENTER DO GROUPS (EXEPT US, STATE&LOCAL): 
NAME (ONE WORD) ABBREVIATION (TWO LETTERS) 

?SMALL OS 
?eOMM'L-METRO CM 
?COMM'L-NATIONAL CN 

LIST FORMULATION (Y,N) ?N 

DECISION PERIOD (MONTH,QUARTER) ?Q 

PLANNING HORIZON (NO. OF DEC.PER.) ?4 

FUNDS UNIT (THOUSAND, MILLION, BILLION) ?T 

ENTER PORTFOLIO-ARRAY SPECIFICATIONS : 
CAT. MIN.PURCH.YIELD INCREMENT NO. OF POINTS 

BIL 1 :2 
GOV 1 2.5 
AGe? 3 
MUP ? 3.5 
MUG ?4 

FM END 

1 
.5 

1 
.5 
.? 

6 
10 

6 
10 
e 

I Figure 5-Formulate mode 

grams or modes of the system are: 

Formulate 
Assumption 
Real State 
Input-Forms 
Query 
Simulate 

Originally, these modes are programs in the shared 
lib.rary of the T /S company. When run, they build and 
utilize files in the user's private library. This guarantees 
security for the user's proprietary data, such as the 



644 Fall Joint Computer Conference, 1971 

initial state of the bank and forecasts of loan and 
deposit levels. The major features of the model can be 
described in terms of these modes. 

Formulate Mode 

In the Formulate .Mode (FMODE) the user inter
actively tailors the model to fit his needs. Figure 5 
illustrates how the user formulates a specific model for 
his bank. The pattern of interaction with the user is 
for the program to print the data to the left of the 
question mark while the user's response immediately 
follows the question mark. 

The user establishes the various parameters of the 
model. In addition to the basic balance-sheet structure, 
he can add optional asset and liability categories which 
may be appropriate to his bank. He can also provide 
further breakdowns of loan and deposit categories as 
desired. 

In this mode the user also defines the length of a 
period to fit his requirements for accuracy, and the 
number of periods to be simulated. He also defines the 
size and degree of resolution incorporated in the port
folio array structure. FMODE uses this information to 
specially tailor all the other modes. That is, when the 
other modes are run, all their arrays, records and files 
are custom-built in order to run the program more 
efficiently, particularly to minimize response time. 

The user normally runs FMODE once to "establish" 
his model bank, but may set up additional models 
with different period lengths and different levels of 
balance sheet detail. 

Assumption Mode 

In the Assumption ,Mode (AMODE) the user de
scribes the economic and institutional environment in 
which the simulation will take place. Certain assump
tions, primarily economic, must be forecast for each 
period in the simulation. Examples are yield curves, 
loan and deposit levels and Regulation Q limits. (See 
Figure 6 for an illustration of a completed page of the 
named assumption input form.) Other assumptions are 
considered to remain constant over the entire planning 
horizon. These include assumptions such as bid-ask 
spreads and tax rates. 

The user can establish several sets of economic as
sumptions and assign each a name. One set may repre
sent the environment considered most likely to prevail. 
Another may be based upon a more active economy 
with greater loan demand and higher interest rates. A 
third may forecast a less active economy with all its 

INPUT FORMS 

NAMED ASSUMPTI( 

ASSUNiPTIO~1 SET NM'E EX~6C.76f) 
-------------------------

LINE. 

KlY ~AHKET DETERMINEO RATES (XX.X) 

11~ DAILY FUNDS 4.0 

GOVERNMlNTS-YIELDS TO MATURITY (bASED ON ASKED PRICES> 

117 

11H 

119 

9L1 DAYS 
---!:.~- _ o!~_~_ .I. ~ 

IHO DAYS -~;.:t_ -~·_Z -~-?-
30 (EARS ~.D .r. '7 -!:.-?-

If' II >jUMPEO CURVE. COMPLETE THE FOLl.OwING TWO LINES: 
(IF NON-HUMPED ENTER ZEROES) 

1~1 MATURITY OF ~AX YIELD(YRS) (J ------
122 MAXIMUM YIELD 

----!-- ---~-- ---~--
AGt:iJCIES-YIELOS TO MATURITY (ASI( PpICES) 

120 1 YI::AR -_?:..!- --!:..f _ _ ~,-t_ 
126 2 YEARS 

-~:..{- --~£ -fl'.t1 

127 1~ 'fEAHS 
-!.'-~- --~:.J!. --~~!-

MU~ICIPALS-PRI~E YIELDS TO MATURITY (ASK PRICES) 

130 1 YEAR -?.·_2_ _..!'!:..?. -!?;2_ 
131 2 YEARS .;. (J --~~ -~ ... ~-
132 30 YEARS -~2._ -_£.2. ~;;.t" 

PRICE OF BM,K'S STOCK 

Figure 6-Illustration of assumption input 

_!..:_o{ _ 

_~_Z_ 

-~-~-

---~--

_~.2._ 

--~~-

--~-... ~ 

_i!. ... ?. 

_!':'_t:J.._ 

~'..J'" 

implications. Each set, however, must be internally 
consistent. These sets of assumptions are used to check 
the sensitivity of one set of decisions against different 
economic forecasts. 

The amount of data required for each named assump
tion set are approximately 100 items per period in the 
simulation horizon. Additionally, about 75 items are 
required to specify certain institutional factors which 
remain constant over all periods in the simulation and 
all environment forecasts. The actual number of items 
will depend on the size of the formulated model. 

Because of the amount and importance of the data 
entered as assumptions, considerable attention was 
given to insure the efficiency and accuracy of the input 
procedures. The model will generate forms for the 
banker to use in assembling the required data. Once the 
data have been prepared, a technical assistant can be 



used to enter the data through the terminal keyboard. 
As the data are entered, the program intensively checks 
for technical validity and, to some extent, checks for 
logical validity as well. 

Another feature permits the user to develop a set of 
assumptions which are a partial modification of an es
tablished set. The established set is copied under a new 
name and the user then makes the desired modifica
tions to this newly generated set. 

Real State Mode 

The Real State Mode (RMODE) is used to enter 
the most recent actual "state of the bank" data. This 
includes the current balance sheet amounts and a some
what aggregated description of the portfolios. 

PA(:E 

REAL STATE INPUT FORMS 

DATE _____ ~~~~~--

ASSET BOOK VALUE(THOUSANDS OF DOLLARS) 

CASH CSH ______ ~~~ __ 

RESERVE RES _____ ~~~ __ 

DUE FROM DUE 

ITEMS IN PROC. COLL. PRC 

DAI L Y FUNDS SOLD DFS 

TREASURY BILLS BIL _____ -~_~-~~_ 

GOV'TS GOV _____ ~-~~-~_ 

AGENCIES AGC ~ 

---------------
MUNiCIPALS-PRIME MUP S" "111"'0 

---------------
MUNICIPALS-GOOD MUG () 

INST. LOANS LIN s ~I/ ---------------
RE LOANS 

LOANS-COMM'L METRO 

LOANS-COMM'L NAT'L 

BLDGS&EOUIP B&E ____ - __ ~_~~ __ 

OTHER ASSETS OTA _______ ~~---

Figure 7-Illustration of real state input 

Bankmod 645 

The model will generate forms for assembling the 
necessary data. (See Figure 7 for an illustration of a 
completed page of the real state input form.) The data 
would then be entered manually through the terminal 
keyboard. For those banks which have automated gen
eral ledger and portfolio files, it would be possible to 
use a utility program to transform the data to BANK
MOD specifications and transmit it directly into the 
model. 

Input Forms Mode 

This mode (IMODE) provides the input forms de
scribed for the AMODE and RMODE. The user speci
fies the number of copies and whether they should be 
printed in-house on the terminal or on a high speed 
printer at the computer center for mailing to the user. 

Query Mode 

The Query Mode (QMODE) provides for conve
nient access to certain permanent files that are kept on 
the computer. For example, it might be necessary to 
get the contents of the portfolio files if this information 
has been misplaced since the last run, or it might be of 
interest to check the nature of certain decisions for a 
certain period while performing a sensitivity analysis. 

Simulate Mode 

The Simulate Mode (SMODE) is the heart of the 
whole BANKMOD system. Here all the work, outlined 
above in the description of BANKMOD, is carried out. 
The user proceeds period by period from the initial 
state of the bank (as entered in RMODE) to the end 
of the planning horizon. In doing so, the user requests 
specific information, makes decisions regarding the dis
cretionary assets and liabilities, and calls for various 
performance and analytical reports. 

Within each period, the decision-making process is 
an interactive conversation as portrayed in Figure 1 
above. The user requests information about the status 
of the bank, makes appropriate decisions, and calls for 
reports of various levels of detail to evaluate the impact 
of his decisions. These reports are called "snapshot" 
reports and show performance data for only the period 
being simulated. When satisfied with the decisions for 
a period, the user causes the simulation to proceed to 
the next period until the end of the simulation horizon 
has been reached. 



646 Fall Joint Computer Conference, 1971 

Once the user has completed the decision-making 
process over the entire horizon, he can obtain so-called 
"horizon" reports summarizing performance and status 
over each period and in total for all periods. These re
ports can be used for comparing the results of separate 
simulation runs. This can be done to evaluate different 
decision sets (representing different strategies) or for 
evaluating a decision set against several different 

, environments. 
The interactive decision process is discussed in more 

detail in the following section of the paper where it is 
used to illustrate how the model handles the man
machine interface. 

COMMUNICATIONS HANDLING AND THE 
MAN-MACHINE INTERFACE 

As has been intimated, it was of the highest priority 
to develop a model which would help not only a few 
giant banks but which would be of use to medium-sized 
banks and possibly small banks as well. This directly 
implies that the model must be designed to operate in 
a way understandable to the bank management-its 
use must not depend on a sophisticated management 
science department since only the largest banks have 
such departments. Further, the user should be able to 
run the model and interpret the results with a minimum 
of formal instruction. It seems clear, therefore, that 
the acceptance and the ultimate value of the model 
depended heavily on the quality of its interactive capa
bilities. That is to say, successful use of the model de
pends on a satisfactory solution of the man-machine 
interface problem. 

It has been frequently pointed out that adequate 
handling of the man-machine interface is one of the 
most difficult and vexing problems in using computer 
time-sharing systems (or for that matter, on-line real
time systems as well).8 The difficulty involves achiev
ing accurate, unambiguous and efficient communication 
between the user and the computer. The user must find 
it easy and natural to enter input data, to guide the 
simulation process, and to extract and interpret simula
tion outputs. The next sections describe how BANK
MOD satisfies these requirements and concludes with 
an illustrative run of the Simulate Mode. 

Input 

BANKMOD offers the user format-free input with 
extensive error checking. The program prevents the 
user from causing a program or system breakdown by 

accidentally entering faulty responses. It also prevents 
the user from entering information which does not 
meet the built-in logic tests. 

User-computer interaction 

Great effort has been spent to make user-computer 
interaction as easy and natural as possible. First, the 
user communicates with the model using terms familiar 
to him. Second, the communication process is stand
ardized throughout the model, so that whatever mode 
is being used, the user employs the same technique for 
entering data, issuing commands, and requesting 
output. 

In addition, the method of communication with the 
model has been reduced to two types: indicated re
sponse and sequence-free commands. The indicated re
sponse is used where the input cannot be sequence 
free, such as entering certain parameters at the initia
tion of the run. A simple command structure is used to 
enter user decisions, requests for information and re
ports, and simulation control commands on a com
pletely sequence-free basis. 

Once the user has become familiar with these com
munications standards, he can run the simulation with 
a minimum of distraction for system mechanics and 
concentrate on the problem-oriented aspects of the 
simulation. 

Output 

The speed and format of the output are of critical 
importance. Speed of response is facilitated by the de
sign of the system. Most of the output requires only 
nominal calculation with very short response time. 
Major computations with longer delays (of the order 
of 10 to 20 seconds) are made only when moving from 
one simulation period to the next. This design provides 
the user with quick response in decision-making inter
action and makes the longer response time when the 
user is psychologically better conditioned to endure the 
delay. 

The proper selection and presentation of output in
formation is also of critical importance for a model 
such as this. Not only is the total amount of data quite 
large, but decisions must be based upon this data. One 
of the major research efforts was, therefore, devoted to 
structuring the output to maximize the information 
conveyed and minimize the total data presented. For 
the first evaluation of the effect of a decision, a banker 
can ask for a report of a few key indicator variables. 



ASSUMPTION CATALOGUE (Y,N) ?Y 

NAMED ASSUMPTIONS 
EXPECTED 
TIGHT 
EASY 

ASSUMPTION NAME ?EXPECTED 

SAVED DECISIONS (Y,N)?Y 

DECISION CATALOGUE (Y,N) ?Y 

NAMED DECISIONS 
WPH-TESTl 
WPH-TEST2 

UECISION NAME ?WPH-TEST2 

~~~ DECISIONPOINT 0: 05/04/71 ENTER COMMANDS :mlt 

ASSUMPTION: EXPECTED 
DECISION WPH-TEST2 

~~~ DECISIONPOINT 1: 07/01/71 ENTER COMMANDS x~x 

FUNDSBAL.: 782.693 

?~D MUP 

MAT. 
POINT 

110 
?::O GOV 

MAT. 
POINT 

?10 
?::FUN 

AMT 
PAR 
1000 

AMT 
PAR 
-200 

FUNDSBAL.: -titi.6435 

ASSUMPTIONS EXPECTED 

NOI/SHARE 

NI/SHARE 

Ll QU IDITY RATIO 

CAPITAL RATIO 

?)q Bil 

BEFORE 
DECISIONS 
---------

1.?1 

1. 51 

95.6% 

23.8% 

PURCLf. 
YIELD 

PURCH. 
YIELD 

3 

AFTER 
DECISIONS 
---------

1. 81 

-1. 32 

93.2% 

21. 7% 

PAR= 1410 BOOK= 1398.43 

PORTFOLIO SUMMARY (Y,N) ?Y 

MATURITY PURCH. YIELD 
POINT 2 3 4 

2 0 0 750 
3 0 0 660 
4 0 0 0 
5 0 0 0 

?::END 

SAVE DECISIONS (Y,N) ?Y 

UECISION CATALOGUE (Y,N) ?N 

NAME ?WPH/TEST3 

WPH/TEST3 SAVED ON DF3 

COUPON 

COUPON 

SAVED DECISIONS : WPH-TEST2 

PERCENTA~E CHAN~E 
-15 -10 -5 0 5 10 15 

CHAN~E ~ ~ x - ~ x ~ 

--------------------------------
.29 ++++++++++++++++ 

-2.83 -----------____ _ 

-2.4% XXXX 

-2.1% XXXXXXXXXX 

5 6 7 

0 0 0 
0 0 0 
0 0 0 
0 0 0 

SM END 
READY 

SIGN OFF 
Figure 8-Illustration of a simulate mode run 

Bankmod 647 



648 Fall Joint Computer Conference, 1971 

If necessary or desired he can then request additional 
reports providing greater levels of detail. Without 
this report structure whereby the user requests a spe
cific type of information and specifies the level of de
tail, the overwhelming amount of information would 
make the interactive approach totally impractical. 

Sample run 

To illustrate the design concepts described above, 
this section concludes with a sample run. Since the 
communications standards are uniform throughout 
the model and the Simulation Mode is the most ex
tensively used, a run of this mode is used for illustra
tive purposes. (The sample run referred to in the 
material following is reproduced in Figure 8.) 

After the user has started SMODE, the computer is 
in one of two states: either awaiting a pre-defined 
indicated response or awaiting a command. Examples 
of pre-defined indicated responses are shown in Figure 
8 at the start of the SMODE run. The program here 
requests information regarding the assumption set and 
decision set to be used in the simulation. Any input 
other than what is indicated will be rejected resulting 
in a repetition of the inquiry. The request and response 
are kept as short as possible. 

Commands are given in those parts of the run which 
are sequence-free. Commands are essentially of four 
types-Control, Information, Decision and Report
and all commands begin with the character "*". 

Control commands steer the flow of the program. An 
example in Figure 8 is the command "*N" which 
causes the simulation to move from decision point 0 
(the starting point) to decision point 1 (the beginning 
of the first full calendar quarter). Another example 
near the bottom of Figure 8 is "*END" causing the 
simulation to proceed to the last period and terminate. 
Another control command, not illustrated in the ex
ample is "*PAUSE". This command stores the status 
of the simulation permitting the user to sign off and 
later resume the simulation at the point where he 
paused. This has proved to be very convenient in the 
use of the model since the user can interrupt the simu
lation to consider decision strategy or avoid excess 
fatigue without elaborate requirements for saving the 
status of the simulation. 

The information command is a multi-purpose com
mand of the format "*1 cat". The abbreviation "cat" 
signifies that the user specifies the balance sheet cate
gory for which he desires information. In the sample 
run, the command "*1 BIL" shows the use of this 
command to obtain information about the bank's 

holdings of Treasury Bills. After providing the basic 
information, the program asks the user if he wishes 
detailed portfolio data. If the user provides the response 
"Y", the portfolio array as shown in the lower portion 
of Figure 8 is printed. 

The decision command is also a multi-purpose com
mand taking the format "*D cat" where "cat" refers 
to the balance sheet category to be changed. The use 
of this command is shown at the mid-point of Figure 8. 
The command "*D MUP" indicates that the user 
wants to enter a decision to buy or sell prime munic
ipals. The computer responds with the format read
ings prescribing how the data is to be entered. The 
command "*D GOV" illustrates a command to buy 
or sell U. S. Government bonds. 

The run illustrates several uses of the report com
mand. The command "*FUN" illustrates a request for 
the current funds balance (net funds currently available 
for investment). This is essentially a one-item report. 
A more elaborate report is obtained by the command 
"*FLASH" which shows the effect of the decisions on 
certain key indicators of performance. The report com
bines tabular presentation of data with a graphical dis
play of the direction and magnitude of the changes 
resulting from the decisions. Additional "snapshot" 
reports are available providing greater levels of detail 
of performance and bank status for the period being 
simulated. Also, at the completion of the simulation, 
the user can request various "horizon" reports which 
summarize the simulation over all the periods in the 
simulation. 

The sample run terminates after asking the user 
whether or not the decision set should be named and 
saved for future simulations. 

REFERENCES 

1 BOOZ-ALLEN & HAMILTON INC 
The challenge ahead for banking: a study of the commercial 
banking system in 1980 
Chicago Illinois August 1970 

2 C F HAYWOOD L R McGEE 
The expansion of bank funds in the nineteen-seventies 
Association of Reserve City Bankers Chicago 1969 

3 G C FISCHER Ed 
Commercial banking 1975 and 1980 
Robert Morris Associates Philadelphia 1970 

4 R I ROBINSON R H PETTWAY 
Policies for optimum bank capital 
Association of Reserve City Bankers Chicago 1967 

5 K J COHEN F SHAMMER 
Analytical methods in banking 
Richard D Irwin Homewood Illinois 1966 



6 K J COHEN F SHAMMER 
Linear programming and optimal bank asset management 
decisions 
Journal of Finance XXII May 1967 

7 J B BOULDEN 
Instant modeling in Corporate simulation models 
A N Schrieber Ed Seattle Washington University of 
Washington 1970 

Bankmod 649 

8 H SACKMAN 

Computers, systems science and evolving society 
John Wiley and Sons Inc New York 1967 

9 K B GRAY JR 

Managing the balance sheet: a mathematical approach to 
decision making 
Journal of Bank Research Spring 1970 





Simulation of large asynchronous logic 
circuits using an ambiguous gate model 

by S. G. CHAPPELL 

Bell Telephone Laboratories 
Naperville, Illinois 

and 

S. S. YAU 

Northwestern University 
Evanston, Illinois 

INTRODUCTION 

Digital logic simulation is the process whereby the ac
tion of a logic circuit due to a specified input is pre
dicted based upon some model of the circuit. Logic 
simulation is becoming increasingly necessary as larger 
and more complex computers are built. Because of the 
cost of building hardware it is not wise to commit a 
circuit design to manufacture without first verifying 
the operation of the circuit by simulation. This is true 
even for large computers (say 50,000 gates) where 
simulation will eliminate many logic errors and may 
save construction of a prototype model. Simulation 
may be used to predict the output of the circuit due to 
specified faults as well as to predict the output of the 
good (fault free) circuit. A dictionary is generally 
compiled of the output of the circuit in the presence 
of known faults. By comparing the actual (perhaps 
faulty) circuit output to the correct output, it is pos
sible to detect and diagnose a fault in the circuit. 

Many simulators have been proposedl-9 which allow 
simulation of the good circuit and several have been 
proposed which allow simulation of the traditional 
stuck-at (stuck-at-one and stuck-at-zero) faults. 
Among these simulators, the following are more signifi
cant. Eichelbergerl first proposed a simulator for logic 
circuits, based on the work of Y oeli and Rinon2 which 
uses a ternary logic 0, Y2 and 1 where logical 0 and 1 
are the Boolean 0 and 1 and the Y2 represents a don't
know value. However, his simulation and hazard detec
tion are based on the Huffman Model which is not an 
accurate representation of a general asynchronous logic 
circuit because the delay in all the gates is lumped into 
the delay elements. Seshu's Sequential AnalyzerS for 

651 

logic circuits provides fault simulation and race analy
sis which is also based on the Huffman Model. How
ever, only binary simulation logic is used and even 
combinational logic is not simulated correctly since 
hazards are suppressed due to the use of the leveling 
technique. Leveling means the output of a gate is not 
calculated until all its inputs are known. In this way 
the output of each gate is calculated only once. Later 
Chang4 extended the simulator to include shorted in
put diodes on a DTL gate. Szygenda, Rouse and 
Thompsonfi proposed a simulator which uses ternary 
simulation logic and provides various gate delays and . 
ambiguity regions (regions where the simulation model 
cannot predict the output of agate). However, the 
third logic value is only used for circuit initialization. 
During simulation a Potential Error Flag is used to 
represent the ambiguity region and an additional logic 
element is required to manipulate this flag. In addition, 
the uncertainty region associated with the turn-on de
lay is assumed to be the same as that for turn-off delay 
for a gate. 

The simulator proposed in this paper is the only 
simulator which is able to accurately simulate the ef
fects of shorted diode and shorted net (gate outputs) 
faults in an asynchronous sequential circuit. In addi
tion, the gate model used here allows specification of 
minimum and maximum turn-on and turn-off delays 
where the interval between the minimum and maximum 
delay is treated as a third simulation value x (the 
ambiguity or don't-know value). The ambiguity value 
allows efficient handling of each gate (no extra elements 
are required) aml: the use of a new high-frequency 
rejection technique. This technique provides easy sup
pression of transient input conditions of shorter dura-



652 Fall Joint Computer Conference, 1971 

Nanosec 

10 

~ 
0 

cu 8 
a 

(0) - 6 -0 
I 
c 

4 ~ 

::J 
t-

2 

2 4 6 8 10 Fanout 

Load 
Nanosec 

10 

~ 
0 8 cu 
a 

(b) 
c 6 0 
I 
c 
~ 

4 ::J 
t-

2 

2 4 6 8 10 Fanout 

Load 

Figure l-Load vs transition time curves for TTL logic 

tion than the appropriate minimum transition delay. 
The gate model used allows detection of certain con
strained hazards and produces a worst case timing 
analysis of the circuit (based on the transition delays 
assigned to each gate) for both the good and the faulty 
circuit. This simulator has been implemented for cir
cuits of up to 50,000 gates, and its speed is comparable 
to that of the latest simulator.5 

THE GATE MODEL 

In order to provide an accurate simulation of a logic 
circuit, an accurate model of each logic element is 
necessary. Only gates will be simulated here since the 
actual logic circuit is composed only of interconnected 
gates. Attempts to simulate larger modules such as 

flip-flops and registers may introduce logic and timing 
errors. The only exception to this rule is that a pure 
delay element is allowed to simulate actual delay lines 
or long wiring runs. 

If the load versus time curve for a typical TTL gate 
shown in Figure 1 is examined, it is apparent that the 
turn-on and turn-off (transition) delays are different. 
It is also known that there is considerable variation in 
transition delays among supposedly identical gates. In 
addition, such factors as the loading, length of the out
put net and temperature, affect the speed of a gate. 
However, if reasonable design constraints are imposed 
and the gates are reliably manufactured, the transition 
delays will usually fall within certain bounds. Therefore, 
a logic gate may reasonably be characterized by its 
minimum and maximum turn-on (0 to 1 transition) and 
turn-off (1 to 0 transition) delays. 

The turn-on (turn-off) delay is the time between 
application of the input signal and the time the output 
signal reaches 90 percent (10 percent) of its final value 
(initial value). If the gate is operating in saturation, 
the turn-off time includes the storage time as well as 
the decay time of the gate (transistor). However, this 
characterization of a gate is very general and may be 
applied to any gate regardless of its mode of operation 
or location in the logic circuit. Another factor which 
must be considered is the high-frequency rejection of a 
logic gate. That is, a gate will not respond to an input 
pulse of shorter duration than the appropriate minimum 
transition delay. Therefore, the gate model must per
form both high-frequency rejection and account for 
variations in gate transition delays. In this paper, the 
gate model will be referred to as the gate, while the 
real gate will be called the real or actual gate. 

Assume the gate G may be characterized by the 
following four parameters: 

a = minimum turn-on delay 
b = maximum turn-on delay 
c = minimum turn-off delay 
d = maximum turn-off delay 

The transition delays for G may be set to any integral 
values and are typically selected based on statistical 
information about the behavior of the gate being used 
for some given load. If a = band c = d, then the gate 
model G is said to be unambiguous. If a<b and c<d, 
then the time (b-a) or (d-c) is the ambiguity region 
for the gate G, and the model is said to be ambiguous. 

Let * denote the absence of an element from a vector. 
Define the three operators L {G}, C { G} and R { G} on 
a 3-element vector G= (X, Y, Z) as L{G} =X, 
C { G} = Y and R {G} = Z. Similarly for a 2-element 
vector, G= (X, Z), define L{G} =X and R{G} =Z. 



The objectives of the gate model are: 1) to generate 
and propagate an ambiguity region which represents 
the uncertainty about the exact behavior of the gate, 
and 2) to perform high-frequency rejection which 
means the gate output does not respond to transient 
input conditions of duration shorter than the appropri
ate minimum transition delay. 

The above objectives are achieved by using GI , G I , 

GD and G F • GI , called the instantaneous output of the 
gate G, is based only on the truth table for G. G I = 

(ql, q2), where ql=O, 1 or x and q2=O, 1 or *, is called 
the modified instantaneous output vector. G I is used to 
introduce an ambiguity region into the output transi
tion of the gate G (if necessary) when the input transi
tion was nonambiguous. GD = (qa, q4, q5), where qa = 0, 
1 or x, Q4=0, 1, x or * and q5=0, 1, x or *, is called the 
filtered output vector. GD is used to perform the high-
frequency rejection and is calculated from G I and the 
present free output vector GF of the gate. The next free 
output vector GF = ([qa, tl ], [q4, ~], [q5, ta]) is obtained 
from GD by associating the transition times tl , ~ and 
ta with the appropriate elements of GD • The transition 
times tl , ~ and ta are the times when the output of G 
assumes the values qa, q4 and q5 respectively. It is noted 

_ that no times are associated with the * elements. 
For the vector GF, qa is the present value assigned 

to the output of G and tl is the time G assumed the 
output value qa. The values q4 and q5 are future values, 
which may become the output of G at times t2 and ta 
respectively. The values q4 and q5 will not become the 
output of G if they are the result of a transient input 
condition such that the high-frequency rejection will 
remove q4 and q5 from GF as explained later. 

Each gate G always has a GF associated with it to 
represent its free output values. The remaining vectors 
G I and GD as well as GI are used only to calculate the 
next GF which will become the present free output 
vector GF for future calculation. The actual or con
strained output of a gate G is the output of G in the 
presence of any fault being simulated. Only one circuit 
(i.e., the good circuit or one faulty circuit) is simulated 
during any simulation run. 

To illustrate the procedure, consider the NAND 
gate G with two inputs i and j shown in Figure 2. Let 
G have a minimum and maximum turn-on delay of·4 
and 6 nanoseconds respectively and a minimuJll and 
maximum turn-off delay·of 4 and 5 nanoseconds re
spectively. Assume that the inputs in Figure 2(a) are 
i = 0 and j = 1 and that they have not changed for at 
least 6 nanoseconds so that the output of G is 1. Also 
assume that the output of G changed to 1 at time tl 
and that i changes from 0 to 1 at to. As shown in Figure 
2(b), G must change from 1 to x at to+4 and change 
from x to 0 at to+5, provided that no subsequent input 

Simulation of Large Asynchronous Logic Circuits 653 

~=o~ 
J=I ---C7 
'" GF = ( [I , t.] , L* ], [* ] ) 

(0) 

i=l~ . NAND 
J = I 

GF = ([ I , t.] ,[ *] ,[*]) 
GI :: 0 

GI :: ( X, 0 ) 

Go = ( I , X ,0) 

J 
r 
J 

) 

r, t. to 

GF = ([ 1 , t.] , [X, tot 4] , [0 , to + 5] ) 
(b) 

i=l~ 
. NAI\O 
J=O 

. I "I ' ) t. to to+2 to+5 
~F = ( [I , t.] , [X , tot 4] , [ 0 , to of 5] ) to+4 
GI = I 
GI = ( x, I ) 

GO=(I,*," ) 
QF = ( [ I , tl ] , [ * ] , [ * ] ) 

(C) 

Figure 2-Gate response to a transient input condition 

transitions occur. The x and 0 are called future values 
since they may become the output of G later. However, 
assume j also changes from 1 to 0 at time to+2. Then 
since the future values have not yet been assigned to 
the gate, the input conditions which would have caused 
the 0 input were not of sufficient duration to allow the 
output transition to occur. Therefore, the gate G cannot 
respond to the transient input conditions and the x and 
o are removed from the list of future values on gate G. 

To calculate the next free output vector GF as the 
result of an input transition, the first step is to find the 
instantaneous output value GI according to the truth 
table for the gate. GI is not necessarily the actual out
put of the gate. For the example shown in Figure 2 (b) , 
GI=O. The truth tables for a 2-input NAND and a 
2-input OR gate are shown in Figure 3. 



654 Fall Joint Computer Conference, 1971 

o x o x 
o I I I o 0 I X 

r 0 X I I I 

X I X X X X I X 

NAND OR 

Figure 3-Two-input truth tables 

The second step is to find the modified instantaneous 
output vector G I from Gr. Let k= 1 or 0 and let k' be 
the complement of k. If either Gr or R { GF} is the value 
x, then G I = (GI , *). If Gr=k, R{G-F} =k' and the 
gate G is ambiguous, then Gr= (x, Gr). This inserts 
the ambiguity region on the output of gate G when the 
input transition is nonambiguous but the gate is am
biguous. If Gr = R { G-F} then no further processing 
occurs (GF is left unchanged) since the output of the 
gate will not change. Because of this selectivity no two 
adjacent elements of GD or GF can have the same 
value. 

The third step performs the high-frequency rejection, 
based on the modified instantaneous output vector Gr 
and the present free output vector GF, to produce the 
filtered output vector GD • To calculate GD the elements 
of GI are considered one at a time (first L{Gr) then 
R { G I } ). Let the value h, where h = 0, 1 or x, be the 
element of Gr under consideration. The high-frequency 
rej ection is best explained by considering three cases. 

Case I. If GF= ([i, t1], [*], [*]), where i=O, 1 or x, 
then GD = (i, h, *). This is obvious since it simply 
says that at some time in the future, the output value 
of G will change from i to h. There are no restrictions 
on this transition. 

Case II. If GF= ([i, t1], [j, t2], [*]) , where i, j=O, 
1 or x, then cOIl,sider the three groups of calculations 
listed in Table I. AU· the Group 1 calculations are of 
the form GF= ([h, t1], [j, t2], [*]), wherej¢h, and the 
result is GD = (h, *, *). This means that previous inputs 
to gate G caused an outputj to be calculated. However, 
since the value j is not the present value on G (the 
present value is L {GF } ), the input which caused the 
output j was not of sufficient duration to allow G to 
make the transition from h to j. The present inputs to 
G produce the modified instantaneous output element 

h which is exactly the present output of G. Therefore, 
the effect of the transient input condition is suppressed 
(high-frequency rejection) and the output of G re
mains unchanged. 

The Group 2 calculations are similar to the Group 1 
calculations in that the output due to a transient input 
condition is suppressed. The Group 2 calculations are 
of the form GF= ([i, t1], [j, ~], [*]), where i=O, 
1 or x andj=O or 1, i¢h, andj¢h. The result is GD = 
(i, h, *). The transient input condition which caused 
the output j is suppressed, but since i ¢ h, h must be 
added to GD. 

The Group 3 calculations involve no high-frequency 
rejection since they are simply transitions from h to h' 
(where h' is the complement of h and we define x' = x, 
0' = 1 and l' =0). Therefore, G-F= ([h, t1], [x, ~], [*]) 
produces GD = (h, x, h'). No output suppression is 
performed because x is either a 0 or 1. Then, on the 
actual gate only an h to h' transition will occur some
time between the h to x transition time tl and the x to 
h' transition time ts. 

Case III. If GF= ([i, t1], [x, t2], [i', ts]), for i=O 
or 1, then consider the following two types of h. The 
first type is h=i. Since x=i or x=i', the present GF 
may be reduced to GF= ([i, t1], [i', ts], [*]). Then, 
from Group 1 of Case II above GD = (i, *, *). The 
second type is h=x. Since all of the transitions which 
have been considered are to occur at some time in the 
future, and since any gate may have any time param
eters, it is of no consequence how far in the future the 
transitions will occur. Therefore, rather than consider
ing GF= ([i, t1], [x, t2], [i', ts]), only a partial GF 

TABLE I-:-Calculation of G D Based on GF and h 

GF h GD 

Group 1 
([0, tl], [1, ~], [*]) ° (0, *, *) 
([0, tl], [x, ~], [*]) ° (0, *, *) 
([1, tl]' [0, ~], [*]) 1 (1, *, *) 

([1, tl]' [x, t2J, [*]) 1 (1, *, *) 
([x, tl]' [0, t2J, [*]) x (x, *, *) 
([x, tl]' [1, ~], [*]) x (x, *, *) 

Group 2 

([0, tl], [1, ~], [*]) x (0, x, *) 
([1, tl]' [0, ~J, [*]) x (1, x, *) 
([x, tl], [0, ~], [*]) 1 (x, 1, *) 
([x, tl], [1, t2], [*]) ° (x,O, *) 

Group 3 

([0, tl], [x, lol ], [*]) 1 (0, x, 1) 
([1, ill, [x, ~J, [*]) ° (1, x, 0) 



needs to be considered; i.e., GF= ([x, t2], [i', ts], [*]). 
Then, again from Group 1 of Case II above, we have 
the partial GD = (x, *, *) and the total GD = (i, x, *). 
In summary GF= ([i, h], [x, ~], [i', ts]) may produce 
GD = (i, *, *) or GD = (i, x, *). 

The fourth step simply associates the proper time 
with the elements of GD to produce the next GF • Let 
GF=([h, th ], em, tm], en, tn]) , where h=O, 1 or x, 
m and n=O, 1, x or *, and th, tm and tn are the transition 
times associated with the output values. Similarly, let 
GD = (i, j, k) where i=O, 1, or x, andj, k=O, 1, x or *. 
By definition i = h since L { GF } = the present output of 
the gate. If j = m (k = n) , then tm (tn) remains unchanged. 
Otherwise, m~j(n~k) and tm~tj(tn~tk), where the 
left arrowhead means "is replaced by," and tj(tk) is 
the transition time associated with the transition to the 
value j (k). The transition times tj and tk are deter
mined from h and the gate timing parameters as shown 
in Table II. The transition times tj and tk tell when 
the output transition will occur if it is not suppressed 
later. 

The last step is to rename the next free output vector 
GF to the present free output vector GF. This is simply 
a step in the calculations and does not represent a 
change in the output value of the gate G because 
L { GF} = L { GF}. This step completes the calculation 

,of GF from the selected element of Gr. The entire 
process is repeated for the next element of Gr if G1 

contains no * element. 
The free output vector GF of an isolated gate G 

may be altered by input transitions as explained above. 
The only other operation performed on GF, called the 
assignment operation, occurs when a future output 
value is actually assigned to become the new output of 
G. Let GF be the next free output vector and GF be 
the present free output vector of G. Then L{GF}~ 
C{GF}, C{GF}~R{GF} and R{GF}~*. C{GF} cannot 
be * since this operation cannot occur unless the time 
tn associated with C {GF} is equal to to the present time. 

It can easily be seen that the described operations 
on GF are closed. Any GF containing only one non-* 
element is allowable. Also from Table I, any GF of the 
form ([i, t1],,[x, ~], [i', ts]) is allowable for i= 1 or 0. 

TABLE II-Transition Times for Various Output Changes 

j(k) men) tj(tk) 

0 x a+to 
x 1 b+to 
1 x c+to 
x 0 d+to 

Simulation of Large Asynchronous Logic Circuits 655 

Since GF = ([i, t1], [*], [*]) is allowable for any i = 0, 
1 or x, then an assignment on any GF= ([i, t1], [j, ~], 
[*]) for i, j = 0, 1 or x, would produce an allowable 
GF. Similarly, any assignment on GF= ([i, t1], [x, ~], 
[i', ts]) for i= 1, 0, would result in GF = ([x, ~], 
[i', ts], [*]) which is an allowable GF • 

For the fault-free circuit, L{ GF} is the present out
put assigned to the gate. This is also true, with small 
modifications, for the case of the single stuck-at faults 
since any gate containing a stuck-at fault may be 
modeled simply by replacing the good gate with a 
faulty gate. The faulty gate will have some input or 
the output always set to logical 1 or 0. However, the 
situation is more complicated for shorted faults. Be
cause of the action of the shorted faults, the free output 
of a gate which drives a shorted fault is not necessarily 
the constrained output of that gate. However, the ac
tion of the gate model is not affected since it produces 
the free output vector GF which is independent of any 
shorted fault. 

THE CIRCUIT MODEL 

The model used to simulate the action of the inter
connection of several gates is just as important as the 
gate model. Again the accuracy of the simulation: de
pends on a good circuit model. The objective is to 
imitate the action of the actual circuit as closely as 
possible. This objective precludes the use of the Huff
man Model or any schemes involving isolating feed
backs or leveling the circuitry. The model used here is 
both accurate and simple. 

To simulate a fault-free asynchronous logic circuit, 
let the present time be to and assume that the set of 
gates {Gi , i = 1, 2, ... m} are all the gates whose out
puts are changing at time to. Then the circuit can be 
modeled as follows: 

1. Race analysis is performed for each flip-flop 
which is formed by two gates, both of which are 
in {Gi , i= 1, 2, ... mI. 

2. The new outputs are assigned to every gate in 
{Gi , i= 1, 2, ... m} by performing the assign
ment operation on the present free output vec
tor of each G i. 

3. After all the new outputs of Gi have been as
signed, the output of each gate Hil j = 1, 2, 
... n, which is driven by any Gi whose output 
has changed, is calculated according to the gate 
model. If the output of some Hk , l~k~n, 
changed, then Hk is put into a list of gates 
whose output may change at time to+tt, where 

, 



656 Fall Joint Computer Conference, 1971 

A 

8 

(a) 

o 
E o 

o 
F 

o 

(b) 

Figure 4(a)-Race conditions for a NAND flip-flop 

Figure 4(b)-Race conditions for a NOR flip-flop 

tt is the transition time for Hk • If the output of 
H k did not change, no further action is taken on 
the gate. 

The important feature of this circuit model is that 
the gates Hj, j = 1, 2, ... n, have their outputs cal
culated based on all the new values of the gates in 
{Gi , i= 1, 2, ... mI. That is, every change which is 
going to occur at to occurs before the output of any 
gate driven by any of the Gi is calculated. This process 
continues until there are no more gates whose outputs 
are scheduled to change after to (and before any further 
primary input change). This model may cause the out
put of a gate to be calculated several times even in 
combinational circuitry. However, it can easily be 
seen that it provides an excellent simulation of the 
actual circuit operation. 

The race analysis mentioned above is unrelated to 
the Huffman Model and is concerned with only the 
basic NAND and NOR flip-flops shown in Figure 4. 
If either flip-flop enters the state shown, then the next 
output of either flip-flop is unpredictable. An actual 
flip-flop will always settle and have one of its output 
terminals at logical 1 and the other at logical O. How
ever, which output terminal will be 0 is unpredictable. 
Therefore, if the race state is ever entered, both output 
terminals of the flip-flop are assigned the actual output 
value x to indicate the unpredictable output. This as
signment is automatic if the flip-flop gates are ambigu
ous, but is performed by the race analysis if the gates 
are unambiguous. 

If some arbitrary amount of simulated time has 
elapsed and the circuit still has not settled, then an 
oscillation is declared. When an oscillation is declared 
at time to, every gate whose output is scheduled to 
change at some time greater than to is assigned the 
output value x rather than its calculated output, and 
no other part of the simulation model is changed. The 
injection of the value x will eventually stabilize the 
circuit with some gates having the output x. This in
jection will be performed automatically if the oscillat
ing gates are ambiguous, but will be performed by 
independent oscillation analysis if necessary. 

The initial state of the circuit is an important feature 
of the circuit model. While the simulation may be 
started from some initial state other than the com
pletely unknown state, where the output of every gate 
is the value x, this will probably not yield an accurate 
simulation. This is true because setting the state as
sumes that in the actual (perhaps faulty) circuit it is 
possible to set the state, and discards all information 
about the faults which would prevent the state from 
being set. Furthermore, even if the actual circuit has 



been operating and should be in some known state, 
there is no guarantee that it will be in that state be
cause of possible faults in the circuit. Therefore, the 
only way of guaranteeing an accurate simulation is to 
start with the output value of every gate set to the 
unknown value x and apply a homing sequence to set 
the state. The homing sequence will produce informa
tion about which faults will prevent the circuit from 
reaching the desired state. Then, in the actual circuit 
if the homing sequence fails to set the state of the 
circuit, one of the faults discovered above must exist 
in the circuit. This means that the homing sequence 
should be an integral part of the diagnostic tests for a 
logic circuit. 

SIMULATION OF THE GOOD CIRCUIT 

Sufficient information is now available to allow a 
simulation of the good machine to be performed. Each 
gate in the circuit may be assigned minimum and 
maximum transition delays. Based on the transition 
delays assigned to the gates, certain constrained haz
ards can be detected and a worst case timing analysis 
of the circuit can be produced. 

The concept of the M-hazardl may be applied to a 
non-Huffman Model sequential circuit by simply ob
serving that a constrained hazard is the possibility of a 
spurious pulse on the output of the circuit based on the 
specified gate time parameters. This general definition 
of a hazard is acceptable since the circuit output may 
be observed as the circuit settles allowing detection of 
static hazards (whether due to one input change or 
more is insignificant) and dynamic hazards. Since only 
detection of hazards is proposed, no distinction need 
be made between logic and function hazards. However, 
the constrained hazard is limited in that the possibility 
of the spurious pulse does not allow for any delay on 
any gate. The spurious pulse must be a real possibility 
in that the only delays which a gate may assume to 
allow the constrained hazard are those previously set 
by the timing parameters of a gate. For example, if a 
spurious pulse will occur if gate A has a delay of 10 
nanoseconds, but the maximum transition delay allowed 
for gate A is 6 nanoseconds, then no spurious pulse 
will occur and no constrained hazard exists. 

The constrained hazard detection can be achieved 
as follows. Consider a 2-input N ANP gate G with inputs 
i and j, and let k= 1 or O. If simulation produces a 
k~x~k' (k to x to k') transition on the gate G, where 
k~x occurs at time tl and x~k' occurs at ~, then this 
means, because of the definition of x, that the output 
of the real gate G is changing from k to k' and the 

Simulation of Large Asynchronous Logic Circuits 657 

change will occur between times tl and t2. The use of 
the x provides information on when k~k' may occur, 
and in fact provides worst case timing information 
based on the specified gate time parameters. 

It can easily be seen from the NAND truth table 
shown in Figure 3 that if input i= 1, then the gate Gis 
sensitive to input changes on j, while if either input is 
logical 0, the output of G is always 1. Assume that in 
the actual circuit i makes a k~k' transition and j = 1 
when the gate G is in a steady state (the two inputs 
have not changed for at least the maximum transition 
delay time). Then, in the simulated circuit the present 
free output vector GF of G contains two * elements 
and (assuming there is ambiguity associated with the 
i transition) i is making a k~x~k' transition, where 
k~x occurs at the earliest time tl when the actual 
i may change, and x~k' occurs at the latest time t2 
when the actual i may change. Assume that ta and t(J 
represent the minimum and maximum k~k' transition 
delays of G, respectively. The effect of G will be to 
delay the k~k' transition and to either not change the 
time (t2-t1) or to increase it because of ambiguity on 
G. That is, the output transition of G will be k'~x~k, 
where the k'~x occurs at tl+ta and x~k occurs at 
t2+t(J' Since t(J~ta by definition, the ambiguity region 
cannot decrease, and hence (~+t(J) - (h+ta) ~ (~-tl). 
Therefore, the actual output transition of G will occur 
between tl+ta and t2+t(J. 

Also because of the definition of the x, any k~x~k 
transition represents the possibility in the actual cir
cuit of a k~k' ~k transition. Therefore, the k~x~k 
transition represents a constrained hazard. The output 
of the simulated circuit may simply be observed, and 
any k~x~k transition noted since this means, based 
on the specified timing parameters, the output of the 
actual circuit may experience a k~k' ~k transition. 

Since each gate contains the worst case timing in
formation, the simulation of the circuit produces the 
worst case timing analysis for the circuit based on the 
specified gate timing parameters. This means that if it 
is possible for a spurious pulse to occur in the actual 
circuit, then a k~x~k pulse will occur in the simulated 
circuit. Since the simulation proceeds until the circuit 
has settled down, the effects of the k~x~k pulse must 
be propagated forward. Then, if it is possible for the 
k~x~k pulse· to throw the sequential circuit into an 
unknown state, it will occur. Therefore, the effects of 
any hazard on the circuit being simulated are obvious 
since the state may become unknown. This worst case 
timing analysis can be extremely useful for investigat
ing asynchronous circuits. 

It is apparent that even a simulation of the good 
circuit using the models presented here can yield sig-



658 Fall Joint Computer Conference, 1971 

nificant information about the effects of gate delays 
which deviate from the normal. In general,a simula
tion of the good circuit should be performed before 
any fault simulation is attempted. 

SIMULATION OF SHORTED FAULTS 

If only the traditional single stuck-at-one and stuck
at-zero faults are considered, the effect of these faults 
on the model is minimal. A gate is simply treated as if 
it had one less input (for example; a NAND gate-input 
stuck-at-one) or as if its output were always logical 
1 or 0 (for example, a NAND gate-input stuck-at-zero 
or gate-output stuck-at-one or -zero). For these faults 
only the gate model is affected, not the circuit model. 

The simulation of single shorted faults (shorted input 
diodes or shorted gate-output nets) is more complex 
since both the gate model and circuit model are differ
ent in the presence of shorted faults. A new circuit 
model is required because of the bilateral effects of a 
shorted fault. 

To allow discussion of the shorted faults, several 
definitions are helpful. A node is a point, where the 
possibility of a shorted input diode or shorted gate
output fault exists. No physical or electrical connection 
is necessary. For example, a node may be a gate or an 
integrated circuit crossover. 

A gate A is said to drive a node B if the output of A 
is a part of node B. Similarly, a gate A is driven by a 
node B if some input of A is a part of node B. The 
effect of a shorted fault is to cause the output of some 
gate G to assume a value other than its free output. 

Assume that the logic circuit under consideration 
has a more potent logical 0 than logical 1 so that if 
two gate-outputs are shorted together, any gate-output 
at 0 will force the shorted output to O. Thus, if several 
terminals are shorted together, the resulting value on 
each terminal will be 1 if and only if all the terminals 
have the value 1 in the absence of the shorted fault 
(the free outputs are all 1). Similarly, the resulting 
value on each terminal will be 0 if one of the terminals 
would have the value 0 in the absence of the shorted 
fault. Therefore, the shorted fault performs the logic 
function AND on all the terminals driving the shorted 
node and forces each terminal to assume the resulting 
value. (A logic circuit with a more potent logical 1 will 
perform the logic function OR in the presence of a 
shorted fault.) 

There are three cases of shorted faults which will be 
considered in detail. The most important case is the 
shorted gate-output fault. (Information about the 
physical layout of the circuit is necessary to obtain in-

formation about which gate-outputs might reasonably 
short together.) The other cases are. the shorted diode 
faults on the logic gates performing the AND and OR 
functions. Define the extended output net of a gate G for 
a shorted fault f to be all the terminals in the circuit 
which can force the output of G to change from 1 to O. 
Three cases of the extended output net will be con
sidered here. The first case is for the shorted gate
outputs, the second is for the shorted input diode in an 
AND gate and the third is for the shorted input diode 
in an OR gate. 

Consider the gates Gi , i= 1, 2, ... , m, such that all 
Gi drive the shorted fault node 8 as shown in Figure 5. 
Each Gi may drive several shorted fault nodes. If the 
fault corresponding to node 8 exists, then the output 
terminals of all the Gi will be connected together. 
Therefore, the extended output net of some gate Gk , 

l~k~m, for the shorted fault 8 contains all the output 
terminals of the gates Gi , i= 1, 2, ... , m. Then, the 
actual output gk of Gk is 

m 

gk= II gi for k= 1, 2, ... , m, (1) 
i=I 

where the II means the logical AND operation. If 
the output of some gate Gk , 1 ~ k ~ m, changes from 1 to 
o because of the shorted fault, then every gate which 
is driven by Gk must be reevaluated except the shorted 
node 8. It is not necessary to reevaluate node 8 since 

• • • 

• • • 

Gm 

Figure 5~horted gate output terminals 



Simulation of Large Asynchronous Logic Circuits 659 

the logic value on 8 will not change as a result of the 
change of Uk. This can easily be seen as follows. In order 
for the output Uk of Gk to change, 8 must have changed 
to logical 0 or x because (1) produced a 0 or x output. 
Since (1) can produce a 0 output only if some Uk = 0 
for 1 ~ h :::; m already, adding another 0 input Uk cannot 
affect (1). Similarly, (1) can produce an x output OR GI only if there are no 0 inputs and at least one x input. 
Then adding another x input will not affect (1). 

G. 

Gk 

Gm 

• • • 
• • 
• 

• 
• 
• 

• 
• 
• 

~----~-----------4 

,.-- --, 

(0) 

G. 

Gk 

(b) 

Figure 6{a)-Diodes performing AND function 

Figure 6(b )-Shorted diode for an AND gate 

AND 

Gk 

Gm 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

r----' 

(0) 

Gm 

Figure 7(a)-Diodes performing OR function 

Figure 7(b)-Shorted diode for an OR gate 

The problem of a shorted input diode in the AND 
(or NAND) gate as shown in Figure 6 (a) is similar. 
For the circuit shown in Figure 6 (b), assume the AND 
gate H has a shorted input diode which is driven by 
the gate Gk , l~k~m. If any input Uk, l~h~m, is a 
logical 0, then gk will force the output Uk of Gk to 0, 
but will not affect the output of any other Gk -for 
h~k_ The extended output net of Gk for the shorted 
input diode of H includes the output terminal of every 
Gi , i= 1, 2, .. _, m. Therefore, the output of gate Gk is 



660 Fall Joint Computer Conference, 1971 

given by 

(2) 
i=l 

Notice that the output of gate H is unaffected by the 
shorted diode. The only gates which may be affected 
are the gates other than H driven by Gk • 

For the previous two cases, the gates which drive 
the shorted fault have been affected by the fault. How
ever, this is not the case for the shorted diode in the 
OR gate as shown in Figure 7(a) and 7(b). In this 
case if gk=O, l~k~m, then the gate H assumes the 
output value 0 and all gi, i= 1,2, ... , m, are forced to 
O. Therefore, the extended output net of each Gi for 
the shorted input diode on H from Gk contains the 
output terminal of Gi and the output terminal of Gk • 

Consequently the output gi of the Gi is given by 

for all i= 1, 2, ... , m (3) 

Here the output of H may change if some gh = 1 for 
l~h~m and h~k. In addition, the inputs with logical 
1 will be forced to 0 when gk = O. Therefore, any gate 
driven by H or Gi , l:::;i:::;m, is affected if H or Gi 

changes its value. 
Next, the circuit model necessary to simulate the 

shorted faults must be presented. It is assumed that if 
the actual output of a gate G is forced to some value 
other than the fault-free output of G, the transition 
occurs instantaneously and does not affect the free out
put vector of the gate model G. Similarly, it is assumed 
that if the effect of the fault is removed, the actual 
gate G will recover instantaneously to its fault-free 
output value. 

Assume that some set of gates {Fi' i= 1, 2, ... , m} 
drive a shorted fault node s. Furthermore, assume that 
some set of gates {G;, j= 1, 2, ... , n} have outputs 
which are to change at the present time to. Suppose 
that the output of gate G;, l~j~n, is identical to the 
output of the gate F i , l~i~m. Then the model used 
for simulating shorted faults is as follows: 

1. For every gate Gj assign the new output to Gj 

without regard to any shorted faults. 
2. Perform race analysis for each flip-flop which is 

formed by two gates, both of which are in 
{G;,j=l, 2, .. . ,n}. 

3. If any gate Gj, l:::;j~n, drives the shorted fault 
node s, form the new output for all the F /s as 
described before based on the free outputs of 
the F/s. Then assign the new outputs to the 
F/s. 

4. For each gate G;, 15:j5:n, and F i , 15:i5:m, if 
the output of Gj or F i changed, then calculate 
the new output of each gate driven by Gj or F i . 

The model presented yields the correct timing for 
the circuit since the effect of a shorted fault is generated 
and propagated as soon as it occurs. That is, the reverse 
effect is immediately accounted for as it should be. 
Also, since the free and constrained outputs are iso
lated, the insertion of the shorted faults still allows the 
worst case timing analysis, even of the faulty circuit. 

It is possible for the output of some gate G to be k, 
where k = 1 or 0 for the good circuit, but to be x under 
some fault conditionf. This means that G mayor may 
not detect the presence of fault f. It is also possible for 
the output of G to be the value x for some fault f but 
to have G = k for the good circuit. 

DISCUSSION 

The simulator proposed here provides an extremely 
accurate simulation of any large asynchronous sequen
tiallogic circuit. Both the good circuit and the faulty 
circuit containing shorted gate-outputs and shorted 
input diodes can be simulated. Although only the simu
lation of shorted faults has been discussed, it is obvious 
that the traditional stuck-at-one and stuck-at-zero 
faults can easily be simulated. The gate model used 
allows the detection of constrained hazards as well as 
the worst case timing analysis of the circuit. 

This simulator has been implemented, on the IBM/ 
360 TSS system which is a virtual memory, conver
sational access system operating on Model 67 com
puters. The simulator is written in 360 Assembler 
Language and uses approximately 25K bytes of core 
for program storage. Additional storage is necessary 
for the various tables used. 

During evaluation tests, circuits of up to 48,000 
gates have been simulated. Speeds of up to 100 micro
seconds/vectorofaultogate have been achieved for 
highly sequential circuits, where each gate is ambigu
ous. It is difficult to compare the simulation time to 
that of any existing simulator because no existing sys
tems have the same power as the one presented here. 
In order to make some comparison, let us consider the 
latest simulator5 which required about the same simula
tion time, but used nonambiguous gates, no high
frequency rejection and no flip-flop race analysis. How
ever, the simulation time of this latest simulator will 
be much longer even if only the consideration of am
biguous gates is added. 

REFERENCES 

1 E B EICHELBERGER 
Hazard detection in combinational and sequential circuits 
IBM Journal of Hesearch and Development Vol 9 No 2 
pp 90-99 1965 



2 M YOELI S RINON 
A pplication of ternary algebra to the study of static hazards 
Journal of ACM VolU No 1 pp 84-97 1964 

3 S SESHU 
The logic organizer and diagnosis programs 
Report R-226 Coordinated Science Laboratory University 
of Illinois Urbana Illinois 1964 

4 H Y CHANG 
A method for digitally simulating shorted input diode 
failures 
Bell Systems Technical Journal Vol 48 No 4 
pp 1957-1966 1969 

5 S A SZYGENDA D W ROUSE E W THOMPSON 
A model and implementation of a universal time delay 
simulator for large digital nets 
Proceedings of AFIPS Spring Joint Computer Conference 
pp 207-216 1970 

Simulation of Large Asynchronous Logic Circuits 661 

6 R J DIEPHUSIS 
Logic design assisted by interactive computer simulation 
Digest of Northeast Electronics Research and Engineering 
Meeting 1970 

7 I H YETTER 
High speed fault simulation for Univac 1107 computer 
system 
Proceedings of ACM National Conference pp 265-277 
1968 

8 G G HAYS 
Computer-aided design: simulation of digital design logic 
IEEE Transactions on Computers Vol C-18 No 1 pp 1-10 
1969 

9 J S JEPHSON R P MC QUARRIE 
R E VOGELSBERG 
A three value computer design verification system 
IBM System Journal Vol 8 No 3 pp 178-188 1969 





Adaptive memory trackers 

by G. EPSTEIN 

ITT Gilfillan Incorporated 
Van N uys, California 

INTRODUCTION 

This introduces a mathematical model for a control 
process called an adaptive memory tracker. The control 
or adaptive variable is the memory length (i.e., reten
tion time) of a filter model, rather than other param
eters within the filter model. The adaptation in memory 
length is achieved through the use of two different 
types of filters which are based on this filter model. 
These filters are called shrinking memory and pene
trating memory recursive filters, and their application 
as a function of an error signal decreases or increases, 
respectively, the memory length of the filter model. An 
example of this is shown diagrammatically in Figure 1. 

Such an approach is of interest from the standpoint of 
implementation in a mechanico-electrical system be
cause it allows the tracker to base its performance only 
on relevant input data-that is, the memory length of 
the filter model adapts so as to ignore input data before 
an adjusted point in time. This contrasts with other 
trackersl ,2 in which all past input data are incorporated, 
through adjustment of exponential damping on this 
data as a function of adaptive parameters within the 
filter model. 

The mathematical model is of interest from a cyber
netics standpoint because it isolates the operation of 
memory and allows the effect of adaptive changes in 
memory length to be an object of study. 

Elementary examples and simulations are given. 
These display not only properties of the model, but 
show, in a functional sense, that the model pertains to 
other kinds of systems, such as biological or societal 
systems.3 .4 The model pertains to these other systems to 
the extent that the responses of the trackers for the 
given examples and simulations are similar to the 
responses of these other systems. It is indicated that 
more sophisticated examples may be required to realize 
the full value of the model. 

It is required that the above systems be conceived as 
sensing input data and having memory.s It is further 

663 

required that the input data be arranged in a time 
sequence, and that these input data be stored in 
memory in a way which preserves this time sequence. 

An example of a mechanico-electrical system is a 
radar and computer complex, or group of such com
plexes. An example of a biological system is an organism, 
and an example of a societal system is a group of such 
organisms. 

The inputs are conceived as units, denoted by Un, 

n= 1,2, .... For simplicity, it will be assumed that the 
time interval, T, between these units is constant. The 
units are obtained from a physical model, whose values 
are denoted by pn, subject to disturbances, whose values 
are denoted by dn. Thus, un=Pn+dn, n= 1,2, ... , as 
shown in Figure 1. 

Each unit Un is stored in memory in the form of m (n) 
components. In the mechanico-electrical system, there 
are men) addresses in computer memory, each address 
consisting of a certain number of bits (the word length) , 
and each Un is a linear combination of its men) com
ponents (obtained from m (n) measurements) stored 
in these addresses. In the biological system, the com
ponents involve the synapses in a neuronal pattern, and 
possibly elements of hormonal, glial, or other nature. In 
the societal system, the latter m (n) components are 
extended over a number of organisms. 

Thus, the memory of the system may be of an 
aggregate nature, in the sense that the system may 
consist of a group of radar and computer complexes, or 
a group of organisms, each with its own memory. It is 
required, however, as mentioned above, that the time 
sequence of the input data conceived as units, Un, be 
preserved through the storage of their m (n) components 
in memory. In the biological and societal systems, 
therefore, memory is construed as being short or 
medium term6 and temporal,1 for these types of memory 
seem to be time dependent in character, whereas long 
term memory6 and categorical memory7 seem to be 
more of an attention focusing character. Furthermore, 
in these latter systems, memory is construed as being 



664 Fall Joint Computer Conference, 1971 

MEMORY 

CHANGE 
~f (E) 

PHYSICAL 

{

SHRINKING MEMORY} 
FILTER FILTER WHEN ~f S. 0 
MODEL PENETRATING MEMORY 

FILTER WHEN ~f ~ 1 

SUBTRACT 

SUM 

MODEL ----...., 
INPUT u 

n 

d 
n 

DISTURBANCES 

ii (f) 
n 

OUTPUT 

Figure I-Adaptive memory tracker for case E = (Un(f) -Un) 

internal, within the organism(s), rather than external, 
in the form of artifacts, such as records, structures, etc. 

The filter model is of order N + 1 with outputs 
Udn(1) , d=O, 1,2, ... , N. The superscript (I) is the 
adaptive variable, the memory length being (f - 1) T; 
i.e., the outputs may be written in the form: 

n 

Udn(l)= I: Wd(i-n+f)Ui, d=O, 1, ... , N;f~2. (1) 
i=n-J+I 

The subscript d denotes the N + 1 outputs and the 
subscript n is the recursive parameter. The case d=O 
is designated as the position output, Uon (J) = Un (I). 

The error signal in position at the nth step is: 

e 

E= I: €i(Un_i+1(J(n-i+I»_Un_i+I). (2) 
i=l 

The change in the adaptive variable f at the nth step is 
denoted by !:if, and is given as an integral valued func
tion of the error signal, .6.f(E). 

The tracker employs a shrinking memory recursive 
filter when !:if= -8::::;0, and a penetrating memory 
recursive filter when Af = P + 1 ~ 1. 

If the output at the (n -1) st step is Ui(n-l) (v) , 
i = 0, 1, ... , N, then the shrinking memory filter is: 

N 8 

Udn(V-8) = I: MdiUi(n-l) (v) + Ndun + I: SdJUn-J+j, 
i=O ;=0 

d=O, 1, ... , N, (3) 

and the penetrating memory filter is: 

N p 

Udn (v+p+l) = I: J diUi(n-l} (v) + Kdun + I: P dJUn-J-j, 
i=O ;=1 

d=O, 1, ... , N. (4) 

The matrix coefficients M di, N d, Sdj, depend on the 
filter model, v and 8. The matrix coefficients J di , K d, Pdj, 
depend on the filter model, v and p. These matrix 
coefficients are chosen, of course, so that (1) is satisfied. 

It should be noted that when 8 = 0, the shrinking 
memory filter becomes the well known finite memory 
filterS and when p = 0, the penetrating memory filter 
becomes the well known growing memory filter,9 of 
which the Kalman filterlo is an example. 

If there is an F such thatf:::::;F for allf, the adaptive 
memory tracker is bounded; i.e., the memory length 
does not exceed (F-I) T. Otherwise, the adaptive 
memory tracker is unbounded. 

To illustrate in a simple way, let e = €l = 1, so that the 
error signal is just: 

E=un(I)-Un. (5) 

This case is shown in Figure 1. 
To further simplify, let the filter model be a straight 

line, least squares model; that is, N = 1, and un(1) is the 
endpoint of a straight line such that the square of the 
differences between this line and the last f inputs is a 
minimum. The disturbances dn are chosen to be in
dependent samples of normally distributed noise of 
mean ° and constant standard of deviation u. 

The effect of adaptive changes in memory length is 
perhaps best shown by choosing .6.f(E) to be two 
valued. This is also the easiest to implement in a com
puter. Specifically, 

.6.f= +I(p=O) when I E I :::::;Ku (6) 

and 

.6.f= -1(8= 1) when I E I >Ku, (7) 

where K is a constant. This is shown in Figure 2. 
The penetrating memory filter for this case is the 

well-known growing memory least squares filter: ll 

:tin (v+l) = Uon (v+l) 

v(v-I) _ (v) 
(v+ 1) (v+2) UO(n-l) 

v(v-I) 2(2v+ 1) 
+ (v+I) (v+2) UI(n_I)(v)+ (v+I) (v+2) Un 

-lin (v+l) • T = Uln (v+l) 

6 _ (v) 

(v+I) (v+2) UO(n-l) 

(v-I) (v+4) _ (v) 6 U 
+ (v+I) (v+2) UI(n-l) + (v+I) (v+2) n 

(8) 

The shrinking memory filter for this case may be 



derived from (8) and the equations for the finite 
memory least squares filter.ll The result is: 

Un (v-I) = Uon (v-I) 

_ (v-9) _ (v) 5 - (v) 2(2v-3) 
- (v-I) UO(n-l) + UI(n-l) + v(v-l) Un 

2 2(v+3) 
+ (v-I) Un-vH+ v(v-l) Un-v 

Un (v-I) • T = Uln (v-I) 

18 _ (v)+ (v+l0) - (11) 

(v-I) (v-2) Uo(n-l) (v-2) UI(n-l) 

6 6 
+ v(v-l) Un+ (v-I) (v-2) Un-v+l 

+ 
6(v+2) 

v(v-l) (v-2) Un-v. 
(9) 

In these equations, itn (I) = Uln (I) IT denotes the velocity 
output. 

The figures which follow show the results of simula
tions for this adaptive memory tracker on an IBM 1130 
computer, using disturbances dn which are independent 
samples from a pseudo normal distribution generated 
by a subroutine within this computer. In these figures, 
the values Pn which constitute the physical model are 
shown by a dashed line, the inputs un=Pn+dn are 
shown by crosses, and the tracker outputs Un (I) are 
shown by the solid line. At the top of each figure is a 
plot of the values that the adaptive variable f assumes 
for each value of n. 

A convenient measure of the tracker response as a 
function of f when the physical model is strictly linear 
is the noise-reduction-ratio.u This may be used, there
fore, in Figure 3, which follows, but only rarely in the 
remaining figures. 

A simple measurement of the tracker response over 

Af 

Af(E) 
+1 

K 

-I 

Figure 2-Change in memory length (tJ.f) as a functon of error 
signal (E) for trackers shown in Figures 3, 4, and 5 

Adaptive Memory Trackers 665 

200 
ISO 

100 

SO 
01------

150' 
140' 

130' 

120' 

110' 

iij~ __ ~~~ __ 
31.251 93.75T 156.25T 218.75T 

n T 

PHYSICAL MODEL (P
n
):- - - __ 

INPUTS (un): + + + + + + 
OUTPUTS (un (f»: ___ _ 

281.25T 343.75T 406.25T 468.751 

Figure 3-Adaptive memory, straight line, least squares tracker 
when physical model is constant, df(E) given by Figure 2, with 
K=O.8 

the interval i = j to i = n is given by the response: 
n 

L: I u/'(i» - Pi I 
Rj,n= ..:..i=.....:J'-· ____ _ 

n-j+l 
(10) 

The response is viewed visually in an easy way in these 
figures as Rn,n= I Un(I)-Pn I, the magnitude of the 
difference between the solid line representing the 
tracker output Un(J) , and the dashed line representing 
the physical model pn at each value of n. Values of the 
response Rj,n over particular intervals will be displayed 
in these figures where necessary in order to lend precise
ness to the description of the tracker response. 

Figure 3 shows the case where the physical model is 
constant and K =0.8. This may be called a regulator, 
homeostat,I2 or, even, sociestat,I3 where the control 
variable is memory length. The slow increase in f and 
resulting slow improvement in the tracker response are 
due to the low value of K = 0.8. 

In Figures 4 and 5, the value of K is K = 1.0, and the 
physical model is piecewise linear, over the path A, B, 
C, D, E, F, G. It is assumed that BA is extended before 
A linearly, and the tracker is started at A with the value 
of f as shown. The operation of the tracker before A is 
similar to that shown in Figure 3. This physical model 
corresponds to the case where there are repeated 
changes in environmental constraints. It may be 
produced in an approximate sense by an aircraft making 
repeated changes in bearing of 90° through high g 
maneuvers, or through repeated changes in laws, either 
in a society or, as in learning reversal experiments, 
on organisms.14 

In Figure 5, the tracker does not track BC, CD, DE, 
EF, and FG, until BI , el , DI , EI , and FI , respectively, 



666 Fall Joint Computer Conference, 1971 

200 

150 
f 100 -

50 

PHYSICAL MODEl (Pn): ----

INPUTS ('.) ,+++++++ 
OUTPOTS ru/»):---

o rRI88,281-1.34C1i t--R37S,468-0.690'---r 

2817 I iii 

I \~'::'Y2:~~1';-\~'\~:.:.,~.l:,:,·o,~~~,.,.,j 
617 

417 

2" 

SOT lOOT 150T 200T 250T 300T 3SOT 400T 4SOT 500T 550T 
.T 

Figure 4-Adaptive memory, straight line, least squares tracker 
when physical model is piecewise linear, t::.f(E) given by Figure 2, 
with K=1.0 

for one of two reasons: 

Either 

(i) The tracker does not sense data from the physical 
model BBI , GGI , DDI , EEl, and FFI , and in the absence 
of data simulates data from the substitute model BBo, 
GGo, DDo, EEo, and F Fo; or 

(ii) The tracker is being deceived and receives false 
data from the substitute model BBo, GGo, DDo, EEo, 
andFFo• 

In either case, the tracker senses data from the 
physical model starting at BI , GI , DI , E I , and Fl. The 
values 8n of the substitute model are shown in Figure 5 
as a dotted line, so that the values of the input data Un 

along the paths BBo, CGo, DDo, EEo, FFo, are given 
by Un = Sn+dn• 

It can be seen that this tracker shows very good 
learning characteristics. Not only does the tracker show 

soY". lOOT 150T 200T 250T 300T 350T 400T 450T 500T 550T 

Figure 5-Adaptive memory, straight line, least squares tracker 
when physical model is piecewise linear with substitute, t::.f(E) 
given by Figure 2, with K = 1.0 

improved response to each change in path of the 
physical model, but the tracker also distinguishes 
between the conditions of Figures 4 and 5, in the former 
case stabilizing to values of f in the range 52 ~f ~ 76, 
and in the latter case stabilizing to values of f in the 
range of 40 ~f ~ 65. It can be seen that in Figure 4 the 
response improves from R94.187 = 2.170" to R 375 •468 = 0.690" 
and R469.561 = 1.020". In Figure 5 the response improves 
from R126.187 =4.950" to R407.468=1.700" and R500.561= 

1.920". The improvement in response shown by this 
simple tracker is similar to that shown by the higher 
vertebrates.14 Such performance, obtained with the 
filter model, K = 1, e= EI = 1, 8= 1, p = 0, all being fixed, 
suggests that more sophisticated examples, where some 
of these are allowed to vary, either in a preset way or 
adaptively, may be of more value for future work and 
research. 

In the above examples, the adaptive memory tracker 
is unbounded. Practical implementation within a 
computer (whose physical memory is finite) requires a 
value, F, so that f~F for all f.* This is easily accom
plished with the above tracker by adding the following 
proviso to (6) and (7). 

If v=F then ilf= -1 (s= 1) 
regardless of I E I ; i.e., in this case, the value 
of I E I is ignored and (9) is used. (11) 

To give a more sophisticated example, consider the 
same filter model (straight line, least squares), the same 
e= EI = 1, but ilf(E) , the change in memory length as a 
function of error signal, given as shown in Figure 6. 
Here, f:,.f(E) is again a fixed function, but now f:,.f lies in 
the range -50~ilf~+50, as shown. This implies 

30 

20 \ 

10 

r-----;-''''c-----~---------IEI 
317 

-10 

-20 

-30 

-50 

Figure 6-Change in memory length Ct::.f) as a function of error 
signal (E) for tracker shown in Figures 7 and 8 

* Of course there is no need from the standpoint of per
formance to exceed the required specifications for the problem at 
hand. 



values of 8=0, 1, ... ,50 and values of p=O, 1, ... ,49. 
This is of little interest from an implementation stand
point, and the corresponding equations for the shrinking 
memory and penetrating memory filters need not be 
given. This may be of interest, however, for biological 
systems. It is reasonable to suppose that there is more 
flexibility in such systems than implied by the binary 
alternative shown in Figure 2. One purpose of this 
example is to show that large variations in memory 
length as a function of error signal have unfortunate 
consequences in terms of tracker response. In particular, 
such variability in short or medium term temporal 
memory occurs in some cases of hysteria, or amnesia in 
senile dementia. At certain times of day, a patient's 
temporal memory extends over a period of hours; at 
other times of day, the patient's temporal memory 
extends only over a period of minutes. 

Figures 7 and 8 demonstrate the operation of this 
tracker for the same cases as presented in Figures 4 
and 5. Here the tracker is bounded with F= 175 (corre
sponding to a form of permanent amnesia). The values 
of af(E) given by Figure 6 are limited by the proviso 
that f lie in the range 2~f~ 175. 

As in these earlier figures, the line BA is extended 
linearly before A, in order to provide previous input 
data. In Figures 7 and 8, however, the tracker is started 
normallyatf=2. 

The tracker response over the path AB indicates 
that such a tr~cker is a satisfactory homeostat as long 
as F is sufficiently high. There are sudden sharp drops in 
f, which would seriously degrade the tracker response 
were the value of F too low. The chosen value of F = 175 
is sufficiently high to prevent this degradation. 

However, the response of the tracker to repeated 
changes in environmental constraints is poor. In Figure 
7 the response values over the indicated intervals vary 

SOT lOOT ISOT 200T 250T 300T ~~ 350T 400T 450T SOOT 550T 

Figure 7-Adaptive memory, straight line, least squares 
tracker when physical model is piecewise linear, ~f(E) given by 
Figure 6, with F = 175 

200 

1 150 

100 
50: 

28" 

14" 

12. 

10" 

8" 

Adaptive Memory Trackers 667 

PHYSICAL MODel (Pn): - -

suasnTUTE MODEL (In):· •••• 

INPlJn (u h ++ +++ 
OUTPUTS (ij (0): __ 

i,!i 'i
Vl 

V'~V'!i ,i\J:J }~~\~". ~J\~iN0 l t
n 

i. . I 

~N1~i\·ilj '1.~~IAll '"jmli\~\tN~ \ i .w\~y,(v\r\ ~ 
.. 19,280-1.70 f.7,168- .7l 

SOT lOOT lOOT 200T 250T nT lOOT 350T 

Figure 8-Adaptive memory, straight line, least squares 
tracker when physical model is piecewise linear with substitute 
~f(E) given by Figure 6, with F == 175 

beween 0.70 u and 0.98 u; in Figure 8 th~ response values 
over the indicated intervals vary between 1.50u and 
1.74u. There is no improvement in the response, such 
as shown by the decrease in response values of Figures 
4 or 5. The response values of Figures 7 and 8 are of the 
same order as the final response values of Figures 4 and 
5, respectively, but here the response is very erratic, 
with many sharp increases in Rn,n over all values of n 
after B in Figure 7 and BI in Figure 8. 

Thus the response of the tracker to repeated changes 
in environmental constraints is poor in Figure 7, and 
worse in Figure 8. This erratic response with no learning 
is similar to the response of the above mentioned 
patients in such a situation as, for example, repeated 
transfers from one hospital to another. The response of 
these patients in this,case may, in fact, become so poor 
as to result in death. 

In all of the above, including the simulations, the 
model or' plant errorI5 is zero. It follows froms,I6 that 
the implementation of an adaptive memory tracker 
which uses a least squares recursive filter model would 
result in non-zero model or plant errors accumulating 
without bound as the number of recursions increases. 
This may be avoided either by considering other filter 
models, such as the stable filter models indicated in 
References 8 and 17, for example, or by restarting the 
adaptive memory tracker at regular intervals before 
these errors become too great. Note in particular that 
this tracker does not distinguish between the ac
cumulation of errors in u/ and the variation in Uj caused 
by the disturbances dj, j=n, n-1, ... ,n-e+1, as 
shown by the equation for the error signal (2). Thus, as 
n increases, an accumulation of such errors in Un' which 
exceeds the variations in Un caused by the disturbances 
will result in increases in E. Since adaptive memory 



668 Fall Joint Computer Conference, 1971 

trackers in normal operation have df(E) as a mono
tonically decreasing function*, it follows that the value 
of the adaptive variable f will eventually reduce to 
f = 2, its minimum value, at which point the tracker 
can be restarted. 

The restart equations for the above examples at 
n = nc are just 

-line (2) • T = Ulne (2) = U ne - Une-l (12) 

In the above discussion, only simple examples have 
been considered, in order to display basic values of the 
mathematical model in an easy way and, in particular, 
to highlight the effect of adaptive changes in memory 
length, all other parameters being fixed. It seems clear 
that the mathematical model will have more value 
when other parameters, such as df (E), or e and ei, 
are allowed to vary, and especially when the physical 
models or the statistics of the disturbances are more 
complicated. It is recommended that these ideas be 
extended and applied. 

ACKNOWLEDGMENT 

Valuable assistance was provided by Lowell Dean 
McMahan, who performed the programming for the 
simulations. 

REFERENCES 

1 T R BENEDICT G W BORDNER 
Synthesis of an optimal set of radar track-while-scan 
smoothing equations 
IRE Transactions on Automatic Control pp 27-36 
July 1962 

2 H R SIMPSON 
Performance measures and optimization condition for a 
third-order sampled-data tracker 
IEEE Transactions on Automatic Control pp 182-183 
April 1963 

* It may be of interest to consider functions, /lfCE), which are not 
monotonically decreasing, in order to study organisms whose 
memory operation is of an abnormal or so-called paradoxical 
type. 

3 E NAGEL 
The structure of science-Problems in the logic of scientific 
explanation 
Harcourt Brace and World 1961 

4 L APOSTEL 
Towards the formal study of models in the non-formal 
sciences in the concept and the role of the model in mathemat
ics and natural social sciences 
Editor H Freudenthel Proceedings of the Colloquim 
Sponsored by the Division of Philosophy of Sciences 
organized at Ultrecht January 1960 by H. Freudenthel 
Reidel Dordrecht 1961 

5 W R ASHBY 
A n introduction to cybernetics 
Chapman and Hall Ltd 1956 

6 D A NORMAN Editor 
Models of human memory 
Academic Press 1970 

7 J M NIELSON 
Memory and amnesia 
San Lucas Press 1958 

8 G EPSTEIN 
On finite-Memory recursive filters 
IEEE Transactions on Information Theory Vol IT 16 
No 4 pp 486-487 July 1970 

9 M BLUM 
Recursion formulas for growing memory digital filters 
IRE Transactions on Information Theory Vol IT 4 
pp 24-30 March 1958 

10 R E KALMAN 
A new approach to linear filtering and prediction problems 
Journal of Basic Engineering Vol 82D pp 35-45 March 
1960 

11 N LEVINE 
A new technique for increasing the flexibility of recursive 
least squares data smoothing 
The Bell System Technical Journal pp 821-840 May 1961 

12 W B CANNON 
The wisdom of the body 
NY 1932 

13 A L STINCHCOMBE 
Constricting social theories 
Harcourt Brace and World 1968 

14 M E BITTERMAN 
The evolution of intelligence 
Scientific American Vol 212 No 1 pp 92-100 January 1965 

15 H W SORENSON 
Least-squares estimation from Gauss to Kalman 
IEEE Spectrum pp 63-68 July 1970 

16 G EPSTEIN 
Comment on 'on fim:te-memory recursive filters' 
IEEE Transactions on Information Theory Vol IT 17 
No 5 September 1971 

17 G EPSTEIN 
A note on the derivation of finite-memory almost-least-squares 
recursive filters 
IEEE Transactions on Information Theory Vol IT-17 
No 6 November 1971 



A panel session-Planinng community information utilities 

Conference Results 

by BARRY W. BOEHM 

The RAND Corporation 
Santa Monica, California 

Although diversity of opinion characterized many of 
the individual discussions, the conference yielded a 
surprisingly strong degree of consensus on a series of 
four major related points. 

1. Mass information utilities of some sort will be with 
us by the 1980s. They will probably be based on cable
TV to the home and a low data-rate return line, al
though some participant,s felt that two-way video, and 
particularly Picturephone, offered a strong alternative. 
Some precursors exist now in airline and ticket reser
vation systems, IBM's Advanced Administrative Sys
tem, and Mitre's TICCET system for elementary edu
cation in Reston, Va. Some commercial planning is 
going on, including efforts at Hughes and RCA, and a 
multi-client study by A. D. Little. Paul Baran cited a 
market analysis by the Institute for the Future, indi
cating very little large-scale penetration before the 
1980s and about a $15-20 billion market by the end 
of the 1980s. 

2. Mass information utilities carry a great deal of social 
risk. Especially within the tight contraints of main
taining economic self-sufficiency, it will be difficult to 
avoid effectively discriminatory service policies between 
rich and poor users, urban and rural users, English
speaking and non-English-speaking users. Thus, any 
explicit or implicit public support of such utilities will 
have to be carefully thought through. An information 
utility will probably widen the gap between the infor
mation-rich and the information-poor, although prob
ably not in the long run. Telepurchasing and continuous 
credit would increase the temptations and hazards of 
overspending, but could on the other hand eliminate 
the overcharging for goods in ghetto stores. 

Information privacy aspects will certainly be touchy, 
even though economics will probably dictate a decen
tralized file structure. The polling and voting area is 
particularly sensitive to the quality of safeguards. Pro-

669 

vision for an "Information Bill of Rights" is certainly 
necessary, and perhaps also for such things as anony
mous coin-operated terminals and a "Fifth Amend
ment" switch (to insure user anonymity) on the console. 
Management aspects of the utility will be just as touchy. 
Even if the utility were just a distributor, the manage
ment would have considerable power over priorities. 
And, if users strongly adjust their lives around the 
utility, they won't have much choice but to go along 
with the management. 

3. A well-designed, scientifically-evaluated Prototype 
Community Information Utility (PCIU) would greatly 
reduce the long-term social risk. It would provide an 
opportunity to sense the resulting social strains and 
experiment with ways to reduce or eliminate them. It 
would also reduce the economic risk to business in 
interfacing with an information utility. As Bruce Gil
christ expressed it, a PCIU could provide the kind of 
future socioeconomic insights we might have gained by 
equipping a representative community in 1920 with two 
cars per family and the associated services. 

However, developing a PCIU wouldn't be easy or 
cheap. Very rough estimates for providing a full range 
of services to a representative city of 90,000 people 
were: approximately 80 million computer instructions 
per second, 15,000 file accesses per second, 10 million 
statements of computer program, 7-10 years of develop
ment time and a development cost of $500 million
$1 billion. This puts the full-scale PCIU into the cate
gory of a major national effort; however, some perspec
tive is restored when one considers that the nation's 
computing bill for the manned spaceflight effort during 
the 1960s has been estimated at $2 billion. In any 
case, the PCIU certainly would need a great deal of 
careful preliminary planning before proceeding into 
development. 

4. The next steps toward a PCIU would be valuable 
whether or not they resulted in a PC I U. These steps 
include: 

a. Development of a thorough, detailed PCIU plan 
including analysis of management, services, and 
technical alternatives, and delineation of prin
ciples and pitfalls common to any information 
utility implementation. 

b. Evaluation of related experiences to date, and 



670 Fall Joint Computer Conference, 1971 

their implications with respect to PCIU develop
ment and operation. 

c. Development and evaluation of some low-cost 
pre-prototypes, involving groups of 100-1000 
users and based on existing resources; e.g., an 
existing CATV system, an existing educational 
network, or a just-developing planned com
munity. 

Even if such studies were not followed by actual 
development of a PCIU, the insights they would pro
vide on the social and economic implications of any 
sort of information utility would be invaluable in guid
ing the development of alternative systems, in order to 
make sure that the utility would serve the people and 
not vice versa. 

Software Design for the Community 
Information Utility 

by DONALD COHEN 

The RAND Corporation 
Santa Monica, California 

The aim of our current efforts is to present a frame
work that will support further consideration, and hope
fully development, of a Prototype Community Infor
mation Utility (PCIU). There is a continuing explosive 
growth in the number and size of data bases and infor
mation services that are potentially useful to various 
segments of the community. If a common point of 
contact can be developed among these data bases and 
services (no mean problem in itself), then the economic 
and social value of a properly integrated data bank 
could greatly exceed the value of the individual data 
bases. To exploit such a data bank in any effective 
manner requires a number of things: 

• Data bases, individually and collectively, must be 
organized in a consistent manner, their utility and 
scope of application carefully defined, and their 
validity certified. 

• A continuing process must be established for the 
collection, organization, evaluation, and certifi
cation of new data. 

• The set of services that utilize the data bank must 
be carefully selected, defined, and implemented so 
that the system is not burdened with applications 

that are individually of limited scope and difficult 
to interface with one another. 

• The system that supports these services must be 
virtually failsafe, guarantee a very high degree of 
data security and privacy, and provide the basis 
for management mechanisms that insure its con
tinued operation within accepted guidelines. 

Preliminary estimates of the PCIU workload gener
ated by a moderate sized city (75,000-100,000 people) 
indicate that an instruction execution rate of 80-85 
million instructions per second and some 15-20 thousand 
file accesses per second will be required. Some 40-50 
thousand on-line consoles will have to be supported 
with possibly 20-50 percent of these active at anyone 
time. Extending the system to a large metropolitan 
area of several million potential users will require an 
exponential increase in system capacity and complexity. 

No single processor exists currently, or is likely to 
exist in the foreseeable future, that can handle a work
load of even the prototype system. A very large multi
processor system will be required in which groups of 
processors are devoted to one of the three maj~r tasks 
of message concentration (front-end communications 
processors), message processing, and data management. 
Within each group processors may be either partially 
or completely interchangeable. In addition, redundant 
equipment will be required in case of severe hardware 
failures or system overloads. As the PCIU would be a 
large-scale social experiment, strong emphasis on system 
measurability is required. 

The PCIU will be predominantly a closed system 
with its emphasis on well-defined applications that 
manipulate medium- to large-scale data bases. Develop
ment of new applications, on-line programming by 
users, and updates to various data bases will have to be 
rigidly controlled to insure that bread-and-butter appli
cations receive sufficient support, to minimize the effects 
of system failures, and to maintain the integrity of the 
data bank. 

The detailed design of the PCIU must be preceded 
by an in-depth analysis in several areas. First, potential 
applications must be examined to determine workload 
and file requirements, the needs of these applications 
in terms of system resources, and the interfaces among 
an application, the system, and other applications. This 
will provide the first realistic estimate of system size 
and complexity. Once this data is available, alternative 
software designs can be proposed and examined for the 
degree of difficulty inherent in each to provide the 
necessarily high level of overall system control. 

A third stage of the pre-design process should be a 
simulation of feasible alternative designs including the 
mechanisms that are proposed to handle the high vol-



ume of processor and file activity that is anticipated. 
At the same time, those portions of the system design 
that are responsible for insuring that data can be kept 
secure and that the effects of system failure can be 
minimized should be subjected to a detailed evaluation. 
Only when there is sufficient confidence in the prelimi
nary system design, along with quantitative justifi
cation for that confidence, should the detailed develop
ment of a PCID be attempted. 

Manage:ment Prospects and Proble:ms 

by BURT NANUS 

University of Southern California 
Los Angeles, California 

There is no doubt that if a community information 
utility (CID) is to be a reality, it will have to integrate 
smoothly with all other aspects of urban life. This 
represents an enormous challenge because it is clear 
that the CID will produce fundamental and far reaching 
changes in the major subsystems of urban life-i.e., 
the economic, political, educational and life support 
subsystems-and it is by no means certain that all the 
changes will be beneficial. 

The only way to realize the many benefits of the 
CID is by the most scrupulous and careful management 
of its design, implementation and operation. The CIU 
must be managed so that resources are allocated for the 
effective achievement of social ends, and these ends 
must represent a balancing of the interests of at least 
three constituencies; as follows: 

1. Society's Objectives-the CID must be designed 
in such a way as to assure equal and fair treat
ment to all users, to contribute to individual 
self-fulfillment and to enhance the awareness 
and general welfare of the citizenry. To do this, 
it should place a higher priority on public than 
private services, should be self supporting in the 
long run, and should be operated so as to protect 
the privacy and dignity of individuals. 

2. User Objectives-the users of the CID should 
be able to expect reasonable and fair prices, high 
quality of service, protection for proprietary data 
and programs, and a voice in the setting of 
standards and priorities. 

Planning Community Information Utilities 671 

3. Supplier Objectives-suppliers of CIU equip
ment and services should receive fair profits, 
rewards for technical excellence and social con
cern, and protection from losses due to the 
actions of other suppliers, users or regulatory 
agencies. 

Given an appropriate set of ends, of which the above 
is merely suggestive, it should be possible to explore the 
appropriateness of alternative organizational configur
ations. Many models are worth considering, and they 
cover the entire spectrum from a purely public agency 
to a privately held corporation. Along this spectrum are 
such models as urban entrepreneurship, the non-profit 
corporation, the heavily regulated but privately owned 
utility, the COM SAT-like consortium of private com
panies and the government regulatory agency model, 
to name a few. One model that appears particularly 
attractive at this time is the public authority form 
(e.g., the Port of New York Authority) which would 
permit the CID to operate outside the regular structure 
of government with relative administrative autonomy, 
but within carefully defined limits and a mandate to 
act in the public interest. 

The legal organization form of the CID and the 
definition of the locus of power for policy making are 
only the first of a series of management problems that 
will have to be resolved in establishing the CIU. Other 
difficult problems are related to determination of ac
ceptable levels of service, pricing structure, competitive 
structure, funding methods, government relationships, 
research and development policy, regulatory issues, 
consumer safeguards and public relations policies. Some 
aspects of these problems have been solved successfully 
in other contexts, but many are unique to the CIU and 
will require extensive experimentation and management 
research. 

Planning Co:m:munity Infor:mation Utilities 

by NORMAN R. NIELSEN 

Stanford University 
Stanford, California 

Other members of the panel have discussed the 
various services which a Community Information 
Utility (CIU) might provide as well as the various 
hardware, software, and communication facilities which 



I 

672 Fall Joint Computer Conference, 1971 

it might employ. The CIU's actual configuration and 
mix of services will be determined by a number of inter
related factors stemming from areas such as sociology, 
psychology, computer science, economics, political sci
ence, communications, and electrical engineering. 
Nevertheless, a study of the economic considerations 
which underlie the CIU concept can indicate the more 
likely paths for development. 

What a OIU might "look like" is of major interest. 
Economic considerations point toward a OIU built 
around a cable system which would link terminal and 
computer for both input and output purposes. The 
home TV set would be the primary output device, with 
some slow speed (pointer, touch tone pad, keyboard, 
etc.) mechanism for user input. The "central" computer 
system of the OIU would likely be merely a message 
switching computer. It would pass inputs and outputs 
among and between the users on the cable and the 
various application or service computing systems as 
well as control the output video generation for cable 
users. The application systems would be developed and 
operated independently, although each would communi
cate with the central computer via a standard interface. 

Although inter-CIU communication could be handled 
indirectly through each of the application services as 
appropriate, there are economic advantages to the direct 
connection of OIU s. The use of a network interface 
processor in conjunction with the central OIU computer 
would not only minimize communication resource usage 
but would also permit efficient use of services available 
on other OIUs. This latter situation has positive impli
cations for development costs, start-up costs, and the 
required critical mass of a OIU (see below). 

Despite the desirability, it is quite unlikely that the 
CIU will offer the full range of services that are fre
quently talked about. The provision of dynamic video 
output (e.g. film clips) to individual users is virtually 
prohibited by economic considerations. Voting services 
face very tough cost-benefit questions. On the other 
hand, some services such as education appear in a much 
more favorable light. Despite the independence of the 
various applications services, it would appear that the 
whole will be greater than the sum of the parts; that is, 
the individual applications will tend to become more 
valuable as additional applications are added to the 
OIU. The OIU will also face a critical mass effect in 
that a certain level and variety of service must be 
provided and used before the OIU can develop in a 
viable fashion. 

The decentralized organization of the OIU is likely 
to imply a decentralized file structure, even though 
each service could talk to any other service. Such a 
development favorably affects the privacy and file 

integrity issues, since it lessens protection problems 
and renders file integration more difficult. By the same 
token, however, it hinders the applications, efficiencies, 
and other benefits that would be realizable with inte
grated files. 

Another major concern is the likely cost of a OIU. 
It would appear that the communication and terminal 
systems might run on the order of $25 per user per 
month. Estimated usage costs (admittedly very gross) 
could easily run to another $25 per terminal per month. 
Thus, the widespread use of OIUs could have a big 
impact upon consumption patterns as well as upon the 
manner in which many businesses are conducted. 

This raises the question of how to pay for a OIU. 
It is most likely that there would be some combination 
of fixed charges and variable charges based upon actual 
usage. Many services would likely be subsidized or 
otherwise supported by the provider (rather than by 
the user). The computer base for the system opens up 
a number of possibilities for splitting payments between 
users, service operators, program developers, and other 
support organizations. The basic economics permit a 
wide range of alternatives, so it is likely that non
economic considerations will have a large impact upon 
the final charge structure. 

Two economic problems face the development of a 
prototype OIU system. First, and most obvious, is the 
need for massive funding for software development and 
start-up costs. The second problem relates to the impact 
of the provision of these funds. Olearly one can't have 
users without services nor services without users. Hence, 
some type of subsidization or guarantee will likely be 
needed to get the prototype started. However, such 
support will alter participant behavior, partially ob
scuring the desired marketing and behaviorial data. A 
number of other economic factors combine to indicate 
that the development and operation of a prototype 
OIU will be a valuable but non-straightforward en
deavor. 

InforInation Services 

by EDWIN B. PARKER 

Stanford University 
Stanford, California 

Two general classes of services will be required in a 
community information utility developed as an exten-



sion of cable television. One class is that provided by 
the private sector of the economy and the other is 
public sector services. With respect to all services avail
able through the private sector, such as banking, shop
ping, entertainment, and all business and commercial 
services, the information utility should provide a stand
ard information transmission service such that all po
tential suppliers of service can reach their potential 
customers. In other words, the utility should provide 
non-discriminatory competitive access to all computer 
and other information services without putting itself 
in the position of being a monopoly supplier of services. 
This implies that the utility specify technical interface, 
access and communication standards, but avoid re
sponsibility for the contents of information transmitted 
through the utility. Detailed discussion with potential 

Planning Community Information Utilities 673 

suppliers of services will be required to establish ade
quate interface standards. 

Special arrangements may have to be made to develop 
public sector services, the most important of which are 
education and information retrieval services. In the 
initial stages of development of education services, 
highest priority should be given to the delivery to 
homes of pre-school, supplementary and continuing 
education services. The greatest potential of the infor
mation utility may lie in its promise to provide eco
nomical and effective life-long learning. Also important 
will be the provision of public access via the utility to 
"public" government information that's otherwise diffi
cult to obtain. Online voting and polling services 
should be given low priority or deferred because of a 
variety of political dangers. 





A panel session-Computers and the problems of society 

Co:m.puters and Urban Proble:m.s 

by PETER KAMNITZER 

University of California 
Los Angeles, California 

The recent focus of interest on urban problem solu
tions has progressed from early enthusiasm to the 
realization of the enormous difficulties awaiting the 
problem solver. The social and political problems at
tending problem perception and definition, priority es
tablishment, cost and benefit distribution, information 
and program control seem to overwhelm the potentially 
available technological solutions to the manifestations 
of present urban ills. 

Utilization of computer technology in the area of 
urban problems has grown from extensive data storage 
and retrieval and data analysis to simulation and 
modelling on a useful but as yet limited operational 
scale. Large scale simulation models have been at
tempted particularly with regard to urban transpor
tation and its impact on land use. Computer graphics 
and on-line interactive man-machine systems are show
ing promise as useful aids to planning and decision 
making. Continuing progress will depend on further 
urban research; on development of uniform data for
mats; on faster, cheaper, more reliable and more power
ful computers; and on financial and institutional en
couragement. 

Urban problem patterns on a short range scale will 
basically follow present physical and social trends re
sulting in further congestion, pollution, slums, sprawl, 
etc. On a long range scale they will increasingly be 
associated with the impact of technological and social 
forces on changing urban patterns within established 
as well as totally new concepts of urban life. 

Computers can contribute to the amelioration of 
urban problems predominantly in two major categories: 
through their effect on a changing urban fabric and 
through their effect on the process of planning and 
decision making. They can be used in city building and 
rebuilding through the utilization of automation, com
munication and systems control (automated transpor
tation, construction methods, controlled environments, 

675 

interactive communication, etc.). Planning and decision 
making can be greatly enhanced by on-line interactive 
computer methods. The complex, open-ended urban 
system with its absence of clear goal definitions tends 
to defy total optimization. In contrast, the man-ma
chine mode permits man's value judgments to become 
part of the problem solving process itself. An Urban 
Simulation Laboratory is proposed which would bring 
together all means of simulation (mathematical model
ling, man gaming and perceptual environment simu
lation) for purposes of research and experimentation 
with hypothetical solutions to urban problems. Inter
active information display would permit queries by 
researchers and community representatives in an "if
then" mode, and thus would significantly contribute to 
urban decision making within the context of an in
formed and participatory society. 

Successful implementation of innovation depends on 
a general climate of positivism, government subsidy of 
innovation, retraining programs, continuing education, 
as well as on user participation in the planning and 
implementation processes. New institutional arrange
ments between universities, research institutions, gov
ernment and private industry are suggested to maxi
mize learning, research and problem solving oppor
tunities. The author cautions not to forget the "art" 
of problem solving in the commendable attempt of 
creating a rigorously applied "science" for "Computers 
and the Problems of Society." 

The Current Crisis in American Education 

by NORTON F. KRISTY 

Refocus 
Los Angeles, California 

Public education in America is in crisis. Its critics 
point out that it is not doing its job at all effectively-at 
least according to the current expectations of upgrading 
the economically and culturally handicapped. The costs 
of public education have risen alarmingly in the past 



676 Fall Joint Computer Conference, 1971 

20 years, and are currently out-running the tax base at 
all levels of education from primary school to graduate 
school. In the early sixties, many educators joined 
forces with systems specialists and computer develop
ment people in what has turned out to be a romantic 
dream. The dream was to some way, some how, combine 
concepts of system analysis and computer technology 
with principles of programmed learning in a way that 
would "revolutionize learning". Those high hopes have 
proved to be remarkably short-lived. 

Now, in 1971, the conservatives appear to be in 
ascendence. There is widespread disillusionment with 
the "failure" of educational technology and innovation. 
However, the failure of educational technology and 
computer applications has largely been the result of 

1. Poor administration of research and develop
ment monies by a tangled skein of governmental 
agencies competitively involved in educational 
research. 

2. A grossly inadequate funding program for edu
ca tional research. Those monies which were a vail
able tended to be spent on short-term, frag
mented research programs. In other words, there 
is an almost desperate need to coordinate re
search, particularly at the Federal level, into one 
reasonably well-orchestrated program that will 
support risk-taking, and will give a financial 
base to promising ideas for an extended period 
of time. 

3. Premature implementation of educational tech
nology. Implementation of computer applications 
to education must be at least as well planned as 
the implementation of a major new military 
system. 

Since we in the educational community are now at a 
point of considerable disillusionment concerning the 
value of computer technology, the role of the Federal 
Government in the past five years needs to be re
counted. The Bureau of Research of the U.S. Office of 
Education in 1966/67, planned for an accelerating pro
gram of investment in computer applications ranging 
from administrative applications to computer assisted 
instruction. Over the time period 1967-69, less than 20 
percent of these planned-for funds were ever in fact 
expended. Many programs were initiated and then not 
funded. Those that were funded were given much shorter 
periods of time than had been initially planned to cover 
the proposed work. 

In spite of this, considerable technical progress has 
been made on the effective application of computers in 
education. However, it is the political situation which 

will control the future of wide-scale research, develop
ment and installation of such applications. The edu
cational enterprise in America is a fragmented instru
mentality composed of more than twenty thousand 
school districts and almost three thousand institutions 
of higher learning. This educational enterprise has no 
centralized authority that can promote, support and 
press for change. At the same time, it has most of the 
limitations of small-scale organizations without much 
compensating freedom of action or flexibility of response 
to user requirements. Finally, education in America 
has now run out of money. It cannot mount a sustained 
program of experimentation, development, and imple
mentation dealing with the very technologies and in
structional practices that could redeem it. 

A highly feasible method of bringing computer tech
nology to important use in public education in the next 
decade is a reorganized state/federal program of major 
proportion. This program, if it were to be created, 
should concentrate first on higher education, for the 
cost/effectiveness is greater there. 

International bnplications: Need for 
World SiDlulation 

by JOHN McLEOD 

SCi World Simulation 

Technological trends are causing profound changes 
at all levels and in all sectors of society. Some of these 
changes are considered desirable by those affected, some 
are not. 

Computers are so inseparably intertwined with tech
nology that many of the undesirable, even alarming, 
trends are being blamed on computers. Whether or not 
this is justified, it seems that if the undesirable trends 
are to be checked and the desirable ones reinforced, we 
will have to call on computers for help. 

The reason computers will be necessary is that prob
lems of society today, stemming from or aggravated 
by the "population explosion" and its multiple side
effects, are much too complicated for comprehension 
by the unaided human intellect. 

In the last analysis, if humanity is to survive, people 
must solve the problems of society. But first there must 
be understanding. And to acquire understanding, people 
must have a tool for keeping track of the myriad pieces 



of information, and the dynamic interactions among 
them, that contribute to the problems and which must 
be taken into account in any proposed solution. If the 
interrelationships as well as the facts are properly fed 
into a computer, the result will be a computer model of 
the system of interest. Experiments can then be de
signed and run on the model which will impart an 
understanding of the real-world situation. 

However, all sub-systems of our society are so inter
related, even up to and including nations, that only a 
model including all the nations of the world can give us 
insight into social problems which transcend national 
boundaries-as so many important ones do. 

For the foregoing reasons it is urged that work on the 
development of a world simulation be officially en
couraged and adequately funded by our government. 

CODlputers and National Security 

by E. W. PAXSON 

The RAND Corporation 
Santa Monica, California 

The digital computer was spawned by World War II. 
Military requirements have continued to pace com
puter development. Computer technology and weapon 
system sophistication have marched in tandem. Neither 
has dominated, but current weapon systems, operations, 
and management are impossible without the computer. 
Almost 90 percent of the Government's current stock 
of 5000 plus computers are devoted to defense and 
space activities, reversing the civilian use pattern of at 
least ten times that number of machines. 

Weapons have been developed and fielded in response 
to a real external threat. But there has been no true 
arms race and one is unlikely . We have relied largely 
on advanced technology to generate a posture deterring 
the catastrophe of nuclear war. Our lead in computer 
science is a major contributing factor in giving us the 
technological edge and in contributing to deterrence. 

Will we continue to have this edge? Pressures from 
the domestic sector, the flyback effect after termination 
of our involvement in South East Asia, our hopes for 
favorable Strategic Arms Limitations Talks will un
doubtedly lead to a decrease in defense funding. Since 
our Research and Development system, unlike that of 
Russia, is closely coupled to weapon system develop-

Computers and the Problems of Society 677 

ment, there will be a cutback in R&D, including com
puter sciences, as new systems are cancelled or stretched 
out. 

Scientific research has relied heavily on Government 
funding. Current Congressional attitudes toward basic 
research are that it must be directly 'relevant' to mili
tary matters. In the USSR, the State has opposite 
attitudes. 

Are industrial motivations strong enough to fill these 
gaps? 

Under the concept of strategic sufficiency, President 
Nixon has asked for options of greater flexibility in 
deterrence and nuclear war management than the imple
mentation of Assured Destruction which can imply the 
death of half of our people in retaliation. 

The computer implications are heavy. Surveillance 
and all operating weapon systems must be tightly linked 
to produce the required data base update to permit 
finger-tip command and control of a major crisis. Not 
only are the data processing requirements immense, but 
there is imperative need for adaptive, on-line, man
machine intelligence-not artificial intelligence, to ex
plore the 'what if?' 'what then?' of combat situations 
in much less than all too short real time. We still talk 
to computers and not with them. Machine technology 
on the LSI and memory levels is well out of balance 
with required and expensive software. 

As military budgets are decreased, basic research and 
development should obviously increase in proportion. 
But, as usual, I think it will take its share of a slash. 
I hope I am wrong. 

Ecological ProbleDls 

by ROGER WEINB.ERG 

Kansas State University 
Manhattan, Kansas 

Man has exploited nature during the 19th and 20th 
centuries. Therefore, in America he has changed many 
productive Indian systems of life: the Oklahoma plains 
of the Kiow, rich in grass and buffalo, into a dust bowl; 
the Washington salmon streams of the Haida into a 
sequence of DDT-poisoned reservoirs; the British Co
lumbian Kootenay Lake of the Tlinglit, filled with fish, 
into a recipient for fertilizers. 

By 1971 he had gone further, filling the atmosphere 



678 Fall Joint Computer Conference, 1971 

with carbon monoxide and other noxious gases so that 
breathing in New York City was equivalent to smoking 
a pack and a half of cigarettes a day. He has even 
polluted the vast life-giving ocean with death-dealing 
poisons. Mercury contaminated the swordfish which 
became dangerous for humans to eat. DDT slowed the 
ocean plants' ability to capture the energy of the sun 
in the vital first step of a long food chain leading to man. 

As man was developing a technology which created 
these problems, he was with the same technology, de
veloping means for solving them. By 1946 he had built 
thinking machines-electronic computers, and by 1971 
he had used them to model e co-systems , to optimize 
the results of resource management, and to coordinate 
research efforts by teams of individual research workers 
who were scattered by distance. 

Future developments such as small, cheap minicom
puters can provide computers for gathering weather 
data at remote Pacific island stations, while powerful 
parallel processing computers will be capable of running 
models of large complex weather systems. 

Along with new computers, a new technique such as 
microprogramming will enable a programmer to set up 
computer circuits tailored for his particular program, 
and a new concept such as the computer utility will 

enable groups of programmers to communicate with 
each other, and to utilize the power of a large central 
computer. 

These new computers, techniques, and concepts are 
man's genie. And man, become Aladdin, will be able to: 

a. Improve weather forecasting, and be forewarned 
against natural disasters. 

b. Plan the optimal use of scarce natural resources. 
c. Simulate to improve decision making, testing 

alternate ecological policies in. order to choose 
the best one before it is implemented, thereby 
avoiding dangerous mistakes. 

d. Plan and coordinate measures in pollution con
trol. 

e. Build information retrieval systems which make 
scientific and technical data accessible to inter
disciplinary teams studying world-wide environ
mental systems. 

Computers provide man with the power of vision into 
alternate future worlds, and the option of choice among 
these worlds. What choice he makes is his decision. 
Whatever his choice, he will live in the heaven he 
creates, or in the hell. 



AMERICAN FEDERATION OF INFORMATION 
PROCESSING SOCIETIES, INC. (AFIPS) 

AFIPS OFFICERS and BOARD OF DIRECTORS 

President 

Mr. Keith Uncapher 
The RAND Corporation 

1700 Main Street 
Santa Monica, California 90406 

Secretary 

Dr. Donald Walker 
Artificial Intelligence Group 
Stanford Research Institute 

Menlo Park, California 94025 

Executive Director 

Dr. Bruce Gilchrist 
AFIPS 

V ice President 

Mr . Walter L. Anderson 
General Kinetics, Inc. 

11425 Isaac Newton Square, South 
Reston, Virginia 22070 

Treasurer 

Dr. Robert W. Rector 
University of California 

6115 Mathematical Sciences Building 
Los Angeles, California 90024 

210 Summit Avenue 
Montvale, New Jersey 07645 

Mr. Walter Carlson 
IBM Corporation 

Armonk, New York, 10504 

Mr. L. C. Hobbs 
Hobbs Associates, Inc. 

P.O. Box 686 

ACM Directors 

Dr. Ward Sangren 

Mr. Donn B. Parker 
Stanford Research Institute 

Menlo Park, California 94025 

The University of California 
521 University Hall 

2200 University Avenue 
Berkeley, California 94720 

IEEE Directors 

Dr. Robert A. Kudlich 
Raytheon Co., Equipment Division 

Wayland Laboratory 
Corona del Mar, California 92625 Boston Post Road 

Wayland, Massachusetts 01778 

Professor Edward J. McCluskey 
Stanford University 

Department of Electrical Engineering 
Palo Alto, California 94305 



Simulations Council Director 

Mr. James E. Wolle 
General Electric Company (VFSTC) 

Space Division 
P.O. Box 8555 

Philadelphia, Pa. 19101 

American Institute of Aeronautics and 
Astronautics Director 

Dr. Eugene Levin 
Culler-Harrison Company 

5770 Thornwood Drive 
Goleta, California 93017 

American Statistical Association Director 

Dr. Martin Schatzoff 
IBM Cambridge Scientific Center 

545 Technology Square 
Cambridge, Massachusetts 02130 

Instrument Society of America Director 

Mr. Theodore J. Williams 
Purdue Laboratory for Applied Industrial Control 

Purdue University 
Lafayette, Indiana 47907 

Society for Information Display Director 

Mr. William Bethke 
RADC (EME, W. Bethke) 

Griffis Air Force Base 
Rome, New York 13440 

Association for Computational Linguistics Director 

Dr. A. Hood Roberts 
Center for Applied Linguistics 

1717 Massachusetts Avenue, N.W. 
Washington, D.C. 20036 

A merican Institute of Certified Public 
A ccountants Director 

Mr. Noel Zakin 
Computer Technical Services 
ACIPA-666 Fifth Avenue 

New York, New York 10019 

American Society for Information Science Director 

Mr. Herbert Koller 
ASIS 

1140 Connecticut Avenue, N.W. Suite 804 
Washington, D.C. 20036 

Society for Industrial and Applied Mathematics Director 

Dr. D. L. Thomsen, Jr. 
IBM Corporation 

Armonk, New York 10504 

Special Libraries Association Director 

Mr. Burton E. Lamkin 
Office of Education-Room 5901 

7th and D Streets, S.W. 
Washington, D.C. 20202 

JOINT COMPUTER CONFERENCE BOARD 

President 

Mr. Keith W. Uncapher 
The RAND Corporation 

1700 Main Street 
Santa Monica, California 90406 

V ice President 

Mr. Walter L. Anderson 
General Kinetics, Incorporated 

11425 Isaac Newton Square, South 
Reston, Virginia 22070 

Treasurer 

Dr. Robert W. Rector 
University of California 

6115 Mathematical Sciences Building 
Los Angeles, California 90024 

A CM Representative 

Mr. Richard B. Blue Sr. 
1320 Victoria Avenue 

Los Angeles, California 90019 

IEEE Representative 

Dr. Robert A. Kudlich 
Raytheon Company, Equipment Division 

Wayland Laboratory 
Boston Post Road 

Wayland, Massachusetts 01778 

SCI Representative 

Mr. John E. Sherman 
Lockheed Missiles and Space Co 

Org. 19-30, Building 102, 
P.O. Box 504 

Sunnyvale, California 94088 



JOINT COMPUTER CONFERENCE 
COMMITTEE 

Dr. A. S. Hoagland, Chairman 
IBM Research Center 

P.O. Box 218 
Yorktown Heights, New York 10508 

JOINT COMPUTER CONFERENCE TECHNICAL 
PROGRAM COMMITTEE 

Mr. David R. Brown, Chairman 
Stanford Research Institute 

333 Ravenswood Avenue 
Menlo Park, California 94025 

FUTURE JCC CONFERENCE CHAIRMEN 

1972 SJCC 

Mr. Jack E. Bertram 
IBM Corporation 

P.O. Box 37 
Armonk, New York 10504 

1972 FJCC 

Dr. Robert Spinrad 
Xerox Data Systems 

701 South Aviation Blvd. 
EI Segundo, California 90245 



1971 FJCC STEERING COMMITTEE 

General Chairman 

Ralph R. Wheeler 
Lockheed Missiles and Space Company 

Vice Chairman 

Albert C. Porter 
California Public Utilities Commission 

Secretary 

Joseph M. Crosslin 
Control Data Corporation 

Treasurer 

Corydon Hurtado 
Cyberrary International Company 

Technical Program 

Dr. Martin Y. Silberberg-Chairman 
IBM Corporation 
Robert Blumenthal-Vice Chairman 
IBM Corporation 

Local Arrangements 

Thomas Bieg-Chairman 
IBM Corporation 
Kenneth W. Charshaf-Vice Chairman 
Bank of America 

Registration 

Robert Borkenhagen-Chairman 
lSI Corporation 
Gary Thomasson-Vice Chairman 
Trans-A-File Systems Company 

Printing and Mailing 

Jeffrey D. Stein-Chairman 
On-Line Business Systems, Inc. 
Eckart Sellinger-Vice Chairman 
Bank of America 

Exhibits 

Jack Miller-Chairman 
Ampex Corporation 

Clyde Cornwell-Vice Chairman 
Ampex Computer Products Division 

Special Activities 

Norman Kristovich-Chairman 
Dept. of Industrial Relations 

David Wilkinson-Vice Chairman 
Hewlett Packard International Corp. 

Public Relations 

Frederick M. Hoar-Chairman 
Fairchild Camera & Instrument Corp. 

Ro~ald R. Batiste-Vice Chairman 
System Development Corporation 

A C M Representative 

Thomas E. Murray 
Del Monte Corporation 

IEEE Computer Society Representative 

Terry Ruster 
Fairchild Corporation 

SCI Representative 

J. E. Sherman 
Lockheed Missiles and Space Company 

JCC Committee Liaison 

Dr. Morton M. Astrahan 
IBM Corporation 



REVIEWERS, PANELISTS, AND SESSION CHAIRMEN 

Baran, Paul 
Bell, C. Gordon 
Bennett, John L. 
Blois, Marsden S. 
Borko, Harold 
Coate, Robert E. 
Farber, Dave 
Frederickson, A. Anton, Jr. 
Gould, Kent 
Hamming, Richard 
Haynes, Herb 
Hisey, Bradner L. 

Barg, Benjamin 
Bekey, G. A. 
Blease, Thomas 
Boudreau, P. E. 
Brandt, Gil 
Brooks, F. P. 
Burke, Robert 
Caine, S. H. 
Chien, R. T. 
Cohen, N. D. 
Courtney, Robert 
Cserhalmi, N. 
Dalkey, Norman 
Davis, Dan 
Edwards, D. B. G. 
Engelbart, D. C. 
Epple, Ken 
Everett, R. R. 
Foster, J. E. 
Frank, A. A. 
Frazer, J. W. 
Freeman, R. B. 
Griswold, R. E. 

Abbott, Robert P. 
Acton, Forman S. 
Adams, Edward N. 
Aiken, Robert M. 
Alcorn, Bruce K. 
Allen, Roy P. 
Amarel, Saul 
Anderson, James P. 
Anderson, Robert H. 
Anderson, Thomas C. 
Anzelmo, Frank 

SESSION CHAIRMEN 

Hoffman, Lance J. 
Howard, John 
King, Warren 
Kuney, Joseph 
La Riviere, Dave 
Lipton, Harry 
Madden, JohnD. 
Mason, Maughan S. 
Newton, Carol 
Nigh, Max T. 
Nilsen, Raymond N. 

PANELISTS 

Harding, P. A. 
Hawley, C. L. 
Hugo, F. M. 
Jeffries, S. B. 
Kamnitzer, P. 
Karplus, W. J. 
Katter, R. V. 
Kay, A. C. 
Korn, G. A. 
Kristy, N. F. 
Lalchandani, A. 
Lamson, B. 
Larson, Dave 
Levinthal, C. 
McLeod, J. 
McClure, R. M. 
-aginniss, F. J. 
Maley, G. A. 
Mallender, Ian 
Martin, D. C. 
Merritt, M. 
Mitchell, Kent 
Morris, J. B., Jr. 

REVIEWERS 

Arndt, Fred R. 
Arnovick, George N. 
Axsom, Larry E. 
Badger, George F., Jr. 
Ball, N. Addison 
Barcelo, Wayne R. 
Barlow, Allen E. 
Barnes, Ben B. 
Barnett, Robert M. 
Bartlett, James P. 
Bayles, Richard U. 

Ponder, Leonard H. 
Purdy, Gerry 
Ross, L. W. 
Sackman, H. 
Schroeder, David L. 
Schwetman, Herb 
Warlick, Charles 
Weiss, Donald H. 
Wilkinson, Dave 
Williams, Robert 
Wormeli, Paul 

Morton, M. S. 
Morton, N. E. 
Nanus, B. 
Nathan, R. 
Nielson, N. R. 
Norberg, G. R. 
Parker, E. B. 
Paxson, E. W. 
Pollard, B. W. 
Post, C. 
Raub, W. 
Rosen, Saul 
Ryan, Frank 
Sibley, E. H. 
Smith, C. L. 
Tatum, Liston 
Van Brunt, E. E. 
Walker, D. E. 
Weinberg, R. 
Weissman, Clark 
Yamamoto, W. 
Yarrington, A. 

Belady, L. A. 
Bell, Thomas E. 
Berglass, Gilbert R. 
Berning, Paul T. 
Bethke, William P. 
Beyer, William A. 
Black, Donald V. 
Bodoia, Morris J. 
Bolton, Gordon R. 
Borko, Harold 
Bratman, Harvey 



Bredt, Thomas H. 
Bremer, John W. 
Brennan, Robert D. 
Brown, Ralph R. 
Browne, J. C. 
Bryan, G. Edward 
Burkhard, Walter A. 
Caine, Stephen H. 
Calhoun, Kenneth J. 
Calhoun, Myron A. 
Calingaert, Peter 
Calvert, Thomas W. 
Canaday, R. H. 
Cardwell, David W. 
Carmon, James L. 
Chaitin, Leonard J. 
Chandler, John P. 
Chapman, R. G., Jr. 
Cheydleur, Benjamin F. 
Chow, W. F. 
Clymer, A. Ben 
Cocanower, Alfred B. 
Coles, L. Stephen 
Collmeyer, Arthur J. 
Condon, S. F. 
Connors, Michael M. 
Constant, Robert N. 
Cook, Jeffrey D. 
Cooke, Walter F. 
Corduan, Alfred E. 
Corwin, Barnet C. 
Cotton, Ira W. 
Coulman, George A. 
Cowan, Robert 
Critchlow, Arthur J. 
Critchlow, Dale L. 
Cserhalmi, Nicholas 
Csuri, Charles A. 
Curtis, Kent K. 
Dale, A. G. 
Daniel, Walter E., Jr. 
Darms, Donald A. 
DeJong, S. Peter 
Denes, John E. 
Denning, Peter J. 
Deveber, Jeffrey L. 
Dimmler, D. Gerd 
Dodd, George G. 
Douglas, John R. 
Dove, Richard K. 
Duffendack, John C. 
Duggan, Michael A. 
Durney, Arnold I. 
Earnest, Lester D. 
Eisenstark, Raymond 
Ellin, Everett 

Estes, Samuel E. 
Farmer, Nick A. 
Feurzeig, Wallace 
Feustel, Edward A. 
Firschein, Oscar 
Flanagan, J. L. 
Foster, John E. 
Fox, Margaret R. 
Frank, Amalie J. 
Fraser, A. G. 
Futterweit, Adolf 
Gardner, Reed M. 
Geyer, James B. 
Gilliand, B. E. 
Goetz, Martin A. 
Gold, Michael M. 
Gotterer, Malcolm H. 
Greenawalt, Eddie M. 
Greenfield, Martin N. 
Haberman, Eugene J. 
Haibt, Luther H. 
Haims, Murray J. 
Hammer, Carl 
Haney, Frederick M. 
Hanlon, A. G. 
Hansard, Robert M. 
Harding, Philip A. 
Harrison, Joseph 0., Sr. 
Hartwick, R. Dean 
Hathaway, Allen W. 
Hedrick, George Ellwood, III 
Heilweil, Melvin F. 
Hermann, Paul J. 
Herzog, Bertram 
Hinrichs, Joe 
Hodes, Louis 
Hollander, Gerhard L. 
Hodper, Robert L. 
Humphrey, Thomas A. 
Hyatt, Gilbert P. 
Jameson, Wm. J., Jr. 
Jeffries, Ronald E. 
Jessep, Donald C. 
Kain, Richard Y. 
Kaitz, Marvin J. 
Kalin, Richard B. 
Keenan, Thomas A. 
Keller, Roy F. 
Kahalil, Hatem M. 
King, Robert E. 
King, Willis K. 
Kinney, Edward S. 
Klerer, Melvin 
Klir, George J. 
Knupp, John L., Jr. 
Koen, Henry R., Jr. 

Koller, Herbert R. 
Koory, Jerry L. 
Kopf, John O. 
Kovach, Ladis D. 
Kurtz, Thomas E. 
Lambert, Robert J. 
Lampson, Butler 
Landoll, James R. 
Larkin, Robert C. 
Leathrum, James F. 
Lenahan, John J. 
Lett, A. S. 
Lewis, William E. 
Lindahl, Charles E. 
Lindenmeyer, Leonard R. 
Linville, Thomas P. 
Liu, Ho-Nein 
Livdahl, Richard C. 
Lomet, David B. 
Long, Henry A. 
Mason, Maughan S. 
McClure, Robert M. 
McCoy, Maurice E., Jr. 
McFarland, Clay 
l\lcKnight, Randy S. 
McLeod, John 
Machover, Carl 
Main, Walter 
Malone, Charles M. 
Marcotty, Michael 
Meadows, H. E. 
Miles, E. P., Jr. 
Miller, William G. 
Moe, Maynard L. 
Morrison, James F. 
Myers, Robert P. 
Nanus, Burt 
Nassir, Andrew M. 
Neilsen, Norman R. 
Notz, William A. 
O'Brien, Joseph A. 
Paden, Douglas R. 
Page, Carl Victor 
Parker, Donn B. 
Passaretti, Anthony 
Pattee, Harold E. 
Pearson, Karl M., Jr. 
Pomerance, Richard M. 
Pounds, Kenneth 
Pritchard, J. Paul, Jr. 
Rahe, George A. 
Ralston, Anthony 
Ramamoorthy, C. V. 
Remson, Irwin 
Rigney, Joseph W. 
Rubey, Raymond J. 

/ 



Ruffing, Linus F. 
Sanborn, Jere L. 
Schafer, Ronald W. 
Schischa, Eywin 
Schwenker, J. E. 
Sedelow, Sally Yeates 
Seed, John C. 
Sheldon, Robert C. 
Shipman, Jerome S. 
Shuey, Richard L. 
Slaughter, Barbara G. 
Slutz, Donald R. 
Smith, Cecil L. 
Springe, Fred W. 

Starkweather, John A. 
Stewart, David H. 
Stewart, Robert M. 
Sturm, Walter A. 
Summit, Roger K. 
Tan, Chung-Jen 
Uber, Gordon T. 
Van Brink, Herbert F. 
Van Tassel, Dennie 
Vemuri, V. 
Vichnevetsky, Robert 
Wadia, Aspi B. 
Wait, John V. 

Walker, P. Duane 
Wallace, John B., Jr. 
Warheit, I. A. 
Weissman, Clark 
Wigington, Ronald L. 
Wilborn, R. C. 
Wilcox, Lyle C. 
Wilkov, Robert S. 
Willard, Donald A. 
Williams, Theodore J. 
Wolle, James E. 
Wyman, John C. 
Yau, Stephen S. 



PRELIMINARY LIST OF EXHIBITORS 

Addison-Wesley Publishing Company 
Addressograph Multigraph Corp. 
AFIPS Press 
American Telephone & Telegraph Co. 
Ampex Corporation 
Applied Magnetics Corp. (with Standard Memories) 
Auerbach Info, Inc. 
Auricord Div.-Scovill Mfg. Co. 
Automata Corporation 
Bell & Howell, E & IG 
The Bendix Corporation 
Benwill Publishing Corp. 
Boeing Computer Services, Inc. 
Bryant Computer Products 
Bucode 
Bunker Ramo 
Caelus Memories 
California Computer Products, Inc. 
Cambridge Memories, Inc. 
Canada: Dept. of Industry, Trade & Commerce 
Canberra Industries 
Centronics Data Computer Corp. 
Century Data Systems, Inc. 
Cincinnati Milacron 
Cipher Data Products, Inc. 
Clasco Systems, Inc. 
Codex Corp. 
Collins Radio Company 
Com Data Corporation 
Com-Mark, Inc. 
Compucorp (A Div. of Computer Design) 
Computer Automation, Inc. 
Computer Communications, Inc. 
Computer Decisions 
Computer Design Publishing Corp. 
Computer Intelligence Corp. 
Computer Investors Group, Inc. 
Computer Terminal Corp. 
Computer Transceiver Systems, Inc. 
Computerworld 
Control Devices Inc. 
Courier Terminal Systems, Inc. 
Cybercom Corporation 
Data Disc, Inc. 
Data General Corporation 
Datamation 

Data Printer Corp. 
Datapro Research Corporation 
Data Products Corporation 
Dataram 
Datawest Corporation 
Diablo Systems Inc. 
A. B. Dick Company 
Dicom Industries 
Digi-Data Corporation 
Digital Computer Controls 
Digital Development Corp. 
Digital Equipment Corporation 
Digitronics Corporation 
Eastman Kodak Company 
E-H Research Laboratories, Inc. 
Electronic N ews-Fairchild Publications 
Electronic Processors, Inc. 
Fabri-Tek, Inc. Memory Products Div. 
Facit-Odhner, Inc. 
Gould Inc., Brush Div. 
Grumman Data Systems Corp. 
GTE Information Systems Inc. 
GTE Lenkurt Inc. 
GTE Sylvania 
Hewlett-Packard 
Hitchcock Publishing 
Houston Instrument 
IEEE Computer Society 
Incoterm Corporation 
Inforex, Inc. 
Information Control Corporation 
Input Output Computer Services, Inc. 
Instronics Limited 
Interdata, Inc. 
International Data Corp. 
International Teleprinter Corp. 
I/O Devices, Inc. 
Itel Corp., Information Storage Systems Div. 
Kanematsu-Gosho (U.S.A.) Inc. 
Kennedy Company 
Keuffel & Esser Company 
Kybe Corporation 
Licon Div. LT.W. 
Lipps., Inc. 
Litton ABS OEM Products 
Litton Industries 



Lorain Products Corp. 
Lundy Electronics & Systems Inc. 
3M Company Instrument & Data Products 
Magnusonic Devices, Inc. 
Marshall Data Systems 
Memory Systems, Inc. 
Microdata Corporation 
Micro Switch, A Div. of Honeywell 
Milgo Electronic Corporation (ICC) 
Miratel Div.-BBRC 
Modern Data Services, Inc. 
Mohawk Data Sciences Corp. 
Nashua Corporation 
NCR 
Nortronics Company, Inc. 
N umeridex Tape Systems, Inc. 
Optical Business Machines, Inc. 
Optical Scanning Corporation 
Pacific Micronetics, Inc. 
Panasonic 
Paradyne Corporation 
Penril Data Communications, Inc. 
Peripheral Data Machines, Inc. 
Peripheral Equipment Corporation 
Phonocopy, Inc. 
Pioneer Magnetics, Inc. 
Potter Instrument Company, Inc. 
Precision Instrument 
Prentice Hall, Inc. 
Princeton Electronic Products, Inc. 
Quadri Corporation 
Raytheon Company 
Remex, A Unit of Ex-Cell-O Corp. 

Sangamo Electric Company 
Signal Galaxies, Inc. 
The Singer Company (Librascope Div.) 
Singer-Micrographics Systems 
Sola Electric 
Sorbus, Inc. 
Spartan Books 
Storage Technology Corporation 
The Superior Electric Company 
Sycor, Inc. 
Sykes Datatronics, Inc. 
Tally Corp. 
Tandberg of America, Inc. 
Tee, Incorporated 
Techtran Industries, Inc. 
Tektronix, Inc. 
Teletype Corp. 
Telex/Communications Div. 
Thomson-CSF Electron Tubes, Inc. 
Timeplex, Inc. 
Time Share Peripherals Corp. 
Tracor Data Systems 
United Telecontrol Electronics, Inc. 
Unicomp, Inc. 
Van San Corporation 
Varian Data Systems 
Video Systems Corp. 
Wang Computer Products, Inc. 
Warner Electric 
Western Union Data Services Co. 
Western Union Telegraph Company 
John Wiley & Sons, Inc. 
Xerox Corporation-Xerox Data Systems 



Adams, M. C., 477 
Adelman, A. G., 455 
Amiot, L., 31 
Aschenbrenner, R. A., 31 
Asman, E. Z., 233 
Aus, H. M., 379 
Austin, J. E., 541 
Baca, R. L., 309 
Barney, G. 0., 631 
Bateman, B. L., 89 
Bekey, G. A., 401 
Bell, C. G., 387 
Bennett, J. L., 197 
Berg, R. 0., 177 
Berman, R. A., 369 
Boehm, B. W., 669 
Boehm, S. C., 309 
Boudreau, P. E., 9 
Brandt, G., 397 
Bravdica, S. A., 225 
Brooks, F. B., Jr., 395 
Carroll, J. M., 571 
Chamberlin, D. D., 263 
Chambers, M. G., 309 
Chappell, S. G., 651 
Chew, P., 233 
Clark, R. L., 369 
Cleveland, W. B., 213 
Cohen, N. D., 670 
Coleman, N. L., 65 
Covvey, H. D. J., 455 
Crawford, P. B., 89 
Deland, E. C., 369 
Drew, D. D., 89 
Edwards, D. B. G., 395 
Elliott, W. D., 533 
Eppele, L., 397 
Epstein, G., 663 
Felderhof, C. H., 455 
Forman, E. H., 51 
Frank, A. A., 357 
Frank, A. J., 135 
Freeman, R. B., 1 
Gack, G., 295 
Gallati, R. R. J., 303 
Gilmore, P. A., 411 
Gottlieb, S. E., 603 
Gracon, T. J., 549 
Graves, G. W., 123 
Groner, G. F., 369 
Hansen, M. H., 579 
Hansen, W. J., 523 

AUTHOR INDEX 

Hinkelman, K. W., 65 
Hirschsohn, I., 501 
Hodges, J. D., Jr., 281 
Hoehenwarter, W. P., 639 
Hoffman, L. J., 587 
Jackson, R. S., 225 
Jen, T. S., 171 
Kamman, A. B., 17 
Kamnitzer, P., 675 
Kay, A., 395 
Kennicott, P. R., 423 
Klopfenstein, C. E., 435 
Kolechta, W. J., 65 
Korn, G. A., 379 
Kristy, N. F., 675 
Laga, E., 477 
Lalchandani, A., 398 
Lamson, B. G., 195 
Langlois, W. E., 97 
Learman, 1.,469 
Levinthal, C., 199 
Lifshin, E., 423 
Loeber, N. C., 79 
McHardy, L., 571 
McLeod, J., 676 
Maholick, A. W., 1 
Martin, D. C., 361 
Martin, R., 571 
Medak, G. M., 295 
Mendler, P., 455 
Menninga, L. D., 145 
Merrit, M. J., 351 
Mesquita, A. L., 27 
Mishelevich, D. J., 271 
Mitchell, K., 399 
Moravec, H., 571 
Morey, R., 477 
Morton, N. E., 199 
Nakamura, G., 57 
Nanus, B., 671 
Natarajan, N. K., 31 
Nathan, R., 200 
Newbery, A. C. R., 419 
Newell, A., 387 
Nielsen, N. R., 671 
Nolby, R. A., 549 
O'Connor, D. G., 203 
Olsen, D. J., 115 
Parker, E. B., 672 
Patterson, A. C., 575 
Paxson, E. W., 677 
Peck, P. L., 561 



Pendleton, J. C., 491 
Perone, S. P., 441 
Pingry, D. E., 123 
Post, C. T., Jr., 195 
Potas, W. A., 533 
Prerau, D. S., 153 
Pringle, W. L., 309 
Purdy, K. G., 399 
Raub, W. F., 201 
Reich, K. E., 639 
Rodriguez, E. J., 71 
Ross, L. W., 105 
Ryan, F. B., 400 
Sammet, J. E., 243 
Sanford, J. E., 233 
Sansom, F. J., 549 
Scavullo, V. P., 423 
Schumacker, B., 619 
Sheridan, T. B., 327 
Sicko, J. S., 423 
Sinclair, R., 351 

Smith, C. C., 609 
Steen, R. F., 9 
Strauss, J. C., 39 
Tang, C. K., 163 
Taylor, K. W., 455 
Thurber, K. J., 177 
Turoff, M., 317 
Umpleby, S., 337 
Ung, M. T., 401 
Van Brundt, E. E., 196 
Van Dam, A., 533 
Wegbreit, B., 253 
Weinberg, R., 677 
Whinston, A., 123 
Whisenand, P. M., 295 
White, M. S., Jr., 609 
Wigle, E. D., 455 
Wilkins, C. L., 435 
Wood, D. C., 51 
Yamamato, W. S., 201 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689

