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An algorithm for producing half-tone computer graphics 
presentations with shadows and movable 
light sources 

by J. BOUKNIGHT and K. KELLEY 

University of Illinois 
Urbana, Illinois 

INTRODUCTION 

In the years since the introduction of SKETCHPAD 
an increasing number of graphics systems for line draw
ing have been developed. Software packages are now 
available to do such things as picture definition, ro
tation and translation of picture data, and production 
of animated movies and microfilm. Automatic window
ing, three-dimensional figures, depth cueing by inten
sity, and even stereo line drawing are now feasible and 
in some cases, available in hardware. 

Even with all these capabilities, however, represen
tation of three-dimensional data is not quite satis
factory. Representing a solid object by lines which 
define its edges leads to the computer generated un
reality of being able to see through solid objects. In 
recent years, research centered around means for com
puter graphical display of structural figures and data 
has begun to move from display of "wire-frame" 
structures where the "wires" represent the edges of 
the surfaces of the structures, to the display of struc
tures using surface definition techniques to enhance 
the three-dimensional appearance of the final result. 
Several efforts have been concentrated on producing 
graphical output which is similar to the half-tone 
commellCial printing process. 

The work of Evans, et aI., at the University of 
Utah! established the feasibility of using a computer 
to produce half-tone images. Their algorithm processes 
structures whose surfaces are made up of planar tri
angles. The algorithm employs a raster scan and 
examines crossing points of the boundaries of the tri
angles by the scanning ray. A significant feature of 
their method is that the increase in computing time is 
linear as the resolution of the picture increases. 

John Warnock's algorithm for half-tone picture repre
sentation employs a different technique.2 He divides the 
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scene recursively into quarters until all detail in a 
given square is known or the smallest size square is 
reached. The result is a set of "key squares", that is 
intensity change points, along the visible edges in the 
scene. The time required for this algorithm varies 
linearly as the total length of the visible edges in the 
picture, but varies also as the square of the raster size. 
An important' feature of the Warnock algorithm is that 
it handles the occurrence of the intersection of two 
planes without having to precalculate the line of inter
section. 

A t the General Electric Electronics Research Labora
tory in Syracuse, a system which combines both hard
ware and software to produce color half-tone image~ in 
real time has been developed for NASA as a simulator 
for rendezvous and docking training. This device can 
hold up a 600 X 600 raster point picture of up to 240 
edges, in color, and change the picture as quickly as 
the beam scans the screen. 3 

The work of the computer group at the Coordinated 
Science Laboratory began as an effort to add some 
realism to line drawings of structures being generated 
by R. Resch, who, while working in the laboratory, 
was also a member of the faculty of the Department cif 
Architecture. Through his acquaintance with J. Wa~ 
nock, we were able to implement a version of the 
Warnock algorithm which operates on the CDC 1604. 
After several re.visions of the implementation and some 
fine tuning of the CRT display hardware, black and 
white half-tone images of the Resch structures were 
exhibited at the Computer Graphics Conference at the 
University of Illinois in April of 1969. 

In discussions with J. Warnock and Robert Schu
macher of General Electric, we envisioned a hidden 
surface algorithm using a scanline technique combining 
the recursiveness of the Warnock algorithm with the 
hardware techniques used in the NASA simulator. 
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These discussions were the impetus for the development 
of the LINESCAN algorithm.4 It was for this imple
mentation that laboratory engineers added a raster 
scan operation to the display hardware. As a result, 
the algorithm does not have to provide the scope with 
an item of data for each and every point. Only the 
location of an intensity change on the scanline and the 
new magnitude of the intensity are needed. In addition, 
the display hardware was modified to allow 256 levels 
of intensity under program control. 

N either of the previously mentioned algorithms for 
half-tone images represented the picture with a light 
source located away from the observer position, al
though both regard it as a next step in development. 
Moving the light source away from the observer po
sition presents the problem of cJ~st sgadows. Arthur 
Appel's work approaches the shadow problem and the 
hidden line or surface problem simultaneously.5 His 
algorithm also scans the picture description in a linescan 
manner. The question of which parts of which surfaces 
are visible is answered by a technique called "quanti
tative invisibility6". His structures are composed of 
planar polygonal surfaces. Appel also includes the 
ability to handle multiple illumination sources and the 
shadows cast due to those sources. His shadow boun
daries are computed by projecting points incrementally 
along the edge of a shading polygon to the surface 
which will be shaded. 

The work of the Computer Group at the Coordinated 
Science Laboratory to move the ·light away from the 
observer began shortly after the completion of the 
LINES CAN algorithm. Augmentation of the original 
LINESCAN method with a dual scan for shadows cast 
upon the surfaces presents two questions. 

First, the number of projected shadows to be calcu
lated must be kept to a minimum; but the technique 
for narrowing the set of polygon pairs must be simple. 
For a single illumination source, we are constrained by 
the fact that for n polygons, there are n(n - 1) pairs 
to be considered. The method chosen to narrow the 
set of shadow casting and receiving polygons was to 
project the polygons onto a sphere centered at the 
light source and make some gross comparisons of maxi
mum and minimum Euclidean coordinates of the points 
so projected. 7 The transformation to the sphere was so 
devised that no trigonometric functions or square roots 
were used. The comparisons used are not intended to 
discard all pairs that do not cause shadows. The point 
is to discard as possible shadow pairs all case~ in which 
it is obvious that a shadow is not cast on one by the 
other. Some nonshadow-producing pairs do slip through 
the first set of tests; this is allowed because the second 
set of tests can check these cases with less overall 
programming effort and execution time. 

The second question which the algorithm answers is 
how to handle the most prevalent situation of shadows 
cast by one polygon only partially falling on another 
polygon. It is not necessary to compute the boundaries 
of the intersection of a polygon with a shadow cast 
upon its plane. The decision to reduce intensity as the 
scan enters the shadowed portion of a polygon is left 
to the final picture-producing stage of the process. 
Also in the present version no computation is wasted 
to see if the cast shadow is visible to an observer. 
Shadows are output with tags to tell which polygon is 
being shadowed and which polygon is casting the 
shadow. The final step of the process responds to 
shadow information by making appropriate intensity 
changes only in the case that the shadowed polygon is 
the same as the current visible polygon. 

THE LINESCAN ALGORITHM AND ITS 
ADAPTATION FOR SOLVING THE 
SHADOW PROBLEM 

The LINESCAN algorithm presents itself as a likely 
candidate for extension to a system for solving the 
shadow problem in half-tone image processing because 
of its speed of operation and because it is directly 
suited to processing a shadow-space which is structured 
in the same manner as the associated three-space poly
gonal surface structures. Shadows cast by one polygon 
onto another by point illumination sources are them-

Planar 
Polygon 
in Three 
Space 

Projection of Square 
on Polygon Plane 

-~~+I--" Window on Viewing Plane 

Observer Position 

Figure I-Shadow and object projections 

Light 
Source 
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selves polygons in the same three-space. The resulting 
shadow three-space can be projected onto the viewing 
plane in the same way as the original three-space 
structure (see Figure 1). Thus, the extension of the 
LINES CAN algorithm involves only the addition of a 
second scanning process for keeping track of shadows on 
each scanline. 

A brief description at this point will serve to orient 
the reader to the actual mechanisms of the LINESCAN 
algorithm. The LINES CAN algorithm processes a 
graphical image into a half-tone final image from two 
data sets derived from the three-space structure: (1) the 
set of all plane equation coefficients for the polygonal 
surfaces of the structure and (2) the perspective pro
jections of the edges of the surfaces on the viewing 
plane. 

The construction of the final half-tone image is done 
in a television-like manner where a CRT beam scans 
across the image line-by-line and exposes a raster of 
points. As the beam moves across the scanline, the 
intersection points on the scanline corresponding to the 
viewable edges of the original structure will dictate 
changes in the tone (intensity) of the scanning beam 
from that point to the next intersection. These inter
section points, which are output to the final image pro
ducing routine as "key squares", are the primary output 
data produced by the LINESCAN algorithm. 

"Key squares" are generated in two types of lo
cations on the viewing plane during a linescan oper
ation. The primary type of location is the intersection 
of the current scanline with the projection of an edge 
of the three-space structure. This location will cause a 
"key square" to be produced only if the intersection 
is visible to the observer. 

The second type of location on the viewing plane 
which can cause a "key square" to be produced is the 
intersection of an "implicitly defined line" and the 
current scanline. An "implicitly defined line" is the 
projection on the viewing plane of the intersection of 
two or more polygons in three-space. Polygon inter
sections are allowed in the theoretical world of the 
computer even though they violate the law of Nature 
that only one object may occupy a given amount of 
space. Because of the implicit nature of these inter
sections, special operations must be performed to detect 
and process them to produce the correct final result. 

For any given scanline, a linked list is present con
taining all intersections of. projected edges with that 
scanline ordered in the direction of the scanning move
ment. The LINES CAN algorithm moves from inter
section to intersection keeping track of which polygon 
projections are entered and which ones are exited by 
the scanning ray. At each intersection, a "depth sort" 
is performed on those polygons being pierced by the 

scanning ray to find the closest or visible polygon at 
that intersection on the scanline. 

The decision to produce a "key square" at a given 
intersection point is based primarily upon the relation 
of the depth of the edge associated with the point and 
the visible polygon determined by the "depth sort" at 
the intersection. If the edge is visible, then consideration 
is given to whether a polygon projection will be entered 
as this edge is· crossed or whether it will be exited. 
For the e:ritering case, the "key square" will denote 
the new polygon for control of the CRT scanning 
beam at that intersection. For the exiting case, the 
"depth sort" polygon will be denoted. 

Two special problems arise concerning the output of 
multiple "key squares" for a given point on the final 
image raster. The first requires that constant checking 
be performed to see if the integer value of successive 
intersection points on the scanline are equal. If this 
occurs, any "key square" action which would be taken 
for any given intersection in the group will be deferred 
until the last member of the group has been processed. 
Thus, only one "key square" will actually be produced. 
The polygon to be denoted by the resulting "key 
square" may change from the beginning of the group 
to the end; but in any case, the last visible polygon 
will control the result. 

The second special case of clos~ intersections occurs 
when coincident edges occur in th~pecification of the 
three-space structure. Performing a "depth sort" on 
the associated polygons at the common intersection 
would normally fail because their depths would be the 
same. Determination of the visible polygon of the 
group is performed by actually moving the scanning 
ray a small increment forward in the scanning direction 
and computing the "depth sort" at that point. This 
will yield the polygon which will be visible just after 
the scanning ray leaves the coincident intersection 
point. 

"Implicitly defined lines" are detected when the 
visible polygon denoted at two successive intersection 
points is different. The procedure used in searching 
for the projected intersection involves finding which 
polygons are intersecting and using their plane equation 
coefficients to calculate their intersection's projection 
and its intersection with the scanline. An iterative pro
cedure is used in order to detect the possibility of 
multiple pairs of intersecting polygons which might 
yield more than one "implicitly defined line". "Key 
squares" will be produced for the calculated inter
section points on the scanline subject to the same con
straints about multiple "key squares" for the same 
raster points in the final image. 

The extended version of the LINES CAN algorithm 
for solving the shadow problem includes two scanning 
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operations. The primary scanning movement is the 
original scan operation where the three-space structure 
data is processed to provide the final image structure. 
The additional or secondary scanning operation proc
esses in a parallel manner, the shadow three-space 
stru~ture.to produce data which will be combined with 
the primary scan data to form the scanline intensity 
data for the final image. The data output from the 
secondary scanning operation, which we call "shadow 
key squares", affects the intensity patterns of the final 
image only. Only the primary scan data defines the 
structure. 

In order to keep the changes in the LINESCAN 
algorithm to a minimum and for any changes made to 
have minimum influence in computation speed of the 
implementation, it was decided that as much of the 
processing operations for the final image as was possible 
would be shifted to the final output routine from the 
LINES CAN routine. This was because the original 
final output routine, PIXSCANR, had been input
output bound during the processing of the "key squares" 
data file from the LINESCAN routine. The additional 
operation impressed on the new version of PIXSCANR 
was the keeping track of which shadow polygon pro
jections were being pierced by the scanning ray at any 
point in the processing of a scanline. Thus, the only 
change to the LINESCAN algorithm involved the ad
dition of the secondary scan which simply detected 
the crossings of the scanline by projected edges of the 
shadow three-space structure -and issued "shadow key 
squares" at every occurrence. 

'The dichotomy imposed on the shadow processing 
responsibilities between the LINESCAN and PIX
SCANR routines has an additional advantage. There 
will always be the possibility of cast shadows falling 
outside the visible portions of the associated polygons. 
Additionally, some polygonal surfaces of the original 
surface will not appear in the final image and therefore, 
neither will their shadows. We shall see in our dis
cussion of shadow pair detection that it is most economi
cal to allow shadow projections of these kinds to be 
processed in the same manner as all other shadow 
projections. Their data items will be passed on to the 
PIXSCANR routi:n,e where their occurrence will be 
duly noted. No effect will be registered on the final 
image, however, since the associated three-space surface 
polygon will not appear in the final image or at least 
not in conjunction with the projection of the extraneous 
shadow. 

Once the mechanism for producing the proper final 
image of the half-tone presentation was established, it 
remained to develop the proper procedure for com
paring all possible pairs of polygons with respect to the 
illumination source, and in an economically feasible man-

ner discard as many extraneous shadow pairings as 
pos~ible. Economy of computation speed relative to 
total scanline processing time was the main concern. 

SHADOW DETECTION 

The primary task· to be accomplished in shadow de
tection is not so much the actual projection of shadows 
as it is the elimination of the need for calculating pro
jections and storing shadow polygons unnecessarily. 
The number of possible shadows cast is eqUal to the 
number of possible pairs of polygons in the structure. 
Since this number increases rapidly as the complexity 
of the structure increases, it is extremely important to 
be able to identify useful shadow pairs with a minimum 
of computation and to store this information in a 
compact form. 

The shadow pairs are stored in a chained list, with 
subchains linking all polygons that may shadow a 
given polygon. The procedure for narrowing the set 
of all possible pairs of polygons to a near minimal set 
of shadow producing pairs consists of. two distinct 
steps. In the first the polygons are projected onto. a 
sphere centered at the light source and are checked In 
an approximate fashion for interference with respect to 
the light source. In the second step, pairs of polygons 
which seem to occlude one another are further ex
amined to determine which polygons may shadow the 
others. 

The light sphere projection is a device for culling 
out certain pairs of polygons which can in no way 
interfere with respect to a given light source. It is 
only a gross test, intended to ease the burden of com
puting projections of one polygon onto the plane of 
another. The test throws out polygon pairs only if it 

Figure 2-Projection of polygon on sphere 
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is obvious that no interference takes place. The light 
sphere projection is in no way used to compute inter
sections of polygon projections on the sphere, nor is it 
used to compute intersections of shadow polygons with 
the polygons being shadowed. 

Every vertex of the three-space structure has to be 
projected onto the sphere centered at the light source 
in order to make initial interference tests. The sheer 
magnitude of the number of operations necessary re
stricts the projection in a number of ways. Namely, it 
would be preferred if the job could be done without 
computing any trigonometric functions and if possible, 
without computing very many square roots, since each 
of these requires much computer time. The projection 
is given by: 

x = sgn(X l ) * X l2 * K2 

s DELTA 

Y = sgn(Yl ) * Y l2 * K2 

S DELTA 

Z _ sgn(Zl) * Z l2 * K2 

S - DELTA 

where Xl, Y l, Zl are the coordinates of a point with 
respect to an origin at the light source, and DELTA 
is the square of the distance from the point to the light 
source (see Figure 2). This transformation to the light 
sphere is a composite of four transformations which are 
done algebraically to arrive at the final transformation: 

(1) transform the points to an Euclidean 3-space 
with origin at the point of light; 

(2) transform these coordinates to polar coordinates; 
(3) map these points to the sphere by setting p to a 

constant for each point; and 
(4) transform the points on the sphere back into the 

Euclidean 3-space with origin at the light source. 

The algebraic derivation of these transforms yields 
a final form that involves some square roots in the 
numerator and denominator. However, since only the 
relative magnitude is used in the comparison operations, 
these results are all squared; and the sign is preserved, 
yielding the final transformation. 

In order to use the transformed points to determine 
which polygons interfere with· each other with respect 
to the light source, the maximum and minimum of the 
X s, Ys, Zs, and DELTA values are saved for each 
polygon, in addition to the transformed points. Also 
the coefficients of the equations of the planes in the 
light source space are computed and saved for possible 
shadow computation. 

The first check made for each polygon is to see if it 

is self-shadowed, that is, to see if the observer and 
light source are on opposite sides of the plane of the 
polygon. The procedure is to substitute both the light 
source point and the observer point into the equation 
of the plane. If the two results have different signs, the 
polygon is self-shadowed and no shadows cast on it 
will be computed. However, shadows cast by the self
shadowed polygon must still be considered. 

If a polygon is not self-shadowed, then it is compared 
to each remaining polygon in the list to see if it is 
obvious that interference does not occur. The criterion 
is as follows: 

For all pairs of polygons Pi and Ph if the points 
transformed to the sphere are separated in Xs, Y s, 

or Zs, then the polygons do' not interfere with each 
other with respect to the light source. 

This criterion amounts to simply examining the ortho
graphic projection of the points on the sphere onto the 
coordinate planes and looking for separation by com
paring maximums and minimums in each direction. 
In the event that the projection of a polygon is so 
oriented on the sphere as to wrap around a coordinate 
axis, then the maximum· or minimum in some direction 
does not occur at a vertex. In this case, for the purpose 
of this comparison, the associated maximum or mini
mum is replaced by the absolute maximum or minimum 
coordinate value on the sphere. 

When a pair of polygons are not separated enough 
for this test to detect the separation, then the maximum 
and minimum distances to the light source ·are com
pared .. If the maximum distance of the vertices of 
polygon I from the light source is less than the minimum 
such distance on polygon J, then it is clear that polygon 
I may cast a shadow on polygon J but not vice versa. 

The tests of projections on the light source sphere 
eliminates many possible shadow pairs and thus reduces 
the total amount of storage and computing time re
quired. This set of tests, however, fails to eliminate 
certain other shadow pairings which will not affect the 
final image. Among these are shadow pairings of poly
gons with common vertices and of polygons which com
pletely overlap on the sphere. In neither case is there 
clear separation on the light source sphere. In the 
latter case the sizes of the polygons may be so disparate 
as to nullify the usefulness of vertex distance com
parisons. 

Figure 3 illustrates one of the cases in which the 
projection of points of polygon I onto the plane of 
polygon J indicates the presence of a shadow, while 
the shadow cast in no way falls within the bounds of 
polygon J. Since there is no separation between the 
two polygons, both possible shadow pairings would be 
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Light , 

Apparent Shadows 
on Extended Plane 

Figure 3-0rientation of polygon pairs-Case 1 

noted, and both would be computed, but neither would 
be present in the final picture. 

We can eliminate this case and several others like it 
(see Figure 4) by defining and appropriately testing 
two relations: 

I ~ J: "The planar polygon I is entirely on one 
side of the plane of planar polygon J." 

I s J: "Each point of planar polygon I lies be
tween the light source and the plane of 
planar polygon J." 

In the case if Figure 3 for example, we see that I ~ J, 
J ~ I, Is J, and J s I are all true, and therefore, the 
shadows are cast only upon the extended planes of the 
two polygons. As a result, neither shadow pairing is 
added to the list of. possible shadows. 

All of the decisions about possible shadow pairs are 
computed in advance of the start of the LINESCAN 
operation. As the LINESCAN operates, it has a linked 
list for each polygon of all polygons which may cast a 
shadow upon it. It is at the point where the first line 
of a polygon is processed that the shadows cast upon 
it are computed and stored in a list. When the polygon 
is no longer active, we purge the shadow information 
from the list. Thus, shadow information is calculated 
only when it is first needed and discarded when the 
need for it ceases. 

Shadows are computed by projecting the vertices of 
one polygon onto the plane of another. The parametric 
form of the equation of a line is used to calculate this 
projection. Given' two points Pl(Xl, Y l, Zl) and 

;eLiQht 
, /LiQht 

Case 2 Case 3 
.-1Il? 

/ Light /Li9ht 

Case 4 Case 5 •.. '" 
/ LiQht l Light 

Case 6 Case 7 Case 8 

Figure 4-Polygon orientations 

P2(X2, Y2, Z2), the set of points P(X, Y, Z) that lie on 
a line joining PI and P 2 is given by: 

x - Xl Y - Y l Z - Zl 

X 2 - Xl Y 2 - Y l Z2 - Zl 

Setting each of these ratios equal to a parameter r 
yields the parametric form: 

X = Xl + r(X 2 - Xl) 

Y = Y l + r(Y2 - Y l ) 

Z = Zl + r(Z2 - Zl) 

PI and P 2_ are so chosen that PI is the light source 
position and thus the origin of the system. This reduces 
the equations to: 
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The parameter T has the following useful properties: 

T>1==> P is on the extension of P1P2 

T=1==> P is identical to P 2 

T=O==> P is identical to PI 

P is between PI and P 2 

P is on the extension of P 2P I 

In addition to providing the coordinates of projected 
points, T can be used in establishing the truth value of 
the relations I s J and I ~ J. As we see in Figure 5, 
it is necessary to use the values of T for each vertex to 
see if the shadow makes sense. In this case polygon 7r i 

projects onto the plane of polygon 7rj as PI', P2', Pa', P/. 
The routine has to check for such situations and instead 
use PI', P 2', Pa", P/'. We do not, however, make any 
checks to see whether the shadow as cast is visible. 
The fact that two or more polygons may cast shadows 
that overlap on a given polygon has no effect on the 
computation. The final stage of the process takes care 
of such contingencies. 

We feel that in further implementations it would be 
useful to defer actual computation of "shadow key 
squares" until a complete scanline is processed. In this 
manner, it would be possible to introduce and compute 
shadows cast on a polygon only in the case that the 

Figure 5-Shadow projection 

polygon was, in fact, visible at sor;ne point on the 
scanline. This technique would eliminate a large number 
of "shadow key squares" that are, in fact, not needed 
at all in the production of the picture. Another extension 
being considered is to allow polygons to have a degree 
of translucency. However, self-shadowing polygons then 
would have shadows visible on them and this would 
cause a large increase in the number of shadow lines. 

THE FINAL OUTPUT PROCESS 

The final data set for the half-tone image consists of 
two parts. The first part contains the three-space plane 
equation coefficients for the surfaces of the three-space 
structure and the position data for the illumination 
source. The second part contains the linear string of 
scan control data items: "key squares", "shadow key 
squares" and "self-shadow key squares". It is the func
tion of the PIXSCANR routine to assimilate these 
two masses of data and to produce the final half-tone 
image. 

In order to couple our results closely to the equipment 
that was available for our use, we modified the display 
hardware to provide a special raster scanning operation 
in which the equipment automatically performs the 
function of stepping across the raster, and our data 
input specifies what intensity levels will be used in 
various sections of the scan. The raster is plotted from 
left-to-right and bottom-to-top on the display screen. 
A data item initializes the scan to the starting position 
and gives the initial intensity value for the CRT beam. 
In addition, the stepping increment 0 is given. When 
the scanning operation comes to the end of a scanning 
line, the value of the x coordinate is reset to 0 and the 
y coordinate is incremented by o. 

The remaining data items presented to the display 
hardware consist of an x coordinate value and an 
intensity value. As the scanning operation proceeds, 
the current x coordinate value of the scan is compared 
to the x coordinate of the next data item. If agreement 
is achieved, then the intensity of the beam is adjusted 
to the new value and the scan continues. Once set, the 
beam intensity does not change. 

This raster scan operation allows the final image to 
be exposed with a minimum number of actual data 
items being sent to the display hardware. A moderately 
complex picture might have, for example, an average 
of 20 intensity changes per scanline. If it were necessary 
to send display information for every point in the 
picture, each line would have 512, 1024, 2048, ... or 
more data items associated with each scanline. Another 
benefit gained from this condensed data format is that 
the amount of data needed per picture varies in a 
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linear manner with the size of raster being used. Compu
tation speed also varies in a linear manner. 

The section of PIXSCANR which processes the first 
part of the data file from the shadow-tone algorithm 
establishes the· intensity functions associated with the 
polygons of the three-space structure. A basic assump
tion made in our current implementation is that the 
intensity of light reflected from a given planar surface 
is uniform over the entire surface. Although this does 
not hold true in the physical world, it is close enough 
for our purposes. 

We selected a cosine function for the intensity of the 
reflected light from a given surface. A ray emanating 
from the center of the illumination source and passing 
through the "centroid" of the surface defines the angle 
of incidence of the light for the entire plane. The 
"centroid" is calculated by finding the average value 
of the x and y coordinates of the vertices of the polygon 
and solving for the corresponding z using the equation 
of the associated plane. The cosine of the angle between 
the surface of the polygon and the ray drawn to the 
illumination source is then given by: 

I Aa + Bb + Cc I 
cosO = vi A 2 + B2 + C2 va2 + b2 + c2 

where the A, B, C are coefficients of the plane equation 
and a, b, c, are direction numbers of the ray. The 
intensity of the reflected light from the surface of a 
polygon not in shadow is given by: 

Ii = I cos () 1* Ri* RANGE + IMIN 

RANGE and IMIN are parameters controlled by the 
user which specify the total range of intensity to be 
used'in the half-tone image and a translation of that 
range along the scale of the display hardware. Ri is a 
pseudo-reflectivity coefficient specified by the user for 
each polygon surface to allow some differentiation be
tween surfaces. Those polygons indicated by "self
shadow key squares" are assigned a special intensity 
due to "ambient" light. This intensity is given by: 

C 
188 = 0.2 vi A RANGE + IMIN 

2 + B2 + C2 

where A, B, C are coeffiCients of the equation of the 
plane of the self-shadowed polygon. 

Once the intensity functions have been calculated, 
the processing of the "key squares" data set begins. 
In the original version of PIXSCANR used for non
shadow half-tone image presentations, it was a simple 
matter to transpose the "key squares" directly into 
data items to send to the display hardware. For the 
shadow half-tone system, the addition of the "shadow 
key squares" and the "self-shadow key squares" to the 

data set complicates the process immensely. Recall that 
the function of keeping track of which shadows are 
being pierced by the scanning rayon a scanline is now 
a proper operation to be performed by PIXSCANR. 

Shadow tracking is accomplished in an n X n binary 
array, in which the (i, j)th position is a 1 if polygon j 
is casting a shadow on polygon i. As the "shadow key 
squares" are processed from the data file, the associated 
positions in the binary array are flipped from the in
shadow state to the out-of-shadow state. When a struc
ture "key square" is processed, the intensity of the 

Figure 6-Two present.ations of a three-space structure 
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Figure 7a-A-Frame cottage with no shadows 

Figure 7b-A-Frame cottage with shadows 

beam will be set at that point. Otherwise, the shadow 
will be indicated by using the minimum value of in
tensity for the image (IMIN). 

The remainder of the operations performed by the 
PIXSCANR routine are concerned with the outputting 
of the final image on various photographic media. At 
CSL, we have the option of photographic recording on 
either Polaroid 3000 speed black and white film or 
70mm RAR type 2479 recording film. The PIXSCANR 
routine also provides for inversion of the image 'in a 
complementing operation on the intensity functions. 
Further output capability is provided for making ani
mation sequences on a 16mm animation camera. 

RESULTS OF THE ALGORITHM 

The two photographs of Figure 6 compare the "wire
frame version" of a three-space structure with the 
shadow half-tone presentation of the same structure. 
The object consists of three parts, all arranged to fit 
interlockingly within one another. The computation 
time for our implementation on the CDC 1604 com
puter was about 2 minutes, 20 seconds. Time for 
computation of the non-shadow half-tone presentation 
ran about 45 seconds. 

Figure 7 shows the same view of an A-frame summer 
cottage, first with no cast shadows in part a. and then 
with cast shadows in part b. Non-shadow half-tone 
computation took 13.5 seconds and the shadow half
tone computation required about 27.0 seconds. Both 
cases indicate that time required for shadow half-tone 
computations is about twice the time required for the 
non-shadow case. 

As an example of how the same scene appears with 
the light source in various locations, Figure 8 shows the 
A-frame cottage in three different appearances. When 
only the light source position changes, only the shadow 

Figure 8-A-Frame with different light source positions 
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pairings and their subsequent computations change. 
Thus, future implementation of shadow half-tone al
gorithms may be able to save computation time by 
passing the "key square" data from scene to scene and 
computing only the "shadow key squares" and "self-<.. 
shadow key squares". 

If the only change made from one presentation to 
another is a movement of the observer position, the 
converse of the above occurs. The shadow data does 

Figure 9-Back-lighted Torus 

not change and only the "key square" data must be 
computed. Both of these attempts to reduce compu
tation time by borrowing from past results will require 
increased amounts of storage and techniques for merging 
the old and new data sets to generate the final half-tone 
image. 

Our final presentation of Figure 9 shows a torus in 
free space back-lighted with respect to the observer 
position. The torus is constructed of 225 planar poly
gons. The time for computation of the non-shadow case 
was one minute, 25 seconds. The shadow half-tone 
image required about three minutes of computation. 
Approximately 700 shadow pairings were found to be 
useful by the detection stage of the algorithm. Only 
a small number were actually detected in the final 
image. In fact, only by back-lighting the torus could 
the complete image be. processed because the number 
of visible shadow exceeded the limits o( storage avail
able during execution of the program. Efficient compu
tation of the final image data will depend upon the 
availability of sufficient amounts of direct address core 
storage or an auxilliary storage medium which can be 
accessed in speeds approaching main memory access 
time. 

BIBLIOGRAPHY 

1 C WYLIE G ROMNEY D EVANS A ERDAHL 
Half-tone perspective drawings by computer 
Proc of the Fall Joint Computer Conference Vol 31 49-58 
1967 

2 J WARNOCK 
A hidden line algorithm for half-tone picture presentation 
Tech Report 4-5 University of Utah Salt Lake City Utah 
May 1969 

3 BELSON 
Color TV generated by computer to evaluate space borne systems 
Aviation Week and Space Technology October 1967 

4 J BOUKNIGHT 
An improved procedure for generation of half-tone computer 
graphics presentations 
Report R-432 Coordinated Science Laboratory University 
of Illinois Urbana Illinois September 1969 

5 A APPEL 
Some techniques for shading machine renderings of solids 
Proc of the Spring Joint Computer Conference Vol 32 p 
37-49 1968 

6 A APPEL 
The notion of quantitative invisibility and the machine 
rendering of solids 
Proc ACM Vol 14 p 387-393 1967 

7 M KNOWLES 
A shadow algorithm for computer graphics 
Department of Computer Science File No 811 University of 
Illinois Urbana Illinois 1969 



The case for a generalized graphic problem solver* 

by E. H. SIBLEY, R. W. TAYLOR, and W. L. ASH 

University of Michigan 
Ann Arbor, Michigan 

INTRODUCTION 

Not so many years ago, SKETCHP ADI and DAC2 
set the whole world of computing on a philosophical 
bender. People, who either knew little of the subject 
or else should have known better, started talking up a 
storm. The whole of engineering was about to be 
revolutionized and everyone should prepare now or be 
sunk, to drown in their own ignorance. 

Unfortunately, even though we,in computation, have 
been regularly beset by super-salesmen who keep on 
telling us "how good its going to be," we still are 
suckers for a good line. We sat at the edge of our chairs 
listening to the prophets, and later scurried around 
trying to learn more about the wonders of the future, 
and bought expensive hardware (which we didn't yet 
know how to use) so that we should be ready. 

Fortunately, some business managers finally asked 
why the expensive equipment was sitting there, and as 
a result, many people moved away from "research-like" 
operations to a more reasonable "application" approach. 
This meant that the people in graphics became divided 
into two camps (almost mutually exclusive) who either, 
tried rather unsuccessfully to implement a generalized 
graphic system, or else tried to produce a working 
application program. The latter set of investigators 
have produced many useful packages, or we should all 
have watched the graphics hardware being converted 
into TV sets. Why then has the well promoted "gener
alized graphic system package" proved so elusive? In 
this article, we shall try to show that this is due to lack 
of knowledge on the part of the prophets. That in fact 
they were proposing systems which needed, as their 
core a generalized problem solver, which is, after all, 
only asking for a really good artificial intelligence 

*The work reported in this paper was supported in part by the 
Concomp Project, a University of Michigan Research Program 
Sponsored by the Advanced Research Projects Agency, under 
Contract Number DA-49-083 OSA-3050. 
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package, and that field has been having its own prob
lems for years, too. 

The rest of this article focuses on what has been 
done, and what reasonably could soon be done towards 
providing a useful package for generalized graphic prob
lem solving. The techniques adopted in SKETCH
PAD's constraint satisfactions are discussed with con
clusions made about their generalization and their 
wider application in other fields. 

Finally, some of those scientific, engineering, and 
mathematical modeling techniques which normally use 
graphics for either visualization, analysis, or numerical 
computation of the solution are examined in some 
detail. The conclusions suggest that there is still some
thing that can be achieved in the near future, although 
it is probably less than many of the early optimists 
had predicted. 

BACKGROUND AND JUSTIFICATION 

'Before starting a discussion on the merits or de
ficiencies of a generalized graphic problem solver, we 
must define that term. The use of graphics (other than 
symbols) for the solution of problems is common 
throughout much of engineering and science, and even 
in some fields of mathematics. The concept is often 
associated with the idea of a model which involves a 
topological or physically scaled picture from which the 
original problem is solved. Sometimes the picture itself 
is the solution (e.g., in the case of computer generated 
art, some phases of architecture, etc.), but more often 
the picture is either an immediate model from which 
algebraic or numeric equations are produced (these are 
solved to give the answer) or else the picture is later 
used to generate information (e.g., for architecture, the 
original drawings may later be examined to give ma
terial and cost information). Now if we consider a 
software computer system which aids the engineer, 
scientist, or mathematician in the formulation and 
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analysis of a range of problems, using the heuristics of 
the man to formulate a reasonable model, and the 
computer to aid in and augment the analysis, etc., 
then this software could be termed a "generalized 
graphic problem solver". 

At the other end of the scale from the generalized 
graphics processor, is the specialized graphic package. 
Here the classical input-output devices (e.g., card 
reader and printer) are replaced by graphic devices 
(e.g., light pen and CRT) so that the user has an 
easier time stating his problem or understanding his 
solution, probably because it is two dimensional in 
form, or nearer to the engineers' medium, viz, pen 
and paper. 

The first question must then be: "Is generalized 
graphics desirable?" 

Obviously all the early graphic-systems/computer
aided design prophets thought that it was. To quote 
one:3 

"In the near future-perhaps.Jwithin five and surely 
within 10 years-a handful of engineer-designers 
will be able to sit at individual consoles connected 
to a large computer complex. They will have the full 
power of the computer at their fingertips and will be 
able to perform with ease the innovative functions of 
design and the mathematical processes of analysis, 
and they will even be able to effect through the com
puter, the manufacture of the product of their 
efforts . ... " 
Recently, there has been some retrenchment:4 

"Suddenly a new wor~d seemed to have sprung 
into being, in which engineers and architects could 
sit in front of a screen ... and conjure up auto
mobiles or hospitals complete in every detail, in the 
course of an afternoon. Unfortunately, reality turned 
out to be more elusive than some people expected . ... 
What emerges from the above is a requirement for a 
general system for building models, to which can be 
applied transformations and algorithmic pro
cedures . ... " 
On the whole though, there is still much to be said 

for generalized graphics systems research. To begin, we 
can state the rather overoptimistic argument that: 
there is bouIld to be some practi~al or more efficient 
fallout from research in general systems; thus we will 
have better specialized systems even if we never get a 
really generalized one. In this argument, we are prob
ably on reasonable ground, since the special systems of 
today have nearly all been- spin-offs from the past 
generalized systems. But th,is is not enough. 

The important point seems to be that a reasonable 
research effort can and will produce further steps to
wards a generalized system, or at least a "less spe
cialized" system. 

A second question is: 

If we had a generalized graphic system today, could 
industry afford to use it? Unfortunately, with our best 
hopes, we still have to admit that the answer is NO. 
This is mainly due to the fact that specialized systems 
are normally cheaper, and often easier to run than a 
generalized system. This could be compared to the 
difference between a "FORTRAN machine" which pro
vides a useful but ad hoc language, and a Turing ma
chine, which is certainly general, but is by no means as 
easy to use. 

How, then, do we hope to succeed? The first way is 
by developing more powerful techniques, which, though 
general, are easy to use and well interfaced to the user. 
The second is the normal effect of engineering progress 
and the economies of scale. As time goes on, we might 
hope to see both cheaper hardware and a ready pool 
of useful routines from a user community which can 
be integrated into a total, but generalized system. 

THE SKETCHPAD METHOD OF 
CONSTRAINT SATISFACTION 

Since picture meaning and solution will form the 
heart of any generalized system, we felt that a deeper 
understanding of the "graphical constraint problem" 
was necessary. Naturally, we started with the 
SKETCHPAD approa,ch. We had the following ques
tions in mind: 

1. Were SKETCHPAD's methods as general as some 
claimed or were people misconstruing some ex
citing beginnings? 

2. Why hadn't further extensions of the graphical 
constraint problem appeared? 

3. How might we extend the SKETCHPAD work 
on graphical constraints? 

Some answers which led to our general conclusion will 
appear in the next few sections. It will. be helpful to 
consider the SKETCHPAD method in some detail for 
background purposes. 

When SKETCHPAD was commanded to satisfy a 
set of constraints on a picture, it did so by using nu
merical measures of how much certain "variables" 
(usually points) were "out of line" (our phrase). Con
straint satisfaction was therefore a matter of reducing 
the various numerical error measures to zero. The 
errors were computed by calling, for each constraint 
type and for each degree of freedom restricted by that 
constraint type, an error computing subroutine. Each 
subroutine would compute an error "nearly propor
tional to the distance by which a variable was removed 
from its proper position". Thus if the components of a 



variable were displaced slightly and the error sub
routine called for each displacement, a set of linear 
equations could be found. These equations had the 
form 

where Xi is a component of a variable, E is the computed 
error, and the subscript 0 denotes an initial value. 
This set of equations could then be solved by Least
Mean-Squared Error Techniques to yield a new value 
for each component involved. 

The general constraint procedure was thus based on 
this numerical measure, and the most general algorithm 
available was relaxation. Thus a variable was chosen 
and re-evaluated using the LMS technique such that 
the total error introduced by all constraints in the 
system was reduced. The process continued iteratively 
and eventually terminated when the total computed 
error became minimal. 

Obviously, the relaxation method, with a set of 
equations to be computed and solved many times, was 
slow. Thus, before using relaxation, SKETCHPAD 
employed a heuristic, which will be discussed in some 
detail because we believe many similar techniques will 
be necessary. The object of the heuristic was to find 
an order in which a set of variables could be re-evaluated 
such that no subsequent re-evaluation would affect a 
former one. If this order could be found, then the con
straint satisfaction process could proceed much faster 
because the variables involved would need only one 
re-eval uation. 
~o perform this search, the user picked a starting 

varIable. SKETCHPAD then considered the constraints 
on that variable and formed the set of all variables 
which participated with the starting variable in the 
constraints involved. If some of these variables had 
sufficient degrees of freedom to satisfy the constraints, 
then one could be sure that they would not affect 
previous constraint re-evaluations. Thus such con
straints could be removed from the constraint set on 
the starting variable, possibly allowing it to be easily 
re-evaluated. The technique was extended to build 
chains of constrained variables until sufficient free ones 
were found. Of course, such a se,t of free variables did 
not always exist, and it was necessary to have the 
relaxation method as a back-up. 

COMMENTS ABOUT SUTHERLAND'S 
METHOD 

In the conclusion to Reference 1, Sutherland stated 
"It is worthwhile to make drawings on a compute; 
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only if you get more out of the drawing than just a 
drawing" (p. 67). While' this statement might arouse 
some debate (are plotters useless?), it nevertheless re
flects the key point that one must be able to associate 
meaning, and thus constraints, with a picture. When 
the Sketchpad method is evaluated relative to arbitrary 
picture semantics, several observations can be made. 

First, all constraints in SKETCHP AD were eventu
ally related to a numerical error definition having to do 
with distance. This technique was clearly oriented to
ward the L1V[S equation solution method, but in ad
dition had several advantages. It allowed new con
straint types to be added quickly since all one had to 
do was write a new set of error computing subroutines; 
the solution machinery was already present in the over
all system. The solution technique itself, though it 
involved a preliminary heuristic, could almost guarantee 
a solution in reasonable if not entirely pleasing time. 
In addition, the numerical approach together with 
relaxation yielded results for a class of problems that 
were of particular interest in the author's field. The 
approach was therefore eminently successful for certain 
operations. 

In a more general context, the approach has some 
drawbacks. The relaxation method depends critically 
on the results of a previous iteration. Thus once having 
applied it, it is a non-trivial matter to restore the pic
tUre to its previous status; one might have to make a 
copy of parts of storage, for instance. Design by trial 
and error, with recovery fr.om undesirable conditions, 
is thus hampered. Furthermore, the relaxation method 
is not generally selective in picking some priority in 
variable re-evaluation. One constraint is as strong as 
another and all are broken with equal abandon. This 
runs counter to most realistic concepts of a constraint. 
These drawbacks were known to the author: "There 
is much room for improvement in the relaxation process 
and in making 'intelligent' generalizations that permit 
humans to capitalize on symmetry and eliminate re
dundancy" (p. 55). 

A final criticism of the numerical definition of con
straints centers on the degree to which they are "picture 
oriented." A review of the available constraint types in 
SKETCHPAD (Appendix A) quickly reveals their 
obvious correlation with "picture transformations". 
Certainly such picture transformations are a desirable 
part of man-machine communication. However, if the 
system is limited to constraint satisfaetion methods 
involving such simple picture transformations, the 
system capabilities are undoubtedly themselves limited. 
Examples will be presented later. The point is that 
constraints are a function of picture semantics, and 
only incidentally of picture geometries. 

It should be noted that the above criticisms are 
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Figure I-Generalized (graphic) problem solver 

centered on the mapping from constraints to numbers. 
The phi10sophy of relaxation and especially the pre
liminary heuristic do not depend critical1y on the nu
merical error computing subroutines. They are, rather, 
general strategies for solution. Relaxation could be 
rephrased as: 

"Transform object A into object B" 
"Reduce the difference D between object A and 

object B" 
"Apply operation Q to object A." 

which the reader may recognize as a strategy in the 
Newell and Simon GPS program. 7 In such a context, 
the preliminary heuristic becomes a method for ordering 
how the transformations will be effected. GPS has 
similar, though less dynamic, ordering strategies. 

Thus while the Sketchpad approach was an exciting 
and useful beginning in the area of graphica1 constraints, 
it should not be taken as the last word. The author 
himself has stated, "l\1uch room is left in Sketchpad 
for improvements .... A method should be devised for 
defining and applying changes which involve removing 
some parts of the object drawing as well as adding new 
ones" (p. 70). 

The last sentence of the quotation suggests the 
generality discussed above. It implies more general 
picture operations, macroscopic in nature; it is a short 
step to view these macros as a "subproblem" strategy. 

THE GENERALIZED GRAPHIC 
PROBLEl\1 SOLVER 

In analyzing the difference between special graphic 
systems and generalized graphic problem solvers, we 
found that the information flow chart for both systems, 
and indeed for many other types of computer-aided 
design systems, could be represented by Figure 1. 

Although this figure bears strong family resemblance 
to work of others,5,6 it has special new features, and 
leads to certain unique conclusions. 

First let us consider the work of a simple graphic 
"drawing" program, where the user can merely input a 
restricted set of graphic entities (such as lines, arcs, 
etc.), and then view them on a CRT. In essence, 
he is working with the restricted system A ~ B ~ C -
D ~ E ~ F ~ A; he is unaware of the data structure 
representing his picture, and is unable to either affect 
it to produce a new drawing, or analyze its meaning 
(except, possibly, as an artistic entity). The particular 
blocks that he uses are: 

B: An input device such as a light pen, or tablet, 
or even a string of characters from a teletype 
which represent predefined graphical items. 

C: An input procedure, not necessarily highly so
phisticated, nor particularly general in its parsing 
rules, which stores the information. 

D: A data structure, normally unsophisticated, which 
represents the input information in a somewhat 
compacted form, possibly in hierarchic classes 
called pictures. 

E: An output procedure, which can take information 
about a given picture from the data structure, 
and format it so that the output device will be 
able to use it (e.g., place it, in correct format, 
into a "display file"). 

F: An output device, probably a digital or analog 
driven cathode ray tube. 

If we now consider what additional information flows 
in SKETCHPAD, we see that the loop ABCDEFA is 
still needed, with much greater sophistication in blocks 
C and D, but also that other parts must exist. Besides 
the drawing function, we have the constraint function; 
e.g., two lines are stated to be parallel. The additional 
functional requirements are therefore: 

G: A procedure which interprets (or parses) the con
straining command 

H: A process which (possibly heuristically) deter
mines the particular set of rules which are to 
apply for this additional constraint 

I: The set of rules that can apply for the particular 
branch of science or mathematics being modeled. 
In this case, only geometry. 

J: A procedure which takes the new rule, and, in 
conjunction with all previous rules laid down by 
the user, produces the final result, thereby po,:. 
tentially changing the data structure (D). 

As an example, suppose we enter two lines into 
SKETCHPAD. This will cause two loops through 
ABCDEFA. We now state that these must be parallel. 



The arc ABCGH determines that there is a given rule 
in I to satisfy the condition "parallel"; i.e., that the 
slopes of the lines be the same. J now determines the 
error metric, and minimizes this, finally producing new 
definitions for the two lines in D. The new result to 
the user (A) is given via E, F. 

Ross5,6 working from a similar system conception, 
argued that it would be pointless to write a family of 
special purpose packages, since these could never satisfy 
a general user population. Nevertheless, he realized 
that boxes H, I, and J were the key to any useful 
system. He therefore proposed (and has since built) a 
system for building systems. The idea is that a sophisti
cated user, provided with general packages for building 
boxes B, C, D, E, and F, and further provided with a 
general language for building boxes H, I, and J, could 
produce specialized packages economically. Our con
clusions differ from Ross', but before examining them, 
we should draw parallels to other (non-graphic) systems. 

For a numeric problem, e.g., the solution of super
sonic flow in a divergent nozzle, we have no automatic 
display loop. The information flow is essentially ABC, 
CD and G), (H and I), J, D, E, F, though some of the 
steps are either eliminated or merged with one another; 
e.g., G, H, and I are merely reformatting the input so 
that it can be worked on by a special purpose program J 
(which is a differential equation solver and special 
purpose output formatter). 

For algebraic analysis, we have a surprisingly similar 
set of procedures. The input (BC) and output (EF) 
programs are oriented towards equations, and the 
parsing in the input procedures (from C to D) may be 
quite complex, but the constraints on the solution (G) 
are now the selection of a subset of the equations, 
probably by user command, with some criteria (such 
as elimination of a variable) for the solution. The 
analyzer and rule applier (H) now must select, from 
the set of system laws (I) or axioms or rules, that set 
of rules and their order of application so that a reason
able solution can be generated when they are used by 
the problem solver (J) to produce the required set of 
operations to provide a solution. 

Finally, we are ready to make our generalization, 
which is that graphic problem solvers, like general 
problem solvers, are in need of good heuristic solution 
techniques. Thus the conclusions are: 

(i) The constraint satisfaction problem, though 
capable of solution for simple graphic pictures 
with a few constraints by algorithmic or simple 
maze solving techniques, is in fact a speciali
zation (though a not much easier problem) of 
the general problem solver. 

(ii) That if a graphic system were built with the 
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GHJ of Figure 1 replaced by a General Problem 
Solver, then the "constraint problem" would 
only be one of many useful operations available, 
and that it would then be possible to use this 
GPS, examining the data structure and a set 
of rules (possibly for topology and model build
ing in electronic circuits) to analyze the physics 
of the model, either numerically or symbolically. 

(iii) It then would be possible for the user to be 
truly in charge of his model. In contradistinction 
to other writers,5,6 we believe the correct inter
face between the user and his modeling is at 
"B" as a user of a given system, or at "I" when 
he is altering his system rules or setting up his 
system for a new type of model (e.g., mechanical 
engineering instead of electrical, etc.). 

Examples oj use oj a generalized graphic problem solver 

Let us consider the operation of such a generalized 
(graphic) problem solver on two problems from engi
neering (Figure 2). The first of these· represents an 
electric circuit problem solved using a "phasor dia
gram". Naturally, this is a problem which is "easily" 
solved using a special purpose program. First, we con
struct the circuit diagram by using a series of lines to 
connect resistors and capacitors which have ·been pro-

:q 
3. T 

a. Phasor Diagram 

b 

11 

-7'''-------+-----'''' a 

b~ Mechani_ 6 Velocity DiagrlllD 

Figure 2-Examples for a generalized (graphic) problem solver 
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vided as "subroutines" by previous users or system 
designers. We associate with the resistor the "numeri
cal" value R, and with the capacitor the value C. If 
the idea of "three phase balanced voltage" has been 
previously introduced, we associate 1, 2, 3 with the 
lines and give V as the line voltage. All of the drawing 
and associations have been entered either by light pen 
or typewriter key strokes. The picture has been drawn 
using loop ABCDEF, and all associations are passive 
constraints which have not caused any "problem so
lution" up to this point. 

It is, of course, possible that the engineer, wishing 
to be "neat" positioned the lines horizontally or verti
cally, but this was either a constraint during drawing, 
and hence automatically satisfied, or else the constraint 
was later applied, and the GPS loops of (C, D), G, 
(H, I), J, D will have no real difficulty in resolving the 
problem since the problem is not overconstrained, and 
anyone constraint can be selected to be applied first 
with no effect on the outcome. 

If "phasor diagrams" and the laws of impedance 
are already a part of the electrical-bag-of-tricks, then 
the diagram to the right could immediately be con
structed, with the value of I12 set as (V /R) in phase 
with V 12, and the value of 123 set at· (V wC) leading 
V 23 by 90° (where w is the angular velocity of the 
applied voltage). All that remains is the need for 
Kirchhoff's law to produce 12 as the vector sum of 1 23 

and (-112) ••• this also requires the concept of a tri
angle for solution. 
- If the previous stored experience (the system laws) 

,does not include phasor diagrams, the user may still 
. produce a solution by applying the graphic construction 
phase as follows: Draw V 12 horizontally, define its length 
to be V (non numeric scales being allowed), and the 
other voltages V 23 and V 31 at 120° and 240° respectively 
anticlockwise. In the same way, 112 would be defined 
parallel to V 12 (with scaling) and 123 perpendicular to 
V 23, clockwise. 

If the values of V, R, C, ware known, then actual 
numeric values of the current (and phase angle) can 
be computed. If the user wishes, he could use an 
algebraic solver to obtain 112 as (V /R) /0°, 123 as 
(VwC) / -30°, and even 12 as V,{ (v3/2)wC - B-1 -
i(wC /2)} where i is the 90° operator (assuming that 
this notation was available). 

As an extension of this type of program, we can intro
duce topological considerations to include the concept 
of parallel and series with their associated algebraic or 
numerical transforms. It would also be possible to 
apply more complicated transformation rules, such as 
P --1r and its inverse. Obviously, the simple rules of 
complex number manipulation should be included in 
this "circuit pa.ckage". 

The second example of Figure 2 involves the position 
and velocity of a simple four-link mechanism. First, we 
draw the mechanism, constraining each length fixed, 
point C as moving horizontally, point E as moving on 
AB, and D as fixed between Band D. The generalized 
graphic problem solver could produce a "picture" of 
the mechanism for any given angle of. AB from the 
horizontal. As a result, we could plot if we wish the 
curve of displacement-v-angle. Alternatively, if we have 
an algebraic/trigonometric processor available, we could 
produce equations for the positions of the various points 
of the mechanism (e.g., B = l cos (J + il sin (J, etc.). 
This would probably also introduce the angles of BC 
and DE from the horizontal, with "constraint" equa
tions for determining these as functions of the various 
lengths and (J (e.g., BC/sin (J = BA/sin a). 

One common method of solving for the velocity is to 
draw a diagram, as shown with lengths proportional 
to the velocity, and the relationships of the angles 
either along or perpendicular to the special diagram. 
Thus ab = nAB to scale, and perpendicular to AB. 
To find C, we intersect bc (drawn 1. BC) and ac (drawn 
along the direction of constrained piston motion, i.e., 
horizontally). The position of d is determined by pre
serving ratios, i.e., bd/bc = BD/BC. Thus the velocity 
diagram can be constructed, and the velocity of all 
parts found. 

Obviously, another way to solve this problem, given 
the trigonometric rules, laws, etc., above, and also a 
simple set of differentiation rules, would be to solve 
for the time derivative of the displacements, and hence 
obtain a closed form solution . 

CONCLUSIONS 

We have seen, in the two examples, that there are 
several ways that the same problem can be tackled, 
given a generalized graphic problem solver. But indeed, 
this should not be surprising, because we have already 
assumed that a significant feature of the generalized 
graphic problem solver is a general problem solver. We 
also know that much of engineering graphics in the 
past was aimed at either visualizing the model in such 
a way that it could be solved, or else providing a way 
for obtaining numerical solutions by scaled drawings. 

This may now lead us to two important facts. The 
first is: scientists and engineers have, in the past, made 
significant use of graphic diagrams to solve mechanical, 
electrical and other engineering and scientific problems. 
Is it reasonable to use these techniques, when they 
represent only a man oriented solution, and when a 
machine might make the solution more simply using 
the algebraic formulation? In some ways, this question 



is academic, since any algorithm, which is easily defined, 
should be welcome to the computer user. In fact, these 
sorts of techniques are highly man-machine or symbi
otically oriented. Strangely enough, the algebraic ap
proach wou!d be much less man controlled", needing 
heuristics to determine how to solve the series of equa
tions (i.e., to determine the order of applying the laws 
or rules). Thus we see, once again, that the future 
betokens more applied artificial intelligence. 

The second is: 

Although many investigators have looked on the 
world as man-machine oriented, Figure 1 suggests that 
this cannot be. the case if we plan to expand towards 
generalized syste,~. This is because the user only 
appears in one loop (ABCDEFA), and is excluded from 
the other (GHJD). When the problem is being solved, 
the user may be able to assist, but more often, the 
machine representation of the problem and its present 
state of solution may be unintelligible or untranslatable 
to the man. This does not mean that there are no 
places where the man could help, but it suggests that 
there is no single successful technique where a man can 
help. An illustration in Reference 8 shows that if 
graphic procedures are called from within other pro
cedures, then the human decision maker could be con· 
fused by a "question" or call-for-aid generated in a 
low-level subroutine, since the user may not even be 
aware of the conflict, let alone what it means. 

Finally, to end on an optimistic note: 

The graphic systems which are specialized are sig
nificantly different from the generalized systems, but 
they are, nonetheless similar in many parts to the 
generalized system described here. l\1any of the routine 
manipulations in a special syst"em are still needed in 
the moregeneraI. The total general system involves 
generalized problem solvers which, though being de
veloped in several locations in the country, are still 
v-ery primitive; however, recent work on both the 
theoretical and practicallevel9, 10 suggests their ultimate 
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utility. But should all else fail for the next few years, 
we can still fall back on the semi-automatic proce
dures of the engineer/scientist, like those discussed in 
the last section and shown iIi Figure 2. Although this 
is not a large step forward, we have plenty of room for 
research even in this cut-down version, while we are 
waiting for AI to develop. 
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A variance reduction technique for hybrid 
computer generated random walk 
solutions of partial differential equations 

by DR. EVERETT L. JOHNSON 

The Boeing Company 
Wichita, Kansas 

INTRODUCTION 

The work done to date on the analog/hybrid Monte 
Carlo solutions of partial differential equations can be 
summarized by reviewing three works: one research 
report and two Ph.D. theses. 

Chuang, Kazda, and Windenecht were the first to 
demonstrate the feasibility of a Monte Carlo solution 
of a class of partial differential equations on an analog 
computer.! The boundary value problems for which 
their stochastic solution technique is applicable belong 
to a family of generalized Dirichlet problems of the 
form 

(1) 

where Kl (Xl, X2) and K2 (Xl, X2) are arbitrary functions 
of Xl and X2. The boundary, c, is an arbitrary, finite 
closed curve-a Jordan curve. 

The boundary-value function ¢(XI, X2) is a bounded, 
single-valued piecewise continuous function of Xl and 
X2. DI and D2 are constants. 

The method developed is based on the direct relation 
that exists between partial differential equations and 
the random process that arises in the analysis of electric 
circuits subjected to random excitations.2 

The electrical equations to be simulated for the 
solution of Equation 1 are 

dXI at + KI(XI, X2) = NI(t) 

(2) 

where NI(t) and N 2 (t) are noise generators with Gaus-
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sian amplitude distribution and power spectral densities 
D! and D2 respectively. Figure 1 demonstrates the 
simulation technique. 

Fundamental to the research of Chuang, et aI, is the 
theorem of Petrowsky3 which guarantees the con
vergence of the stochastically obtained solution to that 
of the generalized Dirichlet problem, Equation 1. 

The solutions to several one and two dimensional 
problems were given in the paper by Chuang, et al. 
The solutions were obtained as follows: An analog 
program as shown in Figure 1 was patched. The initial 
conditions of integrators 1 and 2 were set to the co
ordinates of the point for which the solution was de
sired. Boundary crossings were detected by using an 
oscilloscope, bounded region mask, and photo tube. 
Upon detecting a boundary crossing, the value of the 
boundary-value function at the point of intersection 
was recorded and the process repeated. The approxi
mate solution was then given by 

1 N 

f(~) = N E ¢(Sn) (3) 

where Sn is the coordinate of the nth crossing, ~ the 
solution point, and N is the number of repetitions of 
the procedure. The simulation equipment allowed up 
to 2000 random walks per hour. Errors were in the 
.5 percent range and were attributed primarily to sta
tistical variations, presumably in the noise source. 

Little4 extended the class of partial differential equa
tions for which the methods developed by Chuang, 
et aI, are applicable while developing a technique of 
solution utilizing an analog computer linked toa digital 
computer. Little solved three types of partial differ
ential equations: parabolic, elliptic, and non-homo
geneous. 

Little used the analog computer for simulating an 
electric circuit excited by random noise. The digital 
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computer collected and averaged the resulting bound
ary values and controlled the modes of the analog 
components. With his hybrid system, EAI 231R-V 
analog computer and Logistics Research Alwac III-E 
digital computer, he was able to obtain 10 random 
walks per second. The Monte Carlo solutions compared 
favorably with the analytical solutions of the example 
problems. 

Handler5 demonstrated that by use of a high speed 
repetitive operation analog computer with parallel logic 
capability, the ASTRAC II, that the Monte Carlo 
solution techniques developed by Chuang, et aI, and 
Little could be made competitive with more conven
tional finite difference digital solution techniques. In 
fact, he demonstrated the ability to plot continuously 
and directly the solution to partial differential equa
tions. This was accoIllplished by slowly changing the 
coordinates of the point for which the solution was 
desired while performing 1000 random walks per second. 
The averaging of the intersected boundary values was 
done by a simple analog averaging circuit. 

A. W. J\!Iarshall6 has stated that if a random sampling 
method is to be used to solve' a problem, attention 
should be turned to three topics. 

(1) Choosing or modeling the probability process to be 
sampled (in some cases this means choice of the 
analog; in others a choice between alternative prob
ability models of the same process). 

(2) Deciding how to generate random variables from 
some given probability distributions in an efficient 
way. 

(3) Variance reduction techniques, i.e., ways of in
creasing the efficiency of the estimates obtained 
from the sampling process. 

In summary: 

(1) Petrowsky has defined a class of stochastic proc
esses which can be used for obtaining a solution 
to the Dirichlet problem. 

(2) Wang, et aI, have established a random process, in 
the class defined by Petrowsky, to be sampled. 

The first two topics suggested by Marshall have been 
considered previously and satisfactory results obtained. 
The third topic is the subject of this paper. 

The means toward the end will be an examination 
and implementation of a technique of stratified sam
pling using the Green's function for a rectangle and for 
a circle. 

The technique is implemented by choosing an ap
proximating region, Ra, which is totally contained within 
the region, R, for which a solution is desired. Portions 
of the boundary of Ra may be coincident with the 
boundary of R. For a point contained in Ra the solution 
is found by performing walks which originate from the 
boundary of Ra. The number of walks, N m, which 
originate from the mth segment is given by the negative 
of the normal derivative of the Green's function for Ra 
integrated over the mth segment. A substantial re
duction in variance results from the use of the technique. 

A VARIANCE REDUCTION TECHNIQUE FOR 
.THE CONTINUOUS RANDOM WALK 

For a solution of Laplace's equation for the region 
R of Figure 2, the continuous walk technique moves 
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Figure 2-Region of solution with approximating region 



continuously from the point of interest, ~, in the region 
R until a boundary is intersected. The value of the 
boundary function cP (s) is recorded and after N walks 
the solution is 

(4) 

If the Green's function for Laplace's equation and the 
region R are known then the solution can be written7 as 

f aG 
cp(~) = - cp(s) - (~, s) ds 

c an 
(5) 

where ~ represents the coordinates of the point for 
which a solution is desired, s is the variable on c the 
boundary of the region R, and (aGjan) (~, s) is the 
derivative of the Green's function with respect to the 
normal vector of the boundary of R. 

In Figure 2 consider the region Ra contained by R 
with the boundary represented by a dotted line. Each 
walk leaving the point ~ must intersect the boundary 
of Ra at least once before intersecting the boundary 
of R. If a boundary function CPa (Sa) were given for Ra, 
where Sa is the variable on the boundary of Ra, then 
CPa (Sa) evaluated at the points of first intersection with 
the boundary of Ra allows the solution for Laplace's 
equation in Ra to be written 

1 N 
CPa(~) = N E cpa (Sai) . (6) 

It was reasoned that if Ra were a region with' a known 
solution this information might be used to determine 
the points· of intersection on the boundary of Ra for 
walks originating at ~. Due to the Markovian nature 
of the random walk process, walks originating from the 
boundary of Ra with the correct distribution for con
tinuous walks from ~ should give the solution to 
Laplace's equation for R. The information sought can 
be obtained from the normal derivative of the Green's 
function for Laplace's equation in Ra. The probability 
density function properties of the Green's function are 
well established.8 A heuristic argument is given in 
Appendix A to support the use of the Green's function 
to find the proportion of the N walks with origin at ~ 
which intersect any segment of the boundary of Ra. 

If the boundary intersection coordinates are stored 
during a random walk solution of Laplace's equation 
for the region R then these values can be used for the 
solution to Laplace's equation for various boundary 
functions. The set of coordinate points is then' an ap
proximation to the Green's function for the region R 
and the walk origin ~. It is important that these inter
section coordinates have as nearly as possible the same 
statistical parameters as the Green's function. The im-
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portance is obvious if the boundary function IS ex
pressed as a power series. 

The solution to Laplace's equation is then seen to be a 
function of the moments of S 

cp(~) = f (ao + alS + a2s2 + ... )Gn(s) ds. (8) 
8 

The possibility of obtaining a variance reduction in 
the sample average by originating continuous walks 
from theoretically determined origins on the boundary 
of Ra prompted the research reported in this paper. 

A STRATIFIED SAMPLING TECHNIQUE 
USING GREEN'S FUNCTIONS 

Stratified sampling is a sampling technique which 
gives a reduction in sample variance if the population 
from which samples are to be made can be divided into 
sub groups which have variances smaller than the 
original population. The sub group selection and the 
number of samples to be made from each sub group 
must be selected such that the parameters to be de
termined from the samples are the same for the stratified 
sampling as for samples taken from the original popu
lation. The use of Green's functions to determin.e the 
distribution of walk origins on an approximating region 
Ra contained by R permits the division of the original 
sample popUlation that exists at ~ to be divided into 
sub groups with variances smaller than that of the 
population at ~. The technique described below was 
implemented and shown to give a variance reduction 
before its recognition as an application of stratified 
sampling. 

The technique consists of performing walks from the 
boundary of the approximating region Ra which con
tains the point, ~, for which a solution is sought. The 
boundary of Ra is divided into M segments, ~Ai' The 
proportion, pm, of the total number of walks, N, to be 
originated from the mth segment of Ra is determined by 

(9) 

where Gna(~, Sa) is the normal derivative of the Green's 
function for Ra. Note that pm is the probability of a 
walk originating at ~ intersecting the boundary segment 
~Am' The segments must be small enough that the 
solution to Laplace's equation at the mid points of two 
adjacent segments does not differ greatly. 

Consider the solution of Laplace's equation using 
the technique described above for a region R, Green's 
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function with normal derivative Gn(~, s) and with 
boundary function c/>(s) = s on a portion of the bound
ary, ~s, and zero elsewhere. Divide the boundary of 
the approximating region into M equal segments ~Am. 
For the problem described, the solution is 

1 N 
S = - I:Sk 

N k=l 

(10) 

where S is the average value of the intersection co
ordinates on ~S. The variance of the solution is9 

with Ra 

1 M 
YeS) = - I: PmO"m2 

N m=l 

(11) 

without Ra 

giving a variance reduction 

o(V) = ~( Qu2 + 2 f: Pm(Um - U)2 - f: Qmu",'Pm) 

(13) 

where 

pm = the probability of intersecting ~Am 
O"m2 = the variance of the average value of inter

section coordinates from walks originating at 
~m, the mid point of ~Am 

Um = the expected value of the intersection coordi
nates resulting from walks originating at ~m 

U = the expected value of the intersection coordi
nates resulting from walks originating' at ~ 

Q = - fGn(~' s) ds 
8 

Qm = - f Gn(~m, s) ds. 
8 

The wavy line under S in Equation 12 denotes the 
fact that in order to get the equation in terms of 
Equation 11 it was necessary to assume that any walk 
originating from ~ and intersecting a segment of the 
boundary of Ra continued its motion from the mid 
point of the segment. For sufficiently large M the 
difference in results is negligible. For the experimental 
verification given below a value of M = N was used. 

For verification of the above results, Laplace's equa-

7 ~(l.X) - 0 
1 r-------~~~----~----~ 

o~--------~-(-o-.x-)-.-. -X--------~l x 

Figure 3 

tion was solved for the region and boundary values 
given in Figure 3. 

A circle with a radius of .45 centered at (.5, .5) was 
used for Ra. Solutions were obtained for x = y = .5. 
Approximately 100 walks per second were made-this 
excludes the time required to compute the number of 
walks made from each segment. 

For each value of N, ten solutions were made. The 
ten values were used to compute the standard deviation 
of the sample average. The sample average is the so-
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lution to the given problem. The experimental values 
were plotted along with theoretical values for (J' for the 
cases with and without Ra using the square root of 
Equations 11 and 12. 

The problem was programmed on an EAr 690 Hybrid 
Computer. The digital portion of the hybrid system 
computed the initial coordinate values for the walks, 
the number of walks to be made from a segment, re
corded the boundary intersection coordinates, com
puted the average, and controlled the modes of the 
analog computer. The analog portion integrated the 
noise to generate the walk, detected boundary inter
sections, and performed the filtering for the noise 
generators. 
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Figure 4 shows the results for x = .r>, y = .r> \vith 
Ra. Figure 5 gives the results for the same problem 
without Ra. The data points would have been closer to 
the theoretical curves if more than ten solutions had 
been made at each value of N. However, the improve
ment in standard deviation using Ra is apparent. 

By using Ra for the solution of Laplace's equation 
the following benefit is realized: 

for x = y = .5, a ,158% reduction in variance or the 
same variance as 'without Ra with 42% as many 
walks. 

For the problem of Figure 3, Figure 6 gives the theo-
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Figure 6-Variance for X = .5 using a circular Ra centered at 
X = Y = .1) with a .4i') radius 

retical change in variance for x = .5 and .05 ::; Y ::; .9.5 
with a radius of .45 and Figure 7 shows the theoretical 
change in the variance in the sample average as the 
radius of the approximating circle is varied. Note in 
Figure 6 that the variance is a function of position and 
that for a given variance in sample average the number 
of \valks required is not a constant. 

The technique described and demonstrated in this 
section gives a substantial reduction in error in the 
continuous random walk solution of Laplace's equation. 
For a given number of walks the amount of error 
reduction is dependent on the position of the point 
for which a solution is sought. The next section contains 
an extension to the technique which in many cases 
increases the variance reduction. 

50 
1-------.. ... -::...:-:-.- -- - - - - - - -- - - - - - - - - - - ---

40 

----- Theoret1cal W1thout Ra 
-- Theoretical W1 th Ra 

o L-_________ .-_____ -. ________ ~---------r---------, 

.1 .2 .3 .5 
Rad1us of Ra 

VARI~~CE WITH Ra AS A FUNCTION Of RADIUS OF CIR
CULAR Ra CENTERED AT X :: Y '" • 5 FOR THE POINT X = y = .5 
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VARIANCE IMPROVEMENT USING 
BOUNDARY COINCIDENCE 

The continuous random walk solution of Laplace's 
equation with boundary function q, (s) for a region R 
with approximating region Ra can be written as 

M Nm 1 N m 

q,(~) = EN N
m 
E q,(Sim) (14) 

or 
M 

q,(~) = L Pmq,(~m). (15) 
m=l 

q,(~m) is the sample average at the mid point of the 
mth segment, N m is the number of walks intersecting 
the mth segment of Ra and Sim is the coordinate of the 
intersection of the ith walk from the mth segment. 

Equation 15 is the continuous random walk solution 
of Laplace's equation in Ra with boundary function 
q,(~m) on ~Am. Since pm may be computed using the 
approximating region Green's function, Equation 15 
can be written 

(16) 

or 

= - i2 f </>(~m)Gna(~, s) ds 
m=l ~A,,~ 

(17) 

where Gna is the normal derivative of the Green's 
function for Ra. If Ra can be positioned such that 
portions of its boundary are coincident with the bound
ary of R then the boundary function on the coincident 
portions of Ra need not be approximated by q,(~m) but 
is the same as the boundary function for R. Equation 
17 can then be written 

q,(~) = -! q,(S)Gna(~, s) ds + t Pmq,(~m) (18) 
8e m=l 

where Se is the coincident portion of the boundaries 
and L is the number of segments not coincident. 

The second term of Equation 18 can be written 

which can be written 

1 K - L: q,(Si) 
N i=l 

where Si is the ith intersection coordinate, 
L 

K = LNm , 

m=l 

(19) 

(20) 

(21) 

and 

0< K ~ N. (22) 

K is the number of walks actually made and is de
pendent on the extent of the boundary coincidence 
and the coordinates of the point for which a solution 
is sought. N will now be referred to as the base number 
of walks. 

Equation 11 gives the variance when Ra is used 
which is the weighted sum of the variance from the 
M segments of Ra. The variance of the coincident seg
ments is zero giving an additional decrease in the 
variance. 

EXAMPLE PROBLEM 

The solution to Laplace's equation is desired for the 
region shown in Figure 8 and boundary conditions: 

q,(0, B) = (3 

</>((3, a) = B 

q,(A, (3) = (3 

q,(a, (3) = 0 elsewhere 

where a and (3 refer to coordinates of poi~ts on t~e 
boundary. 

The Green's function for a rectangle is10 

G(x, y, a, (3) 

for 

for 

2 ~ . h (m1rY). m1r ( ) - £-sm -- smh- b - (3 
a m=l a a 

. (m1rx) . (m1ra) . sm ---;;- sm ~ 

m1r . h m1rb -sm -
a a 

2 ~. (fn1r(3). m1r (b ) = - £-smh _.- smh- - y 
a m=l a a 

(23) 

. (m1rx) . (m1ra) . sm ~ sm ----;;-

m1r . h m1rb 
-sm --
a a 



where 

O:::;x:::;a 

o :::; {3 ~ b. 

The coordinates of the point being solved for are (x, y). 
Equation 23 can also be expressed as a Fourier 

series in y by interchanging a and b, x and y, and a and 
{3. Both representations give the same results but, to 
obtain faster convergence the Fourier series in x should 
be used at points for which 

(y: ~) > e ~ a) (24) 

and the Fourier series in y when the reverse of Equation 
24 is true. The exponential form of Equation 23 was 
used for developing the digital representations of the 
equation. 

Using the Green's function for a rectangle and the 
two approximating regions 1234 and 4567 shown in 
Figure 8, the problem was programmed on an EAI 690 
hybrid computer. The digital-analog problem split was 
as follows: 

The digital computer calculated which of the two 
approximating regions would require the least random 
walks, the contribution the coincident boundary por
tions made to the solution, and the number of walks 
to be made from each non-coincident segment. In ad
dition, the digital computer controlled the modes of 
operation of the analog computer, monitored sense lines 
signaling boundary intersections, stored the boundary 
intersection coordinate values, computed the proper 
boundary function values, and set the initial conditions 
for the x and y integrators. 

The analog computer performed the random walks 
by integrating the noise inputs, provided shaping filters 
for the noise, and with analog comparators and parallel 
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Figure 8-Region for which solution to Laplace's equation 
is desired 
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TABLE I-Solution for Laplace's Equation for Region of 
Figure 8 with Base Walk Number of 1000 

1000 Walks 

SOLUTION USING Ra WITHOUT Ra 

Y DIGITAL HYBRID IERRORI #WALKS HYBRID IERRORI 

X = 100 

36 35.33 35.19 .14 49 35.60 .28 
32 30.62 30.54 .08 97 31.56 .94 
28 25.83 2.5.89 .06 143 26.52 .31 
26 23.38 23.55 .17 161 24.08 .70 
24 20.89 20.72 .17 178 20.56 .33 
22 18.33 18.25 .08 190 18.76 .43 
20 15.69 15.63 .06 212 15.76 .07 
18 12.93 13.20 .27 201 13.00 .07 
16 10.02 9.89 .13 191 10.76 .75 
14 6.90 7.11 .21 154 8.20 1.30 
12 3.54 3.42 .12 91 4.48 .94 

logic components simulated the boundary and flagged 
the digital computer when an intersection occurred. 

Table I contains the results for the region shown in 
Figure 8 with dimensions: 

A =200 

B = 40 

D = 10 

H = 10, 

a 5-unit boundary segment for region 1234, a 2-unit 
segment for region 4567, and a base walk number of 

TABLE II -Solution for Laplace's Equation for Region of 
Figure 8 with Base Walk Number of 10,000 

SOLUTION USING Ra 

Y DIGITAL HYBRID I ERROR I # WALKS 

x = 100 

36 3.5.33 35.34 .01 490 
32 30.62 30.61 .00 970 
28 25.83 25.71 .12 143 
26 23.38 23.40 .02 1610 
24 20.89 20.82 .07 1780 
22 18.33 18.33 .00 1900 
20 15.69 15.66 .03 2120 
18 12.93 12.99 .06 2010 
16 10.02 10.02 .00 1910 
14 6.90 6.93 .03 1540 
12 3.54 3.61 .07 910 
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1000. The solutions both with and without an approxi
mating region are compared to the results obtained 
using finite differences and a relaxation type numerical 
solution. 

Table II gives the results using an approximating 
region and a base walk number of 10,000. Solutions for 
many other points were madell with similar reductions 
in error. Note in Tables I and II that less than 25% of 
the base number of walks is actually made. 

QUICK LOOK CAPABILITY 

One advantage of the continuous random walk with 
or without Ra is the ability to find the solution for just 
one point in the region while the solution by con
ventional digital techniques requires the solution over 
the whole region to obtain the solution at a particular 
point. Using the continuous random walk technique a 
solution for cJ> can be found at a point or points as the 
geometry is changed allowing a quick look at the effect 
of a geometry change at some critical point. For the 
problem of the preceeding section Figure 9 shows the 
resultant change in cJ> at the point x = 100, Y = 20, 
as H varies from 0 to 20 with a segment increment of 5 
and 1000 for the· base number of walks. The data for 
the curve was taken in less than 15 minutes, the time 
required for one conventional digital solution. 

20 
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+ 
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H 

Figure 9-Solution of Laplace's equation for X = 100, Y = 20 
in the region of Figure 8 as H is varied 

SOLUTION OF POISSON'S EQUATION WITH 
CONSTANT FORCING FUNCTION 

Handler12 proposed solving Poisson's equation with 
constant forcing function by making use of the fact 
that the average time, T, for a random walk satisfies 
the equation 

D a2T(x, Y) D a2T(x, y) _ 
1 ax2 + 2 ay2 --1 T(s) = 0 (25) 

and that the solution for Poisson's equation 

a2cJ>(x, y) a2cJ>(x, y) () f() --- + = -A cJ> s = s 
ax2 ay2 

(26) 

can be found as the sum of the solutions of 

and 

a
2
cJ>2(X, y) + a2

cJ>2(X, y) = -A cJ>(s) = 0 (28) 
ax2 ay2 

where cJ>2 = AT. Random walks were performed with a 
value proportional to the average walk time being 
added to the resulting average of the intersected bound
ary values. 

The technique described in the previous section is 
also applicable to the solution of Poisson's equation 
with constant forcing function. 

Using the Green's function, Equation 28 can be 
solved for Ra3 giving the average time for a random 
walk to the boundary of Ra• 

The solution for Poisson's equation is then 

AD, K 

cJ>p(x, y) = cJ>L(X, y) + AT(x, y) + N E Ti (29) 

where cJ>L(X, y) is given by Equation 18, AT(x, y) is 
given by cJ>2 (x, y) of Equation 28, and the last term is 
the average time contribution from the walks actually 
made from the non-coincident portion of the boundary 
of Ra. D is the power spectral density of the noise 
source. N is the base number of walks and K is the 
actual number of walks performed . 

Poisson's equation with A equal to 1 was solved for 
the region and boundary values shown in Figure 10. 
Two approximating rectangles were used, 

o ~ x ~ 1.0 

o ~ y ~ .9 
and 

o ~ x ~ 1.0 

o ~ y ~ .6. 
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Figure 10-Rectangular region for which a solution to Poisson's 
equation is desired 

The solution for x = y = .5 is given in Figure 11. A 
base number of 1000 walks was used. Approximately 
100 walks were performed per second. 

The time required for the K walks actually made 
was measured by counting a one-hundred kHz clock 
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Figure ll-Continuous random walk solution of Poisson's 
equation using Ra for Y = .5 
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pulse gated to a counter by the operate pulse supplied 
to the analog computer by the digital computer. The 
terms of Equation 29 were then computed separately 
and added to get the plotted result. The total solution 
could have been obtained by a single program (memory 
capacity permitting) since an interval timer which can 
be set and checked by· FORTRAN statements is pro
vided as part of the interface. However the objective 
was just to demonstrate the applicability of the tech
nique to the problem so separate programs already 
written and capable of computing the terms of Equation 
29 were used. Primary objective of the research for 
this paper was to develop a method of solution for 
Laplace's equation. 

NOISE GENERATORS 

Fundamental to the success of the continuous random 
walk technique is a stable noise generator with known 
statistical parameters. Initial work reported in this 
paper was attempted with a maximum length shift
register pseudo-random noise generator. The band 
width for which the amplitude distribution was Gaus
sian was too narrow so the data presented were taken 
using a Burr Brown 4006/25 noise generator which 
proved satisfactory. Recent work13 on non-maximal 
length shift-register pseudo-random noise generators 
suggests that sufficient band width can be obtained 
with these stable, predictable generators. 

CONCLUSIONS 

The goal of the research for this paper was to. develop 
a technique which would give decreased variance in the 
continuous random walk solution of Laplace's equation. 
The goal was attained using a stratified sampling tech
nique. 

The technique was applied to problems for which 
analytical solutions could be obtained and was shown 
to give theoretically predictable variance reductions. 

A method for applying the technique to the solution 
of Poisson's equation with constant forcing function 
was developed. 

Solutions to problems using continuous random walks 
may be too inaccurate for some applications but the 
ease with which boundaries may be altered and the 
ability to quickly examine the effects of boundary 
alteration on a few critical points makes the solutions 
an economical prelude to a more precise analysis on a 
digital computer. 
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APPENDIX A 

The equivalence of the Green's function for a region and 
the probability density function for boundary 
inter sections 

The negative of the normal derivative of the Green's 
function for Laplace's equation in region R is used as 
the probabHity density function for boundary inter
sections. A heuristic argument is presented below to 
justify this use. 

Consider the region shown in Figure 1A. Wang, et al; 
have shown that Equation 1A converges with prob
ability 1 to the value of the solution to Equation 2A 

1 N 
V (~) = lim·- L f( Sk) (lA) 

N~OC) N k=l 

V'2V(~) = 0 yes) = f(s) (2A) 

Figure lA 

where ~ represents the coordinates of the walk origin 
and Sk is the coordinate of the boundary intersection. 

Assume that the Green's function G(~, s) is known 
and that the function f ( s) is defined as 

f(s) = 1 on ~s 

= 0 elsewhere. (3A) 

The solution of Equation 3A is then 

V(~) = - f f(s)Gn(~, s) ds = - f Gn(~, s) ds. (4A) 
8 ~8 

For f( s) equal to Equation 3A, Equation 1A becomes 

1
. M~8 

V(~) = 1m-
N-.oc; N 

(SA) 

where M ~8 is the number of walks which intersect ~s. 
Equation SA gives the probability of a random walk 
originating at ~ intersecting the boundary segment ~s. 
Comparing Equations 4A and SA, it is seen that the 
solution to Laplace's equation for the given region and 
boundary function is the probability of a walk origi
nating from ~ intersecting the boundary on ~s. There
fore if we define a random variable S which takes on 
values equal to the boundary coordinate of the inter-



section we can write 

(6A) 

Further, if f(s) is defined by 

f(s) = 1 (7A) 

then 

1 N 
V (~) = lim - L 1 = 1 

N-+oo N k=l 

(SA) 

which gives the obvious value of 1 for the probability 

Variance Reduction Technique 29 

of intersecting the boundary. Using Green's function 
we can write 

V(~) = f - Gn(~, s) ds = 1. (9A) 
8 

By comparing Equations SA and 9A the property 
that the integral of a density function over the range 
of its variable results in a value of 1 is demonstrated. 
The probability density properties demonstrated by 
Equations 6A and 9A are used in this paper for the 
development of a variance reduction technique for con
tinuous random walks. 
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INTRODUCTION 

Continued use of analog computers depends heavily on 
the discovery of ways to ease programming difficulties. 
Many of these difficulties are caused by the existence 
of the analog patchboard and the necessity of hand 
patching every problem which is a very time consuming 
and error prone process. To save the program for 
future use involves storing the wired patch panel, 
requiring that each user has his own patch panel and 
wiring set. Providing these to each user is very costly. 
The alternative to allowing each user to have his own 
patchboard requires that the program must be taken 
off the board and repatched every time a program run 
is desired. This too is costly since it requires duplicati~n 
of the initial set up and debugging ~ffort. 

One often proposed method of eliminating these diffi
culties involves the building of a programmable switch
ing matrix. This automatic system would process a 
problem stated in some standard form, identify the set 
of switches in the matrix needed to interconnect the 
required set of analog components in the problem 
specified configuration, and cause the close of these 
~witches to "patch" the problem. Because of the speed 
of digital switching and decoding devices, the setup 
time of each problem would be reduced enormously. 
Storing of the analog program then becomes a matter 
of storing only a digital command sequence which can 
be done on inexpensive paper tape or cards. 

In addition, the existence of an automatic patching 
system on an analog computer creates a new computing 
environment that offers possibilities for major changes 
in the use of analog machines. Batch processing becomes 
a distinct possibility. While one problem is being run 
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on the analog, the digital controller can be processing 
the next problem in preparation for setting it on the 
switching matrix. This foreground-background mode of 
operation should increase throughput significantly. The 
system can possibly be coupled as shown in Figure 1, 
with a hybrid programming language such as described 
in Reference 1. This problem oriented language will 
take a set of differential equations and from it generate 
a complete, properly scaled, analog patching diagram. 
The combined system makes analog programming very 
similar to standard digital computer programming and, 
as a result, provides a new computing tool (the analog) 
to the approximately 80% of all scientific computer 
users with digital experience only. 

OVERVIEW OF THE AUTOMATIC PATCHING 
SYSTEM DESIGN PROBLEM 

The simplest design of the switching matrix would 
allow every component output to connect to every 
component input. Such a system could provide every 
conceivable connection asked of it. Unfortunately, the 
number of switches needed to implement this sample 
system tends to be so large that the cost of the switching 
matrix would far exceed the cost of the computer itself. 
For example, there are "-'200,000 valid connections 
between analog components on the EAI 680. At $1.50 
a switch, the cost of switches alone would be $300,000. 

The economic constraint of requiring that the unit 
be moderately priced generates the problem that is 
considered in this work. The problem is basically to 
design a system that: 

(1) Allows any component output to component input 
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Analysis 
Problem 

Switching Matrix'Design 

Switch enable 
commands 

Solution 

Figure I-A coupled automatic analysis-Automatic 
patching system 

connection that might be required by an actual 
analog problem. 

(2) Allows a sufficieI}.t number of connections to be 
made simultaneously so that significant class of 
actual analog problems can be solved. 

(3) Generates the interconnections automatically with 
no interaction required by the user except to input 
initial data, 

(4) Provides 1, 2, and 3, above at reasonable cost. 

This total systems cost contains the hardware cost of 
the switching matrix and its associated activating sys
tem, the cost of designing and developing the control 
programming required to operate the system, the labor 
cost for doing the hardware design, and some measure 
of the price being paid to run problems on operating 
systems. Experienced designers realize that tradeoffs 
exist between these sections of the design. Putting most 
of the design effort into one area can reduce its associ
ated cost but tends to raise the complexity of the other 
sections and leads to a higher priced sys~em. A good 
design tries to consider the interaction between these 
design sections and attempts to reduce the total systems 
cost by evenly distributing the design effort over the 
entire system. The remainder of this paper considers 
the entire systems design and proposes a design pro
cedure that produces an efficient, economical, operating 
system. 

DESIGN OF AN AUTOl\1ATIC PATCHING 
SYSTElVI 

The automatic patching system is being designed to 
replace the process of hand patching. It follows then 
that the operations to be performed by the automatic 
system can be identified by noting the basic steps 
involved in hand patching. The user first translates his 
set of equations into a block diagram representation of 
the problem. A 3rd order differential equation and 
block diagram is shown in Figure 2. The block diagram 
begins to show a dependence on the particular com-

puter being used since the need to scale the, problem 
often requires that additional components be added. 
Each element of the block diagram is then associated 
with a particular component on the analog. This process 
is called allocation in the remainder of the paper. The 
block diagram of Figure 2 is allocated to a small com
puter in Figure 3. Once the allocation is performed, the 
specific points on the patch panel that must be inter
connected are known. Connecting these points together 
by inserting patch cords· into the proper holes completes 
the hand patching. 

The automatic system must include the allocation of 
the problem of the board. As was mentioned earlier, 
this fixes the set of input-output connections to be pro
vided by the switching matrix. If the allocation program 
is not incorporated into the matrix design, problems 
may be allocated in such a way that the matrix cannot 
provide the needed connections and the system fails. 
Automatic scaling and block diagram generation are 
more properly left to the hybrid language!,2 mentioned 
earlier. 

The next operation by the automatic systems involves 
determining the set of switches in the matrix which, 
when closed, connect the specified inputs to their re
spective outputs. The difficulty of this switch determi
nation, or pathrouting, problem is, of course, dependent 
on the configuration of the switching matrix and must 
be considered in the systems design. Later in the paper 
the problem is more closely studied. 

To date, investigators3- 6 have begun their designs 

• it" + ax + b~ + ex = 0 

~ (0) .. k 

i (0) .. 0 

x (0) .. 0 

Figure 2-Block diagram of 3rd order O.D.E: 



by trying to determine the best switch configuration 
for their own computers. A reader of these works 
.quickly realizes that many potentially usable configur
ations exist and faces the problem of selecting among 
them. What is obviously wanted is the configuration 
that provides the needed capacity at minimal cost. If a 
curve can be drawn for each system plotting the cost 
of the system vs. capacity (see Figure 4) then the 
decision can be made by determining the capacity re
quired by the user and simply selecting the least ex
pensive system for that capacity. 

Many questions quickly arise, the most obvious being 
how is capacity measured? What happens if the least 
expensive system is the most difficult on which to 
perform the allocation and path-routing of problems? 
Can a cost vs. capacity relation be found for each 
considered system? 

The answer to the first question is found from con
sidering the function of the switching matrix, namely, 
to provide a certain number of connections between 
matrix inputs and matrix outputs. The capacity of a 
system is the number of simultaneous input/output 
connections it can provide. It then follows that the 
cost vs. capacity curves for each system can be al
ternately expressed in terms of cost as a function of 
the number of inputs, outputs, and connections re
quired. The actual functional relation depends on the 
organization of the considered system. Figure 5 presents 
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Figure 3-Allocation of 3rd order O.D.E. to a small computer 
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Cost 

System 1 

System 3 

Capacity 

Figure 4-Cost = number of switches 

an example of determining a cost function for each 
system. Reference 6 develops· these functions for a 
variety of systems and indicates that such functions 
can generally be found. The allocation and path routing 
problems can be imbedded in the systems selection by 
considering them when determining the number of 
needed connections for each system. The way they 
should be considered is explained in the remainder of 
.the text. 

The real system design problem exists only when the 
designer admits to the requirement for a multilevel 
switching matrix organization. As with most complex 
systems, progress can be made only when the system is 
divided into subsystems of reasonable conceptual size. 
In addition, the tendency for the number of switches 
to increase as the square of the number of components 
indicates a significant cost savings can be realized by 
sectioning the system into smaller blocks of components 
with some means provided to interconnect these blocks. 
In this case multilevel means that conceptually all 
possible connections are separated into different types 
(levels). An individual switching matrix is considered 
for each level. The switching organization for each 
level mayor may not be the same. An example clarifies 
this. An experienced analog user realizes that most 
connections tend to be made between elements located 
in close proximity to each other. Only a few connections 
"reach" across the board. This strongly suggests a two 
level system, one level to provide connections locally 
within a small group of components (normally this 
group is called a module), and one level to provide con
nections globally between these groups (this level is 
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Cost = ie + oe 
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/ Line (e) 

// 
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Outputs (0) 

Figure 5-Cost as a function of inputs, outputs, and connections 
for a concentrator-Expander system 

called the intermodule system). This is in fact the 
system proposed in References 3-8 and will be the 
basis of the design implemented in this paper. 

Now a real design problem exists since the designer 
can share the required capacity over the two levels in 
some manner. This provides the designer with the 
means of generating a cost/effectiveness tradeoff via 
parameters under his control. The following definitions 
help to quantify this idea. 

Let 

Tk,z = total cost system using organization (k) 
intra-module and organization (l) inter
module 

Ck = cost of intramodule system (k) 
Cz = cost of intermodule system (l) 

Ok, ik, Ck = outputs, inputs, and connections of intra
module system (k) 

Oz, i z, Cz = outputs, inputs, and connections of inter
module system (l) 

Then 

(1) 

The 6 variables of Fk,z are known to be related because 
the sum of the capacities of each level is equal to the 
total required capacity. The multilevel design then con
sists of determining the natural relations that exist 
among these variables (which includes proper allowance 
for the allocation and path routing problems). Once 
these relations are known, the cost function can be 
expressed as a function of one variable, a, (the meaning 
of, a, will become clear later): 

Tk,z = Tk,Z(a) 

Reducing the cost functions to single variable func
tions makes the minimization easier to intuitively 
visualize. Experience, and the discussion to follow sup-

ports this approach. The design can be stated as an 
optimization process in which the objective is to: 

minimize Tk,Z(a) 
k,Z,a 

This is shown graphically in Figure 6. Simply speaking 
this means pick the lowest cost system. Where this 
system reaches its minimum is the optimal value of 
"a" which trough the relations above leads to the best 
values of the 6 variables in Equation. Knowing the 
system (k, l) and values of those variables in effect 
completes the design. 

Phase I of the design-M odular relations 

Accumulated experience in analog computer pro
gramming has shown that components tend to be inter
connected in certain basic patterns. It is unnecessary 
for every component to directly connect to every other 

. component in that the probability of specific connec
tions decreases rapidly with increasing intercomponent 
distance. Thus, by physically locating together the 
components that are most likely to be used together, 
programming efficiency will be increased. These group
ings of components are called modules. The component 
composition of the modules is critical to the design. 
All proposed designs to date have been built around 
symmetric modules. Attempts at designing around non
identical modules have failed to produce a design that 
can handle more than a limited class of problems. 3 

Cost 

il 

Tl,l - best system 

•• 18 best module size for system Tn 

Figure 6 



Within the framework established in this paper, the 
decision to make all modules have identical component 
composition (be symmetric) proves to be a wise one. 
Knowing that all modules are identical means that the 
number of switching matrix inputs and outputs, on 
both levels, can be expressed as a function of one 
variable, (the number of modules, a,) above. This is 
not hard to see. Dividing the component complement 
by the number of modules (only those values which 
lead to integer results make sense and are allowed) 
gives· the complement/module. The number of inputs 
and outputs of this set of elements is known from 0 b
serving them on the computer. These two facts make it 
possible to determine the number of inputs and outputs 
to the intramodule switching matrix as a function of, a,. 
The number of inputs and outputs to the intermodule 
system depends on the number and type of components 
in a module, and the number of modules, all of which 
can be expressed explicitly as a function of the number 
of modules. Reference 6 does this for a large number of 
systems. The net effect is to reduce the total cost 
function of Equation 1 from 6 variables to 3. 

(2) 

Phase I I of the design-Relating the number of connections 
needed to the number of modules 

Once the number of connections (Ck' Cl) are related to 
the number of modules on the computer, Equation 2, 
can be reduced to a function of one variable and the 
cost function minimized. These connection numbers 
(Ck' Cl) specify the capacity needed in the intra- and 
intermodule systems. A measure of this capacity should 
be discoverable by analyzing a particular users needs. 
Specifically if a user provides a set of problems which 
typify the connection requirements of his particular 
computing work, then these typical problems can hope
fully be analyzed in some sensible way to yield Ck(a) , 
cl(a). (This does not imply that there will be no simi
larity between the needs of different users. Perhaps 
analysis of typical problem groups submitted by a 
variety of users will indicate that a single system 
organization, or a few basic ones, can suffice for all 
situations. Since the automatic patching system prob
lem is still in its infancy this analysis hasn't yet been 
done. As a result, it seems reasonable to begin by con
sidering one user at a time, instead of a larger group). 

Earlier it was indicated that, after a problem is 
allocated to the board, all connections are known. Thus 
allocating a problem to a board with a modular organi
zation generates a distribution of connections within 
and between modules. This distribution can be found 
by simply counting the inter- and intramodule con
nections. If the same problem is again allocated to the 
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board now divided into a different number of modules, 
the connection statistics become dependent to some 
degree on the number of modules. Allocating each 
problem to the board under all possible modular sec
tionings produces a set of data that relates the number 
of connections needed to the number of modules used. 
The method of determining this relation is discussed 
next. 

The method of allocating the problems to the board 
should now be clearly specified. A given problem can 
be allocated to the patch board either by hand or 
automatically through an allocation program. In an 
operating automatic patching system the allocation will 
be done automatically, implying that any allocation 
generated statistics used in the design should result 
from automatically allocating the typical problems. If 
the switching matrix was designed around hand allo
cation statistics, the system might fail to handle prob
lems that are automatically allocated to it unless the 
hand and automatic allocation schemes are remarkably 
similar. 

Intuitively, the allocation algorithm should attempt 
to put a problem on the board in a way that minimizes 
the number of intermodule crossovers. The reason for 
this is simply that if· a connection is kept within a 
module, the number of points to which it may connect 
is significantly smaller (and thus less costly in switches) 
than the number of points on the remainder of the 
board. The algorithm should also attempt to keep the 
problem in as small a fraction of the board as possible 
to allow the remainder of the board to be used for some 
other purpose. The generation of such an algorithm is 
considered in the next section. 

Once the allocation algorithm is implemented it can 
be applied to the typical problems. For each problem 
the maximum number of connections within a module 
and the largest number of inputs or output/module for 
each modular sectioning of the board is recorded. A 
worst case loading problem is synthesized from these 
tables by selecting the largest value of each parameter 
over the problem set. Figure 7 shows an example taken 
from Reference 7. The first line says simply that when 

a c
k 

cR,/module 

18 14 5 

9 30 6 

6 37 8 

Figure 7-Example of a worst case problem 
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the computer was divided into 18 modules the largest 
number of connections needed (over all typical prob
lems) within a module was 14 and the largest number 
of inputs and outputs/module was 5. References 6,7 
further explain this worst case problem concept. 

The worst' case problem relates in a tabular way, 
the inter- and intramodule connection capacity re
quired to the number of modules. _ Equation (2) min 
now be evaluated for all values of Ck, Cl at allowable 
values of a. The minimum cost system is selected. 
The value of, a, where the minimum occurs is the 
optimal module size. Knowing the number of modules 
specifies the module size and component composition. 
The values of Ck and Cl are determined by using the 
values in the worst case problem that correspond to 
the selected number of modules. 

Cornpleting the design-Concerns about routing 

The design is nearly complete. The least costly system
for each level and its critical design parameters have 
been identified. Allowance has been made for the diffi
culty of implementing the automatic allocation by 
implementing the allocation algorithm first, then pro
viding sufficient capacity in the switching matrix to 
guarantee that the two will operate properly when 
combined. Until this point no particular effort has been 
made to incorporate the path routing problem into the 
design process. The path routing problem results from 
using a switching configuration that provides anything 
other than exhaustive interconnection between inputs 
and outputs. The problem is completely dependent on 
the switching configuration used and, as a result, cannot 
be considered in general (as was the allocation program). 
Each system must be examined individually to de
termine if an effective routing algorithm can be found 
for it. The way to proceed is obviously to list the 
systems in order of increasing cost. The least expensive 
system is examined first. If no workable, or easily 
implementable, system is discovered in a reasonable 
time, then the next least expensive system is con
sidered. The difference in costs,.of the two systems 
(a.e. Tkl - T ij) gives the designer some feel for whether 
it is worthwhile to spend more time examining the 
cheaper system or to try finding the routing algorithm 
for the next system. In general, a more costly (more 
switches used) system, since it is providing the same 
capacity with more switches, offers more ways of pos
sibly connecting inputs to outputs. This implies that 
the routing problem becomes easier to solve as higher 
cost systems are considered. These ideas are quantified 
through the discussion of a particular switching organi
zation in the following section. 

CONSIDERATIONS 

Hardware configurations 

The early works3- 5 ,8 on automatic patching began 
with an a priori selection of the switching configuration 
to be used. All authors sought to minimize the cost of 
the system by selecting the critical design parameters, 
such as number of l!lodules and connection load on the 
inter- and intra-module systems, in some intuitive way. 
Reference 6, admits that the selection of the configur
ation to be used on each level should be a variable in 
the design process. In Reference 6 the required capacity 
is measured by abstracting a worst case problem from 
a user specified group of typical problems. The worst 
case problem enables the relating of all design variables 
to one variable, the number of modules, and allows the 
selection of the least expensive system in the manner 
described in the preceding section of this paper. Un
fortunately, the worst case problem was generated by 
hand patching the typical problems instead of by auto
matic allocation. Reference 7 and this paper are the 
first known that actually incorporate the allocation 
program into the hardware configuration selection and 
design. 

The Allocation program 

It is possible to formulate the component allocation 
task as an optimal resource allocation problem where 
the goal is to minimize the number of intermodule 
connections. Binary programming or branch and bound 
algorithms can be adapted to solve the problem. Un
fortunately the combinational size of the problem is so 
overwhelming that estimates of solution times for even 
a small-medium size analog7 indicate that this approach 
is impractical. No one could rationally propose typing 
up a computer for hours to do a task that can be done 
by hand in a few minutes. The original goal of producing 
a system that is inexpensive to run as well as to build 
translates _ into a constraint of requiring that all auto
matic processing (allocation, path routing) requires 
only a short (1-5 min.) run time. 

This constraint can be met by posing a heuristic 
allocation algorithm, such as shown in Figure 8. This 
algorithm ~ttempts to simulate the process of hand 
allocation. The algorithm has been implemented in 
Fortran IV and run on Carnegie-Mellon University's 
Univac 1108 Computer. The implementation for the 
model computer of References 6,7, takes approximately 
5 secs. to compile and has allocated problems of up to ; 
120 components in less than 2 secs. Reference 7 presents 
a comparison of 4ihe allocation of a few problems by 



hand and by the computer program. In general, the 
algorithm works reasonably well. The algorithm is de
signed to cluster components around integrators, at
tempting to place most of the connection load on the 
intramodule system. This effect tends to minimize the 
"number of intermodule crossovers. A comparison of the 
worst case problems abstracted from the hand generated 
and program generated statistics is shown in Figure 9. 

Future work in automatic patching systems should 

Read" in element to element ~ 
connection information 
--r------

Allocate integrators according to 
some predetE'rmined scheme 

Allocate components fed by integra
tors to the SA~E' ~odu]e if compo
nents are available in that ~odule 

ocate components fed by any pre
viously allocated component to the 
module containing the allocated 
component if possible 

Associate references to the modules 
containing the components they feed 
iethe components are already 
allocatea 

Allocate any component feeding a 
previously allocated component to the 
module containing the allocated 
component if possible 

Allocate any component not previousiy 
assigned to the module nearest adja
cent (with an available element of 
the same type) to the module contain
ing the component th;t feeds the non-t---~ 
allocated one 

Overview of Allocation Algorithm 

Figure 8-0verview of allocat.ion algorithm 
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Worst Csse Problem 

Number of 
Modules 

Maximum Number of 
Outputs (Inputs) per Moduel 

18 
9 
6 

H - Hand allocated 

P - Program allocated 

H P 

4 
6 
6 

5 
6 
8 

Figure 9 

Maximun Number of 
Connections Within a Module 

H P 

13 14 
25 30 
31 37 

include serious efforts towards finding the best possible 
allocation algorithm. 

Routing problem 

In (7) it is found that the least expensive system 
occurs when the model computer is divided into the 
largest permissible number of modules. Because of the 
modules small size, it turns out to be cheaper to ex
haustively interconnect all components within the 
module (deleting all forbidden connections like pot to 
pot) than to use any other intramodule switching 
organization. Since a single switch is uniquely associ
ated with each potential connection within a module 
no routing problem exists. For any intramodule con
nection specified by the allocation of a problem, a 
simple table look up routine will identify the needed 
switch. 

The intermodule routing problem is more difficult to 
solve. The least expensive system considered depends 
heavily on the distribution of intermodule connections. 
For some distributions no path routing can be found. 
At this time no way is known to practically imbed any 
distribution constraints in the allocation program. As 
a result this first intermodule system was considered 
to be unworkable. The next least expensive intermodule 
system considered is shown in Figure 10. The symbol 

~ (for concentrator) corresponds to an array 

inputs of which are the outputs of all components in the 
module and the output is a bus line which connects to one 
input point in every other module. These input points 

(expanders) ~ allow the module input signal 

to be connected to any analog component input. The 
fUain characteristic of this system is that each concen
trator in a module (each output port) connects to one 
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A 

c 

Figure lO-Small computer using nearly exhaustive 
interconnection routing subsystem 

B 

expander (input port) In each of the other modules. 
No two concentrators in a single module connect to 
the same expander. 

Because of the symmetry (non-uniqueness) of the 
input/output ports and the ability of each output port 
to connect to one input port in every module, a simple 
heuristic routing algorithm can be used. Such an 
algorithm is proposed in Reference 7 and tested on the 
set of typical problems which formed the basis of the 
hardware design. The algorithm was successfully ap
plied by hand to all the problems, taking no more than 
1 minute/problem. For the particular model computer 
of the References 6,7, the decision to use this inter-

module system instead of the cheapest one caused a 
14% increase in the nurriber of switches used in the 
complete system. 

CONCLUSIONS 

This paper presents a framework for considering the 
design of automatic patching systems for analog com
puters. The framework is generated by attempting to 
minimize the total systems costs and, as a result, in
cludes control programming considerations as well as 
the switching matrix design. Experience gained from 
completing a design under this framework is discussed 
to illustrate the design procedure and indicate its 
effectiveness. 
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18 hit digital to analog conversion 

byJ. RAAMOT 

Western Electric Company, Inc. 
Princeton, New Jersey 

In many control applications it is necessary to con
vert the digital output from a computer to a propor
tional voltage to effect control. Incremental changes in 
this analog voltage become relatively smaller as the 
number of significant digits is increased, until a point 
is reached where it is not possible to distinguish be
tween voltages caused by the smallest incremental 
number change. 

It is common to have a computer output of 12, 16, 
or 18 significant binary digits (bits), or twice as many 
bits in double precisiolf. There·.exists a problem in re
taining the computer accuracy in the analog voltage. 
Commercially available digital to analog converters 
resolve voltage to 100 parts per million. This cor,re
sponds to less than 14 significant binary digits, even 
though the computer output may contain a higher 
accuracy. 

A significantly better match. in accuracy is. achieved 
through the following construction: First, a 13 bit con
verter is used to represent the 13 least significant bits. 
Second, to the 13 bit converter are added high accuracy 
high order bits until they match the digital computer 
word length. This construction can be realized becaw,e 
of a new technique of obtaining accurate switchable 
voltage sources. 

A digital to analog converter can be represented as 
shown in Figure 1. Each digit of a binary number ap-

+ Voltage. Logical 1 

...---4--.------I----r-----I---T""T - Voltage· Logical 0 
Digital Input 

Moet 8ignificant bit 
L--__ "'---__ ~ __ ~ __ _, Analog Voltage 

Figure I-A 4 bit digital to analog converter with the binary 
input 1011 
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pears at the computer output as one of two possible 
voltages that represent a logical 1 or a O. The digital to 
analog converter uses a resistive voltage divider net
work to sum voltages from each digit in proportion to 
its significance. For example, digits of the binary 
number 1011 are summed as: 

Existing digital to analog converters use highly 
regulated voltage sources for the logical 1 and 0, and 
switch the resistors to the corresponding voltage source. 
Errors that are introduced by the switching element 
limit the accuracy to 100 parts per million. 

The new technique is to use unregulated voltage 
sources, standard transistor switching elements, and 
to regulate the voltage after switching. 

A standard technique for achieving a highly regulated 
voltage source is to use a series voltage regulating ele
ment. The new circuit, shown in Figure 2, uses just as 
effectively a parallel current source as the regulating 
element. It senses the voltage at the node (1) and intro
duces a current at the same point to keep the voltage 
at the same accuracy as a reference voltage, E r • 

1 
+ Voltage = Es 

- Voltage 
Digital Input . r Ro 

}R I·~·J--
n0:t(l)I~' ___ --~-r -t>~'-'-

= E ---'\I\I\r- -A '-

R Ri 

- i 
~ Negative Reference Voltage = E 

Analog Voltage ~ (secondary voltage standard) r 

lRL 

Figure 2~Amplifier circuit acts as parallel current regulator at 
node (1) 
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Figure 3-DAC switching waveforms between 377 7778 
and 400 0008 at 5 us/cm and 10 v/cm. Top: DAC ouput
Bottom: Power source switching, voltage not to scale 

In a noise-free analysis, the voltage at node (1) is: 

2 ( Ro) 2 (Ro) E = - Er + A 1 + Rs Er + A Rs Es (1) 

Equation 1 shows only the first order error terms. It 
is significant to recognize that the voltage E at node 
(1) is independent of the power source, E s , and of the 
resistors Ro and Rs, provided that the amplifier gain A, 
is sufficiently large. 

A further analysis yields the result that a change in 
E due to a change in amplifier gain is proportional to 
A -2. This suggests that if the gain is about 104 and the 
other terms are held constant to 1 %, then it is possible 
to obtain a stability of 1 part per million. 

The transient response of the circuit can be calculated 
by assuming the initial condition that all voltages are 
zero, and at zero time a step voltage of one volt is 
applied at the power source, Es. Another assumption, 
that the amplifier frequency characteristic is equivalent 
to a low-pass RC network, results in the following 
transient voltage at node (1): 

Ro 
E (t) = - e-7rFt 

Rs 
(2) 

Again, only the first order terms are shown. In 
equation 2 F is the gain-bandwidth product of the 
am.plifier. 

The implicit time constant and settling time of the 
above model are in the nanosecond range. Unfortu
nately, the practical transient response is determined 
by propagation delay through the amplifier and by the 
slewing rate. 

Likewise, the practical accuracy limitation is due to 
amplifier noise. A noise generator, En, representing the 
amplifier noise at its input will appear at node (1) as a 
voltage of -2En superimposed on the voltage E. 

Even with the above practical limitations, it is easy 
to realize the construction of an 18 bit digital to analog 
converter by the use of the regulation circuit of Figure 2. 

Parallel current voltage regulators are limited in 
range by the current source. The circuit shown in 
Figure 2 is limited in range by the maximum available 
current from the amplifier. This property is put to good 
use in digital to analog conversion. 

If the power source, E s , is within regulation range, 
then the voltage, E, has the desired accuracy. If the 
power source is out of regulation r~nge, then no regula
tion takes place. It is possible to switch the power 
source between two states, where for each state there 
is a regulation circuit that is within range. Thus, two 
regulation circuits are required for each high order bit 
of the digital to analog converter. This arrangement is 
driven by a reasonably fast power switching circuit. 

It is necessary to design an 18 bit digital to analog 
converter for direct drive at the final voltage and 
current level. Contrary to common practice, there 
should be no amplifier in the converter output circuit. 
Any output amplifier would necessarily degrade the 
converter performance. 

For the same reason it is difficult to evaluate the 
performance of an 18 bit converter. Figure 3 shows the 
transient response of an 18 bit converter at mid-range 
when all bits switch state. The least significant bit 
change is not resolved in this photograph. On the same 
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Figure 4-DACswitching waveforms between 377 7778 and 
400 0008 at 500 us/cm and 1 mv/cm. Top: DAC output
Bottom: Power switching, voltage not to scale 



Figure 5-DAC ouput from 3777748 to 400 0038 at 1 min/in and 
1 mv /10 divisions 

picture are shown the power source switching wave
forms. 
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Figure 4 shows the same waveforms at a I,Ilore sensi
tive oscilloscope range, but at less bandwidth. Here the 
least significant bit change is resolved. Figure 5 shows 
the dc resolution of least significant bit changes of the 
18 bit converter. 

The converter has an accuracy of 10 parts per million 
and has a stability of better than 1 part per million per 
day. This performance is obtained in an unprotected 
laboratory environment. Only the standard cell, that is 
used as the primary reference, is in a temperature con
trolled oven. 

The stability and resolution obtained for the 18 bit 
converter suggest that the same converter could be 
extended to 20 bits. A true evaluation of the per
formance of high precision digital to analog converters 
can only be made in the final system where they are 
needed. 

The technique of adding high order bits to existing 
digital to analog converters is very successful. It may 
appear to be expensive to construct the additional bits 
by having a separate regulation circuit for each state 
of each bit. However, this is the practical way to 
achieve high resolution. 





A hybrid computer method for the analysis 
of time dependent river pollution problems 

by R. VICHNEVETSKY 

Electronic Associates, Inc. and Princeton University 
Princeton, New Jersey 

and 

ALLAN W. TOMALESKY 

Electronic Associates, Inc. 
Princeton, New Jersey 

INTRODUCTION 

This paper is devoted to the description of work done 
in the hybrid computer simulation of polluted rivers 
and estuaries., Our attention in this paper is restricted 
to the solution of the pollutant concentration equation. 
The computer method used to perform the integration 
is essentially a continuous-space discrete-time method 
of lines. We have, in a previous paper,! described a con
tinuous-space-discrete-time computer method for the 
analysis of flows and velocities in a one-dimensional 
river or estuary. Hence, these two programs, which 
may be exercised simultaneously, must be viewed as 
part of the same problem, since the pollutant diffusion 
parameters in a river (as described in the present 
paper) may be derived· as explicit functions of the 
river geometry and water flow. 

The kind of problems in partial differential equations 
to which river flows and pollution studies belong are 
as a rule computer time-consuming. It is therefore 
desirable to place emphasis on techniques by which 
truncation error-correction methods may lead to larger 
grid sizes in the finite differences processes of approxi
mation. Such a truncation error characterization and 
correction method is embodied in the present paper, 
which permits the truncation error induced by larger 
time steps in the computer simulation to be (in the 
first approximation) corrected for in a semi-exact 
fashion. 

PROBLEM STATEIVIENT 

A simplified analysis of a one-dimensional river in 
terms of the polluting species is given mathematically 
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as a partial differential equation representing the mass 
balance on the pollutant in one space dimension and 
time (see, e.g., Reference 6 for a derivation). 

where: 

ac = ~ k ac _ a (V • C) _ D ( c) + f (1) 
at ax ax ax 

C = c (x, t) pollutant concentration 
V = Vex, t) river velocity (ft.jsec.) 

D (c) = pollutant degradation or decay function 
(We shall assume for simplicity of the 
ensuing discussion that D (c) = D· C 
where D is a constant.) 

k = k (x, t) diffusion constant (ft2/ sec. ) 
f = f(x, t) pollutant source function 
x = river length variable (ft.) 
t = time variable (sec.) 

The boundary conditions associated with this problem 
are discussed in a later section. 

COMPUTER ANALYSIS 

The C SDT approximation 

The hybrid continuous-space-discrete-time method 
of approximation consists in expressing the solution 
along equi-distant lines parallel to the x axis in the 
(x, t) plane. 
Call cj (x) the approximation of c (x, t j

) where t j = .f • ~t; 
j = 0, 1, 2, .. '.' 
Then equation (1) may be approximated by the se-
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Figure 1-Typical propagation of pollutant profile 

quence of ordinary differential equations (for j 
1,2 ... ). 

--~ = 0 - k J+1 ~- - ----
CiH - cJ.' [d, dci+1 d(Vi+lCi+l) 

~t dx dx dx 

_ DCi+l + P+l] + (1 _ 0) [.!i kJ dc·
i
' _ d(Vic

i
) 

dx dx dx 

0, 

- Dei + p] (2) 

where 0 is a constant which must be chosen in the 
interval 72 < 0 ~ 1 to ensure stability in the time 
marching process.2 

To produce a recurrence relation for the time march-

ing solution of (2), we solve that equation for (Ci+l) : 

d . d, . dci+1 (1 dVi+1 ) _kJ+I-C1H - Vl+1-- - - + -- + D Ci+l 
dx dx dx O~t dx 

ci (1 - 0) [d d 
- O~t - fi+l - -0- dx ki dx ci 

d(ViCi ) ] 
- -Dci+p 
. dx 

(3) 

Let the right-hand side equal: 

where: 

iY = ci + (1 - 0) • ~t [.!!:.- k idci _ d(Vic
i
) 

dx dx dx 

- Dc i +p] (4) 

I t is easily shown that E·i satisfies the recurrence 
relation :3,4 

(5) 

For convenience, we call Ri the entire right-hand side 
of equation (3) : 

We can see that equation (3) can be rewritten as: 

d dCi+1 dCi+1 (1 dV ) _ki+l_- - Vi+1-- - -- + - + D Ci+l 
dx dx dx 0 • ~t dx 

= Ri (6) 

Ri is a known function of x and this equation can now 
be solved at each time step, together with the algebraic 
calculation of Ei+l as expressed by (5). 

Stability problem and application of the method of 
decomposition 

Equation (6) is of the second order in x. For constant 
V and k, its characteristic equation is: 

k"Y2 - V "y - (~ + D) = 0 (7) 
O~t 



or 

V ~V2 (1 ) -y=-± -+k --+D 
2 4 () • t::.t 

(8) 

These two values of -yare real and of opposite sign. 
Thus, direct integration of equation (6) as an initial 
value problem of the second order will have unstable 
error propagation properties whi~h may impair the 
validity of the computer results. 

The Method of Decomposition (Vichnevetsky,2.3) 
consists in avoiding the difficulty by transforming this 
second order differential equation into two first order 
ordinary differential equations, for which directions of 
stable x-integration may be chosen independently. 

This is obtained as follows: 

The second order operator 

appearing in equation (6) is (arbitrarily) decom
posed into the product of two first order operators, 
LB and LF, which are intended to yield stable 
integrations in the backward and forward direc
tions, respectively:* 

Conditions for the stable integration in these respec
tive directions are AB ~ 0 and AF ~ O. 

By identification of (10) with (9), we find: 

d d d (1 dV ) L=-k-. -V-- --+-+D 
dx dx dx () • t::.t dx 

d d dAF d d 
= - k - - - - AF - - kAB - + AFAB 

dx dx dx dx dx 

or: 

(11) 

* The operator LF( . ) is said to be forward-stable if all solutions 
of the equation LF(V) = 0 are stable in the classical sense. The 
operator LB( . ) i~ said to be backward-stable if all solutions of 
the equation LB(V) = 0 are stable in the classical sense when the 
integration variable (-dx) is used instead of dx An operator 
L( . ) is said to be unstable when it is neither forward-stable, nor 
backward-stable. 
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I~ 

Figure 2-Computing sequence block diagram 

and: 

"1 
• ... 
t, ... 

dAF 1 dV 
---AFAB=--+-+D (12) 
dx () • t::.t dx 

AF may be obtained by the integration of the Ricatti 
equation: 

dAF _ A (V - AF) = _1_ dV D 
dx F k () • t::.t + dx + 

(13) 

and AB subsequently obtained by the application of 
equation (11). 

Now, a particular solution of equation (6) is obtained 
by the following sequence of computer integrations: 

(a): LB(y(x») == d~ Y - AB(Y) = Ri(x) (14) 

(b): (15) 

Indeed, that Ci+l satisfies (6) is easily shown: 

L(Ci+l) = LB . LF(Ci+l) = L B(LF(ci+1») = LB(y) = Ri 

q.e.d. 

In summary, the sequence of equations solved at 
each time step in this problem is that of Figure 2. 
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BOUNDARY CONDITIONS 

The equation (1) is of the first order in time and 
second order in space. Hence, solutions are specified by 
one initial condition function (i.e., the initial pollutant 
concentration profile c(x, 0)) and by two spatial 
boundary conditions. One of these boundary conditions, 
c(O, t), is well defined (the pollutant concentration at 
the inlet of the river section under analysis), while 
the second boundary condition, c (Xmax, t) is not easily 
defined in terms of the problem formulation. However, 
that end-boundary condition has, mathematically, a 
very small influence on the solution c (x, t) for x E 
[0, Xmax] except for a small region which is close to 
xmax. Hence, one may choose this end-boundary condi
tion to take any convenient form. The one chosen in 
the computer implementation described hereafter is 
that:* 

acl - -0 
ax Xmax 

(16) 

This condition can be seen to be automatically satis
fied by choosing as boundary conditions for the AF and 
yequations (equations (13) and (14), respectively): 

AF(Xmax) = 0; } 

Y(Xmax) = 0 

i.e., from equation (1.5): 

dCi+
1 I 1 ax = k [Y(Xmax) - AF(Xmax) - Ci+l] = 0 

Xmax 

(17) 

q.e.d. 

ERROR ANALYSIS AND FIRST ORDER COR
RECTION OF THE CSDT APPROXIMATION 

Analysis 

Application of the CSDT approximation to the 
simple fluid transport equation: 

au = _ vau 
at ax 

(18) 

introduces a truncation error which has the effect to 
"disperse" the solution u(x, t) by a diffusion-like phe
nomenon. Hence, one may look at the CSDT approxi-

* This assumption is not a limitation of the method described 
in this paper. Any other boundary condition C (XmaxJ t) could be 
chosen. This then would require the independent calculation of 
solutions of the homogeneous equation L(w) = o. as shown for 
instance in Reference 4. 

mation of equation (1) as' an approximation process in 
which the diffusion coefficient k(x, t) results from that 
which is introduced explicitly by the computing process 
described in an earlier section of this paper, plus a 
spurious k* (x, t) which is introduced by' the CSDT 
approximation itself. If the spurious par~ of the diffu
sion coefficients (i.e., k* (x, t)) can be predicted, then 
it becomes an easy matter to correct for this factor by 
subtracting it from the desired value before entering 
into the computing sequence of the third section of 
this paper. 

The remainder of this section is an analysis of the 
truncation-induced diffusion effect of the CSDT ap
proximation of equation (18) followed by an experi
mental computer verification of the applicability of 
these theoretical results to the more general CSDT 
approximation of the transport-diffusion equation (1), 
as described earlier. The partial differential equation 
(18) describes a pure fluid transport phenomenon. 

The CSDT approximation of equation (18) is ex
pressed by: 

ll.t [ 
dui+1. dUi] 

- V 0 - + (1 - 0)-
dx dx 

(19) 

The solution of (19) approximates that of a transport 
diffusion equation of the form: 

(20) 

where the diffusion constant k* is a spurious diffusion 
coefficient, introduced strictly by the approximation 
process, and which depends on the parameters appear
ing in (19). 

An equivalent value of k* may be estimated analyti
cally. To that effect, we express the different terms of 
(19) in a Taylor Series around the point ui(x) : 

au a2u ll.t2 
Ui+l = ui + - - ll.t + - -- + ---

at at2 2 

dUi+1 aui+1 aui a2ui 
-=-=-+--ll.t+---

dx ax ax axat 

(21) 

(22) 

Hence, upon substitution of these relations in (19), 
that equation becomes (we may now delete the super
scripts) : 

au ll.t a2u -+--+ --at 2 at2 [ (
au a2u ) 

-VO-+--ll.t+--
ax axat 

au] + (1 - 8) --
ax 

(23) 



For the exact solution, we have the relation: 

which yields: 

and 

au 
-= 
at 

_V au 
ax 

Thus, after using these relations, (23) becomes: 

(24) 

au au a2u 
- = - v - + (8 - ~) • V2 • I1t • - + ... (26) 
at ax ax2 

By identification of (26) with (20), we find the equiva
lent diffusion constant: 

k* = (8 - ~) V2 • I1t (27) 

For 8 < ~, k* becomes negative: It is of interest to 
note that this corresponds exactly to the values of 8 
for which the CSDT approximation is unstable.2 

Computer verification of the analysis 

Computer verification of the preceding analysis has 
confirmed its first-order validity within a range of 
parameters which applies to river pollution problems. 
In order to perform this verification, the homogeneous 
equation: 

ac = _ V ac k a2c 
at ax + c ax2 

(28) 

was integrated in the manner described in an earlier 
section on the computer, with initial conditions c(x, 0) 
corresponding to a Gaussian distribution; i.e., 

A (x - Xp )2 
c(x,O) = ,..(0) • exp -

v 2U(0)2 
(29) 

where A is a positive constant, Xp the point where the 
peak of the distribution occurs at t = 0, and u(O) the 
initial standard deviation of the c(x,O) distribution. 

The exact solution of (28) With (29) as initial condi
tion is (at least if the boundaries are assumed to be far 
enough not to have any effect upon the solution) : 

( ) 
A [x - (xp + V • t) J2 

C x, t = -( ) • exp - ( ) 2 
ut 2'ut 

(30) 
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where u(t) is the solution of: 

du k ---
dt u 

Hence, 

U(t)2 - u(0)2 = 2k • t (31) 

and, generally, between two instants of time tl and 
t2 > tl: 

Equation (30) expresses the fact that the "peak'" 
moves with the flow at the velocity V, that the Gaus
sian distribution property remains preserved in time, 
and that the standard deviation u(t) grows as Vt. 

Experimental measurement of u (t) is easily achieved, 
either by measuring the "peak" of the solution: 

A 
Cmax (t) = u(t) . (33) 

or by measuring the "2u" of c(x, t) at 1/ Ve of the 
peak: (for c = Cmax • e-1i2 • x = Xpeak ± u). A typical 
input is shown in Figure 1. 

For the purpose of this study, the computer program 
described in an earlier section was utilized for equation 
(28), where kc .was chosen "small" (specifically equal 
to .01 ft/sec2), and the results shown on Figure 3 are, 

K 
500"------..------r--~~-/~' 

·9 

Figure 3-K* vs. (J for V = 4. and At = .50 

-

1· 
e 
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Figure 4-'l1 * vs. () 

in effect: 

k* = kmeasured ~ kc ~ kmeasured (kc small) 

(Note that the range of k of interest for rIver 
studies is of 500 and over.) 

Experimental results are shown in Figure 3. Con
sideration of this figure shows that there is a reasonably 
good agreement between the predicted and experimental 
v~lues. of the truncation-induced diffusion constant k*. 

I ndueed diffusion in the transport-diffusion equation 

The preceding analysis and computer verification of 
k* is concerned with the simplified transport equation 

ae = _ V ae 
at ax' 

or at least with the transport diffusion equation with 
"small" values of the diffusion constant k. 

We are in practice interested in the equations of the 

rJo 

1 . 

.8 

.2 

0 

form: 

.5 

Figure 5--rJc as a function of 'l1 

ae 
at 

1.0 

where k is not "small" in the sense previously described. 
The question thus arises as to what happens to k* 

as a function of 0, for non-small values of k. An answer 
to this question was searched experimentally, by per
forming experiments' similar to that described in the 
preceding section, but with k as an additional free 
parameter. In this analysis, it was first recognized 
that an analysis of the dimensionless "induced" diffu
sion constant 1/* = k* /V2 • ilt could be obtained as a 
function of the dimensionless "explicit" diffusion con
stant 1/c = kc/V2 • ilt, thereby providing a relationship 
where, for a fixed value of 0, 1/* would be a function of 
'J1c alone. 

The argument here is that there is no reason why 
Buckingham's 'If' principle cannot be applied to the 
behavior of computer program solutions as it applied 
to the field of mechanics and thermodynamics. Hence, 
relationships between dimensionless parameters must 
be absolute, save for round-off phenomena, if and 
where they occur.) 

Experience confirmed this theory, and Figure 4 shows 
a dimensionless chart of the induced 1/* = k* / V2 • Ilt 
as a function of ° and 1/ = k/V2 • ilt. 

1.5 

f) 



Figure 6-Diffusion-corrected computer method 

Weare reminded at this point that any practical 
computer program will entail a fixed value for (), and 
that 'YJ* will thereby become a function of 'YJ alone. 

Figure 5 shows this more useful relationship for 
various values of (). 

DIFFUSION-CORRECTED COMPUTER 
METHOD 

The "diffusion.,..corrected" method simply consists 
in deriving the function 'YJc ('YJ) for the particular value 
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of () being used from Figure 5 and introducing the cor
rected diffusion constant kc = 'YJc V2Llt into the procedure 
discussed earlier. 

This correcting method is applied continuously as a 
function of time and space, as shown in Figure 6. 

CONCLUSIONS 

The method of s~mulation of river pollution described 
in this paper has been implemented as a computer 
program. Experimental results have confirmed the use
fulness of the diffusion correction of Section 6 as a 
means of allowing larger time steps t~ be utilized. It 
has also been found that the general "hybrid approach" 
which consists in approximating the problem in the 
form of ordinary differential equations offers a con
venient way to implement pure-numerical simulations. 
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Programmable indexing networks 

by KENNETH JAMES THURBER 

Honeywell Incorporated 
St. Paul, Minnesota 

INTRODUCTION 

One of the most important functions that must be 
performed in a digital machine is the handling and 
routing of data. This may be done in routing logic 
(computers), in permutation switching networks (com
puters and telephone traffic), sorting networks, etc. In 
some parallel processing computers being envisioned 
the handling of large blocks of data in a parallel fashion 
is a very important function that must be performed. 
For a special-purpose machine a fixed-wire permutation 
network could be acceptable for the handling of data; 
however, for a general-purpose machine more sophis
ticated reprogrammable networks are required. 

The permutation network problem has been previ
ously studied by Benes,2 Kautz et al., 3 W aksman, 4 

Thurber,1i and Batcher.l This paper introduces and 
defines a new network to be considered. This is the 
generalized indexing network. This network can perform 
an arbitrary mapping function and is easily reprogram
mabIe to perform any other arbitrary map with n in
puts and rri outputs, and has many potential areas of 
use. The most interesting possible area of application is 
the processing of data while routing the data. If the 
network is used as routing logic, it can perform many 
simple data manipulation routines while routing the 
data e.g., matrix transposition. 

Some of the solutions presented are significant im
provements on the shift register permuters suggested 
by Mukhopadhyay.7 The solutions suggested here are 
programmable (utilizing the output position mask), 
as fast, and utilize less hardware than the previously 
suggested shift registers permuters. 

FORJV[ULATION OF THE PROBLEl\1 

Previously, most researchers have considered the 
problem of permuting a set of n input lines Xl, X 2, ••• , 

X n- l , Xn onto a set of n output lines Y I , Y2, ••• , Yn- l , 

Y n by means of a device called a permuter. A permuter 
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produces a one to one mapping from the n input lines 
to the n output lines of the network. The permuter 
can perform a very limited set of functions. As currently 
studied, the permutation networks can only transfer 
lines of data. In this paper the networks will be utilized 
to transfer words of data. 

Limitations of permutation networks are that input 
words cannot be repeated or deleted at the output. 
Also, blanks cannot be inserted into the output and 
the number of input words and the number of output 
words must be equ~l. The indexing network* differs from 
the permuter in that input words can be repeated or 
deleted and blanks can be inserted in the output. Also, 
for an indexing network the number of input words (n) 
has no special relation to the number of output words 
(m). The non-blank output words may appear in 
many contiguous subsets of the output words (these 
subsets could be empty). Figure 1 shows some examples 
of possible permutation networks. Figure 2 shows some 
examples of possible indexing networks. 

In this paper Xi means a word of input data (instead 

OPM 

Xl YI = X2 
@TIlQJ 

X2 Y2 =XI @]illJ 

X3 Y3 =X4 ~ 
X4 Y4 =X3 

[QJillJ 

Figure I-Permuter 

* The terminology indexing network and generalized indexing 
network will be taken to have the same meaning. 
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OPM 

Figure 2-Indexing network and its OPM 

of an input line) and Y i means a word of output data 
(instead of an output line). The blank word is desig
nated by O. The actual storage device containing or 
receiving the word of information (or the number of 
bits in the word) is not shown and the inputs an.d ~out
puts to the network are still only pictured as one line 
for each Xi and Y i. (When in reality each line may 
symbolically represent p parallel input lines (for a p 
bit word) for the parallel transfer of each word into 
and out of the netfork.) Each storage device for one 
word of information is called a cell. 

It should be noted that the permutation network 
problem is a sub-problem of the generalized indexing 
network problem. 

If N is a network with n inputs and m outputs then 
the output position mask (OPM) is a vector containing 
m distinct cells with log2 (n + 1) binary bits per cell.* 
Each cell contains the binary code corresponding to the 
input value desired in the corresponding output cell. 
Log2 (n + 1) bits are needed since the n inputs and 
the 0 must have a code so that they can be specified 
as output values if desired. Figures 1 and 2 show several 
networks, along with their corresponding output posi
tion masks. Each cell consists of a shift register capable 
of delivering its contents (in parallel) onto the appro
priate control lines of the network. 

A SHIFT REGISTER SOLUTION 

This is the first of several "shift register solutions" 
to be presented in this paper. The name shift register 
solution has been used for simplicity; however, what is 
actually used is a set of shift registers (each contains 
or receives one word of inf()rmation) which can perform 
a parallel transfer of its contents to its neighbor. The 

* Where log2(n + 1) is understood to be rounded off to the next 
larger integer if log2(n + 1) is not an integer; e.g., log2(7 + 1) = 3 
and log2(10 + 1) = 4. 

transfers are arranged such that a transfer pulse to the 
input set of registers causes the simultaneous parallel 
cyclic transfer of the contents of the registers; i.e., 
n ~ n - 1, n - 1 ~ n - 2, ... , 2 ~ 1,1 - 0, and 
-0 - n simultaneously. A transfer pulse to the output 
set of registers (and to the OPM) causes the simultane
ous parallel transfer of the contents of the registers; i .. e, 
n~n - 1 (OPM(n) ~OPM(n - 1)), ... , 2~ 1 
(OPM(2) - OPM(l)), and 1 ~ n (OPM(l) ~ 
OPM (n) ). The previously specified functions are per
formed by the Input Cyclic Control (ICC) and Output 
Cyclic Control (OCC) respectively. The Transfer 
Control (TC) performs the function of transferring 
data from input position 0 to output position L There 
is no output position O. 

Figure 3 shows the clocking hardware used to read 
the OPM and produc~ the desired control pulse for the 
TC. It is assumed that the clocking hardware contains 
a clock with clock rate c/ p, where c is the clock rate of 
the sorter and p is a suitable positive integer. Binary 
constants C2, Cl, and Co placed on the input lines to the 
network produce an output from the network after 
(c2(4) + cl(2) + co(l)) units of delay. One unit of 
delay is equal to the time period between indexing 
clock pulses (the clock rate of the indexing network is 
c so a unit delay is c-1 second). The clocking hardware 
is used to advance the input registers to a position 
selected by the OPM. 

Figure 4 shows a general setup for an indexing net
work and a complete indexing network for n = 5 and 
m = 4 .. The words are 4-bit words in this example. The 
indexing network consists of an input set of registers 
and associated ICC and TC hardware, an output set 
of registers and the associated OCC and OPM hard
ware, and the clocking and control hardware. 

The clock rate of the indexing network is c per second 

IIlINDICATES A DELAY OF ONE TIME UNIT. IF THE INDEXING NETWORK CLOCK RATE IS C THEN. 05 EQUIVALENT TO A TIME DELAY OF lIC 

Figure 3-Clocking hardware for obtaining delays from 0 to 7. 
time units of delay 



INPUT REGISTERS 

I INPUT WORD n I OUTPUT WORD mJ OPM WORD m 

Figure 4(a)-Generalized shift register indexing network 

and the clock rate of the clocking hardware is c/8 per 
second. In general the clock rate for the clocking hard
ware is cln + 3 per second.* No provisions have been 
shown for connecting the network to other hardware, 
but this should be obvious. A blank (binary 0) is 
placed in register 0 of the set of input registers. 

WORD 0 WORD 
I o I o I 0 I 0 I I I 

WORD 1 WORD 2 

I I I I [ililiJ 
WORO 2 WORD 3 

I I I I CiliTIJ 
WORD 3 WORD 4 

I I I [ililiJ 
WORD 4 

I I I 
WORD 5 

I I I 

Figure 4(b)-Indexing network with n = 5, m = 4, and word 
lengths of 4 bits with the OPM set to produce, (0 Xa X 2 X 4) 

* c/n + 3 are needed instead of c/n because (1) a time period is 
needed for shifting n + 1 input values instead of just n input 
values, (2) a time period is needed to transfer the data, and 
(3) a time period is needed to shift the output registers and OPM. 
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Figure 5-Indexing network 

The operation of the network is easily explained. As
sume the input registers are full and the first clock pulse 
is produced (in both the clocking hardware clock and 
the indexing, network simultaneously). The binary 
value in the OPM causes the pulse to the ICC and TC 
to be delayed a number of time periods equal to its 
value. Meanwhile the input is being cycled. When the 
correct input register has moved into position 0, the 
transfer pulse arrives inhibiting further cycling and 
causing the transfer (a non-destruct read) from input 
o to output 1 to occur. The input is still inhibited and 
the output is shifted one position by the OCC. The 
input register then is cycled to its origin'al state and the 
process begins again. After rn cycles the output registers 
are all filled and back in their correct position so that 
the indexing operation has been completed. 

This type of an indexing network can be configured 
in many different ways depending upon the speed 
desired and the hardware available. Figure 5 shows 
the manner in which the network could be set up for 
faster operation. The network in Figure 5 requires 
twice as much hardware as the network in Figure 4, 
but is twice as fast. Figure 6 is an indexing network 
that operates approximately n times as fast as the 

'---------i ,,'.tI~I, )---____ -----' 

Figure 6-High-speed indexing network 
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INPUT TO 

-------=:::) 
INPUT WORD 
REGISTERS 

Figure 7-Comparator indexing network for n = 6 and m = 4 

network in Figure 4. As can be easily seen, this solution 
to the generalized indexing network problem can be 
easily configured to account for many different hard
ware and speed requirements. In Figure 6, less logic 
is required in parts of the network and the clock rate 
of the clocking hardware is different than the rat~ of 
the network in Figure 4. This is because the set of out
put registers does not have to be shifted to their next 
receiving positions since the network is a "parallel" 
indexing network and the output is available after 
n + 2/c seconds. 

A SOLUTION UTILIZING SIMPLIFIED 
CLOCKING HARDWARE 

The purpose of this section is to introduce another 
version of a generalized indexing network which utilizes 
shift registers to perform the indexing operation. This 
solution utilizes the OPM to program the network. 
Figure 7 shows 'the solution for n = 6, m = 4. An extra 
set of log2 (n + 1) bits has been added to the input 
register. These bits contain the input position of the 
input data and are utilized to select the appropriate 
output value. 

The details of the operation are as follows: 

(1) The input data and the OPM: are inputted into 
the network. 

(2) The input data is cycled until the input code 
equals the current value of the OP]VL 

(3) The input word is transferred to the output 
register. 

(4) The output register and the OPM are advanced 
one position unless the output register is full in 
which case go to (6). 

(5) Go to (2). 
(6) Output the data in the output register. 
(7) Stop. 

EXTENSIONS OF THE SOLUTION GIVEN IN 
PREVIOUS SECTION 

The solution given in the previous section is inter
esting in that there are several other methods by which 
it can be implemented in a more sophisticated manner. 
Since the solution given previously does not require as 
much hardware as some of the other solutions it is in
teresting to consider what can be done with the addi
tion of some extra hardware. 

As with the solution given in the third part of this 
paper, the solution given in the previous section can be 
implemented in a form such' as in Figures 5 and 6. Also, 
it could be implemented in any form that "lies" be
tween the solutions given in Figures 5 and 6. 

The following solutions require that the set of input 
registers be able to shift cyclicly backwards (0 ~ 1, 
1 ~ 2, ... , n - 1 ~ n, n ~ 0) as well as forwards 
(1 ~ 0, 2 ~ 1, ... , n ~ n -: 1, 0 ~. n). 

One method of improving the solution given previ
ously is to make more than just a comparison of the 
two numbers for equality. A solution is to check and 
see whether the number contained in the OPM is 
greater than, equal to, or less than the number desig
nating the current state of the, input. If the· OPM 
number is larger shift the input register forward, if the 
OPM numb~r is smaller shift the input register back
wards, and if the numbers are equal then transfer the 
information. The actual shifting can be implemented 
as in the previous section (a comparison after every 
input shift) or as in the third section (this would re
quire a subtraction to determine the number of needed 
periods of delay) using the clocking hardware in Figure 
3 to -produce the transfer pulse. 

Another improvement that can be made is based 
upon the following observation; i.e., if the set of registers 
can cycle both forwards and backwards then there are 
cases where it is shorter time wise to go around one of 
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Figure 8-General arrangement of a splitter register 

the "ends" of the set of input registers. For example, 
if n = 10 and the network is at 9 and needs to go to 1 
then the shortest way is 9 ~ 10, 10 ~ 1 (instead of 
9 ~ 8, 8 ~ 7, ... , 2 ~ 1). This solution can be im
plemented by calculating and comparing n + 1 ..,
I p - q I to I p - q I were p and q are the current loca
tion and the desired location. Again this solution could 
be built as in the previous section (comparison after 
each input shift) or as in the third section (using clock
ing delays); however, it is probably best implemented 
using clocking hardware (such as in Figure 3) because 
the minimum of n + 1 - I p - q I and I p - q I give 
the number of time delays to be produced by the clock. 
Therefore, after the comparison has been made, the 
minimum value can be used as input data into clocking 
hardware and the register cycled in the proper direction 
(forward or backward). 

THE SPLITTER 

Thifl section presents a solution to the generalized 
data indexing problem based upon an input decision 
called the input position map. This solution utilizes a 
modular construction and seems most interesting in the 
case in which a lot of different indexings must be pro
duced in rapid succession. A major advantage of this 
type of network is that it is capabl.e of simultaneously 
processing many indexings at the same time. 

The input position map (IPM) is a set of binary 
codes associated with the input data of a network that 
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Figure 9-Use of splitters to perform a permutation for n = 2k 
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Figure lO-Section of the splitter used to produce a permutation 

specifies the position (or positions) that the data is to 
be transferred to in the set of output registers. In the 
case of the design of a splitter it will be assumed that 
the input data and the binary code contained in the 
IPM associated with that input data are contained in 
an extended register as shown in Figure 8. 

Figure 11 shows the general block diagram of several 
splitter networks organized to perform a permutation 
function. Each module in the splitter takes the n in
puts (assume n is even) and groups of these n inputs 
into two n/2 input groups based upon the mapping 
information contained in the mapping information 
portion of the node. The splitter is most useful in con
structing sorting networks that have n = 2k. 

The permutation network shown in Figure 10 can 
be built in various sizes so that it can be configured as 
shown in Figure 9. The mapping information inputted 
to this network would be the binary value of the posi
tion in the set of output registers that the data was 
destined for so that an arbitrary. input register would 
contain DATA and DESTINATION OF DATA where 
the destination of the data is between 0 and n - 1. The 
first splitter encountered (n ~ n/2) would sort the 
information based upon the binary value contained in 
the highest order digit; whereas, the last group of 
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C/2}--__ -, 

Figure ll-General splitter module 

splitters (2 ~ 1) would read the lowest order digit. 
The values being read would be inputted to the AND 
gates as shown in Figure 10. The full word of data 
would be transferred to tne appropriate output register 
in parallel and the appropriate output register and the 
input register would be advanced one position each. 
The next word is then processed in the identical manner. 
To split n elements into two n/2 element groups re
quires n clock periods. The bit that the AND gate 
reads is different at each level, but begins with the high 
order digit and proceeds to the low order digit. 

The IPM for a permuter constructed by the splitter 
method is just the binary output destinations of the 
data. It is a little harder to construct a generalized in
dexing network using this concept. The permuter was 
easy because it needed a one to one and onto mapping 
function. A generalized indexing network is a little 
harder but not impossible. It will be slightly harder to 
compute the IPM than it was for the permuter, but 
the following method and the hardware shown in 
Figure 11 co·nfigured as in Figure 9 will produce a 
generalized indexing network. One modification of the 
network is that in the first splitter, the data must be 
broken from n into two groups of m/2 elements. From 
that point on each group of m/2 p elements is split into 
two groups of m/2p +1 elements. The mapping informa
tion for the network can be furnished by the following 
observations. Each element of input data can be 
categorized as· to where it is transferred by means of a 
two-bit binary map (byte) . The high order byte 

specifies the split n ~m/2; whereas, the low order byte 
specifies the split 2 ~ 1. There are exactly four distinct 
possibilities that can happen to a piece of data; i.e., 
the data not transferred to either output register, the 
data transferred t~ one but not the other output, 
register (two possible cases), or the data transferred to 
both output registers. These are indicated in Figure 12 
and the necessary hardware shown in Figure 11. This 
design allows design of a generalized indexing network 
if the output registers are all set to the blank (0) value 
before they receive any data. In order to make the 
splitter work utilizing two bit bytes, the mapping in
formation must be introduced at each stage of· the 
process as shown in Figure 13. If the mapping informa
tion was completely specified with the data in stage 1 
there would be no way to produce the indexing (X4 00 
X 4 ) because the second byte would have to be 10 and 
01 simultaneously. (X4 00 X 4) could be produced by 
the map 11 associated with X4 at stage 1 the map 10 
associated with the value of X4 in stage 2 (A I), and 
the map 01 associat.ed with X4 a stage 2 (BI) in Figure 
13. The difficulty encountered in . constructing the 
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Figure 12-Possible data transfer operations 



maps for the splitter is balanced by two advantages of 
the splitter; i.e., (1) the designer can gets by with only 
two bits of mapping information in each data word 'at 
~very stage of the process (this has not been done in 
Figure 13, but the reader can clearly see why it can be 
done by looking at Figure 13), and (2) since previously 
used mapping information is no longer needed, many 
different indexings can be in process at the same time. 

The IPJVI can be constructed by tracing the desired 
data output back through the network. Figure 13 is a 
generalized indexing network for n = 8, m = 4 con
structed using the splitter concep~. It is conceivable to 
combine the networks using only one portion to replace 
the portions marked AA' and BB', thereby eliminating 
some transfer hardware and A (A') and B (B') at the 
expense of more complex clocking and logic. By chang
ing the size of the bytes it is conceivable to construct 
many different IPM's, but the previously explained 
IPM seems to be a very good one to use. 

This network can be built to provide very high rates 
of throughput since the level mj2 splitter takes half as 
much time to operate as the m level splitter. With 
some sophisticated clocking it is conceivable to "time 
share" the mj2 level splitter with two m level splitter 
and thereby maximize throughput. 

DISTRIBUTED INDEXING NETWORKS 

This section presents the final two solutions to the 
indexing network problem considered in this paper. 
These two networks are characterized by a highly 
parallel operation, high speed, and unique timing ar
rangement. Each network has one comparator (or 
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Figure 14-High-speed comparator indexing network set to 
produce (0 0 X2 Xl 0) 

clocking hardware unit) and one transfer control unit 
for each word of desired output. In some cases (m > 
n + 1) this requires the addition of several extra blank 
input registers as in Figure 16. It is assumed that the 
clock controlling the cycling of the input register has a 
long enough time between pulses to allow the compari
son and transfer of data. 

Both of these networks are based upon the observa
tion that in a complete cycling of the input registers, all 
data passes through every register. When the correct 
word is recognized it is immediately transferred. 

In the comparator solution in Figure 14, at every 
clock period the data currently occupying input posi
tions 0, 1, 2, ... , M' - 1 is compared to the OPM and 
the appropriate transfers made. This solution (and 
the solution shown in Figure 15) requires the larger of 
m or n + 1 clock pulses for the indexing of the input 
data. 

The solution shown in Figure 15 requires a modifica
tion of the OPM. The value of the ith position of the 
OPM is not the binary value of the input data desired, 
but the number of clock pulses before the input data 
is in the ith position; i.e., if Y i = X j then 

OP1VI (i) =.i - i if.i ~ i 
m - (i - .i) if.i < i and m > n + .i 
n + 1 - (i - .f) if.i < i 

andn + 1 ~ m 
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INPUT REGISTERS 

Figure 1.5-High-speed indexing network 

CONCLUSION 

A new class of networks was presented in this paper. 
These networks have the ability to arbitrarily reorder a 
set of n input cells into 1n output cells with the repetition 
or deletion of any cell allowed. Blank cell values may be 
arbitrarily placed in any of the output cells, thereby 
allowing the construction of arbitrary contiguous sets 
of data separated by blanks in the output. These net
works have as special cases previously studied permuta
tion and sorting networks. The networks described 
here are extremely general in nature, and should have 
many different areas Jf application, particularly, in 
areas needing networks, for routing and transferring 
data. 

The ease of programmability of the indexing net
works described is a 'feature that is extremely unique. 
Almost all previously studied permutation and sorting 
networks have long set up and programming times 
that tend to make them useless in problems in which 
the destination of the data has to be. changed between 
each set of data inputted. The manner in which the 
programs are inputted into the network and the 
simplicity of the program are other features that are 
unique to the approach followed in this paper. Another 
unique feature of the solutions presented is the range 
of tradeoffs they cover. The designer can easily make 

tradeoff comparisons between the solutions and has 
many possible different ways to configure each type of 
network to obtain various speed and hardware compari
sons. Hybrid solutions may be extremely attractive. 
An interesting solution to consider is utilization of the 
splitter to go from n to nj2k followed by utilization of 
2k non-splitter networks (like a comparator network). 
In this manner the large input block of data can be 
broken down for high-speed "parallel" sorting by other 
networks. 

It is suggested that future research consider construc
tion of high-speed routing networks utilizing the previ
ously described sorting networks. Tllese networks seem 
to be particularly attractive for the routing and re
arranging of data in parallel processors. Another topic 
that might be of interest is the investigation of the 
possibilities of performing logic operations on the data 
while it is being routed (indexed). Consideration might 
be given to the use of these networks as memories. 
Some of the logic might be able to be used to convert 
frQm a indexing network to a memory. 

Some possible applications for the' generalized in
dexing networks are: sorting of data, routing of data, 
permutation networks, multi-access memories with the 
number of words of memory accessed a controllable 
variable, ass~ciative memories, multi-access associative 
memories, reconfigurable multi-processors for real
time users, associative multiprocessors, and any other 
applications which require the manipulation and re
configuration of large amounts -of data. 
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The debugging system AIDS 

by RALPH GRISHMAN* 

N ew York University 

New York, New York 

In comparison with the growth of procedural lan
guages over the past decade, the advances in facilities 
for debugging compiled code have been small.1 The de
bugging services offered today on most conversational 
systems have not advanced fundamentally from the 
design of DDT for the PDP-I. t Batch systems have 
added a potpourri of other aids-in particular, systems 
with a machine simulator have included a variety of 
traces-but, in general, selective tracing and program 
checks of even slight complexity have been quite 
messy to invoke, if they were available at all. tt 

The object of the AIDS project has been to provide 
a debugging system for FORTRAN and assembly lan
guage code on the Control Data 6600 which includes a 
flexible and reasonably comprehensive set of tools for 
program tracing and checkout, suitable for both batch 
and on-line use. A large variety of traces and checks 
can be invoked through a special "debug language" 
syntactically similar to FORTRAN. A system of such 
breadth is really practicable only on a machine with 
the power and memory capacity of a CDC 6600; such a 
large debugging system would be difficult to implement 
on some of the smaller machines on which the earlier 
interactive debugging systems were developed. At the 
same time, it is precisely the large, complex programs 

* Currently with the Department of Physics of Columbia 
University, New York, New York. 
t The most notable exception of which the author is aware is the 
debugging system recently developed for T88/360;2 readers are 
referred to this paper for a more detailed discussion of the need 
for more powerful debugging systems. 
tt TE8TRAN, the system provided with 08/360 for debugging 
assembly language routines, 3 includes several features for program 
checks and conditional traces; however, because the debug 
commands are macro calls, their format is severely restricted, and 
consequently test conditions which do not fall into one of several 
predetermined forms can be quite complicated to encode. 
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and supporting systems for machines of this size which 
make powerful debugging facilities so valuable. 

HISTORY 

The story of AIDS may be traced back to early 
1965, when Prof. J. Schwartz initiated the develop
ment of a debugging system for the CDC 6600, which 
was soon to be delivered to N ew York University. This 
system, dubbed the W A TCHR, was developed and 
expanded over the next two years by E. Draughon into 
a working debugging system.4 As this system developed, 
several fundamental difficulties came to light. First, 
as the options proliferated, calling sequences became 
more complex, to the point where users not only could 
not possibly remember the calling sequences, but often 
would not attempt to invoke some of the more powerful 
W ATCHR features. Second, although W ATCHR was 
adapted for use on the N ew York University time
sharing system, it was clearly not designed for interac
tive use. Symbols were not kept at run time, so the 
user had to refer to his program in terms of absolute 
addresses; lengthy calling sequences were particularly 
cumbersome at a teletype. 

Thus, in 1967 development was begun on a new de
bugging system, designed from the outset for conversa
tional as well as batch use, to be invoked through a 
special procedural language rather than subroutine 
calls. Design and coding lasted through mid-1968, and 
distribution of the program began in the spring of 1969. 

Several basic requirements were established for the 
implementation: First, to facilitate maintenance, the 
same program was to be useable in both batch and in
teractive modes. Second, to facilitate distribution, the 
system had to be useable without any modification to 
the operating system, and have a simple input-output 
interface adaptable to a variety of environments. 
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Third, to facilitate use, simple commands had to be 
provided for the most common debugging requirements. 

PROGRAIVI ORGANIZATION 

AIDS, the All-purpose Interactive Debugging Sys
tem, is a main program with three input files: the object 
code of the user's program, the listing generated by the 
compilation (or assembly) of the program, and a 
udebug file" containing the commands to AIDS for 
tracing and testing the user's program. AIDS may be 
divided into three sections corresponding to these 
three files: the listing reader, which extracts from the 
compiler and assembler listings the attributes and 
addresses of the identifiers in the source program; the 
command translator, which transforms the statements 
in the debug file into entries in the AIDS trap tables; 
and the simulator, which simulates, monitors, and 
traces the user's program. 

The listing reader is entirely straightforward, and 
only one point bears mentioning, namely, that the 
alternative, modifying the compiler and assembler to 
output the needed information, was rejected for several 
reasons. At the time of inception of the project, new 
FORTRAN compilers were being issued so often by 
Control Data that reimplementing such a modification 
on each new compiler would have been a full time effort 
by itself. In addition, installations with their own com
pilers would have had to modify them in order to use 
AIDS, a step many installations might have been 
hesitant to take. 

All debugging information is supplied through a 
special debug 'language; absolutely no modifications 
are required to the user's program to run under AIDS. 
This debug language will be described in some detail 
below, after which a few of the techniques used in 
implementing AIDS will be discussed. 

DEBUG LANGUAGE 

The three basic syntactic entities of the debug lan
guage are the tag, the expression, and the event. The 
tag designates a fixed location or block of memory, 
and may be an octal address, statement number, vari
able name, or subroutine name. The expression specifies 
a value, and is constructed according to the same rules 
as a FORTRAN IV expression, including full mixed 
modes, and logical, relational, and arithmetic operators; 
only function references are excluded. The event speci
fies a particular occurrence in the user's program, and 

can take one of five forms: 

OPCODE[S] [(opcode) [TO (opcode)]] 
AT [(tag list)] 
LOAD[S] [[FROM] (tag list)] 
STORE[S] [[TO] (tag list)] 
CALLS[S] [(tag list)] 

where (tag list):: = (tag) \ (tag) [, (tag)] . . . ) 
In his debug statements, a user can refer to all the 

identifiers of his source program: variable and sub
routine names and statement numbers. Array elements 
can be referenced with subscripted variables, or the 
entire array designated by the array name alone (the 
latter feature is useful, for example, in tracing stores to 
any element of an array). All hardware registers may 
be used in arithmetic expressions on an equal footing 
with other variables. Additional variables may be 
created at run time for use as counters or switches, 
arid new labels may be assigned to points in the user's 
program not associated with any identifier in the 
source' text. 

The principal statement in the debug language is the 
trap ~tatement, which has the form 

{::~~~E t (event), (trap sequence) 
AFTER) 

where (trap sequence):: = (trap command) [, (trap 
command)] . . . This statement directs that immedi
ately before or after (WHEN is synonymous with 
BEFORE) the occurrence of the specified event* in the 
simulated program, the commands in the trap sequence 
are to be executed. The possible trap commands are: 

(1) assignment statement-exactly as in FORTRAN 
(2) IF (logical expression») 

which causes subsequent trap commands t9 be exe
cuted only if the logical expression is true, 

(3) SUSPEND {OPCPDE \ CONTROL \ 'LOAD \ 
STORE \ CALL} TRAPS 

R~SUIVIE {OPCODE \ CONTROL \ LOAD \ 
STORE \ CALL} TRAPS 

which turns off/on all traps of a given type, 
(4) GO TO (tag) 

which causes a transfer of control in' the simulated 
program, 

(5) PRINT (print item) [, (print item)] ... 
where (print item) = (tag) \ "(text not including" )" 
which prints the contents of the tag (in a format ap
propriate to its mode in the user's program), or the 
specified text, and 

* AT (tag) denotes the execution of the first instruction at 
location (tag). An event without any opcode specification or tag 
list denotes every opcode, any store, any call, etc. 



TAGS 

(tag):: = (subscripted variable identifier) I (statement 
identifier) I (global identifier) I (octal identifier) 

(variable identifier):: = (variable name) [$ (subprogram 
name)] 

(statement identifier):: = (statement number)S [$ 
(subprogram name)] 

(global identifier):: = [$] (global name) 

(subscripted variable identifier):: = (variable identifier) 
[( (subscript )[, (subscript)] ... )] 

EVENTS 

(event specifier): : (opcode event specifier) I 
(control event specifier) I 
(load event specifier) I 
(store event specifier) I ' 
(call event specifier) 

(opcode event specifier);; = OPCODE[S] [(opcode) 
[TO (opcode)]] 

(control event specifier):: = AT [(tag list)] 
(load event specifier):: = LOAD[S] [[FROM] (tag list)] 

(store event specifier):: = STORE[S] [[TO] (tag list)] 
(call event specifier):: = CALL[S] [(tag list)] 

(tag list):: = (tag) I (tag) [, (tag)] ... ) 

TRAP STATEMENT 

jWHEN } 
BEFORE 
AFTER 

(event ), (trap sequence) 

(trap sequence):: = (trap command) [, (trap command)] ... 
TRAP COMMANDS 
(left side) = (arithmetic expression) 
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where (left side):: = (global identifier) I 
(variable identifier) 
[( (arithmetic expression) 
[, (arithmetic expression)] ... )] 

IF (logical expression») 
SUSPEND (trap type) [(trap word)] 
RESUME (trap type) [(trap word)] 

where (trap type):: = OPCODE I CONTROL I LOAD I 
STORE I CALL 

(trap word):: = TRAP[S] I TRACE[S] 
PRINT (print element) [, (print element)] ... 

where (print element):: = (tag) I "(text not containing" )" 

COMMANDS NOT VALID IN TRAP SEQUENCES 

WHAT [IS] (tag) 
WHERE [[IS] (tag)] 
$ (subprogram name) 
RETREAT (decimal integer) 
LABEL (octal identifier) 

rON 1 
iOFF ~ MAP 
lTRACEj 

STEP f (decimal integer) l 
l OFF f 

* 

** 

= (variable identifier) = (arithmetic expression) 
BREAK OUT[AT (tag)] 
BREAK IN AT (tag) 

*** 

* establishes new local (default) subprogram for identifiers 
** finds nearest symbolic label 
*** defines (assigns an address to) a symbol 

Figure I-The syntax of the AIDS debug language 

(6) TRACE 
which prints a line describing the event which caused 
the trap. Since the statement 

WHEN (event), TRACE 

is one of the most often used, the natural abbreviation 

TRACE (event) 

has been allowed. A few sample trap statements: 

TRACE STORES TO A 
WHEN CALL TEST, IF (I**3+J . GT .27) 
PRINT "INVALID ARGUMENTS TO TEST," 

I, J 
WHEN AT lOS, 1=1+1, IF(I . GT . 100) PRINT 
"LOOP EXECUTED 100 TIMES, EXIT FORCED" ; 

GO TO 100S 

(the S after the numbers in the last statement indicate 
that they are statement numbers rather than integers). 

The user has at his disposal quite a few other control 

and informational commands; these are enumerated in 
Figure 1. A few of these deserve special mention: 

The MAP feature provides a simple means of tracing 
the flow of control in his program. The MAP TRACE 
command makes AIDS print out pairs of addresses 
between which instructions were executed without any 
transfers. If the user does not want a continuous map, 
he can still get the last 25 such pairs printed at any 
time by typing MAP. 

The user can step forward through his program, a 
fixed number of instructions at a time, with the 
command 

STEP (integer) 

More interestingly, with the command 

RETREAT (integer) 

he can step backwards through his program by a fixed 
number of instructions; his program is restored to 
exactly the same status it had earlier. Although this 
process is limited to a few thousand instructions, it is 
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The program to be debugged: 

PROGRAM PRIME (INPUT, OUTPUT) 
C PROGRAM DETERMINES IF A. NUMBER IS 

PRIME 

10 PRINT 20 
20 FORMAT(*YOUR NUMBER, PLEASE-*) 

READ 40, NUM 
40 FORMAT(I4) 

IF (NUM. LE. 0) CALL EXIT 
ISQRT = NUM ** (72) + .1 

70 DO 90 J = 2, ISQRT 
80 IF (NUM/J*J. EQ. NUM) GO TO 130 
90 CONTINUE 

PRINT 110 
110 FORMAT (* NUMBER IS PRIME*) 

GO TO 10 
130 PRINT 140 
140 FORMAT (* NUMBER IS NOT PRIME*) 

GO TO 10 
END 

A log of the debug session: 

TYPE PROGRAM N AME-Igo 
BEHEST-when at lOs, pause 

BEHEST-go 
PAUSE. 
BEHEST-go 
YOUR NUMBER, PLEASE-9 
NUMBER IS PRIME 
PAUSE. 
BEHEST-trace stores to j 
BEHEST-go 

Explanation: 

pause each time before 
first print 

start execution 
have reached statement 10 
keep going 
try program with 9 
program doesn't work 
are back at statement 10 
watch DO-loop index 
and try again 

YOUR NUMBER, PLEASE-9 
STORE TO J = 2 
NUMBER IS PRIME 
PAUSE. 
BEHEST-what is isqrt? 
1 

BEHEST-after store to isqrt, 
fnum = num, isqrt = fnum** 
0.5 +.1 

BEHEST-go 

YOUR NUMBER, PLEASE-9 

STORE TO J = 2 

STORE TO J = 3 

NUMBER IS NOT PRIME 
PAUSE. 

BEHEST-go 

YOUR NUMBER, PLEASE-5 

STORE TO J = 2 
NUMBER IS PRIME 
PAUSE. 
BEHEST-quit 

why didn't it try J = 3? 

check limit of DO loop 
aha! realize that formula for 

ISQRT is wrong 
fix it 

seems to work now 

try one more 

NOTE: Input from user appears above in lower case; output 
from AIDS appears in standard upper case; output from the 
user's program appears in italicized upper case. The comments on 
the right would not be a part of an actual debugging session. 
"BEHEST-" is the prompt given by AIDS when it expects input 

Figure 2-A trivial example of an on-line session with AIDS 

generally very helpful in determining the source of 
difficulty when an error condition occurs. 

Programs running under AIDS are normally simu
lated rather than executed directly; the trap commands 
described above are in effect only while the program is 
being simulated. Simulation, however, greatly increases 
the time required for program execution (by a factor 
of 60 or more), so that programs which run into diffi
culties only after several minutes of execution cannot 
be debugged by simulation alone. For users who believe 
they can localize the source of their difficulties, or who 
only require the AIDS trap facilities at specific points 
in their program, the commands 

BREAK OUT AT (tag) 

and 

BREAK IN AT (tag) 

have been provided. These commands direct AIDS to 
change from simulation to direct program execution, 

and to revert to simulation at arbitrary points in a 
program. 

To illustrate the use of a few of these commands in 
the 'interactive mode, a trivial debugging example is 
given in Figure 2. 

INTERNAL DESIGN 

The most important decision in designing a de
bugging system is whether to process the source lan
guage directly (by adding debugging statements to a 
compiler, or interpreting the source text) or to work 
from the object code. The author firmly believes that 
both types of d~l;>ugging aid should be included in 
standard programming support, particularly for time
sharing systems. A system using only the object code 
and symbol table of a program cannot offer the sim:
plicity of code modification possible with an interpreter 
or incremental compiler; nor can it provide several 
types of error checking which are easy to perform at 



the source language level, such as subscript in range 
and agreement in type of formal and actual parameters. 
However, several considerations dictated development 
of a system running from the object code. First, a 
large fraction of users have assembly language sub
routines in their FORTRAN programs; running such 
programs interpretively would in effect mean as
sembling the source code and then simulating the 
machine instructions. Second, some of the most elusive 
bugs are due to compiler and system routine errors; 
such bugs can clearly only be found by a system which 
runs from the compiled code. (Interestingly enough, 
some of the first bugs found by AIDS were in the com
piler, loader, FORTRAN coded output routine, and 
the routine which generates FORrRAN execution
time error messages.) 

The next choice to be made is whether to simulate 
or execute the object code. In contrast to most de
bugging systems, AIDS offers the user the ability to do 
either. Simulation provides a far richer set of traces 
and checks than could a system which executes the 
object code; in particular, it provides a simple solution 
to what appears to be the most common plight of the 
desperate user, "What part of my program stored 
that?" On the other hand, when a particular routine 
can be isolated as the source of a program error, only 
that routine need be simulated, with the rest of the 
code executed; in this case, the program can run at 
nearly normal speed. 

The trap system is entirely straightforward, using 
for each type of trap (load, store, etc.) a list of addresses 
which is checked regularly during simulation. To 
avoid possible "side-effects" (e.g., instruction modifica
tion at a location where a breakpoint is stored) abso
lutely no modifications are made to the user's program 
during simulation. Trap commands are checked 
syntactically and translated into an internal form on 
input, and are interpreted \yhenever a trap occurs. 

Whenever a store is performed· by the simulated 
program, the old contents of the referenced memory 
location are saved in a circular buffer. At two points in 
the circuit of the circular buffer, the contents of all the 
simulated hardware registers are saved. When a 
RETREAT is requested, the user's program is first 
reset to its status at one of these two earlier points; 
memory is restored by working backwards through the 
circular buffer from its current position to the earlier 
point. The program is then stepped forward to the 
point to which the user wanted to retreat in the first 
place. 

AIDS consists of about 6000 source cards, and oc
cupies a minimum of 440008 words of memory. With 
the exception of the simulation routine, which was 
coded in assembly language for efficiency, the entire 
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system was written in FORTRAN. This was no doubt 
a factor in getting the system coded and largely de
bugged in less than one man-year of programming 
effort. 

CONCLUSION 

In evaluating the results of the AIDS project, it is 
necessary to ask two separate questions: Is such a 
powerful debugging system worthwhile? and Has this 
implementation been successful, in particular with 
respect to the three points mentioned towards the 
beginning of this paper? 

The latter question I believe can be answered in the 
affirmative; as regards the three specific points: 

1.' The identical program has been used for both 
batch and conversational debugging. In general the 
system appears to be flexible enough to satisfy the de
bugging styles of both types of user: the selective 
traces arid automatic program checks required by the 
batch user and the conditional trapping desired by the 
time-sharing user. * 

2. In large part because most of AIDS is coded in 
FORTRAN, it has been converted for use under two 
batch and three conversational systems with relative 
ease. In addition, the modular design has made it 
possible for the author of a subsequent CDC 6600 de
bugging system to incorporate major sections from 
AIDS.5 

3. The only "abbreviation" included is the TRACE 
command (in place of WHEN ... , TRACE). Short of a 
general redesign of the command structure to reduce 
the amount of typing required, no other particular 
sequences of commands seemed to be frequent enough 
to merit abbreviation. 

The more general question, whether such a powerful 
debugging system is worth the cost, is more diffic:qlt 
to answer. There is, of course, the increased cost in 
processor time and memory space, but these items gen
erally represent only a small part of the cost of de
bugging; as these costs decrease further, it is safe to 
assume that nearly any significant saving of a pro
grammer's time at the expense of computer time will 
represent a net savings. 

Thus the fundamental question is, does AIDS save 
the programmer time in debugging? In one aspect it 
clearly does not: since it is such a large system, it 
takes quite a while to learn all its capabilities. Indeed, 

* It has been suggested that the ability to jump around within the 
deck of commands to AIDS may be desirable to give the batch 
user even greater control over the debugging process; such a 
facility may soon be added. 
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potential one~time or occasional users have been dis
suaded by the thought of reading a 23-page manual. 
As a result, most AIDS users until now have been 
systems programmers or user consultants. One user 
has suggested, however, that it is precisely these ex
perienced users who are most in need of such a system 
and for whom the system should be designed; in this 
case the time required to become familiar with the 
system is not such a critical factor. 

So, finally: Does AIDS save time in the actual task 
of debugging, in comparison with simpler debugging 
systems? In the batch mode, where the primary object 
is to collect as much useful information as possible 
from each run, I am confident that the answer is yes. 
In conversational debugging, on the other hand, 
brevity and ease of typing are important factors; 
these aspects clearly favor the simple debugging sys
tems, where considerable effort has been expended in 
this area,6 over the syntactically complex AIDS. It is 
the author's impression, however, that the few most 
difficult program bugs-those in which a very powerful 
system like AIDS can be expected to be the most help
are the ones which consume most of a programmer's 
time and cause most of his ulcers. In any event, a 

good deal more experience with the on-line use of 
AIDS and similar debugging systems will be required 
to find the best balance of brevity, simplicity, and 
power. 
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Sequential feature extraction for waveform recognition 

by W. J. STEINGRANDT* and S. S. YAU 
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INTRODUCTION 

Many practical waveform recognition problems involve 
a sequential structure in time. One obvious example is 
speech. The information in speech can be assumed to 
be transmitted sequentially through a phonetic struc
ture. Other examples are seismograms, radar signals, 
or television signals. We will take advantage of this 
sequential structure to develop a means of feature ex
traction and recognition for waveforms. The results 
will be applied to speech recognition. 

An unsupervised learning (or clustering) algorithm 
will be applied as a form of data reduction for waveform 
recognition. This technique will be called sequential 
feature extraction. The use of sequential feature extrac
tion allows us to represent a given waveform as a 
sequence of symbols aul, ••• , auk from a finite set 
A = {aI, ••• , aM}. This method of data reduction has 
the advantage of preserving the sequential structure of 
the waveform. The problem of waveform recognition 
can be transformed into a vector recognition problem 
by expanding the waveform using orthogonal functions. 1 

However, in this case the sequential structure is masked 
because the expansion operates on the waveform as a 
whole. Data reduction can also be carried out by time 
sampling, and storing the samples as a vector. In this 
case the dimension· of the vector is usually large. The 
data produced by sequential feature extraction is more 
compact. We will formalize the concept of sequential 
feature extraction and develop a performance criterion 
for the resulting structure. An unsupervised learning 
algorithm, which will optimize this structure with re
spect to the performance criterion, is presented. This 
algorithm, which can be applied to waveform recog
nition as well as vector recognition, represents an im
provement over existing clustering algorithms in many 
respects. This method will allow unbounded strings of 
sample patterns for learning. The samples are presented 

* Presently with IBM Corporation, Rochester, Minnesota. 
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to the algorithm one at a time so that the storage of 
large numbers of patterns is unnecessary. 

The·assumption of known probability measures is 
extremely difficult to justify in most practical cases. 
This assumption has been made in a number of 
papers,2-5 but no such assumption is made here. That 
is, the requirement for convergence is only that the 
measures be smooth in some sense. Braverman's al
gorithm6 has been shown to have these advantages. 
However, he assumes that there are only two clusters, 
which, after a suitable transformation, can be strictly 

. separated by a hyperplane. These assumptions are too 
restrictive for the practical applications considered in 
this work. In the clustering algorithm to be presented 
here, any number of clusters is allowed, the form of the 
separating surfaces is not as restricted, and strict 
separability of the clusters is not assumed. This al
gorithm is considerably more general than existing 
clustering algorithms in that it applies to time varying 
as well as time invariant patterns. 

We will assume that the waveform is vector valued, 
i.e., x(t) is in a set n = {x(t)\\\ i:(t)\\ < M, all 
t E [0, T xJ}, where i: (t) is the componentwise time de
rivative of x(t). It is assumed that each pattern class 
has some unknown probability measure on this set. 

A unified model for waveform recognition and vector 
recognition will be presented. It will be shown that the 
recognition of a vector pattern can be considered as a 
~pecial case of waveform recognition. This will be done 
by observing that the pattern space of n-vectors v is 
isomorphic to the space of all constant functions 
x(t) = v. 

Recognition of real functions of time will be possible 
by defining a transformation to the space n or by 
assuming that x (t) is one-dimensional. The problem of 
waveform recognition will be carried out in the space n, 
where the dimension of x(t) is most likely greater than 
one. 

The experiments on speech will show an interesting 
relationship between the sequential features and the 
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Figure I-Assumed process prodl1cing pattern waveforms 

standard linguistic phonetic structure for English. A 
recognition algorithm using sequential machines will be 
given that will accept symbol strings aul, ••• , auk to 
classify spoken words. 

SEQUENTIAL FEATURE EXTRACTION 

Figure 1 shows the process that is assumed to produce 
the vector waveform x (t). It is emphasized that this 
model may not represent an actual physical process 
as described. It is included as a means of demon
strating the assumptions about the sequential structure 
on O. In the figure it is assumed that there is some state 
of nature or intelligence such that pattern class i is 
present. The pattern classes are represented by the 
symbols Ui, i = 1, ... , R. There exists a second set of 
symbols A = {al' ••• , aM} called the phoneme set. Each 
ai is called a phoneme (while the terminology is sug
gestive of speech and language, there may be little 
relation to the speech recognition problem). The second 
step converts Ui into a finite sequence of phonemes 
aUl, ••• , auk, where U'i is the index of the ith phoneme 
in the sequence. The process of encoding Ui into 
aUl, ••• , auk is most likely unknown and is probably 
nondeterministic. That is, the sequence generated by a 
given Ui may not be unique. 

Each sequence is then assumed to go through an 
encoding process into a real waveform wet) E W, where 
W is the set of all continuously differentiable real wave
forms such that tV (t) and the time duration are bounded. 
This process is also most likely nondeterministic. For 
the most part, this encoding process is unknown; but 
some assumptions can ·be made. It is assumed that 
there is some unique behavior of wet) .for each ai. As 
each aui from aul, ••• , auk is applied to the encoder, 
the behavior of wet) changes in some manner. This 
behavior is detected by using a transformation to a 
vector function of time x (t) E O. This transformation 
can be considered to be described by some differential 
equation of the form 

t(t) = f[x(t) , w(t)], (1) 

where j:Rn X R ~ Rn is a bounded continuous func-

tion. The explicit form for this equation may not be 
known, but the system that it describes is assumed to 
be determined from the physical process producing 
w (t). If this differential equation is properly chosen, 
then the value of x (t) at any time t is some pertinent 
measure of the recent past behavior of w(t). 

We will shortly present a clustering algorithm on 0 
which is a generalization of the usual concept of cluster
ing. Clustering for the time invariant case will first he 
reviewed. It is assumed that there exists a rp.etric p that 
measures the similarity between patterns, where the 
patterns are assumed to be fixed points in Rn. p is such 
that the average intra-class distance is small, while the 
average inter-class distance is large. The method of 
cluster centers used by Ball and HalF will be used to 
detect the clusters. It is assumed that the number of 
clusters is fixed, say at M, and there are Si E Rn, i = 1, 
•.. , M, such that each Si has minimum mean distance 
to the points in its respective cluster. These Si can be 
found by minimizing the performance criterion 
Ex mini p(Si' x), where the expectation is with respect 
to the probability measure on Rn. 

These assumptions will now be generalized for pat
terns that are time varying. Here the phonemes ai play 
the part of the pattern class for the time invariant case. 
That is, the time invariant pattern vectors are assumed 
to be the same as the time varying case except that the 
phoneme sequence producing the vector is always of 
length one, and x(t) ·is the constant function. 

We will describe the general case in more detail. 
Here, as before, it is assumed that there is a similarity 
metric p on Rn. This metric measures the similarity of 
the behavior of w (t) at any given tiD?-e tl to that at 
any other time t2• This is done by measuring the 
distance p[x(tl ) , x(t2)], where it is understood that 
x(t) and wet) satisfy (1). The assumption is that (1) 
and p are such that if ai was applied to the waveform 
encoder both at time tl and tz, then p[ x (tl ) , x (tz)] is 
small. On the other hand, if aj was applied during tl 

and ai during t2, then p[x(tl ), X(t2)] is large for i ~}. 
In other words, each ai produces behavior in w (t) 
such that the corresponding values for x (t) tend to 
cluster in distinct regions of Rn. Thus, the ai are repre
sented by clusters in Rn. It is assumed that each ai 

has a cluster center Si associated with it. This implies 
that for each ai there is a point Si E Rn such that when 
ai is applied to the waveform encoder, the function 
x (t) tends to pass close to Si~ 

It will also be assumed that x (t) spends most of its 
time in those regions that are close to the Si. In other 
words, the more important features of w (t) are of 
longer duration. The example shown in Figure 2 illus
trates the foregoing assumptions. The figure shows the 
action of x (t) under the application of al, az, a3 to the 
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encoder. In the figure the width of the path is inversely 
proportional to II i: (t) II. 

This model is necessarily somewhat vague because 
we are unwilling to make assumptions about the prob
ability measures on O. If such assumptions were made, 
then a more formal definition of a cluster might be 
possible. For most practical problems such as speech 
recognition, these types of assumptions cannot be made. 

Assuming p and· the Si were known, they could be 
used to reconstruct an estimate of the sequence au 1, 

••• , auk for an unknown waveform x(t) in the following 
manner. Referring to Figure 3, each of the quantities 
p[Si, x(t)], i = 1, ... , M are continuously calculated 
and the minimum· continuously indicated. That is, 
suppose there exist times t1 = 0, t2, ••• , tk+1 = T x such 
that P[Sui, x(t)] ~ p[sj, x(t)] for all j ~ i and all 
t E [ti, ti+1], then it is assumed that the phoneme se
quence most likely to have produced x(t) is aul, ••• , auk. 
Note that no adjacent phonemes in the sequence ~re 
ever the same. It is also apparent that the output 
sequence is independent of time scale changes in x(t). 
If p and (1) are fixed, then for a given set of the Si, 

i = 1, ... , M there is a transformation defined by 
Figure 3. This transformation will be called T8:0 ~ P, 
where P is the set of all finite sequences of symbols 
from A, S = (SI', ••• , SM')' and the prime of a matrix 
denotes its transpose. 

t=O 

Figure 2-Example of waveform x(t) produced by sequence 
aI, a2, aa 

~(t) i-f(a.w(t» 
Jl{t) MINIMUM 

SELECTOR 

Figure 3-Implementation of a phonetic structure 

The pair (A, T8 ) defines a sequential structure on O. 
This sequential structure is extracted by the trans
formation T8 defined in Fig. 3. Thus, the terminology 
sequential feature extraction has been used. 

This definition of sequential feature extraction is 
unique in that it puts sequential structures in waveform 
recognition on a more formal basis. Gazdag8 has sug
gested a somewhat similar structure in what he calls 
machine events. His method involves linear discriminant 
functions, and he gives no method for determination of 
the structure. 

The objective of the learning algorithm will be to 
determine (A, T8 ) by determining the composite vector 
s. The differential equation in (1) and p are assumed 
to be determined from a study of the physical process 
producing wet). It is obvious that any random choice 
for S will define a sequential structure. The learning 
algorithm will be required to find that S which is 
-optimum with respect to some performance function. 
This performance function is generalized from that 
mentioned previously for time invariant patterns. 

Based on the previous discussion, the performance 
function for this case is 

E.C(s, x) ~ E. G. {' {min; pes;, x(t)]l dt)' (2) 

where C (s, x) is a function called the confidence function 
for a given waveform x (t) . The smaller C (s, x) is for a 
given x(t)) the more confidence, on the average, can 
be placed in the resulting sequence of phonemes. Taking 
the statistical expectation over the entire population 0 
gives us the performance function. 

The object of the learning rule will be to find an s* 
such that ExC (8*, x) is at least a local minimum for 
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ExC (s, x). It is obvious from (2) that direct evaluation 
of the performance function is not possible because the 
probability measures are not known. Using stochastic 
approximation, it can be shown that if a learning rule 
of the form 

(3) 

is used, then under certain conditions the sequence 
{ sn} converges almost surely to a saddle point or local 
optimum s*, where sn is the value for S at the nth 
stage of learning, xn is the nth sample waveform, and 
an is a sequence of scalers satisfying certain convergence 
conditions. Note that xn is unlabeled, i.e., no pattern 
class information is used in the learning rule. 

It can easily be seen that if x(t) = v, and Tx = 1, 
then the performance function in (2) reduces to that 
for the time invariant case. 

We are now in a position to calculate vC(s, x) for a 
given pattern x (t). Define 

A(Si) = {xERn I p(Si, x) < p(sj, x), all.i ~ i}. (4) 

Each region A (Si) corresponds to a phoneme ai. For 
each x(t), the sequence aul, ••• , auk is simply a list of 
the regions A (Si) through which x(t) passes. The 
t1, ••• , tk+1 are then the times at which x (t) passes 
from one region to the next. Using this, we can write 

k fli+1 
C (s, x) = :E p[Sui' x(t)] dt 

i=l ti 

(5) 

Taking the gradient and canceling terms we have 

(6) 

where V Sj is the gradient with respect to Sj. It is also 
understood that the integral of a vector function is 
meant to be the vector of integrals of each of the indi
vidual components. The learning rule in (3) becomes 

where 

00 

:Ean = 00, 

n=l 

00 

:E an
2 < 00, 

n=l 

(7) 

(8) 

xn (t) is the nth sample waveform, and Sjn is the value 
of Sj at the nth step of learning. An equivalent form is 

SjnH = Sjn - an 11 Xj[Xn(t) ]VSjp[Sj, Xn(t)] dt, (9) 
o 

where Xj is the characteristic function of A Sj). 

Example 1 Assume that p is the squared euclidean 
metric, i.e., 

n 

p(x, y) = :E (Xi - Yi)2. 
i=l 

The learning rule in thiS'-case becomes 

a (Txn 
st+1 = Sjn - Tn J" Xi[Xn(t) ][Sin - xn(t)] dt. (10) 

Xn 0 

AUTOMATIC SPEECH RECOGNITION 

The automatic recognition of speech has received 
much attention since the advent of the digital computer. 
Most of the previous work9- 12 in speech recognition has 
made use of the phonetic structure of speech. Almost 
all of these studies use the standard linguistic phonetic 
structure. Here we investigate the applicability: of se
quential feature extraction to the speech recognition 
problem. A sequential structure will be developed using 
a limited vocabulary. It will be seen that the resulting 
structure is related to the standard English phonetic 
structure. Because of this relationship to speech, we 
will refer to sequential feature extraction as a machine 
phonetic structure. 

In order to represent the speech waveform w (t) as a 
vector function of time we will use the common method13 

of a bank of bandpass filters. In the experiments 50 
filters were spaced from 250 to 7000 hz. Each filter was 
envelope detected and sampled by an AID converter 
and multiplexor. Therefore, x(t) is a 50 dimensional 
vector function of time. 

Kabrisky14 has shown that a neuron network similar 
to that found in the brain is capable of performing 
correlation calculations. Based on this we assume that 
the similarity metric defined by 

p(x,y) = (1- 11 x~·IIYII) = ~CI :11-11;11)' 
(11) 

is valid for speech sounds. Note that p (ax, by) = p (x, y) 
for all a, b, x, y, i.e., the metric p is invariant to ampli
tude changes in the signal. Using this metric we have 
the following learning rule. 

(12) 
where 

1 (1 ,) 1 
4.i = II"sin " " Sin W SinSi

n 
- I T Xn 

17

'x

n 

Xi[Xn(t) ]Xn(t) dt (13) 
o 
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where 

1 
Xn (t) = II Xn (t) W Xn (t) , 

and I is the n X n identity matrix. 

(14) 

If we normalize x (t) as part of the preprocessing and 
normalize each Si after each step of learning, then we 
can write the learning rule as 

jTZn Xi[X(t) Jx(t) dt (15) 
o 

This rule was used to develop the phonetic structure 
presented in the next section on the experimental 
results. 

MACHINE PHONETIC STRUCTURE 
EXPERIl\1:ENTAL RESULTS 

This section describes the results of experiments using 
the data acquisition equipment previously described. 
The basic goals of the experiments were 

(1) test convergence of the algorithm 
(2) determine effects of local optimums 
(3) provide output for use in speech recognition 
( 4) determine relationship to the standard linguistic 

phonetic structure, if any. 

There were two sets of data used for the tests. One 
set consisted of 50 utterances each of the words "one", 
"four", "oaf", "fern", "were". These words were chosen 
because they contained a small number of sounds with 
an unvoiced as well as voiced sounds. One speaker was 
used for all utterances. It was found that the speaker's 
voice had enough variation to adequately test the 
algorithm. If the algorithm had been tested with many 
speakers, the variance would have been much larger. 
This would have lengthened the convergence times 
beyond what was necessary for a sufficient test. 

The larger data set consisted of 40 utterances of 
each of the ten digits "one", "two", . i ., "nine", 
"oh". These were all spoken by the same person. 
These words contain a wide variety of sounds: voiced, 
unvoiced, dipthongs, plosives, etc. This set was used to 
give a somewhat more severe test of convergence and 
to provide data for speech recognition. We will now 
consider the four goals of the experiments separately. 

Convergence: Many runs with the small data set were 
made. Different starting points were chosen, and other 
conditions were varied. In all cases the algorithm 
showed a strong convergence. 

Because there was only a finite set of samples, the 
convergence properties in (8) were academic. In order 
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Figure 4-Improvement of the performance function 

400 

to better determine convergence, the sequence {an} 
was chosen to be constant over many steps of learning. 
If convergence was apparent under these conditions, 
then convergence under decreasing step increments can 
be assumed. 

Figure 4 shows an example of the convergence of 
C (s, x) using the large data set. Due to the variance 
of the data, a direct plot of C(s, x) at each step of 
learning shows very little. The individual points for 
C (s, x) are so scattered that convergence is difficult to 
see. Figure 4 shows the plot after data smoothing. The 
solid curve represents averages of ten successive values 
of C (s, x). The dotted line represents further data 
smoothing. It can be seen that the performance function 
is not improved at each step but is improving over 
many samples. In order to demonstrate that the com
ponents of sn were converging as well as C (s, x), the 
plot in Figure 5 was made. This is a plot of the tenth 
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Figure 5-Convergenre of the 10th component of 86 
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Figure 6-Improvement of E C(8, x) 

channel for 86 of the small data set. The computer 
listing for each step of learning was examined to find a 
rapidly changing component. This component is typical 
of the convergence of these values. Note that at the 
beginning there are rapid and random changes in its 
value due to the large value of an and the fact that the 
structure is rapidly changing. The learning then appears 
to enter a phase where the structure is rapidly de
scending toward a minimum. The last part of the 
learning seems to be random fluctuation about the 
optimum. Note that convergence appears to take only 
about 150 steps. 

Local Optimums: It was found that there definitely was 
more than one optimum. By choosing different starting 
points, the algorithm converged to different optimums. 
To see this, examine Figure 6. This is a plot of the 
smoothed data. for two runs with the small data set. 
Each learning run was made with the same data except 
that the starting points were different. It can be seen 
from the figure that the initial point one converged to 
a local optimum that was not as good as that for the 
initial point two. We can be fairly certain that the 
first point will never converge to the second, since more 
than twice the number of learning steps were run for 
point one than for point two. 

The Standard Phonetic Structure: The output strings 
from sample words were inspected for similarities to 
standard phonetic spellings. IS It was found that the two 
structures were similar in many respects. A one-to-one 
correspondence could be made between certain standard 
phonemes and machine phonemes. This was particu
larly true for consonants such as [sJ or [f]. The two 

structures were not equivalent for vowels or glides with 
time changing spectra. In this case the machine struc
ture appeared to develop phonemes that represented 
transitions between the standard phonemes. 

RECOGNITION OF PHONE1VIE STRINGS 

In this section we present a means of classifying the 
phoneme strings that are produced as a result of se
quential feature extraction. For completeness, we shall 
restate the recognition problem here. There is a set 
of symbols A = {aI, "', aM} called phonemes. The 
pattern space P is the set of all finite sequences of 
symbols from A. A typical pattern from P will be 
denoted either by the sequence a Ul1 "', aUk or by q. 
There are R pattern classes, each class has some char
acteristics associated with its sequences that differ
entiate it from the other classes. 

If one were to use a Bayes decision procedure, the 
following would be needed. According to decision theory, 
in order to minimize the probability of error, the dis
criminant functions 

g i (q) = p (q I i) p ( i) , i = 1, "', R (16) 

are needed, where q E P, p (q I i) is the probability of q 
given pattern class i, and p (i) is the a priori probability 
of class i. If it can be assumed that the p (i) are all 
equal, then they can be dropped from (16). The prob
lem is then to estimate p (q I i) for all q and i. It is 
obvious that even if the length of the strings is bounded, 
the estimation of all the probabilities in (16) is an 
almost impossible task for a phoneme set of any size. 
For example, if there are ten phonemes and the strings 
are assumed to be no longer than length 5, then the 
number of probabilities is greater than 510. The amount 
of data to estimate these probabilities is too large to 
obtain practically./ Therefore, a Bayes decision pro
cedure for this case is impractical. A decision procedure 
that does not require the estimation of all possible 
probabilities will have to be found. 

In order to motivate the development that follows, 
we will outline the basic approach used for this recog
nition problem. A concept of the storage of prototype 
pattern strings is extended to what is called a generalized 
prototype str~ng. This concept will be used in the pattern 
recognition problem as follows. The generalized proto
type string will be defined as a truncated Markov 
chain. R of these Ml1rkov chains are defined. These 
1VIarlmv chains produce finite strings of symbols in P. 
The probability measures p (q I i) on these strings are 
assumed to approximate the probability measures for 
each of the R pattern classes. These generalized proto
type strings are used to define sequential machines for 
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recognition. These sequential machines will accept an 
unknown string q and calculate p (q I i). This will then 
be used to classify q according to (16). 

The need for generalized prototype strings comes 
from the fact that the intra-class variance of the strings 
is large. If this variance is small, then a straightforward 
method of recognition exists. This method 'would be to 
store the most common output strings for each class. 
Each unknown pattern string q would then be matched 
against the stored strings. If there is a match with one 
of the stored strings for class i, then q will be put in 
pattern class i. If, however, the strings within a pattern 
class show a large variance, too many strings will have 
to be stored in order to recognize a reasonable number 
of patterns. To reduce the storage requirements in this 
case, the following concept of a generalized prototype 
string has been formulated. 

In order to simplify notation, we will work only 
with the indices of the strings and omit the symbols a. 
In other words, if we have a string acl'l' "', aUk' then 
we will describe this string as 0"1, "', O"k. This will 
cause no confusion. 

If there are M phonemes in A, then the possible 
indices for the symbols ai run from 1 to M. Assume 
that there is a new symbol aM+1 that represents string 
termination. That is, using the notation introduced 
above, each string is of the form 0"1, "', O"k, M + 1. 
This will be useful when the truncated Markov chains 
are defined. 

Suppose we: have a prototype string n1, "', nm, 
nm+l = M + 1. This string will be used to define a 
Markov chain that terminates when JJI + 1 appears. 
To do this, assume that there exist probabilities p (i) , 
i = 1, "', m, and p ( j I k), j = k + 1, "', m + 1, 
k = 2, "', m + 1. These probabIlities, along with the 
sequence defined above, can now be used to define a 
Markov chain. This chain will produce subsequences of 
nl, .. " nm+l. If nil' "', nik' nm+! is such a subsequence, 
then, using the above probabilities, the l\1:arkov prop
erty allows us to write 

k 

= P(il)p(m + 11 ik ) II p(ij I i j - l ) , (17) 
j=2 

where p (nil1 "', nik' nm+!) is the probability th~t this 
subsequence occur~, p (il ) is the probability that index 
il is the first index in the subsequence, and p (ij I ij-l) 
is the probability that index i j follows i j - 1• Note that 
if at any time i j = m + 1, the string terminates. Also 
note that the subsequence preserves the order of the 
original sequence. That is, p ( j I k) = 0 for j ~ k. 

In accordance with the above discussion we have the 
following definition. 

Definition 4. A sequence nl, "', 11m, nm+! = M + 1 
together with the probabilities p (i), p (j I i), j = i + 1, 
• • " m + 1, i = 1, "', m is called a generalized proto
type string S. The string S is said to be generated by 
nl, "', nm, nm+l. 

Definition 5. The range of a generalized prototype string 
S is that set of subsequences Q such that a subsequence 
ni" "', nik' 11m+! is in Q if and only if p (nil) "', nik' 
1'111'+1) > o. 

Thus, the generalized prototype string is actually a 
probability measure on P. Suppose that 0"1, "', O"k, 

ill + 1 is a string in P. If this sequence is not in the 
range of S, then there is a subsequence nil) •• " nik' nm+! 
such that O"j = nij for all j. The probability measure on 
P is defined in the following manner. 

Definition 6. If 0"1, "', O"k is a sequence in P, then define 

p (0"1, "', O"k) = 0, if 0"1, "', O"k is not in the 

range of S. 

is in the 
range 
of S, (18) 

where nil' •.• , nik' nm+! is such that 0" j = nij for all j, 
and p (nil' .. ', nik, nm+l) is defined in (17). The 
probability in (18) will be called the measure associated 
with S. 

It can now be seen that the usual notion of a proto
type string isa special case of the generalized prototype 
string. If p(l) = 1, and p(i I i-I) = 1 for all i, then 
the resulting range of S consists only of the string 
nl, "', nm+1. This corresponds to the method described 
at the beginning of this section. 

The following approach to the recognition problem 
will now be taken. Each pattern class i has a prob
ability measure p (q I i) associated with it. It is assumed 
that there exist generalized prototype strings Si, i = 1, 
.. " R, such that p (q I i) is the measure associated 
with Si. In other words, we are using the concept of 
the generalized prototype string to approximate the 
measure p (q I i). The learning procedure will require 
that each Si be determined. A recognition procedure 
must also be developed that will allow each of the 
p (q I i) to be evaluated for an unknown pattern. To 
simplify notation, write Pi(q) = p(q I i). 

The calculation of Pi(q) associated with each Si can 
be implemented by the use of sequential machines. It 
was shown that the measure on the range of Si was 
the result of a truncated Markov chain. Let nli

, "', 

nml i, M + 1 be a string that generates Si. Assume for 
the moment that this string and the associated prob-
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abilities have been completely determined. The se
que~tial machine that implements Si contains mi + 2 
states. These states are labeled (0), 1, 2, 000, mi, 
mi + 1, where (0) is the reset or power on state and 
mi + 1 is the terminal state. In other words, each 
machine state j is associated with the corresponding 
term n/, for j = 1, 000, mi + 1. The (0) state corre
sponds to the start of the sequence. Each state tran
sition is defined in the following manner. 

Let Pi(j), pi(k Ij), k = j + 1, 000, mi + 1, j = 1, 
o 0 0, mi be the probabilities used to define Si. Suppose 
the sequential machine M i is in state (0). If P (j) ~ 0 
define a transition to state j for input symbol nj. 1f 
p(k) = 0 for some k, there is no transition from (0) 
to state k. Now suppose the sequential machine is in 
state k. If p ( j I k) ~ 0, define a state transition from 
state k to state j for input nj. Continue for all such 
states from 1 to mi. This process completely defines 
the sequential machines Mi. 

Definition 7. The sequential machine Mi is said to 
accept a sequence 0"1, 0 0 0, O"k if this sequence is contained 
in the range of Si. 

We are now in a position to see how the above se
quential machines lIl i can calculate the probabilities 
Pi(q). Recall that each state transition was defined 
using one of the probabilities Pi ( j), or Pi ( j I k). Thus, 
each state transition has an associated probability. If 
machine Mi accepts pattern string q, thenthere is a 
sequence of state transitions leading to the final state 
mi + 1. Each state transition has an associated prob
ability. If, the product of all these probabilities is 
formed, then it is seen that the result is the product in 
(17) . But, it has been seen that this is the desired prob
ability Pi(q) from Definition 6. 

Therefore, the recognition procedure is as follows. 
The unknown string q is applied to all the sequential 
machines Mi , i = 1, 000, R. If none of the machines 
accept q, then it is rejected as unrecognizable. For .each 
machine Mi that accepts. q the probability Pi(q) is 
calculated in the following manner. An accumulator 
register is initialized to the value 1 at the start of q. 
As each state transition is made during the application 
of q the probability associated with that transition is 
multiplied by the contents of the accumulator, and the 
result is stored back in the accumulator. After the 
machine reaches the final state mi + 1, the desired 
probability Pi(q) is in the accumulator. These calcu
lated probabilities are then used to classify q in the 
sense of (16). 

Two examples will now be given that will clarify the 
above development. 

Example 2. Suppose there are three phonemes in A. 

1-.1 4-.1 

Figure 7-(a) State transiti~n diagram for pattern class 1 with 
associated probabilities, and (b) State transition diagram for 

pattern class 2 with associated probabilities 

That is, A = {I, 2, 3}. Assume there are two pattern 
classes and that the prototype strings for these two 
classes are 

1, 2, 3, 4 

2, 3, 1, 4 

The transition probabilIties are as follows: 

P1(1) = .5 P1(1 12) = .3 P1(213) = .9 

P1(2) = .5 p1(1 13) = .6 P1(214) = .1 

Pl(3) = 0.0 P1(114) = .1 P1(3 14) = 10 

p2(1) = 1.0 p2(1 I 2) = 1.0 P2(213) = .5 

P2(2) = 0.0 p2(1 13) = 0.0 P2(214) = .5 

p2(3) = 0.0 p2(1 14) = 0.0 P2(3 14) = 1.0 

These sequences and probabilities can be used to design 
the sequential machines shown in the state transition 
diagrams in Fig. 7. By inspection of the state transition 
diagrams it can be seen that the range lor S1 consists 
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of the strings 
1234 
124 
134 
14 
24 
234 

The measure associated with Sl is then seen to be 

P1(1234) = .5 X .3 X .9 X 1.0 = .135 

P1(124) = .5 X .3 X .1 = .015 

P1(134) = .5 X .6 X 1.0 = .3 

P1(14) = .5 X .1 = .05 

P1(24) = .5 X .1 = .05 

P1(234) = .5 X .9 X 1.0 = .45 

In the same manner, the range for S2 is 

234 
2314 

The measure associated with S2 is 

P2(234) = 1.0 X 1.0 X .1 = .1 

P2(2314) = 1.0 X 1.0 X .9 X 1.0 = .9 

Note that the ranges for Sl and S2 overlap in that 234 
is common to both. But 234 will be put in class 1 since 
P1(234) > P2(234). 

There is a subtle point about the application of the 
Markov chain. While the strings in the range of a 
generalized prototype string are assumed to be produced 
as a result of a Markov process, the strings themselves 
are not Markov. The next example will illustrate this 
point. 

Example 3. Consider the generalized prototype string 
shown in Fig. 8 (Sequential machines will be used to 
define the Si from this point on since the notation is 
more compact). The range of this generalized prototype 
string is 

1324 
134 
234 
2324 

4-.3 

Figure 8-Example of prototype string whose range is not Markov 

(here, A is the sam~ as in Example 2). If these strings 
were produced by a Markov process, then p(4113) = 

p(4123) and p(2113) = p(2123). But, from the 
figure it can be seen that this is not the case. For 
p(4113) = .3, and p(4123) = .6. Also, p(2113) = .7 
and p (2 I 23) = .4. Thus, while the range of S is pro
duced by a Markov process of the states of the se
quential machine, the resulting strings in the range are 
not Markov. 

TABLE I-Example of Table for Sequential Structure 

original strings 

1 5 1 2· 4 3 
1 2 3 
1 2 3 
1 2 3 
1 2 3 
6 5 1 2 3 
1 2 3 
1 2 3 
5 1 2 6 3 
1 2 4 3 
1 2 4 3 
1 2 3 
1 5 1 2 3 
1 2 
5 1 2 4 3 
6 5 2 3 
1 2 
1 2 3 
1 2 6 3 
5 1 2 3 
5 6 2 6 3 
1 5 6 3 
5 1 2 4 3 

5 1 2 4 3 
2 3 
2 3 
2 3 
2 3 

6 5 1 2 3 
2 3 
2 3 

5 1 2 6 3 
2 4 3 

1 2 4 3 
1 2 3 
1 5 1 2 3 
1 2 

5 1 2 4 3 
6 5 2 3 

1 2 
1 2 3 
1 2 6 3 

5 1 2 3 
5 6 2 6 3 

1 5 6 3 
5 1 2 4 3 
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Unfortunately, the method for learning the Si is 
not as formal as the preceding. The prototype strings 
were determined from the tables of sample strings. For 
example, consider the sample strings in Table 1. Each 
string has been listed in the table so that each column 
contains only one phoneme. The strings have been ar
ranged so that the order of the phonemes is unchanged 
and the number of columns is minimized. These tables 
were formed by a manual procedure, and at present 
this procedure cannot be written as a sequence of steps. 
Once these tables have been determined, the prototype 
sequences can be defined. Each of. the columns in the 
tables contains a distinct phoneme. These phonemes 
are taken to be the prototype string that generates 
Si for each class i. This is best described through the 
use of an example. Consider the table for "one" In 
Table II. For this case 

A = {I, 2, 3, 4, 5, 6, 7,10,11,12,13,14,15,16, 

17,20,21,22} 

The prototype string that generates S1 for the class 
"one" is 10, 22, 20, 17, 16, 11, 17, 11, 1, 15, 5, 3, 1, 15, 3. 
Crude estimates of the probabilities can also be made 
by counting the transitions between states as defined 

TABLE II-Samples of Output Strings for "One" 

10 20 17 11 1 15 1 5 1 15 
22 11 17 1 

10 17 11 1 15 
10 17 15 1 1.5 1 
10 20 17 11 1 

22 17 11 1 15 1 
16 11 1 15 

10 22 11 1 
22 11 1 li5 1 

10 22 11 15 1 
20 17 11 15 

22 11 1 
10 17 11 17 1 15 
10 22 11 17 15 
10 20 17 11 1 15 

22 17 11 1 15 
10 20 17 11 1 .15 5 1 15 
10 20 17 15 1 

20 17 15 1 
22 17 11 15 

17 11 17 15 1 5 1 15 
10 17 11 15 
10 20 17 11 1 1.5 

22 20 17 11 1 15 3 5 3 Ii') 3 

22 11 1 15 1 

Figure 9-State transition diagram for "ONE" 

by rows in the table. Using these probabilities and the 
above prototype string, we have the generalized proto
type string for "one" in Figure 9. 

A computer program was written that simulated the 
entire recognition system. The program accepted iso
lated words, computed the phoneme strings, and imple
mented the sequential machines. The sequences in the 
training set were recognized using the sequential ma
chines. Using this method, the recognition rate was one 
hundred percent for the 250 patterns in the training set. 

In order to further demonstrate the power of the 
algorithm, the recognition was run using a restricted 
system. The association of probabilities with state tran
sitions was removed. Recall that the calculated prob
abilities for an imput pattern string were used only if 
more than one machine accepted the string. In order 
to provide a more severe test for the concept of using 
sequential machines, the use of the calculated prob
abilities was dispensed with. In this case, only one 
pattern from the 250 was accepted by more than one 
machine. One sample pattern for "three" was accepted 
by both the machine for "three" and "two". Thus, 
under these circumstances, the sequential machines 
performed most satisfactorily. 

It was desirable to continue to simplify the algorithm 
in order to see when the performance began to degener
ate. Therefore, the following additional simplification 
was tried. The assumption that each input string had 
phoneme M + 1 in the terminal position was dropped. 
Using the same definition of acceptance, this implies
that a sequential machine will accept an input string 
even if the machine is not driven to its final state. 
It is stressed here that these changes in the algorithm 
were not made to try to improve performance, but were 
made to try to see- how far the algorithm could be 
degraded and still achieve good results. 

Recognition was attempted using the strings without 
the terminal symbol described above. The sequential 
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machines with no probabilities were used. If more than 
one machine accepted a pattern, then it was assumed 
to be an error. Under these conditions, the error rate 
was 4%. That is, there were ten error patterns out Qf 
the 250 presented to the system. The confusion matrix 
for this test is given by 

decision 
class 

1 2 3 4 5 678 9 0 

1 25 

2 

3 

p 4 
a c 
t 1 5 
t a 
e s 6 
r s 
n 7 

8 

9 

o 

22 1 

1 20 

24 

1 

1 

2 

24 

25 

3 21 

25 

23 

25 

This' algorithm represents considerable simplification of 
the full algorithm. Under these conditions the error 
rate was still low. We can conclude that ·the potential 
of the complete algorithm is such that further work is 
highly desirable. 

The conclusions that can be made from this section 
are as follows. It has been seen that sequential feature 
extraction has considerable utility for use in the two 
stage recognition procedure presented here. The struc
ture produces phoneme strings that can easily be used 
to design the sequential machine for the second stage 
of recognition. The recognition results in the second 
stage were encouraging. The initial motivation for de
velopment of the second stage recognition was to 
demonstrate the capabilities of the machine phonetic 
structure. However, the experimental results indicate 
that this has potential for solving recognition problems 
independent of the sequential feature extraction. 

CONCLUSIONS 

In this study we have presented a means of detecting 
sequential structures in waveforms for recognition. This 

process is called sequential feature extraction. The 
waveforms were assumed to be produced by a random 
process that was unknown. A learning algorithm that 
automatically generated a structure for sequential fea
ture extraction was presented. This learning rule was 
unsupervised, and was shown to be a generalization of 
previously unsupervised learning rules for the time 
invariant case. 

It was shown that sequential feature extraction could 
be considered as a transformation Ts from W to the 
set -uLall finite sequences of symbols from a set A 
called the phoneme set. A structure on Ts was de
veloped so that the transformation was dependent on 
a set of parameters s. This allowed us to find an s 
that was optimum with respect to a performance 
function. 

This algorithm was applied to a problem in speech 
recognition. Experiment!;tl results were given that 
showed interesting relationships between the standard 
phonetic structure and the structure developed by se
quential feature extraction. It was concluded that the 
automatically developed structure was related to the 
linguistic structure, but that there were significant 
differences due to the continuously time changing 
character of speech. 

A new concept called the generalized prototype string 
was presented. This was a generalization to the prob
abilistic case of the method of storage of prototype 
strings. Each generalized prototype string was seen to 
be a means of approximating the probability measures 
on P. Once the generalized prototype strings were 
found, it was possible to design sequential machines 
for recognition. These sequential machines were seen 
to implement the calculation of estimates of the indi
vidual pattern class probabilities Pi(q), where q E P. 
Using these probabilities, the pattern could be classified 
according to Bayes decision theory. 

The sequential feature extraction presented in this 
study represents a new approach to waveform recog
nition and unsupervised learning. For the case of 
speech, it was seen that sequential feature extraction 
was related to a phonetic structure. While phonetic 
structures are not new, the concept of using unsuper
vised learning to automatically develop a phonetic 
structure is new. The sequential structure in speech or 
other types of waveforms can be detected by using this 
algorithm. Because the algorithm is automatic, there 
is no bias due to previous results from linguistics. This 
is a particular advantage if the algorithm is to be 
applied to applications other than speech. 

The restriction of the unsupervised learning algorithm 
to the time invariant case showed that the algorithm 
had advantages over current methods. No knowledge 
of the probabIlity measures is required, strict separa-
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hility of clusters is not required, the class of allowed 
metrics is large, and there is no requirement that the 
sample patterns he stored for processing since the 
algorithm will accept patterns one at a time. 

REFERENCES 

1 B P LATHI 
Signals, systems and communication 
Wiley New York 1965 

2 S C FRALICK 
Learning to recognize patterns without a teacher 
IEEE Trans Inf Th Vol 13 pp 57-64 January 1964 

3 D P COOPER P W COOPER 
Adaptive pattern recognition without supervision 
Proc IEEE International Convention 1964 

4 E A PATRICK J C HANCOCK 
N onsupervised sequential clas8ification and recognition of 
patterns 
IEEE Trans on Inf Th Vol 12 July 1966 

5 C G HILBORN D G LAIN lOLlS 
Optimal unsupervised learning multicategory dependent 
hypothesis pattern recognition 
IEEE Trans Inf Th Vol 14 May 1968 

6 E M BRAVERMAN 
The method of potential functions in the problem of training 
machines to recognize patterns without a teacher 
Automation and Remote Control Vol 27 October 1966 

7 G H BALL D J HALL 
ISODATA -An iterative method of multivariate analysis and 
pattern classification 

International Communications Conference Philadelphia 
Pennsylvania June 1966 

8 J GAZDAG 
A method of decoding speech 
University of Illinois AD 641 132 June 1966 

9 K W OTTEN 
Simulation and evaluation of phonetic speech recognition 
techniques-Vol I I I Acoustical characteristics of speech sounds 
systematically arranged in the form of tables 
NCR Company AD 601422 March 1964 

10 I LEHISTE 
Acoustical characteristics of selected English consonants 
Int J Am Linguistics Vol 30 July 1964 

11 W F MEEKER A L NELSON P B SCOTT 
Voice to teletype code converter research program. Part 11-
Experimental verification of a method to recognize phonetic 
sounds 
Technical Report ASD-TR61-666 Part II AD 288099 
September 1962 

12 K W OTTEN 
Simulation and evalutation of phonetic speech recognition 
techniques VolJI-Segmentation of continuous speech into 
phonemes 
NCR Company AD 601423 March1964 

13 J L FLANNAGAN 
Speech analysis, synthesis and perception 
Springer-Verlag New York 1965 

14 M KABRISKY 
A proposed model for visual information processing in the 
human brain 
University of Illinois Press Urbana Illinois 1966 

15 J S KENYON T A KNOTT 
A prouncing dictionary of American English 
G & G Merriam Springfield Massachusetts 1953 



Pulse-Amplitude Transmission System (PATSY)* 

by NEAL L. WALTERS 
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Research Triangle Park, North Carolina 

SU1VIMARY 

A new type of pulse-amplitude transmission system 
(PATSY) has been developed to transmit numeric data 
asynchronously over relatively short distances. The 
"transmitting station" requires no power or data set. 
As many as 32 transmitting stations can be attached 
to a single "receiving station." Other advantages are 
simplicity, flexibility, and low cost. 

The low-speed system has similarities to a Touch
Tone** telephone, using resistors instead of tone oscil
lators .. Resistors are less expensive and may be more 
reliable. The adapter in the sending station operates 
similarly to an ohmmeter which reads resistances in 
either polarity. 

INTRODUCTION 

A new type of pulse-amplitude transmission has been 
developed to transmit numeric data asynchronously at 
low rates* over short distances (up to 1,000 feet). The 
transmission is unique in that the terminating "data 
entry unit" requires no power or data set. Other ad
vantages are two-wire lines which are easy to install 
and change, small amount and simplicity of hardware, 
and low cost. 

The pulse-amplitude transmission system (PATSY) 
is being used to transmit data on personnel and machine 
performance, materials, job status, etc., between data 
entry units and area stations. Up to 32 data entry 
units can be attached to one area station. 

* PATSY is not a pulse-amplitude transmission system in the 
sense that the transmitting station sends pulses to the receiving 
station. However, the data appearing on' the transmission lines 
takes the form of amplitude-encoded pulses. 
** Trademark of Bell Telephone Company. 
* At 40 cps in the IBM 2790 Communication System for which 
developed (Figure 1), but could be used for higher rates. 
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The data entry units are polled (scanned) by the 
area stations, at a rate of 250 units a second, to de
termine when one is ready to send data. Line turn
around is relatively unimportant because lines are short 
and data flow is primarily one-way (from the termi
nating data entry units into the area stations). The 
only transmissions out to the data entry units are a 
signal to start the unit reading when the scanner in an 
area station finds a data entry unit requiring service, 
and an acknowledgment of a data entry indicating 
whether it has been satisfactorily received. 

The low-speed system has similarities to a Touch
Tone telephone except that resistors have been substi
tuted for the tone oscillators (Figure 2). Resistor-diode 
circuits are less expensive and may be more reliable 
than oscillator circuits. They are arranged, with two 
diodes, into two banks. By sampling with alternate 
positive and negative pulses, one particular resistance 
value (and, thus, character) out of the character set 
can be identified. Alternate pulsing makes it possible 
to use half as many resistors with twice the separation 
between values, and thus obtain more reliable identifi
cation. 

Therefore, the operation of the PATSY adapter in 
the area station is similar to that of an ohmmeter, 
capable of reading resistances in either polarity. When 
a data entry unit is ready, it informs the area station 
by placing a short circuit on its pair of wires. 

The area station then sends a voltage pulse as a start 
command to the data entry units, which begins placing 
combinations of resistances on the wires, interspersed 
with "open-circuit" periods. The area station uses the 
open-circuit condition to provide timing information 
between characters, and reads the resistance levels to 
determine what characters are being transmitted. When 
the transmission has been completed, the area station 
sends another voltage pulse to the data entry unit to 
indicate that the message has been received. 



78 Spring Joint Computer Conference, 1970 

Figure 1-IBM 2790 communication system 

THE PATSY INTERFACE 

To distinguish between the two wires connecting the 
Data Entry Unit and the PATSY adapter, one wire 
will be called the "high line" and the other the "low 
line." Values of resistance placed across the lines by 
the Data Entry Unit will be referred to as follows: 
resistances measured with the high line po~itive with 
respect to the low line will be labeled "polarity 1" 
(Pl ) and resistances measured with opposite polarity 
will be labeled "polarity 2" (P2). There are five re
sistance levels in the PATSY code. They are: Ro, an 
open circuit; Rl , R2, and Ra in order of descending 
resistance; and R4, a short circuit. Transmission over 

----_r----r-----r---OO High Line 

R3 R2 R4 R3 

L-----~---~-----~--------~----~~wLine 

Figure 2-Examples of PATSY characters 

PATSY occurs in the sequence shown in the following 
paragraphs. 

Inactive (used for diagnostic testing) 

In the inactive state, a data entry unit will have R3 
with polarity 2 across the lines. The polarity 1 resistor 
is not used but the polarity 2 resistance allows the 
system to check the wiring and connections to the unit 
in a diagnostic-test mode by having the adapter read 
that P2 resistance. In this way, shorted or open lines 
and missing units can be detected. 

Request for service 

When a data entry unit is ready to send data, it 
makes a request for service by a R4, Pl. This resistor 
must remain on the line until sometime after the start 
command. The P 2 impedance is not read. 

Start command 

The Start Command sent by the PATSY adapter 
to the data entry unit is 11 P2 voltage pulse; that is, the 
low-line is positive with respect to the high line. Pulse 
amplitude is 30 volts with a duration of approximately 
60 milliseconds, and it is able to drive a 100-ohm load. 

Data transmission 

The data entry unit is required to provide a P l open 
circuit continuously for a minimum of three milli
seconds preceding each character. For the first character, 
this open circuit time begins after the start command 
pulse has finished. There is no limit on how long an 
ope'n circuit can last (within the constraints of the time
out criteria of the particular program controlling the 
system). 

After the open-circuit time, the data entry unit places 
the Pl resistance on the line (which will be in the normal 
high-line positive state for open-circuit time and the 
first part of the character reading). After approximately 
five milliseconds, the polarity on the line will be reversed 
by the adapter and the P2resistance will be read. After 
six more milliseconds, the line will be reversed to wait 
for the next Pl, open circuit condition. 

These two resistances, of opposite polarity, constitute 
a character. They may be placed across the line at the 
same time and left across the line for a minimum of 12 
milliseconds. The maximum time that they can be left 
on the line is only limited by system time-out con
straints. Opening the circuit by removing the P l re-



1st Polarity 
Reading 

* 

5 

1 

9 

* 

* 

-

* 

2nd Polari ty 
Reading 

Undetectable 

= * 

4 7 

Space fTX 

0 3 

* 

6 

2 

8 

* Unassigned 

TABLE 1-2790 5-Level PATSY Code 

sistor indicates to the receiving station that character 
transmission has been completed. 

Table I shows the coding used for PATSY characters. 
The rows represent the Pl half of a character, the 
columns the P2 half. Ro is illegal as the Pl half of a 
character sin~e a Pl, open circuit is reserved for the 
timing information used to. separate characters. The 
10 numbers, dash, equal sign, space and ETX (end of 
text) are used, leaving six unassigned characters. 

End request 

The. particular combination of resistances, Rg, with 
polarities 1 and 2, constitute the end request from a 
data entry unit, and is sent as the last data character. 
It is not necessary that the end request be followed by 
an open circuit. When the PATSY ETX character is 
detected, reading ceases and the receiving station waits 
for instructions from the system controller on how to 
answer the data entry unit. 

End command 

After the PATSY data entry unit makes an end 
request, the system will send an end command. The 
command will be either a normal end command indi
cating the message has been received with no detectable 
errors, or an error· end meaning an error has been de
tected. In addition, the system will send an error end 
command a predetermined time after the start command 
if no end request is detected. This time-out will depend 
on the type of data entry unit. 
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A normal end command will return the data entry 
unit to its inactive state and is the same as the start 
command except that it lasts twice as long. An error 
end command has the same amplitude and duration of 
the normal end command but will have the opposite 
polarity. The error end command inhibits further oper
ation of the data entry unit until the operator resets the 
terminal. He is informed of the error by a red button 
popping up. 

RESISTANCE READING 

Resistance values are sensed by the circuit shown in 
Figure 3. The plus voltage is used as the transmission 
voltage as well as the circuit supply. In the block 
diagram (Figure 3a), the reference resistors of block 3 
provide the high and low parts of a voltage divider with 
the data-entry-unit resisto:r, plus wire and other un
known impedances. The matched 200-ohm reference 
resistors were chosen to minimize noise pickup by their 
relatively low impedance and the desire to keep the 
line balanced. The polarity switch and low-pass filter 
are omitted from Figure 3b for simplicity. 

This combination of impedances produces a difference 
voltage, Vd, which is the input to a differential amplifier, 

<A) 
Block Dlaglarn 

+v 

..., 
.... Iea TIs-lei + ...... 

I ~. Y 
....... r._ .. y ____ ..... --L 2Ita., + lSerIea + ...... y 

... , 

Figure 3-PATSY reading circuit 
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TABLE II -Character Timing 

Time (milliseconds) 

o 
0,-1 
1-4 
4 
4-7 
7-10 

10 
10Yz 

11 
11 + t, 0 < t 

Condition 

Open circuit 
Open circu condition ceases 
Low-pass filter is allowed to settle 
Positive half is read* and stored 
Polarity is reversed 
Low-pass filter is allowed to settle 
Negative half is read* and stored 
Polarity is reversed 
Character is transmitted to system 

controller 
Timing holds for open circuit 
Open circuit, timing is reset 

* For. these three milliseconds, the value of the lowest threshold 
detector which is crossed is stored. For example, 01 may be crossed, 
then 02, and finally 03 is crossed for only a few microseconds in the 
three millisecond period. The reading will be taken as R3• 

which has a gain of one, and is used for common-mode 
rejection. At the output of the amplifier, threshold 
detectors are used to determine when V d drops to 
specific levels. Threshold detector one indicates when 
Vd is less than the level Ecc - 01; threshold detector two 
indicates when Vd is less than Ecc - 02 (02 > 01), etc. 
The value of the differential voltages 01, 02, etc., are 
determined by the transmission-resistor values. (See 
Appendix.) The number of threshold detectors are the 
same as tlie number of discrete resistor values to be 
read, and hence, determine the size of the character set. 
In addition, threshold detector one indicates the open
circuit condition since any resistance too large to satisfy 
the first threshold is defined as an open circuit. 

On the data-entry-unit side of the reference impe
dances is a polarity switch and a low-pass filter which 
rolls off at 600 Hz or about ten times greater than the 
maximum-character rate. ·The purpose of the switch is 
to read the data-entry-unit resistance value in both 
directions. In block one of Figure 3a, normally point a 
is connected to b, and c to d, but the connection can be 
reversed where point c is connected to b, and a to d, 
all under control of the logic. Point b on the polarity 
switch is always positive with respect to point d, which 
simplifies the low-pass filter and difference amplifier. 

As stated previously, an uninterrupted period when 
there is a positive open circuit must precede each 
character. When this open circuit is ended, a reading 
sequence begins under logic timing control. Table II 
shows the steps in reading a character. 

Figure 4 shows the waveforms on the high and low 
lines for a complete message transmission from a data 
entry unit to a PATSY adapter. 

_"',. 

Figure 4-High-and low-line PATSY waveforms 

POLLING AND LINE MULTIPLEXING OF 
DATA ENTRY UNITS 

The polling and line configuration is shown in Figure 
5. Up to 32 data entry units can be attached to a single 
PATSY adapter. There are two groups of multiplex 
switches, the high-line and low-line switches. 

For polling (scanning) data entry units, all the high
line switches are closed and all the low-line switches are 
open. The resistance-sensing circuit is used in an un-
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Multiplex 
Switches 

r--l 

: :'----+----11 
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r- Dala Entry Unit: 

No. 0 

low-line 
Multiple" 
Switches ,----, 

I 

High Line 

Resislance
Reading 
Circuit 

Rl 
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R4 
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I ~ 
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Figure 5-Polling and addressing of data entry unit 
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balanced mode since there is no connection to the low
line input. Each low line has a scanning transistor. 
When one of these transistors is turned on, a current 
p~th . exists from the high line of the resistance-reading 
CIrcUIt through the particular data entry unit being 
polled, and to ground through the scanning transistor. 
When a data entry unit desires service, it places a PI 
~hort circuit on its wires. When that data entry unit 
IS polled, the voltage on the high line of the resistance 
reading circuit is pulled down toward ground, making 
Vd equal approximately 0, satisfying the lowest thresh
old and indicating a request. 

Polling is under the control of a binary counter. 
When polling, the counter is advanced by clock pulses 
every four milliseconds. A counter decode is used to 
sequentially turn on the scanning transistors, 250 data 
entry units being scanned each second. When a request 
for service is detected, the clock pulses are clegated 
from the counter for the duration of the time that that 
?ata entry unit is being read. Thus, the binary number 
In the counter becomes the data entry unit address, 
an~ t~e transmission of an address by the data entry 

. umt IS unnecessary. The identification of the trans
mitting data entry unit by the pair of wires to which 
attached is a novel feature in PATSY. 

When a request is detected, polling ceases and the 
scanning transistors are no longer used. However, the 
decode now is used to close the proper high-line and 
low-line switches between the data entry unit and the 
receiving station to provide a dedicated connection. 

Figure 6 shows the location of the 30-volt switch 
circuits which provide the Start Command to initiate a 
transmission and the End Command to terminate a 
transmission. The resistance reading circuit is discon
necte~ fro~ t~e lines when the 30 volts is applied. 
IdentIcal CIrcUIts attached to both the high and low 

Figure 6-30-volt start and answer circuits 

PATSY 81 

lines allow the 30 volts of either polarity to be applied 
to the data entry unit. 

TRANSMITTING STATION 

PATSY permits the attachment of a wide variety of 
data entry units to an adapter in a data collection 
system. The data entry units can be either mechanical 
using brush commutators, or employ solid-state tech~ 
nology. such ,as silicon-controlled rectifiers (SCR's). 
There IS enough power in the start and answer pulses 
to pick relays or energize solenoids. In addition, there 
is no restriction on how slowly the data can be trans
mitted, permitting live keyboards to be intermixed with 
fixed-rate devices on the same adapter. In addition, the 
receiving station is transparent to message length. The 
first character transmitted is a transaction code, telling 
the system what type of message will be transmitted. 
The second character tells the system what type of 
data entry unit is sending, indicating the message 
length to expect. 

Figure 7 is a schematic of a mechanical data entry 
unit used in the IB1VI 2790 Communication System. 
A brush commutator is on the left; a card/badge reader 
in matrix form on the right. When a card or badge is 
to be read, there is one electrical connection made on 
each row. The commutator is cocked in the request 
position. When the receiving station sends a start 
command, the magnet is picked releasing the commu
tator to scan through the rows, alternately placing the 
character resistors and an open circuit across the lines. 
The commutator is spring powered. Note the simplicity 
of the transmission components required to transmit 
the 12-character set of this station: six resistors and 
15 diodes. 
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0--------------------------------log RPotsy 

Figure 8-Voltage band for V D 

APPENDIX-SELECTION OF PATSY 
TRANSMISSION RESISTOR VALUES 

Neglecting the effects of the polarity switch, the 
circuit used to read PATSY transmission is shown in 
Figure 3b. Where RREF = 200 ohms, RPATSY is the 
transmission resistor value and RSERIES is all other 
resistance, i.e., wire resistance, diode drop, etc. Worst 
case VD maximum and minimum can be expressed as: 

V = RSERIES + RPATSY -( E) (1) 
D 2R· R - +cc 

REF + SERIES + RPATSY 

V
D 

= _ If,PATSY (+Ecc) 

- 2RREF + If,PATSY --- (2) 

--V
RA 

+Ecc = 12 

VR) { 

Vo VR2 C 

VR3 { 

I 
Ito Log RPatsy-

Figure 9-Location of PATSY resistors in voltage band 

VR +Ecc 
A , 1 

I Vo 

VR,{ '2 

VR2 { 
&3 

VR3 { '4 
VR4 [ 

Figure lO-Placement of threshold levels 

Where underlined values are minimums and overlined 
are maximums. The plot of VD and YD versus RPATSY 

yields the curves shown in Figure 8. 
The PATSY transmission resistor values were chosen 

to give the largest difference between f D associated 
with one resistor value and V D associated with the next. 
smallest resistor value. The plot in Figure 9 shows the 
PATSY values on the V D plot. 

The voltage bands V Rp V R2' etc., are separated by 
guard-band voltages of approximately 1.5 volts. 

When one of the PATSY resistors is being read, the 
difference voltage V D will fall into one of the voltage 
bands V Rn. The threshold voltages 0 of the resistance 
reading circuit are then placed in the guard bands as 
shown in Figure 10. 

The threshold voltages are placed below center of the 
guard bands because of the nature of the reading. 
When a resistance is being read, V D is sampled for a 
period of three milliseconds, and the lowest threshold 
which is crossed in that time is considered to be the 
reading. Thus, the thresholds are offset to allow more 
noise rejection. 

Also, it can be seen from the above diagram that 
four thresholds can be used to detect five levels where 
01 indicates Rl or lower if crossed and RA if not crossed. 



Termination of programs represented 
as interpreted graphs * 

by ZOHAR MANNA** 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

INTRODUCTION 

This work is concerned with the termination problem 
of interpreted graphs. An interpreted graph can be con
sidered as an abstract model of algorithms; it consists 
of a directed graph, where: 

1. With each vertex v, there is associated a domain Dv, 

and 
2. With each arc a leading from vertex v to vertex v', 

there is associated a total test predicate Pa(Dv ~ 
{T, F}) and a total function fa(Dv*~Dvl), where 
Dv* = {xl x E Dv /\ Pa(X) = T}. 

Let us represent by a state vector x the current 
values of the variables during an execution of an inter
preted graph lG. An execution of lG may start from 
any vertex v with any initial state vector xoE Dv. If 
during execution we reach vertex v with state vector x, 
P a (x) represents the condition that arc a (leading 
from v) may be entered, and fa represents the operation 
of changing the state vector x to fa (x) when control 
moves along area. Execution will}:lalt on vertex v, with 
state vector x, if and only if no predicate on any arc 
leading from v is true for x. An interpreted graph 
terminates if and only if all the executions of lG 
terminate. 

Our main result is a sufficient condition for the 
termination of interpreted graphs defined by means of 
well-ordered sets. This result has applications in 
proving the termination of various classes of algorithms. 
Floyd 1 has discussed the use of well-ordered sets for 
proving the termination of programs. 

* This work is based on the author's Ph.D. Thesis.2 The work 
was supported by the Advanced Research Projects Agency of the 
Office of the Secretary of Defense (SD-146). 
** Present address-Computer Science Department, Stanford 
University, Stanford, California. 
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WELL-ORDERED SETS 

A pair (8, > ) is called an ordered set, provided that 
8 is a set and » is a relation defined for every pair of 
distinct elements a and b of 8, and satisfies the following 
two conditions: 

1. If a ~ b, then either a » b or b » a; 
2. If a » band b » c, then a » c (i.e., the relation is 

transitive) . 

A well-ordered set W is an ordered set (8, ») in 
which every non-empty subset has a first element; 
equivalently, in which every decreasing sequence of 
elements a » b » c··· has only finitely many elements. 
For example, 

1. I I + (the set of all non-negative integers) is well
ordered by its natural order, i.e., to, 1, 2,3, ... }. 

2. In + (the set of all n-tuples of non-negative integers 
for some fixed n, n ~ 1) is well-ordered by the usual 
lexicographic order, i.e., (al)~'···' an) » (bl, 
b2, ••• ; bn ) if and only if al = bl, ~ = b2, 

ak-l = bk- 1, ak > bk for some k, 1 :::; k :::; n. 

DIRECTED GRAPHS 

A directed graph G (graph, for short) is an ordered 
triple (V,·L, A) where: 

1. V is a non-empty finite set of elements called the 
vertices of G; 

2. L is a non-empty set of elements called the labels 
of G; and 

3. A is a non-empty set of ordered triples (v, l, v') E 
V X L X V called the arcs of G. 

Note that L and A may be infinite sets. If L and A are 
finite sets, G is called a finite directed graph. 
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A finite path of a graph G (path, for short) is a finite 
sequence of n, n ~ 1, arcs of G of the form: 

We say that: 

1. The path joins the vertices ViI and Vin+1 and meets 
the vertices ViI' Vi2' "', Vin+1' 

2. The path is elementary if the vertices ViI' Vi2' ••• , 
Vin +l are distinct. . 

3. The path is a cycle if the vertex ViI coincides with 
the vertex Vin+l; it is an elementary cycle if in addition 
the vertices VilJ Vi2' ••• , Vin are distinct. 

We define a cut set of a graph G as a set of vertices 
having the property that every cycle of G meets at 
least one vertex of the set. 

A graph G is said to be strongly connected if there is a 
path joining any ordered pair of distinct vertices of G. 

Let G be a graph (V, L, A ). We define a subgraph 
GI = (VI, L, AI) of G as the triple consisting of VI, L 
and AI, where VI is a subset of V and Al is defined by 
Al = A n (VI X L X VI). 

A subgraph GI = (VI, L, AI) of G is said to be a 
strongly connected component of G if: 

1. GI is strongly connected, and 
2. For all subsets V2 C V such that V2 ~ VI and 

V2 ::) VI, the subgr;ph G2 = (V2' L, A2) is not 
strongly connected. 

A tree T == (V, L, A, r) is a directed graph (V, L, A) 
with a distinguished root rE V, such that for every 
V E V (v ~ r) there is at least one path joining rand v. * 

INTERPRETED GRAPHS 

An interpreted graph 1G consists of a directed graph 
(V, L, A), where 

1. With each vertex vE V, there is associated a domain 
D v , and 

2. With each arc a = (v, l, v') E A, there is associated 
a total test predicate Pa which maps Dv into {T, F}, 
and a total function fa which maps Dv* into DV 1 , 

where Dv* = {x I x E Dv /\ Pa(X) = T}. 

Let (vo, xo) E V X D Vo be an arbitrary pair of an 
interpreted graph 1G. A (vo, xo)-execution sequence of 

* Note that the standard definition of a tree has the restriction 
that for every vE V (v ¢ r) there must be exactly one path joining 
r and v. 

1G is a (finite or infinite) sequence of the form 

leo) l(I) l(2) 
(v(O), x(O))~(v(I), x(I))~(V(2\ X(2))~ ••• , 

where 

1. v(j) E V, l(j) ELand xU) E DvW for all j ~ 0; 
2. (v(O), x(O)) is (vo, xo); 

l(j) . . ., 
3. If (v(j), x(j))~(v()+l), X(J+I)) IS III the sequence, 

then there exists an arc a = (v(j), lW, V(Hl)) E A 
such that P aXU) = T and fax(j) = X(Hl); 

4. If the sequence is finite and the last pair in the se
quence is (v(n), x(n)), then for all arcs a E A leading 
from v(n): P ax(n) = F. 

The definition of an interpreted graph 1G allows 
the existence of a vertex vE V, an xEDv, and two 
distinct arcs a, bE A leading from v-such that both 
Pax = T and PbX = T, i.e., the predicates on all arcs 
leading from the vertex V are not necessarily mutually 
exclusive. It follows that for the fixed pair (vo, xo) E 
VXD vo, there may exist many distinct (vo, xo)-execution 
sequences of 1G. For this reason, the execution process 
of an interpreted graph, starting with the pair (vo, xo), 
is best described by a tree. 

The execution tree T(vo, xo) of 1G is the tree (V', L,A', 
(vo, xo)), where: 

1. The set of vertices V'is the set of all pairs (v, x) E 
V X Dv occurring in some (vo, xo)-execution se
quence of 1G. 

2. L is the set of labels of 1G; 

3. The set of arcs A' is the set of all triples ((v, x), l, 
(v', y)) E V' X L X V', such that (v, x) ~ (v', y) 
occurs in some (vo, xo)-execution sequence of 1G; and 

4. (vo, xo) E V'is the_ root vertex of the tree. 

Example 

Let us consider the interpreted graph 1G* (Figure 
1), where DV1 · = DV2 = {the integers}. There are three 

Q 

Figure I-The interpreted graph fG* 

£ 
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(VI, -4)-execution sequences of IG*, namely 

and 

4 (V2' 2) ~ (VI, -1) 4 (V2, 1) ~ (VI, 0). 

The execution tree T(vI,-4) of IG* is presented in 
Figure 2. 

TER1VIINATION OF INTERPRETED GRAPHS 

Definition 

An interpreted graph is said to terminate if all its 
execution sequences are finite, i.e., for every pair 

(Vo, xo) E V X Dvo all the (vo, xo) -execution sequences 
are finite. 

Notations 

Let ex = (al,~,···J aq), where aj = (vCi), l(j), 
vCiH» E A for 1 ~ j ~ q, be any path of an interpreted 
graph. Then let 

1. fa(x) stand for faq(· •• (fa2( fal (x) )) ••• ), and 
2. Pa(X) stand for 

x EDv(1) 1\ Pal (X) 

q 

1\ 1\ Paj (faj_l(faj_2(···(fa2(fal(X»)) ••• ))) 
j=2 

Theorem 1 

Le;t IG be an interpreted graph. If there exist: 

1. A cut set V* of the vertices V of IG, and 
2. For every vertex V E V*, a well-ordered set Wv 

(Sv, > v) and a total function Fv which maps Dv 
into Sv, 

such that, 
3. For every cycle ex of IG: 

l(1) l(2) l(q-l) l(q) 
V(1)~V(2)._~V(3) ••• v(q-IL-~v(q)~v(l) 

(where vel) E V* and V(k) ~ vel) for alII < k ~ q), 
and for every x such that Pa(X) = T: 

Fv(l) (x) > v(I)Fv(l) (fa (X») 

then IG terminates.* 

Proof 

Proof by contradiction. 
Let us assume that IG does not terminate, i.e., there 

exists an infinite execution sequence "I in IG, 

leo) l(1) l(2) 
"I: (v(O), x(O» ~ (v(l), X(l» --* (V(2), X(2» --* .••. 

Let "I' be the infinite path 

ZOO) ZU) l~) 
"I': v(0)--*V(I)--*V(2)~ • ••• 

Since IG, by definition, contains a finite set of 
vertices, and V*' is a cut set, it follows that there 

* In Manna2 it is proved, by the use of Konig's Infinity Lemma, 
that if IG consists of a finite directed graph, then this is also a 
necessary condition for the termination of IG. 
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exists a vertex v* E V* that occurs infinitely many 
times in "I'. 

Let vent), v(n2), vena), ••• (0 ~ nj < njH for j ~ 1) be 
the infinite, sequence of all occurrences of the vertex 
v* in "I'. Therefore, the infinite execution sequence "I 

can be written as 

leo) l(nl) 
"I: (v(O), x(O») ---t ••• (v(nl), x(nl») ~ ••• 

Then, by condition (3) it follows that 

i.e., there is an infinite decreasing sequence in Wv*. 
But this contradicts the fact that W v * is a well-ordered 
set. q.e.d. 

The following corollaries follow directly from Theo
rem'1. 

Corollary 1 

Let IG be an interpreted graph. If there exist: 

1. A cut set V* of the vertices V of IG, 
2. A well-ordered set W = (8, >-), and 
3. For every vert ax v E V*, a total function Fv that 

maps Dv into S, 
such that 
4. For every elementary path a of IG: 

l(O l(2) l(q-l) 
V(1)~V(2)~V(3) ••• V(q-I)~V(q) 

(where v(l), v(q) E V* and v(j) E V* for all j, 
1 < j < q), and for every x such that Pa(X) = T: 
Fv(I)(X) >- Fv(q) (fa(x), 

then IG terminates. 

Corollary 2 

Let IG be an interpreted graph, which has a vertex 
v* common to all its (elementary) cycles. 

If there exist a well-ordered set W = (S, >-) and a 
total function F which 'maps D v* into S, such that for 
every elementary cycle a: v* ~ ••• ~ v* and for 
every x such that Pa(X) = T: F(x) >- F(fa(x), 
then IG terminates. 

Definition 

Let IG be an interpreted graph constructed from 
the directed graph G. 

Then a strongly connected component IG' of IG con
sists of a strongly connected component G' = 
(V', L, A') of G, where, 

1. With each vertex v E V', there is associated the do
main Dv of IG and 

2. With each arc a E A', there is associated the test 
predicate Pa and the function fa of IG. 

Theorem 2 

An interpreted graph I G terminates if and only if all 
its strongly connected components terminate. 

Proof 

(=}) Follows directly from the definition of termina
tion of interpreted graphs. 
(¢=) Proof by contradiction. 

Let us assume that IG does not terminate, i.e., there 
exists an infinite execution sequence "I in IG, 

leO) l(O l(2) 
"I: (v(O), x(O») ~ (V(l), X(l») ~ (V(2), X(2») ---t •••. 

Let "I' be the infinite path 

lro) lO) l~) 
"I': vro)~V(1)~V(2)~ •••. 

Since IG, by definition, contains a finite set of 
vertices, it follows that there exist finitely many 
vertices of G that meet "I' only a finite number of times. 
Let v(n l ), v(n2), ••• , v(nq) (0 ~ nj < njH for 1 ~ j < q) 
be the list of their occurrences in "I" 

It follows that all the vertices v(j) (j > nq ) of "I' are 
in some strongly connected component G' of G. 

This implies that there exists a strongly connected 
component IG' of IG such that the infinite subse
quence of "I: 

is an infinite execution sequence of IG', i.e., IG' does 
not terminate. Contradiction. q.e.d. 

APPLICATIONS 

The results of the preceding section can be used for 
proving termination of various classes of algorithms. 
In this section we shall illustrate the use of the 
results for proving termination of programs and re
cursively defined functions. 
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r.:-- ---
,D-D· akk~ , _____ J 

yes 

{ 

(lsksn-1) 
--Q2: 1\ (2sisn + 1) 

1\ (i, k,n integers) 

i_i+l 

1\ (2sisn) 
--Q3: 1\ (k + b:jsn + 1) 

{ 

(l~k~n-1) 

1\ (i, j, k,n integers) 

Figure 3-A program for evaluating a determinant I aijl of order 
n, n 2:: 1, by Gaussian elimination 

Example 1: 

Consider the program (Figure 3) * for evaluating a 
determinant I aij I of order n, n ~ 1, by Gaussian 
elimination. ** Here n is an integer constant (a··) 1<' .< , tJ -t.J-n 

a r.eal array, D a real variable, and i, j, k integer 
varIables. We want to show that the program terminates 
for every positive integer n. 

Since neither D nor any aij occurs in a test box or 
affects the value of any variable that occurs in a test 
box, it is clear that by erasing the three assignments, 
denoted by dashed boxes in Figure 3, we do not change 
the termination properties of the program. 

One can verify easily that the set of predicates 
attached to the test boxes of the flowchart is a valid 

* Ignorefor a moment the predicates qr, q2 and qa associated with 
the test boxes. 
** We consider the division operator over the real domain as a 
total function. (Interpret, for example, r /0 as r /10-10 for every 
real r.) 

0, j, k)+-O + 1, j, k) 

d 

(i, j, k)-(i, j -1, k) 

e 

+----0 : { U~ ks n) 
1 A (k, n integers) 

a 

(i, j, k)-(k + 1, j, k) 

!
USkSn_l) 
A (2s is n + 1) 
A (i, k, nintegers) 

0, j, k)-O, n, k) 

{

USkSn_u 
A (2sisn) 
A (k:s j S n) 
A (i, j, k, n integers) 

Figure 4-The interpreted graph fGl 

interpretation with respect to the initial predicate "n 
positive integer"; i.e., starting with any initial positive 
integer n, whenever the flow of control through the 
flowchart reaches the test box Bi the current values 
of the variables satisfy the predicate qi (see Floyd1). 

Let us construct now, from the .reduced program 
(Figure 3 without the dashed boxes), the appropriate 
interpreted graph 1G1 (Figure 4), such that each 
vertex Vi, 1 ~ i ~ 3, of Figure 4 corresponds to the 
test box Bi of Figure 3, and its domain Di is exactly 
the valid interpretation qi. Note that we have used 
Theorem 2 here, since we consider only the strongly 
connected component of our graph. 

It is clear that, if the interpreted graph 1G1 termi
nates, then the given program terminates for every 
positive integer n. But the termination of 1G1 follows 
from Corollary 1, where 

V* = {2, 3} is the cut set, 

W = 13+ is the well-ordered set, 

F2(i, j, k) = (n - 1 - k, n + 1 - i, n + 1) 

is the mapping of D2 into W, and 

F3(i, j, k) (n - 1 - k, n + 1 - i, j) 

is the mapping of D3 into W. 
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(x, y)-(rem(y, x), x) 

a 

(Xs y) A (rem(y, x) " 0) x>y 

Figure 5-The interpreted graph IG2 

Example 2: 

Consider the function gcd(x, y) (McCarthy3). 
gcd(x, y) computes the greatest common divisor of x 
and y (where x and yare positive integers), and is 
defined recursively using the Euclidean Algorithm by 
gcd(x, y) = if x > y then gcd(y, x) 

else if rem(y, x) = 0 then x 

else gcd (rem (y, x), x), 

where rem(u, v) is the remainder of u/v. 
We want to show that for every pair (x, y) of posi

tive integers, the recursive process for computing 
gcd(x, y) terminates. 

Consider the interpreted graph 1G2 (Figure 5) 
where D = {positive integers} X {positive integers}. 
By considering the vertex v as representing the start 
of the computation of gcd, it follows that the recursive 
process for computing gcd(x, y) terminates for every 
pair of positive integers (x, y) , if and only if the inter
preted graph 1G2 terminates. 

Since 1G2 consists only of one vertex, we may use 

x=t:o"y=o 

Figure 6-The interpreted graph IG3 

(./2) 

Figure 7(a)-The execution tree T(v, (1,2)) 

(b)-The real execution tree of A(l, 2) 

Corollary 2 to show its termination. So, let W = / 1+ 

be the well-ordered set, and F(x, yj = rem(y, x) the 
mapping of D into W. Since* 

1. Pa(x, y) = T =>(x, y) E D /\ (x > y) 

=>(rem(y, x) = y) 

/\ (y > rem(x, y) ~ 0) 

=> rem(y, x) > rem(x, y) 

=> F(x, y) > F(y, x), and 

2. P{J(x, y) = T => (rem(y, x), x) E D 

=> rem(y, x) > rem (x, rem(y, x)) 

=> F(x, y) > F(rem(y, x), x), 

it follows by Corollary 2 that the interpreted graph 1G2 

terminates, which implies the desired result. 

* Note that for every non-negative integer x, and for every 
positive z: z > rem(x,z) ~ O. 
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Example 3: 

Ackermann's function A (x, y), where x and yare 
non-negative integers, is defined recursively by: 

A (0, y) = y + 1 

A(x + 1,0) = A(x, 1) 

A(x + 1, y + 1) = A (x, A(x + 1, y». 
We want to show that for every pair (x, y) of non

negative integers, the recursive process for computing 
A (x, y) terminates. 

Let us consider the interpreted graph 1Gs (Figure 6), 
where D = {non-negative integers} X {non-negative 
integers}. The arc a represents infinitely many arcs 
ao, ai, a2, ••• leading from vertex v to vertex v and with 
each ,arc ai, i ~ 0, there is associated the test predicate 
x ~ 0 /\ y ~ 0 and the function (x, y) f- (x - 1, i). 

In other words, 'any' represents all the non-negative 
integers and therefore includes all possible values of 
A(x + 1, y). It follows that, for every pair (x, y) of 
non-negative integers, the execution tree T(v, (x, y» of 
1Gs (i.e., execution starts from v with (x, y» contains 
the real execution tree of A (x, y) as a "subtree". This 
is illustrated in Figure 7 for A (1, 2). 

This implies that if the interpreted graph 1Gs 
termites, then the recursive process for computing 
A(x, y) terminates (for every pair (x, y) of non-negative 

integers). But the termination of the interpreted graph 
follows clearly from Corollary 2, where 

W = 12+ is the well-ordered set,and 

F(x, y) = (x, y) is the mapping of D into W. 
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INTRODUCTION 

In the layout of integrated circuits and printed cir
cuits, one often wants to know if a particular elec
trical network is planar, i.e., can be imbedded in the 
plane without having any line crossing another line. 
Our algorithm, when given a finite graph G can decide 
if G is planar. The algorithm was implemented in 
Fortran together with the Cycle Generation Algo
rithm for Finite Undirected Linear Graphs of Gibbs3 

and used extensively to test the planarity of a large 
number of graphs. The distinguishing characteristic 
of' this algorithm is its conceptual simplicity and its 
ease of implementation on a computer. The computer 
program took but a few days to write and debug. 

In contrast to some of the recent work on the same 
subject,t,2,6,7 this planarity algorithm is a direct applica
tion of the Kuratowski Theorem. It is based on the 
observation that a Kuratowski graph can be spanned 
by the union of two of its circuits. This algorithm can 
be used in conjunction with existing algorithms which 
generate all the circuits of a given graph G. After ob
taining all the circuits of G, our algorithm examines 
the subgraphs spanned by pairs of circuits to see if 
these subgraphs contain a Kuratowski graph. 

The paper begins with the necessary notation and 
definitions. This is followed by the presentation of the 
algorithm and a few brief comments. 

Definition 1: Let V be a finite non-empty set and 
E C {{VI, V2} I VI, V2 E V and VI ~ V2}, then G = (V, E) 

* This work was supported in part by the National Science Foun
dation Grant GJ-120 and a Purdue David Ross Research Grant. 
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is a finite undirected graph without loops or multiple 
edges, or more simply, a graph. 

Definition 2: A subgraph G' = (V', E') of a graph 
G = (V, E) is a graph where V' <: V and E' C E. 

Definition 3: Let G = (V, E) be a graph and X a 
non-empty subset oCE, then SG(X) = (V', X), the 
subgraph of G spanned by X, is the subgraph of G where 
V' = {v I V E V and for some x E X, V Ex}. 

Definition 4: A non-empty subset C of edges of a 
graph G is a circuit (or cycle) of G if 8 G (C) = (V', C) 
is such that for each V E V', there are exactly two ele
ments of C which contain v, and C does not properly 
contain any other circuit of G. C is said to be of length k 
if it has k elements. 

Definition 5: The class of all subgraphs of G which 
are spanned by the union of two distinct circuits of G 
will be denoted by TC (G), i.e., 

TC(G) = {SG(C1 U C2) I C1 and C2 

are distinct circuits of G} 

Definition 6: Let G = (V, E) be a graph, we define 
an open simple path of G inductively. (4), {e}), where 
e E E, is an open simple path. If (V', E') is an open 
simple path, then so is (V' U {v}, E' U {e} ) where 

1. e E E - E' 
2. V E V - V' 
a.there is some e' E E' such that vEe ne' 
4. for all v' E V', v' Ef e. 

Figure 1 shows two examples of open simple paths. 
Definition 7: Let (V, E) be an open simple path of 

G and (VI, E) = SG(E). Then VI - V has exactly 
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Thtee-JoAlle Open Simple Path 

Figure 1 

two elements, u and v, and, we say u and v are connected 
by the open simple path (V, E). 

Definition 8: Two open simple paths (V', E') and 
(V", E") are disjoint if and only if V' n V" = 
E' n E" = cp. 

Definition 9: A K5* graph is a gra~h which can be 
constructed by taking a set V of five vertices and con
necting every pair of distinct elements of V by an open 
simple path such that these open simple paths are 
pairwise disjoint. 

Definition 10: A K*3.3 graph is a graph which can be 
constructed by taking two disjoint sets, VI and V2 of 
three vertices each and· connecting every member of 
VI to every member of V2 by an open simple ·path 
such that these open simple paths are pairwise disjoint. 

Figure. 2 shows examples of the simplest K5* and 
K*3.3 graphs. 

Note that every K5* (every K*3.3) graph may be 
obtained from that of· Figure 2 by replacing the set of 
edges by a set of pairwise disjoint open simple paths. 

Theorem (Kuratowski5): A graph is planar if and 
only if it does not have a subgraph which is a K5* 
or a K*3.3 graph.. .. 

Observation (J. R. Buchi): A graph G IS planar If 
and only if TC (G) does not contain any K5* or K*3.3 
gra1>hs. 

Figure 2 

VI :. {vI' Y), v5 } 

V2 =- {v2' v4 , v6 } 

Figure 3 

In fact this follows from the Kuratowski Theorem 
because each K5* and each K*3.3 can be spanned by 
two circuits. The union of the two circuits in Figure 3 
span the K5* graph of Figure 2. 

The union of the two circuits of Figure 4 span the 
K*3.3 graph of Figure 2. . 

Weare now ready to state our algorithm WhICh may 
be programmed in conjunction with a circuit genera
tion algorithm, for example, the algorithms of Gotlieb 
and Corneil,4 and of Gibbs,3 to determine whether or 
not a graph G is planar from its vertex-adjacency 
matrix (vertices vs. vertices). Given two circuits C1 

and C2, let SG(C1 ) = (VI, Cl) and SG(C2 ) = (V2' C2~' 
In brief, steps 2 and 3 of the algorithm check to see If 

. SG(C1 U C2) is a K*5 graph. If SG(C1 U C2) is not a 
K5* graph, VI n V2 has more than five elements, and 
C1 n C2 has more than two elements, then steps 5 
through 8 of the algorithm essentially eliminate all 
the vertices of degree 2 of SG(C1 U C2) and then check 
to see if the resultant graph is K3 •3-the simplest of 
the K*3.3 graphs . 

. / \., 
(; 

1 

Figure 4 



ALGORITHM 

1. Given a graph G, generate all the circuits of length 
five or greater. 

2. Given two circuits C1 and C2, let So(C1) = 
(V1, C1) and So(C2) = (V2, C2 ). If V1 n V2 has exactly 
five elements and C1 n C2 = C/>, go to the next step, 
otherwise, go to step 4. 

3. Trace So (C1) in one direction and let (ViI' Vi2' 

Vi3' Vi4' Vis) be the elements of V1 n V2 ordered in this 
cyclic order. Check to see if these elements can be 
placed in a cyclic order (ViI' Vi3' Vis, Vi2' Vi4) when 
So(C2) is traced. If the answer is "yes," So(C1 U C2) 

is a Ks* graph and G is non-planar. If the answer is 
"no," go to step 9. 

4. If V1 n V2 has more than five elements and 
C1 n C2 has more than two elements, go to the next 
step, otherwise, go to step 9. 

5. Form the vertex-adjacency matrix M = (mij) 

of So(C1 U C2 ) as follows: 

o if {Vi,Vj} EE C1 U C2 

1 if {Vi, Vi} E C1 - C2 

mij = 

2 if {Vi, Vj} E C2 - C1 

3 if {Vi, Vj} E c1 n C2 

6. Go through the matrix row by row once, doing 
the following: 

If row k has exactly two non-zero entries (note that 
these must be equal), say mki and mkj are not zero, 
then add mki to-mij, and mii and set mki, mik, mkj, and 
mik to zero. Otherwise, go to the next row. 

7. After the last row, if there remain exactly six 
rows with non-zero entries and each of these rows has 
exactly three non-zero entries, go to step 8, otherwise, 
go to step 9. 

8. The resultant matrix is the vertex-adjacency 
matrix of a cubic graph G' = (V', E') with six vertices. 
Let e1' be the circuit of G' consisting of the six edges 
labeled by a "I" Or a "3" and let C2' be the circuit of 
G' consisting of the six edges labeled by a "2" or a 
"3." Note that So,(e1' U C2') =G'. Let (Vil1 Vi2' Vi3' 

Vi4' Vis, Vi6) be the elements of V' in the cyclic order 
obtained by tracing So' (C1') . in one direction with the 
edge {ViI' Vi2} E C1' n Cl. Now start with ViI and go 
to Vi2 and continue tracing So' (C2'). If the resultant 
cyclic order of V' is (ViI' Vi2' Vis, Vis, Vi3' Vi4) , then 
So( C1 U C2 ) contains a K*3,3graph, otherwise, go to 
step 9. 
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9. The graph G is planar if there are no more pairs 
of circuits to be considered. Otherwise, select another 
pair of circuits C1 and C2 of G, and go to step 2. 

CONCLUSION 

It may take the algorithm a relatively long time to 
find out that a large planar graph is indeed planar, 
but the relative ease with which the algorithm can be 
programmed should render it suitable for testing a 
small number of graphs or graphs that do not have a 
large number of circuits. Although a relatively large 
computer was ~sed in our implementation, the algo
rithm is simple enough to be implemented on a com
puter of almost any size. Step 1 (the generation of 
circuits) of the algorithm can be executed first and 
the generated circuits can be stored on some form of 
auxiliary storage. The check for planarity can then 
be executed separately. 
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INTRODUCTION 

The concepts of arithmetic building blocks (ABB) and 
combinational arithmetic (CA) nets as well as their 
applications have been previously reported in Refer
ences 3, 4, and 5. The unique ABB, resulting from the 
efforts of minimizing the set of building blocks in Refer
ence 3, is designed at the arithmetic level, employing the 
redundant signed-digit number system,2 and is to be im
plemented as one package by LSI techniques. The 
ABB performs arithmetic operations on individual 
digits of radix r > 2 and its main transfer functions 
are: the sum (symbol +) and product (symbol *) of 
two digits, the multiple sum of m digits (m ::; r + 1), 
(symbol ¢), and the reconversion to a non-redundant 
form (symbol RS). 

A single ABB may serve as the arithmetic processor 
of a serially organized computer. Many ABB's can be 
interconnected to form parallel arrays called combina
tional arithmetic (CA) nets which compute sums, prod
ucts, quotients, or evaluate more complex functions: 
trigonometric, exponential, logarithmic, gamma, etc. 
Because of the use of signed-digit numbers, the parallel 
addition and multiplication speed is independent of the 
length of operands. A design procedure has been de
veloped for CA netsS-a given algorithm is initially 
represented by a directed graph (algorithm graph, or 
A-graph), which is then converted to an interconnected 
diagram of ABB's (hardware graph, or H-graph). The 
delay through one ABB is defined to be one time unit, 
~t. 

* The work was sponsored by AEC-AT(U-1) Gen. 10, Project 14. 

9.5 

A simple example-evaluation of polynomials-is 
used here to illustrate the concept of CA nets. 

The method suggested by Estrin,7 computing 

Pn(X) = ao + alX + X2(~ + a3x) 

+ x4(a4 + asx + x2(a6 + a7x») + ... 

permits the fastest evaluation when CA nets are used. 
This is shown in Figure 1 with n = 3; the extension to 
higher values of n is evident. In general, the delay 
through such a net is Ilog2 n I + 1 multiplication
addition times. 

This paper summarizes our study of applying a par
ticular version of CA nets, i.e., pipelined CA nets, to 
approximating functions. Involved are not only the 
topological layout of pipelined CA nets for approxi
mating functions but also the computational com
plexity. 

Throughout this paper, w,e will use minimally re
dundant radix 16 signed-digit number representation 
whose allowed digit values are {-9, -8, "', -1, 0, 
1, "', 9}. 

APPROXIl\1ATION OF FUNCTIONS 

The basic capability of a typical digital computer is 
limited to simple algebraic manipulations. As a result 
of this inherent limitation approximation is inevitably 
involved in the practical computational procedure if 
the numerical approach is to apply to the evaluation 
of functions at all. The discrepancy between approxi
mated and the approximating values is required to be 
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T =IL0gz31 + 1 .. 2 

o = Multiplication 

0 .. Addition 

0 .. Storage 

Figure I-Evaluation of 3rd degree polynomial with 
Estrin's method 

adjusted to. a certain tQlerable degree as individual 
cases demand. There are two. general apprQaches in the 
theQry Qf apprQximatiQn-PQlynQmial apprQximatiQn 
and ratiQnal. apprQximatiQn.8 

The representatiQn Qf functiQns by PQlynQmials is 
an Qld art. The TaylQr series has been Qne Qf the CQrner
stQnes Qf analytical research. If a series has no. Qther 
purpQse than numerical evaluatiQn Qf the functiQn, the 
degree Qf CQnvergence has to. be investigated. The 
TaylQr expansiQn may cQnverge in the entire plane Qr 
within a given circle Qnly, and it may diverge even at 
every PQint. With the develQpment Qf the theQry Qf 
QrthQgQnar expansiQns, the realizatiQn came that QC
casiQnally PQwer expansiQns whQse cQefficients are nQt 
determined accQrding to. the scheme Qf TaylQr expan
siQn can Qperate niore effectively than TaylQr series 
itself. Such expansiQns are nQt based Qn the prQcess Qf 
successive differentiatiQn but Qn integratiQn. A large 
class Qf functiQns which are nQt sufficiently analytic to. 
allQw a TaylQr expansiQn· can be represented by such 
QrthQgQnal expansiQns. These expansiQns belQng to. a 
given definite real realm Qf the independent variable 
x, arid it is aimed to. apprQximate a functiQn in such a 

way that the errQr shall be Qf the same Qrder Qf magni
tude all Qver the range. Rapidly cQnvergent PQwer ex
pansiQns are Qf practical impQrtance. Mere CQnvergence 
Qf an expansiQn, valuable as it is frQm the purely 
analytical standpQint, is Qf little practical use if the 
number Qf terms demanded fQr a reasQnable accuracy 
is. very large.9 

In light Qf the abQve cQnsideratiQn Chebyshev 
polynomials, defined by 

Tn(x) = CQS (n CQS-l) fQr -1 :::; x :::; + 1, (1) 

emerge as a prQmising PQtential candidate fQr apprQxi
mating functiQns. 

With the speed Qf divisiQn rapidly increased in CQn
ventiQnal cQmputers, the superiQrity Qf ratiQnal ap
prQximatiQns seems to. be generally recQgnized.9 

RQughly speaking, Qne may say that the "curve-fitting 
ability" Qf rational function R{x) 

ao + alX + U2X2 + ... + amxm 
R(x) = ----------

bo + b1x + b2x2 + ... + bnxn 

is apprQximately equal to. that Qf a PQlynQmial Qf degree 
n + m. In cQmpeting with the PQlynQmial Qf degree 
n + m, R(x) has an unsuspected advantage in that 
the cQmputatiQn Qf R(x) fQr a given x dQes nQt require 
n + m additiQns, n + m - 1 multiplicatiQns, and Qne 
divisiQn as might be surmised at first. By transfQrming 
R (x) into. a continued fraction 

C2 
R(x) = Pl(X) + -------

C3 

P2 (x) + P ( ) 
3 X + ... 

we achieve the significant reductiQn in the number Qf 
multiplicatiQns and divisiQns fQr evaluating any R (x) 
to. n Qr m, whichever is larger. The cQntinued fractiQn 
fQrm Qf a ratiQnal functiQn nQt Qnly lends itself· to. a 
faster executiQn but also, sQmetimes, refrains frQm a 
disadvantage suffered by the ratiQnal functiQns-the 
cQefficients depend Qn the degrees Qf the numeratQr 
and denQminatQr. 

A practical applicatiQn Qf CA nets to. apprQximating 
a given functiQn shQuld inVQlve three basic criteria: 
speed, accuracy, and cost. The Qverall speed Qn a 
machine is gQverned by two. factQrs: the speed Qf 
signals physically gQing through circuit cQmpQnents 
and the speed Qf the cQmputatiQnal algQrithm in terms 



of logical steps. Weare primarily concerned with the 
latter. The inherent unique property of a totally com
binational arithmetic net clearly allows as many 
parallel computations to be done simultaneously as 
they are mathematically permissible. Therefore, the 
delay from the presence of given data to the inter
pretation of the result could be minimized in a CA net. 
As the evaluation of a given function through the nu
merical 'technique inevitably introduces approxima
tions, the problem of accuracy is twofold. First, how 
accurate is the approximating formula? Second, how 
can the error, thus incurred, be estimated, adjusted, 
and controlled? Cost is given a restricted meaning here. 
It is a measure of the number of building blocks needed 
in the implementation. 

If f(x) is continuous and of bounded variation in 
[ -1, 1] then f (x) can be expressed in terms of the 
Chebyshev series.6 

co 

L' aiTi(x) (3) 
i=O 

This series can be truncated after any term, say nth, 
to give an approximation to f (x). The truncation error 
is then 

co co 

L I aiTi (x) I ~ L I ai I (4) 
i=n+1 i=n+1 

because the magnitude of Ti(X) is bounded by unity. 
It has been shown that Chebyshev expansions are the 
most strongly convergent of a wide class of. expansions 
in orthogonal polynomials.9 Therefore, the truncation 
error of the Chebyshev approximation is ascertainable 
at a glance. Further, the partial sum of the Chebyshev 
series 

n 

L' aiTi(x) 
i=O 

(5) 

is a good approximation to the best polynomial of 
degree n in [-1, 1]. Arguments supporting this as
sertion can be found in Reference 6. 

Even though explicit polynomials can be evaluated 
on a maximally parallel CA nets, as shown in the pre
vious section, they have some drawbacks. First, the 
power form given by 

f(x) = Co.n + Cl.nX + ... + cn.nxn (6) 

has coefficients which are functions of n, so that a 
change in order of approximation requires a new set of 
coefficients. The second drawback stems from the ill
determination of the coefficients Ci.n when n is large, 
which frequently occurs when a function is represented 
to high accuracy over a long range. 
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Recent developments have demonstrated that ra
tional approximations can give higher accuracy than 
Chebyshev approximations of the same computational 
complexity.lO However, approximation of the form 

R(x) = P(x)/Q(x) = f(x) (7) 

share one of the disadvantages of explicit polynomials; 
the coefficients of P (x) and Q (x) depend on the degrees 
of P (x) and Q (x). Continued fractions derived from 
the form (7) can overcome this drawback and have 
shown a promising prospect in numerical computation 
on conventional computers. Nevertheless, continued 
fractions are still impaired by some shortcomings, at 
least, as far as the application of CA nets is concerned. 
The most serious problem in this r~pect is that the 
evaluation of a continued fraction involves a series of 
divisions; division is rather complicated in a CA net.1l·12 
The other shortcoming of less importance is that inte
gration and differentiation cannot be done on a con
tinued fraction as easily as on a Chebyshev series. 

The fact that continued fractions involve many 
divisions has forced us to choose polynomial approxima
tions, which have no division at all,' rather than ra
tional approximations in the design of the combina
tional arithmetic system for the approximation of 
functions. This choice is more or less unique to our 
system and may not be justified in many other cases. 
Further improvement of this system may alter this 
basic decision. 

PIPELINED COMBINATIONAL ARITHMETIC 
NETS FOR EVALUATING CHEBYSHEV 
SERIES 

In between the two extremes, totally serial· and 
totally concurrent (e.g., Figure 1), a pipelined CA 
(PCA) net serves as a compromised alternative. A 
PCA net, in general, consists of both sequential and 
combinational circuits. Different composition of these 
two kinds of circuits gives to the resultant PCA net a 
wide spectrum of performance versus cost. A designer 
is thus endowed with more freedom at his disposal to 
choose a particular composition to meet his require
ments. The study we made shows that the PCA net is 
particularly attractive for evaluating Chebyshev series. 
The general concept of pipelining techniques has been 
successfully applied to modern information processing 
systems in order to obtain a much improved per
formance at the cost of very moderate increase of 
hardware. 1 
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loop-free 
ckt 

~ 1 

loop accumulating 
ckt 

I B 

111 

output 

Figure 2-An abstract model of pipelining 

A n abstract notion of pipelining 

The concept of pipelining technique relevant to the 
evaluation of Chebyshev series and polynomials can 
be abstracted with the following simplified model. 

Consider 

(8) 

Assume not only that the computations of fi's are in
dependent of one another but also that the computa
tion pattern of each fi is essentially the same, or can 
be made the same by introducing dummy operations if 
necessary. The block identified by "loop-free ckt" 
in Figure 2 assumes the responsibility of computing 
fi's; the raw data of fi's are fed into it one after the 
other. The computed results of fi's are then accumu
lated in the "accumulating ckt." 

Let to,i be the instant at which the raw data for com
puting fi are fed into the pipelined circuit (at point A) , 
tl,i the instant at which fi is' computed and accumu
latedas the partial result (at point B), IlT the amount 
of time needed to compute ii, i.e., IlT = tl,i - to,i, T 
the total amount of time required to evaluate f. 

Clearly, assume 

to,o = 0 

then 
tl,i = to,i + IlT 

T = tl,n = to,n + IlT (9) 

In order to decrease T one must decrease to,n or IlT, 
or both. To decrease IlT is to shorten the longest in
formation flow path; to decrease to,n is to minimize the 
time spacings between consecutive to's. The minimum. 
possible value of to,n is n • Ilt. 

lt is interesting to investigate the effect on T by 
variations of IlT and the time spacing between con
secutive to's. Suppose IlT is increased by Ilt, due to 
the addition of more circuit in the longest information 
flow path, i.e., IlT' = IlT + Ilt, then the corresponding 
total computation time T' becomes 

T' = to,n + IlT' = to,n + IlT + Ilt = T + Ilt (10) 

In most cases, T is much greater than Ilt, hence T' is 
approximately the same as T. 

On the other hand, suppose the time spacing between 
consecutive to's is increased by, Ilt, i.e., 

to,of = to,o 

toi = to,l + Ilt 

to./ = to,i + i . Ilt 

to,n; = to,n + n ·Ilt (11) 
then 

T' = to,n' + IlT = to,n + n . Ilt + T = T + n • Ilt 

(12) 

A comparison of Equations (10) and (12) clearly 
shows that the effect of a variation of the time spacing 
between consecutive to's is n times greater than that of 
a variation ofllT with the same magnitude. Therefore, 
it is more desirable to decrease the time intervals. 
between consecutive to's than to shorten the longest 
information flow path. 

Ideally, one would like to see the input data for 
computing the fi's are fed into the pipelined circuit 
one after the other with the least possible delay. In 
this case, with 

to,o = 0 
we have 

to,i = i . Ilt, 

to,n = n . Ilt, 



and 
T = n • A.t + AT (13) 

In Equation (13), with A.t fixed, the interactions of 
T, n, and AT, can be briefly summarized in the follow
ing. As the circuit complexity increases, most likely 
AT will be lengthened and the computational power of 
the circuit will be enhanced. If Equation (8) can be 
reorganized 

n' 

f= Lf/ (14) 
i=O 

with the complexity of f/ greater than that of fi, then 
we expect n' < n. The effect on T of the increase of 
AT and decrease of n cannot be specified without 
detailed information. It remains to be investigated. 

Layout of peA nets 

With the knowledge of the above section, we can 
now begin the layout of PCA nets for evaluating 
Chebyshev series. The functional block diagram of a 
PCA-W net is shown in Figure 3. It consists of three 
subnets, namely, CA-W subnet, self-multiplication 
CA (SMCA) subnet, and pipelined sequential CA 
(PSCA) subnets. A CA net with the capacity of com
puting polynomials Pn(x), n ~ w, asynchronously 
without the necessity of segmenting P n (x) is said to 
have a width wand is denoted by CA-:W net. The 
meaning of SM CA and PSCA will be clear in the later 
text. 

The Chebyshev series used to approximate a given 

CA-W 
Subnet 

,. 
'. 

SMCA - PSCA 
Subset - Subset 

Figure 3-Functional block diagram of the PCA-W net 
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x S 

0,5 

Figure 4-CA net for evaluating 4th degree polynomial 

function f(x) assumes the following forms: 
n 

f(x) = L' aiTi(X) 
i=O 

i/2 

L C2jX2j 
j=O 

(i-I) /2 

Ti(X) = L C2i+IX2 i+1 

j=O 

-1~x~1 

for i = 0, 2, 4, ... , 

for i = 1, 3, 5, ... , (16) 

SMCA assumes the responsibility of computing the 
powers of x. Using Estrin's method, CA-W specializes 
in evaluating Ti(X) when i ~ w. If i > w, then Ti(x) 
must be broken into several segments. Each segment 
can be evaluated on the CA-W net with Estrin's 
methods. The input data for-computing these segments 
are fed into the CA-W one immediately after the other. 
The outputs from both CA-W and SMCA arrive in 
the PSCA to form Ti(X). At PSCA, the coefficient ai 
is multiplied with Ti(x), and aiTi(x) must then be 
accumulated. 

One of the inherent properties of Chebyshev poly
nomials, as can be seen from Equation (16), is that 
Ti(X) contains only even terms when i is even and 
only odd terms when i is odd. Due to this inhomo
geneity, the CA-W subnet can be simplified by re
moving half of the storage vertices as well as all the 
1r-~ pairs of vertices for evaluating the sub-expres
sions, Cj + Cj+IX. For instance, a full CA net for evalu
ating a normal 4th degree polynomial 

P4(x) = Co + CIX + C2X2 + Caxa + C4X4 (17) 

is shown in Figure 4. 
Since 

(18) 
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s s s 
x 0,2 0,3 0,4 

below. Assume 

15 

!(X) = L: aiTi(x) 
i=O 

for i = 0,2, ••• 

for i = 1, 3, •.• (19) 

then the contents of SO,I, SO,2, SO,3) and SO,4 are given 
in Figure 6 as time increases from 0, the exact timing 
as to when these c's should be fed into the PCA-W 
net will be seen in the appendix. 

The output of the CA-7 subnet is multiplied at '1"4,1 

by an appropriate factor coming from SMCA. For 
3,2 example, the output of CA-7, Ti(X) for i :::; 7 or the 

first segment of Ti(X) for i > 7 is multiplied at '1"4,1 by 
the unity coming from 8 3,1 through M4,1. The second, 
third, and fourth segments, if they exist, of T i (x) for 
i > 7, are multiplied by x8, XI6, and X24 respectively. 
The partial result of each T i (x) is accumulated at 

@=Merging 

f(x) = ~ a.T.(x) 
i ~ 0 I I 

Figure 5-PCA-7 net for evaluating Chebyshev series-A-Ievel 

with Cl = C3 = 0, all the dotted vertices and arcs in 
Figure 4 can be removed but with SO,1 and SO,3 con
nected to ~2,1 and '1"2,1 respectively. Roughly speaking, 
the cost of a CA net for evaluating a Chebyshev 
polynomial with degree i is about half of that of a 
normal polynomial with the same degree. The speed, 
however, remains the same since it is the formation of 
higher degrees of the independent variable x which 
determines the speed in a CA net. Odd Chebyshev 
polynomials can be treated as if they were even ones 
after x is factored out. Double subscripts are appended 
to coefficients, c's, with first one indicating the associa
tion of c's with Ti(X) and the second one as a running 
index within Ti(X). From own on, even i will be used 
in the following discussion but the· arguments apply to 
both even i and odd i cases unless otherwise stated. 

Figure 5 shows a PCA-7 net at the A-level. The 
OA-7 subnet can handle Chebyshev polynomials with 
degrees up to seven. If the degree is higher than seven, 
then the Chebyshev polynomial is broken into seg
ments. An example showing how this is done is given 

t 

<C15,9 c15,11 c15,13 c15,15 

c15,1 c15,3 c15,5 c15,7 

<C14,8 c14,10 c14,12 c14,14 

c14,0 c14,2 c14,4 c14,6 

<C13,9 c13,11 c13,13 0 

c13,1 c13,3 c13,5 c13,7 

<C12,8 c12,10 c12,12 0 

c12,0 c12,2 c12,4 c12,6 

<Cll,9 c11,11 0 0 

cll,1 cll,3 c1l,5 c11.7 

<C10,8 c10,10 0 0 

c10,0 c10,2 c10,4 c10,6 

<eg,9 0 0 0 

eg,1 eg,3 c9,5 c9,7 

<ca,8 
0 0 0 

ca,o c8,2 c8,4 c8,6 

c7,1 c7,3 c7,5 c7,7 

ce,o ce,2 c6,4 c6,6 

c5,1 c5,3 c5,5 0 

c4,0 c4,2 c4,4 0 

c3,1 c3,3 0 0 

c2,O c2,2 0 0 

c1,1 0 0 0 

CO,O 0 0 0 

SO, 1 SO,2 SO,3 SO,4 

Figure 6-Contents of the initial storage layer of PCA-7 net 



~4,l until Ti(X) is completely evaluated and stored in 
~4,1. Ti(X) is then multiplied at ?r5,l by ai. All aiTi(x) 
are accumulated at ~5,l sequentially with i increasing 
from 0 to the prescribed n. 

It is thus seen that once the PCA net is filled up with 
~ignificant data then almost every piece of the hard
ware is in constant use until no more inputs are fed. 
In this manner, the overall utilization factor is very 
high, hence more economical and practical than the 
totally combinational arithmetic net. One important 
unique advantage of employing Chebyshev approxima
tion is that when changing from approximating one 
given function to the other, nothing of the CA net 
needs to be changed except a new set of coefficients a/s 
Rhould be prepared. 

The H -level graph of Figure 6 is shown in Figure 7 
with the assumption that the precision is no greater 
th/1n 17 digits. Detailed timing analysis based on this 
is shown in the appendix. 

Computational complexity 

Speed, cost, and error studied here refer only to the 
H -graph of a CA net. Speed is measured by the delay 

Figure 7-PCA-7 net for evaluating Chebyshev series-H-Ievel 
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through the longest information flow path of the net, 
which depends not only on the topology of the net 
but also on the precision of the data words. Cost, 
defined as the count of ABB's is a function of the de
grees of polynomials and the series as well as the pre
cision of the data word. Error in a net comes only from 
round-off operations if all input data are assumed free 
from inherent errors. We will use precision and the 
degree of polynomial and series as independent vari
ables in the following study. Further, we assume r = 16, 
minimal-redundancy, and precision p ~ 17. The results 
only show the upper bounds of cost, speed, and error. 

Delay analysis 

With the detailed timing analysis, we are able to 
construct tables, e.g., Tables (1) and (2), showing 
the time required to evaluate a given Chebyshev 
series on PCA nets of different widths. For each width 
we consider two cases: one for evaluating full Cheby
shev series; the other for evaluating even Chebyshev 
series in which odd terms are missing. In. the tables to 
is the time at which the data for a given segment are in 
the first storage layer of the PCA net and tf is the time 
at which the segment is evaluated and stored in the 
last vertex. In each table it is implied 'that the inde
pendent variable x is fed into the PCA net at t = O. 

Among the functions whose Chebyshev approxima
tion tables are available in Reference 6, the following 
functions are approximated by full Chebyshev series: 
Exponential, Logarithmic, Gamma, Exponential In
tegral, some Bessel functions, and the following func
tions are approximated by even Chebyshev series: 
Trigonometric, Inverse Trigonometric, Inverse Hyper
bolic, Error,and some Bessel functions. 

The relationship shown in Tables 1 and 2 can be 
characterized by general formula which will be derived 
below. 

(a) For full Chebyshev series, 

n 

f(x) = ~ aiTi(X) i = 0,1, 2, 3, .•. , n - 1, n 
i""O 

let g I i/w+ 1 I , 

h = i ~ g(w + 1) 
then 

to.; ~ 4 + (~j) (w + 1) + (g + l)h 

tl,i = tOti + g + [4( \lo~ w I + 1) + 5J (20) 
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TAl3LE I-Delay Analysis of PCA-7 Net-Full Chebyshev Series 

f I I clll~ ~ tl ff 7 
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For instance, a19T19(X) iIi PCA-7 net, given 

then 
w = 7, i = 19 

g = 119/81 = 2 

h = 19 - 2(7 + 1) = 3 

to.19 = 4 + (t. r) (7 + 1) + (2 + 1)3 

= 4 + 24 + 9 = 37 

tl,19 = 37 + [4( Ilog2 71 ) + IJ + 5 + 2 = 56 

(b) For even Chebyshev series 
n 

!(x) = L aiTi(x) i = 0, 2, 4, "', n - 2, n 
i=O 

let 
g = 1 i/w + 11 

h' = [1 - g(w + 1)J/2 
then 

to..' = 4 + (Ej) (tv + 0/2 + (g + Oh' 

tl./ = to./ + g + [4( Ilog2 w I + 1) + 5J + g 

(21) 

Let TCA be the CA net which is large enough such 
that all T/s required for evaluating in given Chebyshev 
series can be completed concurrently. As a comparison, 
the time needed· to evaluate the Chebyshev series on 
this TCA net is 

tTCA = 4( Ilog2 n I + 2) (22) 

tTCA and tl,n, as well as tl,n' are drawn in Figures 8 and 9. 

Cost Estimate 

Cost of a PCA net is reflected as a count of ABB's. 
The exact cost of a CA net is very difficult to obtain 
without the detailed knowledge of individual problems 
at hand. Weare interested in the order of magnitude 
of the cost, hence, the analysis is done here without 

(a) possible minimization of the H -level net; 
(b) possible reduction of ABB's from a detailed 

study of the exact data format. Rather, we assume the 
precision is p everywhere. As a result, the cost of a * 
vertex is 

(1 + 2 + 3 + ... + p + (p - 1) + (p - 2) 

+ (p - 3)) = (p2 + 7p - 12) /2, 

TABLE II-Delay Analysis of PCA-7 Net-Even Chebyshev Series 
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Figure 8-Delay of evaluating full Chebyshev series on a PCA-W 
net and on a TCA net 

and that of a ¢, +, or S vertex is p ABB's.5 The esti
mate of cost of several PCA-W nets, evaluating Che
byshev series up to the degree of n, is shown below. 

PCA-7 net: 
Number of 7r-~ pairs: 

N(7r-~) = NCA-7(7r-~) + NSMCA(7r-~) 

n 
=5+ - +3 

8 

n 
=·8+ -

8 

Number of S vertices: 

N(S) = N CA- 7(S) + NSMCA(S) + NpSCA(S) 

= 11 + 1 + 1 

= 13 

80 

70 

60 

50 

40 

30 

20 
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Figure 9-Delay of evalua,ting even Chebyshev series on a 
PCA-W net and on a TCA net 

Misc. 

1 ¢, 3 + 's 

Cost of a 7r-~ pair: 

$(7r-2;) = $(*) + 3 • $(¢) + $( +) 

= (p2 + 15p - 12)/2 

So the cost of a PCA-7 net is: 

$(PCA-7) = [( 8 + i ) (p' + 1.5p - 12)/2] + 17p 

The general formulas of obtaining the cost of a 
PCA-W net, evaluating Chebyshev series up to the 
degree of n, are as follows: 

Assume 

w = 2i - 1, i = 2,3,4, ••. 
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then 

NCA-W(7r-~) = Ilog2 W I + I W/21 

N SMCA(7r-~) = \ n/(w + 1) I 
NpSCA(7r-~) = 3 

No. of 
ABB's 

.-.~-.- .-.-.-
4,000 t .-.-.-.-.-.-.-

PCA··15 
p=15 

NCA-W(S) = (w + 1)/2 + 1 + 2[210g2(w+l)-1 - 1J 3,500 

NSMCA(S) = 1 

NpSCA(S) = 1 

Misc. 

1~, (if NSMCA(7r-~) ~ 16) 

3 + 's. 
where the third term in NCA-W(S) accounts for the 
dummy storage vertices, for example, Sa, Sb, ••• , Sf 
in Figure 7. 
Thus the cost of PCA-W net is 

$(PCA-W) = [(p2 + 15p - 12)/2JN(7r-~) 

+ peNeS) + 4J 

= [(p2 + 15p - 12)/2J[ Ilog2 w I 

+ I w/21 + I n/(w + 1) 1+ 3J 

[
w + 1 ] + p -2- + 7 + 2(21og2(w+l)-1 - 1) (23) 

Figure 10 illustrates the costs of several PCA-W nets 
versus the degree n of Chebyshev series with p = 10 
(approximately 40-bit precision) and p = 15 (approxi
mately 60-bit precision). 

Error analysis 

As stated previously, a function f(x) which is con
tinuous and of bounded variation in [ -1, + 1 J can be 
expressed in terms of the Chebyshev series 

00 

f(x) == :E' aiTi(x) (24) 

A practical implementation of this formula on a PCA
W net" gives rise to two kinds of computational errors. 

(a) Truncation error: 

Due to the natural requirement that any computa
tional job must be finished or terminated in a finite 
amount of time or a finite number of steps, the upper 
limit of the running index in Equation (24) must be 
replaced by a practical integer, n. That is, fex) is ap-

1,000 

PCA--7 ,--
I 
I ,,;cA:-;-

I 
I ,---- ..-."'- .-.-

I • .-._._._ • ....J 

r---1 PCA--15 p-10 

I __ .J 

PCA-7 
I-
I r----

I PCA-3 r----.----..J 
--...! 

8 10 12 14 16 18 20 22 24 26 28 

Figure to-Cost estimate of PCA-W nets 

proximated by a truncated formula 

n 

f(x) == ~ aiTi(x) (25) 
i=O 

with a tolerable error. The truncation error thus in
curred is therefore 

00 00 

eT = ~ I aiTi(x) I ~ ~ I ai I (26) 
i=n+l i=n+l 

because the magnitude of Ti(X) is bounded by unity. 
As a result of the rapid convergence of Chebyshev 
series, usually an+l suffices to account for the truncation 
error indicated in Equation (26). 

(b) Round-off errors: 

Any practical computational mechanism can have 
only finite word lengths. Because of this inevitable 
limitation, the length of the results of arithmetic 
operations cannot increase without limit; it must be 
eventually rounded off. This is, of course, true in the 
PCA net. In addition, the values of the coefficients of 
Chebyshev series, a/s, are not necessarily exact, hence 



they must be chopped (rounding in S-D numbers is 
unbiased) to fit the prescribed word length. As a result, 
we introduce a new source of round-off error-an in
herent error of the incoming data as far as the PCA 
net is concerned. It should be pointed out that the co
efficients of Chebyshev polynomials, cis, are integers 
and so there is no error in representing them. 

Let the accumulated round-off error in evaluating 
Ti(X) be eTi and the round-off error of ai be eai, then 
the total round-off error in evaluating 

n 

L aiTi(x) 
i=O 

is 

n 

+ L [(eTJ (ai) + (Ti(x») (eaJJ for even i 
i=O 

n 

::::; L [eTiai + eaJ for all i (27) 
i=O 

Signed-digit number representations are symmetric 
with respect to zero which has a unique representation. 
The round-off process is simply done by chopping the 
data word at a certain position. Statistically, the round
off process is not biased. For minimum redundancy 
even radix S-D system, the upper bound of round-off 
error is derived as follows: 

Let chopping occur at p digits after the radix point
all digits to the right are omitted. The maximum ab
solute value of each digit is (rf2 + 1)2 and thus the 
upper bound of round-off error, er , is 

e, < G+ 1) ,.-(.+1) + (~+ 1) + ,.-(.+2) + ... 

For r = 16, 

CONCLUSIONS 

= (~ + 1) . r-(p+l) • _r_ 
2 r - 1 

r+2 

2(r - 1) 
(28) 

A study of existing numerical approximation tech
niques indicates that Chebyshev approximation offers 
certain unique advantages over other methods insofar 
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xi 

Accumulllti"tl CA net for 

n TI(x) • ~ Cj 

j. 0.1 .... " 

f(x) •. ~ ajTj(x) f(x) 
function R..t-only memory for 0 
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Figure 11-PCA net for Chebyshev approximation of functions 

as implementation on combInational arithmetic nets 
are concerned. Thus, a pipelined CA net has been con
structed, base<J. on a compromise of speed and cost, 
to evaluate Chebyshev series. This can best be sum
marized in Figure 11. 

In such a system, accuracy can be improved by in
creasing order n at the sacrifice of speed, but without 
altering the internal configuration. To approximate a 
different function requires the change of Chebyshev 
coefficients a/s only. Certain aspects of computational 
complexity have been investigated. Many difficul~ and 
challenging problems, such as scaling, still remain to 
be studied. 
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APPENDIX 

Timing analysis of PCA-W nets 

Timing sequence on a PCA-W net must be carefully 
studied not only to ensure a correct evaluation of the 
Chebyshev but also to shorten the delay through the 
net as well as to minimize the time spacing between 
consecutive segments fed into the PCA net. A PCA-W 
net expressed in the hardware level lends itself more 
readily to timing analysis. It should be pointed out 
that an !i-level vertex consists of a row of ABB's. Each 
ABB is equipped with output gate and clock for 
regulating or controlling information flow in a CA net.5 

Figure 7 is the hardware level net of Figure 5 in which 
the precision is allowed up to 17 (radix 16) significant 
digits. The timing analysis considers two cases sepa
rately: Ti(X) with i :::; 7 and Ti(X) with i > 7. It 
should be emphasized that in the following discussion, 
for all H-level vertices, the output gates are always 
open and clocks are always effective unless otherwise 
stated. 

When i :::; 7, Ti(X) needs not be segmented. Assume 
at t = to, x is fed to 80,0 and at t = to + 4 all coefficients 
Cj of Ti(X) are in the first storage layer (80,1, ••• , SO,4). 

At t = to + 12, Ti(X) is ready at +3,1 and +3.t', the 
output of the CA-7 subnet. Ti(X) must be multiplied 
with an ai at t = to + 14, hence at t = to + 11 the gate 
of *4,2 is closed to produce ai. Only at t = to + 16, the 
clock of ~ 5,13 is effective such that the partial result, 
aiT i (X), can be registered there. Since there is no extra 
delay needed while accumulating the result in ~ 5,13, 

T i+l (X) can come right after T i (x). According to the 
criterion outlined in the text the minimum delay for 
evaluating 

n 

f(x) L: aiTi(x) (A-I) 
i=O 

with a given PCA-W net is 

T = ntt.t + tt.T (A-2) 

if tt.T is proved to be the shortest possible delay through 
the net for computing and solving one segment of the 
given function. Referring to Figure 7, we see tt.T is 17 
time units, while the shortest possible delay is 16 time 
units (four multiplications have to take place in series). 
The extra delay is caused by +4,4. The passage through 
+ 4,4 seems redundant but it is actually indispensable 
as will be seen in the following discussion. Therefore, 
the current design requires minimum amount of time 
to evaluate Equation A-I. Meantime, the gates of 
S3,1, +3,0, +4,0, +5,0, and +4,11 are closed because they 
are not needed for computing Ti(X) with i :::; 7. 

When i > 7, Ti (x) must be segmented as shown in 
Figure 6. Let us denote the segments of T i (x) by 
Ti,o(x), T i ,I(X), ••• , Ti,k(X). In order to minimize the 
overall delay through the net the input data for Ti,k(X) 
must be fed into the net immediately after the input 
data for T i ,k-l(X). Whether this requirement can be 
met depends on a subtle arrangement: of vertices 
*4,1, ~4,11, ~4,12, ~4,13, +4,1, and +4,4. 

Ts(x) is broken into Ts,o(x) and TS,I(X), With the 
gate of +3,1 closed from now on, Ts,o(x) and T8,1(x) 
will be ready in +3.t' at t = to + 12 and t = to + 13 
respectively. Only at t = to + 11 and t = to + 12 the 
gates of 83,1 and +3,0 will be open respectively to in
sure proper multiplication of 1 . Ts,o(x) and XS • TS,I(X) 
in *4,1 at t = to + 13 and t = to + 14. At t = to + 16, 
Ts(x) is formed in ~4,13. At t = to + 17, ~4,13 holds 
the sum of Ts(x) and T 9 ,0(x)/x with the gate of +4,1 

still closed. At t = to + 18, the gate of +4,1 is permitted 
to open for one time unit such that T s (x) would be in 
+4,4. At the same time, ~4,13 holding the sum of Ts(x) 
and T 9 ,0(x)/x receives T9,l(x)/x from ~4,11 and ~4,12 
and the complemented value of Ts(x) from +4,1, The 
net effect at ~4,13 is to produce T 9(x)/x at t = to + 18. 

Assume at t = t1, T I6 ,0(X), T I6 ,1(X) and TI6 ,2(X) are 
in ~4,11 (and ~4,12)' *4,1, and +3.t' respectively, while 
the contents of ~4,13 is TI5 (X)/X. The gates of 83,1, 

+3,0, and +4,0 are permitted to open at t = tl - 3, 
tl - 2, tl - 1, respectively. At t = tl + 1, ~4,13 holds 
the sum of TI5 (X)/X and 1 • TI6 ,0(X) and +4,1 holds 
TI5 (X)/X with its gate still closed. At t = tl + 2, the 
gate of +4,1 is open, ~4,13 now holds T I5 (X)/X + 
TI6 ,0(X) + xBTI6 ,I(X) - TI5 (X)/X = TI6 ,0(X) + 
xST 16,1 (x). With the gate of +4,1 closed again at t = 
tl + 3, the contents of ~4,13 become Tl6 ,0(X) + 
XSTI6 ,1 (x) + X16TI6 ,2(X) = T16(X). The transition from 
3-segment T i (x) to 4-segment T i (x) and the transition 
from 4 to 5 and so forth are done in the same manner. 
The preparation of ai ( aiX ), the mU'Iti"plication of ai 
and Ti(x) (aix and Ti(x)/x) at *5,1, and the registra-



tion and accumulation at ~ 5,la are done exactly in the 
same way as they were in the case of aiT i (x) for i :::; 7. 
The existence of +4,4 is necessary because one of the 
inputs of *5,1 must come from either +a,1 or +4,1 and 
+4,4 must be there to serve as a selector. Since input 
data for all segments of T i (x) can be fed into the net 
one immediately after the other as we expected, and 
tiT is also held minimum, the Chebyshev series is 
evaluated on this PCA-7 net at the fastest possible 
pace, according to Equation (13). 

To insure proper and reliable operations m the 
PCA-7 net shown in Figure 7, the gates and clocks of 

= I i/W + 1 I 

yes 

h = g 

At t = t~· -10+(h-g) 1,1 

V h gate opens 

Figure A-I-Determination of gate conditions in SMCA sub net 
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Figure A-2-Control timing chart for Figure 7 

the following H-Ievel vertices (or, equivalently, 
ABB's). 

must be carefully studied while for the remaining H
level vertices, the following assumption holds, "Out
put gates are always open and clocks are always 
effective." 

Let V h be the H -level vertex in the SM CA subnet 
where Xh(w+l) is formed, then in our example (Figure 7) 

Vo: 8a,l, VI: +a,o, V2 : +4,0, Va: +5,0. 

Their clocks are always effective; gates open only at 
certain instants, which are defined by the flow-chart 
shown in Figure A-I, in which tj,i refers to the instant 
at which aiTi(x) is in the last H-Ievel vertex of the 
net, i.e., +5,1 in Figure 7. 

For +4,1, clocks are always effective while its gate 
opens only at t = tj,i - 4. The gate of +a,1 opens only 
for the first tv + 4( \ log2 tv I + 1) + 1 time units 
with the clocks always activated. The gate of ~5,la 
always opens while clocks are activated only at t = 
tj,i - 1. At t = tj,i - 6, the gate of 8 a,2(*4,2) opens 
( closes) for even Chevyshev polynomial and the gate 
of *4,2 (8a,2) opens (closes) for odd Chebyshev 
polynomial. 

With the knowledge obtained so far, we draw a 
control timing chart in Figure A-2 for evaluating 

16 

L aiTi(x) 
i=O 

on a PCA-7 net. 
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INTRODUCTION 

Operating systems architecture refers to the overall 
design of hardware and software components and their 
operational effectiveness as a whole. To be effective, 
however, an operating system must not only be cog
nizant of the collection of har-dware and software 
modules, but must also be designed in light of the 
programs and data which the system processes and 
the people which it serves. The absence of formal theory 
on operating systems and the lack of standard termi
nology have caused. much confusion among users. The 
problem is particularly apparent when comparing 
systems where the same terms are applied to a variety 
of concepts and levels of implementation. 

The purposes of this paper are threefold: (1) to 
present the basic properties with which operating 
systems can be grouped, classified, and evaluated; (2) 
to identify the major categories into which operating 
systems can be classed and to give concrete examples 
of each; and (3) to discuss resource management in 
operating systems with an emphasis on storage alloca
tion and processor scheduling. 

First, seven properties, used to classify operating 
systems, are briefly described. Then, the major cate
gories into which operating systems can be classed 
are given and their most significant attributes are 
noted. Lastly, the most significant factors in operating 
systems design, i.e., storage allocation and processor 
scheduling, are treated in detail. 

PROPERTIES OF OPERATING SYSTEMS 

An operating system tends to be classified, informally, 
on the basis of how the facilities of the system are 
managed or allocated to the user. Accordingly, the 
number of properties, or combinations of properties, 
which contribute to the classification, is very large. 
Seven of these properties dominate the remainder and 
are introduced in the following paragraphs. 

109 

Access 

Access is concerned with how the user interacts with 
the system. Does he access the system via a remote 
terminal or does he submit his work in a batch process
ing environment? If the user is at a remote location, 
what is the nature of his terminal device? Is it a 
RJE/RJO work station or is it a keyboard or CRT 
type device? Is a command system available so that 
the user can enter into a dialogue with the· operating 
system? Can the user initiate batch ~asks or query the 
status of them when at a remote terminal? Does the 
facility exist for conversing with a problem program 
from a terminal device? 

Utilization 

Utilization is concerned with the manner in which 
the system is used. Is the system closed so that the user 
is limited to a specific programming language or is the 
system open allowing the user access to all of the 
system facilities? How must the user structure his 
programs-planned overlay, dynamic segmentation, 
single-level store? Can the user prepare and debug 
programs on line or is he limited to querying the sys
tem? What facilities are available for data editing and 
retrieval? In the area of data management, what access 
methods, file organization, and record types are per
mitted? Does the data management system have pro
visions for using the internal and external storage 
management facilities of the system? Lastly, what 
execution-time options are permitted by the operating 
system at run time as compared to compile time? 

Performance 

Performance deals with the quality of service to the 
installation and to the user. Does the operating system 
design philosophy attempt to maximize the use of 
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system resources, maximize throughput, or guarantee 
a given level of terminal response? What is the prob
ability that the system will be available to the user 
when needed? Does the user lose his data sets if the 
system fails (data set integrity)? What facilities are 
available for system error recovery? 

Scheduling 

Scheduling determines how processing time is allo
cated to the jobs (or tasks) which reside in some form 
in the system. What scheduling philosophy is used
sequential, natural wait, priority, time slicing, demand? 
What is the nature of the scheduling algorithm
round robin, exponential with priority queues, table 
driven? 

Storage management 

Storage management is concerned with how main 
storage and external storage are allocated to the users. 
Is main storage fragmented, divided into logical regions, 
allocated on a page basis or are programs swapped? 
Is external storage allocated in fixed-size increments or 
on a demand basis with secondary allocations, as 
required? 

Sharing 

Sharing is the functional capability of the system to 
share programs, data, and hardware devices. Does the 
system permit readonly and re-entrant code so that 
programs can be shared during execution? Can data 
sets be shared without duplicating them? At what level 
of access? Can hardware devices be shared among 
users giving each the illusion that he has a logical 
device to himself? 

Configuration management 

Configuration management is concerned with the real 
physical system and the logical system as seen by the 
user. Physically, how is the system organized and how 
can this organization be varied? Does the capability 
exist of partitioning off a maintenance subsystem? 
Similarly, can a failing CPU, core box, channel, or 
I/O device be removed from the system? Logically, 
does the user have a machine to himself, a large virtual 
memory, a fixed partition? 

Obviously, the properties are not exhaustive in the 
sense that all operating systems, real or hypothetical, 
can be automatically classified. The properties do form 

a basis for comparison and are used in the next section 
to identify the major categories of operating systems. 

CATEGORIES OF OPERATING SYSTEMS 

An operating system! is an integrated set of control 
programs and processing programs designed to maxi
mize the overall operating effectiveness of a computer 
system. Early operating systems increased system per
formance by simplifying the operations side of the 
system. Current operating systems additionally attempt 
to maximize the use of hardware resources while main
taining a high level of work throughput or providing a 
certain level of terminal response. A multitude of 
programmer services are usually provided, as well. 

Multiprogramming 

A multiprogramming system2 ,3 is an operating system 
designed to maintain a high level of work throughput 
while maximizing the use of hardware resources. As 
each job enters the system, an internal priority, which 
is a function of external priority and arrival sequence, 
is developed. This internal priority is used for processor 
scheduling. During multiprogramming operation, the 
program with the highest internal priority runs until 
a natural wait is encountered. While this wait is being 
serviced, processor control is turned over to the program 
with the next highest priority until the first program's 
wait is satisfied, at which time, processor control is 
returned to the high priority program, regardless if 
the second program can still make use of the system. 
The first job has, in a sense, demanded control of the 
system. The concept is usually extended to several 
levels and is termed the level of multiprogramming. A 
multiprogramming system is characterized by: (1)' 
Limited access traditionally limited to tape or card 
SYSIN and printer or tape SYSOUT. RJE/RJO may 
be implemented but on-line real-time processing usually 
requires a specially written problem program. (2) 
Utilization is most frequently restricted to batch type 
operations with data management facilities being pro
vided by the system. Planned overlay is usually. re
quired for large programs with most debugging being 
done off line. (3) Performance is oriented towards high 
throughput and maximum utilization of hardware 
resources. A given level of service is not guaranteed 
and the processing of jobs is determined by opera~ional 
procedures. (4) Scheduling of work usually involves 
priority, natural wait, and demand 'techniques. In 
some systems, a unit of work may spawn other units of 
work providing parallel processing, to some degree. 
(5) Storage management techniques vary between sys-
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terns with most systems using a fixed partition size or a 
logical region for problem programs. Paging techniques 
with dynamic address translation have been used with 
some success. (6) Sharing of system routines is fre
quently provided while the sharing of problem pro
grams is a rarity. When a central catalog of data set 
information is provided, data set sharing, at various 
levels of access, is available. Otherwise, data set sharing 
is accomplished on an ad hoc basis. (7) Configuration 
management is usually limited to the existing physical 
system with the users being given a portion, fixed or 
variable, of actual storage. 

H ypervisor multiprogramming 

One of the problems frequently faced by installation 
management involves running two different operating 
systems, each of which requires a dedicated but identical 
machine. A hypervisor is a control program that, along 
with a special hardware feature, permits two operating 
systems to share a common computing system. A rela
tively small hypervisor control program (see Figure 1) 
is required which interfaces the two systems. Although 
only one processor is involved, a hardware prefix 
register divides storage into two logically separate 
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memories, each of which is utilized by an operating 
system. I/O channels and devices are dedicated to one 
or the other operating system and use the hardware 
prefix register to know to which half of storage to go. 
All interrupts are indirectly routed to a common inter
rupt routine which decides which operating system 
should receive the most recent interrupt. Processor 
control is then passed to the hypervisor control program 
for dispatching. The hypervisor control program loads 
the prefix register and usually dispatches processor 
control to the operating system which received the last 
interrupt. Alternate dispatching rules are to give one 
operating system priority over another or to give one 
operating system control of the processor after a fixed 
number of interrupts have been received by the other 
side. Hypervisors are particularly useful when it is 
necessary to run an emulator and an operating system 
at the same time. Similar to multiprogramming sys
tems, a hypervisor is characterized by: (1) limited 
access; (2) batch utilization; (3) high throughput per
formance; (4) priority, natural wait, and demand 
scheduling; (5) basic storage management techniques; 
(6) limited sharing facilities; and (7) configuration 
management determined by the operating systems 
that are run as subsystems. 

Time sharing 

Although time-sharing is used in a variety of con
texts, it most frequently refers to the allocation of 
hardware resources to several users in a time dependent 
fashion. More specifically, a time-sharing system con
currently supports mUltiple remote users engaging in a 
series of interactions with the system to develop or 
debug a program, run a program, or obtain information 
from the system. The basic philosophy behind time 
sharing is to give the remote user the operational ad
vantages of having a machine to himself by using his 
think, reaction, or I/O time to run other programs. 
Operation of. a time sharing system is summarized as 
follows:* 

Time-shared operation of a computer system 
permits the allocation of both space and time 
on a temporary and dynamically changing 
basis. Several user programs can reside in 
computer storage at one time while many 
others reside temporarily on auxiliary storage 
such as disc or drum. Computer control is 
turned over to a resident program for a sched
uled time interval or until the program reaches 

* See reference [11, p. 190. 
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a relay point (such as an I/O operation), de
pending upon the priority structure and con
trol algorithm. At this time, processor control 
is turned over to another program. A non
active program may continue to reside in 
computer storage or may be moved to auxil
iary storage, to make room for other programs, 
and subsequently be reloaded when its next 
turn for machine use occurs. 

A time-sharing system is characterized by: (1) Remote 
access with keyboard or CRT devices and possibly 
RJE/RJO work stations. (2) Varied utilization ranging 
from a closed system such as QUIKTRAN4, APL/3605, 

or BASIC6, to an open system such as MULTICS7 or 
TSS/3608 ,9. In most open systems, a single-level store, 
on-line debugging facilities, and an extensive file system 
are also available. (3) Performance in most time sharing 
systems is mainly centered around dividing processor 
time among the users and providing fast response to 
terminal requests. Management of other resources in a 
time-sharing system is usually towards this end. (4) A 
given level of user service is maintained by giving 
users a short slice of processor time at frequent intervals 
according to a scheduling algorithm. The most fre
quently used scheduling algorithms are round robin 
and exponential with priority queues. (5) Varied 
storage management techniques are used depending 
upon the hardware and the sophistication of the soft-
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Figure 2-Virtual storage 

ware. Swapping and paging techniques have been used 
with great success. In the latter category, direct-access 
storage devices and large capacity core storage have 
both been used as paging devices. (6) Most open time
sharing systems permit code sharing during execution 
and language processors, data management routines, 
and command system programs are frequently shared. 
If public storage is provided, then data sets sharing is 
also available. In closed systems, the level of sharing 
is determined by the programming language used and 
its method of implementation. (7) In a utility class 
time-sharing system, configuration management facilities 
are required for preventative maintenance and for the 
repairing of faulty equipment. Multiple processors, 
storage units, and data channels are provided with 
many large time-sharing systems; thus' the hardware 
resources are available for configuring the system to 
meet operational needs. In some time-sharing systems, 
the user has a logical machine to himself provided 
through a combination of hardware and software 
facilities. This topic is covered in the next section on 
virtual machines. 

Virtual systems 

A virtual system is one which provides a logical 
resource which does not necessarily have a physical 
counterpart. Virtual storage systems7,8,9,IO,1l (see Figure 
2) are widely known and provide the user with a large 
single level store achieved through ~ combination of 
hardware and software components. A virtual storage 
system is characterized by the fact that real storage 
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contains only that part of a user's program which need 
be there for execution to proceed. The basic philosophy 
of virtual storage lends itself to paging (Figure 3) and 
is usually associated with dynamic address translation, 
as introduced later in the paper. 

A virtual machine is an extension to the virtual 
storage concept which gives the user a logical replica of 
ian actual hardware system. Whereas in a virtual 
storage system, a user could run programs, in a virtual 
machine, a user or installation can run complete oper
ating systems. In addition to using the virtual storage 
concept, a virtual machine system contains a control 
program12 which allocates resources to the respective 
virtual machines and processes privileged instructions 
which are issued by a particular operating system. 

Although virtual systems are usually associated with 
time-sharing, the concept is more general and applies 
equally well to multiprogramming systems. Virtual 
systems tend to be most effective in operating environ
ments where dynamic storage allocation, dynamic 
program relocation, simple program structure, and 
scheduling algorithms are of concern. Virtual systems 
using fixed size pages and dynamic address translation 
also lend themselves to sharing and most systems using 
this design philosophy have implemented code sharing 
during execution to some extent. 

Tri-level operating systems 

In a conventional operating system (Figure 4), two 
levels of control are available, each of vvhich corre
sponds to a segment of core storage. Level one contains 
the supervisor program and all associated routines for 

User Programs 
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utility Programs 

Su~ervisor Program 
Job Control 
Data Management 

Leve Z 'l'lJo 
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Figure 4-Conventional op~rating system 
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job control and data management. User programs, 
language processors, and utility programs run at level 
two and are regarded as problem programs by the 
supervisor program. Control is passed from level two 
to level one by hardware facilities, usually termed an 
interrupt, and level one services are able to completely 
sustain level two needs. 

In a virtual system, another level of complexity is 
required. Logical as well as physical resources must be 
maintained and allocated. Thus, in virtual systems, 
allocation of resources* is relegated to the supervisor 
or control program and typical job control and data 
management routines are included as a job monitor 
program (Figure 5) which exists as a second level. 

V.er A'. U.er B'. 
Virtual r..wt 2'Iuw Virtual Lsv.t 2'Iuw 
MellOzY MellOzY 

Job Monitor Lswt 2\10 Job Monitor Lsv.t 2t.Jo 

~ 
Real 
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veer C'. veer D'. 
Virtual Lswt 2YzH. Virtual r..wi 2'Iuw 
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Job Monitor r..wt 2t.Jo Job Monitor LsHt 2t.Jo 

Figure 5-Tri-level operating system 

Processing programs then execute at a third level. The 
need for communication between level three and level 
two exists and is satisfied by a virtual interrupt imple
mented in software analogous in a real sense to the 
hardware interrupt discussed earlier. Level one con
trol programs are characterized as follows: one per 
system, executes in the supervisor state, runs in the 
non-relocated mode, is not time sliced, and is core 
resident. Similarly, level two monitor programs are 
characterized by: one per user, executes in the problem 
state, runs in the relocated mode, is time sliced, and is 
pageable. 

* Such as CPU time, core storage, and I/O facilities. 
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RESOURCE MANAGEMENT 

In modern operating systems, the allocation of hard
ware resources among users is a major task. Two 
resources directly affect performance and utilization: 
storage management and scheduling. Both topics were 
introduced earlier. The most widely used implementa
tion techniques are discussed here. 

Storage management 

In either a 2-level or 3-level operating system, avail
able storage is divided into two areas: a fixed area 
for the supervisor program and a dynamic area for the 
user programs. If no multiprogramming or time sharing 
is done, then a user program executes serially in the 
dynamic area. When he has completed his use of the 
CPU, then the dynamic area is allocated to the next 
user. 

When more than one user shares the dynamic area, 
such as in multiprogramming or time sharing, then 
storage management becomes a problem for which 
various techniques have been developed. They are 
arbitrarily classed as multiprogramming techniques or 
time-sharing techniques although the point of departure 
is not well-defined. Multiprogramming techniques in
clude fixed partition, region allocation, and roll in/roll 
out. Time-sharing techniques include core resident, 
swapping, and paging. 

In a fixed partition system, the dynamic storage area 
is divided into fixed sub-areas called partitions. As a 
job enters the system, it specifies how much storage it 
needs. On the basis of the space requirements specified, 
it is assigned to a fixed partition and must operate 
within that area using planned program structure 
whenever necessary. In a region (allocation system, a 
variable number of jobs may use the system. Just 
before a job is initiated, a request is made to dynami
cally allocate enough storage to that job. Once a job is 
initiated, however, it· is constrained to operate within 
that region. In a logical sense, fences are created within 
the dynamic area. Roll in/roll out is a variation of region 
allocation which effectively enables one job to borrow 
from another job if space requirements can not be ful
filled from the dynamic area. The borrowed region is 
rolled back in and returned to the original owner 
whenever he demands the CPU or when the space is 
no longer needed by the borrower. 

The most fundamental technique for storage man
agement in time sharing is core resident. In a core 
resident system, all active tasks are kept in main 
storage. This method reduces system overhead and 
I/O activity but is obviously limited by the size of 

Segment Page Byte 

Figure 6-Segmentation 

core storage. Large capacity storage (LCS) is frequently 
used in a hierarchical sense with main storage and pro
vides a cost effective means of increasing the number 
of potential users. Large capacity storage is sufficiently 
fast to satisfy the operational needs of a user at a 
remote terminal. Swapping is the most frequently used 
method of storage management in time sharing. At the 
end of a time slice, user A's program is written out to 
auxiliary storage and user B's is brought in for execu
tion. All necessary control information is saved between 
invocations. In the above case, the system would have 
to wait while user B's program was brought in for 
execution. Thus, two or more partitions can be used 
for swapping to reduce the I/O wait. The use of several 
partitions permits other user programs to be on their 
way in or on their way out while one user's program is 
executing. This method reduces wait time but increases 
the amount of system housekeeping and overhead. A 
variation to the single partition approach is the onion
skin method used with the CTSS system at M.I.T.13 
With this method, only enough of user A's program is 
written out to accommodate user B. In a sense, user 
A's program is peeled back for user B's program. If 
user C requires still more space than B, then A is 
peeled back even more. In a paging system, main 
storage is divided into fixed-size blocks called pages. 
Pages are allocated to users as needed and a single 
user's program need not occupy consecutive' pages, as 
implied in Figure 3. Thus a translation is required 
between a user's virtual storage, which is contiguous, 
and real storage, which is not. A technique called 
dynamic address translation is employed that uses a 
table look up, implemented in hardware, to perform 
the translation. First, the address field is segmented 
to permit a hierarchical set of look up tables (Figure 6). 
Then, each effective computer address goes through an 
address translation process (Figure 7) before operands 
are fetched from storage. The process is usually speeded 
up with a small associative memory (Figure 8). When a 
user program references a page that ,is not in main 
storage, a hardware interrupt is generated. The inter
rupt is fielded by the supervisor program which brings 
the needed page in for execution. Meanwhile, another 
user can use the processor. Look up tables (Figure 7) 
are maintained such that when a page is brought into 
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Figure 7-Dynamic address translation 

main storage, an entry is made to correspond to its 
relative location in the user's virtual storage. 

The methods vary, obviously, in complexity. An 
eventual choice on which technique to employ depends 
solely on the sophistication of the operating system, 
the access, performance, and utilization required, and 
the underlying hardware. 

Scheduling 

In modern operating systems, the supervisor pro
gram assumes the highest priority and essentially 
processes and does the housekeeping for interrupts 
generated by problem programs and external and I/O 
devices. In this sense, the supervisor (or the system) is 
interrupt driven. It is generally hoped that the process
ing done by the supervisor is kept to a minimum. When 
the supervisor has completed all of its tasks, it must 
decide to whom the processor should be allocated. In a 
single job system, the running program simply retains 
control of the processor. In a multi-job batch environ
ment, where the system is performance oriented but 
not response oriented, the processor is usually given 
to the highest priority job that demands it. This 
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philosophy is generally terrp.ed multiprogramming as 
discussed previously. 

In a time-sharing environment, performance is meas
ured in terms of terminal response, and processor 
scheduling is oriented towards that end. Thus, a user is 
given a slice of processor time on a periodic basis
frequently enough to give him the operational ad
vantage of having a machine to himself. The scheduling 
philosophy is influenced by the user environment· (i.e., 
compute-bound jobs, small jobs, response-oriented jobs) 
and the method of storage management. Three strat
egies have been used frequently enough to warrant 
consideration. The most straightforward method is 
round robin. Jobs are ordered in a list on a first-in-first
out basis. Whenever a job reaches the end of a time 
slice or it can no longer use the processor for some rea
son, it is placed on the end of the list and the next job 
in line is given a slice of processor time. A strict round 
robin strategy favors "compute" jobs and "terminal 
response" jobs equally and tends to be best suited to a 
core resident storage management system. With· an 
exponential scheduling strategy, several first-in-first-out 
lists are maintained, each with a given priority. As a 
job enters the system, it is assigned to a list on the 
basis of its storage requirements-with lower storage 
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requirements being assigned a higher priority since 
they facilitate storage management. The scheduling 
lists are satisfied on a priority basis, no list is serviced 
unless higher priority lists have been completed. 
Terminal (or response) oriented jobs are kept in the 
highest priority list-:-thus assuring rapid terminal 
response. If a job is computing at the end of its time 
slice, then it is placed at the end of the next lowest 
priority list. However, lower priority lists are given 
longer time slices, of the order 2t, 4t, 8t, ... , so that 
once in execution, a compute-bound job stays in execu
tion longer. Exponential scheduling has "human 
factors" appeal in that a terminal-oriented user, who 
gets frequent time slices, is very aware of his program 
behavior whereas the program behavior of a compute
bound user is generally transparent to him. One of the 
biggest problems in processor scheduling is the difficulty 
in developing. an algorithm to satisfy all users. The 
schedule table strategy is an attempt to do that. Each 
user is given a profile in a schedule table. When a job 
enters the system, it is assigned default values. As the 
job develops a history, however, the table values are 
modified according to the dynamic nature of the 
program. The scheduler is programmed to use the 
schedule table in allocating the processor while satis
fying both user and installation objectives. The sched
ule table approach is particularly useful in a paging 
environment where certain programs require an excess 
of pages for execution. Once the required pages have 
been brought into main storage, then the job can be 
given an appropriate slice of processor time. 

Scheduling strategies differ to the extent that a 
different one probably exists for each installation that 
is developing one. As such, scheduling algorithms con
tinue to be the object of mathematical description and 
analysis by simulation. 

THE LITERATURE 

There are a weaJth of good papers on operating 
systems in the computer literature .. In fact, the volume 
is so great that a literature survey would invariably do 
injustice to a great many competent authors. In spite 
of this initial disadvantage, a sample of interesting 
papers will be mentioned. 

Dynamic storage allocation, storage hierarchy, and 
large capacity storage have been studied in detail by 
Randell and Kuehnerl 4, Freeman15, Lauerl 6, and Fikes, 
Lauer, and Vareha17. 

Performance, program behavior, and the analysis of 
system characteristics have been reported by Belady18, 
Fine, Jackson, and McIsaac19, Wallace and Mason20, 
Coffman and Varian21, Rande1l22, Dennis23, Den-

ning24 ,25,26, Stimler27, Madnick28, Habermann29, Estrin 
and Kleinrock30, Shulman31, and Belady, Nelson, and 
Shedler32. 

In addition to those already referenced, many oper
ating systems have been implemented for experi
mental and productive purposes. Still other papers 
give a survey of multiprogramming and time-sharing 
techniques. Representative literature in these areas is: 
Wegner33 ,34, O'Neill35, Arden, Galler, O'Brien, and 
Westewelt36, Badger, Johnson, and Philips37, Schwartz, 
Coffman, and Weissman38, Mendelson and England39, 
and Kinslow40. 

Eventually, all use of an operating system reduces 
to a problem in man-machine communication and two 
important papers by McKeeman41 and Perlis42 should 
be listed in a survey such as this. 

Lastly, two compendiums of papers on time-sharing 
systems have been published by General Electric and 
IBM. The GE collection entitled, A New Remote
Accessed lYI an-Machine System, describes the MUL
TICS system at M.LT. and contains the following 
papers: 

Corbato, F. J., and V. A. Vyssotsky, "Intro
duction and Overview of the MULTICS 
System." 

Glaser, E. L., J. F. Conleur, and G. A. Oliver, 
"System Design of a Computer for Time 
Sharing Applications." 

Vyssotsky, V. A., F. J. Corbato, and R. M. 
Graham, "Structure of the MULTI CS 
Supervisor." 

Daley, R. C., and P. G. Neumann, "A Gen
eral-Purpose File System for Secondary 
Storage." 

Ossanna, J. F., L. E. Mikus, and S. D. Dunten, 
"Communications and Input/Output Switch
ing in a Multiplex Computing System." 

David, E. E., and R. M. Fano, "Some 
Thoughts about the Social Implications of 
Accessible Computing." 

The IBM collection entitled, TSS/360 Compendium, 
contains the following papers and reports: 

Lett, A. S., and W. L. Konigsford, "TSS/360: 
A Time Shared Operating System." 

Martinson, J. R., "Utilization of Virtual Mem
ory in Time Sharing System/360." 



McKeehan, J. B., "An Analysis of the TSS/ 
360 Command System II." 

Johnson, O. W., and J. R. Martinson, "Virtual 
Memory in Time Sharing System/360." 

Lett, A. S., "The Approach to Data Manage
ment in Time Sharing System/360." 

SUMMARY 

Seven properties were introduced for the description, 
classification, and comparison of operating systems: 
access, utilization, performance, scheduling, storage 
management, sharing, and .configuration management. 
On the basis of these properties, the following types of 
operating system were identified: multiprogramming, 
hypervisor multiprogramming, time sharing, virtual 
systems, and tri-level operating systems. Lastly, two 
major areas of resource management were discussed: 
storage management and scheduling. Generally, storage 
management techniques can be classified as to whether 
they apply to multiprogramming or time-sharing
although the dividing line is not well-defined. Multi
programming techniques presented were: fixed parti
tion, region allocation, and roll in/roll out. Time
sharing techniques included: core resident, swapping, 
and paging. Scheduling methods are similarly related 
to either multiprogramming or time sharing. After a 
brief discussion, the following time-sharing scheduling 
philosophies were introduced: round robin, exponential, 
and the schedule table. 

Although formal methods have not been applied to 
any great extent to operating systems, the interest 
level is high and many related papers exist in the 
literature. Operating system technology continues as 
one of the more challenging areas in the field of com
puter science. 
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Computer resource accounting in a time 
sharing environment 

by LEE L. SELWYN* 

Boston University 
Boston, Massachusetts 

INTRODUCTION 

The past several years have witnessed major stages in 
the evolution of time sharing service suppliers toward 
the (perhaps) ultimate establishment of a computer 
utility or utilities that will, presumably, resemble other 
public utilities in many ways. This paper is concerned 
with the development of managerial accounting tech
niques that will enable suppliers to broaden their range 
of services and allow some of them to evolve into 
vertically integrated information service organizations. 

Background 

The early time sharing suppliers provided a rela
tively narrow range of services; the general-purpose 
systems usually provided access to but a small number 
of languages and virtually no proprietary software. 
Indeed, if the latter was available, access to it was pro
vided to customers of the service at no additional 
charge. Other services provided only access to some 
proprietary applications package, and usually did not 
offer the generality of access to a programmable service. 
However, with respect to this latter type of supplier, a 
charge was indeed imposed for access to the applica
tions software, although it was embedded in the overall 
cost of the service. 

The particular pricing policy established by any 
one supplier was, perhaps as often as not, forced upon 
it by some limitation in the computer resource account
ing mechanism associated with the time sharing oper
ating system. Hence, many firms "lived with" some 

* The author was a research participant at Project MAC, 
Massachusetts Institute of Technology, which provided partial 
support for much of the work reported here. He is presently 
Assistant Professor, College of Business Administration, Boston 
University. 
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schedule of charges that were almost certainly sub
optimal. This, in many instances, resulted in sub
stantial limitations upon the overall variety and type 
of computing services they could provide. 

In an earlier paper,! the author, along with D. S. 
Diamond, considered the implications of various types 
of services upon the pricing policies of a time sharing 
service supplier. Several possible strategies were con
sidered at that time. These included: 

• Transaction-based charges for access to some ap
plications package or data base, where the approxi
mate quantity of computing power required for a 
given transaction was either (a) reasonably pre
dictable, (b) an insignificant part of the total·costs 
associated with provision of the service, or (c) 
negligible with respect to the "value" of the service 
to its end-user. 

• Prices based upon resource usage (e.g., cpu time, 
connect time, core residence, etc.) for (a) general
purpose programmable services, (b) for access to a 
proprietary applications package where the quan
tity of computing resources consumed is unpre
dictable, highly variable, and a major component 
of costs. (Of course, the resource prices for access 
via the proprietary package could be higher than 
for general access to the system.) 

• Flat rate for unlimited access to the system, or 
perhaps a variation on fiat rate, such as elapsed 
connect time. This may be appropriate in cases 
where the nature of use of the system was suffi
ciently limited such that this type of rate structure 
would not result in abuse, or in cases where the 
charge for a unit of service was so small that the 
cost of accounting for service was prohibitive. (It 
should be noted that, with the exception of a 
poorly designed operating system, such conditions 
are rather difficult to imagine in practice.) 

Whatever pricing structure is eventually adopted 
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must be the result of consideration along a number of 
dimensions. The pricing structure must be "market 
oriented" so as to satisfy the needs and objectives of 
customers. The user must be made to feel as if he is 
paying only for· his share of the computer, that ac
tivities of other users do not affect his charges. He 
wants to be able to predict, with some degree of ac
curacy, what his costs will be. He will base his purchase 
decision, presumably, upon the value of the proposed 
computing service to his organization. A second dimen
sion is "operations oriented." The pricing structure 
must induce users to behave in a manner that is con
sistent with the best interests of the operators of the 
facility. If it is found desirable to have a relatively 
level load on the system, then lower prices must prevail 
in the less desirable times of the day or week. Users 
must not be permitted to "hog" the machine, even if 
they have "the funds to pay for the service, since this 
could cost the computing service other customers who 
balk at the (perhaps temporary) degradation of service 
they receive. 

Thus, a pricing structure for a computer utility 
must be flexible enough to handle a variety of service 
types, must be accurate to a point that satisfies cus
tomers' . needs for fairness an.d predictability, must 
encourage the use of proprietary software with royalties 
or other payments accruing to the owner, and must be 
consistent with the requirements of a well oiled oper
ating procedure. The present paper considers the re
quirements of a managerial accounting and control 

mechanism to support such a pricing structure, with 
the stated requirements. 

The next section considers the management in
formation requirements of time sharing firms, in light 
of the current evolution of the industry. Specific design 
objectives of such an accounting mechanism are then 
examined in the following section. Finally, the paper 
concludes with discussions of implementations of such 
systems by the author-one on the IBM 7094 Com
patible Time Sharing System at Project MAC, MIT, 
and the other on the PDP-IO system operated by 
Codon Computer Utilities, Inc. 

EVOLVING NATURE OF THE TIME SHARING 
BUSINESS 

Services offered by time sharing firms 

Where the early time sharing service suppliers pro
vided only a limited range of services, it is becoming 
increasingly clear that the suppliers of the future will 
offer a much wider range of services at a much broader 
level. In effect, a time sharing firm may be thought of 
as a vertically integrated information service organiza
tion with activities ranging from the production of the 
raw computing power, the development of applications 
programs and other software, the maintenance of such 
software, and the retail marketing of its product to 
the end-user. Figure 1 illustrates a possible organization 
of an information service firm that provides all of these 
types of services. 

One of the more significant developments in the time 
sharing industry has been the entry of firms that spe
cialize in some subset of these four major activities. 
Thus, a software developer may only write an applica
tions package, and may then turn over its maintenance, 
marketing and operation to an information service 
organization. Alternatively, the same software de
veloper may perform his own maintenance and market
ing, and use the time sharing service only as a source of 
computing power. The time sharing service, on the 
other hand, may choose to establish its own retail 
marketing outlets, or may instead sell its services to a 
retailer who will assume the marketing risks and 
rewards within, perhaps, a particular geographical 
region. 

As the industry continues to develop along these 
lines, the nature of particular arrangements made 
between its members will grow increasingly more 
complex. The software developer that chooses to do 
his own maintenance and marketing will perhaps pay 
the time sharing supplier for the computing resources 
he has consumed and then go on to charge his own 



customers at whatever rate is appropriate. Alterna
tively, he may license a package to a time sharing 
house either on a flat rate or a royalty basis; in either 
case the two firms must somehow keep track of the 
use of the subsystem by the ultimate customer. 

The necessary record keeping associated with these 
various levels of activity could, of course, be done at 
each level; the computer operations area (or firm) 
could simply measure the quantity of computing 
resources consumed by each of its customers, which 
could be end users but might also be software o~ners' 
packages, independent marketing departments or firms, 
etc., and render statements accordingly. The software 
owner would then develop his own accounting system 
to measure the use of his subsystem by each of his 
customers; the marketing organization would similarly 
have to account for resources used by each of its end
users, and so on. As an alternative, a single ~~formation 
system may be constructed that provides for appro
priate managerial and financial control at all levels. 

The author began work on the development of such 
a system while at Project MAC at the Massachusetts 
Institute of Technology, and has since designed a 
more complete information system structure for the 
DEC PDP-10 while serving as a consultant to Codon 
Computer Utilities, Inc., of Waltham, Massachusetts. 
The principal design objectives, features and capabili
ties of these systems are described in the following 
section. 

DESIGN OBJECTIVES 

We have already suggested a rationale for the de
velopment of an information system for time sharing 
services that takes account of the vertically integrated 
nature of the business. Such a system must be based 
upon several key design objectives, which will be dis
cussed presently. 

Computer resource allocation 

The system must provide a mechanism whereby it 
is possible to allocate access to computer resources 
among the various end-users, subsystems, retailers, 
and in-house software development efforts. 

Ewm the largest time sharing computers in opera
tion today can support but a mere handful of simul
taneous users; in most cases under 50 and in virtually 
no instance over 100. As a result, the actions of any 
one user on the system can, and often do, have a 
noticeable impact upon all of the other users in the 
community. In an economic sense, the users are 
"oligopsonists," i.e., there are relatively few buyers 
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(of time sharing service) in the (captive) market as
sociated with the single "monopolistic" machine. Of 
course, this description of the market structure does 
not hold for even the medium run, let alone the long 
run. There are now numerous time sharing service 
suppliers, and numerous customers, such that some
thing more closely resembling a competitive market 
exists. However, in the very short run, a given user is, 
in effect, captured by a given system. As an oligopsonist, 
his actions affect both the system and the other users. 

Hence, his access to the system must somehow be 
controlled, irrespective of his ability to pay. As an 
example, a user desirous of obtaining the entire machine 
for a period of, perhaps even five minutes would create 
much unrest among the other users. As a result, the 
time sharing monitor will normally use some sort of 
round-robin or related method of scheduling jobs so as 
to prevent a user from obtaining this much service in 
this short a time. But what of the user who requires 
some large number of simultaneous lines and many· 
connect hours, plus perhaps some very large quantity 
of m~ss storage, over a relatively short period of time, 
perhaps a week or two. This could place an unneces
sarily heavy load on the system and once again cause 
some unrest among the other users. This would, of 
course, be perfectly reasonable, from the point of view 
of system management, if this new heavy demand were 
permanent; but if it is only a very temporary thing, 
then the system, and the remaining customers, must 
be protected. In effect, some rationing scheme is indi
cated. By such a mechanism, a user reserves, in' ad
vance, that quantity of system resources he is likely 
to require during some time interval, perhaps a month. 
By this technique, system management may allocate 
available resources among its customers in an attempt 
to even the load on the system. For example, the day 
may be divided into several periods, such as peak and 
off-peak, and different rations might apply to each 
such period for any customer. By this technique, the 
user can be assured of more even levels of service at 
all times, and system management may more accurately 
forecast its facilities requirements. 

Flexibility in pricing 

Although the resource management system will use 
the firm's pricing structure as a basis for its record
keeping, it should by no means be bound or limited by 
the specific pricing mechanism that has been selected 
by management. There are several reasons for this. 
Perhaps the most obvious is that the marketing strategy 
of the firm, and hence its pricing policy, may be subject 
to some modification as time goes by. Moreover, if in 
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fact the firm is going to deal with independent software 
developers, independent retailers, or both, it will not 
want to impose its pricing structure upon these firms 
in the latters' dealings with their own customers. 
Hence, the system should be capable of supporting a 
variety of pricing policies at the same time. It should 
have the capability of charging the intermediary at 
prices established by mutual negotiation or any other 
means, and then permit the intermediary to impose 
virtually any sort of charge upon the latters' customers. 
This separation of wholesale and retail types of charges 
should be reflected in all other parts of the system, 
from resource allocation to billing. 

Decentralized management 

Since the time sharing supplier will be dealing with 
some intermediaries, it is necessary that the latter be 
provided with some resource management and ad
ministration tools, thereby enabling control over the 
activities of the intermediary's customer. Moreover, 
the actual customers of both the time sharing firm and 
its intermediaries can greatly benefit from such local 
resource management facilities. Thus, a customer's 
project leader should be able to directly manage use 
of the computer among the several participants in his 
project. He should be permitted to allocate some set 
of resources given to him among users in his project. 
Similarly, an intermediary should be allocated some 
pool of resources and should be permitted to directly 
allocate these among its customers according to what
ever method it wishes. 

In effect, the time sharing supplier need deal only 
with intermediaries, its own marketing organization, 
and customers. Each may then manage its own use of 
the computer and allocate the ration of system re
sources among those users and activities subject to its 
control. Such a resource management structure is illus
trated in Figure 2. 

Access to system resources and services 

The foregoing implies a fairly tight method of con
trolling access to the computer. This is especially true 
where price differences apply to different classes and 
types of services. Thus, a user of a proprietary sub
system who pays a higher price for system resour~es 
than does a general time sharing service user must be 
restricted to use the system only through the account 
specifically established for this purpose. Similarly, a 
general purpose time sharing service user must be pre
vented from gaining access to any proprietary service 
for which some unusual charge applies, without first 
establishing an account for the use of such services. 
For any end-user, the operating system must know (1) 
who is responsible for charges (i.e., a customer or an 
intermediary), (2) what type of service this user has 
subscribed for, (3) what resources have been allocated 
to this end-user, and (4) which price shcedule applies 
to the user and which to the responsible account 
(which may, of course, be the same). 

Detail of system usage 

I t is possible for a time sharing system to keep a 
detailed log of all transactions that take place within 
it. It is, for example, possible for every system com
mand to create a message, stored somewhere in the 
system, that indicates the time, date, name of the 
command, the identity of the user, and the quantity 
of resources used in the execution of the command. 
This would, however, be a fairly costly procedure, in 
that system overhead wOl!ld be increased to handle 
each of these message creation and storage. From a 
managerial point of view this may be quite unnecessary. 
However, there are certain types of individual services 
which must be accounted for in great detail, both from 
the standpoint of billing and collection of revenues, 
and from the standpoint of operations analysis and 
control. Thus, services provided by proprietary soft
ware that is to be charged on the basis of transactions 
performed rather than computer resources consumed 
must be maintained in great detail so that the customer 
may know how he has spent his money and that the 
software developer may examine the relative efficiency 



of his programs. Moreover, the time sharing system 
management will want this information to compute 
that portion of the subsystem's total revenues to retain 
for providing service. 

Subsystem usage accounting 

Proprietary subsystems that offer services to be 
charged on a "value of service" or transaction basis 
necessarily have pricing structures radically different 
from any resource-based rate schedule. In fact, just 
about the only similarity between any two such sub
systems is that they both compute their rates according 
to some unique set of rules determined by the developer 
of the application package. The resource accounting 
mechanism must not only cope with such a variety 
of structures, but should additionally encourage innova
tion on the part of software developers to use any 
arbitrary mechanism that they desire. Hence, the ac
counting system should permit the subsystem to' com
pute its charges and to report to the accounting mecha
nism these charges together with some identification 
of the nature of the service provided to the end-user. 
The accounting system should be able to record these 
subsystem-imposed charges in the end-user's account, 
retain the details of the transactions for billing and 
analysis purposes, and to impose upon the subsystem 
itself a charge based upon the resources consumed in' 
completing the user-initiated transaction. In effect, 
the subsystem becomes the customer of the time sharing 
system, the end user is charged by the time sharing 
system on behalf of the subsystem. (That is, the time 
sharing firm offers, as a service to software developers, 
a means by which it will handle all of the paper work 
associated with the software developer's customers' 
accounts.) 

IMPLEMENTATION 

Many of the features mentioned here were included 
in a resource accounting system implemented by the 
author on the IBM 7094 Compatible Time Sharing 
System developed at Project MAG at the Massachu
setts Institute of Technology.2;3 The "BUYTIM" 
resource allocation system was designed to operate 
wholly within the CTSS operating system, and re
quired no monitor-level modifications to the CTSS 
softw~re. The CTSS implementation is described below. 

When Project MAC started charging for CTSS 
usage inJ anuary of 1968, a need arose for some changes 
in the mechanism by which users r~quested additions 
to or changes in their set· of allotments of computer 
resources. Formerly, these resources were allocated 
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directly-that is, by specific allocations to each user, 
of time, divided into five shifts, and disk records for 
storage of user files. U nder ~e new scheme, users 
receive dollar budget allocations, from some sponsored 
project, and use these funds to purchase resources on 
the CTSS System. The mechanism described here 
serves to give the individual user more direct control 
over the means by which his available funds are spent. 

The system provides for computer resource manage
ment at a number of levels, ranging from top-level 
administration down to the '':level of the individual 
user. Under the pre-existing resource management 
system this function was assumed, within the MIT 
Information PrC?cessing Center, at two levels: Adminis
tration and User Group Leader. The Administrationj 
held ultimate responsibility for computer resourcel 
allocation; it classified all users into one of about twentYl 
user groups, and determined the particular mix ofj 
resources that were to be made available to each o~ 
the groups. The Group Leader was responsible for ap~ 
portioning the resources allotted to his group among 
its members. This responsibility is not altered under 
the BUYTIM set-up. However, what is provided to 
the. Group Leader is a means for further delegating his' 
responsibility-and power-to individual members of 
his group at two principal levels: the Problem Number 
Leader and the Individual User. 

The Problem Number Leader is afforded the ca
pability of apportioning resources allotted, by the 
Group Leader, to his problem number among its mem
bers, a relationship vis-a-vis the Group Leader not un
like the latter's relationship to CTSS Administration. 
The Problem Number Leader is further afforded the 
capability of delegating some of his authority to in
dividual members of the problem group, with several 
levels of decision-making capability. That is, the 
problem number leader may designate another user 
in the problem group to have identical capabilities as 
himself, or he may choose to limit these capabilities 
in some way. At the limit, the individual may be given 
the ability to make changes in only his own account, 
or may be denied even this capability. 

User preferences for computer resource allocations 
are subject to two types of limitations: pricing and 
rationing. Resource prices have been established by 
CTSS administration and govern the allocation of 
time and disk, as well as of several other "commodities." 
Only the time and disk are covered by this system. In 
addition to the constraints of the costs of CTSS re
sources, users are further constrained by several re
strictions which limit their ability to spend their alloca
tion of funds as they might please. First, each user 
group is given a set of Group Limits containing the 
maximum amounts of each commodity that may be 
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allocated among the group's members. Under the 
BUYTIM system, the group leader may further break 
this set of limits down among individual problem num
bers in the group, or may have all problem numbers 
share the common pool of resources available to the 
group, or a combination of these techniques. To further 
restrict the user's freedom, the group leader may estab
lish a maximum increment by which a user may in
crease his allocation over his actual usage to date. At 
the beginning of each calendar month individual user 
time allocations are reduced to nominal beginning of 
month levels, also established by the group leader for 
each user, thus requiring the latter to repurchase addi
tional requirements for the new month. 

The BUYTIM system communicates with the CTSS 
Administrative management programs by updating 
the Group Allocation File (GAF) , a method used by 
all of the individual user groups within CTSS. As a 
result, it is not necessary for all user groups to sub
scribe to and implement the BUYTIM system; its use 
is totally transparent to the pre-existing allocation 
mechanism. 

Two new file types were created for the purposes of 
effecting communication between the individual user 
and the GAF, and a number of programs were written 
to permit suitably formatted and protected modifica
tions of these files. The principal file in the system is 
the 'TIMACT' file. There is one such file for each prob
lem number in a subscribing user group. In addition, 
there is a file of the form "GRPXX ALLOC" for each 
user group. All of these files are maintained in a special 
directory in Private, Protected mode. Hence, these 
files are accessible directly to the Group Leader, and 
are made accessible to users only through a special 
privileged CTSS command which may modify these 
files. Figure 3 illustrates the file structure in this system. 

The use of these TIMACT files makes it possible for 
the Group Leader to subdivide the overall Group alloca
tions of time and disk into blocks available to each 
problem number within the group. However, in some 
cases, particularly where the problem number contains 
only one or a few programmers, this feature may be 
undesirable, since the overall group limits would be 
segmented to a point where flexibility to meet individual 
user needs, within the pricing mechanism, would be 
seriously restricted. In such cases, the Group Leader 
may assign a particular problem number to a common 
pool of resources. This means that, instead of getting 
problem number limits from the TIMACT file, the 
limits come from the file GRPXX ALLOC. 

The BUYTIM command provides an on-line mecha
nism for requesting changes in CTSS time and disk 
allocations. It permits a user to "spend" the funds 
allotted to him, at the prevailing prices for the s~veral 
commodities as contained in the file SYSTEM PRICES, 
subject to availability, and also enables the user to 
change his password. In addition, BUYTIM provides 
varying capabilities for project leaders to make changes 
in funds and computer resource allocations of other 
users within the same problem number group. A wide 
range of access privileges are available for this purpose. 

Although the individual CTSS user and his project 
leader are provided with the ability to trade-off among 
the various CTSS resources at the established prices, 
this capability is limited to the extent that such re
sources are available to the project group. 

Classes of use of BUYTIM 

There are seven distinct classes of use of BUYTIM, 
each of which affords the classified user with certain 
privileges, in terms of what types of changes he may 
request via the command. The class codes for each user 
are contained in the TIMACT file, which also contains 
the other account information about the user. The 
class designations are as follows: 

o. No access to BUYTIM whatsoever. 
1. User may change his own time and disk. 
2. User may change his own time, disk, and password. 
3. User may change his own time, disk and password, 

and may change time and disk of other users in the 
problem number group. 

4. User may change his own time, disk and password, 
and the time, disk and passwords of other users in the 
same problem number group. 

5. User may change his own time, disk, and pass
word, and the time, disk, and funds of other users in 
the same problem number group. 

6. User may change time, disk, password and funds 



allocations of himself and all other users in the same 
problem number group. 

Change codes 

There are nine change codes available, plus a termina
tion code, as follows: 

Code 
t1 
t2 
t3 
t4 
t5 
disk 
pass 
funds 
prpass 

Description 
Shift 1 time 
Shift 2 time 
Shift 3 time 
Shift 4 time 
Shift 5 time 
Disk records 
Password changes 
change· in funds allocation 
print user password (class 4 and 6 only) 

The '*' is used as a termination code, to denote the 
completion of a series of changes. 

To change time, disk or funds allocations, a user 
types the appropriate change code followed by the 
amount of the change in integral minutes of time, disk 
records, or dollars of funds allocation. The amount of 
the change may be a signed or unsigned number. If 
signed (e.g., +25, -40) the present level will be 
changed by that amount. If unsigned, the number / is 
assumed to be the new level of the allocation, and will 
thus replace the old one. For example: 

TYPE CHANGES: t1 +10 t3 -5 t4 20 

disk + 50 funds + 100 * 
This will increase shift 1 time by 10 minutes, reduce 

shift 3 by 5 minutes, set the shift 4 allocation to 20 
minutes, increase the disk allocation by 50 records 
and increase the funds allotment by $100. 

Charges are levied by BUYTIM on the basis of 
allocation, rather than usage. An unused allocation 
may be returned for full credit at the prevailing 
PRICES at the time of the return. In the case of time, 
the charge imposed (or credited) is 1/60 of the prevail
ing hourly rate for each integral minute of time alloca
tion purchased (or returned). In the case of disk space, 
the charge (or credit) is based upon 1/30 of the pre
vailing rate per disk record per month times the number 
of days left in the month. Thus, a disk allotment is 
paid through the end of the month, and credits are 
figured from the date the space is released until the 
end of the month. BUYTIM does not consider the 
other charges, such as those for the monthly account 
maintenance fee and the U.F.D. charge. These should 
be estimated by the Group Leader and subtracted from 
the funds balance appearing in TIMACT. 
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Because BUYTIM charges on the basis of allocation 
rather than usage, the dollar balances obtained from 
these alternate methods will usually differ somewhat. 
However, note that BUYTIM is provided for the con
venience of users and Group Leaders, and where a dis
crepancy exists the figures based upon usage, as pro
vided by CTSS charge statements, will prevail. 

BUYTIM will reject several kinds of transactions: 

Unauthorized use 

1. Unauthorized use of BUYTIM (class 0 user). 
2. Attempt to change account of another user 

(classes 1 and 2). 
3. Attempt to change specific items of another user 

or of own account not permitted by class designation. 

Allocation restrictions 

4. Attempt to Increase allocation of time or disk 
above maximum increment set by Group Leader or 
Pro blem Leader. 

5. Attempt to reduce allocation below current usage. 
6. Insufficient funds. 
7. Increase in allocation exceeds available resources. 

There are several capabilities available to the Group 
Leader that are not available to the individual user or 
problem number leader within the BUYTIM command. 
Several other programs were written to facilitate these 
functions by the Group Leader. For example, the 
group leader may add or delete users, may assign 
various types of access privileges and restrictions, and 
may apportion the group resource limits among the 
individual problem numbers in the group. 

All ch,anges made by users, problem leaders, and 
group leaders are recorded in the appropriate TIMACT 
file (although the group leader may occasionally 
modify the Group Allocation File directly). The 
modified TIMACT file records must be posted to the 
Group Allocation File in order for the CTSS resource 
allocation programs to recognize the changes. This is 
accomplished by means of a self-rescheduling Fore
ground Initiated Background job run each evening by 
the group leader. (A mechanism in CTSS permits such 
jobs to be scheduled and run automatically, without 
the presence of a user at the time the job is run.) Hence, 
changes made during any given day cannot be recog
nized by the time sharing system until they have, 
first, been posted to the Group Allocation File, and 
second, been copied from the Group Allocation File 
into the primary system accounting files. This latter 
activity usually occurs at midnight, also via a self-re
scheduling job. Thus, changes made via the BUYTIM 
mechanism will usually take effect at or around mid
night following the change request. 
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PDP-10 implementation 

A maj or extension of the concepts developed in the 
BUYTIM system has been designed for the PDP-lO 
time sharing system in operation at Codon Computer 
Utilities, Inc.4 The new features of this extension are 
described here. It should be noted, however, that unlike 
the CTSS version, several monitor-level system modifi
cations were required for the PDP-lO design. As a 
result, the system is not transparent to the operating 
system, but forms an integral part of it. Besides ex
tending his own concepts, the author wishes to acknowl
edge the work by Thomas H. Van Vleck of MIT, who 
developed the overall CTSS accounting mechanism 
(within which BUYTIM operated) for a number of the 
ideas incorporated into the PDP-10version. 

Unlike the CTSS case, the newer version was built 
directly into the time sharing monitor, replacing the 
manufacturer-supplied resource accounting mechanism, 
rather than simply operating within it. As a result, any 
alterations to the user accounts take effect immediately, 
rather than at some later time when the changes might 
be posted to the user accounts, as in the CTSS case. 
Several important new features were, additionally, 
added. 

Dynamic pricing 

Under the CTSS version, the principal control on 
usage, during real-time operation of the time sharing 
system, ~ was the central processor time consumed by 
an individual user. Thus, a user might have received 
an allocation of, say, 20 minutes of prime shift proces
sor time for the current month. When that allocation 
is exhausted, the user is automatically logged off the 
computer bY,the monitor, and is prevented from logging 
back on during that shift for the duration of the 
month, or until he can secure from the group leader,· 
or through the use of .BUYTIM, additional allocation 
for the shift. In a commercial environment, the operator 
of a computer utility may desire to control other 
resources besides the amount of straight processor time 
employed by his customers. Moreover, his pricing 
mechanism may be non-linear, in that lower unit 
prices may apply for larger quantities of a given 
resource consumed. Further, depending upon the 
nat\lre of the customer, (e.g., an end user or an inter
mediary) the nature of his application, and any special 
terms negotiated with him in contracting for service, 
it is conceivable that several different rate schedules 
may have to be devised and used simultaneously 
during the real-time operation of the computer. In the 

PDP-lO version, four distinct types of charges may 
apply to a user account during a console session. 

Central Processor, or "Computation" 
Transaction service usage 
Connect time 
I/O device usage 

The computation charge is based upon the processor 
time and the core residence during execution of the 
user's job. The applicable rate may be non-linear, in 
that as core residence increases, the unit charge for a 
space-time unit (kilo-core-second) may vary. 

Certain services of a computer utility may be 
marketed in terms of the "service" they provide, 
rather than the quantity of system resources they 
consume. Such "transaction" services are charged at 
varying rates, the exact charge being determined by 
the particular proprietary program that provides the 
service. The charge may be based upon what is being 
done, how much of it is being done, and, perhaps in 
some cases, who is doing it. 

Connect time is the elapsed time between login and 
logout. It may vary according to the type of terminal 
(e.g.,' use of the system from a high-speed CRT display 
terminal may be charged at a higher connect-time rate), 
and perhaps at a different rate depending upon whether 
or not the job is in an "attached" state or in a "de
tached" state, wherein no console is physically con
nected to the computer for the detached job. 

Use of I/O devices, such as line printers, magnetic 
tape drives, card readers and punches, _ etc., are charged 
for at rates applicable to each device. Further, a set-up 
or minimum charge may also apply in some instances. 

In each of the four types of charges, the specific 
structure may vary among classes of users, as well as 
the time-shift in which the service is provided. 

Under the dynamic pricing technique, each user is 
given money allocations for each applicable time shift, 
and is free to spend his allocated limits on any of the 
four types of services just described. Whenever some 
service is provided, except in the case of transaction 
services, the system computes the quantity consumed, 
determines the applicable rate structure ,for the cus
tomer in the current time shift, and proceeds to charge 
the account the money cost of the service. If this charge 
brings the bl1lance for the shift below zero, the user 
may be logged off the computer, with an appropriate 
message explaining the reason for this action. In the 
case of transaction services, the transaction program 
itself computes the applicable charge and, by a suitable 
monitor call, conveys this information to the monitor. 
Specific resource usage (computation, connect time, 
and I/O device usage) is charged by the monitor to 
the transaction service, in a special account maintained 



for this purpose, and not to the user. No negative 
balance check is made against the transaction service 
account. When the transaction service informs the 
monitor of a charge to the user, the user's account is 
charged and a negative balance check is made. Control 
is returned to the transaction service in any event but, 
where a negative balance condition exists, the transac
tion program is so informed and is expected to take 
action. Thus, there is a very important assumption 
made about the nature of a transaction program. It is 
considered to be a well debugged program that is fully 
responsible for aIr' accounting interactions with the 
monitor on behalf of the user. It must compute the 
charge, inform the monitor of its conclusion, and take 
appropriate action in the event the user's funds have 
been exhausted. 

Under the PDP-10 time sharing system, it is possible 
for the same user to be logged on the system several 
times simultaneously. Thus, it beco~es necessary to 
coordinate the charges incurred by each of the several 
possible jobs in simultaneous operation in a single 
funds balance. Thus, as soon as anyone of the jobs 
logged in under the same project-programmer number 
does something that results in a negative balance, all 
of the jobs subject to this balance will be logged off the 
system. 

Bills are rendered to a responsible account, rather 
than directly to the user. Of course, these may be the 
same person. However, by this mechanism, an inde
pendent retailer may render his own bills to his cus
tomers. Alternatively, the billing system may prepare 
such bills for the retailer. The flexible price structure 
mechanism enables the individual user to be charged, 
during real-time use of the computer, under a rate 
structure that J?ay differ from the one for which 
services will be billed to the responsible account. Thus, 
an independent retailer may convey to the computer 
utility his own rate structure, based upon which the 
utility will charge and prepare bills for the retailer's 
customers. The wholesale prices charged by the utility 
to the retailer need not be the same, either in level or 
structure, as the latter's retail prices. 

Accounting for services used 

The large variety of things that a user may be charged 
for in a computer utility system requires an accounting 
mechanism that can collect, maintain, display and 
summarize the. detail. of individual user activities. 
Moreover, in the case of proprietary transaction 
services, detail as to the nature of individual types of 
services provided, their quantities and applicable 
charges, is most desirable from the point-of-view of the 
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customer. Further, system and application subsystem 
management will want such detail so as to best analyze 
the relative efficiencies of the various services offered, 
to perform market demand studies, and other manage
ment analyses. 

The accounting system designed for Codon seeks 
to provide these features. Each user account record 
maintains a breakdown of the dollar value of resources 
used in each of. the four principal categories and in 
each of the applicable time shifts. A user may obtain 
this information for himself from a logged in console 
by a suitable monitor command. 

Thus, during a console session, the monitor maintains 
a record of the consumption of the four "temporal" 
resources and, upon logging off the system, reports 
these figures back to the user account record. Moreover, 
a record of the' individual console session is created, 
containing the resource usage data, time and date, and 
other relevant information, and is maintained for 
later processing and auditing purposes. 

In addition to the temporal resources (temporal in 
that they are consumed over time) the system ac
counts for use of "spatial" resources, such as mass 
storage occupancy. The technique here is quite anal
ogous to the scheme employed within CTSS, as de
scribed earlier. Besides accounting for disk storage, the 
monitor will not permit a file to be opened for writing 
if the quota of disk blocks has been exceeded. When 
such a condition occurs, the user .must either delete 
some files to free up some space, or have his allocation 
of disk space increased. 

Spec:fic transaction services are recorded as they 
are provided, by means of records that contain data 
on the user's identification, the type and quantity of 
transaction services provided, and the applicable 
charge. (E.g., preparation of. 40 payroll checks @ 20¢ 
each, $8.00.) At the same time, the charge to be im
posed to the user is also added to the transaction 
service's account for auditing purposes. At the end of 
an accounting period (e.g., a month) the transaction 
service records are sorted by user and summary state
ments are prepared showing the basis for the aggregate 
transaction service charge. 

Usage of input/output devices is also handled by a 
similar detailed recording procedure. A record is main
tained for each access to a particular device, indicating 
the· duration. of access and the applicable charge for 
the service. These records may also be summarized at 
the close of an accounting period and presented in a de
tailed statement to the user. System management may 
also be provided with a detailed picture of the relative 
demand for access to the various peripherals on· the 
computer. 

Thus, the billing process will generate a summary 
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bill, which provides aggregate charges for each of the 
four temporal resources, the principal spatial resource, 
disk, and any other charges related to the account. 
Further, a detailed statement of specific transaction 
services supplied may be produced, as may a similar 
detailed breakdown of I/O device access. Finally, an 
historical record of the individual console sessions may 
be generated by the accounting system. 

Applications subsystem owners, whose software is 
offered on a transaction basis by the computer utility, 
may be provided with a statement of the resources 
consumed by their respective programs, as well as the 
revenues generated by their subsystem's customers. A 
similar type of detail may be provided in the case of 
usage of peripheral devices. 

Finally, it should be pointed out that the accounting 
system· incorporates all transactions between the 
customer and the utility, and provides a convenient 
mechanism for posting miscellaneous charges and 
credits, such as a charge for consulting service or a 
credit for a system failure, directly to the user's account 
record maintained on the system. 

System access 

The nature of access to the computer, by individual 
users, may be restricted by the system administrators 
in several ways. In the simplest case, it may be desired 
to restrict access to only some of the time shifts during 
which the machine is in operation. This may be handled 
quite simply by setting the funds allocations in the 
restricted shifts to zero. The system will not permit a 
user to log in during these times, since the balance re
maining in his account, for the shift, is zero. 

Where a user subscribes to the computer utility for 
a specific proprietary applications subsystem, it may be 
desired to restrict access to that subsystem. Moreover, 
access to the subsystem programs must be restricted 
to only those users who have subscribed to its service. 
These objectives may be accomplished by a fairly. 
straightforward procedure. First, applications sub
systems are accessed by special system commands 
which perform a login procedure for the user invoking 
them. If the user is to be restricted to a subsystem, the 
name, or some other unique identification, of that sub
system is placed in the account record. The normal 
system login procedure checks to see that no such 
restriction exists; if it does, login as a general time 
sharing user is not permitted. The login procedure in 
each subsystem must verify the equality of the sub
system restriction with its own requirements. For 
example, a subsystem might accept several legal sub
system identifications in the user account record, but 

assign different levels of service privileges to the user 
based upon the particular code that is present in his 
account. (Of course, a subsystem might not perform 
any such check, allowing any subscriber to access it 
and purchase its services.) 

Dn occasion, it may be desirable to limit the number 
of simultaneous jobs that may be active for a group of 
users, e.g., a number of individual users all associated 
with the same customer of the computer utility. This 
capability permits the utility to offer guaranteed 
access for a stated number of individual users to a large 
customer organization. This concept may be imple
mented in two ways: a guaranteed minimum number 
of lines, or a guaranteed total number of lines. In the 
former, the customer would be guaranteed that he 
could always have some s~ci~ number of lines; if 
he were using all of these, he could obtain additional 
lines on a contention basis with other customers who 
do not have any guaranteed access. In the latter case, 
the customer cannot exceed his guaranteed number of 
lines; additional users will be prevented from logging 
in until another user in the group has logged out. 

We have already considered the case of multiple jobs 
for the same user account. The system has the capability 
of placing an upper limit on the number' of times a 
user may be logged in. However, for a user in a guar
anteed access group, the use of multiple logins on the 
same user account will count toward the access guar
antee for every time a single user is logged in. 

Resource management 

The preceding sections have described the control 
capabilities of the PDP-IO design. In order to adminis
ter the system, a mechanism -has been provided for 
communicating with the accounting structure at a 
number of levels, similar, but with some significant 
extensions, to the BUYTIM system on CTSS described 
earlier. The program that enables such communication 
is implemented as an application subsystem that may 
be made available to virtually all users of the computer, 
but subject to several distinct levels of access. The 
same type of management levels that exist in the CTSS 
version are available here-utility administration, user 
group leader, project leader (analogous to problem 
number leader in CTSS) an individual user. In the 
CTSS version the group leader could allocate individual 
sets of resource limits to each problem number, or place 
some or all in a common pool. A similar capability 
exists- here, except that any number of resource pools. 
may be established within the same user group, instead 
of only the one available in CTSS. Generally, each 
level of management has greater direct control ca-



pabilities than were available within the CTSS version. 
The following table summarizes the principal ca
pabilities of each level of resource management, under 
the PDP-I0 version. 

RESOURCE lVIANAGEMENT CAPABILITIES 

Level 

User 

Project 
Leader 

Group 
Leader 

Utility 
Administration 

Capabilities 

May have no access to subsystem, or 
May do any of the following, as de

termined by project leader: 
Alter own resource limits, password, 

or funds. 
Alter any or all of the above for 

other users in same project. 

May do any of the above within his 
project. 

May assign any of the above levels of 
permission to users in his project. 

Add or delete users in his project. 
Examine the accounts, including pass

words, of users in his project. 
Designate specific applications sub

system access to any user in his 
project, subject to restrictions 
imposed by Group Leader. 

May do any of the above. 
Designate project leaders for projects 

within his group. 
Assign and remove individual project 

numbers to and from resource 
pools. 

Change allocation limits for projects 
and resource pools within the 
group. 

May alter rate structure applicable 
to individual user accounts. 

Alter guaranteed access group assign
ment for individual users, proj
ects and customer groups. 

Change overall resource limits for 
individual customer groups. 

May add and remove project- numbers 
to or from a customer group. 

May create and destroy customer 
groups. 

May alter the number of lines, as well 
as the nature of, a guaranteed ac
cess group. 

May enter any extraordinary charge 
or credit to any individual user 
account. 
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May set, for each user, the number of 
times he may be simultaneously 
logged in. 

May establish and modify the list of 
subsystems available to the user 
group. 

Security of the SysteIll 

Several procedures and mechanisms have been in
corporated into the design of the resource management 
system to provide protection from accidental or 
deliberate sabotage by users. All accounting files are 
maintained in a manner such that access to them is 
only possible by means of one of several system com
mands. Further, these commands are responsible for 
restricting access to the accounting files according to 
the level of authority of the user invoking the command. 
This permission information is maintained in the user 
account record. When executing the accounting com
mands, the user is prevented from returning to monitor 
level until all files have been closed and access has 
been terminated. Moreover, should a user accidentally 
be able to get to monitor level, the system will not 
permit him to do anything except log off the computer. 

Similar restrictions apply in the case of use of an 
application subsystem. Once access has been gained, 
control cannot be returned to the time sharing monitor 
unless ahd until the program so desires. User-initiated 
interrupts are intercepted by the monitor and control 
is passed back to the proprietary subsystem then in 
execution. The subsystem is, of course, responsible for 
taking whatever action it considers appropriate. A 
normal exit from such a subsystem implies a logout. If 
a user wishes to use both the subsystem and the general 
purpose time sharing service, he must establish separate 
accounts for each purpose. 

We have attempted to present a description of how 
a managerial accounting information system for a 
computer utility can significantly expand the scope of 
activities of such an organization. The approach to 
system design has been the result of actual adminis
trative experience with such systems over a period of 
several years. This experience has shown the importance 
of such capabilities. 

As time sharing service organizations become more 
complex in their structure and diversified in their 
activities, the need for a well-structured information 
management mechanism will no doubt become more 
critical. This implies that time sharing operating sys
tems will, more and more, have to be designed with the 
necessities of system administration in mind. Operating 
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systems deficient in this respect will find it difficult to 
provide the range of services necessary for survival in 
an increasingly more competitive industry environment. 
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Multiple consoles: A basis for communication 
growth in large systems 
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INTRODUCTION 

The intent of this paper is to discuss the development 
of multiple consoles which on the surface appears to 
be a simple and straightforward concept. This concept, 
however, should not be considered an ending in itself, 
it should be viewed as a basis from which a communica
tion network can grow. Justification for more than one 
console is supported to show that multiple-consoles are 
necessary components in most if not all large systems. 
Beyond the basic and obvious requirements of a mul
tiple console environment lie many different philoso
phies concerning the utilization of consoles, some of 
which are explored in this paper. 

The recently announced Multiple Console Support 
(MCS) Option of the IBM System/360 Operating 
System constitutes one significant approach. Within 
its own environment MCS leaves room for meaningful 
growth in the communications network. 

THE MULTIPLE CONSOLE CONCEPT 

As one looks back over the history of computer 
evolution the evidence of development in system 
features shows a steady growth. Increased diversifica
tion, throughput capabilities and physical size have all 
contributed to overloading the communication network. 
The discontinuous flow of system messages and the 
proportionate increase in the number of messages with 
the growth pattern in system features, made the task 
of the operator demanding to the point of physical 
and mental exhaustion. 

An informal study revealed that three messages per 
minute based on an average message mix is the maxi
mum number an operator can handle without delaying 
system throughput. Information bnly messages were 
the easiest for the operator to handle, because all he 
had to do was remember what was outputted to him 
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regarding the system status. But as the number of 
decision and action type messages increased so increased 
the complexity of the operator's job. His role in the 
man-computer communication network became more 
vital as the system and the number of system messages 
continued to grow. It soon became obvious any break
down in the response time of the operator would only 
degrade the p6wer and throughput of the system. 

What was a user to do? He wanted more system 
features and was aware that with this increased power 
the system would need a corresponding increase in 
operator-computer communications. As one user de
scribed it, "With priority scheduling and with multi
partition or multiprocessor operations, the operator at 
the console is in the position of trying to drink from a 
firehose." Another user found that their IBM 1052 
typewriter console output was approximately 4 million 
characters a month based on a 24-hour day, 7 days per 
week operation, or 100 characters per minute. And con
sidering that the maximum rate of a 1052 is 14.8 char
acters per second and allowing 500 milliseconds for a 
carrier return this meant that the console was busy on 
an average of one-eighth of each minute. However, 
realizing that. console output rates follow probability 
the situation arose too often where the console had all 
it could do to keep up with message output. At these 
times, the operator was kept abnormally busy trying 
to interpret what was going on. Then, if required 
operator communication requests are considered, such 
as displaying information about job activity on the 
IBM System/360 Models 65 and up, chances were 
that what the operator got back in reply was a history 
of what existed rather than what was presently happen
ing in the system. The IBM 2250 Display Console 
helped somewhat in offsetting the time required to dis
play these types of informational messages. 

Another problem was that even if the operator, or 
operators with the larger systems, could keep up with 
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the flood of output messages they were kept active 
trying to satiefy peripheral requests made by the 
system. Add to this fact that with some users it is either 
necessary or desirable to have peripheral equipment 
located in other rooms or even other floors, the incon
venience of satisfying peripheral requests is com
pounded. Voice communication between operators was 
previously the only way of handling many of these 
distant peripheral demands made by the system. But 
voice communication proved faulty either through un
intelligible operator enunications or because of the lack 
of readable copy for the peripheral operator who might 
forget a request when his area might be overly busy. 
The result was needless I/O delay. 

Another significant point was that all communica
tion was dependent on one relatively inexpensive con
sole unit. If for some reason this device should fail, 
all communication would stop and the system would 
eventually stop. 

The solution to this overloaded operator and over
loaded console problem was to have multiple operators 
at multiple consoles. Now, for example, all the operator 
stationed in the tape pool had to do was scan the con
sole output near his station for messages related to the 
tape pool. Clearly this was a trivial solution, but it 
was nonetheless a solution. The inherent problem, of 
course, was that each operator received all system 
messages. We shall see later how a specific implementa
tion of the multiple console concept can eliminate this 
problem of message duplication at all active consoles. 

DESIRABLE ASPECTS OF A SOLUTION 

What was needed to satisfy the growth in system 
power was an encompassing communications network 
that would be versatile enough to accommodate future 
system growth while affording immediate solutions to 
the present day problems inherent in man-computer 
interactions. 

At this point then, let us enumerate what should be 
the desirable aspects of such a solution: 

(1) Reliability-A system component as vital as the 
communication network should afford safeguards 
against failure whenever possible. Also, there 
should be a guarantee that every generated message 
gets delivered. 

(2) Flexibility-The network should have the ca
pability of molding to fit the immediate needs of 
the system, and allow room for future growth. 

(3) Standardization-To guard against the heretofore 
haphazard growth in the communication area, 
formalized procedures should be developed to 

eliminate needless duplication of messages and 
guard against multiple formats of messages. 

(4)· Communication Power-Presently, a major deficit 
is in speed of communication. The solution should 
offer a definite increase in output capability. This, 
to have value, would have to be coupled with a 
routing capability which could deliver messages to 
their most appropriate point. 

(5) Auditability-The network should be able to 
maintain a trail of past communications to aid in 
system analysis and evaluations. 

(6) Security-A user desiring to keep his computer 
interactions private should be given that capability. 

MULTIPLE CONSOLE SUPPORT 

One answer to the multiple console concept was pro
vided by IBM with the Multiple Console Support 
(MCS) Option, made available in Release 18 of the 
IBM System/360 Operating System. Previous- attempts 
at multiple consoles within IBM were made through 
the ASP-HASP spooling systems, but the MCS Option 
was the first supported package that not only made 
multiple consoles a working idea but provided a com
munications network that could grow with the system. 
Let us now look at some of the highpoints of this MCS 
Option. 

As its name implies, MCS enables the Operating 
System to be configured with multiple consoles, with 
each console performing one or more dedicated 
functions. 

The primary means of routing messages to their ap
propriate point is via 'routing codes' assigned to each 
message. One or more routing codes may be specified 
to indicate to which functional area a message is to be 
sent. More than one routing code may be assigned to a 
message. 

Descriptor codes provide multiple means of message 
presentation or message deletion from display type 
devices. These codes provide the individual console 
device support with the means of determining how a 
message is to be printed or displayed, and how a 
message may be deleted from a display device. 

The user specifies the console configuration when 
building the system. He may dynamically alter the 
configuration during system operation, however. One 
console must be specified as the Master Console, where 
all commands are valid. All other consoles are specified 
as secondary consoles with each console having a 
command entering authority and assigned routing 
codes. 

Secondary Consoles are additional consoles (local or 
remote) to which selected messages are routed. One 



console may handle more than one routing code, and 
the same routing code may be handled by many con
soles. The user specifies which operator commands and 
routing codes will be authorized for each secondary 
console when the system is built . 

. Alternate consoles provide backup capability when 
the original console device is inoperative. An alternate 
console can be a secondary console or the Master 
Console. MCS requires that an alternate console be 
specified for the Master Console. If an alternate console 
is not assigned to a secondary console, the Master 
Console will be assigned as the alternate. This alternate 
console concept enhances the network reliability by 
ensuring that messages are not lost when one console 
goes down or offline. Initially, each console's alternate 
is assigned during system definition but .can be dy
namically changed during operation. 

Six console types are presently s~pported by MCS: 

(1) IBlYI 1052 Printer Keyboard Model 7 with a 2150 
Console. 

(2) IBM 1052 Printer Keyboard Model 7 with a 1052 
Adapter. 

(3) Composite Reader/Printer or Reader/Punch com
binations. 

(4) IBM 2250 on IBM System/360 Models 50, 65, 75, 
and 91 using MVT. (Display Screen) 

(5) IBM System/360 Model 85 Integrated Operator's 
Console (220C). (Display Screen) 

(6) IBM 2740 Communication Terminal ModelL 

Console switching, the act of moving one console's 
capabilities to another console, can be done auto
matically, dynamically, and manually. Automatically 
switching to an alternate console occurs when the 
console is determined to be inoperative by the software. 
An operator command has been provided for dynamic 
console switching and console reconfiguration. The 
external interrupt key on the operator's panel provides 
manual switching to a new Master Console. The 
facility for the DISPLAY of the console configuration 
is provided through the Display Consoles operator 
command. 

HARD COpy LOG, ROUTING CODES, AND 
TIME STAMPING: MCS provides the capability to 
have buffered or immediate hard copy. Specification of 
the hard copy device is provided at system definition 
and at system initialization. It eliminates the loss of 
information when graphic console operators delete 
messages and operator commands from their screen. 
Hard Copy collects and records all messages that have 
routing codes which intersect an assigned set. This set 
can be dynamically changed by the Master Console 
operator. Messages when sent to Hard Copy are pre-
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fixed by their routing codes and a time stamp from the 
system clock. 

User Exit: An option is provided to enable the in
clusion of a resident, user-written exit routine. This 
routine receives in a separate buffer a copy of each 
message before it is routed. Available to the routine 
are the following: 

1. Message Text 
(read only) 

2. Routing Codes 
(modify or suppress) 

3. Descriptor Codes 
(modify or suppress) 

This allows a user to impose his own functional routing 
mechanism. 

These individual facts about MCS together form a 
multiple console environment which accomplishes some 
of the aforementioned 'desirable aspects.' 

(a) Reliability-The extensive alternate chaining and 
automatic console switching combined with a wide 
variety of device types insures much greater de
pendability. Now one or more of the consoles can 
fail without a noticeable delay In system 
functioning. 

(b) Communication Power-More consoles immedi
ately increases message output capability by a 
factor almost equal to the number of consoles. The 
new devices supported such as the IBM 2250 and 
the IBM System/360 Model 85 Integrated Oper
ator's Console 220C also deliver increased speed 
in terms of time between message issuance and ap
pearance on the console. 

(c) Auditability-The Hard Copy Log concept is a 
direct answer to this problem and affords a flexible 
means of recording the system's daily performance. 

( d) Flexibility-The changing internal and external 
system environment can be coped with through 
the new operator's commands. The console con
figuration can be easily changed by bringing up 
new consoles or removing others from operation. 
Operating consoles can have their functional areas 
and command authorities changed. Flexibility on a 
shop level is given by the User Exit routine which 
allows a user to tailor a routing algorithm more in 
keeping with his own specific job types. 

GROWTH IN THIS NETWORK 

MCS clearly follows the lines of the solution. Al
though not a panacea for all the mentioned points it 
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does afford a basis upon which the remaining points 
could be obtained. 

M CS routes messages through the use of predeter
mined codes attached to messages and consoles defined 
to receive specific message codes. This allows for 
splitting messages between the consoles but does not 
allow for messages that might be considered priority. 
Thus, if a volume of messages occurs the operator will 
attack the output serially and he may lose time re
sponding to a number of less important messages 
before he gets to the priority message. MCS does pro
vide, however, a mechanism for flagging messages that 
are considered needed action on the/part of the opera
tor, but still a priority message rp.ay be tucked at the 
end of the queue. This problem of priority messages 
will grow as the system continues to grow and the 
number of output messages and operator responses 
increase. Although priority routing is a valid point it 
should be noticed that a multiple console environment 
that properly uses functional routing minimizes prob
lems in this area. 

The security aspect has not been addressed during 
the MCS discussion. Certain abilities for security 
handling and monitoring exist through the USER 
EXIT and HARD COPY mechanism, and a routing 
code is assigned for security messages. Beyond this 
there is no defined mechanism for a security console to 
monitor system functions that may affect the security 
user. Since the master console always has the authority 
to issue all commands and other consoles may have 
limited command issuing authorities, either may in
advertently affect the· security user by cancelling his 
job, halting his job, or varying system conditions. The 
security user should be able to monitor all system func
tions that may affect the status of his jobs. 

MCS is device independent within the range of 
devices/ consoles it presently supports and in some 
cases devices not presently supported can be hooked 
into an MCS environment if the user modifies internal 
restrictions that disallow such devices. A mechanism 
should be provided to allow total device independence. 
Thus, a user should be able to allow for a desired 
number of consoles, and later, say at system initializa
tion time, decide what devices he wants to use as 
consoles. 

Message standardization perhaps does not fall 
within the range of implementing a multiple console 
concept. However, standardizing message formats and 
text would have great impact on an MCS environment 
since the USER EXIT could have more effective text 
analysis. This would indeed make available more 
means of routing to the individual user. For example, 
MCS puts the job name on each message, Hence the 
USER EXIT could feasibly route by job name by in-

corporating a standard naming technique within the 
given shop. 

OTHER PHILOSOPHIES 

The last two sections dealt with one specific case, 
namely MCS, which should be recognized as just one 
example. It is not meant to be representative since any 
application is a function more of its environment than 
any other single factor and consequently cannot be 
considered a general solution. It (MCS) does however 
point out that more can be derived from a multiple 
console environment than meets the eye. The extremely 
obvious and trivial concept of more than one console, 
can play a signifi~ant role in large system enhancement 
if implemented in a meaningful manner. The basis 
upon which messages are routed seems to be the major 
point of difference between philosophies. Noone 
method can be labeled as the best since different en
vironments lend themselves to different routing 
algorithms. 

Some systems have more than one Direct Access, 
Tape, or Unit Record pool so that functional routing 
as afforded by MCS would result in needless messages 
at certain locations. A more suitable algorithm in this 
case might be to route by unit address. In this way, a 
console could request all information concerning certain ! 

. devices. This method also makes implementation of 
security measures more feasible since any operations 
concerning a particular volume could be monitored by 
receiving all messages concerning the unit upon which 
the volume is mounted. 

Another routing algorithm which arises from the 
user who wishes to monitor his own program is the 
routing by job class or partition. With this concept a 
console would receive all messages referring to a par
ticular job class. By properly assigning classes then, 
one could go to the appropriate console to watch his 
own job being processed. 

These algorithms are for the most part batch oriented. 
A time-sharing environment would place different 
demands on the communication network and proper 
implementation of multiI?le consoles no doubt implies 
different routing algorithms. 

SUMMARY 

Beneath the existing multi-console answer to computer 
communication network problems lies the more signifi
cant matter of meaningful implementation. Proper im
plementation cannot be stereotyped since it depends 
for the most part on the environment. 
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INTRODUCTION 

It makes no sense to discuss 'Software for privacy
preserving or secure time-shared computing without 
considering the hardware on which it is to run. Software 
access controls rely upon certain pieces of hardware. 
If these can go dead or be deliberately disabled· without 
warning, then all that remains is false security. 

This paper is about hardware aspects of controlled
access time-shared computing. * A detailed study was 
recently made of two pieces of hardware that are re-

. quired for secure time-sharing on an IBM System 360 
Model 50 computer: the storage protection system and 
the Problem/Supervisor state control system. I It un
covered over a hundred cases where a single hardware 
failure will compromise security without giving an 
alarm. Hazards of this kind, which are present in any 
computer hardware which supports software access 
controls, have been essentially eliminated in the SDC 
ADEPT-50· Time-Sharing System through techniques 
described herein.2 

Analysis based on that work has clarified what 
avenues are available for subversion via hardware; they 
are outlined in this paper. A number of ways to fill 
these security gaps are then developed, including meth
ods applicable to a variety of computers. Adminis
trative policy considerations, problems in secll";"v cel"ti
fication of hardware, and hardware design c~nsider
~tions for secure time-shared computing also receive 
comment. 

FAILURE, SUBVERSION, AND SECURITY 

Two types of security problem can be found in com
puter hardware. One is the problem of hardware failure; 

*!he relationship between "security" and "privacy" has been 
dIscussed elsewhere.3,4 In this paper "security" is used to cover 
controlled-access computing in general. 
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This includes not only computer logic that fails by 
itself, but also miswiring and faulty hardware caused 
by improper maintenance ("Customer Engineer") ac
tivity, including CE errors in making field-install able 
engineering changes. 

The other security problem is the cloak-and-dagger 
question of the susceptibility of hardware to subversion 
by unauthorized persons. Can trivial hardware changes 
jeopardize a secure computing facility even if the soft
ware remains completely pure? This problem and the 
hardware failure problem, which will be considered in 
depth, are related . 

Weak points for logic failure 

Previous work involved an investigation of portions 
of the 360/50 hardware. I Its primary objective was to 
pinpoint single-failure problem locations. The question 
was asked, "If this element fails, will hardware required 
for secure computing go dead without giving an alarm?" 
A total of 99 single-failure hazards were found in the 
360/50 storage protection hardware; they produce a 
variety of system effects. Three such logic elements 
were found in the simpler Problem/Supervisor state 
(PSW bit 15) logic. A failure in this logic would cause 
the 360/50 to always operate in the Supervisor state. 

An assumption was made in finding single-failure 
logic problems which at first may seem more restrictive 
than it really is: A failure is defined as having occurred 
if the output of a logic element remains in an invalid 
state based on the states of its inputs. Other failure 
modes certainly exist for logic elements, but they reduce 
to this case as follows: (1) an intermittent logic element 
meets this criterion, but only part of the time; (2) a 
shorted or open input will cause an invalid output 
state at least part of the ·time; (3) a logic element which 
exhibits excessive signal delay will appear to have an . 
invalid output state for some time after any input 
transition; (4) an output wire which has been con-
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nected to an improper location will have an invalid 
output state based on its inputs at least part of the 
time; such a connection may also have permanently 
damaged the element; making its output independent 
of its input. It should be noted that failure possibilities 
were counted; for those relatively few cases where a 
security problem is caused whether the element gets 
stuck in "high" or in "low" state, two possibilities were 
counted. 

A situation was frequently encountered which is con
sidered in a general way in the following section, but 
which is touched upon here. Many more logic elements 
besides those tallied would cause the storage protection 
hardware to go dead if they failed, but fortunately 
(from a security viewpoint) their failure would cause 
some other essential part of the 360/50 to fail, leading 
to an overall system crash. "Failure detection by faulty 
system operation" keeps many logic elements from 
becoming security problems. 

Circumventing logic failure 

Providing redundant logic is a reasonable first sug
gestion as a means of eliminating single failures as 
security problems. However, redundancy has some 
limits which are not apparent until a close look is 
taken at the areas of security concern within the Central 
Processing Unit (CPU). Security problems are really 
in control logic, such as the logic activated by a storage 
protect violation signal, rather than in multi-bit data 
paths, where redundancy in the form of error-detecting 
and error-correcting codes is often useful. Indeed, the 
360/50 CPU already uses an error-detecting code exten
sively, since parity checks are made on many multi-bit 
paths within it. 

Effective use of redundant logic presents another 
problem. One must fully understand the system as it 
stands to know what needs to be added. Putting it 
another way, full hardware certification must take 
place before redundancy can be added (or appreciated, 
if the manufacturer claims it is there to begin with). 

Lastly, some areas of hardware do not lend them
selves too easily to redundancy: There can be only one 
address at a time to the Read-Only-Storage (ROS) unit 
whose microprograms control the 360/50 CPU.5,6 One 
could, of course, use such a scheme as triple-modular 
redundancy on all control paths, providing three copies 
of ROS in the bargain. The result of such an approach 
would not be much like a 360/50. 

Redundancy has a specialized, supplementary appli
cation in conjunction with hardware certification. After 
the process of certification reveals which logic elements 
can be checked by software at low overhead, redundant 

logic may be added to take care of the remainder. A 
good example is found in the storage protection logic. 
Eleven failure possibilities exist where protection inter
rupts would cause an incorrect microprogram branch 
upon failure. These failure possibilities arise in part 
from the logic elements driven by one control signal 
line. This signal could be provided redundantly to 
make the hardware secure. 

Software tests provide another way·. to eliminate 
hardware failure as a security problem. Code can be 
written which should cause a protection or privileged~ 
opera~ion interrupt; to pass the test the interrupt must 
react appropriately. Such software must interface. the 
operating system software for scheduling and storage
protect lock alteration, but must execute in Problem 
state to perform its tests. There is clearly a tradeoff 
between system overhead and rate of testing. As pre
viously mentioned, hardware certification must be per
formed to ascertain what hardware can be checked by 
software tests, and how to check it. 

Software testing of critical hardware is a simple and 
reasonable approach, given hardware certification; it is 
closely related to a larger problem, that of testing for 
software holes with software. Software testing of hard
ware, added to the SDC ADEPT-50 Time-Sharing 
System, has eliminated over 85 percent of present 
single-failure hazards in the 360/50 CPU. 

Microprogramming could also be put to work to 
combat failure problems. A microprogrammed routine 
could be included in ROS which would automatically 
test critical hardware, taking immediate action if the 
test were not passed. Such a microprogram could either 
be in the form of an executable instruction (e.g., TEST 
PROTECTION), or could be automatic, as part of 
the timer-update sequence, for example. 

A microprogrammed test would have much lower 
overhead than an equivalent software test performed 
at the same rate; if automatic, it would test even in 
the middle of user-program execution. A preliminary 
design of a storage-protection test that would be exer
cised every timer update time (60 times per second) 
indicated an overhead of only 0.015 percent (150 test 
cycles for every million ROS cycles). Of even greater 
significance is that microprogrammed testing is. speci
fiahle. A hardware vendor can be given the burden of 
proof of showing that the tests are complete; the vendor 
would have to take the testing requirement into account 
in design. The process of hardware certification could 
be reduced to a design review of vendor tests if this 
approach were taken. 

Retrofitting microprogrammed testing in a 360/50 
would not involve extensive hardware changes, but 
some changes would have to be made. Testing micro
programs would have to be written by the manu-



facturer; new ROS storage elements would have to be 
fabricated. A small amount of logic and a large amount 
of documentation would also have to be changed. 

Logic failure can be totally eliminated as a security 
problem in computer hardware by these methods. A 
finite effort and minor overhead are required; what 
logic is secured depends upon the approach taken. If 
microprogram or software functional testing is used, 
miswiring and dead hardware caused by CE errors will 
also be discovered. 

Subversion techniques 

It is worthwhile to take the position of a would-be 
system subverter, and proceed to look at the easiest 
and best ways of using the 360/50 to steal files from 
unsuspecting users. What hardware changes would have 
to be made to gain access to protected core memory 
or to enter the Supervisor state? 

Fixed changes to eliminate hardware features are 
obvious enough; just remove the wire that carries the 
signal to set PSW bit 15, for example. But such changes 
are physically identical to hardware failures, since some
thing is permanently wrong. As any functional testing 
for dead hardware will discover a fixed change, a po
tential subverter must be more clever. 

In ADEPT-50, a user is swapped in periodically for 
a brief length of time (a "quantum"). During his 
quantum, a user can have access to the 360/50 at the 
machine-language level; no interpretive program comes 
between the user and his program unless, of course, 
he requests it. Thus, a clever subverter might seek to 
add some hardware logic to the CPU which would 
look for, say, a particular rather unusual sequence of 
two instructions in a program. Should that sequence 
appear, the added logic might disable storage pro
tection for just a few dozen microseconds. Such a small 
"hole" in the hardware would be quite sufficient for 
the user to (1) access anyone's file; (2) cause a system 
crash; (3) modify anyone's file. 

User-controllable changes could be implemented in 
many ways, with many modes of control and action 
besides this example (which was, however, one of the 
more effective schemes contemplated). Countermea
sures to such controllable changes will be considered 
below, along with ways in which a subverter might try 
to anticipate countermeasures. 

Countermeasures to subversion 

As implied earlier, anyone who has sufficient access 
to the CPU to install his own "design changes" in the 
hardware is likely to put in a controllable change, since 
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a fixed change would be discovered by even a simple 
software test infrequently performed. A user-control
lable change, on the other hand would not be dis
covered by tests outside the user's quantum, and 
would be hard to discover even within it, as will become 
obvious. 

The automatic microprogrammed test previously dis
cussed would have a low probability of discovering a 
user-controllable hardware change. Consider an at
tempt by a user to replace his log-in number with the 
log-in number of the person whose file he wants to 
steal. He must execute a MOVE CHARACTERS in
struction of length 12 to do this, requiring only about 
31 microseconds for the 360/50 CPU to perform. A 
microprogrammed test occurring at timer interrupts
once each 16 milliseconds-would have a low prob
ability of discovering such a brief security breach. In
creasing the test rate, though it raises the probability, 
raises the overhead correspondingly. A test occurring 
at 16 microsecond intervals, for example, represents a 
15 percent overhead. 

A reasonable question is whether a software test 
might do a better job of spotting user-controllable 
hardware changes. One would approach this task by 
attempting to discover changes with tests inserted in 
user programs in an undetectable fashion. One typical 
method would do this by inserting invisible breakpoints 
into the user's instruction stream; when they were 
encountered during the user's quantum, a software test 
of storage protection and PSW bit 15 would be per-
formed. . 

A software test of this type could be written, and as 
will be discussed, such a software test would be difficult 
for a subverter to circumvent. Nevertheless, the draw
backs of this software test are severe. Reentrant code 
is required so that the software test can know (1) the 
location of the instruction stream,· and (2) that no 
instructions are hidden in data areas. Requiring re
entrant programs would in turn require minor changes 
to the ADEPT-50 Jovial compiler and major changes 
to the F -level Assembler. A small microprogram change 
would even be required, so that software could sense 
the difference between a fetch-protect interrupt and 
an execute-protect interrupt. Changes would be re
quired to the ADEPT-50 SERVIS, INTRUP, DE
BUG, and SKED modules. Were such a software test 
implemented, run-time overhead would likely be rather 
high for frequent breakpoint-insertions, since each 
breakpoint inserted would require execution of 50 or 
more instructions at run time. Lastly, programmers 
might not always like having to write reentrant code. 

These implementation problems, though described 
for one specific test approach, are likely to extend to 
any test which attempts to interrupt running user pro-
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grams via software, since any such test must isolate 
and augment every user's instruction stream; 

Although the above does not demonstrate that de
tecting user controllable subversion hardware is im
possible, it should indicate that by no means is such 
detection trivial. It is even harder than the above may 
suggest, for, as the next section indicates, while the 
subverter is busily building his controllable changes 
into the CPU he may add insult to injury by inacti
vating anti-failure and anti-subversion hardware. 

Defeat of countermeasures 

Hardware countermeasures that are easy to install 
are easy to remove. Redundant logic can be disabled 
with the same wire cutters or wire-unwrapper as other 
logic. This is also true of state-testing and parity-check 
logic. Alternatively, a clever subverter may add logic 
that picks up a test signal and uses it to inactivate his 
own logic while the test is performed. The subverter 
may, alternatively, arrange things so that tests always 
pass during his quantum. 

Microprogrammed countermeasures are somewhat 
more difficult for the subverter to inactivate, since he 
must decode particular ROS addresses to know that a 
microprogrammed test routine has begun. Once he has 
done this, though, he may proceed as if he were dealing 
with hardware, since on a short-term basis, micro
program contents and addresses do not change. The net 
result of putting countermeasures in ROS rather than 
in logic is to raise the "work function" for subversion' 
that is, the subverter must do more work to achiev~ 
his goal, but he can reach it. 

On the other hand, a thorough software test, such 
as the breakpoint test previously described, would be 
nearly impossible to defeat by hardware techniques. 
This is because of the transient nature of software: 
a subverter would have to decode program variables 
such as addresses via hardware; then even minor 
changes in the breakpoint-placing routines would make 
that hardware useless. One must recall, however, the 
large implementation and overhead problems inherent 
in a user-interrupting software test. In summary, 
countermeasures can be devised which have a high 
"work function," but they entail major costs in imple
mentation and system efficiency. 

Two assumptions have been inherent in this dis
cussion; namely, that the subverter has both knowledge 
of system hardware (including subversion counter
measures) and means of changing the hardware. This 
need not be the case, but whether it is depends on 
administrative rather than technical considerations. 
Administrative considerations are the next subject. 

Administrative policy 

Special handling of hardware documentation and 
engi~eering changes may be worthwhile when com
mercial lines of computers are used for secure time
sharing. First, if hardware or microprograms have been 
added to the computer to test for failures and subversion 
attempts, the details of the tests should not be obtain
able from the computer manufacturer's worldwide net
work of sales representatives. The fact that testing is 
done and the technical details of that testing would 
seem to be legitimate security objects, since a subverter 
can neutralize testing only if he knows of it. Classifi
cation of those documents which relate to testing is a 
policy question which should be considered. Likewise, 
redundant hardware, such as a second copy of the 
PSW bit 15 logic, might be included in the same 
category. 

The second area is that of change control. Presumably 
the "Customer Engineer" (CE) personnel who perform 
engineering changes have clearances allowing them 
access to the hardware, but what about the. technical 
documents which tell them what to do? A clever sub
verter could easily alter an engineering-change wire list 
to include his modifications, or could send spurious 
change documentation. A CE would then unwittingly 
install the subverter's "engineering change." Since it 
is asking too much to expect a CE to understand on a 
wire-by-wire basis each change he performs, some new 
step is necessary if one wants to be sure that engineering 
changes are made for technical reasons only. In other 
words, the computer· manufacturer's engineering 
changes are security objects in _ the sense that their 
integrity must be guaranteed. Special paths of trans
mittal and post-installation verification by the manu
facturer might be an adequate way to secure engineering 
changes; there are undoubtedly other ways. It is clear 
that a problem exists. 

Finally, it should be noted that the 360/50 ROS 
storage elements, or any equivalent parts of another 
manufacturer's hardware that contain all system micro
programming, ought to be treated in a special manner, 
such as physically sealing them in place as part of 
hardware certification. New storage elements containing 
engineering changes are security objects of even higher 
order than regular engineering-change documents, and 
should be handled accordingly, from their manufacture 
through their installation. 

GENERALIZATIONS AND CONCLUSIONS 

Some general points about hardware design that I 

relate to secure time-sharing and some short-range and 
long-range conclusions are the topics of this section. 



Fail-secure VS. fail-soft hardware 

Television programs, novels, and motion pictures 
have made it well known that if something is "fail-safe," 
it doesn't blow up when it fails. In the same vein, 
designers of high-reliability computers coined the term 
"fail-soft" to describe a machine that degrades its 
performance when a failure occurs, instead of becoming 
completely useless. It is now proposed to add another 
term to this family: "Fail-secure: to protect secure 
information regardless of failure." 

The ability to detect failures is a prerequisite for 
fail-secure operation. However, all system provisions 
for corrective action based on failure detection must be 
carefully designed, particularly when hardware failure 
correction is involved. Two cases were recently de-

. scribed wherein a conflict arose between hardware and 
software that had been included to circumvent failures. * 
Automatic correction hardware could likewise mask 
problems which should be brought to the attention of 
the System Security Officer via security software. 

Clearly, something between the extremes of system 
crash and silent automatic correction should occur 
when hardware fails. Definition of what does happen 
upon failure of critical hardware should be a design 
requirement for fail-secure time-sharing systems. Fail
soft computers are not likely to be fail-secure com
puters, nor vice versa, unless software and hardware 
have been designed with both concepts in mind. 

Failure detection by faulty system operation 

Computer hardware logic can be grouped by the 
system operation or operations it helps perform. Some 
logic-for example, the clock distribution logic-helps 
perform only one system operation. Other logic-such 
as the read-only storage address logic in the 360/50-
helps perform many system operations, from floating 
point multiplication to memory protection interrupt 
handling. When logic is needed by more than one system 
operation, it is cross-checked for proper performance: 
Should an element needed for system operations A and 

* At the "Workshop on Hardware-Software Interaction for 
System Reliability and Recovery in Fault-Tolerant Computers," 
held JUly 14-15, 1969 at Pacific Palisades, California, J. W. 
Herndon of Bell Telephone Labs reported that a problem had 
arisen in a developmental version of Bell's "Electronic Switching 
System." It seems that an elaborate setup of relays would begin 
reconfiguring a bad communications channel at the same time 
that software in ESS was trying to find out what was wrong. 
R. F. Thomas, Jr. of the Los Alamos Scientific Laboratory, 
having had a similar problem with a self-checking data acquisi
tion system, agreed with Herndon that hardware is not clever 
enough to know what to do about system failures; software 
failure correction approaches are preferable. 
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B fail, the failure of system operation B would indicate 
the malfunction of this portion of operation A's logic. 

Such interdependence is quite useful in a fail-secure 
system, as it allows failures to be detected by faulty 
system operation-a seemingly inelegant error detection 
mechanism, yet one which requires neither software nor 
hardware overhead. Some ideas on its uses and limi
tations follow. 

The result of a hardware logic failure can usually be 
defined in terms of what happe:q.s to the system oper
ations associated with the dead hardware. Some logic 
failure modes are detectable, because they make logic 
elements downstream misperform unrelated system 
operations. Analysis will also reveal failure modes which 
spoil only the system operation which they help per
form. These failures must be detected in some other 
way. There are also, but more rarely, cases where a 
hardware failure may lead to an operation failure that 
is not obvious. In the 360/50, a failure could cause 
skipping of a segment of a control microprogram that 
wasn't really needed on that cycle. Such failures are 
not detectable by faulty system operation at least part 
of the time. 

Advantage may be taken of this failure-detection 
technique in certifying hardware to be fail-secure as 
well as in original hardware design. In general, the 
more interdependencies existing among chunks of logic, 
the more likely are failures to produce faulty system 
operation. For example, in many places in a computer 
one finds situations as sketched in Figure 1. Therein, 
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TABLE I-Control Signal Error Detection by Odd Parity 
Check on Odd-Length Data Field 

DATA BITS 

012 P 

000 0 
000 1 
001 0 
001 1 
0100 
010 1 
011 0 
011 1 
100 0 
100 1 
1010 
101 1 
110 0 
110 1 
1110 
111 1 

MEANING 

data error or control logic error* 
o 
1 
data error 
2 
data error 
data error 
3 
4 
data error 
data error 
5 
data error 
6 
7 
data error or control logic error** 

* Control logic incorrectly set all bits to zero. 
**Controllogic incorrectly set all bits to one. 

System Operation A needs the services of Logic Group 
1 and Logic Group 3, while System Operation B needs 
Logic Group 2 and Logic Group 3. Note at this point 
that, as above, if System Operation A doesn't work 
because of a failure in Logic Group 3, we have con
currently detected a failure in the logic supporting 
System Operation B. 

A further point is made in Figure 1. Often System 
Operations A and B must be mutually exclusive; hard
ware must be added to prevent simultaneous activation 
of A and B. Two basic design approaches may be taken 
to solve this problem. An "inhibiting" scheme may be 
used, wherein logic is added that inhibits Logic Group 1 
when Logic Group 2 is active, and vice versa. This 
approach is illustrated by Figure lea). Alternatively, 
a "sequencing" scheme may be used, wherein logic not 
directly involved with 1 or 2-such as system clock, 
mode selection logic, o:r a status register-defines when 
A and B are to be active. This approach is illustrated 
by Figure 1 (b) . 

N ow, "inhibit" logic belongs to a particular System 
Operation, for its function is to asynchronously, on 
demand, condition the hardware to perform that System 
Operation. It depends on nothing else; if it fails by 
going permanently inactive, only its System Operation 
is affected, and no alarm is given. On the other hand, 
"sequencing" logic feeds many areas of the machine; 
its failure is highly likely to be detected by faulty 
system operation. 

A further point can be made here which may be 
somewhat controversial: that an overabundance of 
"inhibit" -type asynchronous logic is a good indicator 
of sloppy design or bad design coordination. While a 
certain amount must exist to deal with asynchronous 
pieces of hardware, often it is put in to "patch" prob
lems that no one realized were there till system checkout 
time. Evidence of such design may suggest more 
thorough scrutiny is desirable. 

System Operations can be grouped by their frequency 
of occurrence: some operations are needed every CPU 
cycle, some when the programmer requests them, some 
only during maintenance, and so on. Thus, some logic 
which appears to provide a cross-check on other logic 
may not do so frequently or predictably enough to 
satisfy certification requirements. 

To sum up, the fact that a system crashes when a 
hardware failure occurs, rather than "failing soft" by 
continuing to run without the dead hardware, may be 
a blessing in disguise. If fail-soft operation encompasses 
hardware that is needed for continued security, such 
as the memory protection hardware, fail-soft oper.ation 
is not fail-secure. 

Data· checking and control signal errors 

Control signals which direct data transfers will often 
be checked by logic that was put in only to verify 
data purity. The nature and extent of this checking is 
dependent on the error-detection cod~ used and upon 
the length of the data field (excluding check bits). 

What happens is that if logic fails which controls a 
data path and its check bits, the data will be forced to 
either all zeros or all ones. If one or both of these cases 
is illegal, the control logic error will be detected when 
the data is checked. (Extensive parity checking on the 
360/50 CPU results in much control logic failure de
tection capability therein.) Table 1 demonstrates an 
example of this effect; Table 2 describes the conditions 
for which it exists for the common parity check. 

TABLE 2-Control Signal Error Detection by Parity Checking 

DATA CONTROL LOGIC 
FIELD ERROR CAUSES: 

LENGTH: PARITY: all zeros all-ones 

even odd CAUGHT MISSED 
even even MISSED CAUGHT 
odd odd CAUGHT CAUGHT 
odd even MISSED MISSED 



CONCLUSIONS 

From a short-range viewpoint, 360/50 CPU hardware 
has some weak spots in it but no holes, as far as secure 
time-sharing is concerned. Furthermore, the weak spots 
can be reinforced with little expense. Several alterna
tives in this regard have been described. 

From a longer-range viewpoint, anyone who contem
plates specifying a requirement for hardware certifi
cation should know what such an effort involves. As 
reference, some notes are appropriate as to what it 
took to examine the 360/50 memory protection system 
to the level required for meani~gful hardware certifi
cation. The writer first obtained several pUblications 
which describe the system. Having read these, the 
writer obtained the logic diagrams, went to the be
ginning points of several operations, and traced logic 
forward. Signals entering a point were traced backward 
until logic was found which would definitely cause 
faulty machine operation outside the protection system 
if it failed. During this tedious pro,cess, discrepancies 
arose between what had been read and what the logic 
diagrams appeared to show. Some discrepancies were 
resolved by further study; some were accounted for 
by special features on the SDC 360/50; some remain. 

After logic tracing, the entire protection system was 
sketched out on eight 8! X 11 pages. This drawing 
proved to be extremely valuable for improving the 
writer's understanding, and enabled failure-mode chart
ing that would have been intractable by manual means 
from the manufacturer's logic diagrams. 

For certifying hardware, documentation quality and 
currentness is certainly a problem. The manufacturer's 
publications alone are necessary but definitely not 
sufficient, because of version differences, errors, over
simplifications, and insufficient detail. Both these and 
machine logic diagrams are needed. 

Though the hardware certification outlook is bleak, 
an alternative does exist: testing. As previously de
scribed, it is possible to require inclusion of low-over
head functional testing of critical hardware in a secure 
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computing system. The testing techniques, whether 
embedded in hardware, microprograms, or software, 
could be put under security control if some protection 
against hardware subversion is desired. Furthermore, 
administrative security control procedures should ex
tend to "Customer Engineer" activity and to engineer
ing change documentation to the extent necessary to 
insure that hardware changes are made for technical 
reasons only. 

Careful control of access to computer-based infor
mation is, and ought to be, of general concern today. 
Access controls in a secure time-sharing system such 
as ADEPT-50 are based on hardware features. 7 The 
latter deserve scrutiny. 
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TICKETRON-A successfully operating system 
without an operating system 

by HARVEY DUBNER and JOSEPH ABATE 

Computer A pplications Incorporated 
New York, New York 

INTRODUCTION 

In recent years, industry has witnessed the prolifera
tion of complex on-line systems. More and more, com
puter management is recognizing the need to employ 
scientific methods to assist in the complex tasks of 
hardware/software selection and evaluation. This is 
especially true for real-time computer systems. As is. 
well known, the distinguishing feature of real-time 
systems is that they are prone to the most spectacular 
failures ever witnessed in the computer industry. In 
many installations, real-time systems have become 
"hard-time" systems. The specter of potential failure 
has caused users to realize the importance of designing 
first, installing later. The sophisticated user has become 
aware of the fact that the rules of thumb and intuition 
that adequately described simple batch-type systems 
do not suffice when one is concerned with real-time 
systems. Real-time automation demands a certain 
amount of expertise on the part of the designer and 
implementor. In fact, systems which have been in
stalled without adequate pre-analysis, more often 
than not, wind up with: 

• Too expensive a central processor 
• Too many ancillary components 
• The wrong number of I/O channels 
• Too elaborate a Supervisory System 
• Poor communications interface 

Clearly, the salient point we wish to establish is 
that real-time systems have a tendency to cost far in 
excess than necessary. Typically, the inefficient use of 
hardware is the staggering cost factor which most 
dramatically degrades the performance per dollar of a 
real-time system. Of course, our concern of performance 
per dollar would be an academic issue if the effect of 
improper design were to cause increases in hardware 
costs of the order of 10%. However, we maintain that 

14:l 

the situation is much more drastic and such systems 
suffer excessive hardware costs in the order of 100%. 

The reason for this state of affairs is that the design 
of real-time systems is not an art but rather a scientific 
discipline. 1 ,2 One must bring analysis to bear on the 
problems. To be sure, it is not the purpose of this 
paper to give a full treatment of this discipline. Rather, 
it is the purpose of this paper to demonstrate certain 
techniques3,4,5 and their application to a real-life 
system, TICKETRON. 

TICKETRON is a real-time ticket reservation and 
distribution system for the entertainment industry. 
In many respects it resembles most other real-time 
systems, therefore, the discussions concerning this· 
system are by no means unique to it. That is to say, 
the approach and attitudes developed in the design 
and implementation of TICKETRON represent our 
philosophy toward real-time systems in general. We 
believe that using a successful system such as TI CKE
TRON as the vehicle for presenting our philosophy 
concerning real-time systems, adds substance to our 
arguments. 

The ultimate aim of our arguments is the concern 
for maximum performance per dollar of a system. 
TICKETRON is successful because it did achieve ex
cellent performance per dollar. Specifically, the "in
dustry standard" for this type of system priced the 
central facility hardware at over $60,000 per month. 
Through proper design, TICKETRON was able to 
accomplish better performance for less than $30,000 
per month. 

At the heart of the problem is the frenzy associated 
with multiprogramming in real-time systems,. causing 
the need for supervisory programs. There has been a 
tendency in the past few years to implement operating 
systems which are so elaborate that the amount of 
computer time used for message processing can be 
matched or exceeded by the amount of time required 
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by the supervisor to maintain the job flow. In addition 
to the exorbitant overhead in time, there is the extra 
hardware cost associated with the inordinately large 
amount of dedicated core storage required by such 
operating systems. Further, a typical, modern-day, 
operating system presents itself as a labyrinth to the 
user who is required to make his application programs 
function in the unfamiliar and complex environment 
of the operating system. In most instances, the added 
burden on the user to cope with this labyrinth during 
program development and debugging is so costly in 
terms of manpower effort that it would have been far 
cheaper for him to have avoided trying to take ad
vantage of the "standard supervisory package." 

In short, these problems reflect a major paradox as
sociated with third generation computer systems: 
"How can an operating system that costs nothing be 
so expensive?" 

At this point, the reader might feel that we have 
overstated our position. No doubt he is able to point 
to many systems having constraints such that they 

. require an elaborate operating system. We agree. 
Certainly a large on-line system which must perform 
a multitude of tasks cannot function without a com
plex supervisory system. Our point, however, is that 
too often simple systems are designed as if they were 
complex systems. 

To summarize our approach, we believe that sim
plicity is the keynote of a good system design. If there 
is no need to multiprogram, don't! This is why 
TICKETRON is a successfully operating system with
out an operating system! 

It is the intent of this paper to put forth the system 
design story for TICKETRON. The second section 
presents the design and the third section explains the 
design. The fourth section analyzes the design. 

SYSTEM OVERVIEW 

In addition to giving a functional description of the 
system, it is the purpose of this section to broadly 
specify the architecture of the system. 

To begin, what is TICKETRON? It is a fully com
puterized ticket reservation and distribution system 
offering actual printed tickets at remote terminals. 
In short, it provides access to box offices from remote 
locations. In that sense, TICKETRON is an extention 
of the box office. It was originally intended to sell 
tickets for the entertainment industry. However, 
today it is also selling train tickets for the Penn
Central Metroliner. The system is practical in any 
application which involves the issuing of tickets. 
Remote sales terminals are installed at high-traffic 

points such as shopping centers, department stores, 
etc., and, of course, at box offices. It is a nationwide 
service having separate systems, each serving a geo
graphical area. There are three central facilities at 
present: N ew York, Chicago and Los Angeles. Each 
central facility can support almost 900 terminals which 
can accommodate sales of 50,000 tickets per hour with
out any difficulty, under certain conditions (see the 
fourth section). 

A remote terminal consists of a dedicated keyboard, 
a ticket printer and a :r:eceive-only teletype. A customer 
desiring ti~kets approaches a remote station and makes 
an inquiry concerning the availability of a performance; 
The terminal operator interrogates the system via the 
dedicated keyboard and receives a response in seconds 
at the teletype. The teletype message indicates what 
seats are available, if any. Then, if the customer is 
pleased with the selection, the operator will cause the 
system to "sell" the seats. Within seconds the actual 
tickets are printed out by the ticket printer. These are 
real tickets and the customer pays for them as he would 
at a box office. Therefore, in a genuine sense the remote 
station is an extension of the box office. Direct-access 
to the total ticket inventory guarantees remote buyers 
the best available seats at time of purchase (this is 
done automatically by a seat selection program). In 
addition to selling tickets, the system provides certain 
key reports for management information and also ac
curate accounting of ticket sales. 

TICKETRON is a typical real-time system in that 
it is composed of four major constituents: 

(1) the remote terminals with their communications 
network 

(2) the line controller and buffers 
(3) the processing unit and associated core storage 
(4) the auxiliary storage with its connecting data 

channels 

Knowing that these function,al elements are required 
in the system, one must then determine what hard
ware is best suited for the job. Hopefully, this selection 
should be made on a performance per dollar basis. In 
short, this is what systems design is all about. 

In the third section, we discuss certain procedural 
concepts that we consider important for accomplishing 
an effective system design. Further, we present some 
findings obtained by executing these procedures for the 
TICKETRON system. The remainder of this section 
will be devoted to an overview of the hardware and 
software architecture of the system. 

An important result is the actual hardware con
figuration that was decided upon for TICKETRON. 
It was found that the system should be dedicated 
solely to the on-line, real-time tasks required of it. 
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Figure 1-Central facility hardware configuration 
of TICKETRON 

Further, it was found that the tasks were such that a 
process control type computer afforded the best per
formance per dollar in this situation. The computer 
system selected was a Control Data Corporation 1700. 
Figure 1 shows the central facility configuration. Re
liability deemed it necessary that essential hardware 
be duplexed. The application is such that the system 
must be operative at certain critical times, for example, 
the peak ticket selling period just before a ballgame. 

A result of the design shown in Figure 1 indicates 
that the TI CKETRO N system has two processors; 
one processor acts as a communications controller, 
while the other processes the messages. The front-end 
only handles the communication functions and con
tains the input and output line buffers. It does not 
examine the contents of the message. This last function 
is done by the message processing program which is 
resident in the central processor, which requests mes
sages from the front-end. The communications program 
is resident in the front-end. 

In addition to specifying the hardware, Figure 1 
indicates the approximate characteristics of each device. 
The total monthly rental for the central facility hard-
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ware (including duplexing and maintenance) is about 
$30,000. We maintain that this is an achievement of 
understanding the characteristics of real-time systems 
and their design consequences. 

As previously stated, the hardware configuration is 
a result of our design analysis. To be sure, the software 
design is not divorced from the performance analysis. 
In fact, one establishes certain programming considera
tions by analyzing their effect on the performance of 
the system. As a result, we decided on a single-thread 
program design. That is, at anyone time there will be 
no more than one message in the system which is 
partially processed. There may be additional messages 
in the system, but these will be in one of two states; 
either awaiting processing (in input queue) or having 
completed processing (in output queue). We can use a 
single-thread programming concept because of the 
timings involved. . 

There. are three major program modules: the com
munications program, the message processing program 
and an on-line utility program. The software design is 
such that each subroutine calls the next required 
subroutine. In essence, the system has one big program. 

In considering the flow of a message through the 
system, we have the processing program receiving its 
messages from the input queue and after processing, 
delivering them to the output queue. The processing 
program is a single-thread program which deals with 
one message at a time. That is, it only accepts another 
message for processing after it has delivered one to the 
output queue. The processing program determines the 
next message to be processed as follows: it scans the 
input queue. When it finds a full buffer, it first checks 
the output queue to see if a buffer corresponding to 
that line is empty; if not, it will carry out the procedure 
for another line. If the processing program finds no 
candidates to be processed, it will then exit to what one 
might call a main scheduler program which does nothing 
but loop-the-Ioop. When the processing program has 
completed a message, the procedure is for it to loop 
back on itself. When it has work, it starts its cycle over 
again and does not return control to the main scheduler. 
That is, during a busy period, the processing program 
is continually looping; further, it is in complete charge 
since it has no open branches. In fact, during this time, 
the processing program has all the characteristics of 
an executive routine. However, in actuality the concept 
of "the executive" is foreign to this system. 

The communications program, which is resident in 
the front-end processor, simply fills and empties the 
input and output buffers, respectively, for each com
munications line. The details of its operation are given 
in a later section, because the communication discipline 
was an integral part of the system design. 
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All programming on the system was done in FOR-
TRAN because it offered the following advantages: 

(a) Minimize programming costs and time. 
(b) Machine independent. 
(c) Partially self-documenting, no patching. 
( d) Easy to modify. 
(e) Easy communication between subroutines (and 

between programmers writing the subroutines) . 

History and evolution of the system 

The TICKETRON system was conceived in January, 
1967. A pilot system using a CDC 160A computer and 
modified teletype as ticket printer was used to demon
strate the feasibility of the system and to gain practical 
experience with automated ticket selling. The pilot 
ran from July to November, 1967. 

Although TICKETRON has not varied much in 
concept over the years, the size and requirement of 
the system have undergone evolutionary changes. As a 
result, there have been three different computer equip
ment configurations. 

1. Initially, TICKETRON was aimed primarily at 
the N ew York legitimate theater and advance sale for 
some sporting events, with 50 to 100 terminals selling 
50,000 tickets per day. The first operational on-line 
configuration consisted of a CDC 1700 with 16K of 
core, 2 disks each with 3.1 million words, 2 tapes, a 
console teletype, andcorrimunications hardware suffi
cient for interfacing 16 voice grade (1200 baud) lines. 
This equipment was duplicated for reliability, with a 
printer and paper tape reader-punch added for off
line work. This system went operational in March, 
1968. 

2. It soon became apparent that sporting events 
were more important than originally anticipated, &.nd 
that more terminals would be required. The number of 
lines was increased from 16 to 32 and the core increased 
from 16K to 32K. This allowed the system to handle 
over 500 terminals and well over 100,000 tickets per 
day. In addition, a drum with 256K words was added 
for high frequency files,_ in particular for the inventory 
needed for selling same day sporting events. This 
system became operational in January, 1969. 

3. As terminals become more distant from the com
puter center, communication costs can be dramatically 
reduced by using communication concentrators. These 
city buffers are actually computers which perform 
"intelligent" functions such as formatting tickets. Since 
this required redesigning of the whole communications 
program, we took advantage of new technology and 
replaced the communication hardware by a computer 
front end with 20K of core at no increase in cost. This 

configuration can handle the equivalent of 56 phone 
lines and almost 900 terminals. Also, to accommodate 
more events two more disks are being added and the 
size of the drum increased to 512K words. This system 
will be operational in the spring of 1970. The analysis 
performed in this paper assumes this configuration. 

SYSTEM DESIGN 

We maintain that a successful system design is 
achieved by understanding the characteristics of real
time systems and their design consequences. The pro
cedure for accomplishing this is essentially an iteration 
scheme: 

(1) Specify a configuration; that is, define a proto
type model of the system. 

(2) Evaluate the configuration as to its operational 
characteristics. Essential to this step is a performance 
analysis which determines the capabilities and limita
tions of the prototype system. 

(3) Make design recommendations on the basis of 
the evaluation. 

( 4) Are the recommendations substantial? If yes, 
continue. If no, end: 

(5) . Incorporate the recommendations by updating 
the system model. Then start again. 

In this section, we shall present some results obtained 
by executing the above system design (procedure for 
TICKETRON. At the heart of the procedure is the 
performance analysis. 

TICKETRON typifies the operati~:mal character
istics of a real-time system. Namely, it is representative 
of a stochastic service system. The situation encoun
tered is that the inputs to the system occur randomly 
and generate service requests of the central processor 
which are varied in type. In a poorly designed system, 
these random phenomena cause queueing and conges
tion problems. Therefore, a performance analysis which 
takes account of the random phenomena is essential 
to the design effort. The considerations of this approach 
manifests itself as follows: in a steady-state operation, 
the throughput of the system is defined as the average 
number of'- input messages to the system per second. 
Certainly then the throughput requirement is an im
portant design criterion. Concurrently, with the 
throughput considerations is the requirement of a 
tolerable response time to each input message~ In a 
given system, the situation usually encountered is 
that of having a desirably high throughput which, in 
turn, causes a system request queue to build up, thereby 
degrading response time. Therefore, pertinent to the 
system design is a knowledge of throughput versus 



respons'e time, which will provide the basis for a 
practical tradeo ff. 

In fact, the analysis of congestion forms the basis for 
design considerations of both the hardware and soft
ware; e.g., the analysis can answer basic questions such 
as "How many terminals can a particular system con
figuration support?" 

Most systems design at present is based on the in
tuition and experience of the designer with plans to 
"check-out" the final system performance by simula
tion. Historically, this approach has led to poor sys
tems. For example, if one determines storage require
ments of a real-time system by a consideration of the 
average input loading, then the system would certainly 
fail during peak traffic loads. On the other hand, if one 
tried to design around the peak traffic, then one would 
have a system 'whichis grossly over-designed. Obvi
ously, an optimum system can only be achieved by a 
consideration of the entire loading distribution. Tl}.at 
is, one must consider the traffic level that is not ex
ceeded 90% of the time, 99% of the time, etc., in 
order to realize an efficient system design. Once such 
considerations are introduced, predictions essential to 
adequate design can be made accurately without the 
haphazard quality of intuition or reliance on previous 
experience which is not truly applicable. 

Communications program 

Because a TICKETRON facility must be able to 
support over 500 remote terminals, the nucleus of the 
system is the communication function. Therefore, most 
of the design effort was concentrated on the communica
tion program. In fact, the success of TICKETRON is 
mostly attributable to its ability to efficiently handle 
so many terminals. We now briefly present some of the 
communications design. 

To begin, the communication program administers 
the handling of message traffic to and from the system 
by performing the following functions. 

1. 'fo initiate polls by sequencing through a polling 
list which is dynamically maintained. 

2. To transfer messages between the terminals and 
the main processing program and to do this in an 
efficient manner. 

3. To maintain the physical status of terminals 
connected to the system. 

4. 'To distinguish on message errors of a physical 
nature (as opposed to errors in message content). 

The communications program is resident in, and exe
cuted by, a special processor as shown in Figure 1. 
This front-end processor is a CDC-1774 CPU 1 which 
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is essentially a stripped-down CDC-1700 computer. 
It has 20K words of core memory available for the 
program and 1/0 line buffers. (In this system a com
puter storage word is composed of 18 bits: 16 data.bits, 
1 parity bit and 1 program protect bit.) Associated 
with, each line is essentially four buffers, two for input 
and two for output. Actually, one of the input buffers 
is in an area which contains ten buffers shared by all 
the lines. As we shall see below, the system will only 
issue a poll on the line if one of the input buffers is 
available. That is, you only take a message in if you 
have room for it. As was previously discussed, the 
message processing program will only start processing 
a message if th~re is an output buffer available. Hence, 
at anyone time the system generally will contain no . 
more than four messages for a particular line. There
fore, because of this "throttling" effect, one need not 
program for, nor worry about the problems associated 
with excessive internal queueing. 

Each line is full duplex and transmission is done 
asynchronously. The system outputs 9-bit characters 
(1 start bit, 6 data bits, 1 parity bit, 1 stop bit) at 
1200 baud or 7.50 msec per character, and inputs 7-
bit characters (1 start bit, 4 data bits, 1 parity bit, 1 
stop bit) at 800 baud or 8.75 msec per character. The 
reason why only 4 data bits are required on the input 
side, is that all input messages are in the form of a 
restricted fixed format. The terminal input device is a 
dedicated keyboard with dedicated columns allowing 
the entry of such pertinent information as: event code, 
performance date and time, and certain seat qualifiers. 
Associated with this data is one of three function codes: 
inquiry, buy, or buy alternate. The buttons on the key
board are such that they only permit one per column 
or function to be depressed at anyone time. Therefore, 
every input message to the system is of fixed size, 19 
characters. The advantages of this scheme as to pro
gramming and operation are obvious. 

The communication program uses a polling technique 
that can uniquely address each terminal in the system. 
The poll message uses four characters. The system uses 
no "hand-shaking" characters such as ACK or N ACK. 
A poll to a keyboard causes it to transmit if the transmit 
button is depressed. This is accomplished in about 200 
milliseconds. If the transmit button is not depressed 
when it receives at poll, it sends no response. The com
munication program will allow the terminal 200 milli
seconds to respond before it infers a non-acknowl
edgment. 

The communication program will perform the follow
ing logic for each communication line on a periodic 
execution cycle. 

1. Check disposition of the "receive" line buffer, 
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three possibilities exist: free, full, or busy (200 milli
seconds have not elapsed since last poll). 

2. If free, check if there is available space for a 
message in an input message buffer. If the space exists 
for an input message, then prepare a poll message for 
the next non-busy terminal on that line. Go to 5. 

3. If full, check for transmission errors, then move 
the message to the input message queue (space will 
always be available). Once this is done, the "receive" 
line buffer is free, go to 2. 

4. If busy, go to 5. 
5. Check disposition of the "send" line buffer, two 

possibilities exist: free or busy. 
6. If free, check for message in the output buffer 

for this line, if there is one, send it, otherwise done. 
(Start algorithm again at 1 for next line.) 

7. If busy, done. (Start algorithm again at 1 for 
next line.) 

We purposely did not clutter the algorithm with im
plementation details since it would only cause to mar 
the simplicity of the scheme. For instance, the output 
required for the printing of a ticket is transmitted in 
four segments. Interspersed between the segments 
may be poll, light and TTY messages for other termi
nals on the line. Further, it is clear that the scheme 
requires use of certain kept tables which reflect terminal 
and line activity. 

The basic philosophy in the given design of the com
munication program has been to maintain the integrity 
of its true function. That function being, that it is 
simply an intermediary between the message processing 
program and the terminals. Speaking loosely, it should 
be synchronized with the actions of the message proc
essing program. In fact, since it is ultimately the 
responsibility of the processing program to respond to 
the terminals, then the communication controller 
should only react to the needs of the message process
ing program. For example, if at any given time the 
message processing program has enough work, then 
there is no need for the communication program to poll 
terminals for the purpose of bringing in more messages. 
To do otherwise would be illogical. 

PERFORMANCE ANALYSIS 

In this section, we give the results of a queueing 
analysis of the system in order to determine its ca
pabilities and limitations. As argued in the second 
section, response time versus throughput is the basis 
in terms of which to measure the performance of the 
system. The throughput capability of any system is 
determined by certain utilization factors. 

Utilization factor is a well defined mathematical con
cept of queueing theory. Given a facility which has 
some random arrival pattern for requests such that the 
average input rate is A arrivals per second, then let 
each arrival place a demand on (tie-up) the facility 
for some average time, Ts seconds. That is, during the 
time Ts (service time), the facility is not available to 
any other arrival. Then we have the utilization factor 
of the facility defined by 

(1) 

In short, it represents the percentage of time the 
facility is tied-up. Obviously, U should riot exceed 
100%! 

For TICKETRON,_ the throughput is measured in 
terms of the number of tickets per hour that the system 
is capable of outputing. These determinations start 
with a specification of the input traffic to the system. 

We distinguish two types of terminals: box office 
and remotes. Remotes print what we call full-tickets 
(308 ch of data). In addition, box office terminals are 
capable of also selling half-tickets (119 ch of data), 
which are useful for same-day events. Remotes can 
only buy tickets after an inquiry has been previously 
executed, whereas, a box office may execute a direct 
buy. The reason for this is that box office attendants 
are more familiar with their own inventory and there
fore, have little need to make inquiries. The character
istics of remotes are such that they average 1Y2 in
quiries for each buy transaction. In contrast, at a box 
office you have on the average about % of an inquiry 
per buy transaction. A buy transaction requires on the 
average the printing of three tickets. Table I gives a 
distribution of the number of tickets sold per transac
tion. Because most tickets are bought in pairs, the dis
tribution is "tight" about the average of three, as 
verified by the small squared coefficient of variation 

TABLE I-Distribution of Various Types of Ticket Sales 

Average number of tickets sold per buy transaction equals 
2.95, with a standard deviation of 1.72. 

Number of tickets sold 
per buy transaction 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Distribution 
(Percent of occurrence) 

10% 
49% 
10% 
18% 
4% 
4% 
1% 
2% 
2% 
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which equals .34. Therefore, for calculational purposes, 
we may consider this a constant distribution and make 
use of the simple queueing formulas associated with 
constant service. 

A typical operational day for TICKETRON is 
represented by sales of about 120,000 tickets, which is 
equivalent to 40,000 transactions. Unfortunately, this 
traffic is not distributed evenly throughout the day, 
hence, the system must be able to accommodate peak 
traffic loads. Figure 2 depicts histograms of the hourly 
rate of ticket sales, which we shall use to establish 
peak traffic loads. We note that the remote sales are 
evenly distributed at 4,000 tickets per hour over a 
ten hour day and they account for ~ the total load. 
Of these 4,000 tickets per hour, we estimate that one
tenth or 400 are for same-day events while 3·,600 are 
for future events. In contrast, the box offices have 
sharp peaks for 1Y2 hour periods just before afternoon 
and evening performances. It is estimated that the box 
offices sell 2,000 tickets per hour for future events 
evenly over a ten hour period, which accounts for 
20,000 tickets; whereas, the other 60,000 are for same
day events and are sold over a three hour period at an 
even rate of 20,000 per hour. These same-day events 
are usually sold as direct buys, hence, on the average 
we estimate that they cause only about .2 inquiries per 
sale. We note that since % of the sales average .2 in
quiries per sale and ~ average 1.5 inquiries per sale, 
then on the average a box office has about % of an 
inquiry per buy transaction. In summary, during a 
peak hour, the box offices sell 22,000 tickets while the 
remotes sell 4,000. 

Because most of the peak traffic represents sales for 
same-day events, the system keeps this inventory on 
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TABLE II-The Processing Service Times for Various Types 
of Transactions 

Type of Transaction 

Inquiry 
Buy following an Inquiry 
Direct Buy 

Processing Time in Seconds 
same-day future 

events 

.135 

.099 

.180 

events 

.338 

.248 

.450 

high speed drums for fast retrieval. The processing 
service times for the various types of transactions are 
given in Table II. These timings are almost a constant 
independent of the number of tickets, therefore, we 
will assume them constant. The timings include all 
I/O times which are not overlapped with the processing, 
since the main processing program is a single-thread 
routine. 

At this point, it is of interest to demonstrate how the 
processing times limit the throughput of the system. 
As argued in an earlier section, the inputs to the system 
are random, in fact we maintain that they generate a 
Poisson arrival stream to the processor. This phe
nomenon causes queueing of the inputs. Therefore, the 
total processing time or cpu response time must include 
waiting time for the cpu. The simple queueing formula 
which determines the average waiting time for a single
server queue with Poisson input rate A, mean service 
time Ts , and second moment of the service time b2, is 
given 

w- U (b2
) 

- 2(1 - U) Ts 
(2) 

where U is the utilization factor which is determined 
by eq. (1). To be sure, W becomes intolerably large 
as U approaches 100%, which is the limitation that 
governs the capability of the system. Hence, to obtain 
the cpu response time for a particular type of input, 
we just add its service time to the waiting time W. Let 
us now determine the average cpu response time for 
three different operational environments. 

Case I. (Box office peak hour) 

Assume for this case that all inputs to the system are 
direct buy. transactions' from box offices for same-day 
events. One may envision this situation to prevail for a 
period of about an hour on a day when every baseball 
team has an afternoon game and the remotes are closed. 
(Memorial Day is an example of such a day.) It is 
reasonable that in this environment there will be a 
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Figure 3-Average CPU response time for a direct buy 
transaction as a function of CPU utilization and tickets sold 
per hour for an input traffic generated only by box offices for 
same-day events, (Case I.) 

negligible number of inquiries and selling for future 
events. From Table II, we have the cpu service time for 
this case as T8 = .180 seconds. Since the service time 
is constant, the second moments is equal to the mean
squared. Let A equal the average number of input 
transactions per second or in this case, it. is equal to 
average rate of buy transactions. Therefore, the cpu 
utilizatiop. and response time are given 

U = A(.180) (3a) 

U 
Tcpu = 2(1 _ U) (.180) + (.180) (3b) 

Figure 3 is a graph of this result. Because each buy 
transaction represents an average sale of three tickets 
and since there are 3,600 seconds in an hour, then 
(10,800) A represents the number of tickets sold per 
hour. This quantity is also given in Figure 3. We ob
serve that in this environment the system can sell in 
the order of 50,000 tickets per hour. 

Case II. (Remote peak hour) 

In this case, let us assume that all the inputs to the 
system are generated by remote terminals and are 
sales for future events. This situation may very well 
occur on certain rare days which have very few events 
and during the time that box offices are usually not 

active. Since remote terminals cannot make a direct 
buy, the input transactions in this case will consist of 
inquiries and buys (only after an inquiry). Hence, 
there will be at least one inquiry for each buy, but in 
fact, we maintain that on the average there will be 1% 
inquiries for each buy transaction. Therefore, if A is 
the number of buys per second, then (1.5A + A) equals 
the rate of input transactions to the system. From 
Table II, we calculate the mean cpu service time for a 
transaction to be (.6) (.388) + (.4) (.248) = .302 
seconds. Hence, the cpu utilization in this case is given 

U = (2.5A) (.302) = A(.755) (4a) 

As before, the number of tickets per hour equals 
(10,800) A. The second moment of the service time 
equals .093 seconds-squared. Therefore, the average 
cpu response time to a buy transaction in this environ
ment is given 

U (.093) ( 248) 
Tcpu = 2(1 - U) .302 + . (4b) 

Figure 4 is a graph of this result. We observe that in 
this environment the system can sell in the order of 
10,000 tickets per hour. 

It is interesting to note the contrast of this result 
with that given for the environment in Case 1. We may 
consider these two cases as extremes' to which the 
system can respond. Let us now turn to a study of the 
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Figure 4-Average CPU response time for a buy transaction 
as a function of CPU utilization and tickets sold per hour for 
an input traffic generated only by remote terminals for future 
events, (Case II.) 
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TABLE III-Distribution of Transaction Types for a Realistic Peak Hour 
A is the average rate of buy transactions. 

Average Input Rates Processing Service Times 
in Seconds Type of Transaction from box offices from remotes 

Same-day Events 
Direct Buy 
Inquiry 
Buy following an Inquiry 

Future Events 
Inquiry 
Buy following an Inquiry 

.8(20/26)A 

.2 (20/26) A 

.2 (20/26) A 

1. 5 (2/26) A 
1 (2/26) A 

system which more closely corresponds to a realistic 
environment to which the system is subjected more 
often. 

Case III. (Realistic Peak Hour) 

Let us assume an input traffic mix as determined 
from a peak hour of the histograms given in Figure 2. 
Specification of this mix, as discussed above in this 
section, establishes the profile given in Table 3. Again, 
A equals the average rate of buy transactions. We find 
that the total number of inputs per second is 1.5A. 
Also, we find that the mean cpu service time for this 
traffic is .209 seconds. Therefore, the cpu utilization is 
given 

U = (l.5A) (.209) = A(.314) (5a) 

As before, the number of tickets per hour equals 
(10,800) A. The second moment of the service time 
equals .050 seconds-squared. Therefore, the average 
cpu waiting time for processing in this environment is 
given 

w _U (.050) 
cpu - 2(1 - U) .209 (5b) 

In Figure 5, we graph the following two functions: 
Wcpu + .099 and Wcpu + .248 which represent the 
average cpu response times to a buy following an 
inquiry for a· same-day event and a future event, 
respectively. 

Figure 5 shows that as far as cpu processing is con
cerned, the system can accommodate peak hour sales 
of 26,000 tickets in the environment specified by the 
histograms of Figure 2 which represents possible 
traffic distribution for sales of 120,000 tickets in a day. 
In a sense, this situation is to be expected because 
typically, the limitations for a system of this sort are 
not determined by the cpu processing capability but 

1. 5 (.4/26) A 
1 (.4/26)X 

1.5(3.6/26)A 
1(3.6/26)A 

.180 

.135 

.099 

.338 
.248 

rather by the congestion of the communication lines. 
Further, since the output transmission dominates the 
communication load in such systems, it is the traffic on 
the output line and the number of such lines which 
truly govern the throughput capability of the system. 
For example, since the output transmission time re
quired to print a full ticket is about 4 seconds, then 
the theoretical maximum that a line can output is 900 
tickets per hour. Hence, if the system only had 16 
lines, it cOlild not achieve the throughput levels re
quired. Therefore, due to these considerations, we shall 
now investigate the system in terms of the activity on a 
single line. 
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Figure 5-Average CPU response time for a buy following an 
inquiry as a function of CPU utilization and tickets sold per 
hour for the input traffic mix defined as "realistic" peak hour, 
(Case III.) 
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Figure 6-Timing diagram for the flow of a message through the 
system. Definition of system response time 

System Response Time 

We shall now determine the response time for a 
terminal on a specified communication line in terms of 
the output utilization and the output rate of tickets 
for that line. For this system, we shall define the 
response time as the elapsed time between the initia
tion of a request and the start of output data trans
mission. The timing schematic of Figure 6 illustrates 
this quantity. Further, the timing diagram depicts the 
delays encountered by the passage of a particular 
request through the system. 

Hence, the system response time is the sum of four 
random variables: the waiting time for the terminal to 
be polled, plus the time required to transmit the input 
data, plus the cpu time required to process the input 
request, plus the waiting time for the output line to 
become free in order to commence transmission. The 
respons~ time is given by 

T = Wpoll + Tin + Tcpu + W out (6) 

We have a system of three queues in tandem, input, 
processing and output. Essentially, the response time 
is figured by calculating the delays encountered at 
each queue and convolving the results. The procedure 
and assumptions required for such an analysis are given 
in reference.3 

Unfortunately, in this analysis there is one slight 
complication; namely, the phenomenon of blocking 
for queues in tandem. For two queues in tandem, 
blocking occurs when a customer completes his current 
service but cannot move to the next queue because its 
limited waiting line is filled. Thus further service in 
the first queue is blocked until the second queue com
pletes a service. If we recall the working of the com-

munications program, it is such that polling is only 
performed if there is space in the input queue for a 
transaction, otherwise the system does not poll termi
nals for requests. That is, if at any given time the 
message processing program has enough work (the 
input queue is full), then there is no need for the com
munication program to poll terminals for the purpose 
of bringing in more messages, since to do so would 
serve no purpose. 

This situation is unfortunate only for the analysis 
of the system, however, it is a real advantage in terms 
of system operation because it permits the system to 
optimize resource allocations concerning input message 
storage. Now because of buffer allocations, there are 
always enough transactions in core for processing and 
outputing, therefore, this blocking causes no forced 
idle time of the second and third queues. Hence, in 
the resulting system a request has the same total 
response time as it would have in a system where 
blocking of this sort were not present. In other words, 
if we were to calculate the individual terms on the 
right hand side of equation (6) assuming no blocking, 
the individual quantities would not represent the 
TICKETRON system, however, the total does, and is 
a valid representation for the response time o'f the 
TICKETRON system. 

To this end, we now calculate the individual terms in 
equation (6) for a system which allows unlimited queues 
and continuous polling. We shall perform the calcula
tion for two different configurations of output lines. 

In the first configuration for an output line we shall 
assume that it has 12 remote terminals attached to it, 
all selling full tickets for future events. Further, we 
assume that the cpu is processing in the environment 
as specified in Case III. We want the response time to 
a buy transaction for a future event. Hence, for the 
cpu processing time we use equation (5b ), giving 
Tcpu = Wcpu + (.248). We assume that the throughput 
level of the cpu is at 26,000 tickets per hour, this corre
sponds to a cpu utilization of .756. Then from the ap
propriate graph in Figure 5, we find that for the en
vironment being considered, Tcpu = .62 seconds. 

Let us next calculate the delays encountered on in
puting. First, we have the elapse time a terminal must 
wait in order to receive a poll once the transmit button 
on the keyboard has been depressed. We recall that 
for calculational purposes we consider a ,System with 
continuous polling. Therefore, we may envision that 
the 12 terminals on the line are being polled cyclically 
at the same rate. Because the pointer can be anywhere 
in the list wlien the terminal initiates a request for 
transmission, that particular terminal must wait on 
the average N /2 polling times before it receives a poll, 
where N is the number of terminals on the line. As dis-



cussed in Section 3, the communications program will 
successively poll terminals on a line every 200 milli
seconds, provided the output line is free to send out a 
poll message. Therefore, when the line is free, the wait 
for a poll is (N /2) (.2) seconds. On the other hand, 
when the output line is busy transmitting tickets, the 
polling rate is variable as follows. The transmission of 
a ticket is accomplished in four parts. The first opera
tion is to send a short message which slews the ticket 
into the printer. The slew time is 1.2 seconds, however, 
during most of this time the line is free to· permit 
polling at the normal rate. Hence, during slew time, 
we can send out five polls. Next, the data required to 
print the ticket is transmitted in three equal segments, 
and between each segment a poll message is sent (in 
addition to teletype and light messages). In the print
ing of a full ticket, each segment requires transmission 
of 103 data characters plus 4 control characters, which 
takes about .8 seconds. Therefore, to estimate the 
average time between polls during full ticket printing, 
we observe that we can send out 8 polls in about 4 
seconds, which gives an average polling time of .5 
seconds. Then when the line is busy, the wait for a poll 
is (N /2) (.5) seconds. 

Having found the average contribution to W poll 

for free and busy conditions of the line, we now form a 
weighted sum to obtain the desired result. The weight
ing factors are expressed simply in terms of the utiliza
tion of the output line Uout• Since Uout is the average 
percent of time the line is busy, then (1 - Uout ) is 
the average percent of time the line is free. Therefore 

Wpoll = (1 - Uout ) (N/2) (.2) + Uout (N/2) (.5) (7a) 

where, using N = 12 gives 

Wpoll = 1.2 + 1.8Uout (7b) 

Following the poll delay, is the time required for input 
transmission, Tin. As discussed earlier, the input mes
sage is of fixed size of 19 characters. At 8.75 msec. per 
ch., the time to transmit is .167 seconds, however, 
added to this is 70 milliseconds required to turn on the 
modem. Therefore, Tin = .237 seconds. 

The final delay to be calculated is the waiting time 
encountered when the system is ready to transmit the 
data necessary to print tickets. Naturally Wout is a 
function of the line utilization and the service time 
required to print three tickets. As mentioned previ
ously, we assume for calculational purposes that each 
buy transaction is for three tickets. We now determine 
the service time on the output line caused by such a 
transaction. First, there is the actual printing time for 
a ticket. This is equal to the transmission time since 
the printer prints at line speed of 1200 baud or 7.5 
msec. per character. One full ticket requires 308 char-

TICKETRON 1.53 

acters of data, plus 16 control characters, plus 1.2 
seconds of slew time, which totals to 3.63 seconds. 
Therefore, three tickets take 10.89 seconds. However, 
this is not the only contribution to the traffic on the 
output line. 

In addition to tickets, there are poll, teletype and 
light messages also being transmitted over the output 
line. As discussed above in connection with polling, 
the transmission of a ticket is segmented into four 
parts. The other messages are transmitted inter
spersed between the segments. Therefore, between 
each data segment we may figure on one poll message, 
one light and about two teletype messages being sent. 
Because the teletypes print at a much slower speed 
than 1200 baud, each teletype has a six character 
buffer. Hence, a teletype message is sent out in blocks 
of ten characters, six data plus four control characters. 
The teletype traffic accounts for the response to in
quiries and audit trail associated with each transaction. 
We estimate that a teletype response to an inquiry 
requires 72 characters of data or 12 blocks of TTY 
messages, and 3.n audit trail requires 12 characters of 
data or 2 blocks of TTY messages. Therefore, each 
buy transaction causes 20 blocks of TTY messages to 
be transmitted, since there are on the average 1Y2 
inquiries per buy. Added to this traffic are nine poll . 
messages and nine light messages each of four char
acters, for each buy transaction since· the three tickets 
have nine data segments. (Note, that the poll messages 
sent out during slew time are overlapped.) 

Hence, in addition to the ticket printing time for a 
buy transaction, we must add the transmission time 
for 272 characters which is 2.04 seconds to take ac
count of the other activity on the output line. There
fore, the service time on the output line is 12.93 seconds 
for a buy transaction. If "A equals the average number 
of such transactions per second, then the utilization 
factor for the output line, Uout = "A (12.93) . As before, 
(10,800)"A represents the number of tickets sold per 
hour over the line. Hence, the average waiting time in 
this case is given 

Uout 
Wout = 2(1 _ U

out
) (12.93) (8) 

Finally then, we accumulate these quantities to 
determine the response time as prescribed above using 
equation (6). We have that the average response time 
for this configuration is given by 

T = (1.2 + 1.8Uout ) + (.24) + (.62) 

+ [ U
out 

(12.93)] (9) 
2(1 - Uout) 
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Figure 7-Average system response time for a buy transaction 
as experienced by a remote on an output line which has 12 remote 
terminals all selling full tickets. Also included is an estimate of 
the 95% system response time for this case; that is, the response 
time which is not exceeded by 95% of the transactions 

Figure 7 includes a graph of this result. We observe 
the validity of the conjecture stated initially; namely, 
that the determination of the response time is domi
nated by the output transmission time. In other words, 
the contribution or congestion caused by the third 
queue (output) essentially determines the response 
time. Because of this, we may use a simple argument 
to estimate the 95th percentile of response time, that 
is, the response time which is not exceeded by 95% of 
the transactions. We argue that the system response 
time distribution is estimated by the waiting time dis
tributioJ). of the output queue which happens to be a 
queue with constant service time. For such a queue, 
we know the relationship that exists between the 95th 
percentile of waiting time and the average waiting 
time. Therefore, we use the same relationship to esti
mate the 95% system response time from the average 
value. A graph of this estimation is also given in 
Figure 7. 

Having considered the case for an output line with 
12 remote terminals all selling full tickets, let us now 
turn to what might be considered a more efficient situa
tion. Assume an output line configuration with 2 box 
office terminals selling Y2 tickets and 10 remote termi
nals selling full tickets. Again we have 12 terminals on 
the line, except in this case the box offices generate less 

line utilization per ticket sold, so that the throughput 
of the line is increased. Also, a box office termInal is 
polled twice as often as a remote terminal. (In fact, 
the polling sequence used by the system for this case 
is as follows: ... , R1, R2, R3, R4, R5, B1, B2, R6, 
R7, R8, R9, RIO, B1, B2, R1, ... where R designates 
remote and B designates box office.) Therefore, the 
box offices will have a better response time. Further, 
we assume that the ticket mix on the line is such that 
50% of the sales are Yz tickets and 50% are full tickets. 
That is, the two box office terminals sell as much as 
the ten remotes since they are the only ones capable of 
selling Yz tickets. 

We shall calculate the response time for a direct buy 
transaction as experienced by a box office. The calcula
tions for this case are similar to those presented above. 
We find the response time given by 

T = (.70 + 1.05U1 + .18U2 ) + (.24) + (.47) 

[ 
Uou (112.9)] 

+ 2(1 - Uout ) 10.3 

where 

Uout = YzA(12.93) + YzA(7.66) 
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Figure 8-Average and 95% system response time for a direct 
buy transaction as experienced by a box office on an output line 
which has 2 box office terminals selling Y2 tickets and 10 remote 
termin[JJs selling full tickets. The ticket mix is such that 50% of 
the sale, are Y2 tickets and 50% of the sales are full tickets 



That is, the output line utilization factor has two con
tributions, U1 and U2 which are the utilization factors 
due to transmission of full tickets and Y2 tickets, 
respectively. Figure 8 depicts the average and 95% 
response time for this case. We observe that for an 
average response time of 10 seconds and a 95% response 
time of 40 seconds the throughput of the line is limited 
to 630 tickets per hour. Whereas, in the previous con
figuration of a remote selling full tickets, the same 
response time only afforded the line to output 430 
tickets per hour. Therefore, the use of Y2 tickets 
permits the system to sell more tickets per line. In 
fact, the more efficient configuration will allow the 
system to sell 26,000 tickets per hour using 41 lines 
such that the average response time is about 10 seconds. 
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Manipulation of data structures in a numerical 
analysis problem solving system-NAPSS 

by LAWRENCE R. SYMES 

Purdue University 
Lafayette, Indiana 

AIMS OF SYSTEM 

During the past several years considerable effort has 
been expended designing and implementing systems 
which are intended to provide extended capabilities for 
persons with mathematical problems to solve. Some of 
them in addition to NAPSS are CULLER FRIED, 
KLERER MAY, MAP, RECKONER, AMTRAN, and 
POSE. These systems can be classified as problem 
solving systems for applied mathematics. 

Before the advent of these systems the research 
scientist or engineer used a procedural language such as 
FORTRAN or ALGOL when he employed the computer 
to aid him in s.olving a problem. Both of these languages, 
although they resemble mathematical notation more 
closely than machine language, are somewhat artificial 
and contain many unnecessary, from the user's point 
of view, rules. The artificial appearance and the rules 
must be mastered before the language can be used. 
Therefore the scientist or engineer is diverted from his 
main purpose into becoming a programmer. Even after 
he has learned the language, its complexity increases the 
probability of error, and thus red~ces his efficiency. 

In addition to these difficulties, the user with a 
mathematical problem had to use program libraries in 
order to obtain routines for solving commonly occurring 
problems. These libraries frequently were inadequate 
and almost always confusing. The routines often were 
poorly documented and performed little or no monitor
ing of the accuracy of the results. Thus the user of such 
a library had to know enough numerical analysis to 
select the best method for solving problems and to 
determine the accuracy of the results. 

NAPSS has been designed to remove some or all of 
these problems and to offer several other desirable 
features. It, in some sense, endeavors to have man do 
what he is best equipped to do and to have the computer 
do what it is best equipped to do. 
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Six general techniques have been utilized to assist the 
user in stating and solving his problem. 

First, the source language used to pre~ent a problem 
to the computer is similar to normal "text book" 
mathematical notation. This permits one to use the 
system without: first having to intensively study the 
input language. It also reduced the probability of user 
programming errors, because the user is familiar with 
the notation. 

Second, clerical statements used for dimensipning 
arrays and declaring variables are removed from the 
source language. These are tasks which the computer 
can easily perform but which are a constant source of 
errors if the user does them. 

Third, N APSS permits the direct manipulation of 
quantities other than scalars. These include numeric 
arrays, symbolic expressions, functions, and arrays of 
functions. This further allows the source language to 
resemble more closely "text book" form, and thereby 
leads to fewer statements; hence fewer opportunities for 
programming errors. 

Fourth, solve statements are included in the source 
language. These statements permit the user to state a 
problem· he wishes to solve in a concise, natural form. 
The user may include parameters such as initial values, 
the accuracy desired, the method he would like used, or 
he may omit any or all of the additional parameters. 
The solve statements invoke routines, polyalgorithms, 4,5 

from a built-in library. They attempt to solve the user's 
problem automatically. They request additional infor
matio~ as needed and monitor the accuracy of the 
results in order to insure that it remains within the 
specified limits. The inclusion of these solve statements 
greatly. reduces the burden normally imposed on the 
user. To solve commonly occurring problems with the 
aid of the solve statements, the user is only required to 
know how to define the equations for the problem; he is 
not required to know the numerical analysis involved or 
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even the method used. The method is selected by the 
system and the accuracy of the results is assured. 

Fifth, on-line communication between the system and 
the user is provided by either a teletype or graphic 
display device. The use of these terminals bring the 
computer and the user closer together and consequently 
improve the user's efficiency. 

Sixth, incremental execution of a program is allowed. 
This, combined with the use of on-line terminals, creates 
a closed loop between the user and the system. The user 
is able to monitor his program during execution and the 
system is able to request information from the user and 
point out errors when they arise. This eliminates much 
of the time that is wasted in preparing and submitting 
runs of a program which are unproductive because the 
user tried several fruitless cases, has an incorrect 
program, or has forgotten to initialize a variable. 

NAPSS LANGUAGE 

Rather than present a detailed description of the 
NAPSS language,1O,12 we describe a sampling of the 
allowable assignment statements. 

The arithmetic expression in N APSS permits the \ 
direct manipulation of numeric scalars, vectors, arrays, 
symbolic functions and variables which denote symbolic 
expressions. The user need not worry about the type or 
mode of the operands; rather, all that need concern him 
is whether or not the arithmetic expression is mathe
matically correct. 

Several examples of arithmetic expressions and 
assignment statements appear below: 

i) D ~ (B + C) I D * E I 
ii) ARRAY ~ ([3, 0:2] 1,2, ... , 9)/10 

iii) E = VI + V2 j 2 

iv) F(X) ~ A X j 2 + B X + C, (X < 0) ~ A X j 2 
-BX+C 

v) G(X) = A X j 2 + B X + C, (X < 0) 
AXj2-BX+C 

vi) K (X) [1, 1] ~ X j 2 - B, (X = C) ~ - (X j 2) 
- B, (X > C) 

vii) H(X, Y)[5, -2] = G'(X) + 
J X j A (X ~ 0 TO Y) 

viii) S ~ "I AM A NAPPS STRING" 

ix) R[l, 1] ~ S I I "ARRAY ELEMENT" 

The left arrow operator (~) indicates that the 
arithmetic expression on the right is to be evaluated and 
its value is to be assigned to the variable on the left. The 

value assigned to D is either a scalar or an array 
depending upon the operands in the expression on the 
right; while the value assigned to ARRAY is a 3 by 3 
array. 

The equals sign (=) has the more mathematical 
meaning. Statement three establishes that a future 
occurrence of E is equivalent to the expression VI + 
V2 j 2. Values are only substituted for the variables in 
the expression on the right of the = when a value of the 
variable on the left is needed. Thus if the value of VI or 
V2 should change between the definition of E and the 
use of E this is reflected in the value of E. Variables 
defined to the left of an = are referred to as equals 
variables, and variables defined to the left of an ~ are 
called left arrow variables, or simply variables. 

Statements four and five illustrate that a symbolic 
function may be assigned different definitions on 
different domains. The difference between statements 
four and five is similar to the difference between 
statements two and thre~. In the definition of F the 
variables A, B, and C have their current values 
substituted for them, while in the definition of G they do 
not. Values are only substituted for A, B, and C when a 
value of the function G is needed. Functions defined to 
the left of an = sign are called equals functions and 
functions defined to the left of an ~ are called left 
arrow functions. 

Statements six and seven illustrate how arrays of 
functions are defined. All the elements in array of 
functions must have the same number of arguments and 
they all must be either left arrow or equals functions. 

Statement eight assigns to S a string, and statement 
nine assigns a string to an element of an array. 

Although N APSS is intended primarily as a problem 
statement language, the features of a procedural 
language have been included to increase its power for 
the user who wishes to create a personal library of 
NAPSS routines. External and internal procedures may 
be written in NAPSS. The use of these facilities is 
optional. The casual user need not be concerned with 
the rules that procedures introduce, for he can employ 
the system on what is called console level. 

On console level the user does not set up any pro
cedures. Statements are entered without having to go 
through any initial set up, and are normally executed as 
they are received. 

OVER-ALL STRUCTURE OF THE SYSTEM 

The N APSS system currently running on the Control 
Data 6500 at Purdue University consists of four main 
modules: the supervisor, the compiler, the interpreter 
and the editor. These modules are composed of 115 



different routines, which are combined into 28 overlays. 
Almost all of the system is written in FORTRAN, with 
the exception of a few machine dependent operations 
which are restricted to "black-box" modules coded in 
assembly language. This is dOI)-e to aid the goal of 
machine independence for the system. 

The supervisor controls the flow into each of the three 
other modules. It distinguishes between NAPSS sources 
statements, which are processed by the compiler and 
edit statements, which are processed by the editor. The 
supervisor is also responsible for invoking the interpreter 
when a NAPSS statement is to be executed. 

N APSS source statements are transformed by the 
compiler into an internal text which the interpreter 
processes. This scheme was adopted for several reasons. 
First, the complexity of the elements to be manipulated 
and the absence of declarations require execution time 
decoding of operands. Second, it easily allows for 
extensions to the system. Third, it gives the user 
incremental execution. Fourth, it permits extensive 
error diagnostics and permits error corrections without 
having to recompile the whole program. Fifth, state
ments which are repeatedly executed are only translated 
once into internal text. 

The internal and source text for each statement is 
stored in secondary storage. When a statement is to be 
executed, a copy of the internal text is passed to the 
interpreter. This reduces considerably the core storage 
required for a user's programme. Since the system is 
intended for use in an incrementally executing mode, no 
reference to secondary storage is normally required to 
obtain the internal text of a statement. 

The system operates in one of two modes: suppress 
mode or execute mode. In the suppress mode, each 
statement is compiled into internal text and the internal 
and source text is saved on secondary storage for later 
execution. Suppress mode is entered by typing the 
statement .SUPPRESS. A block of statements which 
have been compiled in suppress mode may be executed 
at any time by typing the statement .GO. 

The normal mode of execution is execute mode. Here, 
each statement is executed immediately after it has been 
compiled and a copy of its internal and source text saved 
in secondary storage. The system automatically enters 
suppress mode when the user starts a compound 
statement (a FOR statement) or a procedure. This is 
necessary because a compound statement cannot be 
executed until the whole statement is received and a 
procedure is only executed when invoked. The system 
re-enters execute mode automatically as soon as the 
compound statement or procedure is completed. 

The memory of a N APSS program is made up of a few 
pages of real memory which reside in core and a larger 
number of virtual pages of virtual memory which reside 
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in secondary storage and are brought in and out of real 
memory. Two vectors (one dealing with virtual and the 
other with real memory) and several pointers are used 
to keep track of real and virtual memory. 

Each element in the virtual memory vector is 
sub~ivided into three twenty-bit bytes. The first byte 
contains a flag indicating what type of information is 
stored in the page. The second byte is a switch, used 
when a page is in real memory to indicate whether or not 
a copy of the page also resides in secondary storage. The 
third byte contains the real page number the virtual 
page is in, when it is in real memory. 

The elements of the virtual memory vector which 
denote available pages are linked together. Initially, the 
element for virtual page one points to the element for 
virtual page two and the last element contains a zero. 
When a page of virtual memory is returned to the 
system its element is again linked to the top of the list 
of available virtual pages. 

The real memory vector elements contain one entry 
per real page. This entry is the number of the virtual 
page occupying it (zero of it is free). This pointer from 
real memory to virtual memory is used when a new 
virtual page is placed in real memory. The virtual page 
currently in the real page must be copied out into 
secondary storage if a copy of it is not already there. 

The amount of core assigned to real memory is 
dynamic. Pages are removed from the top and bottom 
of real memory in order to obtain contiguous blocks of 
storage. Pages are removed from the top of real memory 
for two purposes: first, to expand the name table, and 
second, to obtain space for the work pool. Pages are 
removed from the bottom of real memory to obtain 
space for local name control blocks during the evaluation 
of left arrow functions. See Figure 1. 

The work pool is used to hold arrays when performing 
array arithmetic. Requests for work pool space are 
always made in terms of words. However, the amount 
of real memory assigned to the work pool is always an 
integral number of pages. When a request is made for 
work pool space and the work pool is empty, the space 
supplied is zeroed. When space is requested for the work 
pool and the work pool is not empty, one of two 
situations arises. First, the space requested is less than 
the current size of the work pool. If the difference 
between the space requested and the current size of th~ 
work pool amounts to one or more pages, a correspond
ing number of pages is returned to real memory from the 
bottom of the work pool. Second, the space requested 
exceeds the current size of the work pool. If additional 
pages are obtained from real memory to satisfy the 
request, they are zeroed. 

Virtual pages are assigned to real pages sequentially. 
Thus a virtual page is not removed until all real pages 
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are assigned a virtual page. This sequential process may 
be broken whenever space is assigned to the work pool 
or to hold the local name control blocks for a left arrow 
function, since, after the space request is satisfied, the 
next real page to receive a virtual page may no longer 
belong to real memory. When this occurs the pointer to 
the next real page to receive a virtual page is reset to the 
first page now in real memory. -

The algorithm for bringing virtual pages into real 
memory is further modified when the work pool returns 
a page to real memory. Since the page returned is 
empty, a virtual page may be placed in it directly, 
avoiding the possibility of having to save the virtual 
page currently there in secondary storage. Thus the 
normal sequential process is interrupted until all pages 
returned to real memory by the work pool are reused. 

The system does not assign all of real memory to 
either the work pool or to space for left arrow function's 

local name control blocks. A request for real memory 
space is honored as long as two pages remain in real 
memory after the request is satisfied. If more space is 
requested than can be supplied, the request is modified 
to correspond to the maximum amount of space 
available. This permits the systen:t to continue if this is 
adequate. 

Two pages are required in real memory to facilitate 
the linking of virtual pages. With two pages in real 
memory the above algorithm guarantees that the 
previous and current virtual pages referenced remain in 
real memory. Thus they may be linked together if 
necessary, without having to save pointers and reread 
a virtual page to fill in link information. 

Associated with each procedure is a name table 
containing entries for each variable, label and constant 
in that procedure. The entries, called mime control 
blocks, are created during compilation when the name 
or constant is introduced. At this time it contaiI).s the 
name of the variable, and some basic attributes 
describing how the variable appears in the program. 
During execution the name control block is used to hold 
values, pointers to values and a complete set of 
attributes for the variable. 

This double usage of the name control block entries 
poses no problem if compilation and execution are 
performed separately. But in N APSS the normal mode 
of operation is to execute each statement as soon as it is 
compiled. Thus, three situations are possible when a 
variable is entered in the name table. First, the variable 
may never have been used before in the program. 
Second, the variable may have appeared before in the 
program but have no value assigned to it. Therefore, it 
is just as it was when the compiler last saw it. Here a 
limited compatability check is made between the two 
uses of the variable in the program. For example, the use 
of a name as a label and as a variable in an arithmetic 
expression is illegal. Third, the variable has appeared 
before in the program and has been assigned a value and 
a complete set of attributes. This enables more checking 
to be performed. However, the name table routine must 
not disrupt any of the attribute flags, for 'if any of them 
are changed the attribute may no longer correspond to 
the value associated with the name control block. 

The name table is constructed sequentially. This 
method requires a minimum amount of space, and 
permits the name. table to grow dynamically. The name 
table is expanded by removing pages permanently from 
real memory. This method of name table construction 
does require that the name table be searched sequen
tially. The search goes through the name table from 
bottom· to top. This is done because frequently the 
greatest percentage of references to a variable occur in 
the immediate vicinity of its definition. 



A variable which is declared to be global in N different 
procedures has N + 1 name control blocks associated 
with it. There is a name control block for the variable in 
the name table of each of the procedures in which it 
appears. Only compile time information and a pointer to 
the N + 1st copy is contained' in these name control 
blocks. The N + 1st copy is in the global variable name 
table and contains a complete set of attributes for the 
variable and its value or a pointer to its value. 

The N + 1st copy of a global variable's name control 
block is placed in the global name table when the first 
procedure is invoked in which the global variable 
appears, or when the variable is declared global on the 
console level (the portion of the program not contained 
in a procedure). When a global variable is added to the 
global name table and it already appears there, a check 
is made on the compatability of the attributes. An error 
results when they conflict. Otherwise a pointer to the 
N + 1st copy is placed in the procedure's copy of the 
variable's name control block. 

A count is kept in the global name control block of the 
number of procedures referencing the global variable. 
When a global variable is no longer referenced, then its 
name control block is removed from the global name 
table and the storage associated with it is returned to 
the system. 

A procedure is compiled when it is defined. To permit 
it to be linked into the program, the text generated uses 
only relative. pointers to name table entries, and all 
linking between entries in a procedure's name table is 
done with relative pointers. This allows procedure A, 
for example, to be compiled as an external procedure 
and to be invoked either directly from the console level 
or from another procedure which itself is invoked from 
the console level. The name table for procedure A is 
placed in the name table after the last entry presently 
there when it is invoked and a base address is set up. 

Variables which are not declared to be either local or 
global in an internal procedure are assumed to be known 
in the containing block. * After the procedure is compiled 
an~ a copy of its name table saved, a pass is made 
through the procedure's name table. This pass goes 
through the name table from top to bottom and places a 
copy of the name control block for each variable not 
declared to be either local or global, in the name table 
of the containing block. If the variable has appeared in 
the containing block, a compatability check is made 
between the attributes. 

During execution only one name control block is used 
for the value and attributes of a variable which is not 
declared to be local or global. This is the name control 
block entry in the outermost block. The name control 

* A block is either a procedure or the console level routine. 
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block in the internal procedure is linked to this when the 
interval procedure is invoked. The linkage is constructed 
so that only one step is required to obtain the value of 
the variable regardless of the depth of the procedure. 

There are three types of name control blocks in 
different memory areas: ordinary, local for left arrow 
functions, and temporary. See Figure 1. Temporary 
name control blocks are used to hold temporary results 
during the evaluation of an arithmetic expression. 

A central routine is used to decode variable name 
control blocks during execution. This routine determines 
the type of the name control block and handles the 
linkage betw~en global, and non-local, non-global name 
control blocks. Three things are returned when a name 
control block is decoded: the attribute number, the data 
pointer field and the index of the array AENCBS of first 
word of the data pointer portion of the name control 
block. See Figures 1 and 2. 

DATA STRUCTURES 

A name control block is the basic unit of all data 
structures in the system. In some cases it holds the 
actual values of the variable, and in others it contains a 
pointer to the actual values and descriptive information. 
A name control block is made up of seven sixty-bit words 
of twenty-one twenty bit bytes. See Figure 2. 

A name control block which denotes a numeric scalar 
contains the value of the scalar in its data portion. One 
or two words of the data portion are used depending 
upon whether the value is single precision real, double 
precision real or single precision complex. 

When a name control block denotes a numeric array, 
the data portion of the name control block contains the 
actual bounds for the array, the declared bounds for the 

ITERATION DATA ATTRIBUTE 
POINTER POINTER FLAGS 

} 

Figure 2-The layout of a name control block 
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array (these mayor may not have been specified by the 
programmer), and the number of dimensions in the 
array. The data pointer byte of the name control block 
points to where the actual array is stored, by rows, as a 
contiguous block. The array is stored as a contiguous 
block tQ speed up array operations. 

If the data pointer byte of the name control block is 
non zero, a copy of the array exists in secondary storage 
in the array file. The data pointer is then the number of 
the record used to store the array and an index in the 
vector AEP AR. 

The vector AEP AR contains additional information 
about the array. Each word in AEP AR is subdivided 
into three bytes. The first byte contains the reference 
count for the array. This is incremented by one each 
time the array appears in a left arrow function definition. 
The values of all non-parameter variables are fixed when 
a left arrow function is -defined. The use of a reference 
count for arrays permits only one copy of the actual 
array to be kept, and. if the non-parameter array 
variable is assigned a new value the value of the function 
will not change. The second byte contains the number of 
dimensions in the array. And the third byte contains the 
number of words in the array. The number of words is 
equal to the number of elements in the array times the 
number of words in each element. This factor is one for 
a single precision real array and two for a double 
precision real array or single precision ,complex array. 

If the data pointer byte of the array's name control 
block is zero, the only copy of the array exists in the 
work pool, and the array is the result of the last array 
operation performed. 

The work pool can contain anywhere from zero to 
three arrays. A counter is kept of the number of arrays 
in the work pool. In addition, for each array in the work 
pool the index of the first word of the array, the index 
of the first word of the data portion of the array's name 
control block, and the information contained in the 
array's AEP AR entry is kept. When an array operation 
is to be performed a check is made to see if any of the 
arrays involved already exist in the work pool. If they 
do, no reference to secondary storage needs to be made 
to obtain the operands. A check is also made to deter
mine if the result of the previous array operation is an 
operand of the current array operation. If it is not the 
previous result array must be stored temporarily in 
secondary storage. 

A name control block which denotes an equals 
variable contains the virtual page number of the first 
page used to store the internal text for the expression in 
its data pointer byte. The first word of each virtual page 
is used for linkage. The link contains the virtual page 
number of the next page used to hold the text of the 
expression or zero if the page is the last. When an equals 

variable is an operand of an arithmetic expression this 
internal text is evaluated to obtain a value for the 
equals variable. 

If a name control block denotes a scalar symbolic left 
arrow function, the data pointer contains the page 
number of the first virtual page used to store the internal 
text of the arithmetic expression for the first domain of 
definition. The first byte of the fourth word of the data 
portion contains the number of arguments of the 
function. 

The first four words of the first virtual page used to 
store the internal arithmetic expression text for each 
domain contains a set of pointers. The first word is used 
to link together the pages required to store the internal 
text for the arithmetic expression for the domain. It 
contains the virtual page number of the next virtual 
page used. A zero link denotes the last page. The next 
three words are subdivided into nine bytes. The first 
byte contains the number of words of internal text in 
the boolean expression for the domain. This is used when 
the boolean expression, is being moved prior to its 
evaluation. The second byte contains the reference 
count for the function. If the function appears in the 
definition of another left arrow function this is increased 
by one so that only one copy of this function needs to be 
kept. The third byte is the virtual page number of the 
first page used to hold the text for the boolean expression 
for the domain. This byte is zero if the domain has no 
boolean expression. The fourth byte contains the 
number of virtual pages that are required to hold the 
local name table for the domain. The local name table 
contains a name control block for each non-parameter 
variable appearing in the boolean and arithmetic 
expression for the domain. This is necessary so that the 
value of these variables can be fixed when the function 
is defined. Byte five is unused. Byte six contains the 
virtual page number of the first page used to hold the 
local name table for the domain. Byte seven contains 
the number of words of internal text in the arithmetic 
expression for the domain" Byte eight is unused and 
byte nine contains the virtual page number of the first 
page of internal, arithmetic expression, text for the next 
domain. If this byte is zero, there is not another domain 
defined for the function. 

The virtual pages used to store the text for a boolean 
expression or a local name table are linked together by 
the first word of each' page. A zero link specifies the last 
page. 

The name control block for a scalar symbolic equals 
function contains the same information as a scalar 
symbolic left arrow function. The text for the function is 
also stored in a similar fashion except that in the first 
virtual page used to store the internal text for a domain's 
arithmetic expression bytes two, four and six are not 



used. There is no local name table required for an equals 
function since all non-parameter variables appearing in 
the function definition assume their current values when 
the function is evaluated. There is no reference count 
because if an equals function appears in the definition 
of a left arrow function, a copy of the equals function 
must be created. While the copy is being made the 
equals function is transformed into a left arrow function 
to insure that the values of all non-parameter variables 
are fixed. 

If a name control block denotes an array of symbolic 
functions, it contains the same information as a numeric 
array name control block. In addition the first byte of 
the fourth word of the data portion contains the number 
of arguments in each of the functions. 

The array is treated as if it is an array of real single 
precision numbers. Each element contains the virtual 
page number of the first page used to store the arithmetic 
expression text for the first domain of the element's 
definition. If an element is not defined, its value is zero. 
The text for the definition of each element is linked 
together in the same manner as a scalar symbolic 
function. 

N APSS is not designed for string processing but it 
does allow the user to create strings, concatenate them 
and assign them to variables. This is done to permit the 
programmer to label his output. The data pointer byte 
of a string valued variable's name control block contains 
the number of the string. The string number is the index 
of an entry in the string relocation vector. Each entry is 
subdivided into three bytes. Byte one contains the index 
of the start of the actual string description in the string 
picture table. The second byte contains the reference 
count for the string. The reference count designates the 
number of times the string variable has been con
catenated· to form another string, plus one. The third 
byte contains the index of the first word of the data 
portion of the name control block for the string 
variable. 

The string picture table contains a description of each 
string. Several entries compose the description of a 
string. Each entry denotes either a literal string, a 
reference to a previously defined string variable, or the 
end of a string picture. An entry in the string picture 
table is subdivided into three bytes. 

If byte one is not zero the entry describes a literal. 
Byte one is the number of characters in the literal, byte 
three is the number of the virtual page in which the 
literal is stored, and byte two is the displacement on 
that page to where the literal begins. 

Each word in a virtual page used to hold string 
literals is subdivided into three bytes. A literal is 
divided into segments of three characters. Each segment 
is stored in a byte. If a string literal will not fit in the 
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current string page, the literal is broken. As many 
segments of the literal as possible are placed in the 
current page and the remainder are placed in a new 
string page. When this occurs two entries are placed in 
the string picture table. This avoids the problem of 
linking pages used to hold string literals. The maximum 
length of one string literal is 576 characters. 

If byte one of a string picture table entry is 1313, 
then the entry denotes the null string. It has no length 
and does not require any storage, so byte two and three 
are unused. 

If byte one is zero and byte three is not 501, the entry 
denotes a reference to a previously defined string 
variable. So that a new copy of the previously defined 
variable's string is not created, byte three contains the 
index of its entry in the string relocation table. When 
this occurs the reference count in the relocation table 
for the variable is increased by one. 

If byte one is zero and byte three is 501, the entry 
denotes the end of a string picture. 

When a name control block denotes an array of 
strings, it contains the same information as a numeric 
array. The array is treated as a single precision real 
array. The elements of the array contain the indices of 
the entries in the string relocation table for the string 
descriptions. If an element is undefined, its value is zero. 

As can be seen from the descriptions of the various 
data structures, the primary concerns in their design 
has been to facilitate their use as operands while at the 
sam~ time reducing the· amount of physical storage 
required. 
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PART ONE-USER-MICROPROGRAIVIMABLE 
COMPUTER 

The user microprogrammable computer as the fourth 
generation computer is investigated from the user's 
point of view. In the first part of the paper micro
programming and its concept as well as the problems 
and requirements incurring its use in various applica
tions are discussed. The current status of the micro
programmed computer is also studied to indicate the 
differences of philosophy in microprogramming. A 
number of suggestions are made for the design of 
fourth generation user-microprogrammable computers. 

An algorithm for determining the optimum size of 
the microprogram store is presented in the second part 
of the paper. 

INTRODUCTION 

In many ways the evolution of computer architecture 
can be likened to that of the human species on this 
earth. Possibly the current computers represent those 
fossilized representatives of the prehistoric times with 
enormous bulk and little ability for adaptation to the 
environment. But nature's evolutionary processes 
always endeavored to adapt the species to their en
vironment. In a similar sense evolution of the computer 
architecture had been towards its adaptation to its 
use, i.e., to the problems the computers are intended 
to solve. 

In a sense, the different generations in the architec
ture of computers can be distinguished as follows. The 
separation of procedure and data as exemplified by 
Babbage and Aiken represented the first generation. 
Their integration in one storage device and the classifi
cation and consolidation of different functions into 
distinct functional units signaled the second or von 
Neumann generation of computers. Typically the latter 
exemplified the permanent irrevocable wiring in all 
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functional tasks (machine language instructions). The 
third generation which saw the emergence of multi
programming and time-sharing made the control logic 
more flexible by storing the sequences of elementary 
functional operations in a read-only memory (ROM) 
called a microprogrammed storage or control storage. 
Primarily this simplified the engineering design of the 
control unit, the testing and the maintenance functions, 
and provided the advantage of having a large instruc
tion repertoire which was required for reasons of com
patibility in a family of computers, e.g., IBM 360. The 
fourth generation yet to come has opened up another 
dimension, that is, adapting a computer to the problem 
environment efficiently. One of the basic techniques of 
achieving this is via user generated and user alterable 
microprogramming techniques. 

In this paper we shall take a cursory look at the 
problems and prospects of new generation of machines 
which could provide dynamic adaptation to the user's 
instantaneous needs, particularly when the resources 
in the system are shared by a multiplicity of users. 
Since the day of massive computer utilities is not far 
off,8 the type of computer we are considering here 
could be a basic building block of the computer utility 
of the future. It is in this context we shall examine 
what we believe the first step towards problem adapt
able computers, namely the user microprogrammable 
computers. 

N on-microprogrammed and microprogrammed computers 

Wilkes15,16,17,18 the father of microprogramming, sug
gested microprogramming as an orderly way of design
ing control sequences to execute machine instructions 
which used many common programming techniques 
to advantage, such· as program branching, and the 
sharing of common sequences amongst machine in
structions (subroutine concept) to provide tremendous 
flexibility. In all computers programmed instructions 
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reside in a memory which can be altered. In non
microprogrammed machines the control unit which 
sequences all the instructions is implemented with 
hard-wired components. Microprogrammed computer 
incorporates stored program rather than hard-wired 
implementation of the control unit. Thus the control 
unit's operating characteristics (architecture) can be 
changed without changing the physical implementation 
of the hardware. Whereas a fixed control machine can 
be efficient to one class of applications but less efficient 
to others, the microprogrammable machines can be 
adapted easily to different problem-oriented environ
ments. 

BASIC CONCEPTS 

A computer generally translates a sequence of pro
grammed orders into a sequence of machine codes 
which is the only form that the machine can recognize. 
The computer then interprets and executes the sequence 
of machine codes. When a machine code operation is 
performed, transfers of information occur among the 
functional components (e.g., registers, memory, adder, 
etc.) of the computer. The communication between 
functional components in turn is controlled by a set of 
primitive machine operations which consists of opening 
and' closing gates and circuits between registers and 
basic logic elements within the control store of the 
c()mputer. 

C onventional.fixed control computers 

In these, the machine code is interpreted and exe
cuted by a completely wired-in set of circuits in the 
control unit of the computer. Thus the computer exe
cutes the particular, but small, set of machine codes 
(i.e., 'machine language) efficiently. It accepts only one 
machine language, however, and, as discussed later, it 
is inflexible in terms of its applicability. As the vocabu
lary of the language increases, the hardware complexity 
also increases. 

Any elemental operation such as a register-to-register 
transfer of information performed during the execution 
of a machine instruction is called a micro-operation. A 
micro-instruction specifies one or 'more micro-operations 
that could be performed in a fixed time interval. The 
micro-instruction has predetermined formats which 
specify internal data flows. Generally it is stored in 
one or more locations in a fast memory called a micro
program memory (sometimes also called a control store) . 
A micro-program is a set of micro-operations used to 
effect a single machine code of user machine. Every 
machine code then is considered to be programmed by 

the proper arrangement of micro-operations similar -to 
the concept of machine code programming. In this 
context, if microprograms are stored in the modifiable 
(writable) memory rather than hard-wired, the ma
chine codes may be altered and redefined by changing 
the arrangement of micro-instructions to suit the par
ticular needs. 

M icroprogrammable computer 

The microprogrammable computer is a multi-lingual, 
multi-purpose, flexible computer. Its machine instruc
tion is performed by a microprogrammed stored sub
routine. Although there may be a loss of computing 
speed when stored micro-instructions are fetched from 
a memory, it is offset by the use of the high-speed 
memory and the simplicity of the hardware con
struction. 

The most significant advantage of the micropro
grammable computer is' its flexibility offered to the 
user. It is a multipurpose (note the difference from 
"general purpose") computer and is flexible enough to 
be particularized according to the user's application 
environment. It is then the user's responsibility to take 
full advantage of the microprogrammable computer. 

The level of control 

There are typically two types of micro-instruction 
formats which characterize the level of control exer
cised on the elementary operations. In one type (the 
function/field type), the fields of the micro-instruction 
control the gates on the individual data paths of certain 
elemental functions (Figure 1). Each field of the in
struction constitutes a micro-operation. The micro
instruction thus controls data flows within the machine 
at the lowest level (eig., IBM 360/50). The more com
plex the machine structure becomes, however, the 
larger becomes the number of fields in the micro-in
struction. Although microprogramming in this instruc
tion format can be tedious because of the fineness of 
control, the specification of a macro-instruction can be 

set of set of set of set of 
gates gates gates gates 

set of 
gates 

Figure 1-Function/field type micro-instruction format 
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Figure 2-Machine-code type micro-instruction format 

compact and efficient. A multiplicity of fields in a 
micro-instruction which is executed in one machine 
cycle permits the microprogrammer to specify and use 
fully the parallel processable opportunities available 
in the system control. This type of microprogram 
control is useful particularly in specifying the operating 
system functions of a large computer because (1) 
efficient and compact implementation of highly active 
operating system functions can reduce in time the 
wasteful oyerhead and (2) such functions once imple
mented become building blocks for others. 

In the other type (the machine code type) , the micro
instructions, or for our discussion, "mini" -instructions 
are sequences of commonly occurring elementary func
tions (Figure 2). The format of a mini-instruction is 
similar to that of conventional machine code instruc
tion: one operation code field, one or more operand 
fields, and, optionally, a flag field for special conditions. 
Operands in mini-instructions are, in general, origi
nating and/or destination registers of some information 
to be transfered. A mini-instruction may be character
ized as follows: each mini-instruction represents an 
elementary functional task, and any macro-instruction 
(i.e., machine code) can be built up from mini-instruc
tions. A mini-operation differs from a micro-operation 
in that the former represents a sequence of gating 
operations requiring a number of basic clock cycles 
while the latter requires one clock cycle. The mini
operation may be considered as consisting of a few 
micro-operations. In fact many mini-instructions re
semble basic machine instructions in some simple 
computers such as an IB1\1 650. The "ADD" mini
instruction of the Interdata lVlodel 4 computer, for 
example, is performed in three micro-steps as follows:1 

(1) transfer to the adder the contents of the A 
register; 

(2) transfer to the adder the contents of the register 
specified by the Source (S) field of the instruction; 

(3) transfer the contents of the adder (i.e., sum) to 
the register specified by the Destination (D) field of 
the instruction. 

In the instruction, the registers are designated by 
alphanumeric names which, in turn, are translated into 
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and represented by the four-bit S- and D-fields (Figure 
8). l\1ini-operations are either wired in the machine or 
activate micro-programs in the control memory. Iri the 
case of the latter, the instruction execution time is 
longer simply because of additional memory refer
ences. Although mini-instructions are not suit.able for 
flpecifying overlapping operations, data flows within an 
individual mini-instruction may be performed in 
parallel. The mini-programs are generally user-oriented 
and easier to write and debug. As in the case of high 
level languages, the storage requirement for mini
programs are smaller than their microprogram counter
parts (up to 20 per cent) but additional control memory 
or \vired-in logic is necessary for their interpretation. 

Users 

The motives for the user to use microprogramming 
are many. In order to discuss problems from the user's 
viewpoint, we classify computer users largely into two 
categories according to their main motives and inter
ests in using microprograms. The first, called the 
owner-user, consists of those who own the computer 
system, maintain, manage and schedule its use. The 
administrator of a computer center, systems program
mer, etc. are in this category. They do not necessarily 
design or run application programs. They are mainly 
interested in the maximum utilization of the computer 
resources by the customer programs. 

The second is called the customer-user who actually 
uses the computer to run his programs. Anyone in
dividual could be both owner-user and application
user depending on his interest and the type of job he 
runs at the moment. This includes those who use the 
system to perform computational tasks not related to 
the management and upkeep of the computer system. 
The customer-user is mainly interested in the maximum 
convenience and dependability such as better turn 
around time or response time etc., for processing his 
jobs. 

The difference of purpose and interest in computer 
usage necessarily differentiates the users' interests in 
microprogramming. 

:;\UCROPROGRAl\llVIING SITUATIONS 

The two types of users try to restructure the com
puting system in two different ways; the owner-user 
tries to maximize the utilization of his equipment by 
the customers and the customer-user tries to maximize 
the performance of the equipment in solving his 
problem. 
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M icroprogrammin,g for owner-user 

The primary motive for the user-owner wanting 
access to microprogram store for its content modifica
tion is to accommodate system expansion or change. 

EIllulation 

One primary area is emulation which reduces the 
reprogramming costs due to change over to new systems 
having many similar instructions and addressing 
structures.13 Emulation can be loosely defined as a 
combined software/hardware interpretation of the 
machine instruction of one machine by another. In a 
conventional non-microprogrammed machine, the emu
lation to be successful requires that the instruction 
formats and repertoire must be very similar. A micro
programmed machine, on the other hand, can emulate 
a wider variety of machines. In particular however, 
experience indicates that word lengths of the host com
puter must be same or some convenient multiple of the 
target computer being emulated. It has been found 
desirable that the number of arithmetic registers in the 
host· machine must at least be equal to or greater than 
that of the target machine simulated for efficient 
emulation. Another desirable feature to have in the 
host microprogrammable machine is that there be a 
number of toggles (flip flops) which can be used for 
setting and branching by appropriate conditional 
micro-operations. 

Expansion of 1-0 and MeIllory 

Possibly the greatest benefit to the owner-user is ac
crued when microprogramming is used to accommodate 
the addition of new 1-0 devices, or systems adjuncts 
like associative memories or additional memory capacity. 
One can categorize the added chores that the system has 
to accommodate due to the expansion of 1-0 and memory. 
In the case of added 1-0, they can be increased interrupt 
activities, special 1-0 formating, manipulation of 
variable length fields, new 1-0 commands (if new de
vices are added), and special error recovery procedures. 

In the case of increased-memory capacity, there is 
the problem of addressing associated with the increase 
in the number of pages in the paging schemes. New 
microprograms can be written to reinterpret old 1-0 
commands to take into account the change. 

Adding New Processing Versatility to SysteIll 

The owner-user to accommodate scientific customers 
may provide specialized array of new commands or 

fast subroutines (which can be partly microprogram
med) not provided originally in the system architec
ture of the computer, e.g., commands for multiprecision, 
floating-point arithmetic, radex conversion, etc. 

Redistribution of Operating System Functions 

Occasionally a redistribution of system functions 
between hardware, software and firmware may be in 
order. Principal reasons may be new applications and 
new devices added into the system. For example, the 
introduction of a real time control system may require 
periodic monitoring and instant servicing of high 
priority interrupts. Frequent use of a function or 
the immediacy of response can be good reasons for 
microprogramming part or whole of the function, 
rather than leaving it in the software. 

System reconfiguration due to an application need 
or failure of some system device is another instance 
where redistribution of operating system functions may 
be desirable. Incurring changes can also be met by 
modifying microprograms of some functions. 

Microprogramming for customer-user 

To the customer user, access to microprogram control 
has many advantages which are fraught with head~ 
aches to owner-user and the system. We shall· briefly 
outline a few avenues of benefit to the customer-user. 

Real time environment 

Microprogramming may be a solution when machine 
instructions and assembly language programming can 
not keep up with process, where the process is primarily 
CPU limited. 

Application orientation 

Where it is desirable to execute the problem in a 
manner naturaLto the process such as in certain problem 
oriented machine languages,6 . it becomes desirable to 
interpret application languages and data structures in 
their natural form to facilitate on-line debugging, 
modifying and program building. In these cases, the 
statements in application language may be executed 
directly via microprogrammed interpretation. To carry 
this further, by having access to a dynamically alterable 
microprogram store, one can particularize the computer 
dynamically to match with the varying problem types 
and environments as encountered, for example, in a 
jobshop environment. In this manner, the process-



oriented, higher-level language can be executed easily 
via a microprogram interpreter. 

PerforlDance enhancelDent of production 
ProgralDs 

When some procedures of a production-type program 
which is run frequently on different sets of data, e.g., 
payroll, are executed time and again, they can be 
microprogrammed to enhance the performance of the 
program and reduce the overall execution time. Sta
tistics gathering for the usage frequency and execution 
time of procedures can be performed concurrently with 
execution processes again by the use of micropro
grammed adjuncts. Thus by analyzing the usage sta
tistics it is possible to microprogram selected parts of 
the program as well as selectively storing machiil-e 
language instruction strings in high speed control 
memories to improve the execution time of the program. 
In the second part of this paper, we shall develop an 
algorithm for this purpose. 

ADJUNCTS FOR USER APPLICATIONS 

We shall review some key user applications and con
sider what other hardware-software aids needed in 
addition to dynamically alterable microprogram 
storage. 

Realtime environment 

In the area of real-time control applications where 
vigilance to high priority interrupts and immediacy of 
response are essential, the detection and classifica
tion of interrupts is conveniently performed by a fast 
associative memory. An associative memory is pre
dicated here since it provides the flexibility of assigning 
any priority to the interrupt lines and having so as
signed, the identification and servicing can proceed 
accordingly. Real time applications also need an access 
to clock (timer) for purposes of sampling, etc. Amongst 
the software adjuncts there is a ne~d for a local monitor 
(executive) to provide "a better collaboration" and 
communication between the real time process and the 
system executive. Interrupt monitoring and control of 
associative memory could be more beneficially micro
programmed. 

Simulation 

In the area of simulation of dynamic processes, fre
quently used subroutines such as function generators, 
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random number generators and transcendental function 
generators are best microprogrammed. Real time clocks 
and associative memories form useful hardware ad
juncts iIi this area also. 

Pattern recognition 

The area of pattern/ symbol recognition has de
veloped many picture processing languages. Many of 
them require extensive matching and bit manipula
tions. In particulat, they involve neighborhood process
ing of clusters and adjacent bits. Here again, micro
programming with associative processing could ease 
the task. 

Alterable microprogram store 

Best benefits of microprogramming are accrued when 
the user has access to certain specified portions of 
microprogram store and has ability to modify its con
tents. The system can use a relatively fast possibly 
unalterable read-only memory to interpret basic 
machine operation codes and certaiIi frequently used 
subroutines like radex converters, etc. The dynamically 
alterable microprogrammed memory can be shared 
between the system (owner-user) and the customer
user. Most preferably the customer user portion must 
be paged. For most common functions, the system with 
a modest instruction repertoire would need about in 
the order of 106 bits or 2K words of approximately 48 
to 64 bits per word. The access time of the micropro
gram memory must be at least between ~ and % times 
that of the main memory. The user microprogram store 
must be paged or otherwise it may impose costly alloca
tion and garbage collection problems with multiple 
concurrent users. The cost of renting of the micropro
gram memory must be reasonable to the customer user. 
Of course, because of its very nature, the user must be 
knowledgable at least to the extent of using it to better 
cost performance ratio. It is obvious that its use will 
be favored by production-type processor-oriented prob
lems rather than otherwise. Also, the system owner 
must allow larger quantum of computational time to 
the users using microprogramming for the very reason 
that since theIr memories are expensive their cost 
advantage lies in their frequent usage. 

Micro-instruction structure 

To be readily usable, the micro-instruction structure 
must be simple. Some third generation machines such 
as an IBM 360/50 require so much knowledge of the 
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sophisticated, internal organization of the machine 
control that micro-programming for them is a night
mare. It is essential for easier microprogramming that 
the microprocessor of the "visible" machine which the 
microprogrammer sees and uses be simple. 

This also brings up a need for an assembly language or 
a higher level language for microcode. The customer
user, unlike the owner-user, would use the microcode 
only if it is simple and convenient to write and debug. 
l\1icro-instructions must be syntactically sound and 
should not contain any "unnatural" funnies. Assemblers 
and compilers, on the other hand, tend to reduce the 
"tightness" or compactness of the final microprograms. 
Thus, there is a possibility of writing microprograms at 
two levels: micro-level and mini-level. The micro-level 
operations are the most elemental operations beyond 
which the machine cannot be controlled. They may 
represent basic gate level controls. Microprogramming 
is the method of describing these micro-level operations 
to execute certain computational tasks. This mode is 
beneficial to system owner-user in implementing 1-0 
controls, and certain frequent operating system func
tions. The key issue is that efficient code is essential 
here and programs once written become building blocks 
for others. The mini-operations are sequences of com
monly occurring micro-operations which are character
ized by the following: (a) Each mini-operation repre
sents an elemental functional task that the system can 
perform, and (b) any general purpose instruction 
repertoire can be built up from combinations of mini
operations. Specifically, the mini-operations will be 
user-oriented. The motive for introducing mini-opera
tions is twofold. Mini-programs are easier to write 
than microprograms and hence easier to debug. Just 
as in the case of higher level language, the amount of 
storage space needed to store mini-programs will be 
vastly smaller than that required by microprograms 
as much as 20 per cent. Of course, the execution time 
for mini-programs will be longer than execution of 
microprograms due to an additional level of interpreta
tion. lVlini-level operations could provide parallel 
processing capabilities whereas microprograms can 
only be sequential. One version of mini-instructions can 
be subsets of Iverson's AP L operators which make 
array representation and parallel manipulation possible. 
This again provides economy in notation and storage. 

It appears that re-entrant types of microprograms 
with physically separate high speed scratch pad storage 
area may be advantageous in the future. To summarize, 
the goodies required for multi-user microprogram 
sharing and use are similar to thofle in a conventional 
multi-programmed area. 

Another requirement would be the addressing of 
arrays and instructional information stored in the 

microprogram memory. Since it is believed 80 per cent 
of all numerical calculations involve matrix manipula
tion such processor limited computations can benefit 
by matrix type addressing facilities and reduce the user 
storage requirements of microprogram memory. Since 
most of the addressing within a microprogram memory 
is always within the close proximity of the address of 
micro-instruction, method of "proximity" addressing 
(e.g., incremental addressing) can be helpful. Since 
logic is cheap, arithmetic transformation of addresses 
may be very helpful as against a random transformation 
as in paging. 

Privilege among users 

It is obvious that not all micro-operations must be 
available to the customer users whereas the system 
(owner-user) should have access to all. Thus the 
system operates in a privilege mode, having access to 
all vital controls in the systems. In the restricted 
privilege mode, the customer-user will not have access 
to: 

(1) Any micro-operations dealing with address 
transformation, memory or I -0 barricades; 

(2) Any micro-operation dealing with hardware 
functions of the executive, like interrupt handling and 
polling mechanisms, etc. 

Let us now consider the approaches for implementa
tion of these. One obvious solution is to have two micro
program memories, one which can execute the un
restricted operations of the system and the other the 
restricted subset allowed to the user. The operation 
decoder will not execute any system micro-operations 
which come from user portions of a program memory. 

Parallel surveillance and debugging 

When multiple users are using the microprogrammed 
control memory concurrently, it is essential for the 
system to provide close surveillance. The possibility 
of one program clobbering another program uninten
tionally is high when the program being executed is 
new or being debugged. The tangible approaches to the 
problem include any or all of the following: 

(1) Restricting the users to a subflet (unprivileged) 
of micro-operations; 

(2) Sequencing each machine instruction in two 
modes: normal mode and debugging mode. In the 
debugging mode each instruction will be scanned 
for possible syntax errors and conft.icts in address space, 
etc. Also sentinels, breakpoints and test address in
formation ,vill be serviced. Any desired intermediate 



computations will be saved. In the normal mode the 
surveillance operations will be suppressed. 

In the second approach instead of interweaving the 
surveillance and execution sequences, one can have two 
distinct micro-program sequencing units, one unit for 
normal instruction execution and the other for over
seeing and interrogating the execution sequence. This, 
of course, involves the availability of multiple micro
program control units. The use of a supervisory micro
program monitoring each machine code operation is 
equivalent to each program having its own individual 
supervisor. 

Relocatability 

Relocatability of a program implies that it can be 
put into any contiguous set of addresses in a memory 
and executed with minor reinterpretation of its address 
fields .. Specifically, it implies that the addressing is 
relative to a reference. By having relocatable features, 
the micro or mini-programs can be stored contiguously 
in the microprogram memory and hence it is possible 
to serve a number of users of microprograms by swap
ping them in and out of the expensive microprogra;m
storage. 

PERIPHERAL AREA 

The first good use of microprograms came in the 
peripheral area when IBM developed the I/O channel 
for their pre-System 360 computers. The channel isa 
small microprogrammed computer itself; it communi
cates with the central processor and controls the 
various I/O devices. The channel transfers the required 
amount of data between locations in main memory 
and I/O devices, protects against unauthorized transfer 
of information into main memory, signals the processor 
units of I/O operation status by means of interuption 
and permits concurrent activities of the central proces
sor and I/O devices (i.e., multiprogramming). :Micro
programs of the channels thus provide flexibility since 
they handle a wide variety of I/O devices as well as 
complex communications with memory and the 
processor. 

Microprograms are also used in satellite computers 
of a large computer system. The satellite computer is 
mainly used to control the activity of various I/O 
devices. In this fIlense, it functions as a channel to the 
main computer. It can transfer information to and 
from the central computer, check word parity, and 
store information in the specified location of the speci
fied storage device. l\1icroprogramming is employed 
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to enhance the efficiency and flexibility of satellite 
computers, and to control a variety of I/O devices. 

FUNCTIONAL REQUIRENIENTS 

Micro-operations available to the users 

All microprograms available to the system are 
classified into two categories: normal micro-operations 
and privileged micro-operations. The normal micro
operations are those that may be used by the customer
user in his microprogram. The privileged micro-opera
tions are those that may be used only by the system
user. 

Protection may be realized by using two micropro
gram memories: one for the customer-user and the 
other for the system-user. If they are used strictly by 
their designated users, encroachment is fairly easily 
prevented. 

Visible machine 

The visible machine, that is, the machine organiza
tion as seen by the microprogrammer must be simple. 
The internal structure of the machine should be well
organized so that the data flow among functional units 
may be seen easily via micro-operations. 

Functional congruity 

The incongruity among functional units requires 
much housekeeping operations and causes clogging of 
internal data flow and, therefore, must be minimized. 
Consider, for example, a functionally incongruous 
machine with 2-byte wide memory data path, 2-byte 
wide registers and I-byte wide adder. It is apparent 
that for any simple 2-byte addition, a value has to be 
divided into high- and low-order parts in order to 
conform to the adder, then computation must be per
formed on each part sequencially. Every 2-byte addi
tion requires two passes to the adder. 

A microprogrammed computer. must be designed 
such that a set of common microprogrammed sequences 
can be used in more than one way. To illustrate this 
view, consider now a computer which has an adder 
that can be set to add/subtract in either binary or in 
binary-coded-decimal in groups of 4 bits. 

Then the following two algorithms will perform 
multiplication and division in either binary or decimal 
number systems depending on the setting of the adder. 
In other words, they have identical sequencing for 
decimal and binary multiply and divide procedures. 
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The multiplication algorithm which gives a two-word 
product when a word A is multiplied by a word B is as 
follows. 

1. Store A. 
2. Compute and store 4XA. 
3. Consider the lowest order four-bit group of B as 

being 4a + {j where a and {j are each two bit numbers. 
Add 4A a-times and A {3-times to form a partial product. 

4. Shift both B and the partial product four places 
to the right. 

5. Repeat steps 3 and 4 for the next higher order 
four-bit group of B. At the end of the procedure, a 
two-word product is obtained. 

The following algorithm for division may be micro
programmed advantageously to divide a two-word 
number A by a one-word number B yielding a one
word quotient and a one-word remainder. 

1. Store B, then compute and store -4B. 
2. Add - 4B to the high order part of A a-times until 

the accumulator goes negative. a will be in the range of 
one to four. 

3. Add B to the accumulator {3-times until the ac
cumulator goes positive. {3 will be in the range of one 
to four. 

4. Record the first digit of quotient, the high order 
two bits being a - 1 and the low order two being 4 - {3. 

5. Shift the diminished A four places to the left and 
repeat the steps 2, 3 and 4 as many times as the number 
of 4-bit groups in one word. The digits yielded are the 
successively lower order digits of the quotient, and the 
number finally left in the accumulator is the remainder. 

These processes are applicable when the negative 
quantities are represented by their two's (ten's) com
plements. The reader may verify that the algorithm is 
valid for both binary and BCD arithmetic. It is obvious 
that this is more economical in terms of microprogram 
memory space than having two separate microprograms: 
one for each binary and decimal operation. l\1icropro
grams arranged in this manner will not only economize 
the space and use of microprogram memory, but will 
simplify the computer organization. 

Parallel surveillance on all user operations 

In a multi-user, multi-processor environment, con
current operations can encroach each others working 
resources. It will be necessary to barricade each user 
from innocent mistakes of others, particularly in their 
microprograms. The micro-programming sequences 
can be so designed that instrusions, and deadlocks 
could be prevented or if they occur, the damage to 
other programs is either recoverable or minimal. 

Allotment of microprogram memory space among multiple 
users -

Allotment of modifiable microprogram memory 
(l\1MM) space among multiple users is a problem of 
the operating system. The operating system assigns 
each job a priority for the use of MMM and when 
some MMl\1 space becomes available it allots the space 
to the incoming jobs according to theirpriority. 

Generally, microprograms that perform elementary 
operations can be shared by all user programs to prevent 
unnecessary duplication. Therefore, commonly and 
frequently used microsequences should be coded as 
macros and stored in a designated space where all the 
users have access. This would reduce the amount of 
Ml\1M space allocated for the individual job and certain 
jobs should be processed within the scope of micro
programmed macros. 

Addressing the microprogram memory 

A user program may be coded into regular machine 
code or a set of microprograms or a combination of 
both. If it is coded into machine code, it is stored in 
the core me~ory store. If, on the other hand, it is 
coded into a set of microprograms, it should be brought 
into the control memory. When parts of a program are 
coded into machine code and others aremicropro
grammed, communication linkage for control, i.e., a 
uniform addressing scheme between the two types of 
memory must be established. In order for control to 
be shifted between the two memories, the starting 
address of a microprogram and return address of the 
program in the core memory must be specified. 

Protection within control memory 

When a number of user microprograms reside in the 
modifiable microprogram memory there arises the pos
sibility of innocent and unintentional encroachments 
into one another's microprogram space. A number of 
schemes prevalent in the area of current time sharing 
computer systems can be used to prevent unauthorized 
memory encroachments. We shall briefly list them as 
follows: 

1. the procedures can be written in the "reentrant" 
code and the modifiable part of the microprogram 
would be located at a distinct location; 

2. the microprogram memory space can be "paged" 
and access to each page would be checked for user 
identification and protection. 



Simpler schemes described below can be also 
adequate. 

1. Restrict the customer user's, access to a certain 
area of the microprogram store. In this way, the vital 
functions implemented in the owner-user's micropro
gram store will be protected. 

2. Process programs in two modes: debug mode and 
the normal mode. New programs are run in the debug 
mode first. 

In the debug mode, the microprograms sequencing 
the user's program will check for violations of his 
address space, etc. Once fully debugged, the programs 
can be run in the normal mode and executed. 

CONTEMPORARY MICROPROGRAMMED 
COMPUTERS 

Currently, a large number of microprogrammed 
computers are available on production basis. They are 
not irrtended, however, to allow the user a flexible use 
of microprograms. In fact, with a few exceptions, 
their microprograms are unalterable. The VIC-I com
puter of RCA, for example, has an unalterable read
only memory for its microprograms. Its main design 
objective is high reliability for aerospace applications. 
Every macro-instruction (machine code) is performed 
by a set of basic micro-operations and is capable of 
being executed in a variety of ways through various 
combinations of microprograms. Microprograms are 
also effectively used to implement a provision for 
"graceful degradation" through error sensing circuits 
and automatic rerouting. 

The Micro 800 is a small-scale, microprogrammed 
computer with a fast read-only memory of 220 nano
second cycle time. In this computer, good uses of micro
programs are observed. The macro-instruction is fully 
dependent on the microprograms and is electrically 
alterable within the capabilities of the hardware. Main 
memory word length (in multiples of 8, 9, or 10 bits) 
and I/O interrupt servicing are also controlled by 
microprograms. A special micro-memory board can 
be inserted to perform system diagnostics. The manu
facturer provides a Micro 800 simulator written in 
Fortran IV for microprogram logic design and de
bugging on a'variety of computer systems. 

The IC-9000 of Standard Computer Corporation is a 
small-scale computer and so far the most versatile and 
powerful with respect to microprogramming capabili
ties. It is a relatively expensive micro-processor with 
many sophisticated features as well as a fast read-only 
microprogram memory (and fast-writable memory 
available. at increased cost). Macro-instructions are 
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microprogrammed with the exception of optional 
"Language Boards" which perform preliminary de
coding of target language instruction generating a 
transfer address in the microprogram and setting 
various conditions. The IC-9000 as a versatile micro
programmed data-processor has a number of advanced 
capabilities such as micro-subroutine nesting, limited 
instruction overlap, many high-speed registers, and 
efficient I/O interfaces. 

In the following sections, two currently available 
microprogrammed computers, the Interdata Model 4 
of Interdata Corporation and the IBM 360/50 of IBM 
Corporation, will be studied in some detail to illustrate 
some differences. Among other things, they differ in 
their microprogramming philosophy. 

Interdata 4 

The Interdata 4 is a small-scale, multi-purpose com
puter with prewired, nondestructive read-only memory 
(ROM) of 400 nanosecond cycle time.2 The logic of 
ROM is wired on a pluggable circuit card containing a 
1024 word U-core ferrite transformer with wires winding 
through them to determine the contents of the store. It 
can be altered by rewiring with some special equipment. 

There are four types of microprogram instruction 
format. 1,2 An instruction consists of 16 ,bits: 4 bit~ for 
the operation code field and 12 bits for the various fields 
according to the format. Figure 3 shows an example of 
the instruction format. The format resembles closely 
that of the conventional machine code instruction 
which provides easier microprogramming. A micro
program assembler as well as a simulator for testing 
microprograms is supplied and wiring is automatically 
done by a machine through the punched paper tape. 

With this type of instruction format, it is easy to 
program but only one operation can be specified and 
overlapping of operations is not possible. This will 
cause a performance loss of the computer and is a con
siderable disadvantage over the IBM 360/50 which 
has a capability of specifying overlapping micro
operations. 

D I s 

Figure 3-Interdata 4: Add, subtract, exclusive OR, AND, 
inclusive OR, and load instruction 
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Figure 4-An IBM 360/50 micro-instruction 

The significance of the Interdata 4 is that it is a 
user-microprogrammable computer with a limited 
facility for writing microprograms. It meets the re
quirements by providing a fast-read and very slow
write control memory. 

IBM 360/50 

The IBM 360/50 is a medium-scale, multipurpose 
computer. It operates with a 2815-word capacitor 
read-only store (CROS). Each word consists of 90 
bits and controls the gates and control lines of the 
system for one 500-nanosecond machine cycle. 

Unlike that of the Interdata 4 computer, the format 
of microprogram instructions is somewhat complex 
(Figure 4). A 90-bit instruction word is divided into a 
number of fields of various field length. Each field has a 
predetermined function. An instruction word is read 
out of ROS and set into the read-only storage data 
register (ROSDR) at every machine cycle. The address 
of the next micro-instruction is composed partly of the 
90-bit micro-instruction in use and partly from the 
results of the current machine cycle. Specific bits from 
the ROSDR fields are combined with the CPU or I/O 
mode by the CROS-word decode logic to activate con
trol lines. Therefore, a number of micro-operations are 
performed concurrently in one machine cycle, and the 
speed of machine performance is increased. 

The Control Automation System (CAS) was de
veloped by IBM as a programmer's assistance in micro
programming for the IBM 370. CAS accepts a listing 
of the micro-instructions prepared on the logic sketch 
sheet, produces the 90-bit pattern for each control 
word, and assigns the address for each ROS word. This 
reduces the microprogrammer's job to preparing the 
logic sketch sheet. It is not a simple task to prepare it, 
however, since there are fixed formats with which the 
microprogram mer must comply. 

Before a microprogram is converted into the bit 
pattern for the ROS wiring, it is tested on a cycle-by
cycle simulation with various sets of initial conditions 
and traced step-by-step for the effects of instructions 
on the various components of the system. This will 
eliminate a system malfunction caused by ill-formed 
microprograms. 

With these facilities, the pitfall of complex timing 
and gating restrictions is avoided and an effective use 
of the IBM 360 capabilities may be realized. Although 
it still seems somewhat cumbersome, the complexity 
of microprogramming is considerably reduced. 

The two contemporary' computers studied here are 
equipped with the writable ROS. Although their micro
programming and microprogram loading processes are 
still cumbersome, various equipments have been de
veloped as an aide for easier microprogramming. Al
though, in principle, the concept of alterable micro
programming is observed in the philosophy of hard
ware design, manufacturers are still reluctant to re
linquish microprogramming to general users. 

COl\1MENTS ON ORGANIZATION 

In spite of its flexibility, the microprogrammed com
puter is basically slow. The idea of two-level micro
programming discussed earlier suggests ways for im
provement. The frequently-used management functions 
can be implemented by the lowest, gate-level micro
programs. At this level, well-established speed-up 
techniques such as the microprogram memory inter
lacing, overlapping of various execution phases of a 
micro-instruction, and the exploitation of control 
parallelism will improve the efficiency of execution. 
These techniques, however, require detailed knowledge 
of processor timing and internal data-flows. The user 
will use the next higher level, i.e., minilevel, for his 
microprogram applications. At this level, instructions 



are less machine dependent and, therefore, much easier 
to use. 

If the computer has more than one microprogram
mable, instruction execution units, the mode of their 
utilization will depend on the nature of computations. 
The microprogrammed control units would need access 
to common storage registers, for example, where 
parallel computations are performed on common, 
shared data areas. Synchronization between control 
units must also be established. Examples of such com
putations are automatic numerical error analysis, 
significance checking, performance measurements, and 
so forth. 

Microprogrammed control had been successfully ex
ploited in the newer designs of functional subsystems. 
The use of such special purpose uiiits for instruction 
reformatting, address generation, data structure inter
pretation, and certain types of simple array processing 
may be suggested. 

FINAL REMARKS 

To conclude, further areas of actual and potential 
microprogram application are listed. These are not ex
haustive, of course, but should lead the future micro
program users to further study of microprogram 
applications. 

1. Compilers that map higher-level language source 
programs to microprograms via intermediate languages. 

2. Control of time sharing systems (special macro
operations for data handling, queue manipUlation, 
scheduling and allocation algorithms). 

3. Interrupt servicing, queuing, status interpre
tation. 

4. Facilitation of incremental compilers for time 
sharing. 

5. Control of parallel computer organization. 
6. Increased reliability through diagnosis of parts 

not being used in current instruction. 
7. Increased ease and accuracy in fault detection 

through diagnostics on the microprogramming level. 
8. Control of "degraded performance" capability 

for aerospace and medical applications. 
9. Direct execution of process oriented languages. 

10. Emulation of machine languages. 
11. Image identification. 
12. Cryptanalysis. 
13. Control of associative memories (control of 

multiple operand, mask and results registers load and 
dump circuitry). 

14. Information retrieval especially in connection 
with associative memories. 
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The possibility of microprogram application is limit
less. As the microprogramming and hardware tech
niques advance, wider variety of possibility will be ex
pected to develop. We hope that our study of user
microprogrammable computers will motivate the future 
microprogram user to further study the area of micro
programming and its applications. It is also our hope 
that this paper will incite those who are in charge of 
the design of fourth generation computer systems to 
consider the full impact of microprogramming to users. 

PART TWO-TRADE OFF ALGORITHM 
INTRODUCTION 

The optimal allocation of resources to maximize com
puting throughput is one of the most important prob
lems in computer design. The throughput of a com
puting system is a function of many parameters. One 
important problem in ,designing a microprogrammable 
computer system is the determination of the optimal 
size of the high-speed and expensive alterable micro
program memory as well as other types in a hierarchy 
of memories given the total resources allocated for 
memory. An algorithm for designing memory heirarchy 
should answer the following: 

1. The optimum sizes of microprogram memory, 
and other components in a memory hierarchy in order 
to minimize the average access time for the user's ac
tivity profile for a given cost constraint. The optimum 
amount of information transfered to the microprogram 
memory. 

2. The optimum set of memory types, including 
microprogram memory in a hierarchy with regard to a 
number of memory types, cost and access time. 

3. The cost versus average access time tradeoffs for a 
memory hierarchy for a given activity profile. A change 
in the minimum average access time for an expenditure 
of some "x" dollars on the memory. 

DEFINITIONS AND NOTATIONS 

When a computer program is run, certain blocks of 
information are accessed more frequently than others. 
The activity profile of a given set of programs is the 
relative frequencies with which blocks of addresses are 
accessed when that set of programs is run. 

The numbers of blocks accessed at frequencies F 1, 

F2 , F3, ••• F m are denoted by WI, W2 , W3, ••• W m, 

respectively. Activity is defined directly proportional 
to the access frequency. 

m 

~PiWi = 1. 
i=l 
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An m-dimensional vector P = (PI, P2, ... Pm), where 
Pi < P HI, denotes the activities of a program. As

. sociated with P, there is an m-dimensional vector W 
such that its ith component Wi represents the number 
of blocks of information accessed at activity Pi. 

The activity profile then is defined by an ordered pair 
of vectors (P, W). In practice, it can be determined 
either analytically or by simulation and experimenta
tion.7•11 

Let us aSf'ume that n types of memory devices are 
available. Furthermore, let Ti denote access time and 
C i denote the cost of one block of the memory type i. 

With these definitions and notations, the problem is 
now· stated. 

STATEMENT OF PROBLEM 

Given: 

1) the maximum permissible cost G for the entire 
storage system; 

2) n different types of memory available where the 
cost per block and average time to access one block 
are C i and T i respectively; 

3) the activity profile of the information to be 
stored in the hierarchy is given by the 2 X m matrix: 

W3, 

where 
m 

Pi < PHI and E PiWi = 1; 
i=1 

determine the sizes of the microprogram memory as 
well as other memories and the location of information 
blocks in the storage such that 

1) the total cost does not exceed G and 
2) the average access time to any information block 

stored in the hierarchy is minimized. 

Without losing generality, we may assume that Go 
is the cost of mass storage or Type 0 memory, and that 
it is one of the least cost and large enough to accommo
date all the blocks in the program. We assume that 
one block of information occupies one unit of x memory 
space and a block is divisible between two memory 
types. 

LINEAR PROGRAMMING FORMULATION 

Let V ik be the number of information blocks of 
activity Pi stored in memory type k, (1 ~ k ~ n), 

and let 
n 

ViO = Wi - E V ik 
k=1 

so that the problem becomes 

n m 

Go+EEckVik~G 
k=1 i=1 

n 

E V ik = Wi for i = 1, 2, ... , m 
k=O 

for 1 ~ i ~ m; 0 ~ k ~ n 

minimize 
m n 

T = L L PiTkVik 
i=l k=O 

The size of memory type k denoted by Uk is then 

m 

L V ik = Uk. 
i=1 

(1) 

(2) 

(3) 

A set V ik satisfying the condition for 1 ~ i ~ m and 
1 ~ k ~ n is an optimal solution. 

The following theorem allows the problem to be 
applied to a subset of all the available memory types. 

THEOREM 1. Given three memory types, 1, 2, 
and 3, such that 

C3 > C2 > C1 (4) 
and 

T3 < T2 < Tl (5) 
and 

Tl - T3 Tl - T2 
(6) > C3 - C1 C2 - C1 

for any activity profile, then there are no blocks of 
information stored in· memory type 2 in an optimal 
solution. 

The proof is straightforward. An interested reader 
may refer to Reference 12 for the proof. 

ALGORITHM 

By an-application of Theorem 1, a new hierarchy is 
derived from the original memory hierarchy. While 
data require the same amount of microprogram memory 
space as that of non-microprogram memory space 
when transfered, note that a macro-instruction in non
microprogram memories is represented by several micro
operations when transfered into a microprogram mem
ory. This means that the contents of non-microprogram 
memory require several times more space of the micro
program memory when transfered. This fact is reflected 
in the algorithm by the cost of memory. 



Another consideration is that a macro-instruction is 
performed faster when it is represented by a micro
program and directly executed. Besides the high-speed 
of microprogram memory, this is largely due to an 
elimination of instruction fetch cycles at an execution 
time that an instruction is executed faster with a less 
number of machine cycles. 

These two facts concerning a transfer of information 
from a non-microprogram memory to a microprogram 
memory must be reflected in the algorithm. Adjust
ments are made in deriving a new memory hierarchy, 
transfer values, and in the remainder of the algorithm. 

(1) Determine memory type j such that for 
O<j5:n 

To - T j 

~Oj = C C 
j - 0 

is maximum. Include the memory type j in the new 
derived hierarchy and eliminate memory types i for 
o < i < j from further consideration. 

(2) Repeat the procedure described in (1) for the 
memory type k with i 5: k 5: n, replacing To and Co 
by T j and Cj respectively. 

For the microprogram memory, i.e., the type n 
memory, 

where Rand S are multiplying factors to adjust the 
access time Tn and cost C n of the microprogram mem
ory, respectively. 

(3) From the new hierarchy, determine transfer 
values Xj. 

T· 1- T· 
X . _ J- J 

J -
Cj - Cj - 1 

1· = 1 2 •• ·n'-1 . " 

where n' is a number of memory types in the new 
hierarchy. 

To determine the transfer value for the microprogram 
memory, 

Tn '-l - RTn , 

SCn' - Cn,-l 

where Tn' and C n' are the access time and cost of the 
microprogram memory (the type n' memory in the 
new hierarchy). 

(4) Determine transfer priorities Zij where 

i = 1, 2, .• ·m, j = 1, 2, •• ·n' 

(5) Order the Zi,j in decreasing order of magnitude. 
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Let 
Y1= max Zi,j = Zi(l) ,j(l) 

ij 

Y2 = max Z i,j= Zi(2) ,j(2) where i, j ¢ i (1) , j (1) 
ij 

Y3 = maxZi,j = Zi(3),j(3)wherei,j ¢ i(I),j(l) 
ij 

and i, j ¢ i.(2) , j(2) 

(6) The transfer implied by Zi,j is the shift of all 
information of activity Pi from memory: type j - 1 
to memory type j; that is, (i) decrease the size of 
memory type j - 1 in the existing hierarchy by Wi 

unit of memory space, (ii) increase the size of memory 
type j in the existing hierarchy by Wi units of memory 
space, and (iii) shift Wi blocks of activity Pi from 
memory type j - 1 to the vacant space created in 
memory type j. Note that when information in nonmic
roprogram memory is transfered to a microprogram 
memory it is expanded into a representing mICro
program. 

Let c (k ) and t (k ) be the cost and average access 
time of the hierarchy after the kth transfer. Let ~c (k ) 
and ~t(k) be the amount of change in the cost and 
average access time due to the kth transfer. Then 

c(k) = c(k - 1) + ~c(k) 
t(k) = t(k - 1) + ~t(k) 

where 

k=I,2,3··· 

for some i and j ¢ n' 

for some i and j = n' 

{

- WiPi(Tj-1 - T j ) for some i andj ¢ n' 
~t(k) = 

- W iP i (T j - 1 - RTj ) for some i andj = n' 

c(O) = Go and 

teO) = To. 

it is assumed that all information is stored in the mass 
memory in the initial state, i.e., the initial cost is Go 
and access time To. Determine c(k) and t(k), and plot 
c(k) versus t(k) for k = 0, 1, 2 .... Note that adjust
ments are made to ~c and ~t when information is 
transfered to a microprogram memory. The plot is the 
cost-time characteristic. (Figure 6) 

Note that steps (4), (5), and (6) must be repeated 
to obtain the cost-time characteristic for each given 
activity profile. 
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The optimal microprogram memory size in the optimal 
memory hierarchy and the location of information 
blocks in the hierarchy 

Determine k' such that 

c(k') ~ G ~ c(k' + 1). 

If c (k) ~ G for all k, then store all the information in 
the fastest microprogram memory. The optimal size 
of microprogram memory is 

and the size of memory type k, k ~ 0 and k ~ j, is 
zero, i.e., the microprogram memory alone constitutes 
the optimal memory hierarchy. 

If there exists a k' such that inequality (9) holds, let 
the ordered transfer priorities Y1, Y 2, • • • , Y (k+l) be 

. Zj(l)j(l)' Zi(2) ,j(2) ,,,Zi(k'+I) ,j(k+l). To determine the loca
tion of information of activity P u inspect the ordered 
transfer priorities from right to left until Zi(q)j(q) such 
that i(q) = u and i(r) ~ u for k' + 1 ~ r ~ q is found. 

(i) If no such Zi(q)j(q) exists, all the blocks of in
formation with activity P u are stored in the mass 
memory. 

for k ~ 0 

(ii) If such a Zi(q)j(q) exists then the number of 
blocks of information with activity P u stored in mem
ory type .i' where j' = j (q) is 

Vuj, = l~' -=-cg'~l 
WU:' 

if q = k' + 1, 

'if q ~ k' + 1 

The remaining blocks of activity P u are stored III 

memory type j' - 1 

Vuk = 0 for k ~ .i' an(l k ~ j' - 1 

The size of memory type k in an optimal memory 
hierarchy is 

for k = 1,2,3·· ·n'. 

I t can be shown that the algorithm described above 
is feasible and optimal. However, it is stated as a 
theorem and interested reader should refer to Reference 
12 for the proof. 
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Figure .5-Cost/time plot for determining the new hierarchy 

EXAMPLE 

Given maximum possible cost G = 425, a mass 
memory of cost Go = 90 and average access time 
To = 40. The number of available memory types 
n = 7 with the following specifications, where the type 
7 memory is a high-speed- control memory. 

Memory type 0 1 2 3 4 5 6 7 
Access time Ti 40 10 9 8 7.5 5 4.9 1.2 
Cost/unit memory space Ci 1 2 2.5 3 3.8 4 4.6 5 

The activity profile of the given program is as follows: 

Activity Pi 

No. of blocks 
w/this activity Wi 
where PiWi = 1. 

0.0082 0.0128 0.0209 0.0046 
0.0018 0.012 0.0143 '0.0256 

10 5 20 15 20 5 10 5 

Throughout this example we assume that a macro
instruction in a noncontrol memory is,- on the average, 
represented by six micro-operations when transfered 
to a control memory and executed in ~ of the instruc
tion execution time. Data transfered from a non
microprogram memory take the same amount of 
microprogram memory. Therefore, we assume that 
information in one block of non-microprogram memory 
will be expanded on the average into five microprogram 
memory blocks. This. assumption is expressed in the 
algorithm by: 

R=~ 

THEOREM 2: The Algorithm 18 feasible and and 
optimal. S = 5. 



Solution 

1. Obtain the new memory hierarchy from the original 
hierarchy. (Figure 5) Values in parentheses are the 
adjusted access time and cost of control memory. 

Original Hierarchy No. 0 1 5 7 

New Hierarchy No. 0 1 2 3 

Access time 40 10 5 1.2 (0.4) 

Costj unit memory space 1 2 4 5(25) 

2. Transfer priorities 

Xl = 30, X 2 = 2.5, X3 = 0.22 

3. Priority matrix: 

0.246 0.0205 0.001804 

0.384 0.032 0.002816 

0.627 0.05225 0.004598 

Z= 0.138 0.0115 0.001012 

0.054 0.0045 0.000396 

0.36 0,03 0.00264 

0.429 0.03575 0.003146 

0.768 0, (If)/J 0.005632 

TABLE I--Average Access Time and Total Cost. Associated 
with Transfers of information. 

Type 0 Type 1 I Type 2 Type 3 Total Avg. Access 

Amount Amount Amount AII10unt Cost time 

transfl'd tranafrd tl'l!lnsfrd transfrd 6C C1 6 Tt T\ 

90 o I 0 II 90 40 

Y
1 - 5 85 5 5 0 0 5 95 - 3.84 36.16 

Y2 -20 65 20 25 0 0 20 115 -12.54 23.62 

Y3 
-10 55 10 35 0 0 10 125 - 4.24 19.33 

Y4 - 5 50 5 40 0 0 5 130 - 1.92 17.41 

Y5 - 5 45 5 45 0 0 5 135 .: 1.8 15.61 

Y6 
-10 35 10 55 0 0 10 145 - 2.46 13.15 

Y7 -15 20 15 70 0 0 15 160 - 2.06 11.09 

Y8 
20 - 5 65 5 5 0 10 170 - .64 10.45 

Y9 -20 0 20 85 5 0 20 190 - 1.08 9.37 

Y10 
0 -20 65 20 25 0 40 2~0 - 2.09 7.28 

Yu 0 -10 55 10 35 0 20 250 - .715 6.565 

Y12 
0 - 5 50 5 40 0 10 260 - .32 6.245 

Y
13 

0 - 5 45 5 45 0 10 2.10 - .3 5.945 

Y14 
0 -10 35 10 55 0 20 290 - .41 5.535 

Y15 
0 -15 20 15 70 0 30 320 - .345 5.190 

Y16 
0 20 - 5 65 5x5 25 105 425 - .5888 4.6012 

Y17 
0 20 -20 45 5x20 125 420 845 - 1.9228 2.6784 

Y18 
0 -20 0 20, 65 125 40 885 - .18 2.4984 

Y19 
0 0 -10 55 5x10 175 210 1095 - .6678 1.8306 

Y20 
0 0 - 5 50 5x5 200 '105 1200 - .2944 1. 5362 

Y21 
0 0 - 5 45 5x5 225 105 1305 - .276 1.2602 

Yu 0 0 -10 35 5x10 275 210 1515 - .3772 .8830 

Yu 0 0 -15 20 5x15 350 315 1830 - .3174 .5656 

Y24 
0 0 -20 0.; 5x20 450 420 2250 - .1656 .40QO 
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Figure 6-Cost/time characteristics for determining optimum 
Microprogram memory and average time 

4. From the elements of priority matrix Z, obtain 
ordered transfer priorities: 

Y I = Z81 Y 9 = Z51 

Y2 = Z31 YlO = Z32 

Y3 = Z71 Y ll = Z72 

Y4 = Z21 Y l2 = Z22 

Y5 = Z61 Y l3 = Z62 

Y6 = Zll Y l4 = Zl2 

Y 7 = Z41 Y l5 = Z42 

Y 8 = Z82 Y l6 = Z83 

5. From the ordered priorities we obtain 

I1C i and I1Ti for i = 0, 1, 2, .... 
C i and Ti for i = 0, 1, 2, .. 

Yl7 = Z33 

Y l8 = Z52 

Y l9 = Z73 

Y20 = Z23 

Y21 = Z63 

Y22 = Zl3 

Y23 = Z43 

Y24 = Z53 

Table 1 shows the amount of information trans
fered between memories and its effects in the total cost 
and average access time. From the table, Ti and Ci are 
plotted (Figure 6) to show the minimum average 
access time versus total cost curve when the program 
is stored in and executed from the optimized memory 
hierarchy. The sizes of each memory type at certain 
cost are computed using the LP program developed 
earlier and indicated in Table 1 and in Figure 6. 

Results 

The result is shown in Table 1 and in Figure 6. 
Given the maximum permissible cost G = 425, seven 
types of memories with the initial cost of mass 
memory = 90, and average access time = 40, the 
optimum size of the microprogram memory is 25 
blocks. The result also shows that the optimum sizes 
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of the memory types 2, 1, and 0 in the new hierarchy 
are 65 blocks, 20 blocks, and 0 blocks, respectively. 
The optimum memory combination costs 425 units 
and its average access time is 4.6012. 
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Specification of Microprogrammed Computer Available 

Feature 

Control memory type 

Micro memory access time 
Micro Instr. word length 
Micro memory capacity 
Micro Instr. format 

Overlapping micro-ops 
Single Cycle mode 
User Alterable (indirect) 
User Alterable (direct) 
Simulator software 
Factory Wired micro memory 
Indexing micro memory 
Indexing in microprocessor 
Binary add (w / 0 . shift) 

Associative registers 
Interrupt thru micro prog. 
Micro level diagnostic 
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Interdata Pub No 29-032 

IBM 360/50 

Capacitor 
read-only 
500 nsec. 
90 bits 
2816 wds. 
bits / function 
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No 
No 
No 
Yes 
Yes 
No 
No 
500 nsec. 
(32 bits) 
No 
Yes 
No 
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Interdata application No 103 and No 38-020 

3 Introduction to principles of operation-Standard model 9 
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8 A OPLER 
Fourth generation software 
Datamation Vol 13 No 1 pp 22 January 1967 

Micro 800 

Discrete Diode 
Read-only 
220 nsec. 
16 bits 
256 wds. 
machine 
code type 
No 
Yes 
No 
No 
Yes 
Yes 
No 
No 
220 nsec. 
(8 bits) 
No 
Yes 
Ye~ 

9 D F PARKHILL 

I nterdata 4-

Ferrite 
transformer 
read-only 
400 nsec. 
16 bits 
512 wds. 
machine 
code type 
No 
No 
No 
No 
Yes 
Yes 
Yes 
Yes 
800 nsec. 
(16 bits) 
No 
Yes 
Yes 

IC~9000 

Read/write 
500 nsec. 
32 bits 

machine 
code type 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
500 nsec. 
(36 bits) 
No 
Yes 
Yes 

The challenge of the computer utility 
Addison-Wesley Reading Massachusetts 1966 

10 L L RAKOCZI 
The Computer-within-a computer, a fourth generation concept 
IEEE Computer Group News Vol 3 No 2 pp 14 1969 

11 C V RAMAMOORTHY 
Markov analysis of computer programs 
Proceedings of National Meeting of ACM' 1965 

12 K M CHANDY C V RAMAMOORTHY 
Optimization of information storage systems 
Informa,tion and control Vol 13 pp 509-526 December 1968 

13 R F ROSIN 
Contemporary concept of microprogramming and emulation 
Computing Surveys Vol 1 No4 pp 197-212 1969 

14 W Y STEVENS 
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15 M V WILKES 
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Firmware sort processor with LSI 
components 

by HARUT BARSA1VlIAN 

National Cash Register Company 
Hawthorne, California 

INTRODUCTION 

With the latest achievements of the large scale inte
gration (LSI) technology, -a major qualitative break
through in the information processing art is expected. 
The consensus in the computer industry is that the 
next generation of computers will be constructed with 
LSI components. 

Three inherent characteristics of LSI, subject to in
cessant improvement, appeal most to both computer 
manufacturers and users. First, significant reduction 
in the production cost due to the automated design 
and fabrication of large and complex logic circuits in 
a single package. Second, improvement of the overall 
system reliability by at least one ord~r of magnitude 
because of the automated manufacturing processes 
and sharp reduction of the number of external inter
connections. And, last, higher operational speeds be
cause of microminiaturization and advanced tech
nology. Admitting however these potential capabilities 
of LSI and its inevitable impact on the future of the 
computer industry, if should be emphasized that the 
introduction of the new generation of computers with 
LSI components cannot repeat the past pattern of 
computer generations because of several factors: 

a. The qualitative superiority of transistors and 
later IC's compared with their predecessors were 
indisputable from the beginning. The mass pro
duction and the absorption of these components 
by the computer manufacturers went smoothly 
and fast. Yet LSI has not achieved a similar 
status. The problems of power dissipation and 
cooling, packaging and interconnections, yield 
and mass production of off-the-shelf products are 
of a much higher magnitude for LSI than were 
those of its predecessors. 

b. For the full utilization of LSI's expected capa
bilities, new concepts and techniques should be 

developed for all phases of computer design. A 
conventional computer logic simply redesigned 
with LSI components can hardly be described as 
a new generation of computers, nor can it disclose 
any significant technical and economical ad
vantages. It is estimated that even if LSI tech
nology were offered free, such redesign would 
reduce the hardware cost by only 3.5 percent. l 

c. The multibillion dollar investments made by 
computer manufacturers and users in the current 
information processing installations will retard 
an abrupt growth of a new generation of 
computers. 

These factors indicate that the introduction of a new 
generation of information processing systems will be 
a slow and evolutionary process. There will be a 
transitionary computer generation, that combines 
basic third generation equipment and operating soft
ware and new special purpose processors, peripheral 
controllers and terminals designated to increase- the 
overall computations per dollar of the present com
puters. These developments will overcome the ineffi
ciencies and/or limitations of the current computer 
generation, thereby substantiating the economical as 
well as technological grounds for a truly new genera
tion of computer systems. 

The state-of-the-art of the semiconductor technology 
confirms that LSI can make a decisive contribution in 
this evolutionary trend. 

Background 

A brief survey of the computer industry's develop
ment history reveals that the continuously improving 
cost-performance index of semiconductor and magnetic 
circuit components stimulated the creation of larger 
and faster CPU's (including the main memories). This 



184 Spring Joint Computer Conference, 1970 

factor, as well as the versatile growth of the computer 
applications, necessitated the development of the 
sophisticated software systems and programming 
techniques. Meanwhile the peripheral devices, electro
mechanical and optical, remained quite primitive in 
their performance, requiring substantial software 
support from the system. 

As ~ consequence of these developments in a typical 
computer installation, costs for software and applica
tions programming reach as high as 70 percent of the 
total expenditure. With the advance of component 
technology this trend may s09n result in a hardware/ 
software cost split of 15 to 85 percent (the CPU 
sharing only 3 percent of the hardware cost). 

Objectives 

It seems apparent that basic changes in the computer 
architecture and redistribution of the hardware and 
software resources within the system, with much more 
emphasis on hardware functions, must be accomplished. 
Accordingly, the following basic design objectives must 
be formulated: 

a. Minimize . the software sector of the system by 
performing certain control procedures and stand
ard routines by hardware and/or firmware. 

b. Incorporate sufficient local logic and self-control 
into the peripherals and terminals so they can 
be driven by the computer without device-specific 
software routines. 

c. Modularize hardware and software, permitting 
the tailoring of efficient systems for a particular 
application. 

The concept 

One of the principal means for achieving these objec
tives is the decentralization of the computer's processor 
tasks. Special purpose hardware/firmware processors are 
substituted for program routines and/or entire algorith
mic functions that have ordered structures and frequent 
use in a large spectrum of applications. 

The ,ultimate purpose of such trad~-offs is to achieve 
the following results: 

a. Release more CPU space and time for other, more 
specialized jobs and supervisory functions. 

b. Simplify the software control of the whole com
puting system. 

c. Ease applications programming. 
d. Increase the system's overall throughput. 

These special purpose processors must contain adequate 

self-control to perform their functional duties with 
minimal control support, and must not cause any 
significant hardware or software modifications in the 
system. 

For multiprogramming and time sharing systems, 
this approach can improve the overhead by decreasing 
the heavy information traffic within the system and 
the frequent switching of the CPU from one task to 
another. 

This paper suggests an implementation of the pro
posed concept. It discusses a special purpose processor 
designed with LSI components, dedicated' for sorting. 

THE SORT PROCESSOR 

The sort routine 

The purpose of computer sorting is to generate a 
systematically ordered data file from randomly ac
cumulated raw data made up of fixed or variable length 
records. The sort routine organizes these !,ecords in 
ascending or descending order of their key words 
which identify each record. 

Because of the limited size of the computer's main 
memory, the sorting is performed in two phases: 

a. Internal sort, generating strings of sorted records. 
b. Merge, when the strings are merged into single 

systematically ordered file. 

To accomplish sorting, multiple passes of the internal 
sort and merge phases are executed. These are inter
leaved by I/O routines that transfer data between the 
main memory and the peripheral file (tapes or discs). 
In both of these phases the purpose of the sort routine 
is the same, to compare the keys and to order the 
records in a desired sequence. 

Three characteristics of the sorting operation (tradi
tionally a software function) make it ideally suited to a 
firmware implementation: 

Frequent use 

Sorting is among the basic algorithmic functions of 
almost any computer installation. It has applications 
in commercial and scientific problems, operating 
systems, program assembling and compiling, and in list 
processing. It is estimated that sorting comprises from 
25 to 50 percent of the overall computer workload for 
business oriented systems. 



Ordered structure 

The sort routine is supervised by the sort-merge con
trol program. It is called after the raw data is loaded 
into the Main Memory (MJVI) and boundary conditions 
of the work and buffer areas are defined. The sort 
routine iterates, comparing keys and readdressing or 
relocating the records in the required order until the 
end of the current string is reached. When this condi
tion occurs the sort routine transfers control back to 
the sort-merge control program. The sort routine is 
called again after the current sorted string is transferred 
to the peripheral file, new raw data is loaded into the 
MM and new boundary conditions are set. This process 
continued until the sort operation is completed. Thus, 
the sort routine does not have a complex structure in 
the sense of multiple branches and linking points with 
the other system components. It interfaces with the 
sort-merge control program with one entry and one 
exit, and is monotonously iterative by its nature. 

Tilne consuming 

The CPU time for the sort routine to generate a 
sorted string from a random set of records is con
sumed by two basic functions: comparison of the keys 
and, accessing the MM for reading the keys and com
piling the list of the string. The number of these func
tions, and consequently the consumed CPU time, will 
increase drastically if the length of the keys are greater 
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Figure 1-System configuration 
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than the length of the machine word and this is the case 
for the majority of sorting jobs. 

The analysis of the benchmark problems on sorting 
reveals that up to 40 percent of the total sorting time 
(see later section of this paper) is for CPU operations. 

The functional description 

The Sort Processor (SP) is an internally programmed, 
firmware special purpose processor dedicated for per
forming the sort routine outside of the computer's 
CPU. The SP shares the common l\1:M with the CPU 
on a lower priority basis and has the simplest interface 
with the CPU (Figure 1). 

The START signal informs the SP that a Control 
Word (CW) is available on the MM bus. The CW con
sists of function and address fields. The function code 
indicates the type of operation to be performed by the 
SP, e.g., sort (ascending or descending), transfer 
status, resume, terminate. The address field specifies 
the starting address (ao) of the initial parameters and 
boundary conditions table required for the sorting. 
This table set by the sort-merge control program, con
tains the following parameters (Figure 2): 

(30 and (3n are the initial addresses of the first and 
the last records in the work area. 
¢o and ¢m are the initial and final addresses of the 
string list buffer. 
(Instead of (3~ and ¢m the number of records in 
the work area (n) and the size of the string list (m) 
can be given.) 
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Figure 3-System configurations with sort processor 

'Yo = address of the key word of the first record 
l = length of the key 
r = length of the record (considering fixed length 

of records) 

The operating sequence of the SP, after receiving 
the CW, typically proceeds in the following manner: 

1. Reads the initial parameters table by the address 
ao and stores it in its Register File (RF). 

2. Generates the effective ,addresses of the consecu
tive keys by computing 'Yi = 'Yo + ir starting 
with i = 0, subsequently i = 1, 2, 3 ... , n. 

3. Reads the key (Ki). Meanwhile generates the 
initial addresses of each record (f3i = f30 + ir), 
and stores the codes Kif3i in the consecutive loca
tions of its Search l\![emory (SM). The capacity 
of the Sl\![ can be smaller than the number of 
records in the work area, so that in the initial 
load the SM will be filled at i < n. 

4. Locates the first desired (the highest or lowest) 
key (KO) from the SM and stores the corresponding 
address (f30) in the CPo location. 

5. Replaces the vacancy in the SM with the next 
(Ki+1)(f3i+l) code available from the work area. 

6. Searches for the next desired key using the key 
Kj-l located at the previous (j - 1) cycle as base 
key for the comparison, and stores the address f3j 
corresponding to the. newly located K j into the 
location cpj, and returns to step 5. 

The iteration of steps 5 and 6 continue until the end 
of the string. This may occur when one of the following 
conditions arise: 

a. f3i = f3n (or i = n) indicating that the work area 
is exhausted. 

b. cpj = CPm (or j = m) indicating that the string list 
is exhausted. 

c. No more successful searches in the SM are pos
sible. The Kj was the last desired key, e.g., the 
SM does not contain any more keys that are 
greater than (or less than) the current base key. 

Now the SP interrupts the CPU and stays idle until 
a new control word is received. 

The SP continues functioning if it is preassigned to 
control the peripheral file (Figure 3, Systems C and D), 
and may: 

a. transfer the sorted string (by the string list) from 
the MM into the peripheral file, load new raw 
data into the l\![M; 

b. reorganize the memory map, move the buffer 
areas; 

c. exchange status information with the Systems 
Supervisor, and resume sorting operations. 

The degree of the complexity of these control func
tions depends upon the computer systems architecture 
and the preestablished functional duties of the SP. 

Although the algorithm described appears to be 
optimum for the proposed systems organization, other 
sorting methods can be implemented. 

The hardware structure 

The SP consists of three major functional blocks, all 
designed with MOS LSI components: search memory, 
register file and microprogram storage. The block 
diagram of the SP is illustrated in Figure 4. 

Search Memory (SM) 

The SM is divided into two' sectors. The KEY 
sector, designated for storing and searching key words, 
includes logic for comparing keys. The ADDRESS 
sector stores the initial addresses of the records. The 
number of bits per word in this sector equals log2 M, 
M being the size of the computer's MM in words 
directly accessible to the SP. Both these sectors are 
independently expandable in their bit directions, and 
the whole SM is expandable in the word direction in 
modules. These capabilities allow the SP to meet 
various sorting applications and to be integrated In 
computer systems that have different MM sizes. 



Two types of MOS LSI memories for the SM are 
considered: 

a. Associative Memory (AM). A mod lIar AM with 
LSI components can be organized, using mono
lithic or hybrid technology. The logic to perform 
the "next greater"- and "next smaller" functions 
is integrated into the AM chips. This could allow 
the SM to locate the next desirable key in an inter
rogation cycle. For current MOS technology, this 
is in the range of a few microseconds. However, 
the integration of these functions, because of 
their complexity, would result in a low yield of 
the AM chips. Also, because of the specific nature 
of these functions, such an AM chip might have 
limited marketplace. For these reasons, the inte
gration of only the "equality" function appeared 
to be a more reasonable approach. To locate the . 
next desired key i:q. an "equality" search, the 
current key is modified (incremented or decre
mented) and compared continuously until an 
"equality" response is detected. The average 
number of these comparisons is equal to one-half 
of the key length in binary bits. Such a sacrifice 
in the searching speed seems to be justifiable by 
the economic reasons mentioned. 

b. Recirculating Memory (RM). The RM is or
ganized with recirculating MOS dynamic shift 
registers. The initial key is compared with the 
contents of the RM for "equality." After the 
response is detected, the initial key is modified 
and compared continuously until the next desired 
key is detected. The search is performed by com
paring sequentially each word in the RM with 
the base key using a single comparator for the 
whole RM, as opposed to the AM, which contains 
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Figure 4-Sort processor blOCK diagram 
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TABLE I -Comparison table for search memories 

Type MOS I/O Relative 
of Components Pins Per Search 

SM Per Cell Cell Ratio Time 

AM 10 1:4 1 
RM-1 6 1:13 5 
RM-2 6 1:18 20 

a comparator per each word. The search time for 
the RM depends not only on the length of the 
key word, but also on the length of the shift 
registers composing the R1VI. 

Based on the state-of-the-art of the MOS technology, 
a comparison is made between the AM utilizing the 
"equality" function only and two types of R1VI: the 
RM-1 with dual 64 bit, and the RM-2 with 256 bit 
dynamic shift registers. The frequency range (4 MC) 
and the other electrical characteristics of the chips are 
identical for both Rl\t{-1 and Rl\t{-2. The comparison 
is made for a 256 word SM, with the length of the keys 
in eight bytes (characters). The RM-1 has four external 
comparators functioning in parallel, one for each 64 
word module, while the RM~2 has one external com
parator only for the whole 256 word module. 

The results of this comparison are summarized in 
Table 1. It is evident from this comparison that RM's 
offer slower performance at lower cost. The worst case 
search time of the Rl\t{'s can be estimated by the 
following formula: 

(
W. b ) 

TSR = ~ X 10-6 sec 

where: W = number of words in the RM module (or 
the length of the shift register) consisting 
of a single comparator 

b = length of the key in binary bits 
f = frequency of the shift register In 

megacycles 

The search time can be decreased by using shorter 
shift registers, if the cost for the additional hardware 
is justified.l\t{ore dramatic improvements are achievable 
through the increase of the frequency (f). The current 
MOS technology already reaches up to the 20 MC 
range for the shift registers. Further improvements are 
expected in the characteristics of M OS associative 
memories and· shift registers. 

SM's of various searching speeds can be organized 
for a given cost-performance criteria. However, for 
the SP as a low priority background processor in a 
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computer system, the critical issue seems to be the 
economical factor, not the inherent speed. Accordingly, 
the use of dynamic shift registers for the SM: presently 
appears to be more reasonable. 

Register File (RF) 

This is a scratch pad memory used to store initial 
parameters and boundary conditions as described 
earlier. Several temporary storage registers for in
dexing and counting are also included in the RF. 

To make the RF more 'uniform and functionally 
flexible, all registers have the same log2 M length. 
Sixteen registers in the RF appear to be sufficient. 

Microprogram Storage (,uS) 

This random access memory stores the microprogram 
of the SP. Either read-only (ROM) or read-write 
(RW1V1) memories can be used for the ,uS. Comparing 
the ROM vs RWM, the following factors must be 
considered: 

a. Because of the nondestructive read-out of the 
semiconductor memories, the ROM does not offer 
significant speed or economical advantages. 

b. A higher yield can be achieved in a ROM of a 
given size substrate. However, this may not 
result in a decisive advantage because the produc
tion of ROM requires a certain degree of cus
tomization, while the RWI'vf is an established 
off-the-shelf product. 

c. The RWM allows greater flexibility and sim
plicity in microprogram alterations, debugging 
and maintenance. 

Thus, the LSI RWM for the ,uS appears to be more 
desirable. Now the SP can perform not only various 
sort algorithms but also complementary functions 
such as table look-up, file maintenance, and list process
ing by simple reloading the ,uS by the desired micro
program. 

Three basic microroutines reside in the ,uS: 

a. the search microroutine which controls the S]\;1 
and generates the 1\11V1 addresses of the sorted 
records, 

b. the 1\11\1 interface control routine which performs 
all the communications between the 1\11\1 and 
the SP, 

c. the peripheral file interface control routine for 
controlling the I/O operations if the SP needs to 
communicate directly with the peripheral file 
(see Figure 3, System Configurations C and D). 

Each of the microroutines are stored in individual 
LSI memory units and monitored by a common 
synchronizer. Such a partitioning of the control me
dium allows: 

• Simultaneous execution of the search and inter
face control microroutines. 

• More efficient use of LSI technology. 
• Easy integration of the SP "with almost any com

puter system by simply altering the microroutines. 
• Easier maintenance and diagnostics. 

From the economical standpoint, this approach 
does not cause any cost increase. Unlike magnetic 
memories, the size of the LSI semiconductor memory 
does not affect the bit price. Roughly 4096 bits of 
RWM, organized 128 X 32, are required for the ,uS. 

SYSTEM CHARACTERISTICS AND 
CONFIGURATIONS 

The SP as a "black box" can be integrated practically 
with any computer system and relieves the computer's 
CPU of the burden of sorting. It is applicable for com
puting systems operating in different processing modes. 
In the conventional batch processing systems, the SP 
functions as a stand-alone, low priority processor. In 
real-time or time-sharing systems, the SP functions as 
a background in-house processor. Substituting for the 
sort routine only, the SP does not cause any structural 
changes in the computer system architecture. 

The system characteristics of the SP are summarized 
as follows: 

a. The SP is easily connected to the MM channel of 
the computer and does not require any specific 
and/ or additional hardware provisions from the 
computer (it behaves as any peripheral controller). 

b. In a multiprocessing environment, the SP shares 
the common MM with the other processing units 
on a preestablished priority basis. 

c. The interface between the SP and the M1\1 is 
asynchronous and operates on the request
acknowledgement basis. 

d. The SP requires the simplest software support. 
Statements like SORT ASCENDING, SORT 
DESCENDING, RESU1\1E, TERMINATE, 
TRANSFER STATUS on the systems language 
level must be compiled into a single control word 
format which sets the SP to the appropriate 
operational state. Further, the SP performs the 
specified function autonomously. 

e. The sort-merge control program performs overall 
supervision and interaction of the SP with the 



system. Data preparation and ]VIlVI allocation 
required for sorting also can be performed. 

The SP can be integrated with the computer system 
in several configurations. Four typical system con
figurations are illustrated in Figure 3, and are described 
as follows: 

SYSTEM A is the simplest configuration where the 
SP shares the MM with the CPU on a lower 
priority basis. The sorting time for this configura
tion is relatively long. 
SYSTElJ![ B allows the SP more freedom in ac
cessing the appropriate MM bank. Although the 
SP remains a low priority processor, this con
figuration results in higher sorting speed. 

In both system configurations A and B, data transfer 
between the MM and the peripheral file for sorting is 
accomplished through the conventional I/O channel 
and is controlled by the appropriate software routine. 

SYSTEM C has the same MM sharing scheme as 
System A, in addition, the SP shares the peripheral 
file with the CPU. The control of the data ex
change between the MM and the peripheral file, 
required for the sort-merge operations, is per
formed by the appropriate microroutine of the SP. 

SYSTEM D combines the MM sharing scheme 
of System B and the peripheral file sharing scheme 
of System C. System D comprises fully parallel 
processing capabilities aL 1 offers the highest 
sorting efficiency. 

In all of these configurations, the logic structure and 
the basic functional blocks of the SP remain practically 
unchanged. The specific interface characteristics of 
Systems B, C and D are easily programmed into the 
microprogram storage. The choice of a configuration 
depends upon the applications spectrum of the given 
computer system. Configurations C and D seem to be 
more applicable for the business computer systems 
where large amounts of data are to be processed and 
the I/O portion of the sort-merge operations are of 
significant magnitude. Configurations A and B can be 
used in scientific-engineering applications where a 
relatively small number of files are to be sorted. The 
trade-off between the desired degree of sorting effi
ciency and cost of the features for sharing the lVIM 
and/ or the peripheral file should be decided at the 
user's level. 

EFFICIENCY AND PERFORMANCE ANALYSIS 

The efficiency of the SP depends upon the applica
tions orientation, the size and the basic functional char-
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Figure .5-Statistical curves of sorting parameters 

acteristics of the computer system. It is very difficult 
to depict generalized analytical expressions that corre
late computer system parameters and sorting because 
of . the diversity and inconsistency of the numerous 
variables involved. 

The diagrams of Figure 5 illustrate the correlation 
between the main sorting parameters: the sorting 
time (in minutes), the main memory capacity C (in 
kilocharacters), and the transfer rate R of the periph
eral file (in kilocharacters per second). 

These diagrams are derived by analyzing and com
bining the statistical data for two typical models of 
computer systems performing a sort.3, 6, 7, 8 

The following conclusions can be derived: 

a. The CPU time ( 8) spent for sorting generally 
does not depend upon the size of the MM. 

b. The increase of the transfer rate R causes a decline 
of the total sorting time T hyperbolically. The 8 
remains unchanged. 

c. For R = 60 KC, the ratio between the I/O time 
(T - 8) and 8 equals 75 percent to 25 percent. 
This ratio is equal to 60 percent to 40 percent for 
R 2:: 120 KC. This is the prevailing range of the 
transfer rates for the present magnetic files used 
in the small-to-medium and larger computer sys
tems. 

Considering the fact that at least 25 percent of the 
computer's workload in a business oriented system in
volves sorting, and 40 percent of that workload is the 
burden of the CPU, it is evident that the Sort Processor 
can release up to 10 percent of the CPU's overall 
working time. 

The modular logic structure of the SP is highly 
adaptable to the further advances in LSI technology. 
Larger, faster and cheaper LSI chips (MOS or bipolar) 
can be easily utilized in the SP, improving the cost
performance index and increasing its overall efficiency 
in the computer systems. 

The estimates show that the SP, designed with 

R 
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today's off-the-shelf MOS LSI components, can save 
considerable amounts of user money. 

SUMMARY 

The semiconductor technology presently offers LSI 
components (specifically MOS memory chips) that 
have a very attractive price-performance index (less 
than ten cents per bit and around 100 nanoseconds 
access time). During the coming years this index will 
be subject to continuous and dramatic improvement 
thus setting up broader technical and economical 
grounds for hardware-software trade-offs. The purpose 
of these trade-offs is the simplification of the software 
sector of computer systems and the increase of the 
overall systems productivity for the user. 

The Sort Processor designed with LSI components 
relieves the CPU from the burden of performing the 
tedious and time consuming sorting operations. It 
behaves like a low priority peripheral processor and 
does not cause any structural changes in the architec
ture of the computer system. For the small-to-medium 
and larger computer systems the Sort Processor can 
release up to 10 percent of the CPU's total workload. 
The techniques of the search memory and dynamic 
microprogramming allow use of the Sort Processor for 
algorithmic functions other than sorting. 
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Systemj360 model 85 microdiagnostics 

by NEIL BARTOW and ROBERT l\1CGUIRE 

International Business ]lachines Corporation 
Kingston, N ew York 

INTRODUCTION 

System/360 Model 85 is a large central processing 
unit, (CPU), which contains a machine cycle of 80 
nanoseconds and a main storage access of 1.2 micro
second.s. It has the capability of executing 12,500,000 
add register to register type instructions per second. 
Its major parts are the Instruction Preparation Unit, 
(I Unit), Instruction Execution Unit, (E Unit), and 
Storage Control Unit, (SCU). In addition to these 
three main parts, there is also another portion of the 
hardware dedicated to maintenance controls. The 
IBM Model 85 computer has high speed buffer storage 
and hardware capable of initiating and executing In
struction Retry. There are two major control storage 
elements. Read Only Storage, (ROS), and Write able 
Control Storage, (WCS). ROS consists of 2,048 decimal 
control words while WCS consists of 512 control words 
for a standard Model 85 or 1024 control words for a 
Model 85 with an emulator feature. Each control word 
is 128 bits long and consists of 33 control fields as illus
trated in Figure I-Model 85 Control Word. Approxi
mately 450 micro orders have been implemented in the 
Model 85 for use in microprogramming. 

DEFINITIONS 

Microprogram-a computer based program whose 
microinstruction, set is geared to one or more logical 
hardware functions which are executable in 'one 
machine cycle.' Two or more microinstructions are 
normally required for the execution of one instruction 
of the standard instruction set. 

Microdiagnostic-a microprogram designed specifi
cally to test a predefined portion of hardware. 

Microdiagnostic Example 

Figure 2-l\1icrodiagnostic Test (STAT 'A')-is an 
illustration of a microdiagnostic test. The test uses the 
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Figure I-Model 85 control word 

Control Automated System, (CAS), output for its 
descriptive representation. Each block of the test, of 
which there are four, represents one machine cycle. The 
purpose of the test is to confirm that the hardware 
required to set a latch called STAT 'A' is working 
properly. If it is not, to stop at control storage address 

A02. 
Cycle 1 is defined by the control word located at 

'Control storage address A12 (Hex). This control word 
will reset a latch called STAT 'A' and fetch the control 
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Figure 2-Microdiagnostic test (STAT 'A') 

word located in control storage address AOC to the 
control registers. Cycle 2 is defined by this control 
word at control storage address AOC. This control 
word will set the latch called STAT 'A' and cause the 
control word at control storage address B21 to be 
fetched to the control register. Cycle 3 is defined by 
the control word at address B21 which will set the 12th 
bit of the next address field to 1 making the next 
address A03 if a latch called STAT 'A' is in the set 
state. Or, the 12th bit of the next address field will re
main 0 if the latch called STAT 'A' is in the reset 
state. Assuming STAT 'A' is reset the control word at 
control storage address A02 will be fetched to the con
trol register. Cycle 4 is defined by the control word 
A02 and will set the 8th bit of the next address field to 
1 if the Latch call STAT 'c' is in the set state making 
the next address A12. Or, the 8th bit of the next address 
field will remain 0 if the latch called STAT 'c' is in the 
reset state causing the next address to be A02. 

STAT 'c' can be set or reset by a toggle switch 
labeled 'Loop Test' on the maintenance console. Since 
diagnostics are run with the loop test switch in the off 
position this test will stop at address A02 if STAT 'A' 
fails to set and the test can be looped simply by setting 
of the loop test switch. 

J\1ICROPROGRAIVIJ\1ING USAGE 

Base machine functions 

The System/360 J\10del 85's basic machine functions 
are defined by control words contained in Read Only 
Storage. They consist of control words for machine in
struction execution and sequencing of manual control 
functions which are initiated from the maintenance 
console. Other functions include· control words for the 
retry of failing instructions, interrupt sequencing and 
provisions for handling of invalid instruction operation 
Cop) codes. 

Loading of we s 

Load WCS routine 

WCS loading for microdiagnostics is handled from a 
routine in ROS and is designed to load 512 control 
words from main storage into WCS. This routine can 
be executed from one of two entry points-either by 
using the address contained in the double word starting 
with main storage address 8 or by establishing a value 
in one of the internal working registers and bypassing 
that part of the routine which fetches main storage 
address 8. 

LMP instruction 

WCS loading for purposes other than microdiag
nostics is normally handled by the Load Microprogram 
Instruction. This instruction is a privileged member of 
the System/360 instruction set. It is capable of loading 
one to four control words into WCS from main storage. 
The control words are indexed by the operand field of 
the instruction. 

Emulators 

The IBJ\1 7090/7094 Emulator is a prime application 
for System/360 Model 85 microprogramming. When 
emulators are installed on the machine it is necessary 
to modify the instruction preparation unit in order to 
handle the additional operation codes required for 
emulator instruction. WCS must be expanded to two 
times its basic size, that is, 1,024 decimal control words, 
and must be loaded with the control words which are 
required for the execution of each emulator instruction. 

Multiply Algorithm 

The low speed multiply algorithm contained in WCS 
is an alternate way of executing the multiply instruc
tion when the high speed multiply feature is installed 
on the machine. The high speed multiply feature re
quires its own dedicated circuitry in the E unit. The 
low speed multiply algorithm is used when there is a 
failure or malfunction in the high speed multiply hard
ware. The low speed multiply algorithm is activated 
by setting of a system mode latch which is done 
normally via the Diagnose instruction. 

Hybrid diagnostics 

Hybrid diagnostics are another form of microprogram 
usage with the System/360 J\10del 85 as shown in 
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Figure 3-Hybrid diagnost.ics 

Figure 3-Hybrid Diagnostics. The first set of instruc
tions (SET UP) is conventional Systemj360 code 
which is used for all initialization required prior to 
executing the test. 

The next step is the Load Micro Program, (LMP), 
instruction which loads the test control words into 
Writable Control Storage. The Diagnose instruction 
indicated by DIAG is a privileged instruction of the 
Systemj360 instruction set. It is used to branch from 
Systemj360 code into WCS and turn control over to 
those control words which have just been loaded via 
the LMP instruction. These control words, illustrated 
by the CAS diagram in Figure 3 are executed in se
quence. At the end of the sequence, a pseudo machine 
check takes control from WCS and returns the program 
to the normal System/360 mode at the point indicated 
by RETURN FROl\1 WCS. Conventional code is then 
used for an analysis of test results. This is one way of 
writing the hybrid diagnostic test. 

The control words used for this test could just as 
well have been used for the test setup or they could 
have been used to analyze test results, with conven-
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tional code used for the other two parts of the diag
nostic. 

111 icrodiagnostics 

lVlicrodiagnostics are microprograms specifically de
signed to test a given hardware function. Their main 
purpose is to detect basic machine malfunctions and to 
isolate the failing components. There are three parts 
to micro diagnostics : 

• First, the resident diagnostics which are located in 
ROS 

• Second, the non-resident diagnostics which are 
found in WCS. 

• Third, the loader which is used to bring non-resident 
diagnostics into main storage. The loader is also 
executed from WCS. 

Residen t microdiagnostics 

Resident microdiagnostics are used to test all the 
data paths and microorders needed to execute the 
Initial Program Load, (IPL), and the Load WCS 
routine. 

Non-resident microdiagnostics 

Non-resident microdiagnostics are used to test the 
remainder of the' basic machine functions. They start 
testing the E unit and progress to the I unit and then 
the SCU. At the end of execution of these diagnostics, 
control is turned over the the diagnostic monitor and 
and conventional System/360 diagnostics are executed. 
Non-resident microdiagnostics can be loaded into WCS 
from card, tape or disk I/O devices. 

There are approximately 30 sections of non-resident 
microdiagnostics. Each section contains a maximum of 
512 control words. 

Microdiagnostic Loader 

The microdiagnostic loader is part of the first non
resident microdiagnostic program found on the diag
nostic I/O device. It is used to load into main storage 
the non-resident microdiagnostic programs during the 
execution of the entire micro diagnostic package. The 
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loading sequence is illustrated in Figure 4- Load 
Sequence Flowchart. 

The flowchart shows microdiagnostics are initiated 
with the depression of the Load Microdiagnostic 
Pushbutton (LMD), found on the maintenance console 
at Reference 1. The depression of this pushbutton 
causes a system reset and control to be given to the 
resident microdiagnostics in ROS. Resident micro
diagnostics are then executed at Reference 2. If the 
resident micro diagnostics are successful, a modified 
Initial Program Load, (IPL), will cause the first non-

resident microdiagnostic program to be loaded into 
main storage from the I/O device at Reference 3. This 
micro diagnostic contains the first microdiagnostic and 
the micro diagnostic loader. At the end of the modified 
IPL, the first non-resident microdiagnostic is loaded 
into WCS by the 'LOAD WCS ROUTINE' in ROS at 
Reference 4. This diagnostic is then executed at Ref
erence 5. If it is successful, control is given to the 
'LOAD WCS ROUTINE' and the loader is brought 
into WCS, overlaying the first micro diagnostic at 
Reference 7. The loader is then executed at Reference 8. 
This causes the second non-resident microdiagnostic 
to be brought into main storage from the I/O de
vice. The loader then gives control to the 'LOAD 
WCS ROUTINE', Reference 4, which will load the 
second non-resident micro diagnostic into WCS. This 
micro diagnostic is then executed at Reference 5 and 
if it is not the last microdiagnostic, Reference 6, it will 
give control to the 'LOAD WCS ROUTINE' again, and 
bring the loader into WCS at Reference 7. If it is the 
last non-resident microdiagnostic at Reference 6 it will 
start the I unit and give control to the conventional 
System/360 diagnostics at Reference 9. 

Using this loading technique,- resident microdiag
nostics, non-resident micro diagnostics and conven
tional System/360 diagnostics can. be executed in se
quence without manual intervention simply by de
pressing the Load Microdiagnostic pushbutton. 

It should be noted that the time in which all of the 
non-resident micro diagnostics are executed is approxi
mately 20 seconds. It should also be noted that con
ventional System/360 diagnostics which follow the 
non-resident microdiagnostics are by no means redun
dant tests. The conventional diagnostics provide func
tional tests which have not been attempted in the non
resident and resident microdiagnostics. In addition to 
this, they provide systems tests and tests of channel 
and control unit hardware, again, not attempted in the 
microdiagnostics. 

ADVANTAGES OF l\1ICRODIAGNOSTICS 

Start small philosophy 

Of prime importance in microdiagnostics is a philo
sophy called "START SMALL". The "START 
SMALL" philosophy is a building block approach to 
diagnostics which uses an assumption of a solid hard
ware failure. The object is to establish a known portion 
of the hardware to be operating properly so that it may 
be used to check additional hardware whose condition 
is unknown. Using this technique it is only necessary to 
compare one test result against one result generated by 
tested hard ware. 
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Figure 5-Load path data flow 

Initial hardware required 

The "START SMALL" philosophy as implemented 
under conventional diagnostics, requires that a large 
part of the storage control unit and I unit and a sig
nificant portion of the E unit be working before an 
instruction of the System/360 set can be executed. In 
comparison, the hardware required for resident micro
diagnostics to be executed is only a small portion of the 
E unit. This is why a "START SMALL" philosophy 
as implemented with microdiagnostics is considerably 
more effective than the technique implemented with 
conventional diagnostics. 

Load path 

The second advantage of microdiagnostics is the 
ability to check out the load path from the I/O channel 
to WCS. This path, shown in Figure 5 - Load Path Data 
Flow-is from the channel to the channel data register 
and into main storage. Data is moved from main storage 
through the F register into the E unit operation regis
ter, then to the B register to the shifter and WCS. 

Conventional diagnostics require that the data path 
from the channel to main. storage be working before 
data can be loaded into memory prior to execution. In 
the case of microdiagnostics, the residents have the 
ability to check the data path from the I/O device 
all the way to WCS prior to executing and I/O opera
tion. This procedure insures that the path is opera
tional and that non-resident micro diagnostics can be 
loaded successfully. In addition to checking the load 
path, the resident microdiagnostics have the ability 
to disable the I unit and the high speed storage buffer 
in the SCU. This procedure avoids certain portions of 
the circuitry which would be used during a normal IPL 
sequence. As a result, the possibility of errors occurring 
from that circuitry not essential to load data from an 
I/O device into WCS is reduced. 

Increased isolation 

Microdiagnostics provide for increased isolation in 
the I unit, E Unit and SCU by taking advantage of the 
fine control which they can exert on the CPU hardware. 
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Figure 6-Microdiagnostic cross reference list 

In order to eliminate the necessity of using untested 
hardware only the simplest of registers are used for CE 
communications. In conjunction with this technique, 
the Model 85 has implemented a cross reference list 
(CRL), as shown in Figure 6-Microdiagnostic Cross 
Reference List-that uses a register, Reference 1, and 
a control word address Reference 2. This information is 
displayed on the maintenance console to direct the 
Customer Engineer, (CE), to a list of two to ten Field 
Replaceable Units, (FRU), for anyone error point, 
Reference 3. In addition, the cross reference lists in
clude logic pages for hardware being tested,Reference 
4, as well as a flow diagram page number of the test at 
Reference 5. 

Tight scoping loop 

Scoping loops are program loops used by Customer 
Engineers to scope failure areas in a machine. The 
Customer Engineer has the option of implementing a 
scoping loop in the event the cross reference list does 
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Figure 7-Tight scope loop 

not indicate the correct Field Replaceable Unit (FRU). 
These loops are considerably shorter on the System/360 
Model 85 micro diagnostics than in conventional diag
nostics. The upper portion of Figure 7 - Tight Scope 
~oop-indicates 15 machine cycles for a scoping loop 
In conventional diagnostics as opposed to four machine 
cycles required for a loop in microdiagnostics found 
in the lower portion of Figure 7. The total fifteen cycles 
for conventional diagnostics is highly conservative 
since the instructions chosen to illustrate the loop are 
short and require few machine cycles. The microdiag
nostic loop, however, is quite typical of those tests 
implemented in System/360 Model 85. The maximum 
number of machine cycles that would be found in the 
micro diagnostic loop is in the order of ten. In the case 
of conventional diagnostics, the maximum number of 
machine cycles could be in the hundreds. 

Manual controls 

Special microorders implemented in the System/360 
l\1odel 85 have made manual control over the micro
diagnostics very effective. All tests implement a branch 
of a maintenance control switch which loops a diag
nostic test to provide a scoping loop for the Customer 



Engineer. In addition, all sections can be looped via 
another switch on the console. The implementation of 
micro orders to sense switches is simple in comparison 
to the technique used in conventional diagnostics. 
Switches on the console are also labeled as an aid for 
the CEo Conventional diagnostics on the other hand, 
require special instructions in order to sense switches 
on the console. The sensing of these switches is rather 
lengthy in terms of execution time, therefore, it is not 
normally done during scoping loops. 

ROS simulation 

Write able Control Storage in System/360 Model 85 
has been used to test resident diagnostics implemented 
in Read Only Storage (ROS). This procedure has 
proved to be a very effective and efficient way of im
plementing code found in Read Only Storage because 
turnaround time for manufacture of bit planes neces
sary for ROS is relatively long in comparison to that for 
assemblies used for WCS. In addition to the improve
ment in speed and flexibility, significant cost savings 
have been realized by eliminating unnecessary manu
facture of incorrect bit planes. Since WCS can be ex
panded to the same size as Read Only Storage it can be 
used to check the basic machine set as well as the resi
dent microdiagnostics. 

LIMITATIONS OF MICRODIAGNOSTICS 

Limitations in implementing System/360 J\,fodel 85 
microdiagnostics fall into one of five main categories: 

• First - it is impractical to implement functional 
testing in microcode. Functional tests imply that the 
functional design of the machine is tested. If we sub
stitute WCS code for the functional ROS code, we 
would not be testing the design of the machine. 
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• Second - limited access is available to the I unit and 
the Storage Control Unit. This is understandable 
because microcoding was used in the design of the 
System/360 Model 85 primarily for the control of 
the execution unit. The I unit and the SCU are 
primarily controlled by hardware sequencing. 

• Third - coding inefficiencies for large data handling 
are prevalent because of the lack of power of micro
instructions. 

• Fourth - interactive problems (timing) require a 
considerable amount of test setup which is more 
efficiently done in conventional code. In addition, the 
interactive problems of prime concern are those 
which exist between instructions of. the basic instruc
tion set (functional). 

• Fifth - skill level - because microprogramming is 
such a low level language, detailed knowledge of the 
hardware is required before any attempt can be made 
to program the machine. 

SOFTWARE SUPPORT OF MICRODIAGNOSTICS 

The system which was initially adopted for System/ 
360 J\,fodel 85 support is the Controlled Automated 
System (CAS). This system yields a flow chart of micro
instructions being executed. It is designed for use by 
engineers for implementation of their code in Read 
Only Storage and has proved to be an asset in develop
ment of design. This system, however, does not provide 
flexibility needed for the programming environment of 
microdiagnostics. Because of this lack of flexibility an 
interim assembler was developed for the support of the 
microdiagnostics debug. This program provides a 
listing format. Utilities are available to permit changes 
in program decks and a loader which can be used to 
load these decks into WCS for debugging purposes. 



Use of read only memory in ILLIAC IV* 

by H. J. WHITE and E. K. C. YU 

Burroughs Corporation 
Paoli, Pennsylvania 

INTRODUCTION 

Because of its high speed operation, large instruction 
repertoire and centralized control, the ILLIAC IV 
Computer uses a Read Only Memory (ROJ\1) to trans
late instructions into control enables. These control 
signals are broadcast to the array of parallel processors 
to control the step by step operation of each processor. 
Each of the over 260 instructions is decoded into a 
microsequence (microprogram) used to address the 
ROM. Each microsequence consists of from one to 69 
micro steps (microinstructions). 

The ROl\1 is a transistor cross point matrix and is 
configured with discrete transistors mounted on large 
multilayer circuit boards. The memory size is 720 
words (microsteps) by 280 bits (control enables). Cycle 
time is 50 nsec. 

To simplify instruction decoding, up to five words 
are simultaneously addressed in many microsequences, 
i.e., control enable ORing. This ORing also improves 
memory speed and reliability by greatly reducing the 
number of transistors required. To save execution time, 
up to two instructions are simultaneously addressed, 
i.e., instruction overlap. Thus, up to ten memory words 
could be simultaneously addressed. Because the Read 
Only J\1emory uses linear addressing, the simultaneous 
addressing of any number of words is easily achieved. 

THE ILLIAC IV SYSTEl\1 

By using extensive parallel processing, the ILLIAC 
IV System (1) offers computing power capable of 
solving a number of problems beyond the power of 
currently ~vailable or proposed computers. Some 
problems Involve manipulations of very large matrices 

* Project supported by Advanced Research Projects Agency 
under Contract No. AF30(602)4144 as administered by Uni
versity of Illinois, Urbana, Illinois. 
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(e.g., linear programimng), others involve the solution 
of sets of partial differential equations over large grids 
(e.g. numerical weather prediction); and still others 
require extremely fast correlation techniques (e.g., 
phased array radar). 

As shown in Figure 1, the IILLAC IV System con
sists of a large parallel-array computer coupled to an 
1/0 subsystem. The 1/0 section contains 

(1) A Burroughs B6500 Computer which functions 
as the executive element. 

(2) Two Burroughs disk files. (Each file is capable of 
up to 16 parallel disks. Each disk contains about 
79 X 106 bits of storage. The effective bit transfer rate 
of each disk file is over 500 X 106 bits per second. Both 
files may operate concurrently for a net maximum 
transfer rate of 109 bits. per second. 

(3) An 1/0 Controller, buffer memory and switch 
for interfacing with the computer. 

The parallel array computer consists of four identical 
array processors or quadrants. Figure 2 illustrates the 
quadrant diagram. Each quadrant consists of a Control 
Unit (CU) and 64 Processing Units (PU's). Each PU, 
in turn, contains a 10,000 gate arithmetic unit called 
the Processing Element (PE) (2), a 2048 word by 64 bit 
semiconductor memory called the Processing Element 
Memory (PEl\1) and a 1000 gate interface unit called 
the l\1emory Logic Unit. All the controls normally 
associated with an arithmetic unit are extracted from 
the PE's and placed in the CU. These controls are 
shared in parallel, by all 64 PE's in the quadrant. 

Both PE data and CU iristructions are contained in 
the array of 64 PEM's which serves as the main mem
ory for the quadrant. The CU has access to the entire 
PEM array, while each PE can only directly reference 
its own PEM. 

The following data give some idea of the size and 
complexity of the ILLIAC IV Computer (not including 
the 1/0 subsystem). Each quadrant is 53 feet long, 6.5 
feet deep and 8 feet high. Each quadrant contains about 
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'8501\:, specially developed, high speed, emitter-coupled
logic (ECL) gates in a total of about 240K dual-in-line 
packages. Each quadrant requires about 210 KW of 
input power. Each quadrant contains 128 K words of 
storage at 64 bits per word. Memory access time is 188 
nsec and cycle time is 200 nsec. The entire system 
operates at a 20 mHz clock rate. It performs a 64 bit 
floating point add in 2.50 nsec, a 64 bit floating point 
multiply in 450 nsec and a 64 bit floating point divide 
in 2800 nsec. 

INSTRUCTION FLOW THROUGH THE 
CONTROL UNIT 

The primary functions of the CU are: 

(1) Control and decode instruction streams. 

(2) Generate the control signals transmitted to the 
processing elements for instruction execution. 
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(3) Generate and broadcast data words and those 
components of memory address that are common to all 
PE's. 

(4) Receive and process traps signals arising from 
arithmetic faults in the PE's or operations in the I/O 
subsystem. 

The major parts of the CU, as shO\vn in Figure 3, are: 

(1) ILA-Instruction Look Ahead, whose function 
is to fetch and store large blocks of contiguous code. 
It fetches 8 word blocks having two instructions per 
word. It stores up to 8 blocks, i.e., 128 instructions. 

(2) ADV AST - Advanced Station, is the principal 
housekeeper of the system wherein such functions as 
address arithmetic, loop control, interrupt processing 
and configuration control are performed. It receives 
and processes instructions from ILA. 

(3) FINST - Final Station has the function of di
rectly controlling the operation of the PE's in the 
array. 

(4) 1\1SU -l\1emory Service Unit resolves conflicts 
among all users requesting access to the array memory. 

(;'») TIUU -Test and l\1aintenance Unit. 



From a programming standpoint, FINST and the 
PE's perform "inner-loops" of a program and ADV AST 
performs "outer-loops" and control functions. When 
ADV AST receives a PE instruction, it performs the 
necessary indexing (if required) and then sends it di
rectly to FINST for processing. Instructions enter 
FINST thru a first in-first out queue (FINQ) which 
contains up to 8 instructions. The queue decouples 
FINST execution time from ADV AST execution time 
and permits instruction overlap between the two sta
tions. Any synchronism during overlap is handled by 
hardware. 

Using a Read Only l\/Iemory (ROl\1), FINST decodes 
instructions into control enables which are then broad
cast to the array of 64 PE's. The control enables control 
information flow both in direction (register to register) 
and time. The ROl\1 is a transistor crosspoint matrix. 

In FINST two instructions are examined concur
rently for purposes of instruction overlap, e.g., to see if 
data fetches for the next instruction can take place 
during the end of the present instruction. Instructions 
first appear in an overlap section from which pre
liminary commands are generated and then appear in 
an instruction section in which the remainder of the 
instruction is completed. For many instructions, two 
or more words are simultaneously addressed, i.e., con
trol enable ORing. This ORing simplifies branching 
within the instruction and also improves memory speed 
and reliability by greatly reducing the number of 
transistors required. Thus, up to ten words are simul
taneously addressed. 

REASONS FOR USING A READ ONLY 
l\1EM:ORY 

The ILLIAC IV instruction repertoire consists of 
over 260 instructions. This large number of instruc
tions provides for great system flexibility. 

For example, there are six kinds of signed and un
signed arithmetic: 

1. Normalized floating point. 
2. Normalized floating point rounded. 
3. Unnormalized floating point. 
4. U nnormalized floating point rounded. 
5. l\1antissa-sized fixed point. 
6. l\1antissa-sized fixed point rounded. 

All data operations can be performed in 64-bit or 32-
bit mode. Also, there is a limited amount of unsigned 
full word (64-bit) and 8-bit arithmetic. Thus, the 
system can be operated in an 8-, 32- or 64-bit mode 
which, for a 256 PE system, gives the capability of 512 
32-bit processors or 2048 8-bit processors. 
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In FINST, the 260 instructions are decoded into 280 
control enables of which about 260 are broadcast to the 
PE's with the remaining enables controlling areas in 
the CU. The reasons for the large number of PE enables 
are: 

1. The large variety of arithmetic modes. 
2. Centralizing all processing controls in the Control 

Unit. 
3. High speed operation, i.e., control enables are 

changed every clock cycle (50 nsec). 

Thus, the primary functions of FINST is to decode 
a large number of instructions (260) into a large number 
of enables (280). Two methods of decoding instructions 
were investigated: (1) a fully hard wired logic approach 
and (2) the use of an ROl\1. In the logic approach, all 
instructions generating the same control enable are es
sentially OR'd together. To meet the system speed 
requirements, all instructions generating the same 
control enable, should be on the same multilayer P.C, 
board. This leads to considerable duplication because 
the number of instructions generating a control enable 
may be so large that onJy a few of the complete set o. 
enables can be on the same board. In this approachf 
each board had an identical instruction register, timing 
counter and other basic logic required to decode in
structions. A minimum of 60 boards was estimated to be 
required and the most likely number was about 80. 
Each board was unique which presented a serious board 
sparing problem. In the ROM approach, which was 
adopted, a total of 28 boards is required. There are 
eight word driver boards which generate the micro
sequences required to address the memory. Each of 
theBe boards is unique. There are 12 matrix boards 
which make up the memory. Each matrix board is 
identical except for the location of cross point transis
tors. There are eight sense amplifier boards. Although 
only one type of board is required, two types of boards 
were used as a convenience. Thus, the ROM approach 
occupies less than half the volume, had fewer board 
types and uses less than about 1/4 the number of 
components. In addition, the logical design is simpler 
in the ROl\1 approach and changes are more easily 
implemented. Although an MSI or LSI ROM might 
be cheaper and faster, a discrete component ROl\1 
design was adopted for the following reasons: 

1. A suita~le, I.C., ROM would not be available in 
time (by first quarter of 1970). 

2. Changes are easily made at any time in a discrete 
memory. 

3. Linear addressing is easily accomplished in a 
discrete memory. Linear addressing, i.e., one address 
line per word, simplifies the simultaneous addressing 
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required to achieve instruction overlap and control 
enable ORing. 

INSTRUCTION OVERLAP 

As stated earlier up to ten ROM words are simul
taneously addressed as PE instructions are processed 
in FINST. For any instruction, up to five words are 
addressed to achieve control enable ORing. In addition, 
to realize the time saving of instruction overlap, up to 
two instructions are decoded at the same time. 

Figure 4, illustrates how instruction overlap is ac
complished. As instructions are received from ADV AST 
they are stacked in an eight word queue, FINQ. When 
an instruction is in position 1, it is transferred to the 
FINST Overlap Register (FOR). In FOR two actions 
take place. First, the instruction is examined to de-
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termine what parts of the Processing Elements will be 
used when the instruction is transferred to the FINST 
Instruction Register (FIR). This information is stored 
in the 1st level of a Busy Register. The Busy Register 
also contains the same PE usage information, in level 2, 
for the next intsruction to be executed, which is in FIR, 
and contains like information, in level 3, for the in
struction presently being executed, which is in FIAR 
(the ROM address register associated with FIR). 
The instruction in FOR is also examined to see if it is a 
candidate for instruction overlap. If it is, it is decoded 
into a microsequence which addresses the overlap sec
tion of the ROM (250 addresses) using the ROM ad
dress register FOAR. If the required sections of the PE 
are busy, the microsequence is inhibited until the PE 
sections are free. 

FIAR addresses a 470 word section of the ROM 
which is sufficient to execute all instructions. When the 
instruction in FIAR is fully executed, the instruction in 
FIR is transferred to FIAR and the instruction pointers 
to the queue are incremented one position. This shifts 
the instruction from FOR to FIR and puts a new in
struction in FOR. At 'the same time, the Busy Register 
is updated to determine if instruction overlap is possible. 

To achieve the required high speed operation, the 
PE busy bits in word one are set while the instruction 
is in FOR. As the instruction moves from FOR to FIR 
to FIAR, the busy bits are transferred from level 1 to 
level 2 to level 3. Busy bits are reset via two paths. The 
normal path is via CU control enables out of the ROM. 
This path takes the longest (3 clock times) when the 
instruction in FIR is transferred to FIAR. Because 
this may delay the start of an instruction overlap, early 
resets are generated in FIR and enabled when the in
struction transfers to FIAR. 

INSTRUCTION DECODING 

Instruction decoding is the same whether it occurs 
in the overlap or instruction stations. The format of the 
twelve bit instruction word is shown in Figure 5(a). 
Bit 0 indicates whether the operation is in 32-bit or 64-
bit mode. Bits 9, 10 and 11 are operations on the data 
word associated with the instruction such as address 
indexing when the data word is an address. Bits 1 thru 
8 contain the OP CODE. Each instruction is decoded 
into a microsequence (microprogram) used to address 
the R01\1. Each microsequence consists of from one to 
69 microsteps (microinstructions). Generally each 
micro step is an ROl\1 word. In some operations, such 
as divide, the same word is addressed many times in 
succession. However, each time the word is addressed 
it is considered a microstep. Since a word is addressed 
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every clock cycle, micro steps are synonymous with 
clock times. When many words are addressed .simul
taneously to achieve control enable ORing, this is also 
considered a single microstep. Each microstep generates 
a full set of control enables which are stored in the 
FINST Control Register (FCR). From FCR they are 
broadcast to the 64 PE's in the quadrant (see Figure 4). 
Generally from one to .50 enables are active for each 
microstep. 

The decoded instruction contains the starting ~ddress 
of the microsequence and all information for decision 
making, such as branching, within the microsequence. 
Typical branches are one of the six ways to do signed 
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and unsigned arithmetic operations. Figure 5b illus
trates a portion of a typical microsequence. The seven 
flip flops shown are "D" type flip flops, i.e., the "I" 
output is in the same state after the clock pulse as the 
"D" input was during the clock pulse. Each "I" out
put is designated by the ROM word it addresses. 
Related clock times are shown in ( ), e.g., (T2). The 
flip flops are part of the address register (FOAR or 
FIAR). Under control of the decoded instruction, the 
microsequence proceeds from flip flop to flip flop each 
clock time. Referring to Figure 5b, at time Tl, word N 
is addressed. At time T2, either word N + 1 or N + 2 
is addressed depending on the state of control bit I. At 
time T3, word N + 3 is addressed. At time T4 50th 
words N + 4 and N + 6 are addressed to obtain 
enable bRing. Finally, word N + 5 is addressed at 
time T5. 

The following microsteps are the microsequence for 
a floating point add and are accomplished in 250 ns 
(five clock times) : 

(1) Fetch Operand. Transfer to B register (RGB), in 
the PE, the operand identified by the address field of the 
instruction. 

(2) Difference Exponent. Subtract exponent fields 
of operands in PE A register (RGA) and RGB. 

(3) l\1antissa Alignment. Shift mantissa of operand 
in RGA or RGB by amount determined from step 2. 

(4) Add Mantissa. Add mantissa field of operands 
in RGA and RGB. 

(5) Normalize. Normalize sum in RGA. 

BASIC ROl\/I REQUIREl\1ENTS 

A Read Only l\1emory (ROM) may be thought of as a 
numerical conversion table, i.e., the selection of one of the 
input lines will present a set of predetermined numbers 
at the output of the memory. It is a simple matter to 
design a conversion table to read-out one set of numbers 
corresponding to the selection of either one or more than 
one input numbers. In block diagram form, such an 
ROl\1 is shown in Figure 6. However, in this paper, only 
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put gates. Because of the large number of gates iri
volved, inter-connection wiring is complex. An almost 
insurmountable difficulty in such a design is to change 
the content of the memory, mechanically or otherwise. 
By using a matrix design, the number of printed circuit 
boards is reduced and the memory is readily altered. 

ROM: DESIGN DETAILS 

The R01\1 schematic is shown in Figure 8. The form 
is a standard, transistor cross point matrix consisting 

Figure 7 of m (720) word lines by n (280) bit output lines. Only 

the functional block which performs the numerical con
version, is called the Read Only Memory. The other 
functional blocks are considered to be peripheral logical 
functions. The logic design of the ILLIAC IV calls 
for an ROM having a cycle time of 50 nanoseconds, i.e., 
the ability to read out a set of numbers every 50 nano
seconds. Referring to Figure 6, the timing from the 
input register (1\1IR) to the output register (l\10R) is .50 
nsec. The memory must accept 720 input lines and 
present an output of 280 bits. To be useful, an ROl\1 
must be alterable either electrically or mechanically. 
Note that an electrically alterable memory is essentially 
a read/write memory and is, as a rule, more difficult to 
construct than a memory that is altered by mechanical 
means. 

Because of its large size and fast cycle time, only an 
ROM in a matrix form, was found satisfactory for use in 
ILLIAC IV. It may be noted that an ROl\,1 can be 
constructed with sufficient speed by employing ECL 
gates with typically 2.5 nanosecond propagation de
lays. Such a design is schematically shown in Figure 7. 
In principle, the ROl\1 is simply P number of gates 
where each gate is one output bit of the memory, and 
1\1 line drivers, corresponding to the :LVI input words. 
The gates are selectively connected to the input word 
lines, such that the activation of anyone or more word 
line\' provides a predetermined output bit pattern 
through the gates. The design of Figure 7 was con
sidered early in the ILLIAC IV development. But 
careful examination of the design reveals that there 
must be 720 input lines and a minimum of 280 output 
gates. Each output gate must have 720 inputs. For 
gates with only 9-inputs (maximum available), each 
of the output gates must be connected with 80 gates in 
parallel to accept the 720 possible input lines. The 80 
gates produce only one output bit, and must be buffered 
with multiple stages of OR-gates to provide that one 
bit output. Similarly, multiple buffering or amplifying 
stages must be used to drive the large number of out-

those bit lines that are transistor coupled to a word line 
will switch when that word line switches. Bit line switch
ing is then detected by sense amplifiers on the bit lines. 
Each word line is powered by a line driver which must 
tolerate the variations in word line loading caused by 
the variation in the number of bit lines coupled to the 
word line. For convenience word line drivers and bit 
line sense amplifiers are standard devices used else
where in ILLIAC IV. The line drivers are level con
verters that convert standard ECL levels of ±0.4 volts 
to CTL compatible levels o~ ±3.0 and 0.0 volts. The 
sense amplifiers are standard, ECL, 9 input, negative 
NAND gates. 

For coupling word lines to bit lines, transistors offer 
several performance advantages compared to diodes or 
resistors. Multiple leakage paths thru resistively 
coupled cross points would be prohibitive in a memory 

_ 280 BIT LINE SENSORS 
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of this size and speed. Compared to diodes, transistors 
isolate bit line capacity and dc loading from the word 
lines which alleviates word line driving problems. 

Bit lines 

The required nominal input levels at the sense am
plifiers are ±0.4 volts. In order to conserve power, the 
coupling transistors are biased to be cut-off for a low 
level word line. Because a bit line may be driven by a 
coupling transistor at any location along the bit line, 
each bit line is terminated at both ends in its 50 ohm 
characteristic impedance. The bit line terminating 
resistors R02 and R03 have a Thevinen's equivalent of 
50 ohms returned to -0.8 volts and quiescently bias 
the bit line at - 0.4 volts. At a high bit line level of 
+0.4 volts, the coupling transistor must supply 8 ma 
to R01 and 16 ma to R02 and R03, for a total of 24 mao 
Since the V be drop is about 0.8 volts, the word line is 
required to swing.between 0 to + 1.2 volts. The collector 
supply voltage is fed thru diodes D1 and D2, from the 
+4.8 volt supply, in order to reduce power dissipation 
in the coupling transistors. 

Word lines 

As explained before, because of the convenience of 
using available devices, the word line driver provides 
an output level that swings from O. v to 3.0 V. As shown 
in Figure 8, R1 is inserted in the word line to attenuate 
the 3 volt signal to the desired 1.2 v level. Because, of 
the large number of bit lines crossing the word lines, the 
length of the word line is electrically long, and is ter
minated at the far end in 50 ohms. The word lines are 
50 ohm microstrip lines. To minimize the word line 
time delay each word line is divided into two segments, 
with each segment coupled to a maximum of 140 bit 
lines. Each segment is designed as shown in Figure 8 
and has its own.set of line drivers, and line terminationE. 
Although there are 140 bit lines crossing each word 
line segment, system design requires only a maximum 
of 25 bit lines be coupled to anyone word line segment. 
Each coupling transistor introduces a capacitive loading 
of about 1.5 pf, delays the signal propagation by about 
0.15 nanosecond, and produces a peak negative reflec
tion of about 30 mv. To prevent an excessively large 
reflection, no more than 3 transistors are located in 
succession along any word line or any bit line. 

111 emory partitioning 

Because of speed considerations and space limita
tions, .each word line is divided into two segments. 
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Similarly, the bit lines are divided into 6 segments. 
The result is to divide the ROM into 12 matrix boards. 
Each board contains 120 word lines and 140 bit lines. 
The sense amplifiers and output register are mounted 
on 8 sensing boards. Eight boards are required because 
of the pin limitations. The partitioned ROM is shown 
in Figure 9. Note that only the sense amplifiers and bit 
line terminating resistors (R01) are on the sensing 
boards. The remaining components are mounted on the 
12 matrix boards. The matrix board is a special design. 
The sensing -boards are standard 12 layer boards used 
throughout the ILLIACrV Control Unit. 

111 echanical desctiption of the mattix board 

The bit lines are 50 ohm strip lines which gives the 
advantages of low parallel line cross-talk and close 
impedance control. The word lines are 50 ohm micro
strip lines. Address selection lines, which are the input 
lines to the word line drivers, are nominally 100 ohm 
micro-strip li~es to simplify board construction. The 
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address selection lines are constructed in two layers 
with both layers using the same ground plane as the 
signal return path. Consequently, the two layers of 
address lines are slightly different in line impedance. 
The lines in the top layer are about 110 ohms and the 
lines in the bottom layer are about 90 ohms. The matrix 
board cross section is shown in Figure 10. The board 
dimensions are otherwise the same as a standard CU 
board, i.e., 18 inches X 20 inches. 

SOLDER 
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The transistors are cubes of 80 mils on an edge. 'The 
transistors are spaced 100 mils apart and so are the 
spacing of the holes and mounting pads for the emitter, 
collector, and base leads. The tight spacing of the tran
sistor requires a special mounting technique as shown 
in Figure 11. 

CHECKOUT OF MATRIX BOARDS 

The coupling transistors are located on the matrix 
boards in accordance with the system instruction table, 
i.e., the output bit pattern for every word selected. The 
simplest checkout fixture is to apply a +0.4 volt input 
level to each word line driver and read the output of 
every bit line with a voltmeter. Such a manual check
out system would require 320 man hours for the 12 
matrix boards. A more automatic checkout system is 
shown in the flow chart of Figure 12. The design table 
of the ROM is transferred onto 80-column cards. Each 
card will have 80 bits and 12 words. Therefore, 2 of the 
80-column cards are required to complete the ,contents 
of 12 words by 140 bits, and 20 cards are required for 
one of the 12 matrix boards. A card reader reads one 
card at a time and compares the reading with the bit 
outputs. Any mismatches are detected and displayed 
by indicating lamps. With this system the matrix 
boards can be checked out at the rate of 9 boards per 
hour or 2 man-hours for 12 boards. The cost of the 
check out system is about $3,000. 

In ILLIAC IV, neither of the above approaches is 
used. The Test and Maintenance Unit (TMU) area of 
the Control Unit has a 64-bit comparator which' can be 
used to check out not only the matrix board but the en
tire area of instruction decoding. Via the 1/0 interface, 
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instruction decoding and ROM addressing can be con
trolled programmatically. The program generates the 
FINST instruction to be decoded and loads a TJVIU 
register with the expected ROM response. The com
parator compares the expected and actual responses 
and the program proceeds if they agree. Because only 
64-bits can be compared at a time, five compares are 
required to check each full 280 bit output of the ROM. 
If there is an error, the inputs being compared can be 
displayed on a CRT display in the TMU (Item 6, 
Figure 13). 

APPLICATION OF 1\1:SI 

For the entire function of decoding instructions into 
microsequences, storing enable patterns in the ROM 
and sensing and storing the ROM output, the present 
system uses a total of 28, 18 inch by 20 inch, multi
layer boards. As the following example shows, an 1\1:SI 
approach would result in about a 50%. reduction in 
volume. An all MSI ROM is composed of MSI cells 
where each cell is M words by N bits. To reduce inter
connections and conserve pinouts, x-y addressing is 
used to address the M words in the cell. To eliminate 
buffers between cells, the N bits of one cell are "wire 
OR'ed" to the N bits of another cell. 

Control Enable ORing is no longer possible because 
x-y addressing generates unwanted addresses if more 
than one x or more than one y input is active. The 
number of required ROM words is increased to about 
1200 because this ORing cannot be used. The amount of 
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logic required to generate microsequences also increases. 
However, the generation of microsequences is now 
more straightforward and better adapted to MSI. 
Based on the average number of words required by a 
microsequence, the optimum number of words in a cell 
is determined. Assume the optimum number is 16 
words. Therefore, four address lines plus one address 
enable line are required. The address enable permits 
more than one cell, i.e., more than 16 addresses, to be 
used in a microsequence. Because many microsequences 
do not use whole multiples of 16 addresses, more than 
1200 addresses are required. Assume the ROlVI size 
is increased by 20% to 1440 words to account for this 
affect. Assume each cell has 64 outputs. This requires 
less than 100 pins per cell which is consistent with 
present MSI packaging. To obtain 280 outputs, five 
cells are required for every word. Therefore a total of 
450 cells are required to make up the complete ROM. 
Allowing four square inches of surface area per cell 
and sufficient space for terminating resistors, bypass 
capacitors and connectors, a total of 8, 18 inch by 20 
inch, boards are required to make up the ROM. If the 
remaining 16 boards required for microsequence genera
tion and ROM output sensing and storing can be re
duced to 6 boards, then the original 28 boards are 
reduced to 14 boards. It is important to note that in 
order to achieve an ROM cycle time of ,1)0 nsec (i.e., 
register to register), the cell access time (i.e., address 
input to bit output) will have to be, approximately, 
20 nsec. 
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A model and implementation of a universal time delay 
simulator for large digital nets 
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INTRODUCTION 

Although simulation of logic circuits has been attempted 
in the past, only those which simulate completely 
combinational circuits have performed with any degree 
of success for various types of logic. This is prim,arily 
due to the number of simplifying assumptions that can 
be made for combinational circui~. For example, in 
combinational circuits, one need not consider timing of 
the signals, since any given input vector will always 
propagate to a stable state value. Also, since purely 
combinational circuits do not contain internal states, 
the user need not define or initialize these values, as 
must be done (and done meaningfully) for sequential 
circuits. A systems study of simulation and diagnosis 
for large digital computing systems has been performed.! 
The results of that study have led to the implemen
tation to be described. The model, whicl;t has been 
adopted, permits the user to select the level of detail 
most appropriate to his requirements, and thus not 
hamper him with pverly restrictive assumptions. The 
advantages of this model are the following: 

1. It does not require the specification of feedback 
loops in sequential circuits. 

2. The ability to reset all feedback lines to any value 
at any· time is not required. 

3. It provides for the detection of hazards and races. 
4. Simulation is not restricted to particular types of 

circuits. 
5. Besides having the capability of simulating gate 

level circuits, it can also simulate at a functional 
level. This results in a savings of time and storage, 
permitting the simulation of large circuits. 

Actually, three models are presented, two being sub
sets of the other. It is felt that these models will be 
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useful tools in analyzing logic cirCUIts, generating tests, 
and providing experience in determining a desirable 
level of detail for simulation. 

In the next section of this paper, features are defined 
which appear to be desirable for a general purpose 
system simulator. This is followed by a description 01-
the means utilized to achieve these desired features. In 
particular, a detailed discussion of the models adopted 
for the simulation is provided. It is felt that the heart 
of any simulator is the basic simulation model. The 
effectiveness of the simulation is directly related to the 
ability of the model to accurately describe the physical 
systems being simulated. Therefore, the adopted models 
are of extreme importance and will be described in 
sufficient detail to substantiate their effectiveness. 

A description of the simulator implementation follows 
the simulation model discussion. (This implementation 
is used in a total simulation and diagnosis software 
system.2) l\10des of operation and simulation optimi
zation techniques are also described. Since a table 
driven simulator was implemented, a discussion of its 
implementation will be given. 

DESIRED FEATURES OF A SIl\/IULATION 
l\10DEL 

A primary goal of this simulation package is that it 
possesses the ability to simulate any of the common 
modes of logic operation. The handling of asynchronous 
sequential circuits presents the most difficulty, in that 
circuit timing must be accurately described. This rules 
out the unit delay assumption used by many existing 
simulators (in particular, all space-leveled, compiler
driven simulators). Therefote, this model allows a vari
able time delay for the elements being simulated. 

In the model used by Seshu3, which is frequently 
used for sequential circuits, the only race analysis per
formed is that of checking feedback line values. All 
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feedback lines are assumed to be broken at some point 
and a race is declared if, during any pass through the 
circuit, more than one feedback line changes value. 
One feedback line at a time is declared a winner and 
its value is then propagated through the circuit to 
determine its effect on the outputs. The race becomes 
critical if different stable states are reached, depending 
upon the order in which the feedback values were 
changed. 

This type of model has three major deficiencies: 

1. The system is very sensitive to the selection of 
feedback lines and the point at which they are 
broken. 

2. A few feedback loops can produce numerous races, 
requiring excessive time and storage for evaluation. 

3. Race analysis performed in this manner does not 
detect static or essential hazards. 

'Also, many of the races. which may be detected are 
physically impossible. One of the goals of the model 
being presented will be to overcome these deficiencies. 

The model used by Seshu also makes the assumption 
that feedback lines can be reset to any desired value at 
any time, even in the presence of faults. It is felt that 
this assumption is not necessarily valid, and the as
sumption is not made in the model being presented. 

The speed of simulation (compilation and execution) 
is an important measure of a good simulator. Therefore, 
maximum speed is also an objective. However, the 
requirement for maximum speed can, and should, be 
sacrificed for more accurate simulation results, when 
required. Therefore, the speed of this simulator is a 
function of the level of detail required of the simulation. 

Another simulation goal is the use of a minimum 
amount of storage. The importance of this goal is two
fold. First, minimization of storage requirements will 
enable the simulator to handle larger circuits; and 
second, its use will not be limited to large computing 
facilities. Appropriate segmentation can help reduce 
the storage requirements, but only with a sacrifice in 
speed. For these reasons, both minimization of storage 
requirements and software system modularity are of 
primary concern. 

The simulation package should be as flexible and 
versatile as possible, but at the same time it should be 
easy to understand and implement. Therefore, one 
need only be concerned with those options which are 
pertine,nt to the task at hand. For example, the option 
of simulating faults is available with or without race 
analysis. 

An additional goal is the capability of easy adaptation 
of new element types. Hence, one need only supply a 
new description for element evaluation, and the pro
gram then adds to, or updates, the existing specifi-

cations. Therefore, this method should not require a 
large amount of reprocessing. 

The system should also have the capability of multi
ple fault insertion, as well as fault insertion on inputs 
and outputs of functional modules. 

MEANS OF ACHIEVING THE DESIRED 
FEATURES 

There are two approachys that can be taken for 
digital simulation. One is the approach of modeling the 
entire circuit as one unit and, therefore, with one 
macro-model. This would bJ the technique used for a 
compiled simulator, since a compiled simulator levels 
and transforms the circuit into a form that can be 
dealt with collectively. The other approach is that of 
modeling the entire circuit by breaking it into smaller 
blocks, which can be individually modeled according 
to their type. This approach can be accomplished with 
a table driven simulator. A table driven simulator deals 
directly with elements, in that the circuit description 
is explicitly specified during simulation. Therefore, it 
determines, during simulation, what elements are to be 
evaluated next and then uses one generalized routine 
to evaluate all elements of anyone type. 

The second method was chosen for this simulator 
since the first contains undesirable features, such as 
the need of pre-leveling, location and breaking of feed
back loops, inability to handle various sequential cir
cuits effectively, etc. Although the second approach 
is more general, and can handle a large majority of 
circuit types, it does have the disadvantages of being 
slower and requiring more storage for certain cases. 
Therefore, it is these latter two disadvantages that are 
of great concern in this simulator structure. Solutions 
to these problems will be discussed later. 

The ability to simulate sequential circuits is inherent 
in a table driven simulator, in that it dynamically 
levels the circuit during simulation. This is done by 
determining, from the circuit description, what elements 
need to be reevaluated due to a change in the value 
of a signal. 

The ability to simulate asynchronous circuits relies 
on the ability to accurately represent the time associ
ated with evaluation of signal values. By including the 
propagation time of each element in its description, 
and then using this parameter during simulation to 
order the evaluation procedure, this time factor can be 
accurately represented. This means that one must have 
the ability to accept propagation delays of different 
lengths instead of making a unit delay assumption. 

Another side feature of a table driven simulator is 
that of not being required to consider feedback lines 
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by special, cumbersome, and inaccurate methods. These 
methods include explicit specification of what lines are 
feedback lines and the ability to reset these to any 
value. These two conditions are produced when an 
attempt is made to represent an entire sequential circuit 
by one model, as is done in' a compiled simulator struc
ture. The feedback specification problem is not present 
in a table driven simulator, in that no special case 
need- be made concerning feedback lines. The latter 
case, which is commonly referred to as a reset assump
tion, .is avoided since simulation occurs directly from 
a given accessible state without requiring reinitiali
zation of the state during simulation. 

As mentioned earlier, speed and storage will be a 
primary concern in this simulator. Three techniques 
will be employed to reduce these problems to an ac
ceptable level. They are: (1) selective trace simulation, 
(2) parallel simulation, and (3) functional simulation. 

Selective trace is a technique used in conjunction 
with table driven simulators which provides the ability 
to evaluate only those elements which have a potential 
of changing. For example, one need not reevaluate a 
gate output if all the input signals are the same as 
they were when it was last evaluated. Thus, simulation 
becomes a process of tracing changes, and their effects, 
through the circuit. 

Signal values can be stored in one of three manners. 
First, one bit of a machine word could be used to 
represent the value of a signal. Second, each bit of a 
machine word could be used to represent a different 
signal value. Third, each bit of a machine word could 
represent different values of the same signal for different 
input vectors or different fault conditions. 

The first of these three techniques is extremely ineffi
cient in storage handling. The second approach is hard 
to execute in Fortran (the implementation language for 
the system) since it would require bit manipulation. 
Therefore, the third approach was taken. For this 
technique, n different input vectors (where n is the 
number of bits in the machine word length), or fault 
conditions, can be simulated with the same speed and 
storage required for the first approach. This is referred 
to as parallel simulation, since n unique simulations 
occur in parallel. The effect of this approach is to 
divide the required simulation time by a factor of n. 

Another important implementation feature is called 
functional simulation. This is the grouping of a number 
of logic elements together and then expressing the group 
by its function. Thus, one need only store and evaluate 
the function in order to simulate the represented logic. 
An example of functional simulation would be the 
representation of an adder by storing and executing a 
simple add instruction·, instead of storing and executing 
the large number of logic elements used to form an 

actual adder circuit. Therefore, it can be seen that 
functional simulat~on enhances simulation speed and 
reduces storage. The ability to implement functional 
simulation is compatible with a table driven simulator 
structure, since it models the circuit by modeling ele
ments, regardless of the evaluation procedure used to 
model the element. For this reason, changing or adding 
element types is a simple task which involves changing 
only the evaluation procedure and its r~spective pointer. 

Fault insertion is also simplified since it now becomes 
a matter of simply providing elements having the same 
characteristic as a faulty element. 

When faults are automatically inserted, fault col
lapsing is used to reduce the number of possible faults. 
This is done by inserting only one fault of a group of 
faults which always produce the same outputs for any 
input combination. For example, all stuck-at-O's on 
the input of an "and" gate appear the same as a 

.stuck-at-O on the output of that gate. Therefore, the 
stuck-at-O's on the input need not be simulated if a 
stuck-at-O on the output is simulated, since they all 
produce the same response and are therefore repetitious. 

To further increase the accuracy of simulation, an 
ambiguity interval can be associated with each signal. 
This is a result of an inability to specify exactly when 
a given signal will actually make a transition from one 
state to the next. The requirement of an ambiguity 
interval comes from the fact that gates of the same 
type could have different propagation times. Therefore, 
the time delay of a gate would be represented as a 
minimum value plus an ambiguity region. By con
sidering this ambiguity, race and hazard analysis can 
be performed during simulation. 

It is not always desirable to perform race analysis, 
since it requires greater simulation time and storage. 
Therefore, there are different modes of simulation, in
cluding ;traight simulation and simulation with race 
analysis. Straight simulation will be referred to as the 
Mode 1 simulator, and simulation with race and hazard 
analysis will be referred to as the Mode 3 simulator. 
In order to obtain modularity in simulation and con
sistency in circuit modeling, Mode 1 will be implemented 
as a subset of Mode 3. A Mode 2 simulation is also 
available. This is a three valued simulation which can 
be used for simulation initialization. It indicates and 
propagates information as to whether or not a signal is 
defined at a given time. This is accomplished with the 
use of a third value. An example of the Mode 2 simu
lation is given in Figure 1. Here, each signal can either 
be 1, 0, or I (1 indicates Indeterminate). Before time 0, 
all signals are unknown and, therefore, in an inde
terminate (1) state. At time 0, A and B are changed 
to a 1. As a result of this change in A and B, the value 
of C and D must be reevaluated. C is evaluated to be 1, 
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Figure I-Mode 2 simulation 

at t = 5. The change in A, at t = 0, causes a reevalu
ation of D. However, since C = I at t = 0, then D = I 
at t = 10 due to the change in C having not yet propa
gated to D. An evaluation table for C and D is indicated 
in Figure 2. However, the change in C at t = 5 causes 
D to be evaluated again. Hence, D becomes 1 at t = 15 
since both C and A are known. 

An example of the Mode 3 simulation is depicted in 
Figure 3. A and B are input signals of initial value 0 
and 1, respectively. C and D are the output of inverters, 
which have a propagation delay of 4 and an ambiguity 
of 2. E, which is the set signal to an S-R Flip Flop, is 
the logical "and" of C and D. At t = 0, A changes to 
1 which produces a change in C to 0 through an ambi
guity region from t = 4 to t = 6. This means that 
the change of C could occur sometime between t = 4 
and t = 6. If B changes at t = 1 (possibly due to an 
ambiguity in the circuit feeding B), then D changes 
value as indicated. Notice that the value of E, as a 
result of C and D being 1 between t = 5 and t = 6, 
is a potential error region. This, along with ambiguity 
and minimum delay of the "and" gate, produces the 

results indicated for E. Since E is setting the Flip Flop, 
this potential error region sets the Flip Flop to a 
potential error value, which is the resulting state of Q. 
From this example, it can be seen how the ambiguity 
in propagation delay is handled, as well as how Mode 3 
simulation handles potential error regions and how 
these potential error regions can result in essential 
hazards. 

In general, the mode 3 simulator is used to propagate 
potential error regions to provide determination of the 
existence of essential hazards. The unique character
istic of the Mode 3 simulator, that does not exist in 
the other modes, is that it carries regions instead of 
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1 0 1 I 

I 0 I I 

a) Logical "and" 

or 0 1 I 
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1 1 1 1 

I I 1 I 

b) Logical "or" 

Figure 2-Logic table for gate evaluation in a three 
value simulation 
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single values. A technique similar to this has been 
described by D. L. Smith.4 A spread is depicted with 
the use of a New Value (NV), as well as a Current 
Value (CV), along with the Potential Error value (PE). 
During simulation, this ambiguity region is represented 
by simulating the earliest possible transition point (the 
CV) and the latest possible transition point (the NV). 
The potential error is then a logical function of the 
CV, NV, and the PE. With respect to the simulator, 
this evaluation procedure simply appears as another 
element type. 

. Sequential logic circuits containing global feedback 
loops are extremely difficult to simulate, even for the 
simplest of design philosophies. Whether accurate simu
lation is achieved, most ofter.. depends upon the design 
employing a special type of sequential action, which is 
consistent with the particular simulator being used, or 
the person simulating the circuit must have a very 
intimate understanding of the circuit operation. These 
two circumstances are more often the exception rather 
than the rule. I n many design environments, as a 
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Figure 4-A transition table and state table for a simple 
sequential circuit 
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result of practicality, as well as necessity, these con
ditions are rigidly forced upon the user by their simu
lation structures. In order to alleviate this problem, 
the largest possible user flexibility was a goal for this 
simulator. One of these degrees of freedom is presented 
in the following example, which shows how race analysis 
of an asynchronous sequential circuit can be performed. 

A Transition Table and State Table are given in 
Figure 4 for a simple sequential circuit which has been 
implemented in Figure 5. A race can be seen to exist 
between states C and D for the input vector 01 and 
stable state B. Whether this race is a result of improper 
design, characteristics of a circuit containing a faulty 
element, or an intentional risk, is unimportant. The 
important thing is that the simulation of this circuit 
is capable of revealing sufficient information to de
termine how the circuit will, or could, act when physi
cally implemented. Figure 6 shows the response of Xl 
changing from a 1 to a 0 according to the unit delay 
assumption (the circuit is in stable state 01, with 
X 1X 2 = 11). From Figure 6, it can be observed that 
the circuit makes a transition from state B to state D, 
a seemingly definite and satisfactory result. 

By considering the circuit response as indicated in 
Figure 7, which uses more accurate delay time infor
mation (as given by the minimum delay in Figure 5) 
for each gate, it is observed, through this type of 
simulation, that all isn't as simple as indicated by the 
previous simulation. It can be seen that, as the accuracy 
of propagation time becomes closer to that of the 
physical circuit, the race between states D and C comes 
closer to actuality. It appears here as the simultaneous 
transition of Y 1 and y 2. This type of simulation is one 
which might be performed by Mode 1 simulation. 
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The curiosity raised by using a more accurate repre
sentation for the . delay time can be satisfied by also 
considering an ambiguity time (as indicated in Figures 
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5 and 8) associated with each gate. The state variable 
y 1 could change anywhere between t = 10 and t = 13. 
This is a result of the possible variation in time delays 
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of the inverter, "and" gate, and "or" gate, along the 
propagation path Xl. Similarly, Y 2 could change be
tween t = 10 and t = 12. The value of F is essentially 
the "and" of YI and Y2, since Xl appears as a constant 
1. However, the "and" of the two ambiguity regions 
for Y I and Y 2 is not only another ambiguity region in 
F, it is also a potential error region as well. In actuality, 
F mayor may not produce the momentary 1 spike 
between t = 14 and t = 17. Note that a transition 
region is concerned with the question of when a tran
sition will take place. However, a potential error region 
is concerned with whether a transition could take place. 

Thus, from this example, it can be seen that a 
variation in propagation delay is enough to produce a 
critical race condition from a seemingly stable design. 
This condition is detected in Mode 3 simulation when 
the potential error flag is set for the state variable Y 2, 

as indicated by the shaded area in Figure 8. 
This example demonstrates some of the problems 

that could be encountered when simulating sequential 
circuits. It also shows how these problems can be 
handled through the various modes of simulation avail
able in this simulator. 

To use these three modes of simulation, one need 
only specify which mode is desired, so that the ap
propriate evaluation routines will be used. Since the 
only difference is in the evaluation routines, the same 
circuit description can be used for Mode 1, 2, or 3 
simulation. 

One important feature of this approach, with respect 
to race analysis, is that race analysis occurs concur
rently for nested races. Therefore, only one simulation 
must be performed for n nested races, as compared to 
as many as 2n simulations for other approaches. 

SYSTEM IMPLEMENTATION 

The first major implementation decision was the 
choice of a programming language in which the simu
lator would be written. Assembler, Fortran and PL/l 
were considered. Utilizing an assembler language could 
result in a little faster execution, with somewhat less 
storage required. However, Fortran was chosen since 
it would be easier to implement and is considerably 
more machine independent. Although PL/l has some 
seemingly desirable features, they were sacrificed for 
the more commonly acceptable Fortran and the small 
decrease in execution time and storage. It was also 
desirable for this simulator to be acceptable for use on 
smaller machines, which have limited storage and com
piler facilities. For these reasons Fortran was considered 
more desirable than PL/1. 

The basic simulator consists of three tables, the Time 

Queue Table (TQ) , the System Description Table 
(SDT), and a table which contains the Current Value 
of each signal (CV). The time queue table contains 
events that occur at time t, where t is the index of the 
time queue table. The system description table contains 
pointers to the evaluation routines used to determine 
the output values of the element, pointers to the fan in 
and fan out, and also contains the number of fan outs 
for each signal. 

Using these three tables, simulation is performed 
as follows: 

1. All values that exist in the time queue, at the current 
simulation time, are transferred to the current value 
table, thus causing any projected changes in value 
to take effect. 

2. If the new value entered in the current value table 
is different from the old value, then all elements 
th~t are immediately affected by this change are 
reevaluated. (This is accomplished by following a 
fan out list.) 

3. The results of these reevaluations are projected into 
the time queue at the current time plus the minimum 
propagation delay of the signal. 

4. The current time is incremented until an entry is 
found in the time queue, and then the process is 
repeated again. 

This process is restated in a flow chart form in 
Figure 9. 

In addition to this basic structure, other tables are 
used for optimization of both speed and storage. For 
example, functions are evaluated indirectly, via the 
Function Description Table (FDT), which also specifies 
additional parameters used in the evaluation routine. 
These parameters are: function type, time delay, num
ber of inputs, and bus length. This permits a minimum 
number of evaluation routines that must be provided 
for simulation. By use of the FDT table, the same 
routine would be used for a 2 input "and" gate with a 
time delay of 5, as would be used for an 8 input "and" 
gate with a time delay of 8. 

To keep the size of the TQ from becoming prohibi
tively large, a Macro Time Queue Table (MTQ) was 
implemented to store events which occur at large time 
intervals, relative to the largest propagation delay for 
any gate. The Time Queue was then made cyclic in 
coordination with the MTQ, where each cycle of the 
TQ advances the MTQ one step. 

Some gate level elements, such as flip-flops, as well 
as functional elements, have multiple outputs. To be 
able to simulate this type of element, an additional 
entry is provided in the SDT Table, which. is used to 
chain the output together. 

An ultimate goal of this system simulator is to 
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possess capability of simulating elements other than 
actual gates, such as functional modules.5 Since func
tional modules are just as apt to be dealing with busses 
as with single lines, the ability to specify bus· lines 
collectively would make functional module specification 
an easier, as well as a more meaningful task. For this 
reason, the capability of specifying busses collectively 

has been implemented with the use of a paging scheme, 
where Bus'Value (BV) is a group of pages and Bus 
Value State (BVS) is a table which indicates use, length 
and location. Therefore, the CV of a bus is an indirect 
pointer to a page, which contains the actual values of 
the bus signals. 

It can be seen that the System Simulator is inde
pendent of the type of function used to evaluate the 
output signals of the element. For this reason, any 
type of element can be simulated which can be described 
in a discrete value system. Therefore, the power of 
module simulation is directly proportional to the kinds 
of module descriptions which are permitted. 

In an attempt to cover the widest range of module 
descriptions, five types of descriptions are permitted. 
These are: (1) gate elements, (2) standard functional 
modules, (3) compiled gate modules, (4) computer de
sign language modules, and (5) Fortran modules. 

Evaluation procedures for gate elements are defined 
by gate type. Thus, one can specify gate elements, to 
the system simulator, by giving the gates fan in and 
fan out. This would be used primarily for circuits which 
could be specified at the gate level. 

Similar to the gate modules are the standard func
tional modules, in that they are predefined routines 
which can be used by specifying an element as a stan
dard functional module type. An example would be an 
n-bit 2's complement adder. Thus, to define a complete 
adder, one need only give its function type, the number 
of bits being added, and its time delay. This feature 
was provided in order to eliminate much of the trivial 
task of redefining common functional modules, and 
also to provide faster, more efficient, system routines. 

To permit the initial design specification to become 
the initial functional representation for design verifi
cation on a macro-level, a computer design language is 
allowed for module description. This is done by com
piling this description into an equivalent Fortran sub
routine, which has the inputs equivalenced to the 
appropriate current value table, and the outputs queued 
in a scratch array. In order to provide sequential control 
modules at a design language level, sequential modules 
can be described in a flow table form of expression. 
Thus, sequential control variables can be generated by 
such a sequential module. 

Also, to provide the capability of compiled simu
lation, one can specify modules at the gate level and 
have these transformed into compiled code for simu
lation. This is desirable for purely combinational mod
ules which can be simulated faster, or with less storage, 
in a compiled simulation fashion. 

Fortran module descriptions can be used as a means 
of generating new, efficient, standard functional mod
ules. They can also be used to generate special modules 
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whose function cannot be described easily by a high 
level system design language. 

To make this system more usable, one must have a 
means of redefining modules without requiring the 
reprocessing of the complete system description. This 
is done by automatically defining boundary elements 
for each module of the system: 

A boundary element is an element which is placed 
at each input and output of a module to isolate that 
module -from the rest of the circuit. Each boundary 
element has one input and one output, and the output 
value equals the input value. Taking this approach 
permits changes in the module definition without chang
ing descriptions outside the module. This is depicted in 
Figure 10 where BI, B2, B3, and B4 are boundary 
elements for module M2. Gate G I fans out to G2 and 
BI when module M2 is expressed functionally. But, if 
module M2 is expressed at the gate level, without 
boundary elements, then the fan out of G I would be 
to G2, G3, and G4. Without boundary elements, it 
would be necessary to change the fan out description 
of GI (which is outside the module), if the user wants 
to change M2 to a gate representation. But, with the 
boundary elements inserted, the fan out of GI (to G2 
and Bl) is still the same independent of the type of 
expression used for M2. This could be of extreme im
portance, when a number of design groups are using 
the same high level description for the complete system, 
while considering their own particular section at the 
gate level. 

For fault insertion, two tables are used. The Fault 
Table (FT) indicates the type of fault and which leads 
of the gate with which it is concerned. The Logical 
Fault Mask Table (LFMT) indicates in which bit (or 
subject machine) the fault is present. 

During Mode t simulation, the value of each signal 
is stored in the full word array CV. The values in the 
CV are updated by transferring the appropriate value, 
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which is indicated indirectly in the time queue, to the 
CV, at the time indicated by the time queue description. 

The same simulation structure exists for Mode 2 
simulation, with the use of different evaluation routines 
for element output evaluation. An IndeterminantValue 
Array (IV) is used for storing the third value necessary 
for Mode 2 simulation. 

Due to the necessity of being able to process time 
intervals, in Mode 3 simulation, a few minor modifi
cations must be made in the simulator structure. This, 
however, is not apparent to the simulator user. Storage 
must also be provided for the Current Value (CV), 
New Value (NV), and the Potential Error (PE), along 
with the more detailed evaluation procedures used to 
determine these quantities for each element. 

CONCLUDING REMARKS 

The simulator described in this paper has been pro
grammed in Fortran IV on an IB:JVI 360/50, with 256K 
bytes of core storage, at the University of Missouri
Rolla. The size of a system that can be simulated is a 
function of the available memory capacity of the host 
machine. For 256K bytes of storage, approximately 
3000 elements could be simulated, using the 1\10de 1 
phase of the system. (An element can range from simple 
gate elements to complex functional elements.) This 
would be reduced to approximately 2000 elements for 
1\10de 3 simulation. For trial simulation runs, a running 
time of 100 }Ls/pass·fault·element has been obtained, 
utilizing Mode 1 simulation. This, however, is fairly 
circuit dependent. 

It is felt that this simulator represents a uniform 
systems approach to simulation and diagnosis. Versa
tility of the models utilized has resulted in this capa
bility. The system not only allows various types of 
simulation for different hardware implementations, but 
also provides the ability to handle the total system as a 
collection of subsystems. Thus, each subsystem can be 
simulated according to the particular type of circuit 
involved, the requirements imposed upon the circuit, 
and the most applicable simulation technique for the 
particular subsystem. 
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UTS-I: A macro system for traffic 
network simulation 
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INTRODUCTION 

One of the major crises which our cities must face is the 
problem of traffic congestion. Already, many areas are 
so congested that new roads seem to be the only answer. 
In densely populated areas, however, new roads are 
often unwanted because of the valuable land they use 
and are not the solution to today's problems because 
of the long time delay between planning and construc
tion. Theref~re, it is essential that cities obtain maxi
mum throughput from existing roads before new con
struction is tried. A general urban traffic network simu
lation system has been designed and programmed to 
assist traffic engineers and planners in studying al
ternative solutions to traffic problems. The implemen
tation consists of a set of macros which are used to 
describe the network, and a set of subroutines which 
perform the actual simulation. 

Many analytical approaches to traffic control prob
lems have been tried with varying degrees of success.1 

Queuing and other applied probability models have led 
to the progression system of light control, one of the 
more successful methods of smoothing traffic flows. 
Ma~hematical programming has been used to optimize 
some of the criteria for smooth flow, e.g., number of 
stops, or total delay time. Both of these techniques, 
however, have limited usefulness when applied to spe
cific large networks because of complicating real world 
factors such as garages emptying onto streets or vari
ations'in driver behavior. These and other analytical 
methods have usually been applied to systems which 
had only static methods for signal light control. The 
technology now exists for interactive computer con
trolled signal lights. Sensors placed on the streets can 
report to a central computer which can analyze the 
traffic pattern and send control signals back to the 
lights in real-time. Mathematical analysis of these sys
tems is extremely difficult. 
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The UTS-I system is a general traffic network simu
lator which has been developed to permit one to ex
amine the effects both of "firefighting" techniques such 
as one way streets, elimination of turns at congested 
intersections, reversing directions of streets during peak 
hours, and major improvements such as adding new 
roads or installing computer controlled signal systems. 

UTS-I is a microscopic simulation model in that the 
basic transaction unit is an individual vehicle. This 
type of model more closely approximates the real world 
behavior of a specific traffic network than the macro
scopic model, which would consider groups of vehicles 
as one unit. While the macroscopic model may be more 
efficient with respect to run length when general systems 
are being studied, the microscopic model should yield 
more insight into particular trouble spots in a specific 
real system. 

Any combination of intersections and distances be
tween intersections can be specified. Such features as 
three-way and larger intersections, stop or yield signs, 
timed or sensor controlled traffic signals, or any combi
nation thereof can be specified at any particular inter
section. Traffic light sequences can be set for individual 
intersections, or light controls can be interconnected 
with other intersections and traffic flows. Other traffic 
simulation programs2 ,3,4 have included some of the 
above features, but rarely all in one system. In addition, 
describing the network to be simulated has been as 
much a problem as writing the simulator itself. 

The basic flow of a car through the system is simple. 
A car appears from a source and advances to an inter
action point (sensor, intersection, end of queue, or 
slower moving vehicle). Eventually, the car steps up 
to the intersection and a random number is generated 
to determine if a turn will be made. When the car has 
the right of way and the intersection is not blocked by 
another vehicle, it advances through the intersection 
and onto the next road segment. It is then assigned a 
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new velocity which it maintains until it reaches the 
next interaction point. In this way a vehicle is stepped 
through the system until it departs on one of the exit 
roads. 

The inputs to the system are arrival distributions at 
all points where cars may enter the system and turning 
percentages at each point where a directional option is 
available to the vehicle. Information related to driver 
behavior, e.g., wave delay time, velocity, etc., must 
also be input. A portion of this information may be 
common to all intersection models while some of the 
information may depend on specific details of a par
ticular system. 

IMPLEMENTATION 

UTS-I is actually a GPSSj360 program which makes 
heavy use of the MACRO facility. {jPSS was chosen 
for the initial UTS implementation because of the 
availability of the processor and the fact that experi
enced GPSS programmers were available. Because of 
the modular design, the simulator can be easily repro
grammed in any digital simulation language, and is 
now being rewritten in SIMSCRIPT-II, which offers 
more flexibility in the use of macros, in input and output 
formatting and, in the basic simulation scheduling phi
losophy than does GPSS. 

The system consists of several subroutines, each of 
which simulates a particular subsystem of the network, 
two important matrices which drive these subroutines, 
and a description of the flow through the system pro
vided through the use of macros. 

The main routines are: 

1. Road Segment System-simulated by LINK 
2. Intersection System-simulated by ISECT 
3. Interaction Point System-simulated by IACTP 
4. Intermediate Segment System-simulated by 

INTER 

The vehicle enters the road segment. This routine 
checks to see if the vehicle has caused a segment over
flow. If it has, the previous intersection is blocked and 
will remain blocked until the segment overflow con
dition is alleviated. The. vehicle then proceeds to the 
end of the segment's queue at its own preferred velocity 
or at the velocity of a slower vehicle preceding it 
(after catching up to the vehicle preceding it, and 
remaining at a reasonable distance behind). 

Upon entering the intersection system the vehicle 
enters the road segment's queue and waits. As the 
vehicles preceding it move through the intersection, 
this vehicle moves up in the queue. Eventually, it is 
first on line, i.e., it is in "control" of the segment's 
queue. At this time the vehicle checks to see if it has 

the right of way. If it does not, it waits until it does. 
When it does have the right of way, the vehicle proceeds 
across the intersection. This causes a wave of car 
movements to be propagated through the queue. If the 
segment overflow condition exists, the previous inter
section will eventually be unblocked. The vehicle after 
moving through the intersection, turns onto the next 
road segment. 

The vehicle may come to an interaction point, which 
is a point on its lane where the vehicle interacts with 
vehicles on other lanes. The vehicle will not reach the 
interaction point until its position in the queue reaches 
that point along the segment. As vehicles leave the 
road segment, this vehicle moves up until it crosses the 
interaction point. At this time, the proper interaction 
is caused. Interaction points may be used to simulate 
flow at a point where one lane splits into two lanes. 

The intermediate segment system is used in the same 
manner as the Road Segment System, except that it is 
used only between two interaction points or an inter
action point and the end of the segment's queue. 

The input data for UTS is organized into two ma
trices. These are the intersection entry matrix and the 
distance matrix. A vehicle crossing an intersection will 
have to cross a number of areas at which conflicts 
with other traffic flows could occur. Each of these areas 
is called an Intersection Conflict Cell (ICC) and is 
assigned an identification number. ICC's for each possi
ble path across the intersection are stored in successsive 
columns of a given row of the intersection entry matrix. 
Vehicles waiting at "STOP" or "YIELD" signs interact 
with vehicles on the road to which they must yield. 
There is an area on the road to which the vehicle must 
yield which may not contain a vehicle if the vehicle at 
the stop or yield sign is to enter the intersection. This 
area is called a Continuous Interaction Area (CIA). 
Each CIA has an identification number which is also 
stored in the intersection entry matrix. The same 
scheme used for ICC's and CIA's is used for traffic 
lights. The number of lights which must be green and 
the location of the first of these are stored in the inter
section entry matrix. 

The distance matrix is used by the model for storing 
the following data: 

1. Lane length. 
2. Distance to interaction points from the beginning 

of the lane. 
3. Velocity of the vehicles which have just passed the 

interaction points. 
4. The length of the vehicle which is at the head of 

the queue. 
5. The total length of all vehicles which have not 

yet reached the queue. 



SEGMT SUBROUT I NE 

SEGMT 'ASSIGN l,PII SAVE ROAD 10 *' 
ASSIGN 3,PI2 SAVE CAR VELOCITY 
MSAVEVALUE 2+,P2,II,P7,H SAVE CORRECT ADDITIONAL LENGTH 
TEST LE VSOLEN,KO,NBLK SHOULD OTHER ROADS BE BLOCKED? 
SPLIT I ,BLOCK SEND OFF BLOCKING TRANSACTION 

NBLK ASSIGN 9,KO SET DISTANCE TRAVELLED TO 0 
ASSIGN 19,PI3 SET MATRIX2 POINTER 
ASSIGN 5,CI RECORD TIME 

ROAD ASSIGN 4,VSOFFST SET MATRIX2 POINTER 
TEST L MH2(*2,2),MH2(*2,*4), POINT WHAT'S NExT IACTP 
A'SSIGN 19,KI SET MATRIX2 POINTER 
LINK VSCHAIN,FIFO,LANE WAIT UNTIL ROAD IS CLEAR 

LANE TEST GE MH2 (*2,2 ) ,P9, ATQUE HAVE WE REACHED THE QUEUE? 
ASSIGN 18,MH2(*2,2) SAVE,DISTANCE TO QUEUE 
ASSIGN 4,K2 SET MATRIX2 POINTER 

MOVE ASSIGN 8, VSVEL RESET VELOCITY 
MSAVEVALUE 2,P2,,6,VSVEL,H SAVE CORRECT VELOCITY 
ADVANCE VSDIFR IF VEHICLE IS EARLY, ADJUST IT 

THERE ASSIGN 5,CI RECORD PRESENT TIME 
ASSIGN 9, PI8 SET NEW DISTANCE TRAVELLED 
TEST L PI8,MH2(*2,2I,ATQUE HAS QUEUE LENGTH,CHANGED 
ASSIGN 18,MH2(*2,2) IF YES, SAVE NEW QUEUE OIST. 
ASSIGN 19,PI3 SETPI9FOROFFST 
ASS IGN 4, VSOFFST SET MATRIX 2 POINTER 
ASSIGN 19,KI SETPI9FORENOOFQUEUE 
TEST L PI8,MH2(*2,*4I,POINT HAVE WE REACHED THE IACTPP 
TRANSFER , MOVE IF NOT, CONTINUE DRIVING 

ATQUE MSAVEVAlUE 2-,*2,2,P7,H ADJUST QUEUE SIZE' 
MSAVEVALUE 2 - ,P2 ,I I, P7, H READJUST ADDITIONAL LENGTH 
ASSIGN 19,KI SFT CHAIN INDEX 

HOSEN UNLINK VSCHAIN, LANF • I CLEAR THIS PORTION OF ROAD 
TRANSFER P,6,I RETURN 

Figure l-SEGMT subroutine 

The method of implementation will be made clearer 
by a more detailed look at the macro and subroutine 
package, and by an application. 

MACRO AND SUBROUTINE PACKAGE 

This section deals with the macros and subroutines 
which make up the UTS-I system. The reader who is 
unfamiliar with GPSS/360may skip this section with
out loss of continuity. 

Each of the four UT8-1 macros, LINK, ISECT, 
INTER, and IACTP, all generate a similar sequence of 
GPSS code. This code consists of saving the values of 
some parameters, setting some new parameters for the 
particular transaction, and calling an appropriate sub
routine. For example, the LINK macro, which is used 
for vehicles which have just turned onto a road segment, 
might be written as follows: 

LINK MACRO #A, #B, #C, #D,#E 

where #A is the lane ID, #B is the preferred velocity, 
#C is the expected next interaction point order' number 
(1 if a queue is expected next, 2, 3 or 4 if any other 
interaction point is expected); #D is the ICC ID to be 
used if the lane overflows, and #E is the time which 
it would take for the vehicle to start up and move 
from ICC #D, if it were backed up into ICG #D. 

This usage of the macro would generate the following 
GPSS code: 

SAVE MACRO#A, #B, #C, #D, #D 

(saves parameter values) 

TRANSFER SBR,SEGMT,6 

(transfers to subroutine) 
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The SEGMT subroutine is shown in Figure 1. The 
flow through this subroutine is simple. First, it tests 
to see whether or not this vehicle will cause the Jane 
to overflow. If so, certain other feeder roads are blocked, 
by sending out transactions to block these roads. When 
the road is clear, the vehicle is advanced to either the 
end of the queue or to the next interaction point along 
this road segment. The queue is maintained as a user 
chain for efficiency. When the vehicle enters the queue, 
its length is added to the length of the queue, and the 
available distance on the road is adjusted accordingly. 

Each of, the other macros calls a similar subroutine 
to handle the actions associated with it. Listings of 
these subroutines and macros are available from the 
author. 

AN APPLICATION 

UTS~ I has been used to study traffic flow in a three 
intersection, 24 lane network near the Cornell Uni
versity campus. Figure 2 is a schematic diagram of 
this bottleneck area. 

Arrival rates were determined by counting cars in con
tinuous two minute intervals between four-thirty and 
five-fifteen p.m, Each road was measured in the same 
manner so as to keep any bias constant. The percent 
of the vehicles turning in each direction was determined 
by counting absolute numbers of cars following each 
distinct path at each' intersection. Segment and queue 
distances were measured alongside the road with a 
fifty foot tape measure. 

The variables, related to driver behavior were esti
mated as follows: 

MW A VE-the time for the vehicle startup wave 
to reach a specific interaction point or the previous 

r!~'l" 2"~ 
'"':--r-------.,;,:.:..-,----'i"..,;;;;.;.......!.--,-------'u STOP 

DRYDEN ROAD (ROUTE 366) 
1:====== 

N .+, 
s 

JUDD FALLS 
ROAD 

Figure 2-Diagram of the simulated system 
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intersection was estimated as: 

L - Di 
2 seconds + ----

150 ft./sec. 

SW AVE-the time for the vehicle stopping wave 
to reach a specific interaction point or the previous 
intersection was estimated as: 

L - Di 
2 seconds + ----

200 ft./sec. 

where L = the road length and D i = the distance 
from the beginning of the road to interaction 
point i. 

[!i] 
14 

Figure 3-Intersection conflict cells and lane numbering 

THE SYSTEM MODEL 

ROOI GENERA TE 
ASSIGN 
ASSIGN 

LINK MACRO 
IACTP MACRO 
INTER MACRO 
IACTP MACRO 
INTER MACRO 
ISECT MACRO 

LEAVE 
LEAVE 
TRANSFER 

R002 TABULATE 
TERMINATE 

8,FN$EXP~",20,H 
I, FN$TRNI 
7,FN$LNTH 
1,59,2,0,0 
KI,2,I 
B 
KI,3,2 
I 
I, FN$NAME, FN$PATH ,1,0,0,0,0,2 
1,1 

2,1 
P,6,I 
1,1 

R003 TABULATE 1,1 
TERMINATE 

Figure 4-Simulation for road number 1 

Figure 3 shows the system which was simulated with 
all lane numbers, ICC's, and CIA's marked. From this 
diagram the intersection entry matrix can be filled in. 
For example a vehicle in lane 1 may cross the inter
section to either lane 3 or lane 7. If it goes to lane 3, 
it must cross ICC 30. If it goes to lane 7, it must cross 
ICC's 30, 31, and 32. One can make the matrix more 
compact if 30 is used for both types of crossing. Thus 
we get the following values: 

IEM(I, 1) = 30 

IEM(l, 2) = 31 

IEM(1,3) = 32 

The flow of vehicles along the roads in the system is 
specified by writing a sequence of macros (with some 
interleaved GPSS) which generate subroutine calls to 
the appropriate routines. For example, the road marked 
#1 in Figure 3 is simulated by the code shown in 
Figure 4. 

The following outputs have been obtained from the 
model: 

1. Statistics for transit times for the entire system. 
2. Average waiting times at STOP signs. 
3. Queue ·statistics. 
4. Lane utilization. 
5. Graphs of lane utilization, histogram of tra,ncit 

times, and cumulative distribution of transit times. 

This output is supplied at intervals of 20 simulated 
minutes for one hour of simulated time. 

An example of the lane utilization graph is shown in 
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Figure 5-Lane utilization graphs 

Figure 5. Lane utilization is the total time vehicles 
were "in control" of the lane divided by the total 
simulation time up to that point. This figure is thus 
the proportion of time that vehicles occupied the lane 
and the lane was blocked. This and other statistics 
have been compared with real world data and the 
model has proved a valid representation of the real 
system. Experiments which are now under way are at
tempting to discover a good traffic control algorithm 
for this specific network. Sensors are installed on these 
streets and a computer controlled network will be 
simulated. 

USER INTERFACES 

The user interface is one of the most important 
parts of any system. Since simulation programs are 
often quite sophisticated in their use of list processing 
and other non-FORTRAN oriented techniques, the 
average engineer who is not a computer specialist often 
has a hard time constructing or using a simulation 
model. While the macro subroutine system described 
above makes traffic network simulation easier to pro
gram, the author feels that much can still be done to 
improve the usability of the system both by traffic 
engineers, and computer programmers. 

To this end, a simulation' generator program is P.ow 
being written. The input to this program will be a 
map of the traffic network to be simulated, with needed 
parameters marked directly on this map. The output 
of the program will be the two matrices and the se
quence of macros which are used to describe the system. 
An example of the input form which will be used is· 
shown in Figure 6. At present, this will be keypunched 
by laying a grid over the form, and then translated by 
the program into the required network. 

During the seventies, when graphical input/output 
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Figure 6 

devices are more readily available, it is hoped that 
this map can actually be displayed o'n a CRT, and 
parameters altered during the simulation. Systems of 
this type have been discussed,5 although not in the 
traffic context. 

The current output interface, namely, graphs, has 
been a useful adjunct to the tabular output which is 
produced automatically by GPSS or SIMSCRIPT 
systems. 

SUMMARY AND CONCLUSION 

An important criteria in determining the usefulness of 
a simulator is the running efficiency. UTS-I, operating 
on a IBM 360/65 computer, in a 200K partition under 
OS/MFT-2, runs in about 5% of real time for the 
application described above. A large portion of this 
time is spent in the GPSS scheduling routine. 

The problfm of how to synchronize events scheduling 
is an especially important one in a microscopic network 
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simulation model. Conway6 has presented some guide
lines for choosing between the two standard methods 
of variable time (or next most imminent event) or fixed 
increment timing· routines. GPSS provides only the 
variable timing mechanism, which may be a drawback 
in a traffic network simulation model, where the event 
densities would lead one to try fixed increment timing. 

Working with G. Siegel, the author is currently 
implementing a mixed timing method in·SIMSCRIPT
II. This will dynamically· change the synchronization 
method from fixed increment to variable increment 
timing as· the simulation proceeds. This should. make 
the entire run more efficient than if either variable or 
fixed timing was used alone. 

UTS-I was programmed in one man month after 
approximately 3 man months of design. These times 
are for the general simulator. . The application was 
programmed using the UTS-I system in one man week 
after approximately three man weeks of design and one 
man week of data collection. The relatively short time 
needed to program the specific application indicates the 
utility of the macro approach to a traffic simulation 
system. 

In conclusion, UTS-I, a general traffic network simu
lation system, composed of a set of macros and a sub
routine package, has been designed and programmed. 
This system, and other macro systems for modeling 
the subsystems of our society should prove to be valu
able tools in the analysis and optimization. of our en
vironment during the coming decade. 
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INTRODUCTION 

New aerospace systems which are likely to be de
veloped in the next decade such as the Space Shuttle 
Vehicle and Space Station will be used for more versatile 
missions; they will be more autonomous and inde
pendent from ground operations; and therefore, their 
design will be more complex than that of present space 
flight systems. In order to design these new systems 
optimally for all mission phases, extensive design anal
yses, evaluations, and trade-off studies have to be per
formed before a design can be finalized. This means 
that many simulations of various degrees of depth have 
to be run to test all possible mission conditions. There
after, the integrated hardware and software systems 
have to undergo extensive testing and checkout before 
they are flight ready. 

For the Apollo Program, several enormous simulation 
facilities have been installed at contractor and NASA 
sites consisting of various types of simulators such as 
special purpose hardware simulators, flight trainers, 
analog, hybrid, and digital computers.1,2 Though as 
early as 1955, first attempts were made to simulate 
analog computer block diagrams on a digital computer, 3 

analog computers and special purpose simulators have 
played a major role in simulation until a few years ago. 
Since then, the great flexibility of modern digital com
puters has been explored in a number ofr developments 
of digital simulation languages particularly for non-real 
time analyses.4 In order to direct the development of 
digital simulation languages, a standard language was 
introduced by the Sci-Committee. This language, CSSL, 
is particularly suitable for the simulation of analog 
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computer-like block . diagrams mixed with FORTRAN 
subroutines and statements. 5 Most of the common 
digital simulators . are pre-compilers which generate 
FORTRAN code and order the integrator statements 
automatically so that the numerical integration fof' 
each integrator can be performed in the proper sequence. 
In comparison, the digital simulation system described 
in Reference 6interprets linear block diagrams of trans
fer functions and converts them into a matrix equation 
whose coefficients are determined by the numerical 
convolution for each transfer function block. 7 

A blueprint of the digital simulation system being 
described in· this paper was given in Reference 8. This 
simulation system addresses itself to the engineer who 
has little experience in simulation and in computer 
programming and who wants to simulate large physical 
systems. It could be used for a variety of applications 
such as for design analysis and evaluation, checkout 
and malfunction analysis. It could also serve as a 
storage and retrieval system for models-being a basis 
for a "model configuration control" system on a central 
time-shared computer~ The development of models is 
costly, and therefore, they should be utilized by as 
many people as possible. The language allows a standard 
description of models and easy modification of already 
stored models, assuming the physical system is de
scribed by multiple inputj output blocks or hierarchies 
of blocks and their interconnections using names as 
they appear in engineering drawings. The outputs of 
the simulation system. are not only time-responses but 
also other analysis data such as stability parameters, 
frequency response, etc. 

During the operation of a system of this magnitude 



,. 
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one has to reckon with certain alterations of the oper
ational features of the syste~. Therefore, the simulation 
systems software is designed in a modular form to keep 
the impact of possible design changes to a minimum. 
To provide the additional analysis capability and to 
obtain efficient computation speed, analysis techniques 
of modern control theory have been employed for the 
mathematical foundation of the simulation system. The 
differential equations generated from the block diagram 
are in the form of vector-matrix state equations, which 
do not need to be ordered for their numerical inte
gration. 

We named this simulation system MARSY AS which 
stands for Marshall System for Aerospace Systems 
Simulation. The description of the user language, the 
mathematical foundations, and the software structure 
can be only briefly given in this paper. However, 
separate papers are being prepared to cover these areas 
more exhaustively. 

SIMULATION CAPABILITY 

Before a physical system can be simulated, a model 
of its functions has to be generated. In most cases, 
the derivation of a model requires human judgment 
and, therefore, is a manual process. Only in special 
cases as in electrical circuits, a direct relationship exists 
between the physical components network and the 
mathematical description of its functions. In such a 
case the physical network can be described directly to 
the computer which then generates the mathematical 
model and solves for it. 9 ,lo For the design of MARSYAS, 
a model of the guidance and control system of the 
Saturn V and a model of the propulsion system of the 
S-IVB stage were used as test models representative 
for other space vehicles' electrical, mechanical, and 
hydraulic systems. The models referred to in this paper 
represent the continuous and discrete dynamics of 
physical systems which can be mathematically de
scribed by ordinary differential equations, algebraic 
equations, and logical.functions. 

The engineer prefers to describe a model by block 
diagrams because their graphical representation is visu
ally comprehensive. The blocks of the diagram can 
have multiple inputs and multiple outputs, and a block 
can contain other blocks within itself, i.e., block dia
grams can be built in hierarchies, or in other words 
they can be nested at several levels. At the lowest 
level where the block cannot be broken down further, 
we call the block an element. We distinguish between 
linear and non-linear elements. A linear element is 
represented by a transfer function or more generally 

r---------~~~~--------I 
I I 

ACTUAT •• _nAG"'" I 
,lA, I 

I 
1 ,,,"CA' 

L _____________________ -1 

Figure I-Example of a model described by a block diagram of 
multiple input/output blocks and a nested block 

by a linear differential equation. A nonlinear element 
is represented by an algebraic equation or by a logical 
or switching function or by a nonlinear dinerential 
equation. Figure 1 depicts an example of such a model. 
Elements which are used frequently are called standard 
elements and are available in a Standard Elements 
List (Table I). This list is not fixed; it can be updated 
easily using MARSY AS statements. For infrequently 
used special elements, a FORTRAN subroutine can be 
submitted. Thus, the block diagram can contain analog 
computer elements, transfer functions, algebraic equa
tions, and nonlinear ordinary differential equations. 

A block diagram is specified to the computer only 
by the names of the blocks, inputs and outputs; by 
the names and values of the element parameters; and 
by the unidirectional interconnections of the block. 
The names can be up to 36 characters long so that the 
same names as found in engineering documentation 
can be used. The model thus described can be stored 
permanently in the Functional Data Base (FDB) or an 
already stored model can be modified. Only authorized 
personnel having the access-key can write into the 
FDB, whereas everybody can read out and use models 
of the FDB. 

For a simulation run, the input signals or excitation 
functions into the total model can be pre-stored ana
lytical functions such as exponential, sinusoidal, time 
functions or digitized signals recorded on magnetic 
tape. These recorded signals may be measured signals 
or output signals generated by a previous simulation 
run. The outputs of the simulation can be manifold. 
Any connection point in the block diagram can be 
chosen for obtaining a systems output signal. 

The dynamic systems output signals can be plotted 
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TABLE I-Extract from list of standard elements 
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or printed as functions of time. The steady-state re
sponse can be calculated separately in one process. 
For linear systems, additional analysis information can 
be computed such as frequency response, power spec
trum, stability and parameter sensitivity. 

The ability for the user . to control the internal 
processing of the various simulation functions is kept 
to a minimum and restricted to functions essential to 
the simulation. The user can specify the. relative trun
cation error, the integration step size, or the numerical 
integration method if he wants to override the standard 
built-in method. Algebraic loops are identified auto
matically by the software. 

ENGINEER-ORIENTED LANGUAGE 

The language is designed so that the user transmits 
to the computer· only information which is essential to 
describe the model and specify the simulation run, and 
does not concern himself with programming the com
puter. If an engineer has no knowledge of modelling, 
he can call up a pre-stored model and run a simulation 
after specifying only the model input signals. On the 
other hand, if the engineer has FORTRAN program
ming knowledge, the language gives him some capa
bility for special control of the simulation. 

The MARSY AS language is divided into modules 
which describe independent functions of the simulation. 
These language modules are the: 

Description Module, 
Modification Module, 
Simulation Module, 
Continuation Module, 
Post-Processing Module, and 
Analysis Module. 

Within these modules, several MARSY AS state
ments are available. Statements are written in free 
format and need no special ordering. However, the 
ordering of the modules has to follow simple logical 
rules, e.g., a Simulation Module has to be preceded by 
a Description Module because the model must be de
scribed before it can be simulated. A statement consists 
of an 'operator', and an 'argument field' which iseom
posed of several arguments. 

The Description Module is used to describe a model 
given in the form of a block diagram. It is headed by 
the operator MODEL. The ELEMENTS~statement 
contains the name of the element, the type of Standard 
Element (to be found in the List of Standard Elements) , 
and the parameters. The parameters are written in the 

BEGIN: MARSYAS PROGRAM X. 

MODEL: ACTUATOR-STAGE 1-3. 

INPUTS: ACT r, ACT 2. 

ELEMENTS: 131., MOTOR - A, 2, 0, 3, 5, 2, 4, 7 

: LM, LIMITER-C, I, -3, 3. 

SUI3MODEL: GIMBAL-3; INPUT: GI; OUTPUTS: GIM-I, GIM-2. 

NAMING: GI, II: GIM-I, TI: GIM2, T2. 

ELEMENTS: AD, ADI. At>2. 
CONNECT: A2, ADI, MOTOR-A, AD2, II, T2, LIMITER-C, ADI 

: AI, AD2: A3, ADI 

: .TI, ACT!: T2, ACT2. 

END. 

MODEL: CONTROL SYSTEM-X I 

INPUTS: X, Y. 

OUTPUTS: HORIZONTAL, VERTICAL. 

ELEMENTS:RE, RESOLVER-B. 

SUBMODEL: ACTUATOR-STAGE 1-3: INPUTS: AI, A2. A3: OUTPUTS: Acr I, 
ACT 2. . 

SUBMODEL: GIMBAL-3; INPUT: GI; OUTPUTS: GIM-I, GIM-2 

CONNECT: X, AI, ACT I, RESOLVER-B (UI, WI). HORIZONTAL 

END. 

: Y, A2, ACT 2, RESOLVER-B (U2, W2), GI, GIM-I, A3. 

: GIM-2, VERTICAL: ACT I, RESOLVER-B (U3). 

SIMULA TE: CONTROL 5YSTEM-X I. 

INITS: ACTUATOR STAGE 1-3, MOTOR A, 1.5, 12. 

EXCITE: X, FSTEP, 5.0: Y, FSIN, I, 3000, O. 

STOP IF, TIME .GT. 2.00. 

END. 

PRINT: FMT, 0.01, X, Y, HORIZONTAL, VERTICAL. 

FORMAT: FMT, 4F 13.8. 

END. 

END: MARSY AS PROGRAM X. (Figure 2) 

Figure 2-,MARSYAS-program of example in Figure 1 (It is 
assumed that model GIMBAL-3 is stored in the functional 

data base) 

proper format for the particular element type and are 
either the numerical values or names. The numerical 
value of a named parameter is given by the PARAM
ETER-statement. If the element is not in the Stand
ard Element ·List, a FORTRAN-subroutine carrying 
the same name as the element is given. A model stored 
in the Functional Data Base (FDB) is called by a 
SUBMODElr-statement containing the embedded 
model name and its input and output names. The 
CONNECT.c.....-statement lists strings of inputs and out
puts of elements, submodels, system inputs, or system 
outputs to be connected to form the model block 
diagram. For elements or sub models having a single 
input/ output, only the name of the element or submodel 
appears in the CONNECT...,-statement. The INPUT
statement designates names of the inputs of the model, 
the OUTPUT-statement designates names of the out
puts of the model. The STORE-statement carrying 



the proper key-code transfers the Description Module 
into the permanent FDB. Thus, the Description Module 
can be used for storing and retrieving of models as 
well as for describing the model for a subsequent 
simulation run. Figure 2 illustrates the MARSY AS
program for the example in ~igure 1. 

The Modification Module allows inserting, deleting, 
and disconnecting of elements and submodels through 
the use of the SUBSTITUTE, DELETE,-and DIS
CONNECT -statements. The UPDATE-statement 
allows additions to the Standard Elements List. State
ments of the Description Module are used to specify 
the elements, parameters, and interconnections which 
are to be modified. The Modification Module can be 
used for modifying models of the FDB or for a subse
quent simulation. 

The Simulation JIIlodule is used to define the course 
of the simulation. The IN ITS-statement specifies 
initial conditions for the outputs of blocks. The EX
CITE-statements tells the MARSY AS-processor 
what excitation functions or record tapes are fed into 
what system inputs of the model. If a numerical inte
gration method other than the standard method is to 
be used, the INTMODE-statement specifies the inte
gration method, and the relative truncation error or 
integration step-size (for fixed step-size integration 
methods). The STOP or HOLD statements determine 
the condition under which the simulation should termi
nate or hold, e.g., if a certain time or certain amplitudes 
of certain output signals have been reached. If the 
simulation calls for the repetition of a simulation run 
with modified parameters the CHANGE statement 
specifies these parameters and their values. 

The Continuation Module is used tore-start a simu
lation run that has been terminated by a HOLD state
ment. This module is particularly useful when the user 
wishes to insert check points in a lengthy simulation 
run at which he can obtain intermediate outputs. (He 
can also change the integration mode at these check 
points.) Upon these outputs he can decide whether it 
is worth to continue the run. 

In the Post-Processing Module the user indicates 
which output signals he wishes to print or plot and the 
format and labels of the output. The FORMAT
statement resembles the FORMAT-statement in 
FORTRAN. 

The Analysis Module allows the user to designate the 
type of analysis output he wishes, e.g., the FRE
QUENCY RESPONSE-statement calls for the fre
quency response within the specified frequency range. 
Other analyses performed by the system are the de
termination of steady-state response, power spectrum, 
stability, and sensitivity for which special statements 
are available. 

lVIARSYAS 227 

MATHEMATICAL FOUNDATION 

Analytical formulation 

In the formulation of the mathematical process which 
converts the block diagram into an internal format 
acceptable to the computer, we distinguish between 
three parts of the model: (1) the "dynamic" elements, 
(2) the "non-dynamic" elements, and (3) their inter
connections. The output of a "dynamic" element is a 
function of all past input while that of a "non-dynamic" 
element depends only on the instantaneous input. The 
"constant multiplier" (or ideal amplifier) and the 
'sumer' are linear "non-dynamic" elements. The linear 
elements 'time-delay', 'sample-and-hold', and 'differ
entiator' are treated as pseudo-non-linear elements. For 
explaining the mathematics it is assumed that the 
model consists of interconnected "dynamic" and "non
dynamIC" elements of various types but of no nested 
submodels. By some software processing the MARSY AS 
-processor has already unwrapped these nested sub
models. 

The linear "dynamic" element 'transfer function' is 
characterized by the following relationship: 

(1) 

with ak and bk being constant coefficients and n the 
order of the differential equation (or number of poles 
in the complex frequency domain). It is assumed that 
q < n. If n = q, the 'transfer function' element can 
simply be split into one with a < n and one 'constant 
multiplier' and 'summer' element. oCt) is the output 
signal and i(t) the input signal of the element. Using 
the method as described in References 11 and 12 this 
differential equation can be converted into a state vari
able matrix equation. For the jth element we obtain 

X(j) (t) = A W XW (t) + P(j)iW (t) (2a) 

Ow (t) = C(j)x/j) (t) (2b) 

[

X/j)] 

xw (t) = : 

X (j) 
'n 

is a state vector of the jth element, and A (j), CW, and 
pw are constant real matrices of the dimension n X n 
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and can be obtained from ak and bk of equation (1): 

1 0···0 

o 1···0 

AU) = 

o 0···1 

o 0···0 

c(j) = [1 0 0·· ·OJ (2c) 

For a collection of m "dynamic" elements we can \vrite 

where 

XU) 

X(t) = AX(t) + Pl(t) 

O(t) = CX(t) 

X(l) (t) 

X(m) (t) 

(3a) 

(3b) 

X(l) (t) 

X(t) X(j)(t) 

X(m) (t) 

A(l) 

A= AU) 

A(m) 

P= 

p(m) 

C(l) 

C= 

C(m) 

lU) 
[ 

~(l)(t) l' 
i(m) (t) 

and 

[ 

~(l) (t) 1 
O(t) = . . 

O(m) (t) 

We now assume that the "dynamic elements are con-



nected in any way through 'constant multipliers' and 
'summers' to form a linear model. We then can write 
the following linear interconnection matrix equations: 

let) = EO(t) + FU(t) 

Wet) = GO(t) + HU(t) 

(4a) 

(4b) 

In the above 

U(t) = vector of inputs (excitations) into model 

Wet) = vector of outputs from model 

m = number of "dynamic" elements in model 

k = number of inputs into model 

l = number of outputs from model 

and E, F, G and H are matrices having appropriate 
dimensions. 

The coefficient eij in E means the total constant gain 
along the path from the output OJ of "dynamic" element 
j to the input ii of "dynamic" element i. The coefficient 
hj in F is the total constant gain along the path from 
the model input Uj to the input Oi. The coefficient gij 

in G is the total constant gain from the output OJ to 
the model output 'Wi. The coefficient hij in H is the 
total constant gain from the model input Uj to model 
output 'Wi. 

There may be linear systems that do not have the 
intercOIinection equations (4a and 4b) but wherever 
possible the MARSY AS processor generates these inter
connection equations. 

By substituting equation (4a) into equation (3a) 
and equation (3b) into equation (4b) we obtain the 
model overall matrix equations: 

X(t) = A*X(t) + P*U(t) (5a) 

Wet) = C*X(t) + D*U(t) (5b) 
where 

A* = A +PEC, p* = PF 

C* = GC, and D* = H. (5c) 

We now include nonlinear elements of the form 

(6) 

where y<i) (t) denotes the output vector, rei) (t) the 
input vector, and fW the input-output function associ
ated with the jth nonlinear element. For a collection 
of nonlinear elements it is 

yet) = F(R(t)). (6a) 

For the inputs to all "dynamic" elements and to all 
nonlinear elements, respectively, we write the following 
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nonlinear interconnection matrix equations 

let) = EO(t) + FU(t) + KY(t) (7a) 

R(t) = E'O(t) + F'U(t) + K'Y(t) (7b) 

where the vectors yet) and R(t) represents the col
lection of the output vectors and· input vectors of all 
nonlinear elements of the model. The output vector 
W (t) for the model becomes 

Wet) = GO(t) + HU(t) + K"Y(t) (7c) 

The matrices E·· .E", F·· ·F", and K·· ·K" repre
sent the cumulative gain along the various paths be
tween the inputs and outputs of the "dynamic" ele
ments, nonlinear elements in the model. 

By substituting equation (7a) into equation (3a) 
and equation (3b) into equation (7c) and using equa
tion (6) and (7b) we obtain 

XU) = A *X(t) + P*U(t) + N(O, U, t) (8a) 

and 

Wet) = C*X(t) + D*U(t) + M(O, U, t) (8b) 

with A *, P*, C* and D* being the same matrices as in 
equation (5c). N(O, U, t) and ]}f(O, U, t) are the non
linear column vectors (nl(O, U, t), n2(0, U, t), "', 
nm(O, U, t) and (ml(O, U, t), m2(0, U, t), 
ml (0, U, t) respectively. It is assumed here that there 
are no "algebraic loops" in the model. An overview 
diagram of the mathematical process is given in Figure 3. 

The matrices A *, P*,C*, and D* are characteristics 
for a linear model and they can be used for a number 
of analyses. 

The stability of the system may be determined from 
a knowledge of the eigenvalues of matrix A *, i.e., all 
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Figure 3-0verview diagram of the mathematical process 
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eigenvalues must lie in the left half of the complex 
frequency plane for stability. The frequency response 
of the system may be obtained, if it exists, from the 
Fourier Transform of the impulse response. The impulse 
response is obtained numerically as the solution of the 
autonomous system with appropriate initial conditions 
as follows: 

where 

and 

x(t) = eA*tx(O-) + ft eA*(t-T)P*~ dT 
0-

and 0 ( T) is the unit impulse function. Hence x (t) J t=O+ = 
eA*tP*e where e = [00 .. 1, , , OJT and the unity ele
ment in the e vector occurs in the ith component. 
Noting that eA*tJ 1=0 = I, the identity matrix, we obtain 

x(t) = eA*tP*e. 

The sensitivity function relating the instantaneous 
rate of change of a system state or output with respect 
to a parameter is obtained as the solution of an auxiliary 
linear differential equation referred to as the sensitivity 
equation. Denoting by q the parameter of interest, we 
have 

d ax ax aA* ap* 
-- = A * - + - x + - U 
dt aq aq aq aq 

subject to the initial conditions 

~:It=:~ o 

Numerical solution 

N early all numerical methods for the solution of 
differential equations are based on the numerical inte
gration of first order differential equations (16), (13) 
and (14). Hence, th~ state-variable matrix equations 
are particularly suited for these methods. A system of 
first order differential equations, in general of the form 

X(t) = F(X(t), t), (13) 

is usually approximated by single-step evaluation or 
multi-step predictor-corrector methods where X (t) , 
X(t), and F(X(t), t) are the column vectors [XI(t) , 
••• , Xm(t)J, [XI(t), ••• , Xm(t)J, and [fleX, t), ..• , 
(M (X, t) JT, with M equal to the total number of state 
variables ·within the model. The most common single-

step 1rlethod is the Runge-Kutta (4th order) which 
approximates equation (13) for t = (n + l)h into 

with the vectors 

K2 = hF(Xn + h/2, tn + KI/2), 

K3 = hF (Xn + h/2, tn + K2/2) , 

K4 = hF(Xn + h, tn + K 3), 

where h is the time step. 
The multi-step predictor-corrector methods are of 

the form 
Predictor: 

n 

XP( (n + 1)h) ~ X(nh) + h L: ckF(X(Kh) , Kh) 
k=n-p 

(15) 
Corrector: 

n 

X( (n + l)h) ~ X(rih) + h L: dkF(X(Kh) , Kh) 
k=n-q 

+ hdn+IF(XP( (n + l)h), (n + l)h) (16) 

with p being the order of the predictor and q being the 
order of the corrector polynomial; and Ck and dk are 
constant coefficients depending on the method used. 
For instance, for the Adams-Bashforth predictor it is 

Cn-3 = -9/24, 

Cn-2 = 37/24, 

Cn-l = -59/24, 

Cn = 55/24, 

and for the Adams-Moulton corrector it is 

dn - 2 = 1/24, 

dn- l = -5/24, 

dn = -19/24, 

dn+l = 9/24 (1,1) 

One can show that numerically solving the overall 
matrix equations (7) and (8) is not the most efficient 
way, because the matrices A *, P*, C*, and D* contain 
many zero elements. Less computation steps are neces
sary if one uses the individual equations (3), (6), 
and (7). 



NO 

Figure 4-Flow of numerical solution of matrix equations 

The numerical process is the following (see Figure 4) : 

1. We first update the excitation vector U(t) for t = nh 
and calculate 

O(nh) = CX(nh) 
2. or (17) 

On = CXn 

From now on, we will use the subscript n for the time 
instant X = (nh). 

3. Then, part of the input vector R (t) is computed 
from equation (7b) for' those nonlinear elements 
whose input is not connected to other nonlinear 
elements. For these nonlinear elements, the output 
can now be calculated using equation (6). Then, 
that part of R(t) can be calculated which contains 
known Yn (j). Through alternate use of equation (7b) 
and (6) and assuming that the nenlinear equations 
were already properly ordered the complete vector 
Yn can be calculated. 
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N ow, the input vector In can be obtained by use of 
equation (7a). 

4. In = EOn + FUn + KYn (18) 

and the model output vector 'Wn of equation (7c) is 

5. Wn = GOn + HUn + K"Yn. (19) 

Knowing In we go to equation (3a) 

X(t) = F(X(t), t) = AX(t) + PI(t) (3a) 

and evaluate 

(20) 

Then using equation (15) the predicted value of 
Xn+l is 

n 

7. X n+1P "-l Xn + h L ckF(Xk) (20 
k=n-p 

and the corrected value of Xn+1, i.e., the final value 
of X, for t = (n + Oh is 

n 

Xn+l "-l Xn + h L dkF(Xk) + hF(Xn+1P) (22) 
k=n-a 

In Figure 4, the sequence of the numerical evaluation 
is outlined. One can see that within each block only 
matrix multiplications and additions have to be per
formed. The row-by-column multiplications are not 
dependent on each other; hence, the sequence in which 
they are executed is immaterial. 

This property has the advantage that several vector 
multiplications and additions could be computed simul
taneously resulting in a tremendous speed-up of the 
computations if several parallel processors were avail
able. 

SOFTWARE STRUCTURE 

General 

The prime objective of the MARSY AS software is 
to transform a MARSY AS program, which describes 
a model and specifies the simulation, into a FORTRAN 
program that contains the arrays and subroutines for 
the numerical solution of the various matrix equations. 
The MARSY AS software is a precompiler for compiling 
MARSY AS language statements into a set of 
FORTRAN subroutines, arrays, and control cards, i.e., 
the Object Program, and a controller for the execution 
of these FORTRAN programs. It is built for time
sharing operation on MSFC's central computing fa
cility, the UNIVAC 1108. The software allows several 
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Figure 5-0verview of MARSY AS systems software 

users to access MARSY AS and its models simultane
ously from remote stations, Although maximum usage 
of the UNIVAC 1108...:.EXEC VIII operating system 
is made, the MARSY AS software could be converted 
for other facilities since it is written in FORTRAN. 
In order to have the MARSY AS system evolve while 
it is in operation it is mandatory to break it into many 
relatively independent program modules. The major 
Program Modules (PM) are defined by the language 
modules. Hence,7we distinguish between the Description 
PM, modification PM, Simulation PM, Continuation 
PM, Post-Processing PM, and Analysis PM. Outside 
these Program Modules there are other programs, such 
as the FORTRAN Object Program (OP), library rou
tines for 'standard elements' and 'excitation functions', 
scientific subroutines for the numerical integration of 
first order differential equations, scanning routines, 
error recovery routines, and control routines. 

The Object Program is compiled by the FORTRAN
compiler and then executed like any manually-generated 
FORTRAN program. Figure 5 is an attempt to give 
an overview of the main flow of action; it is of course, 
a simplification and does not stand a precise judgement. 

Object program 

The FORTRAN Object Program (OP) consists of 
the MAIN-program, which has a fixed structure, and 
which calls up various subroutines of fixed and variant 

structure. "Variant" means that the program state
ments vary with each simulation run. The OP reads 
from four files: 

I. The Simulation Temporary File, which contains all 
arrays for solving the matrix equations of Figure 4. 

2. The Change File, which contains those parameters 
which are to be changed, as specified by the 
CHANGE-statement. 

3; The Continuation Permanent File, which stores 
intermediate results of a discontinued simulation 
run, such as the state space vector X (t) . 

4. The Post Parameters File, which keeps parameters 
and labels for printing and plotting. 

The OP generates the Simulation Output Tape, 
which contains the numerical values of all model output 
signals for a complete simulation run. 

The subroutines of fixed structure perform the fol
lowing functions: 

XDUPDT evaluates' the derivative Xn !:::: F(Xn) of 
equation (20). 

PCHN G changes parameters in accordance with the 
Change File. 

TIDY writes intermediate simulation results into 
the Continuation Permanent File. 

GENO generates the block output vector On from 
equation (17). 



The variant subroutines are the following: 

UVECTR generates the vector Un by accessing the 
library routines for the various excitation 
functions. 

WVECTR generates the vector Wn from equation 
(19) . 

UPGAIN computes the array G (1) which contains 
the cumulative gain of the Ith path be
tween a "source" (variable I, W, or Y) 
and a "terminator" (variable 0, U, or R). 

UPNLIO updates outputs of nonlinear devices, 
which are already sequenced in the proper 
order for evaluation, using library rou
tines for the various standard nonlinear 
elements. 

UPBLKI 

DIFFEQ 

POST 
EDIT 
PLOT 
PDP 

ANALYSIS 

generates the vector In from equation 
(18). 
is the general integration routine which 
calls a specific integration routine such 
as RKG for Runge-Kutta-Gill (4th 
order) or AM for Adams-Bashforth
Moulton predictor-corrector, etc. 
writes the Simulation Output File. 
prints output data generated by POST. 
plots output data generated by POST. 
Elements specify the dimensions of the 
various COMMON arrays in the OP 
routines. 
is a collection of special subroutines to 
generate the overall matrices A *, P*, C*, 
and D* and to perform special analysis 
computations. 

Description and modification program module 

The subroutines of the Description Module translate 
the MARSYAS statements describing a model block 
diagram into the Model Tables for the elements, inputs, 
outputs, parameters, and connections. These tables are 
packed to save storage space. Program names are con
verted into identification code words (ID) via the 
Name Dictionary, so' that in the internal processing 
the shorter Name ID's can be used. The connections 
are ordered into pairwise connections (predecessor/suc
cessor pairs). Since the sta temen ts can be written in 
any order, the END-routine has to check for certain 
formal errors such' as undefined names, missing ele
ments, and improper connections, after all tables have 
been filled. 

If the model is to be stored into the permanent 
Functional Data Base (FDB) the temporary Model 
Tables are transcribed into the FDB-file. 

The Modification Program Module subroutines are 
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similar to those of the Description Module in the sense 
that they also access the Model Tables and modify 
them. 

Simulation and continuation program module 

The subroutines of the Simulation Program Module 
have to perform a variety of functions. The tables of 
the Functional Data Base for models specified in the 
SUBMODEL-statements, and the temporary Model 
Tables, are merged into the Model Tables File (MTF). 
Blocks representing transfer functions of equal numer
ator and denominator order are converted into blocks 
where the order of the numerator is one less than that 
of the denominator. The Simulation Module statements 
for initial conditions, excitations, integration mode, 
etc., are translated into the Simulation Specification 
Tables. The Connection Tables of the MTF are used 
for path tracing to generate the Gain Table, which 
contains the cumulative gains between the various 
terminals. The nonlinear elements are sequenced in the 
Nonlinear Elements Table. From various intermediate 
tables such as the Model Tables Files, Simulation 
Specifications File, etc., the final files used by the 
Object Program, i.e., the Simulation Temporary File, 
Change File, and Continuation Permanent File; and 
the Program File (i.e., the Object Program) are gen
erated. 

The Continuation Program Module accesses the Con
tinuation Permanent File and places among other con
trol data the X-vector into the Initial Conditions 
Record of the Simulation Temporary File, so that the 
simulation run can be continued by the Object Program. 

Post-processing and analysis program module 

The Post-Processing Program Module generates the 
Post Parameters File and the subroutines POST and 
EDIT of the Object Program. The Analysis Program 
Module generates the parameter arrays representing 
the matrices A *, P*, C*, and D* for the various analysis 
subroutines in the OP. 

Potentials and Implementation of MARSYAS 

The scientific subroutines of the Object Program and 
the library subroutines have been successfully tested 
with linear and nonlinear test cases. The systems soft
ware is coded and is presently in the final checkout 
process on MSFC's time-sharing computer UNIVAC 
1108. The detailed design specifications are documented 
and revised. 17 The present implementation, however, 
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does not include blocks of differential equations of 
arbitrary format and time varying systems. The sys
tems software for the various analyses has not been 
implemented yet. 

The mathematical foundation and the software struc
ture allow for expanding the capability of MARSY AS 
and for improving its language and internal processing. 
Thus, elements in the model block diagram which 
contain ordinary differential equations of any order in 
form of mathematical equations will be included. The 
~oefficients of the differential equations can also be 
functions of time. While presently "algebraic loops" 
can be only identified but not solved for (except by 
inserting an artificial time delay or an implicit function) 
it is expected to include separate mathematical pro
cedures which assure convergence wherever possible to 
solve identified algebraic loops. The matrix equation 
formulation of the physical system in MARSY AS re
sembles closely to the way electrical networks are 
mathematically described for analyzing them on the 
digital computer.10 •18 Methods for partitioning sparse 
matrices in electrical circuit analysis might, therefore: 
be applicable to further improve the computation speed 
particularly for large physical systems.19 The language 
is structured in such a way that it should be straight
forward to input block diagrams and simulation state
ments via graphical display into the computer and 
thereby enhance the man-machine communications 
tremendously. The MARSYAS-Ianguage improve
ments will be stalled until the user has gained practical 
experience in the operation of MARSYAS. 

As was pointed out previously, the MARSY AS
language is well-suited for an easy description of dy
namic models, and the MARSY AS-software system 
allows readily to store, retrieve, and modify models in 
a central data bank. Thus, MARSYAS could become 
the basis for a "Model Configuration Control" System 
which keeps the information about the functions of 
aerospace hardware up-to-date and available to many 
engineers and systems analysts in a common language, 
similar as to the computerized Vehicle Configuration 
Control System which keeps the information about the 
configuration of the hardware up-to-date. The easiness 
and speed of setting up and running a precisely repeat
able simulation together with its special analysis capa
bility make MARSY AS a valuable tool for analyzing 
and evaluating complex aerospace systems. 
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INTRODUCTION 

Real-time simulation has traditionally been associated 
with small, committed digital computers located in 
close proximity to analog computers or simulation 
equipment. However, the recent development of multi
programmed hybrid systemsl showed clearly that ex
clusive control of the digital computer by one simu
lation job at a time is not only unnecessary, but is, 
in fact, economically indefensible, due to the abnor
mally high proportion of idle time inherent in simu
lation work. Users of such multi programmed systems 
have been operating successfully, two or more at a time, 
with elementary teletype or CRT-keyboard terminals 
as ·their only means of communication with the central 
computer. It is, therefore, reasonable to assume that, 
given the appropriate software and hardware elements, 
such terminals could be located substantial distances 
away from the central computer without compromising 
the level of interactive control of the simulation. 

To test the validity of this assumption, an experiment 
has been carried out at the Boeing Company's facilities 
in Seattle, using the Control Data®* 6600 and 1700 
computers. In the experiment, a real-time simulation 
of a supersonic aircraft is performed. A simplified "cock
pit" and analog recording equipment are located some 
10 air-miles away from the 6600, where the mathe
matical model of 'the aircraft is implemented. This 
experiment supplied the motivation for, and some of 
the results reported in this work. Many of the consider
ations, however, are universal in nature. In addition; 
the paper speculates on the desirable software and 

*Registered Trademark of Control Data Corporation 

hardware features that will permit even higher levels 
of efficiency in running remote real-time simulations. 

WHY REMOTE SIMULATION? 

Many industrial organizations, government instal
lations and universities possess large-scale computer 
installations to support tlieir scientific batch and/or 
time-sharing needs. Remotely located simulation fa
cilities can tap the power of these fast, sophisticated 
processors at a fraction of the cost of procuring and 
installing committed systems for specific needs. The 
central computer is likely to be fast enough so that the 
simulation can be c~ded in FORTRAN; the resulting 
advantages include faster debugging and easier modifi
cations to accommodate model growth and change. 
The removal of the analog-digital proximity constraint 
permits better matching of sites to the differing hard
ware requirements of simulation gear and computer 
mainframe and peripherals. 

PECULIARITIES OF REAL-TIME 
SIMULATION 

Real-time simulation is characterized by computing 
tasks that are prompted by external events ("interrupt 
signals"), and .that require the resu'ts of the compu
tation to be made available to the external equipment 
either at the time of another external event or a specified 
time period after the occurrence of the initiating event. 
The external events can be periodic or non-periodic. 
In the latter case they are termed "asynchronous inter
rupts". Typical periods ("frame times") are of the
order of 10 to 100 milliseconds. The amount of com-
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puting time required in every such frame depends en
tirely on the complexity of the mathematical model and 
the speed of the processor. Using the CDC 6000 as an 
example, the required compute time for a typical aero
space simulation varies between 10% and 60% of the 
frame time. 

These timing constraints distinguish the real-time 
simulation from time-sharing (TS) or remote-job-entry 
(RJE) systems where the constraints are one or two 
orders of magnitude less severe. Even more important 
is the fact that failure to meet a timing constraint is 
merely a nuisance in a TS or RJE environment, whereas 
the same effect in real-time simulation is often fatal in 
that it can cause irreparable damage to the simulation. 
(This is less true in pure digital simulations than in 
hybrid ones.) Tasks characterized by such fatal outcome 
of timing errors are often termed "time critical" or 
"constrained" computation. 

The amount of data exchanged between the computer 
and the simulation equipment depends primarily on 
the division of tasks between these components of the 
system. Representative figures might be 10 to 25 inputs 
and 10 to 50 outputs at analog ("-'15 bit) precision. 
Discrete (on-off) signals as well as puredigital quantities 
invarying sizes and numbers could also be exchanged 
periodically. 

WHAT ARE THE UNKNOWNS? 

By "remote" we mean that such simulation hardware 
as analog computers, AD conversion gear, cockpit 
mockups, and so forth, are located so far from the 
central computer, where the mathematical model of 
the aircraft or spacecraft is implemented, that standard 
cables cannot be used and some sort of distant com
munications equipment is required to carry signals 
between the computer and the remote facility. 

The success of the remote simulation concept depends 
on several fundamental issues: 

a. The Communications Facility 

Standard switched or private line wide-band offerings 
of the common carriers, as well as private optical or 
cable communications links, are available. The relia
bility of these services is of interest. A related question 
is that of error handling, i.e., the recovery algorithm. 

Of crucial importance (as will be seen later) is the 
speed of the communications link. In this respect, the 
question divides into two parts. First, how adequate 
is the available service? Secondly, how fast should it be? 

b. The Remote Terminal 

Since the central computer exchanges signals with 
the local communications interface only, it is com
pletely unaware of the type and organization of the 
equipment at the remote site. Thus, these parameters 
are flexible and the designer can choose anyone of 
several possible configurations. The question is, there
fore, what is the best remote terminal configuration, 
and what criteria should be used to measure its ade
quacy? 

c. Effect on Central Site 

One of the basic assumptions of this work is that 
the primary mission of the central site is other than 
supporting real-time simulation. It is then extremely 
important to establish (in advance if possible) the 
effects of adding the simulation to the standard load, 
which is presumed to be, a combination of batch, time
sharing and remote-job-entry activities. 

THE EXPERIMENTAL SYSTEM 

Figure 1 is a schematic diagram of the system which 
was used to study some of the questions just posed. 
The following is a brief description of the components 
of the system. 

a. The Communication Components 

The wide-band communication link, provided by the 
telephone companies, is classified according to its band-

Figure 1-The experimental system 

The experimental system consists of the CDC 6600 "super
computer," standard telephone company wide-band communi
cations link operating at 40.8 kilobits/sec., the 1700 control 
computer, the CDC 1500 Analog-Digital Interface, and Boeing
supplied cockpit and analog recorders. The simulation complex 
(1700, 1500, and simulation gear) is located some 10 air-miles 
away from the 6600. 



width. The most common wide-band services are the 
48 KHz and the 240 KHz lines. The bandwidth places 
an upper limit on the data rate that can be transmitted 
over a given line. However, the actual transmission 
rate is determined by the data set. 

Data sets are required at" each end of the communi
cation link. A data set (also known as modulator
demodulator or "modem" for short) is a special purpose, 
bi-directional analog-digital converter. Serial binary 
information, presented to the data set by the com
puter," control the modulation pattern of a continuous 
carrier signal* which is fed into the communication 
link. At the receiving end, the modulated analog wave 
shape is decoded into a series of on-off signals which 
are outputted from the data set serially. Data sets for 
wide-band service (about 20,000 bits/sec and over) are 
generally clocked. The clock rate controls the trans
mission speed. The three most common speeds are 
40.8, 50, and 230.4 kilobits/ sec. 

The data set does not attempt any interpretation 
of the data passing through it. The Communications 
Controller, which interfaces the data set to the I/O 
facilities of the computer, is responsible for decoding 
the incoming data. In order to provide some facility 
for exchanging control information between the remote 
and local equipment, the controller can generally be 
expected to establish at least two modes. An IDLE 
mode indicates that no data is being received. In this 
mode special decoding circuits can search the incoming 
bit pattern for any number of special codes. The two 
most basic codes required are: (a) a code to signify 
the beginning of a data exchange, and (b) a code to 
signify that the remote station desires attention. The 
latter code can be wired to trigger an interrupt in the 
computer or a special status bit in the controller. 

The data exchange is terminated when the computer 
simply does not accept (or supply) a word within the 
time required to receive (or transmit) the previous 
word. This, and several other features of the com
munications controller, are designed to achieve high
speed, efficient transfer of block data. The software 
implications of this organization are examined later. 

The specific equipment used in our experiment in
cluded a 48 "KHz line and a Bell®** 303 data set, clocked 
at 40.8 kilobits/sec. 

b. The Computer Facilities 

The central computer complex at which the work 
was done consists of two CDC 6600 computers, each 

*Completely digital transmission systems are available in some 
areas. 
**Registered Trademark of AT&T. 
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with 131K (60 bit) words of memory. Briefly, the 6600 
is an extremely powerful, large scale computer, in
corporating a very fast 60-bit central processor and 
10 peripheral processors, each with a private 4K 12-bit 
memory and a repertoire of simple arithmetic and 1/0 
instructions. The peripheral equipment includes disks, 
tapes, graphic terminals, interactive typewriter termi
nals, and unit record equipment. Each 6600 is also 
equipped with a 4-port high speed communications 
controller, but normally only two J;tJE terminals are 
connected to a mainframe at a time. The AD link and 
simulation gear were installed at one such RJE terminal, 
consisting of a CDC 1700 with 16K of 1 microsecond, 
16-bit memory, a disk operating system, a high speed 
communications controller and unit record equipment. 
More detailed information on these computers can be 
found in References 2 and 3. 

c. JJIodification of Facilities 

Certain revisions to the normal mode of operation 
had to be made so that testing of the remote real-time 
simulation concept could be carried out. We had de
termined that a realistic minimum frame time for R TS 
would be about 20 milliseconds. We also determined 
that the standard Export/Import (RJE) package could 
not be used to support the simulation. " We, therefore, 
dedicated the high speed multiplexer (communications 
controller) and a peripheral processor to the real-time 
application. This meant that under operational con
ditions all other remote job entry work would have to 
be handled by the second 6600, or additional hardware 
would have to be purchased to allow RTS and RJE 
to run simultaneously on the same processor. 

It was also determined that the real-time job should 
not be subject to storage relocation and, indeed, should 
be able to interrupt the storage relocation task in order 
to direct the CPU to the time critical application. This 
resulted in reducing the priority of the storage re
location program and assigning the highest CPU priority 
to the real-time job. It also resulted in assigning the 
real-time job to a memory area adjacent to the fixed
size system tables. This had the effect of automatically 
eliminating the need to relocate this job, without any 
modifications to the system. 

Except for these modifications, which were of a 
minor nature, we were able to implement the real-time 
simulation within the framework of the current Boeing 
operating system. The ease with which we achieved 
this conv~rsion is due to a large extent to the unique 
organization of the CDC 6000 computers, where the 
CPU is normally completely divorced from handling 
any I/O tasks. In a more conventionally-organized 
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TABLE I-Analog Word Transmission Rates (Words/Sec.) at 
Various Line Speeds 

Bits/Sec. 

40.8 K 
50K 

230.4 K 

12 bits/word 

3400 
4166 

19,200 

15 bits/word 

2720 
3333 

15,360 

computer, the real-time job will have to share the CPU 
with time-critical I/O operations (e.g., for avoiding lost 
data conditions on fast devices), and hence with non
interruptable system routines. In such an. environment 
the conversion may be considerably more difficult. 

d. The Linkage and Simulation Gear 

In an attempt to keep the demonstration as simple 
as possible, while maintaining a degree of realism in the 
simUlation, we chose to display outputs on strip chart 
recording equipment and to limit inputs to pitch and 
roll control from a simple "joy stick". Control Data 
provided a 1500-type interface between the 1700 remote 
terminal and the control and recording devices. The 
interface equipment included 16 AD and 16 DA 
channels with a resolution of 15-bits (including sign) 
and a maximum range of ±128 volts. 

e. The Applications Program 

The mathematical model program that was imple
mented on the 6600 was a fairly simple six degree of 
freedom rigid body representation of a supersonic air
craft in a high speed cruise condition. Debug and 
checkout time had to be held to a minimum, so the 
voluminous data normally used to describe engine and 
aerodynamic characteristics was eliminated, as was the 
autopilot. The simulation did include a complete set 
of equations of motion, linear aerodynamic coefficient 
buildup, all coordinate transformations, a nonlinear 
atmosphere, effects of wind and a complete set of flight 
control equations, including both longitudinal and 
lateral stability augmentation systems. Manual inputs 
were pitch and roll control. (We assumed fixed throttle 
and trim settings.) The outputs included all data 
normally displayed on the pilot's flight instrument 
panel. The simulation was quite typical of those used 
for piloted studies of airplane handling qualities, sta
bility and control problems, or flight control system 
optimization. 

The simulation along with the central control pro
gram (to be described shortly), the associated service 

routines (all coded in FORTRAN IV), system routines 
and I/O buffers required less than 12K of central 
memory. Execution time per frame was approximately 
4 milliseconds. 

SPEED AND RELIABILITY OF THE 
COMMUNICATION LINK 

As indicated previously, standard wide-band facilities 
permit operation at 40.8, 50, and 230.4 kilobits/sec. 
Table I below translates these speeds to words/sec., 
for 12 and 15 bits per word. Maximum packing (into 
data-channel-width words) is assumed and incompletely 
packed words, as well as header (Begin Data) and 
trailer (cyclic code) words appended by the controller, 
are ignored. Hence actual rates can be expected to be 
slightly lower than those indicated in Table 1. 

State-of-the-art ADC's convert at rates of between 
50,000 and 250,000 15 bit words/sec. It is clear that 
the time to transmit a block of AD data over the 
communication link, even at the highest available 
speed, is much more significant than the time required 
to make the conversion. Since the computation at the 
central computer cannot begin until the AD data is in, 
and must be completed sufficiently ahead of the next 
frame, to allow time for the transmission of DA data, 
the speed of the communication link is a crucial factor 
in determining the permissible quantities of AD /DA 
data for any given frame time, or, conversely, the 
possible frame time for a given amount of data. 

It is important to place this restriction in the proper 
perspective. In our specific case, the 2 AD, 14 DA and 
10 control words used required about 8 milliseconds to 
transmit over the 40.8 kilobit/sec. line. Even allowing 
for some growth in the complexity of the central pro
gram, there is still enough time within the 20 milli
second frame to exchange some 20 additional quantities 
per frame. With the overlap option, which is described 
later, essentially all of the frame time could be used for 
transmission. Furthermore, a committed computer, 
comparable in cost to our remote terminal, would have 
possessed a much slower CPU and therefore provide 
substantially reduced performance in terms of the 
permissible computation per frame, or the permissible 
minimum frame time. 

An interesting development recently reported4 is that 
of laser communication links offering speeds of up to 
250,000 bits/sec. These devices have been rumored to 
be commercially available at a very attractive purchase 
price. They require line-of-sight clear path, of course; 
their range is quite limited; and their performance in 
adverse weather conditions is, apparently, as yet un
proven. Nevertheless they may be attractive in some 



situations. Microwave facilities as well as privately 
constructed cable links are also of interest, as are new 
common carriers' offerings of, for example, a 50 kilo
bits/ sec. switched (dial-up) service and the promise of 
megabits/sec. links as a fall-out from the development 
of the phone-TV service (where you see as well as hear 
the person you call). 

The question of speed is quite fundamental. If line 
speeds were compatible to the data rates sustained by 
local equipment, it would be possible (at least theo
retically), throug:b. proper design of the communication 
equipment, to make the remote equipment appear to 
the computer identical to local equipment. The com
puter would then be able to function the remote equip
ment and interrogate its status, and the remote equip
ment would be able to send many varied interrupt 
requests to the computer. The cost of very-wide-band 
lines is likely to prevent this possibility from becoming 
a reality in the foreseeable future. 

The particular controllers we used employ "cyclic 
code" check system. The transmitting station appends 
a special code word after the last word of the output 
blocks. The bits in this code depend in a known way 
on the bits in the data block. The receiving controller 
regenerates this code as the data is received, and then 
compares it to the code sent by the transmitting con
troller. A mismatch flags a status bit or creates an 
interrupt signal. 

The recovery algorithm that we are using is quite 
simple. Whenever the receiving controller reports a 
cyclic error, the associated computer ignores the data 
block just received and instead uses the data received 
in the previous frame, which is still available in the 
unD~,~ked buffer. The error is also logged, and, if oc
curring at the central site, is reported to the remote 
together with its time of occurrence. This technique 
should be adequate for digital simulations. Its adequacy 
in a hybrid environment needs to be verified. 

Our tests of line reliability under real-time conditions 
are incomplete at this writing. Since line conditions, 
load, weather and other factors affecting reliability 
differ considerably from one area to the next, it is 
doubtful that whatever results we obtain can be as
sumed to be valid everywhere. However, transmission 
error statistics collected during RJE activities at the 
Boeing Seattle facility indicate that the error rate is 
less than 1 in 10,000 transmitted blocks (.01%) be
tween the hours of2 PM and 8 PM, and is practically 
nil outside those hours. That rate includes some re
transmission attempts; and since these retransmissions 
will not be attempted under real-time conditions, error 
rates can be expected to be no more than that reported 
above. 

It should be noted, incidentally, that the error 
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checking facilities built into the communications con
trollers, beside being highly sensitive (detecting es
sentially all short error bursts), also represent an actual 
improvement over the local AD link, where, usually, no 
error checking of any kind is performed. 

HOW THE REMOTE SIMULATION IS 
ORGANIZED 

Timing 

Since the primary function of the timing mechanism 
("real-time clock" or "interval timer") in a hybrid 
simulation is to trigger the AD conversion equipment, 
it would seem to be convenient to place the responsi
bility for timing the simulation with the remote termi
nal, particularly when the central computer is of a 
conventional type. In our experiment, however, the 
timing function is performed at the central site for two 
reasons. First, a 6000 peripheral processor easily per
forms this function. Since one is dedicated to the 
remote simulation task anyhow, any task added to it 
is essentially a zero-cost item and, in fact, represents a 
savings in eliminating the requirement for a hardware 
timer at the remote site. Secondly, and more signifi
cantly, by placing the timing function at the central 
site we automatically obtained an important debugging 
capability: namely, the ability to exercise the central
site CPU program under real-time conditions without 
using the remote terminal or the communication con
troller. An important benefit of this arrangement was 
our ability to run exterisive throughput tests on the 
central site computer some two months before the 
central-site CPU control program and the mathematical 
model became operational. These tests are discussed 
later. 

Sequence of events 

Figure 2 shows the sequence of events occurring 
during every frame at both ends and their time re
lationships. In a more conventional computer, the 
functions performed in the 6000 Peripheral Processing 
Unit (PPU) will have to be allocated in part to a 
buffered data channel and in part to the CPU. 

At the central site, the PPU detects the beginning 
of a new frame in its clock* routine and transmits a 
"Start-of-Frame" interrupt code to the remote. It then 

* The clock referred to is the 6000 12-bit real-time clock (a 
standard feature) counting at 1 microsecond intervals. Our PPU 
maintains a 24-bit "software" clock by referring to the hardware 
clock periodically. 
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Figure 2-Seqttence of events in a frame 

This diagram shows the scheme of synchronized communica
tion employed. A Start-of-Frame interrupt from the 6600 
triggers a sequence of data exchange in a prearranged order 
known to both computers. When not required by the real-time 
simulation,the central and remote CPU's are available for batch 
or other work. 

Not shown is the option of transmitting to the remote previous 
(rather than current) frame data, to acheive a high degree of 
I/O-CPU overlap in the central computer. In this option, the 
phase shift error is 2T, where T is the frame time. Standard 
extrapolation techniques may be used to compensate for this 
error. 

switches the. communications controller to the RE
CEIVE mode in preparation for the expected AD data 
from the remote. When this data begins to arrive, the 
PPU accepts it into a temporary buffer in its own 
memory. After the correct number of words have been 
received, the PPU tralli3fers them to Central Memory 
(CM) and requests the CPU from the monitor. When 
the CPU program is finished, it signals the PPU, and 
the PPU transfers the block of output (DA) data just 
generated by the. CPU program to its own memory.** 
The PPU then switches the controller to TRANSMIT, 
transmits the output block, and returns to watch the 
clock for the beginning of the next frame. 

The computer at the remote end, with its communi
cations controller at IDLE, waits for the Start-of
Frame interrupt code from the central computer. The 
receipt of this code interrupts normal processing on 
the remote computer and transfers control to an inter
rupt routine. This routine pulses the CONVERT com-

** Optionally, the PPU can be made to transmit data from the 
previous frame, overlapping the transmission with CPU execution 
for the current frame. This permits increasing the volume of data 
exchanged (or, alternately, increasing the permissible CPU 
execution time) every frame, at the cost of increasing the phase 
shift error to twice the frame time. 

mand for the DAC's (digital-to-analog converters), and 
switches the SH (sample/hold) circuits to HOLD. It 
then inputs the AD values (a buffered channel operation 
can be used) and packs the data in a format which 
will. result in the most efficient transmission, i.e., the 
least number of unused bits. This is particularly im
portant when using the 40.8 K bits/sec. facility, since 
at this relatively low speed, data transmission can 
occupy the major portion of the frame time. The routine 
then releases the SH's, switches its controller to 
TRANSMIT, initiates a buffered data channel output 
operation, and returns control to the operating system. 

The end-of-operation interrupt from this channel 
calls another routine. This routine switches the con
troller to RECEIVE, in anticipation of DA data to 
be sent by the central computer, and initiates a buffered 
input operation, after which control is again returned 
to the system. 

The data channel commences input only when the 
Begin Data code arrives. This time, the end-of-operation 
interrupt, which occurs after the last data word is 
received, schedules a routine which unpacks the DA 
data just received and loads it into the first ranks 
(buffer registers) of the DAC's, in preparation for the 
next Start-of-Frame interrupt code, which will cause 
actual DA conversion. The controller reverts to IDLE 
automatically when the reception is complete. The 
remote now waits for the next Start-of-Frame interrupt 
code. 

Synchronization and central p1'ogram organization 

The remote communication equipment imposes cer
tain restrictions on the method of communication be
tween the two computers. It is important to recognize 
these ·restrictions, since they are essentially independent 
of the type of computers involved. 

1. No control, status, or parity information is carried 
within the data words or block. This is done in the 
interest of speed. 

2. Control information can be exchanged only. when 
data is not. 

3. Typically, only one control (interrupt) code is avail
able to obtain the other computer's attention. 

4. The controller does not know the size of the data 
blocks. 

The practical implications of these restrictions are 
that the computer cannot junction the remote equip
ment, that the remote equipment cannot interrupt the 
central computer with a priority structure and that 
both computers must be aware of the size of the data 
blocks exchanged. 
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The user's (applications) program, which is formally a sub
routine of the control program, communicates with the latter 
through labeled COMMON blocks. The control program handles 
system communication tasks, controls the PPU remote communi
cations program, and provides scaling and packing services. 
Under control program direction, user's flight history data, as 
well as error and timing statistics, are directed to disk or tape 
files. The remote computer is transparent from the user's point 
of view and requires no programming or special considerations. 

Two logical* solutions to this impasse are possible. 
The one typically employed in RJE support-software, 
uses the interrupt code as an "attention getter", fol
lowed by the exchange of a block of data of known 
length. This block contains either instructions on what 
is to follow, or requests for desired action. In order to 
prevent confusion, one computer is typically restricted 
to issuing instructions only, whereas the other issues 
requests only. 

The second solution, which-as is evident from the 
preceding discussion dealing with the sequence of 
events-is the one that we use, is to periodically ex
change data in known block sizes, and have the control 
or status information coded into known places in the 
data block. This technique is particularly suitable for 
real-time simulations, which are characterized primarily 
by the periodic exchange of blocks of data between the 
analog and digital domains. 

In our case, the first word of both the input and 
output plocks is reserved for functions and status. 
Typically, the remote computer codes into its outgoing 
block mode control and other requests introduced by 
the remote user through his typewriter keyboard. The 

* The hardware solutions: use a communication link that will 
sustain the same data rate as local equip~ent, and design 
data sets and controllers to decode control information; or, 
dedicate a separate communication link for control and status. 
Either solution is very expensive. 
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central computer uses the control word for mode ac
knowledge (to signify the acceptance of the remote 
user's commands) and for error information, alerting 
him to errors occurring either in his central program 
or in the received data blocks. 

Perhaps the most important outcome of this method 
of synchronization is the organization of the CM 
(Central Memory) program. Figure 3 shows the overall 
data flow and program organization in CM. The re
quests contained in the mode word received at the 
central computer often require further dialog with the 
PPU (somewhat like system action requests in more 
conventional computers); at other times, these requests 
need only be interpreted by the applications program 
(for example, a mode change from OPERATE to IC); 
and sometimes both system action and applications 
program cooperation is required. To relieve the user of 
the need to communicate with the PPU or the system, 
a central memory control program was introduced. 
This central control program (coded entirely in 
FORTRAN) acts somewhat like a monitor or a super
visor as far as the applications program is concerned, 
but appears to be just another user's job to the system's 
(real) monitor. Rather than have the user communicate 
with the system and PPU through FORTRAN callable 
subroutines, as is normally the case in conventional 
real-time simulations, the user's program is, formally, 
a subroutine of the control program. * The control pro
gram, which is called by the PPU at the start of every 
frame, examines the mode word in the input block just 
received. The control program initiates system or PPU 
actions, if required, before transferring control, with a 
minimum of fanfare, to the user. 

The interface between the user's program and the 
control program is in labeled COMMON, to which the 
user supplies arrays of scale factors and unscaled, float
ing output data, and from which he retrieves input 
data ready for unsealed floating computation, as well 
as mode information. 

The reSUlting modular program organization not only 
frees the user from the drudgery of handling compli
cated, machine-dependent control functions so that he 
is able to concentrate on developing his mathematical 
model program, but also permits replacing one appli
cation program by another with a minimum of pain. 

The periodic data exchange, by keeping the com
munication link alive at all times, permits the IC mode 
to become an important debugging tool, since infor
mation flow is dynamic but the central applications 

* Obviously, it is just as easy to require the user to execute a call 
to the control program as his first executable statement. Aside 
from psychological considerations, there seems to· be no real 
advantage to doing so. 



244 Spring Joint Computer Conference, 1970 

program is static. Furthermore, a static test mode is 
easily implemented without requiring special programs 
to be loaded in either at the remote or the central site. 
In this mode, blocks of bit patterns are circulated 
through the entire system and searched for errors when 
they arrive back at the originating computer. The 
integrity of the communication path, as well as the 
reliability of the AD equipment, can be easily checked 
in this mode. 

Simulation control at the remote site 

The remote user is presently provided with an ele
mentary level of control and monitoring of his job. 
Through the keyboard of his remote computer, he is 
capable of entering commands of essentially two types: 

1. Simulation Mode Control 
2. On-line debugging 

Mode control commands include the standard 
OPERATE, HOLD, and IC which are meaningful 
primarily to the applications program. In addition, two 
special modes are available: STATIC TEST, which, as 
mentioned previously, is a hardware test mode intended 
to check the integrity of the communications path; and 
STANDBY. 

The user enters the STANDBY mode whenever he 
anticipates a relatively prolonged period of inactivity 
(say 15 minutes or more) because of the need to attend 
to the simulation gear, or simply to analyze the results 
of the last run and prepare for the next one. 

The function of the STANDBY mode is to permit 
the central computer to minimize the idle resources 
dedicated to the simulation. Upon receipt of this com
mand the CPU is released. The PPU program copies 
the contents of the core space occupied by the appli
cations and control programs to a file on the disk. 
I t then releases the core space. Then, the PPU program 
goes into a "periodic recall" state, in which the PPU 
is released back to the system and is only claimed 
again for a very short period at regular intervals 
(nominally every 10 seconds). When the remote user 
is ready to resume operation, he reinitializes the remote 
computer; the PPU program detects this and resumes 
continuous control of the PPU. It then reclaims the 
necessary memory space and copies to it the program 
image previously saved on the disk. If, in the meantime, 
memory has been occupied by other jobs, operator 
attention is requested via a flashing message on the 
operator's· CRT station. Automatic rollout of batch 
jobs under these circumstances can be implemented. 

For on-line debugging, the remote user can select 
any variable from his central memory program and 

direct it to appear on any output (DA) channel by 
typing in an appropriate command. This has been 
achieved in a fairly unsophisticated way. The user is 
required to arrange all his variables of interest in 
COMMON blocks, and order the blocks so that each 
variable can be referred to by an ordinal relative to the 
beginning of the first COMMON block. A pointer array 
is maintained (also in COMMON) with an entry for 
each output (DAC) channel available. The contents of 
these pointer cells are the ordinals of the variables 
which are to appear on the corresponding channels. 
After completing its computation for the current frame, 
the applications program fills its output buffer as in
structed by the pointer array. The remote user simply 
manipulates the pointer array contents when he wants 
to change channel assignment. 

A similar technique may be used to insert values 
into any desired variable. The remote station would 
probably transmit to the central computer the char
acters as entered by the user. The central computer will 
perform the conversion to binary quantitites so that 
the remote computer, which, in general, can be expected 
to have a much smaller word-length, is not required 
to carry triple or quadrupl~-precision quantitites. Dig
ital values to be displayed on the remote computer's 
typewriter will be treated similarly. 

In general it is clear that a much more sophisticated 
debugging facility is highly desirable, including a sym
bolic insert! delete facility, as well as the ability to 
manipulate source files (or any other files for that 
matter). These capabilities are currently fully de
veloped for local simulations, via an interactive CRT
keyboard user's station. A number of possibilities of 
bringing these capabilities to the remote site exist. 

The remote user is also permitted to manipulate 
on-line, the frame time and the number of AD /DA 
channels. 

Real-time I/O 

In almost every real-time simulation, it is desirable 
to input and output other than analog data during the 
simulation. This is done, for example, to provide some 
means of printing flight history data while the simu
lation is in progress, or, at least, shortly thereafter. 
Other uses for this capability are the accumulation of 
error history files and, on the input side, the collection 
of telemetry data, the reading of functional tables for 
function generation tasks, and so on. 

Standard FORTRAN coded or binary I/O state
ments cannot be used, since the compiler, taking into 
account the multiprogramming environment in which 
the object code will operate, codes these so that control 



is returned to the operating system until the requested 
I/O is completed. Fortunately, the 6000 FORTRAN 
includes as a standard feature buffer I/O statements 
which allow the user to continue his processing after 
initiating the operation. The user must, of course, be 
careful to check the status of the previous buffer oper
ation before attempting a new one to the same device. 
In general, the user is expected to use circular (chained 
tail-to-head) buffers, so that· when one segment is in 
the I/O process, the other is being manipulated by the 
program. By increasing the size of the buffer, the user 
can relax his I/O timing constraints, often to the point 
where'he can share the system's device (typically a 
disk), rather than requiring a dedicated unit (tape or 
disk pack). 

In our experiment (Figure 3) we used this technique 
for accumulating flight history, error logs, and timing 
statistics on the system's disk. The files generated in 
this way can be transmitted to the remote for printout 
after the simulation. 

In the future it may be very desirable to obtain 
on-line printout at the remote site. This can be achieved 
by adding a few words at a time to the output block. 
However, the number of words per frame that can be 
transmitted is clearly limited by the speed of the 
communications facility. 

Remote terminal organization 

I t is worth noting that the system configuration 
shown in Figure 1 was designed to support remote job 
entry (RJE) facility under control of a combined 
6000/1700 software system termed Export/Import. 
This facility, which is still available, although not 
simultaneously with real-time operation, must be re
garded as mandatory. It is hard to visualize a serious 
effort to develop a real-time application remotely, unless 
the capability for volume source statement insertion 
and volume printing is present. 

In later phases of the development, such as the de
bugging phase, the ability to quickly insert or delete a 
few statements at a time, into or from a source file 
maintained at the central site, becomes more important. 
Here an interactive CRT station could become a quite 
useful adjunct to the remote terminal. 

In general it is safe to say that a general purpose 
computer is almost mandatory at the remote site (as 
opposed to special purpose hardware), to support the 
many varied activities ancillary to the real-time simu
lation. These include, among others, servicing of the 
user's station (typewriter or CRT/keyboard), and sup
port of a card reader and a line printer for the RJE 
facility. Admittedly, the remote computer need not be 
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as powerful as the one we used. However, if one of the 
many available "mini computers" is selected, the ques
tion of software development for both the simulation 
tasks and the related activities should be carefully 
weighed against the possible saving in mainframe cost. 

EFFECT ON THE CENTRAL SITE 

The installation is administered primarily as a very
high-volume, very-high-throughput facility. * Some 1200 
batch jobs, submitted locally and remotely, are proc
essed in a typical day. For this reason it was considered 
important to establish the effects of adding the remote 
real-time simulation load to this system. The primary 
objective of the throughput tests was to obtain quanti
tative data relating to these effects. 

Test plan 

The installation maintains two types of standard test 
devices that enable it to measure the effects of proposed 
changes-such as modifications to the operating system 
or installation procedures-on the current load. One 
such device is the Job Mix Sample. It is a set of some 
70 actual jobs whose processing requirements are based 
on the known characteristics of the current system 
load. The first shift part of the job mix consists pri
marily of small, fast jobs, while the 24 hour mix also 
contains several large jobs with relatively long execution 
times. The Job Mix Sample is updated about every six 
months to reflect the current job mix characteristics. 
In effect, the Job Mix Sample compresses a whole 
day's operation to a several hours' run, and enables the 
installation to conduct controlled experiments. 

The second device is an event-oriented (discrete) 
Simulator. The Simulator accepts (a) a description of 
the important parameters of the computer (e.g., core, 
number and speed of tapes and unit record equipment, 
etc.); (b) a definition of the queue-selection and priority 
determination algorithms; and (c) statistical distribu
tions of job requirements, categorized by user groups, 
remote or local terminals, tape or non-tape jobs, etc. 
Job requirement distributions include arrival time and 
required resources. The Simulator samples these distri
butions randomly to create a job mix, and monitors 
job throughput, resource utilization and turnaround 
times. The Simulator processes a 3 days' load in 30 
CPU seconds. Its accuracy is reported to be ±5% on 
throughput and ±15% on turnaround time. 

* The interactive terminals, operating under SHARER, a special 
sub-system of the operating system, are few and are served only 
during certain hours of the day. 
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TABLE II-6600 Throughput Test Conditions 

Condit.ion 

No. 

1 
2 
3 
4 
5 
6 
7 

RTS Hequirements 

Core CPU 

40K(8) 
50 K(8) 
40 K(8) 25% 
40 K(8) 40% 
40K(8) 40% 
20 K(8) 25% 

We used the Job Mix Sample to determine the effect 
that the real time application had on the batch proc
essing workload of the central facility. We first obtained 
actual throughput time under normal operating con
ditions and again under various conditions with the 
real time job active. Data points were obtained for the 
first shift portion of the Job Mix Sample, as well as 
for the entire 24-hour period Sample. The conditions 
for which these throughput tests were run are shown 
in Table II. 

Test results 

We have defined throughput degradation as follows: 

d
. t(N) - t(ref) 

thruput egradatlOn (percent) = X 100 
t(ref) 

where: t(N) is the time required to run the Nth job mix 
case and t(ref) is the time required to run the job mix 
under the current production system. Thus a 100% 
thruput degradation refers to the situation where, be
cause of the real time job requirements, the job mix 
takes twice as long to run as it does under the current 
operation system. Table III summarizes the results of 
the Job Mix Sample throughput tests. 

Data collected from the 6600 simulator program are 
plotted in Figure 4. This graph depicts the throughput 
degradation that can be expected as a function of, and 
because of, the core required by a real time job. The 
curve passes through zero degradation at a real time 
job core requirement of 10K(8) because this is the 
amount of core required to support the RJE in the 
current production system, and RTS and Export/Im
port do not run concurrently, as explained earlier. 
Several data points obtained from Job Mix Sample 
test cases are also shown in Figure 4. These include the. 
results from case 2 and 3 as well as extrapolated data 
points based on the difference between cases 4 and 7. 

Export/Import 
Remarks 

Running 

Yes Current Production System 
No Heal time job not executing 
No Real time job not executing 
No 
No 
Yes 
No 

I t will be noted that the correlation between the simu
lator results and the results of 1st shift thruput tests 
is quite good while the 24 hour job mix thruput results 
lie considerably further from the simulator curve. The 
statistical representation of the 24 hour job mix is 
probably not nearly as good as that of the 1st shift 
mix. Thus the discrepancies in Figure 4 are caused by 
too small a sample of jobs in the 24 hour mix. 

Figure 5 shows the throughput degradation resulting 
from the real time job CPU requirements. The curves 
are plotted by subtracting the degradation due to RTS 
core requirements from the total degradation observed 
during the Job Mix Sample tests. This assumes that 
total system degradation can be obtained by merely 
adding the effect shown in Figure 4 to that shown in 
Figure 5. Two sets of curves are shown in Figure 5. 
One is drawn under the assumption that the simulator 
results (Figure 4) are applicable while the other is 
drawn assuming that the Job Mix Sample test data 
points apply. 
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Figure 4-Throughput decrease vs. RTS core requirements 

Since H TS replaces RJE packages requiring 10 K8, the curve 
passes through zero decrease at that point. 
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TABLE III-Results of 6600 Job Mix Sample Throughput Tests 

Test Condition 
No. 

1 
2 
3 
4 
5 
6 
7 

1st Shift 
Job mix 
(Case A) 

33.55 
43.00 
45.43 
47.50 
55.30 
61.80 
41.65 

Run Time 
(minutes) 

24 hour 
Job mix 
(Case B) 

75.28 
94.,1)0 

100.75 
113.00 
131.40 
142.22 
103.30 

Figure 5 is plotted for a particular configuration of 
the 6600 system; i.e., no Export/Import operation, 
RTS assigned a dedicated PP and RTS assigned 40K(8) 
memory locations (which leaves 300K(8) for batch 
work). The CPU time is also assumed to be required 
on a 20 millisecond interrupt basis. However, included 
are the results obtained from case 7. Since the real 
time job was assigned only 20K(8) for case 7, and 
there is good correlation between the results of case 7 
and the curves of Figure 5, Figure 5 is probably ap
plicable over a wide range of real time job core require
ments. 

Figure 6 shows the average total 6600 CPU usage 
(iIi percent) by both the batch jobs and the real time 
simulation while the Job Mix Sample tests were running. 
Ideally, if every job used the CPU only when no other 
job needed it (i.e., during the other jobs' I/O wait 
periods), then 100% CPU utilization could be attained. 
As this figure shows, while there has been a dramatic 
improvement in CPU utilization due to the introduction 
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CPU Thruput 
Utilization Degradation 

24 hour 1st Shift 24 hour 
Job mix Job mix Job mix 
(Case B) (Case A) (Case B) 

60.4% 
50.1% 21.0% 25.6% 
47.6% 27.8% 33.7% 
73.1% 33.6% 50.1% 
83.6% 54.6% 74.6% 
78.5% 74.0% 88.9% 
N/A 17.4% 37.2% 

of RTS, there are still occasions when, because of I/O 
or memory conflicts, no job is ready to use the CPU. 

One unexpected result of the throughput tests was 
the amount of CPU overhead we experienced in getting 
the real time simulation on and off the CPU. In theory 
the "on" delay is not accountable as real time job CPU 
time and the "off" delay, which is accountable, averages 
about 300 microseconds each time the real time job 
releases the CPU. The accountable CPU overhead 
measured during the throughput tests averaged 900 
microseconds per frame. We have not been able to 
identify the source of this overhead. 
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Figure 6-Average CPU utilization vs. RTS CPU requirement 

Although percent utilization has increased considerably, 
it falls short of the theoretically possible 100%. That goal can be 
attained only if the queue managing algorithms are continuously 
adjusted to eliminate the condition where, because of I/O waits 
or memory conflicts, no job is ready to use the CPU. 
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Figure 7-Typical strip chart recordings from the simulation 

Roll and pitch commands are generated by a "joystick" and 
transmitted to the central 6600. Other traces represent results of 
the 6600 computation transmitted back to the remote site. 

U sing the results 

Knowing the extent to which a real time application 
will affect the batch throughput on a central facility is 
one thing, but determining whether the operation could 
tolerate the degradation is quite another. A host of 
variables such as "spare" capacity on the central 
processor, the percentage of the time during which the 
real time job is inactive ("STANDBY"), rel~tive econ
omies and flow time associated with alternate ap
proaches, as well as importance of the real time appli
cation, make sweeping generalizations rather difficult. 
It is possible, however, to identify several situations 
where the remote application concept would be an 
attractive solution to a real time computing require
ment. 

A central facility operating at less than 85% or 90% 
capacity (critical resource capacity) is, of course, an 
excellent candidate for implementation of the remote 
simulation capability. Once a production facility is 
operating above that level, the relative merits of batch 

vs. real time work come into play; but several con
ditions could result in the real time job taking prece
dence. Some of these conditions might be: 

1. Limited duration of the real time application 
a. to support a "crash" effort (e.g., short-deadline 

proposal) 
b. to conduct a one-shot series of tests 
c. to allow time for purchase of additional com

puting equipment. 
2. Availability of "outside" facilities to run batch back

log created by the real time application. 
3. Restricting the real time application to certain hours 

of the day. 

Special test facilities or hybrid simulation labs that 
are currently in the planning stages can quite easily be 
structured to take advantage of the remote simulation 
concept, since remote terminal processors that can 
double as special purpose stand-alone digital computers 
are available. In a lab such as this, much of the real 
time application work would be accomplished using 
the remote terminal processor only, but the speed and 
power of a large central processor would be available 
for those applications that required additional com
puting capacity. 

CONCLUSION 

A successful demonstration of remote real-time simu
lation was carried out in January, 1970. The demon
stration consisted of "flying" the airplane simulation 
discussed in this report from the developmental center 
(location of the 1700) in Seattle, Washington. The 
math model was implemented on a 6600 in the Boeing 
Renton facility and communication between the 1700 
and 6600 was via 48 KHz lines. Each mode of operation 
discussed earlier was shown to be operational. Figure 7 
is a typical set of strip chart recorder traces obtained 
during the demonstration. Traces of the pitch and roll 
commands as well as computed roll, pitch, sideslip 
angle and angle of attack shown. This technique is 
presently being considered as the primary simulation 
tool for possible forthcoming work such as the B-1 
effort. 

The remote simulation concept, therefore, appears to 
offer important new possibilities in the design of new 
simulation facilities and in the manner of utilization of 
existing ones. 
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INTRODUCTION 

The launch of a Saturn V vehicle is preceded by a 
complicated chain of checkout operations, which involve 
a large system of checkout and launch equipment in 
the Launch Control Center and in the Mobile Launch 
Facility at the Kennedy Space Center to assure the 
integrity of the flight systems. This checkout and 
launch system consists of manual checkout panels, 
ground support equipment (GSE) , telemetry stations, 
data links, and two RCA-110A launch control com
puters. Commands initiated in the Launch Control 
Center are transferred by these computers to the launch 
vehicle under checkout. The computer sends out stimuli 
and receives responses which are evaluated based on 
predicted values stored in the computer memory. 
Sending out stimuli and monitoring the responses is 
done in a controlled sequence by test programs residing 
in the launch computers. These test programs must be 
thoroughly checked out before they are allowed to run 
at the launch facility. The rigid testing of the launch 
computer programs is done at simulation facilities which 
imitate as closely as possible the environment of the 
launch computers, i.e., the functions of the vehicle, of 
the GSE, and of the checkout system. Most of the 
checkout is done with hardware simulators such as the 
"Saturn V-Breadboard" which uses partly actual flight 
hardware and simulates certain mechanical and hy
draulic equipment by electrical circuits. 

In order to aid the checkout engineer in the design 
and evaluation of test programs, two major software 
simulators have been developed by MSFC. These soft-

ware simulators simulate the on-off functions of discrete 
networks by evaluating large sets of Boolean equations 
including discrete time-delays for pickup and dropout 
of relays, valves, etc. They evaluate the equations in 
non-real time and are driven by pre-determined se
quences of states of switches and stimuli as generated 
by test programs. 

More than three years ago, a joint effort between the 
Astrionics Laboratory and Computation Laboratory 
began to define a simulation system in which a digital 
computer would simulate in real-time the vehicle and 
GSE functions in response to stimuli sent from the two 
launch compute;s. The objective of this project was to 
find a new way to perform major functions of the 
Saturn V-Breadboard with a more flexible digital com
puter, so that RCA-110A launch computer programs 
could be checked out, test programs could be evaluated, 
and the effect of malfunctions could be investigated 
without having to use and possibly damage expensive 
hardware. The primary design objectives were to insure 
that: 

1. The simulator would act in such a way that the test 
programs of the two launch computers would think 
they were working with the actual vehicle and GSE 
in real-time. 

2. The prime portion of the simulator, the software, 
should be structured in such a way that no repro
gramming would be necessary when a configuration 
other than Saturn V had to be simulated, as long 
as the hardware components could be described by 
the same nomenclature for the data base. 
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Figure I-Saturn V-launch computer complex configuration 

3. To provide the engineer with the capability of com
municating directly with the computer when using 
the simulator. 

I t was determined that the feasibility of this ap
proach could best be demonstrated by using the Saturn 
V configuration as a test bed. 

The emphasis of this paper is on describing the soft
ware of the simulator. The operation of the simulator 
facility and the form of the mathematical models which 
are inp~t into the computer are described in detail in 
Reference 5. However, to understand the structure and 
problem areas of the software, it is necessary to also 
understand the configuration of the hardware. 

SCOPE OF SIMULATION 

A simplified diagram of the Saturn V-Launch Com
puter Complex configuration is shown in Figure 1. 
The launch computers in the Launch Control Center 
(LCC) and in the Mobile Launch Facility (MLF) send 
out discrete signals (up to 2040 "Discrete Out or DO") 
to the Vehicle through the GSE. The sequence and 
addresses of these signals is determined by the test 
programs. The vehicle then sends discrete and analog 
responses (measurements) back to the computers. Most 
of the discrete measurements (up to 3024 "Discrete 
In or DI," i.e., open/closed relay contacts, valves, 
switches, or gates) are fed through the GSE, while all 
the analog measurements and a few digital measure
ments are transmitted through the digital data acqui
sition system (DDAS) or telemetry system into the 
DDAS Computer Interface. The DDAS is the whole 
collection of equipment which lies between the sensors 
and the DDAS Computer Interface, i.e., per vehicle 

stage a transmitter; a line driver and receiver; and a 
digital receiver station. The transmitter consists of a 
scanner, digital and analog multiplexer, A/D converters, 
generator of identification codes, and modulators; the 
line driver and receiver contain amplifiers and de
modulators. The digital receiver station converts the 
de multiplexed measurement information into synchro
nized data words and address words and sends them to 
the Computer Interface. The Computer Interface is 
mainly a digital memory that can store up to 8192 
words, and a ·special controller which stores one meas
urement word every 278 p'sec in proper sequence and 
which allows the launch computers to retrieve stored 
data at random under several modes. The data are 
stored in the Interface according to their identification 
number containing the stage, channel, frame, multi
plexer, and master frame numbers. The controller in
sures that the data request from the RCA-110A com- ( 
puter is properly decoded to find the requested measure
ment. For a measurement which has to be scanned at 
a higher rate, the scanner, moving with constant speed, 
accesses the sensor several times, and therefore, stores 
it at several places. The RCA-110A computer can 
access the data in the Interface in several modes, e.g., 
the request can be synchronized with the incoming 
data, or locked at a specific measurement. Up to 4500 
DDAS measurements can be handled by the Interface. 

The launch computers themselves are connected 
through a data link for exchange of information. The 
test conductor controls the launch checkout through 
the Saturn V -display which is driven by a smaller 
DDP 224 computer. The coordination of the many 
test programs, display programs, and control programs 
for the peripheral equipment (printer, card reader, etc.) 
is done by the RCA-110A Operating System. 

The simulator performs the functions of the equip
ment shown in the upper portion of Figure 1. The 

S 
I . 
U 
L 
A 
T 
o • 

LAUNCH 
COtII'LEX 

COIII'UTERS 

Figure 2-Real-time simulator systems configuration 
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Figure 3-Example of a typical discrete/analog circuit, 

hardware portion of the simulator comprises the SDS-
930 digital computer with 32K words of core memory 
and its peripheral equipment and bulk memory devices, 
and a special purpose interface (SDS Interface) which 
is in size similar to a small computer (Figure 2), This 
interface performs the functions of the DDAS Com
puter Interface but does not contain a memory since 
a portion of the SDS-930 memory is dedicated to these 
functions, The SDS Interface contains counters, special 
registers, and controllers which enable the two launch 
computers to communicate with the SDS-930 computer 
in the same modes as in their actual launch complex 
environment, 

Data base 

The functions of the vehicle and its ground support 
equipment as seen by the test programs can be de
scribed by large sets of logical equations and by analog 
time functions which are described by polynomials or 
tables, The logical or Boolean equations are time
dependent in the sense that they consider pick-up and 
drop-out time as a time-delay, The logical equations 
consist of AND and OR terms (* and +) and negations 
of a single variable ( - ), Special relays such as lock-out, 
lock-up, and latching relays can be expressed by 
equivalent circuits of regular relays, Figure 3 shows a 
simplified example of a typical discrete/analog circuit, 
For more detailed information see References 5 and 7, 

There are basically two types of equations possible: 

Logical equation 

E(i) = Yll(i) * ... * Y K11(i) 

+ Y12(i) * Y 22(i) * ... * Y K22(i) 

+ ... + Y1a(i) * Y 2a (i) * ... * Y Kaa(i) 

where 

or 
Y (i) = (-) Z (i) II P (i) D (i) II pq pq \ pq, pq 

Ppq(i) = Pick-up time (amplitude) of element Zpq(i) 

Dpq(i) = Drop-out time (amplitude) of element Zpq(i) 

and i, p, q, and a are unlimited index inte,gers 1, 2, 
3, ' , " i,e" the number of equations, OR-terms, and 
AND-terms is not limited. Pick-up time for a relay 
means the time between activation of the coil and the 
closure of an associated contact. Drop-out time is the 
time between deactivation of the coil and opening of 
an associated contact. Generally, pick-up time is the 
time-delay between cause and effect, and drop-out 
time the time-delay of the reverse action. Or mathe
matically, if it is the time instant of activation (de
acthmtion) the discrete variable Zpq(i) is 

Zpq(i) = 0 for time t < t1 + P pq(i)(t ~ it + Dpq(i») 

For a relay which has a pick-up/drop-out time of 
less than 10 msec the time-delay is ignored because 
the delay does not have an effect on slower mechanical 
devices. Thus, relay races between fast relays cannot 
be simulated, and it is not intended to detect them 
because the test programs do not check for them, For 
most relays, the bracket term can be deleted. 

The value of a logical variable may depend on the 
amplitude of an analog value, e.g., the pressure in a 
line, instead of a time delay. Then we write the termi
nators II instead of parentheses ( ). 

The discrete variables can have different physical 
meaning. We distinguish between a "DO" (Discrete 
Output signal from RCA computer), "DI" (Discrete 
Input signal to the RCA computer), digital DDAS, 
manual switch, power bus, and an "IV". An "IV" is 
an internal variable which is needed for internal compu
tation when a circuit stores a signal. 

Combined logical/analog equation 

A logical equation can be combined with an analog 
function. However, each analog function can be associ
ated with only one OR-term of the logical equation. 
An analog function can be described in eight different 
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formats such as a polynomial, table, cyclic function, 
etc. 5 In any case, the analog function is described to 
the computer by a one-letter code F designating the 
type of format and a variant set of parameters, all of 
which are enclosed with the terminators I·· ·1. These 
parameters also contain the sampling rate for that 
particular analog variable, the maximum and minimum 
amplitude limits, the maximum time, and the period 
of the time function. The general form of a combined 
logical, analog equation is: 

A (i) = logical OR-term I/F, analog function 
parameters 1 1 

+ logical OR-term 2/F, analog function 
parameters 2 I. 

where A (i) is an analog value. 
The interpretation of this equation is as follows: 

Assuming that only one OR-term generates a "1"" at 
one time (exclusive OR-terms) then the analog function 
of that particular OR-term is evaluated at the specified 
sampling rate. 

The data base for the total Saturn V including the 
GSE amounts to about 17,000 equations of various 
length. (See Table I). 

If systems other than Saturn V are to be simulated, 
only another data base has to be established; no repro
gramming is necessary as long as the functions of the 
physical system can be described by the same types of 
equations. The data base is initially set up via the card 
reader; modifications to it and control commands for 
the simulation are input via teletypewriter. 

SUvIULATOR SOFTWARE 

General 

The software for the simulator can be divided into 
three major areas: (1) Interface Support Software, 
(2) Simulation Processor, and (3) Simulator Diagnostics. 
The Interface Support Software controls the input into 
the DDAS-tables of the SDS-930 core memory and the 
output from it to the RCA-1IOA computer supported 
by the hardware of the SDS Interface. It also controls 
the transmission of the DO's, DI's, the analog values, 
various counters, and clocks. The Simulation Processor 
generates the data base in the computer from the card 
input, evaluates the equations during the simulation 
run, and controls the selective print-out of the simu
lation results. The Simulator Diagnostics checks all 
hardware units of the SDS Interface such as counters, 
data link control signals, and data transfer registers, 
and the communication between the SDS-930 and 
RCA-I lOA computers. The diagnostics check especially 
for critical timing. 

The design of the software is modular so that modifi
cations can be made relatively easily. The total software 
excluding the simulator diagnostics consists Qf approxi-

TABLE I-Magnitude of Equations 

Discrete 
Variables 

Analog 
Variables 

Discrete & Analog 

Discrete 
Equations 

Analog 
Equations 

ALL Variables 

MaX. Computer 
Capability 

Capability for 
DDAS (Analog) 

DO 

247 

4032 

SWItcH DI 

557 791 

791 

1000 6048 

DDAS 
DI 

186 

186 

BUS 

69 

69 

3000 3000 

LENGTH OF EQUATIONS (Rougb Estimate) 

Smaller than 10 OR-Terms 
Larger than 100 OR-Terms 
Between 10 " 100 OR-Terms 
Up to 1000 OR-Terms 

about 404 
about 201. 
about 354 
some to 

IV TarAL 

579 2429 

505 

2934 

579 1625 

505 

about 10000 

3000 about 20000 

4000 
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mately 315 subroutines and 26,000 instructions. These 
figures should give a feel for the magnitude of the 
software effort. 

Interface support software 

As stated previously, the simulator must provide all 
data input values to the launch complex computers as 
those provided by the launch vehicle, the Ground 
Support Equipment, manual checkout panels, mechani
cal and pneumatic systems, etc., at the Saturn V 
Launch Computer Complex. Additionally the simulator 
must accept input data from the launch complex com
puters and provide the necessary stimuli to the launch 
complex computers. These stimuli, in the form of 
Discrete Out (DO) signals, Discrete In (DI), and 
DDAS signals are provided by the interplay between 
the Interface Support Software and the SDS Interface. 

Each discrete signal (DI and DO) is represented in 
fixed locations of the SDS-930 memory by the presence 
or absence of a signal bit in the DI- and DO-Status 
Table thus allowing twenty-four discretes to be repre
sented in each twenty-four-bit computer word. 

Software is also provided to support the input/output 
requirements to Direct Access Communication Chan
nels, Time Multiplexed Channels, etc., for the storage 
and retrieval of data from mass storage and the re
cording of data on magnetic tape. 

Discrete out/discrete in signals 

The Real-Time Phase of the simulation processor 
receives Discrete Out signals from either of the two 
RCA-110A computers via the SDS Interface and stores 
these signals in the DO Status Table. Upon receipt of 
the Discrete Outs a chain of Boolean and DDAS 
equations are evaluated by the Real-Time Simulation 
Program, and the results of the evaluation are placed 
in either the Discrete In (DI) status table or in the 
DDAS data table. Both the Discrete In Status Table 
and the DDAS Data Table are scanned continuously 
by the SDS Interface, thereby providing current infor
mation to the RCA-110A computers upon request. 

Digital data acquisition system (DDAS) 

The basic function of the DDAS facility at the 
Saturn V Launch Computer Complex is to periodically 
sample vehicle parameters and make this real-time data 
available to the two RCA-110A launch computers. In a 
simulated environment, the Simulator and its associated 
Interface hardware must commutate data for use by 

both RCA-110A checkout computers. This commutated 
data must be in the same format as the data provided 
by the Launch Computer Complex. This will allow 
the Simulator to provide information for the RCA-110A 
through the commutation processing of the SDS Inter
face. The DDAS data represent both analog and discrete 
data. The analog data is represented in ten bits of a 
twenty-four bit SDS-930 computer word. There are 
ten discretes represented in each SDS-930 computer 
word with each discrete being represented by the 
presence or absence of a single bit. 

DDAS simulation requires three DDAS memory 
tables within the SDS-930 computer for use by the 
Simulator and the SDS Interface (Figure 5). The 
DDAS data words which are the results of the evalu
ation of the combined discrete/analog equations are 
stored in a block of memory of the SDS-930 computer 
which is referred to as the DDAS Commutation Data 
Table. The address of this data word is stored in the 
DDAS Commutation Address Table according to the 
sampling rate required for this measurement. As a 
final step in the commutation process, the data words 
are stored by the SDS Interface in the appropriate 
locations in the DDAS Commutation Output Table 
where they can be accessed by either RCA-110A com
puter via the SDS Interface. 

DDA5 C<HIlJTATlON 
DATA TABLEl 

DDAS ClHWTATlON 
ADDRE 55 TABLE 2 

DDA5 C<HIlJTATION 
OUTPUT TABLE3 

23 10 

: Data Word 
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Address 81 iAddress Al 1 
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I . 
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I 
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1. Table is updated by the Simulator Program. Reserved during Initialization 
Phase. 

2. Table 1s used by interface hardware for control of data transfer from 
Data Table to Output Table. Setup during Initialization Phase. 

3. 24-bit words available to the RCA 1111A' s from this table. All accesses 
by the RCA 1101. is through the interface hardware. Reserved during 
Initializat ion Phase. 

Figure 5-DDAS simulator commutation memory tables 
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Time counters and clocks 

Two methods of timing are provided in the Simu
lation Processor to establish the necessary control for 
scheduling timed events during the Real-Time Phase of 
simulation. 

A set of 190 elapsed time counters provide the capa
bility of establishing arbitrary time delays for schedul
ing of time-critical equation evaluations or re-evalu
ations. The counters are fixed, consecutive cells in the 
SDS-930 memory which are incremented by the inter
face hardware at one millisecond intervals. The number 
of counters is limited to 190 because incrementation 
of each counter requires two cycles (3.5 microseconds) 
of memory access time (maximum of 0.665 ms, leaving 
0.335 ms for DDAS commutation and for servicing 
RCA-110A data requests). The Real-Time Simulation 
Phase stores the complement of the desired elapsed 
time in a pre-defined memory location and initiates the 
hardware incrementation which is then automatic until 
a cell counts to zero. When a cell has counted to zero, 
the automatic incrementation halts, the address of the 
zero cell is recorded by the SDS Interface, and a pro
gram interrupt occurs. The Interrupt Service Routine 
then schedules the associated equation for evaluation 
by placing it in the highest priority queue. The Inter
rupt Service Routine also removes this clock from the 
queue of active clocks and reinitiates the automatic 
incrementation. The automatic incrementation must be 
restarted within one millisecond to insure that all clocks 
are updated accurately. 

The system real-time clock provides the relative time 
of events during the Real-Time Phase of the simulation 
processes. The real-time clock is serviced at one milli
second intervals by a system generated interrupt. At 
each interrupt, the Real-Time Program increments the 
real-time clock. 

Disc/tape-core communications 

The Direct Access Communication Channel (DACC) 
controls the transmission of equations from the rapid 
access disc (RAD) to the SDS-930 memory. Initiation 
of the transmission is controlled by the Real-Time 
Simulation Phase which uses the buffer code/disc ad
dress of the equation in conjunction with the Buffer 
Description Tables (Table II) to compute the number 
of words to be transmitted and then initiates the 
transmission which remains under DAAC control until 
completed. Upon completion, a program interrupt is 
generated. The Interrupt Service Routine transfers the 
equation to a specified memory location for later evalu
ation, and initiates the transmission of the next equation 
to be input. 

TABLE II-Buffer Description Tables 

BUFFER CODE ADDRESS TABLE 

WORD DEFINITION 
o ADDRESS OF START OF BUFFER GROUP WITH CODE 0 
1 ADDRESS OF START OF BUFFER GROUP WITH CODE 1 
2 ADDRESS OF START OF BUFFER GROUP WITH CODE 2 
3 
4 

N 

WORD 
o 
1 
2 
3 
4 

N 

N = 31 

BUFFER CODE SIZE TABLE 
DEFINITION 
NUM. OF LOC. ALLOTED TO EACH EQU. REC. IN BUFFER GROUP 0 
NUM. OF LOC. ALLOTED TO EACH EQU. REC. IN BUFFER GROUP 1 
NUM. OF LOC. ALLOTED TO EACH EQU. REC. IN BUFFER GROUP 2 

N = 31 

BUFFER CODE NUMBER TABLE 

WORD DEFINITION 
o NUMBER OF BUFFERS ALLOTED IN BUFFER GROUP 0 
1 NUMBER OF BUFFERS ALLOTED IN BUFFER GROUP 1 
2 NUMBER OF BUFFERS ALLOTED IN BUFFER GROUP 2 
3 
4 

N N = 31 

BUFFER CODE AREA TABLE 

WORD DEFINITION 
o TOTAL NUMBER OF LOCATIONS IN BUFFER GROUP 0 
1 TOTAL NUMBER OF LOCATIONS IN BUFFER GROUP 1 
2 TOTAL NUMBER OF LOCATIONS IN BUFFER GROUP 2 
3 
4 

N N = 31 

During the Real-Time Phase, the Time-Multiplexed 
Communication Channel is used for generating a com
plete history of events to magnetic tape. 

Simulation processor 

The prime objective of the Simulation Processor is 
to prepare and execute the simulation in such a way . 
that the stimuli of the RCA-110A computers are all 
received and their response signals (often several re
sponses to one stimuli) generated with the same precise 
time lag as in reality.13,14 The huge size of the equation 
data base (17,000 equations), the limited core size of 
actually only 19k words (13k of the 32k are used by the 
DDAS decommutator), the relatively long average ac
cess time of the disc memory (17 msec), and the mini-
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mum response time of some circuits to be simulated 
(about 100 ms) constrain the design of the Simulation 
Processor considerably. Considering the above con
straints and in order to minimize the computation time 
during real-time simulation activity, as many functions 
as possible are performed in the Pre-Simulator Phase. 

The Simulation Processor is divided into five major 
phases: 

· Pre-Simulation Phase 
· Hold Phase 
· Initialization Phase 
· Real-Time Simulation Phase 
· Post-Simulation Phase 

An overview of the general flow of the simulation 
processor is given in Figure 4. 

Pre-simulation phase 

The Pre-Simulation Phase was designed to perform 
initial processing for all functions that could be pre
defined and established prior to execution of the Real
Time Phase. This approach was taken in order to 
simplify the real-time processing functions and to sig
nificantly reduce execution time and core memory 
space. 

The Pre-Simulation Phase consists of 85 subroutines 
and approximately 11,200 instructions. 

The Pre-Simulation Phase consists of four sub-phases 
which are overlaid during execution in SDS-930 

TABLE III-Pre-Simulation Phase Capabilities 

Edits all equations input to the system. 

Builds a cross reference index of equations versus 
equation terms. 

Establishes tables for time-related equation terms. 

Arranges input equations into the proper equation 
calling sequence for real-time proce"ssing. 

Merges the cross reference values and the time
related values with the equation calling sequence. 

Using card input values, establishes an assignment 
file for all DDAS values. 

Produces a Master Equation Tape (magnetic tape) 
consisting of: 

a. Equation cross reference file 

b. Equation file 

c. Ordered DDAS assignment file 

Lists the Master Equation Tape. 

Logical equations: 

Variable 
(= Equation) Initial No. of Evaluation Initial No. of Evaluation 

Name 

Yl 

Y2 

Y3 

Figure 6a. 

Yl Y
2 

0 0 

0 0 

0 1 

0 1 

1 1 

1 1 

1 0 

1 0 

State 
I 

State 
II III IV I II III IV 

0 1 1 0 0 1 1 0 0 1 

0 0 0 0 0 1 1 1 1 1 

1 1 0 0 0 1 0 0 1 0 

\ ~----~--~y~------~} 
Stable transition C) Unstable transition C) 

Results of successive evaluation of logical equations with two 
different initial conditions if 00 changes state from "1" to "0". 
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Figure 6b. Transition table for all 
possible states, 

• denotes unstable state 

o denotes stable state 

r\f:\ f.\ stable 
\.2:..J~ \.!:J transition 

o unstable transition 

Figure 6a-Results of successive evaluation of logical equations 
with two different initial conditions if DO changes state from 

"I" to "0" 
Figure 6b-Transition table for all possible states 

memory. A summary of Pre-Simulation Phase capa
bilities is shown in Table III. 

Phase 0 contains the utility and I/O subroutines for 
the remaining three sub-phases. This phase acts as the 
Pre-Simulation Phase monitor and remains in memory 
during execution of phases 1, 2, and 3 to control overlay 
and input/output operations. 

The functions of the vehicle and the ground support 
equipment are described by Boolean equations which 
are punched on cards. These cards, containing the data 
base for the vehicle to be simulated, are input to 
Phase 1 where the equations are edited. During this 
editing process, all equations which contain an error 
are listed on the line printer with each error flagged. 
The equations which are error-free are sorted and all 
duplicate equations are eliminated. The sorted, error
free equations are then used to update the Master 
Equation Tape (Figure 9) which contains all equations 
which describe the vehicle configuration to be simu
lated. During the l\1aster Equation Tape update, sorted 
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Figure 7-Cross reference file 

equation cross reference information is generated and 
output to magnetic tape for use in later processing. 

Phase 2 of the Pre-Simulation Phase completes the 
development of the Cross Reference File (Figure 7) 
and the Transfer Equation File. This is accomplished 
by merging the cross reference information with all 
related equations and generating the Cross Reference 
File and the Transfer Equation File of the updated 
Master Equation Tape (Figure 7). 

All DDAS assignments are made by card input. The 
function of Phase 3 is to make the DRS, Multiplexer, 
Frame and Channel assignments from information con
tained on the input cards and develop the DDAS 
Assignment File (Figure 8) of the Updated Master 
Equation Tape. This information is ordered to conform 
to the requirements of the Initialization Phase which 
develops the 4500 word commutation address table 
(Figure 5). 

Initialization phase 

The Initialization Phase performs the final processing 
before real-time operations. It creates the proper en
vironment in the SDS-930 computer and on the disc 
storage to initiate the simulation run. The simulated 
switches and Discrete Outs to be input during the 
Real-Time Phase are also input on punched cards 
during the Initialization Phase. The Initialization Phase 
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utilizes these simulated variables and the Cross Refer
ence File of the Master Equation Tape to determine 
which equations will be active during the simulation 
run. Only the active equations will be reformatted and 
stored on the disc (Table IV). Initialization also pro
duces a line printer listing of the active equations and 
all related cross-reference information (Table V). In 
order to relate the simulated switches and Discrete 
Outs to the equations on disc during the simulation 
run, the Initialization Phase creates blocks of cross 
reference information for the switches and Discrete 
Outs and transfers them to the disc (Table VI). Address 
tables, reference tables, data tables, status tables, 
history buffers for recording real-time events and a 
4500 word commutation table are dynamically allocated 
in core and initialized. The remaining available core 
can then be assigned as equation buffer areas. To 
facilitate this assignment, a list of equation sizes versus 
the number of equations of that size is output to the 

FILE 1 I- CROSS REFERENCE FILE 
~ L FILE 2 -.J L FILE 3 
I I TRANSFER EQUATION FIL~ I DDAS ASSIGNHENT FILE 

256 
WORDS 

! 256 
G WORDS 

256 
WORDS 

256 
WORDS 

256 
WORDS 

256 
lWRDS 

THE THREE FILES ARE C~OSED OF BOTH PHYSICAL AND LOGICAL RECORDS. PHYSICAL RECORDS HAVE AN 
ARBITRARILY SET WORD COUNT OF 256 WORDS; LOGICAL RECORDS HAVE A VARIABLE WORD COUNT CONTAINED 
IN THE FIRST WORD OF THE LOGICAL RECORD. EACH PHYS lCAL RECORD HAY CONTAIN ONE OR MOR~; LOG leAL 
RECORDS OR ONLY A 256 WORD PORTION OF A LOGICAL RECORD (AS IN FILl': 2). THUS, A LOCICAL RECORD 
MAY SPAN ONE OR HORE PHYSICAL RECORDS (AS IN FILE 2). 

* REFERENCE F igurc 7 
** REFERENCE Figure 8 

EOF = End of File 
IRG = Inter-Record Gap 

Figure 9-Master equation tape format 

teletype along with the location and size of core blocks 
available for use as equation buffers. Utilizing the above 
information, the user determines the optimum number 
of buffers and buffer sizes and provides the information 
on cards for input by the Initialization Phase. All 
equation buffer information required by the Real-Time 
Phase is arranged by the Initialization Phase into the 
four buffer description tables (Table II). 

A list of Initialization Phase capabilities is given in 
Table VII. 

Hold phase 

The Hold Phase program provides a convenient·tran
sition to real-time activities either initially or following 
a hold or suspension of a prior real-time simulation and 
gives the user the capability of controlling the environ
ment of a specific test. He utilizes this capability by 
issuing commands to the Hold Phase Program via the 

WORD 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

J 
J+1 

K 
K+1 

L 
1+1 

M 
M+1 

N 
Not1 

P 

TABLE IV-Format of Equation on Disc 

DEFINITION 

NUMBER OF WORDS IN EQUATION RECORD (P+1) 
DISC ADDRESS ASSIGNED THIS EQUATION RECORD 
EQUATION MNEMONIC ID 
REF. TO PICK-UP TIMES (REL. ADD. J FRCM WORD 2) 
REF. TO DROP-OUT TIMES. (REL. ADD K FROM WORD 2) 
REF. TO.PICK-UP VOLTAGES (REL. ADD. L FROM WORD 2) 
REF. TO DROP-OUT VOLTAGES (REL. ADD. M FRCM WORD 2) 
REF. TO RELATED EQUA ID'S (DISC. ADDRESSES) (REL ADD.N) 
FIRST WORD OF ACTUAL EQUATION 
~ND WORD OF ACTUAL EQUATION 

LAST WORD OF ACTUAL EQUATION ($ OPERATOR) 
1ST PICK UP TIME 
2ND PICK UP TIME 
ETC. 
1ST DROP-OUT TIME 
2ND DROP-OUT TIME 
ETC. 
1ST PICK-UP VOLTAGE 
2ND PICK-UP VOLTAGE 
ETC. 
1ST DROP-OUT VOLTAGE 
2ND DROP-OUT VOLTAGE 
ETC. 

BUFFER CODE (BITS 0-4) RELATED EQ. DISC ADD. 
BUFFER CODE (BITS 0-4) RELATED EQ. DISC ADD. 
BUFFER CODE (BITS 0-4) RELATED EQ. DISC ADD. 
BUFFER CODE (BITS 0-4) RELATED EQ. DISC ADD. 

(BITS 5-23) 
(BITS 5-23) 
(BITS 5-23) 
(BITS 5-23) 

TABLE V-Equation Cross Reference Listing 

xoooo EOOOI EOO02 
XOOOI EOO02 
XOO02 EOO03 F0026 
XOO07 AOO04 
Xoo08 EOO04 
XOO09 EOO04 
X0010 FOO16 
Xoo11 F0026 
Xoo12 F0026 
)[0013 EOO16 
XOO14 FOO16 
XOO15 EOO16 
XOO16 Foo17 
XOO17 F0027 
Xoo18 Eoo18 E0028 FOO18 F0028 
XOO19 EOO19 
X0020 Eoo19 
X0021 F0111 
X0022 F0211 
X0023 V0112 FOO12 
X0024 V0112 E0029 FOO12 
SOOOI 01110 06020 06100 
SOO02 AOOOI 
SOO09 VOO11 VOO12 V01l2 VlOOO V2222 V2500 AOOI AOO04 

06020 06100 D1600 D2500 D3000 04200 D5050 EOOOI 
EOOO7 EOO09 EOOlO Eooll Eoo16 EOO18 EOO19 E0028 
F0026 F0027 F0028 FOlll F0211 

VOOll Eooll 
Voo12 AOO11 
V01l2 Voo12 
V1000 EOO06 
V2222 EOO07 
V2500 
AooOl EOO02 
Aoo04 EOO05 
AOO05 
AOO06 
AOOO7 
AOO11 
01110 VOO12 AOO05 A0007 AOOll D3000 EOO07 EOOll EOO18 06020 A0006 EOO03 Eoo04 
06100 AOOOI AOO04 D1600 
D1600 

04200 D5050 Eoo02 EOO06 

D2500 
D3000 
04200 
D5050 
EooOl DV 2999.00 

FV 4098.00 
F0111 VOOll 
F0211 VOOll 
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teletype which initiates execution of pre-defined func
tions (Table VIII). He may request the current value 
or status of any active variable, or modify the value 
of status of any active variable, or performing de
bugging activities such as dumping any area of core 
or disc. 

A very important option is the capability of creating 
a restart tape. This tape contains an image of core 
memory and disc memory as it was established at the 
end of the Initialization Phase. Thus, the restart tape 
provides the means by which the same or a similar 

WORD 

o 
1 
2 
3 
4 
5 
6 
7 

~ 
6-+K 
7+K 

5+KiM 
6-+KiM 
7+KiM 

5-+K+2M 
6-+K+2M 
7+K+2M 

5-+K+3M 

WORD 

o 
1 
2 
3 
4 

2iM 
3iM 
4iM 

2iM+RI 
3#H-RI 
4iM+RI 

TABLE VI -Switch and. Cross Reference Block 

DEFINITION 

NO. OF ENTRIES (6+K+3*M) 
BUF. CODE/DISC ADDR OF THIS BLOCK 
NO. OF ENTRIES/REL. ADDR OF ORIG. IDS 
NO. OF ENTRIES/REL. ADDR. OF REASSIGNED IDS 
NO. OF ENTRIES/REL. ADDR. OF RANGES 

/REL. ADDR. OF RELATED IDS 
BUF. CODE/DISC ADDR OF 1ST RELATED ID 
BUF. CODE/DISC ADDR OF 2ND RELATED ID 
ETC. 
BUF. CODE/DISC ADDR OF 1ST RELATED ID 
1ST ORIG. ID 
2ND ORIG. ID 
ETC. 
M (TH) ORIG. ID 
START REL ADDRIEND REL ADDR OF IDS RELATED TO 1ST ORIG 
START REL ADDR/END REL ADDR OF IDS RELATED TO 2ND ORIG 
ETC. 
START REL ADD/END REL ADD OF IDS RELATED TO M(TH) ORIG 
1ST REASS IGNED ID 
2ND REASS IGNED ID 
ETC. 
M(TH) REASSIGNED ID 

WHERE M=NO. OF ORIGINAL IDS 
K=NO. OF RELATED IDS FOR ALL ORIGINAL IDS 

FORK<\T OF DO CROSS-REFERENCE INDEX BLOCK 

DEFINITION 

NO. OF ENTRIES (3-fM+R1+R2 ••• +RM) 
BUFF. CODE/DISC ADDRESS OF THIS BLOCK 
REF. TO START OF RELATED IDS (3-H1) 
NUMERIC PORTION OF 1ST DO ID/REL. ADDR. OF LAST REL. ID 
NUMERIC PORTION OF 2ND DO ID/REL. ADDR. OF LAST REL. ID 
ETC. 
NUMERIC PORTION OF M(TH) DO/REL ADDR OF LAST REL. ID 
BUF. CODE/DISC ADDR. OF 1ST DO RELATED TO DO OF WORD 3 
BUF. CODE/DISC ADDR OF 2ND DO RELATED TO DO OF WORD 3 
ETC. 
BUF. CODE/DISC ADDR OF Rl (TH) DO RELATED TO DO OF WORD 
BUF. CODE/DISC ADDR OF 1ST DO RELATED TO DO OF WORD 4 
BUF. CODE/DISC ADDR OF 2ND DO RELATED TO DO OF WORD 4 
ET~. 

real-time simulation can be executed without repeating 
_the Initialization Phase processes. The Real-Time Simu
lation Phase overlays the Hold Phase in memory when 
the user issues the "T" directive (Table VIII). 

A list of Hold Phase capabilities is given in Table IX. 

Real-time simulation phase 

The Real-Time Simulation Phase drives the SDS-930 
computer and the SDS Interface (Figure 2) for the 

TABLE VII-Initialization Phase Capabilities 

Extracts the specific equations to be active from 
the cross-reference file of the Master Equation 
Tape utilizing information input from cards. 

Prints a cross-reference listing of all variables 
to be active. 

Outputs a summary of number of equations versus 
equation length. 

Outputs the location and size of core blocks avail
able for use as equation buffers. 

Assigns a disc address to each active equation. 

Reformats each active equation and its cross
reference data and stores the combined results 
on disc. 

Prints a listing of all equations stored on the 
disc. 

Creates cross-reference data for all active DO's 
and switches in a format usable in real-time. This 
is also stored on the disc. 

Assigns core locations for all necessary tables. 

Assigns core locations to be used as equation 
input buffers. 

Initializes all tables and buffers. 

actual simulation of the launch vehicle complex. Oper
ation during the Real-Time Phase also requires the 
execution of the launch computer programs, operating 

TABLE VIII-Hold Phase Commands 

Hold Phase directives (co\lDllands) and options requested are as 
follows: 

DIRECTIVE 
CHARACTER 

I 

N 

R 

P 

T 

F 

E 

U 

Q 

V 

D 

S 

B 

c 

OPTION 
REQUESTED 

Print Hold Phase Instructions 

Write Memory on New Restart Tape 

Restore Memory from Previous Tape 

Proceed to Post-Simulation Phase 

Proceed to Real-Time Simulation Phase 

Print F-Type Data Table 

Print E-Type Dat-a Table 

Update Data Value or Update Status 

Dump Disc on Line Printer 

Write Memory and Disc on Restart 
Tape 

Restore Memory and Disc from Restart 
Tape . 

Print SU\lDllary of True Status 

Branch to 32K Debug 

Exit Debug 
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asynchronously, in the RCA-110A computers. Col
lectively, the three computers, their operating software, 
the interface hardware, and the launch complex/vehicle 
mathematical model provide the principal ingredients 
for the simulation of a Saturn V launch vehicle complex 
(Figure 2). 

The simulation process' consists primarily of: (1) equa
tion evaluation triggered by inputs from the launch 
computers by internally generated values and from the 
card reader by manual input, and (2) outputs developed 
as a result of equation evaluations which are made 
available to the SDS interface for use by the launch 
computers. 

The communication between the launch computers 
(RCA-110A) and the Simulator (SDS-930) is through 
the SDS Interface. This communication is in the form 
of discrete signals sent from either RCA-110A to the 
SDS-930 (Discrete Out or DO), discrete signals re
quested by either RCA-110A from the SDS-930 mem
ory (Discrete In or DI) and DDAS analog and discrete 
signals available at the SDS Interface for the RCA-
110A computers to access when desired. Simulated 
DO's and switch settings can be input to the Real-Time 
Simulation Phase from the card reader by operator 
action. 

Upon receipt of a Discrete Output from the SDS 
Interface, the Real-Time Simulation Phase will schedule 
a chain of Boolean equations for evaluation. Some 
equations must be evaluated when there is a change 
in status of a dependent variable, some other equations 
must be evaluated at regular time intervals or at the 
end of a set time period, and still others must be evalu
ated when a specific analog variable reaches a particular 
value. 

Each equation that is to be evaluated must be 

TABLE IX-Hold Phase Capabilities 

Record memory in an initialized state on a magnetic 
tape. 

Restore memory to an initialized state from a pre
viously created tape. 

Record memory in an initialized state and the disc 
contents on a magnetic tape. 

Restore memory and the disc contents to an 
initialized state from a previously created tape. 

Print the status of any variable within the system. 

Change the status of any variable within the system. 

Advance the simulator to the real-time phase. 

Advance the simulator to the post processing phase. 

U~ilize the capabilities of the SDS Program, 32K 
DEBUG. 

retrieved from the disc where it was stored during the 
Initialization Phase. Each equation record contains 
information required for evaluation such as pick-up 
and drop-out times, pick-up and drop-out values, and 
equation identifiers of related equations. The identifier 
or ID of an equation is the name used to refer to the 
dependent variable on the left side of an equation. 

In general, each DO received from the SDS Interface 
will require an equation evaluation which in turn 
generates a response (DI) to be supplied to the SDS 
Interface which makes the response available to the 
RCA-110A computers. During equation evaluation 
DDAS responses are also developed and provided to 
the SDS Interface for DDAS commutation· to the 
RCA-110A computers. The generation of a response 
may require the evaluation of sever:al dependent equa
tions. An example should explain the evaluation proc
ess. 12 We assume the following three logical equations 
are given: 

y 1 = Y 3 + DO * Y 1 + DO * Y 2 

Y 2 = DO* Y 1* Y 3 + Y 1 * DO+ Y 2 * Y 1 

Y 3 = Yl*DO* Y 2 + Y1*DO* Y2 + Y1* Y 3 + Y 3*DO 

The three variables Y 1, Y 2, and Y 3 appear on the left 
side of the equations and also on the right side of the 
equations. If the external variable DO changes state 
from "I" to "0," the first evaluation of the three 
equations yields the intermediate result Y 1 = 1, Y 2 = 0, 
Y 3 = 1. The next evaluation of the same equations 
using these intermediate results yields the new values 
Y 1 = 1, Y 2 = 0, Y 3 = O. This process of successive 
evaluation is continued until a stable state, i.e., no 
change of state of any variable, is reached. In this 
example, four evaluations have to be performed. If no 
stable state can be reached, the circuit oscillates. This 
case occurs in the example if another initial condition 
is used where the third evaluation yields the same 
initial state. Figure 6a illustrates the evaluation process 
and Figure 6b depicts all possible states of the example. 

As each equation evaluation is completed, the neces
sary information with which to schedule the evaluation 
of all affected or related equations must be immediately 
available. This is done by having all related equation 
ID's available as each equation is brought in from disc 
and by logging all related equation ID's into the ap
propriate queue. 

It is obvious from this example that the processing 
of many equations within the Real-Time Phase can 
become time-critical. 

Throughout the Real-Time Phase execution, a com
plete record of events is recorded on the History Tape. 
This magnetic tape contains information such as equa
tion ID's, times at which a state changed; and in the 
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TABLE X - Real-Time Phase Capabilities 

Responds to .DO inputs from the RCA-llOA' s. 

Responds to SWITCH inputs from the card reader. 

Responds to simulated DO inputs from the card reader. 

Responds to system interrupts--millisecond clock, 
elapsed timer and system error interrupts. 

Responds to disc interrupts. 

Evaluates appropriate boolean equations. 

Maintains tables of all conditions of the system. 

Maintains clocks for various timing processes. 

Records all variable changes and evaluation results 
of the system on magnetic tape. 

Terminates real-time functions upon command when 
the system becomes stabilized. 

case of analogs, the present and previous value of the 
analog variable at a given time. This tape is used as 
input to the Post-Simulation Phase to record on the 
printer the complete history of the particular simulation 
run. 

A list of capabilities of the Real-Time Phase is shown 
in Table X and a simplified diagram of the overall 
processing is shown in Figure 10. 

Post-simulation phase 

The Post-Simulation Phase processes the Real-Time 
Phase history tape according to options selected from 
the SDS-930 console. The test conductor is provided 
the following options he can choose via the switches. 

1. A listing of all events on the history tape. 
2. A listing. of only events where a change in status or 

value occurred. 
3. A line printer plot of up to eight analog variables 

(analog value versus time). 

The user also specifies (via card input) which system 
variables (1 to 10) he desires to be printed and the 
relative time of the first and last event to be printed 
(nominally 0 to 24 hours). This card input is then 
used in conjunction with options (1) or (2) above to 
provide the particUlar listing desired. 

A complete list of Post-Simulation C[l,pabilities is 
shown in Table XI. 

SIMULATOR DIAGNOSTICS 

The functional design of the acceptance and diag
nostic program not only provides a method for thorough 

checkout of the SDS-designed interface equipment, but 
also results in an effective and permanent system of 
diagnostic procedures. Modularity, simplicity, and 
thoroughness comprise the basic philosophy used in 
the design of the acceptance test procedures. To simplify 
system programming problems, the acceptance test and 
diagnostic programs function within the framework of 
the standard capabilities provided by the RCA-110A 
TAME System (Assembler, Library Routines, Utility 
Routines, and Loader). 

The order in which the diagnostic tests are performed 
follow the order as outlined in the design specification. 8 

This is to insure that certain interface equipment com
ponents are working correctly before that component 
is used in another test. The functional design of the 
system, however, provides complete test independence. 
Therefore, the order of tests may be selected at random 
to facilitate rapid location of a suspected malfunction. 

Since the diagnostic programs operate within the 
RCA-110A, the standard RCA-110A mainframe diag
nostics are used to insure that the RCA-110A main
frame, I/O data trunks, and all peripheral equipment 
(excluding the SDS Interface) are operating properly. 

SDS-93D-RCA-ll0A communications 

To effectively control and coordinate the tests and 
diagnostic programs, the RCA-110A issues command 
words (Discrete Outputs) which consist of a predefined 
octal bit configuration to the SDS-930 via the Discrete 
Output Channel. Once the command word is received 
by the SDS-930, it is interrogated to determine which 
test should be initialized. When the interrogation pro
cedure is satisfied, a response word is sent back to the 
RCA-110A via the Discrete Input Channel. 

Figure to-Simulator flow diagram 
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Test control loop 

The Test Control Loop is· the system monitor which 
controls the scheduling of tests. It monitors the various 
sense switches and transfers control to the requested 
diagnostic subprogram when the appropriate switch is 
toggled. The title of the diagnostic is printed at the 
beginning of each test. 

Each diagnostic subprogram has the ability of print
ing a list of Predicted versus Received data (PRED / 
RVCD) for each error. This option is selected during 
monitor control by toggling a sense switch on the 
RCA-110A control panel. It causes the diagnostic sub
program to list all interface data errors (predicted 
value and actual erroneous values received) encountered 
by the data validity checks performed within each 
diagnostic subprogram. Control may be transferred to 
the monitor at any time by setting a priority request 
switch. 

An option for dumping raw data exactly as it was 
received from the SDS Interface is available to the 
user by setting a sense switch before each diagnostic 
test is executed. Another sense switch assignment per
mits automatic looping of a test. This option becomes 
particularly useful when the engineer is isolating a 
suspected malfunction and he wishes to continuously 
maintain a programmed loop to observe a data input 
or output signal to or from the SDS Interface. 

The Discrete Output Diagnostic is designed to insure 
the communication link between the RCA-110A and 
SDS-930 computers via the Discrete Out (DO) data 
channel is operating properly. Since the DO data 
channel is used for systems test control, the validity of 
this link must be tested before any other tests are 
conducted. Five unique bit configurations are trans
mitted via the DO data channel to the SDS-930 and 
are immediately strobed back into the RCA-110A. If 
each bit configuration returns exactly as transmitted, 
the DO data link is functioning properly and the com
munication link is established. 

The Discrete Input Diagnostic checks the two Discrete 
In (DI) data channels between RCA-110A and SDS-
930 computers. All modes of DI scan are executed by 
transmitting a unique bit configuration to the SDS-930 
via the DO data channel followed by the DI scan 
which gathers the same data back into RCA-110A core 
memory (Status and Log Tables). Each bit configu
ration transmitted is compared to each bit configuration 
received. Data channels are also checked for parity 
error, inoperative, etc. 

The Multiple Operand Address Diagnostic (MTOAD) 
assures that the addressing of more than one group of 
DO lines will cause an error condition, and automatically 
inhibit further DO transmission. The test consists of 

TABLE XI-Post-Simulation Phase Capabilities 

Time span - time to begin and end printing 

Variables to be listed 

Only the changes in value or status of variables 
on the history tape will be printed unless the 
test conductor specifies that all information be 
printed by setting a "BREAKPOINT" on the SDS-930 
console, 

A secondary function of the post processor is to 
provide a line printer plot of any analog variable with-
in the system. The value of the analog variable is 
plotted against time. Again, the test conductor is 
allowed to specify the time span and the analog variable(s) 
to be plotted. 

generating successive pairs of illegal addresses, e.g., 
(1-2, 2-3, etc.) until all addresses have been made. 
Between each MTOAD condition, an attempt to trans
mit a legal address is made as a check on the automatic 
inhibit caused by the MTOAD. When the legal address 
fails transmission, the interface is reset and the next 
successive MTOAD is generated. 

The time signals used with the discrete signals include 
those of the Eastern Standard Time and the Relative 
Time Counter. The Relative Timer Diagnostic checks 
the bit incrementation of the Relative Time Counter 
(27 bit, 1 ms). This counter supplies the means for 
having a zero time reference in the computer which 
can be reset under program control. 

The EST Timer Diagnostic checks for proper setting 
and incrementation of the Gray Code counter. Preset 
Gray Code values are sent to the SDS Interface via 
the DO data channel. If the preset value is not re
turned, or is returned in error, two more attempts are 
made. After the third unsuccessful attempt, the preset 
value and the returned value (if ar..y) are printed as 
an error message. Upon detection of the proper preset 
value, the RCA-110A checks for proper incrementation. 
Any errors detected are logged with the expected time 
and the received time. 

The Elapsed Timers Diagnostic is initiated by the 
RCA-110Abut the main functions of the diagnostic 
checks are performed within the SDS-930. The elapsed 
timers consist of 190 fixed consecutive memory cells. 
After the first timer has counted to zero, an interrupt 
occurs, whereupon the elapsed timers are interrogated 
and compared to timing criteria within the discrete 
and DDAS activities. 

The first part of the Digital Data Acquisition System 
DDAS Diagnostic assures that commutation occurs at 
a 3.6 KC rate. This test is initiated by the RCA-110A 
but is performed by the SDS-930 program which cycles 
through and updates each DDAS data word once every 
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250 ms. After the commutation test is completed, the 
RCA-110A starts the DDAS Interface Test, which con
sists of exercising the DDAS Interface to insure proper 
commutation on all Digital Receiving Stations (DRS), 
verifying valid data and time responses for all modes 
and submodes of DDAS scans. 

The ACE Interface Diagnostic checks for proper 
transfer of data words between the RCA-110A and 
the SDS-930 computers via the ACE equipment by 
comparing four data words with different bit patterns. . 

Total dynamic system test 

This test is designed to exercise all interface equip
ment between both RCA-110A computers and the 
SDS-930 computer. The programs are executed such 
that peak data transmission operations occur between 
the three computers. 

Either of the two RCA-llOA computers may initiate 
the test by transmitting the appropriate command 
word. The SDS-930 computer initializes its discrete 
system, commutation is started on all five Digital 
Receiving Stations, and the Eastern Standard Clock is 
preset to zero. All three computers (both RCA-110A's 
and SDS-930) record the type and number of system 
errors detected, total number of discrete transmissions, 
and the time duration of the test. 

CONCLUSIONS 

The simulator was successfully demonstrated in January 
1969 with several RCA-llOA test programs for the 
Instrumentation Unit (IU). The IU was used because 
it is the most complex system of the Saturn V, and it 
was determined that, if it could be simulated, then the 
other stages could be also. 

The checkout of the software for all timing and logic 
combinations was extremely difficult within a real-time 
computer network and the special hardware interface. 
Often hardware and software errors occurred simul
taneously obscuring the source of the error. 

The successful simulation runs of the IU test pro
grams have proven that the concept of the real-time 
digital simulation for test program evaluation is feasible. 
Though the determination of all timing limitations with 
respect to size of data base and minimum component 
time-constants is still subject to further study, it is 
established that the simulator can be used in many 
applications without changes in the software. Systems 
which predominantly contain devices with relatively 
large time constants such as electro-mechanical, me
chanical, and pneumatic devices are particularly suited 

for this simulator. Fast electronic logic circuits can also 
be simulated if they control other slower devices so 
that the minimum time between stimuli output and 
response input is in the range of milliseconds to second. 

The software allows easy change of parameters, of 
tolerances, and of the configuration of the hardware 
under test for studying its effects on the overall systems 
performance, for evaluating the completeness of test 
programs, and for locating malfunctions. Hence, the 
real-time software simulator can be used for appli
cations such as test-program design and evaluation, 
malfunction analysis, hardware design analysis and 
training of checkout and launch personnel. 

The data base can be set up easily since translation 
of the schematics into the logical! analog equations is 
not difficult. However, the data base should be es
tablished while the hardware systems are being designed 
so that the design engineers are modeling their own 
design and thus assure the establishment of a data 
base which accurately reflects the hardware design. 
Also, the simulator can then be utilized as an active 
tool during the design phase and can be used for early 
test program design and evaluation before hardware 
delivery. 

It is also conceivable that the logical! analog equa
tions may describe the functions of subsystems on a 
higher level than the piece-part level and thus very 
large systems could be simulated to less depth. 

Space missions of great complexity and of longer 
duration, and a greater frequency of launchings will 
require speeding up of checkout operations and a con
stant thorough knowledge of the status of all systems 
within the space vehicle. The vehicles themselves will 
be more complex and their configuration of greater 
variety which will result in an increase of design of 
new and more sophisticated test procedures. Narrow 
launch windows and more frequent launchings will 
result in the need for short turnaround time at the 
launch pad. In order to meet this challenge in new 
space programs such as the Space Shuttle and Space 
Station, plans are being made as to how this powerful 
simulation system can be optimally used for these new 
programs. Primarily, hardware changes for the inter
faces have to be identified in order to make them more 
general. The software changes of the actual simulation 
program are expected to be minor; however, it might 
be necessary to write some data formatting routines 
for the interfaces. 
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Picturelab-An interactive facility for 
experimentation in picture processing 

by E. ARTHURS, W. S. BARTLETT, D. J. LADD, R. L. SALl\;fON and J. H. WHIPPLE 
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Whippany, New Jersey 

INTRODUCTION 

Picture lab is an interactive program system for experi
mentation in picture processing built using the SIS 
facilityl on a GE 635. Picturelab has been prepared as 
a replacement for a previous batch facility. The batch 
facility had the major drawback that most studies had 
to be run overnight. When graphic results were re
quired microfilm processing time was added to the 
already long turn-around time. Since most present 
research in image processing continues to be done on a 
trial-and-error basis, the long turn-around times as
sociated with the batch runs resulted in a combination 
of painfully slow progress and long running times. 

In place of this, Picturelab permits interactive proc
essing and immediate viewing of the processing results. 
This approach permits faster progress because of conti
nuity of attention, quick elimination of fruitless paths, 
and capacity to test a much greater variety of algo
rithms in a given period of time. The material following 
is organized into a section introducing digital represen
tation of pictures and sections discussing design con
siderations and outlining the basic portions of the 
Picturelab system. The appendix contains an example 
of an interactive session. 

BRIEF INTRODUCTION TO DIGITAL 
REPRESENTATION OF PICTURE 
INFORMATION 

Picture information is represented digitally by sub
dividing a picture into a rectangular array of points, 
and storing the level of grayness of each point as a 
binary integer. The gray level value is generally ob
tained in one of two ways, depending upon the storage 
medium. In the case of 35mm transparencies, the gray 
level is obtained by shining a spot of light through the 
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transparency and measuring the amount of light trans
mitted. Since the spot of light must be moved about 
the picture, a conventional technique is to locate the 
picture in front of a Cathode Ray Tube and use beam 
positioning to control spot placement. The spot is 
made to move regularly along the rows and the amount 
of light that is transmitted is converted to a digital 
value and stored on magnetic tape. This type of 
scanner is referred to as a "flying spot scanner". 

Picture information stored on opaque paper may be 
scanned by a facsimile device. In a facsimile scanner 
the material is wrapped around a drum and the drum 
is rotated under a spot of light. The reflectance is 
measured and converted into digital form and stored. 
During rotation the spot is made to move down along 
the length of paper. 

To give an example of the volume of data produced, 
a 35mm slide is subdivided into approximately 1000 
rows and 1000 columns. A five-bit gray-level value is 
stored for each of the 1 million row-column intersection 
points, thus producing 5 million bits of information. 
The regular two-dimensional array of intensity infor
mation is conventionally referred to as a raster or 
gray-scale or half-tone representation. Such a represen
tation is utilized for present day television pictures. 

DESIGN CONSIDERATIONS 

The design criteria set forth for the Picturelab system 
were that the system should be (1) interactive, (2) com
mand driven, (3) permit symbolic variable referencing, 
(4) permit the creation and execution of symbolic 
command files, (5) permit storing of partially processed 
pictures, and (6) be usable not only interactively but 
also as a batch program. In addition, the commands 
used for batch processing should be the same as· the 
commands used for interaction whenever possible. 
Finally, of course, the arrays of picture information 
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that could be processed were to be as large as possible. 
All of these criteria were actually achieved including 
the capacity to handle picture fragments up to 128 x 128 
points. 

The reason for making the system interactive was 
that, as previously mentioned, most picture processing 
research proceeds in a trial-and-error manner. A suitably 
implemented interactive system permits continuity of 
attention, quick elimination of fruitless paths, and 
faster progress down fruitful paths. 

The decision to make the system command driven 
was based upon the desire to permit interaction to 
proceed quickly, to permit symbolic files of commands, 
and to permit commands punched on cards for batch 
input to be of exactly the same form as the commands 
used at the console. 

The provision for symbolic variable referencing was 
founded on the desire to make the use of the commands 
as much as possible like programming in conventional 
high level languages (e.g., FORTRAN). One of the 
basic features of all programming languages is the use 
of symbolic names for variable information. This is 
accomplished in Picturelab by providing the user with 
a symbol table in which he may store variable names 
and associated values. He may then access the values 
for use in commands simply by supplying the variable 
name. 

The provision for creating files of commands permits 
accumulating together, under a single name, a number 
of commands required to control a single activity. The 
single name may be used in place of the sequence of 
commands in other contexts. This is the familiar sub
routine concept of higher level languages. 

A major demand to be made upon the system was 
that of access to picture information. In order to permit 
efficient execution is was decided that information being 
processed should be held in core storage. It was not 
possible ~o permit holding in core an entire picture. 
Rather, portions of pictures called fragments are selected 
from within a picture for processing and placed within 
a system Data Area. The information tha.t is accessed 
by processing programs is whatever picture fragment 
is stored in the Data Area at the time of access. 

Another decision made about the storage of picture 
information was that, for a given picture fragment in 
the Data Area, the data should be stored with one 
point per word. Information from different pictures 
(raw and processed data, for example) is stored in 
different sequences of bits within the words. The two
dimensional array of bits obtained by taking the same 
sequence of bits within all the words used for a picture 
fragment is called a picture Plane. Using Planes permits 
optimizing the program that does the packing and un
packing of the data from a specific set of bits. This 
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Figure 1 

program can be made to execute faster than one un
packing data from varying sets of bits as would be 
required if many points from a single picture were 
stored within one word. 

The size picture fragment that can be accommodated 
is directly related to the amount of storage available 
for the Data Area. It was decided that 18,000 words 
(enough to hold a 128 x 128 fragment) would be an 
acceptable compromise between the demand for larger 
fragments and the desire to conserve core storage. 

The programs (called Routines) which implement the 
picture processing algorithms operate on whatever data 
happens to be in the Data Area at the time of execution. 
In general, the arguments to a Routine ",'ill indicate 
one Plane from which to obtain information and an
other Plane in which to store the results of the proc
essmg. 

THE PICTURELAB SYSTEl\1 

The fundamental structure of the system consists of 
two basic data tables and three basic program systems. 
See Figure 1. 

The data tables are the system Symbol Table for 
holding variable names and their associated values and 
the system Data Area which holds the current picture 
fragment. When not in core these tables are maintained 
in a file system in addition to all of the processing 
Routines, and saved sequences of commands (called 
Processes). The three program subsystems and their 
responsibilities are listed below. 

Subsystem 

Command Processor 

I/O System 

Purpose 

Create and maintain the Sym
bol Table, Initiate execution of 
Routines, Create and maintain 
Processes. 
Read picture information into 
Data Area from Tape or Disc, 



Library of Routines 

Store picture information from 
Data Area on Tape or Disc. 
Perform picture processing al
gorithms. 

The Routines that actually perform the picture proc
essing are written in FORTRAN and are compiled 
exterior to the Picturelab system. These Routines are 
then converted into executable form by the GE system 
loader and stored within the file system as executable 
core images. Commanding the execution of a Routine 
results in its being loaded along with the Data Area 
and control being passed to it. At the completion of 
execution, control is returned to the Command Proc
essor for communication with the user to obtain his 
next command. 

GRAPHIC CAPABILITIES 

Since human comprehension of pictures depends on 
pictorial information rather than lists of data, it was 
felt mandatory that the user should be able, during a 
console sessi~n, to view the picture information stored 
within the Data Area. This is accomplished through 
use of the SIGHT2 console. The console consists of a 
Digital Equipment Corporation PDP-7 computer and 
a Cathode Ray Tube display. The display has 1024 x 
1024 addressable points and a spot may be illuminated 
at one of eight levels of intensity. The intensity modu
lation permits direct viewing of half-tone (gray-scale) 
pictures on the scope face. The PDP-7 contains 8192 
words of core storage. Picture information for display 
is held in core storage in the form of scope vector 
commands. The commands draw horizontal vectors of 
constant intensity. Changes in intensity are accom
plished by starting a new vector with a new intensity. 

The size picture that may be stored depends upon 
the frequency of changes of intensity. ]\!Iore than one 
picture may be stored, if space permits, and selection 
of the picture to be displayed is accomplished by means 
of function buttons. Sample capabilities are one half
tone picture or three or four binary (two level: black 
and white) pictures. Figure 2 is a photograph of a 
half-tone display. 

In addition to the interactive graphic capability 
provision is included for the generation of microfilm 
from binary pictures using a Stromberg Datagraphix 
4060 Microfilm Recorder. The information plotted on 
one frame may include data from a number of picture 
fragments, thus permitting an entire one million point 
binary picture to be plotted on a single frame. In 
effect this creates a 35mm transparency of the same 
size as the original. 
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INTERESTING IlVIPLEIVIENTATION 
APPROACHES 

The combined constraints of needing to work within 
a relatively small amount of core storage, desiring to 
have execution proceed as quickly as possible and 
desiring to do most of the coding in Fortran led us to 
utilizing a number of sophisticated approaches which 
may be of interest to others attempting similar systems. 

The approaches to be discussed here include (1) 
swapping of the SIS executive and a special command 
structure to improve the speed when this is done, 
(2) dynamic modifica,tion of subroutine calling se
quences to improve execution time, (3) recursive over
laying of the entire Command Processor in order to 
implement a block structure capability for the Proc
esses, and (4) inclusion of an arithmetic statement 
compiler and executor. 

SIS, 1 the system upon which Picturelab is built, 
normally executes in 32K words of core storage. This 
area is subdivided into about 20K for the SIS executive 
itself, and 12K for user programs, called Maps, that 
execute under control of the executive. In order to 
accommodate up to 18,000 words of picture data it 
was decided to swap the SIS executive, which provides 
a file system and a device-independent I/O system, 
out of core and utilize the freed space for the picture 
information. 

This necessitated the writing of a minimal (3K) 
executive to control algorithm execution. The executive 
provides restricted I/O capability and can access only 
files for which it has absolute disk addresses. This 
executive (called the Runner) is called by the Command 

Figure 2-Elllargement of a portion of a raster picture 
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Processor when the execution of a Routine is requested. 
It swaps the SIS executive, loads the Routine to do the 
actual processing, and after its completion restores the 
SIS executive' and returns cont.rol to the Command 
Processor. 

In order to increase the speed at which the execution 
of routines could proceed a special mode (called De
ferred Execution) was provided which permits accumu
lation of a series of Routine references and, on com
mand, executes the entire list, swapping the SIS execu
tive out at the beginning and restoring it only after 
completion of execution of the entire list of Routines. 

The second approach, dynamic modification of sub
routine calling sequences, speeds up the unpacking of 
data. This arises during the execution of algorithms on 
picture fragments; the desired picture information must 
be unpacked from a picture Plane within the word 
operated upon, and then restored to another Plane. 
It was desired to make this unpacking as fast as pos
sible, but also it was desired to permit the Routines to 
be written in Fortran. In Fortran most bitpicking oper
ations, such as unpacking data from within a word, 
are slow. One alternative frequently taken is to use 
subroutines to perform these functions; however, fre
quently the subroutine linkage can take more time for 
such routines than the actual processing instructions. 
The approach taken in Picturelab is to provide bit 
manipUlating subroutines, which, on first execution, 
overwrite the calling sequence with the instructions 
to be executed and then execute them. Subsequent 
passages through the subroutine reference re~ult in 
immediate in-line execution rather than a subroutine 
call. Naturally, this works only when the variability in 
subroutine argument values are suitably restricted. 

Another approach of potential interest is that of the· 
method used to permit local symbols within Processes. 
In order.to avoid symbol clashes between symbols used 
in different Processes (recall that these are files of 
sequences of commands to the Command Processor), 
it was desirable to permit symbols local to a Process 
and the capability to hand down symbols not redefined 
within a Process. 

There is an inherently recursive structure to the 
procedure of unwinding these Processes, however, 
Fortran is not oriented toward recursive processing. 
The solution was to take advantage of the stacking 
capability of SIS. A Map, executing under control of 
SIS may ask for another l\1ap to be executed, during 
which time the entire core image of calling Map is 
placed on top of a Map stack. Upon completion of 
execution of the called Map its core image is destroyed 
and the calling Map restored. This restoration process 
is called peeling back. A Map may call itself, resulting 
in the placement of the existing core image on the Map 

stack and the loading of a fresh core image. This may 
be repeated to any (reasonable) depth. 

During the execution of a Process, each time the 
Command Processor encounters a reference to another 
Process, it simply writes out. the Symbol Table and a 
small amount of other bookkeeping data, stacks itself 
and calls in a new image which loads the Symbol 
Table and data; adds new local symbols to the end of 
the Symbol Table; and executes the called process. 
Upon completion of the execution of a Process, the 
Command Processor removes the local symbols, saves 
the Symbol Table and bookkeeping data and peels back 
to the previous version of itself. This approach permits 
an inherently recursive structure to be handled by a 
relatively simple Fortran Program. 

A final implementation item of potential interest is 
an immediate execution arithmetic statement processing 
Routine. All Routines, the programs which operate on 
picture information in the Data Area, must be compiled 
outside the SIS system and loaded into the system as 
absolute core images by means of an off-line run. To 
permit flexibility during a console session in spite of 
this requirement, a routine was written which will 
dynamically compile single assignment statements. 
These statements permit both logical and arithmetic 
operators. For example A ~ (B > C). D + (B < = C). 
( - D) places the contents of D into A if B is greater 
than C otherwise - D is placed in A. 

Of particular note is the fact that if the variable on 
the left of the assignment arrow refers to a picture 
Plane, the result is stored in all the points within the 
picture; if a Plane is mentioned to the right of the 
arrow the execution utilizes the corresponding picture 
data for all the points in the picture in the execution 
of the statement. This capability coupled with the ca
pacity to loop within a Process provides the system 
user with a very powerful on-line programming capa-

. bility for processing picture data. This routine provides 
a happy compromise between the flexibility of an in
terpreter and the speed of executable code. 

SUMMARY 

To summarize, Picturelab is an interactive system in
tended for use for research in processing digitized pic
tures. The system contains a Symbol Table for sym
bolically handling variable information, a Data Area 
for in-core storage of pictures to be processed, and 
provision for files containing lists of symbolic com
mands. 

System action is directed by commands entered into 
a Command Processor. These commands manipulate 
the Symbol Table, call into execution picture processing 
Routines, or manipUlate files of commands. In addition, 



the user may gain access to data on secondary storage 
through an I/O system which permits reading picture 
information into and out of the Data Area. 

Visual interaction with the picture information in the 
Data Area is accomplished by means of the SIGHT 
console and Stromberg Datagraphix JVlicrofilm output. 
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APPENDIX 

Sample picturelab session 

This Appendix presents a sample of the use of 
Picturelab commands. The operations described below 
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are shown in Table 1 at the end of the Appendix. Lines 
preceded by a star were printed by the system. 

A. Three planes are defined to be global variables. 
The numbers give the starting bit and number of 
bits within a 36-bit word. The masks defined are 
then listed. 

B. Control is passed to the I/O system, the Data 
Area cleared, an input file defined, and the label 
on the file is printed. A picture fragment of size 
128 x 128 starting at row 641, column 636 is 
requested. The picture is read and control re
turned to the Command processor. 

C. A routine applying a constant threshold to the 
picture in plane INPLAN is executed with the 
results going into plane OUTPLA. Then the 
original picture is displayed followed by the 
threshold results. 

D. A Routine applying an adaptive threshold is exe
cuted and the results displayed. 

E. Control is passed to the I/O system in order to 
save the picture on a file, SAVE THRESH, 
labeled "Results of Thresholding". The values 
saved are from the plane OUTPLA created by 
the adaptive thresholding routine. 

F. Then a Process is built containing commands to 
perform an adaptive threshold and then display 
the results. This is filed under the name ADTHRE. 

G. This Process is then executed with a tracing 
capability enabled to permit monitoring the flow 
of control. 
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TABLE I-Sample C0ns0le Sessi0n 

* PICTURELAB. C0MMAND PR0CESS0R. TYPE C0MMAND, MAP, R0UTINE 0R PR0CESS NAME 

GL0BAL INPLAN PLANE 31 6 
GL0BAL 0UTPLA PLANE I;') 1 
GL0BAL PLDISP PLANE 32 3 
PHVAL INPLAN 0UTPLA PLDISP 

* INPLAN PLANE 
* 0UTPLA PLANE 
* PLDISP PLANE 

10SYS 
* 1/0 SYSTEM 

CLEARD 
INPUT 21 1 

31 6 000000000077 
1;) 1 000010000000 
32 3 000000000034 

* ENGINEERING DRAWING #1 FR0M MH8361 
WIND0W 128 128 
SUBPIC 641 636 
RDPCT INPLAN 
PEEL 

* C0MMAND PH0CESS0R. 

THRESH IN PLAN 0UTPLA 1;) 
DISPLA PLDISP 
DISPLA 0UTPLA 

ADAPT IN PLAN 0UTPLA 
DISPLA 0UTPLA 

10SYS 
* 1/0 SYSTEM 

0LABEL "RESULTS 0F THRESHOLDING" 
0UTPUT SAVE THRESH 
WRPCT 0UTPLA 
PEEL 

* C0MMAND PH0CESf;0R. 

BUILD 
PARS PLIN PL0UT 

10 ADAPT PLIN PL0UT 
20 DISPLA PL0UT 

FILE ADTHRE 

TRACE 0N 
ADTHRE INPLAN 0UTPLA 

* ENTEHING ADAPT 
* ENTEHING DISPLA 
* C0MMAND PH0CESs0n 

PEEL 
BYE 

A. DEFINE PLANES 

B. ENTER 1/0 SYSTEM, 
HEAD PICTURE FRAGMENT 

C. APPLY C0NSTANT THHESH0LD, 
DISPLAY 

D. ADAPTIVE THRESH0LD 

E. SAVE 0UTPUT 0F ADAPTIVE THRESH0LD 

F. BUILD A PR0CESS T0 D0 ADAPTIVE THRESH0LD 

G. EXECUTE PH0CESS 

H. TERMINATE 
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Power to the computers: 
A revolution in history? 

by SHELDON HACKNEY 

Princeton University 
Princeton, New Jersey 

The first stage in the process of modernizing the 
historian's intellectual technology is over. No longer 
is the True Believer's claim to methodological superior
ity through the computer met by the Luddite's petulent 
insistence that the most important questions are im
portant precisely because they cannot be quantified. l 

Like the fountain pen and the typewriter before it, the 
computer is now accepted as a tool that can make a 
historian's life more pleasant and more productive. 
The question to be resolved in the next phase of the 
process is whether the forces activated by the in
creasing use Qf computers will or should, either through 
a sociological dislocation in the profession or a method
ological reorientation of the craft, work a revolution in 
the way history is written. Will the New History be a 
social science? 

The issue has not been squarely faced as yet. When 
C. Vann Woodward, one of the more genial of the 
skeptical humanists, recently sought to calm and rally 
the counterrevolutionary forces he pointed reassuringly 
to the common humanistic origins of History and the 
social sciences and suggested that in order to defend 
this heritage "a small cadre should definitely be armed 
with all the weapons, trained in all the techniques, and 
schooled in the ideology of the invaders."2 This is not 
the rhetoric of reconciliation, but neither is it a call for 
a K ulturkampf. It is instead an assertion of the belief 
that because History is not one of the social sciences, 
historians may borrow from them without capitulating 
to them, a belief shared by Woodward and an impres
sive cohort of practicing historians: R. R. Palmer, 
J. H. Hexter, David M. Potter, Richard Hofstadter 
and H. Stuart Hughes among others. One suspects that 
the premise of this confidently resilient response is 
that "far from being revolutionized by new techniques, 
transformed beyond recognition, or swallowed up by 
the social sciences, much the greater part of history as 
written in the United States has remained obstinately, 
almost imperviously traditional."3 
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The premise is valid. Computers and the method
ological strain toward quantification have not yet 
altered the way historians go about their work. In the 
first place, the historians were consciously quantifying 
even without computers. The classical quantitative 
study of violence during the French Revolution was 
done in 1935,4 and one of the most impressive pieces of 
recent scholarship, The Crisis of the Aristocracy by 
Lawrence Stone, uses a host of noncomputerized nu
merical measurements of social behavior to demon
strate the existence of a crisis in the affairs of the elite 
that led to the fact that the English aristocracy in the 
early 17th century experienced a marked decline' in 
prestige and deference. The author infers from this 
that the collapse of the authority of the peerage under
lies the coming of the English Civil War. {) Large, old 
questions can be answered by numbers even without 
the aid of computers. 

This is not to argue that computers are unnecessary. 
The information contained in the Massachusetts ship 
registry for the years 1697-1714 remained locked there 
until the computer and a willing programmer combined 
to make it available and easily manipulable in tabular 
form. Then simple but important questions could be 
answered, and historians now may state with greater 
confidence that even at the end of the seventeenth 
century the Massachusetts shipping industry was geo
graphically dispersed and socially diffused. 6 The myth 
of American opportunity had some basis in fact. 

Examples of the usefulness of computers may be 
drawn from all of the areas into which computers have 
made incursions. One of the most promising yet under
exploited fields is historical demography, in which the 
computer is a near necessity because massive amounts 
of data must be manipulated in order to get significant 
answers. The most sophisticated work has been done 
in European history without the aid of computers, but 
Herbert Guttman and Laurence A. Glasco mechanized 
census data for their' forthcoming study of the related 
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quest' on of black family structure in nineteenth 
century American cities and found a great deal more 
stability than Daniel Moynihan would have predicted. 7 

In the similarly related and highly developed area of 
social mobility studies, Stephan Thernstrom used com
puters to process census data for Newburyport, Mas
sachusetts, over a period in the mid-nineteenth century 
and concluded that even though there was not enough 
occupational mobility to justify the rags-to-riches 
myth, there was an impressive amount of upward 
mobility of blue-collar families if property accumula
tion were used as the criterion. 8 The interesting thing 
about this example of computer employment, for 
present purposes, is that Thernstrom was using familiar 
sorts of data in a more rigorous way to find answers to 
questions historians had been dealing with for some 
time. 

Historians have realized for a long time that the 
study of political behavior demanded quantitative 
techniques. As early as 1896 Orin Libby called upon 
American historians for close analysis of Congressional 
voting behavior, and he set an early example in the 
area of electoral behavior with his study of the geo
graphical distribution of the vote on the ratification of 
the Constitution in 1787-88. 9 The age of computers 
has stimulated a leap in the quantity of quantification 
but only a small increment so far in the level of sophisti
cation of the analyses. 1o Thomas Alexander and his 
associates used simple correlation analysis of beat 
returns with measures of socio-economic status in 
Alabama to construct the most convincing argument 
so far that the American Whigs in the 1830s and 1840s 
were not a class party.ll Stanley Parsons employed 
slightly more advanced multiple correlation techniques 
on similar data to demonstrate that there is little sub
stance to the conventional widsom that Populism and 
mortgage indebtedness in the 1890s in Nebraska went 
hand-in-hand.12 Intercorrelations of election returns 
over a long period of time revealed that critics who 
found the source of Joe McCarthyism in mass democ
racy were incorrect in supposing that McCarthy's 
support in Wisconsin came from the same elements of 
the population that had supported Populism in the 
1890s.13 Sheldon Hackney resorted to cluster-bloc 
analysis to identify four different groups representing 
different sets of political values in the Alabama Con
stitutional Convention of 1901 and then used these as 
categories around which to organize subsequent 
political developments in the state.14 Guttman scaling 
is another popular method being used by political 
historians. With it, Joel Silbey was able to demonstrate 
that sectional conflict in the 1840s and 1850s did not 
replace national party rivalry as the principal dimen
sion of Congressional politics. 15 With the accumulation 

of data archives and standard programs by the Inter
University Consortium for Political Research at Ann 
Arbor and the increasing mathematical competence 
among historians being stimulated by the Mathematics 
Social Science Board, there could be a leap in both the 
quantity and quality of political history in the near 
future. 

Social behavior other than in the realm of politics is 
also being quantified and analyzed profitably with the 
aid of computers. Multiple correlation analysis using a 
dummy variable, applied to social and economic 
variables and homicide and suicide statistics, has dis
closed that there is a non-quantifiable cultural compo
nent associated with the high rates of individual vio
lence in the American South so that regional differ
entials cannot be explained totally by differences in 
rurality, poverty, and generally lower levels of modern
ization.16 Charles Tilly, a sociologist who uses history 
as his laboratory, is altering conventional assumptions 
about the process of urbanization through a massive 
study of collective violence in France in the nineteenth 
and twentieth centuries.17 Similarly, Michael Katz has 
used factor analysis and other techniques with a wide 
assortment of data to establish a positive correlation 
between urban growth and educational reform in nine
teenth century Massachusetts, and has developed a 
set of hypotheses consistent with this finding. Educa
tional reform, he argues, was not undertaken in response 
to the pressure of upward aspiring lower orders; it was 
the result of a coalition of upper status groups each 
pursuing slightly different but temporarily compatible 
goals so that the creation of high schools can best be 
considered as a reform sponsored by elite groups to 
provide social control in a situation of rapid modern
ization from which they were profiting. 

Collective biography offers another approach to his
torical problems that historians are just beginning to 
systematically exploit with the aid of the computer 
and the creation of a central data bank at Princeton 
University. The leader in this endeavor is Theodore K. 
Rabb whose extensive analysis of 5,184 investors in 
seventeenth century English trading ventures firmly 
established the fact that the landed gentry in England 
supported imperial enterprise and industry to a unique 
extent. 19 Ralph W ooseter's massive analysis of the 
membership of secession conventions in the southern 
states in 1860-61 confirms the notion that slaveholders 
were in control of at least this stage of the secession 
movement.20 Collective biographies need not always 
confirm existing interpretations, however. When Nor
man Wilensky constructed social profiles of a large 
sample of Republican Party activists in 1912, he dis
covered that stand-pat Republicans did not differ 
significantly from progressive Republicans in any social 



characteristic other than age, and this cast great doubt 
on the Mowry-Hofstadter notion that one of the main 
sources of progressive leadership was downwardly 
mobile elites.21 Even so, it is apparent that, thus far, 
computer-aided quantified biographical studies are 
testing hypotheses and answering questions long 
familiar to more traditional methods of historical 
scholarship. Computerized collective biography repre
sents only an extension of these more traditional 
techniques. 

The field of History that comes closest to having 
undergone the sort of transformation that the study of 
economics experienced with the development of econo
metrics is, quite naturally, economic history.22 In this 
area, as in the others, the computer is not the only 
force making for changes in technique, for there is also 
a marked adventurousness in the use of concepts and 
models borrowed from the social sciences and in the 
conscious construction and testing of hypotheses. 
Such theorizing in History as in pure math or theo
retical physics does not depend on the availability of 
powerful computers. Even without computers we 
would still today find traditional modes of economic 
history, such as business and labor history, being sur
passed in importance by quantitative analyses of .eco
nomic systems based on highly articulated theoretical 
constructs. The two best examples of the new economic 
history are the debate over the profitability of slavery 
rekindled by Alfred Conrad and John Meyer23 and the 
argument between Albert Fishlow and Robert Fogel 
about the importance of railroads to American eco
nomic growth in the nineteenth century.24 But both of 
these cases, as important as they are, represent attempts 
at more precise measurements and theoretical assump
tions involved in answering big questions that historians 
had been dealing with for years. Even in the most 
advanced branch of cliometrics, the revolution is 
incomplete. 

Because of the arrested state of change, all but the 
grumpiest humanists tend now to overlook the method
ological peculiarities of the computerized upstarts and 
to content themselves with the thought that history is 
not a social science. They argue at times that historians 
are not interested in formulating general laws, Arnold 
Toynbee to the contrary notwithstanding. They insist 
that historians are not concerned with the regularities 
of human behavior but with particular and unique 
events. Some humanists would even like to establish 
the axiom that social scientists are interested in dis
covering general rules of human behavior and historians 
are interested in the exceptions. But on examination 
this turns out to be a faulty argument. Only the anti
quarian is fascinated with the artifacts, events, modes 
of life, and personalities of the past for their own sake. 
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Historians seek to establish interrelationships, and in
terrelationships imply causal connections. Even when 
historians are not consciously doing social science in 
the sense of making and testing hypotheses concerning 
the relationship of two or more variables, they are 
dealing with such hypotheses, usually as unconscious 
assumptions or rejected explanations. Imagine how a 
historian's explanation of an event would fare if the 
causal conditions he points to appeared nowhere else 
in human experience in conjunction with events similar 
to the one he is attempting to explain. All history is at 
least implicitly comparative, and what is comparison 
if it is not hypothesis testing? 

A fundamentally more sound objection is the con
viction of many historians that more forces are at work 
in a given situation than can possibly be reconstructed 
and abstracted by the scholar. Even though we need 
to explain only the most important of the causes, and 
not all of them, these scholars believe that truth may 
be more closely approached by the narration of the 
story, reflecting the historicist belief that stopping the 
flow of history does violence to understanding. His
torians share with humanists the habit of leaving much 
of the job of understanding to the reader and providing 
him with a superfluity of facts which he can fit into 
his own scheme. The humanities depend to a great 
extent on a shared culture, and books written for one 
audience are not necessarily understood by another 
audience. For instance, the hero of William Styron's 
novel, The Confessions of Nat Turner, was intended by 
the author and is understood by most white readers to 
be an existential hero striking out against oppression 
in the face of incredible odds. Black readers, because 
of their different definition of the attributes of man
hood, interpret Styron's Nat Turner as an insult to the 
race because he is made to appear weak, ineffectual, in
decisive, and neurotic. The only way to close the gap 
in understanding is to discuss why the fictional Nat 
Turner acted as he did in certain situations and whether 
this behavior is consistent with what we know of 
Turner's biography, the situation, and human behavior 
in general. Understanding, for the historian as for the 
social scientist, is finding the. answers to a set of "why" 
questions. 

There is no essential sense in which History differs 
from the social sciences.25 Though historians still think 
of themselves as belonging to a literary craft, they do 
not usually confuse beauty and truth as Lord Byron 
did. For this reason,· though no great change has yet 
occurred in the kinds of questions historians ask, one 
must not assume that the revolution will never come.26 

The pressure toward further change is evident in the 
Historical 1\1/ ethods Newsletter whose focus on quantita
tive_ methodology testifies to a new orientation and 
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whose book reviews frequently, and correctly, charge 
authors with not squeezing enough out of the analytical 
tools available to them. Under the new orientation, 
the historian should not stop his analysis after he has 
answered the question that led him to adopt the quan
titative technique, but he should push on until the 
possibilities of the technique and the data have been 
exhausted. Depending on one's point of view, this ap
proach produces either unwanted knowledge or a 
strikingly new level of analysis. So, the principal 
dichotomy is no longer between social science oriented 
revolutionaries and humanistic traditionalists, but 
between those historians who view the computer a.s a 
tool to be used only to the extent that it is useful in 
answering previously determined questions and those 
who advocate total immersion in computer and quan
titative techniques in hopes that completely different 
kinds of questions will eventually be posed and 
answered. 

N ow is the time to stop and think carefully about the 
likely consequences should the total immersionists 
triumph. Is there something about the study of history 
that would be destroyed by applying the research 
strategies of the social sciences? There may well be. 

Even though historians and social scientists strive 
for the same kind of understanding, historians retain 
from their humanistic past certain work habits that 
are important. Historians are usually specialists in 
particular times and places, not in problems or tech
niques. Even specialists in urban, economic, social, or 
political history tend to focus their interests on particu
lar geographic locations and chronological periods. 
They attempt to understand the particular event in 
relation to the general rules, rather than trying to derive 
the general from the particular, and they have an im
precise faith that, as Pirenne said, "to construct history 
is to narrate it." It may be an absurd myth to believe 
that historical truth depends upon a holistic approach, 
or that the whole is greater than the sum of its parts, 
but it is a useful myth. Because historians believe 
that truth emerges from the complete context, they 
seek to synthesize all of the pieces. Because they pro
ceed as they do, they are likely to discover that some 
previously unsuspected factors are pertinent to a 
particular problem, and they are more likely to provide 
information useful to a future scholar with a different 
set of concerns. 

This picture of the myth of historical truth is re
flected in the present caste structure of the profession .. 
The generalists rule and the technicians execute. How 
a clio metrical revolution would affect this structure is 
an interesting question. Generalists probably would 
still dominate the profession, but there would be a 
difference. Only those synthesizers well versed enough 

in the new techniques to be able to understand and 
judge the reliability of the work of the technical 
specialists could survive. That would be a clear gain. 
But what if it became true that the only historical 
scholarship admired and respected were computer
aided quantification because that is the only sort of 
scholarship that provides neat answers to generalized 
hypotheses. That would be a tragedy, for we would 
lose the habit of relating different areas of human 
endeavor to each other, the habit of syntactical analysis. 

If historians can learn from the history of other 
disciplines that have undergone methodological revolu
tions, they will leapfrog over the next stage in their 
revolution, the stage during which so much attention 
is paid to methodology that little productive energy is 
expended in advancing the understanding of the sub
stance of history. No contribution to any field can be 
made by scholars not steeped in the substance of it. 
Even some of the most methodologically oriented of 
the new breed are discovering the usefulness of tradi
tional methods. As Robert Zemsky has recently warned, 
quantitative techniques can yield answers no better 
than the measurements on which they rest and the 
only way for the quantifier to avoid misuse of the 
measurements is to understand the record through 
traditional approaches.27 ' 

We need to arrive quickly at that point in the de
velopment of the discipline at which methodology is no 
longer the central issue. Then, techniques will neither 
be damned because they are new nor pursued for their 
own sake. New techniques are more likely to be gen
erated by new questions than new questions are to be 
created as a byproduct of new techniques. It would be 
a mistake for traditionalists to assume that there is 
such a great difference between social science and 
History that there is a limit to the change that can be 
wrought by the quantifiers, and it would be an even 
greater error for the quantifiers to assume that there 
would be little lost should they accomplish their revolu
tion in the work habits of historians. 
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Music and the computer in the sixties 

by RAYMOND F~ ERICKSON 

Yale U niveTsity 
New Haven, Connecticut 

INTRODUCTION 

A glance at the cumulative bibliographies published in 
Computers and the Humanities each year provides ample 
evidence that there is a striking amount of interest in 
computer applications for both the art of music and the 
discipline of musicology. Allen Forte, reporting to the 
1967 Fall Joint Computer Conference,! noted that 
connections between music and computing are by no 
means unique to our time, but extend all the way back 
into antiquity, when the mathematical rati~s of musical 
intervals were believed to mirror and explain the order 
of the universe. He then outlined the areas within music 
using computers and summarized the types of appli
cation involved, stressing, however, that much of the 
work being done was experimental: "It is necessary to 
say, once and for all, that we are still in a pioneer stage". 

The writer of this summary of the situation at the 
close of the first decade of computer use in musical 
studies proposes to update Forte's observations of 
three years ago, reserving until the end an evaluation of 
the progress we have made. 

ACOUSTICS, SOUND SYNTHESIS AND 
COMPUTER COMPOSITION 

As a means of sound analysis and generation, the 
computer has had far-reaching applications and im
plications. On the one hand, it has provided a common 
tool for the physicist, composer and musical scholar 
interested in the nature of "musical" sound and of the 
acoustical properties of musical instruments. Closely 
allied, also, is the field of psychoacoustics. Thus, a 
perusal of the Journal of the Acoustical Society of A meri
ca as well as certain psychology and general scientific 
periodicals can yield insights useful to the researcher 
or composer using computers. 

Narrowing our view to the specific topic of computer 
music, one finds that many of composers mentioned by 
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Forte have since documented their work more fully. 
Max Mathews has devoted an entire book to The 
Technology of Computer Music,2 which includes con
siderable information on the use of his MUSIC V 
program for sound synthesis. (The MUSIC series of 
programs,developed primarily at Bell Labs, has become 
the most widely used means for synthesized sound 
generation.) Lejaren Hiller, now at SUNY (Buffalo), 
is another of the· older generation of computer com
posers; his work is particularly notable for the degree 
in which the computer is used to generate ("compose", 
if you will) the material to be synthesized.3 Exception 
to the. Hiller approach has been taken by A. Wayne 
Sla wson (Yale), 4 whose own compositions are dis
tinguished by experimentation with the musical pos
sibilities of the sounds of speech. 5 Slawson, who holds 
a doctorate in psychology, exemplifies the composer 
whose work has been· influenced by acquaintance with 
research going on in related areas of acoustics and 
psychology. 

Turning now to the vast territory of computer
assisted research, it might be well to begin by checking 
up on the current state of projects specifically men
tioned in the 1967 paper. 

BIBLIOGRAPHIES AND CONCORDANCES 

Perhaps the most ambitious and important under
taking in the area of musical studies is RILM6 (Reper
toire International de la Litterature Musicale), a com
puter-indexed bibliographic publication covering the 
scholarly literature in music and containing abstracts 
as well as the normal cross-indexed entries. Happily, 
the first issues of RILM have appeared since 1967, 
although the current number is overdue. Let us fer
vently hope that RILM is one publication that will 
survive, for it is badly needed. 

Word from Professor Arthur Mendel of Princeton 
University just received states that a concordance of 
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Bach vocal texts announced earlier is virtually com
plete. This concordance could prove valuable to the 
student or scholar studying the relationships of certain 
words and their musical settings in the Bach cantatas. 

Prof. Harry Lincoln (SUNY: Binghamton) has been 
indefatigable in his attempt to encode and catalog 
melodic incipits of certain categories of Italian Renais
sance music.7 Since Forte's report, the thematic index 
of the frottola repertory has been completed along with 
incipits of virtually all of the music of Palestrina. 
Now attention is being turned to the Italian madrigal, 
1530-50. Professor Lincoln hopes to make Binghamton 
a central clearing-house for data bases of this type. 

Other notable thematic catalogs now being compiled 
for computer processing are of the 18th-century 
symphony8 (Jan LaRue et al at NYU), the complete 
works of Mozart9 (George B. Hill, Jan LaRue et al at 
NYU), and materials by and related to BartoklO 

(Benjamin Suchoff). 

STYLISTIC ANALYSIS 

No matter how niftily they may be encoded, thematic 
incipits can do little or nothing for the theorist or 
historian interested in subtle problems of composi
tional technique and in discovering any but the most 
basic interrelationships among compositions. How
ever, even though the area of stylistic analysis offers 
the most enticing opportunities for harnessing the full 
power of the computer, it requires a fairly sophisticated 
methodology and considerable programming support. 
These factors have prevented many from attempting 
anything more than the most trivial type of musical 
analysis and thus it is not surprising that three years 
ago there was little activity to describe. 

Of particular interest, then, was the recently an
nounced decision of Prof. Lawrence Bernstein (Uni
versity of Chicago) to abandon the thematic index of 
the 16th-century chanson (begun in 1964 and encom
passing % of the 6000 extant chansons) in favor of com
plete encoding of the chanson compositions. His 
reason: 

Inasmuch as the thematic index identifies a compo
sition according to the opening musical material 
of each piece, it cannot, perforce, discriminate ac
curately in two circumstances: (1) when pieces 
that are essentially the same begin with different 
material; and, conversely (2) when pieces that are 
essentially different begin with the same material. 
... A third problem gives reason for further con
cern. Composers who based their chansons on pre
existent pieces may have borrowed musical ma
terial from internal points within their models. 

An ideal index of the chanson repertory would 
reveal such relationships, but one based on musical 
incipits alone would not, of course, be able to 
do SO.l1 

The data sets resulting from the new procedure will 
make possible not only a thematic concordance, but 
will open the doors to a comprehensive computer
assisted stylistic study of the repertory that could not 
have been undertaken before. 

Those not conversant with the issues that have 
raised the most hackles in discussions regarding com
puter-aided musical analysis may not fully appreciate 
the significance of this change of tactics; however, a 
debate has been raging for years over the questions of 
how much information one should encode and how one 
should do it. One partisan group, headed by Stefan 
Bauer-Mengelberg and Allen Forte, has advocated 
from the start the representation of entire scores if an 
investigation might even remotely involve stylistic 
analysis. It would not, of course, be difficult to extract 
incipits from musical data thus encoded. 

Because the nature and scope of various projects 
differ, there was an initial tendency for each researcher 
to develop his own encoding procedures which, once 
implemented, were defended with tenacity. Of all the 
various systems, however, only one was originally con
ceived with the object of including all information 
found in a printed score-for the simple reason that it 
was to be used with a computer-driven music printer. 
This is the Ford-Columbia Music Representation 
(DARMS) designed by Stefan Bauer-Mengelberg, 
which has now emerged as the most widely used en
coding system (and, incidentally, is the model for Prof. 
Bernstein's current approach). It stands as the most 
likely candidate for an encoding standard, the sine qua 
non for really significant progress in computer-aided 
musical research. 

Languages like DARl\1S (or Plaine and Easie Code12 

or ALMA,13 two of its competitors) are relatively easy 
to use but can result in free-form data strings of great 
length and complexity. Inevitably this complicates the 
necessary and tedious process of checking for encoding 
and keypunching errors. It has also caused many to 
take the easy road of partial encoding, i.e., leaving out 
categories of information deemed of little or no rele
vance. But, as Prof. Bernstein points out 

. . . once a complete piece of music is translated 
into a machine-readable language (ostensibly so 
that it might be included in a thematic con
cordance), peripheral benefits begin rapidly to 
accrue. And some of these advantages, we felt, 
outweigh in usefulness the original purpose for 
which the music had been encoded.14 



What will be relevant, then, is not always obvious. 
But to encourage rigorous and comprehensive encoding 
procedures, some sort of syntax analyzer is necessary 
to speed up the clerical tasks of error detection and 
correction. Facilities of this type were built into the 
independent systems for musical analysis designed and 
implemented by Eric Regener (SAM)15 and Michael 
Kassler and Tobias Robison (IML-MIR),16 all at 
Princeton whep. the projects were begun. More re
cently Eors N. Ferentzy (University of Toronto),17 
George Logemann (NYU) and the present writer 
(Yale )18 have been working on syntax-directed com
pilers for processing musical data for syntax and 
stylistic analysis. 

Among the investigations of specific musical reper
tories using computer-aided stylistic analysis may be 
cited (in their historical order) those of late 12th
century polyphony (the author), the Masses of Josquin 
(Arthur Mendel and Lewis Lockwood), the 16th
century chanson (Lawrence Bernstein and Joseph P. 
Olive), the 18th-century symphony (Jan LaRue and 
Murray Gould), Anton Webern (Mary E. Fiore), and 
non-tonal music of the twentieth century (Allen Forte). 

There is also research in musical graphics being 
pursued by Jeffrey Raskin (University of California, 
San Diego) and Barry Brook and Richard Golden 
(Queens College). This would probably also be the 
place to mention the availability of a special print 
chain with" the symbols of musical notation at SUNY 
(Binghamton) . 

EVALUATION 

From the above account it should be clear that not 
only are computers being employed in a wide variety 
of ways in music, but that this activity is no longer 
concentrated at a few centers. But, examining the 
record more closely, how much has actually been ac
complished in terms of concrete research results or 
completed projects? 

It is with some embarrassment that I report that 
there is little to report. 

Virtually all documented research dealing with music 
itself (which is, we sometimes forget, our main concern) 
has been of limited scope (Fiore,19 Bernstein,20 Mendel
see below, and Forte21) but even more sobering is the 
number of projects abandoned or inactive. Since the 
Forte account of 1967 we have seen the demise of the 
Electronic Music Review and the Institute for Com
puter Research in the Humanities at NYU, the cessa
tion of work on the photon music printer for which 
DARMS was originally intended, and the obsolescence 
of the Princeton systems in which so much hope had 
been placed. All of these setbacks are of a high order. 
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Instructive in content and praiseworthy for its 
frankness is a recent article by Arthur Mendel which, 
in effect, announced the termination of (or at least a 
significant hiatus in) the progress of one of the first 
(1963) and most publicized undertakings in style 
analysis: the so-called IiJosquin project" mentioned 
above. The music, now completely encoded in Kassler's 
IML was to be analyzed by programs written in the 
special-purpose programming language (also designed 
by Kassler) known as MIR. However, the MIR com
piler was written in BEF AP for the 7094 and since lithe 
debugging process was completed about March 25 of 
this year, and on April 1 the 7094 for which the system 
was designed left Princeton,"22 the data is of little use 
at present. 

The obvious lesson to be learned here' is that it 
simply doesn't pay, given the flexibility of high-level 
programming languages such as PL/I and SNOBOL, 
to program at the assembly language level for hu
manities applications. (There is an alarming tendency 
among humanists who program to become so involved 
in the computing aspects of their work that the sub
stantive problems become secondary.) I would also add 
that the recent developments in high-level languages, 
especially PL/I, obviate the need-quite legitimately 
felt at the time MIR was conceived-for special
purpose programming languages. On the other hand, 
the inadequacy of FORTRAN for non-scientific appli
cations should be stressed, despite the claims of some 
(who write machine dependent FORTRAN, which 
defeats the purpose) that it can do anything PL/I can 
do better and faster. The potential of APL for musical 
studies has not yet been fully evaluated, although Mr. 
Christian Granger at SUNY (Binghamton), for one, 
has been experimenting along these lines. 

The realization of the discrepancy between the en
thusiastic claims of five years ago and the hard facts of 
production today has gradually been tempering the 
optimism of humanists. I take this to be a positive 
sign, for if the current generation of graduate students 
is informed with a healthy skepticism, we shall prob
ably end up with a core of scholars who are dedicated, 
sophisticated and rigorous in their methods, and who 
will have profited from the mistakes of this first decade. 
The Harpur College summer seminars in l\1usic and 
Computers have sought to provide this kind of training 
on a modest scope as have special courses in a few music 
departments around the country. Furthermore, in 
September, 1969, a group of 40 experienced scholars 
gathered with representatives from industry to lay 
plans for an Institute devoted to the education of non
science students and faculty in relevant computer 
applications.23 

There have been other developments that augur well 
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for the future. The spectacular commercial success of 
the Moog synthesizer recordings24 (whether or not one 
prefers his Bach "Switched-On" is beside the point) has 
suddenly made the general public a ware of the virtually 
unlimited spectrum of synthesized sounds. This could 
conceivably produce a wave of serious interest in com
puter music which is now more or less the province of 
the connoisseur. The repertoire of electronic composi
tions is surprisingly large but the musical public has 
been either oblivious of or antipathetic to itsexistence.25 

Nonetheless, it has long been felt that electronic music 
is the music of the future. Perhaps the future has just 
arrived. 

The pressing need for an encoding standard was 
cited above. The only way this can be achieved, I am 
convinced, is to provide for a particular encoding 
language elaborate software support (syntax error 
detection routines, standard output table generators, 
etc.) in a more or less machine independent language to 
permit (indeed, insure) wide and ever-increasing im
plementation. Fortunately, a canonical version of the 
Ford-Columbia language is almost finished at this 
writing and plans have been made to develop such 
supplementary programs. 

Therefore, in spite of an unimpressive record of 
achievement in the past decade, the "pioneer stage," 
there is reason to believe that we are on the thresh
old of important breakthroughs in virtually all major 
areas of computer application in music and that who
ever writes a similar report a few years from now will 
be able to substantiate this prediction. 
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Prosody and the computer: A text 
processor for stylistic analysis 

by HERBERT S. DONOW 

Southern Illinois University 
Carbondale, Illinois 

My purpose in this paper is to explain how a com
puter can be used in prosodic analysis and how the 
results may be used in stylistic studies. When I began 
this work nearly two years ago, my aim was to develop 
a computerized method of classifying lines of poetry 
with respect to rhythmical features. Since then, I have 
come to feel that the technique has broader appli
cations, effective for making stylistic discriminations 
with any kind of language input. An interesting obser
vation about this approach or, perhaps it would be 
more accurate to say, an interesting observation about 
language itself is that the linguistic phenomena that 
I use to tell me things about poetic rhythm are relevant 
sources of information about prose style as well. 

Since the text processing is fairly routine in that it 
employs techniques in wide use-machine dictionary 
development, binary search, tagging, and statistical 
tabulations-I will try to be as brief as possible on 
these points. The important facet of this paper is the 
discussion of some assumptions about language that 
are at the root of my processor. One reservation that I 
should make is that I do not claim any kind of absolute 
truth for some of the things that I am about to say. 
My "cop-out" is that this is a statistical procedure, 
involving measurement and inference, and not, strictly 
speaking, linguistic analysis. 

Before turning to the substantive issues of this 
paper, there are a few remarks about style and poetry 
that I should make. Although we can say that the 
fundamental objective of language processing, whether 
we do it by machine or human brain, is to determine 
meaning, we know that even at basic levels, elements 
other than content are important. If meaning were all 
that mattered, a sentence like "Arboreal anthropoids 
inhabit herbaceous environments" could be indiscrimi
nately substituted for "Tree apes live in forests." It 
does not tax our imagination .or vocabulary to put a 
finger on the differences between these two sentences, 
but where the case is less clear, our inadequacies, both 
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in our amorphous conceptions of style and in our lack 
of a vocabulary, has seriously hampered us. Read most 
literary critics on style, even today, and you find 
abundant examples of imprecise and uncommunicative 
vocabulary at work. For example, Yvor Winters in an 
essay on "Poetic Style in Shakespeare's Sonnets," says 
that the first four lines of Sonnet 116 "have precision, 
dignity, and simplicity, which are moving," and yet if 
we read those lines, 

Let me not to the marriage of true mindes 
Admit impediments, love is not love 
Which alters when it alteration findes, 
Or bends with the remover to remove. 

we would be hard pressed to explain the specifics that 
led to his judgment. What basis has Winters given his 
reader to make a distinction between the lines I have 
just read and almost any other quatrain in the entire 
corpus? 

While subjective reactions are to be welcomed in 
aesthetic criticism, particularly if the critic impresses 
us as being trustworthy, I can think of one class of 
critics who offend egregiously in the aimless subjective 
characterizations of stylistic phenomena: the critics of 
student writing. How many compositions have been 
judged adversely because their styles are "muddy," 
"turgid," "vague," or "awkward"? Of dubious peda
gogical value, such assessment~ serve only to emphasize 
our incapacity to communicate perceptions about style. 

My own predilections in stylistic analysis is to ap
proach style as a measurable and describable component 
of language, whether it be belletristic or in ordinary 
speech, and while I hardly feel up to a total overview 
of the subject-a comprehensive theory of style-I see 
a value in working on specific elements. Certainly the 
work with word frequencies like that done with The 
Federalist papers by l\t{osteller and Wallace, Milic's 
studies on Swift, or the work on sentence length in 
selected Greek authors by l\t{orton and Levison consti-
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tute examples of attempts to provide an objective 
basis for making stylistic distinctions. Part of my enter
prise is, therefore, not to say any more about style as a 
general concept, but about a definable component, for 
which, momentarily at least, no name exists. 

As I said earlier, the work that I have been doing 
began as a study of poetic rhythm. One reason that I 
chose to work with poetry rather than stylistic features 
in prose is that large quantities of English poetry have 
regular features that make the extremely difficult task 
of language processing a trifle easier. When I use the 
word poetry, I am actually referring to a subset that 
has the following characteristics: (1) a uniform number 
of syllables per line, preponderantly ten; (2) a pause 
(or caesura) at the end of each line which signals the 
end of a syntactic unit (a sentence, clause, phrase, or 
phrase cluster); (3) a stress pattern which generally 
finds one unstressed syllable followed by a stressed 
syllable. In other words, what I am speaking of, in 
most cases, is endstopped iambic pentameter, or at 
least endstopped decasyllabic verse. 

As anyone with even a nodding acquaintance with 
poetry can attest, endstopped, iambic pentameter is 
not always endstopped, not invariably iambic, and in 
some notable instances, inconsistent in the number of 
feet in the line. Even the number of syllables occa
sionally varies from the expected number. But we are 
talking about the average case; the exceptions do not 
alter the generalizations in any statistical sense. 

The basic premise in the procedure is that infor
mation about the frequency of occurrence of poly
syllables, the stress patterns, and the ratio of words 
rich in content value to words with lower levels of 
content value can permit us to make inferences about 
(1) the way a line sounds and (2) how one line differs 
from another. Thus, the poetry is searched for the 
following features: number of syllables per word, con
tent value, and, in the case of polysyllables, accent 
placement. 

The following assumptions will, I think, explain why 
words are tagged for these features. First, in sentences 
composed of a fixed number of syllables, there will be a 
distinctive difference in rhythmic quality between sen
tence "a" which averages one syllable per word as 
opposed to sentence "b" which averages two syllables 
per word: 

a. If John had done as well in school as Bill, he 
would have passed. 

b. Although Richard is uneducated, he has prospered. 

Sentence "a" takes almost a second longer for me to 
recite than sentence "b". Although an analytic exami
nation of the sentences will provide us with some good 
reasons for this, the fact that the first is composed of 

fourteen monosyllables while the second contains only 
seven words is correlated with their phonological differ
ence. Since the number of syllables per word and the 
number of· words per sentence is something that a 
computer can calculate without great difficulty, we are, 
at least for our present purposes, more interested in 
the superficial manifestations than the underlying rea
sons. 

Of course, most of my processing has been with 
poetry and that precludes the necessity for counting 
syllables. We already know that a line has ten syllables 
and, therefore, we need only count the number of 
words, that is, the number of literal strings between 
blanks. 

I have listed some lines from Shakespeare's sonnets 
to illustrate what effect the word-count has in a poetic 
context. Looking at two extremes, some five- and six
word lines in Group I and some nine- and ten-word 
lines in Group II, we see that there are, in the former, 
more complex rhythms owing to a greater number of 
polysyllables. We notice also, in comparing lines with 
low word-count against those with high word-count, 
that there are generally some important syntactic 
differences. The lines with higher word-count have, 
predictably, more monosyllabic pronouns, articles, con
junctions, prepositions, and auxiliary verbs and, at 
the same time, seem to display a degree of syntactic 
independence. In other words, these lines can be read 
out of context without any marked loss of meaning. 

Group I 

Incertainties now crown themselves assured, 
Time's thievish progress to eternity 
Leaving thee living in posterity 
Possessing or pursuing no delight 
Creating every bad a perfect best 
And art made tongue-tied by authority 
Proving his Eeauty by succession thine. 

Group II 

Bare ruined choirs, where late the sweet birds 
sang. 

The hardest knife ill used doth lose his edge. 
When tyrants' crests and tombs of brass are 

spent. 
l\1y mistress when she walks treads on the 

ground. 
That time of year thou mayst in me behold, 
If snow be white, why then her breasts are 

dun. 
Her love, for whose dear love I rise and fall. 
And yet it may be said I loved her dearly, 
So long as youth and thou are of one date, 

(107. 7) 
( 77. 8) 
( 6.12) 
( 75.11) 
(114. 7) 
( 66. 9) 
( 2.12) 

( 73. 4) 
( 95. 4) 

(107.14) 

(130.12) 
( 73. 1) 

(130. 3) 
(151.14) 
( 42. 2) 
( 22. 2) 



Syntactic and metrical independence is encountered 
much less frequently among the lines with low word
count. Such a line is apt to be closely linked both in 
meaning and meter to surrounding lines, resulting more 
often in complex rhythms that develop beyond the con
fines of the ten-syllable line. A good example of this 
can be found in Shakespeare's sixth sonnet where we 
find the line "Leaving thee living in posterity"
rhythmically unusual if we compare it to the classic 
iambic line. In its context, however, it strikes us as 
being precisely what is called for: 

Ten times thyself were happier than thou art 
If ten of thine ten times refigured thee. 
Then what would death do if thou shouldst depart 
Leaving thee living in posterity. 

The syntax and rhythm of the line links it inextricably 
to the preceding line. 

The second important assumption that I make in 
the design of the system is that there is a definable 
distinction, universally applicable, between content and 
function words. Theoretically, function words are those 
that add little meaning to a sentence but are required 
by a language for a number of indispensable tasks. 
These words, or particles, will appear frequently and 
in almost any context, irrespective of meaning. The 
content word, on the other hand, is uniquely relevant 
to its context. 

There is, alas, no clear dichotomy between the two 
categories. While no one can argue with the contention 
that the articles a, the, and an are unequivocally func
tional, and that their appearance has no bearing on 
content, a word like "some," though it might be ana
logous in function to ~n article, clearly bears an element 
of meaning. Furthermore, a context can radically alter 
our judgment about a word. To ameliorate the inevita
ble and inescapable problems that attend this kind of 
classification, I assign the monosyllables (polysyllables 
are treated in an entirely different manner) to three 
classes, thus reflecting an intermediate state between 
"pure" function and "pure" content word. 

IVlonosyllables that are virtually devoid of content 
value are assumed in the system either never to be 
stressed, or receiving at most a tertiary stress, while 
those at the other end of the range-the content words
are assumed always to receive primary stress. I will 
explain more how this information is used when I get 
to the tagging procedure. These assumptions, plus some 
others that are implicit in this technique, form the basis 
of an automated "metrical analyzer." 

The actual processing of the text begins with the 
development of the machine dictionaries. If computer 
size and speed is a seriously limiting factor, as it has 
been in my case with an IBl\1 7044, it would be im-
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practical to use standard, universal dictionaries. Conse
quently, I resort to dictionaries developed specifically 
from the texts to be processed. 

The logical organization of the dictionary is based 
primarily on the number of syllables in the word: 
Category I is for monosyllables, II for dissyllables, 
III for trisyllables, and IV for words having more than 
three syllables (See illustration). As you might expect, 
most of the running words in a text are monosyllabic. 
In Shakespeare's sonnets, for example, the 226 most 
frequent monosyllables account for slightly over 66% 
of the total occurrences of all words. Thus the lists in 
Category I are critical in their importance to the 
processor. 

The orconi •• tion and cadi", of the dictiol\8J'Y is ... follow.: 

Primary Level 

1\D1~1:~:- ---l\ 
Code: 02 

f-oc L -I f~d~1 (/u) (If) 
Code:004 Code,006 

_~_. __ i __ .. ~_ I 

r~ III i Tri8111abic 

I Code: 0) 1 
L--r--
f

t111C I Anape.U 
(/uu) (uull 
Cod.:OO7I Cod.:OO9 

i 
A i C 

It~~At)1 
k:ode:oo8 i 
I B i 
- I 

Secondar:r Level 

r -----1;------
I other 

i Code: 04 

I ---ry--I 
our syl. _ II_ 1S1~ -.11'1' words ' ~ worda 
ode:010 : , ,ode:012 

A - I C 

--i-----
I 

Five 811. I 
worda \ 

Code:Oll 

I_~-----~: 

Within Categories II-IV there are secondary di
visions indicating the placement of accent. Since this 
cannot apply to monosyllables, Category I has no such 
division. In Category II, subcategory A would contain 
the dissyllables with an accented first syllable Uu), 
while B would contain dissyllables with an unaccented 
first syllable (u/), and C would contain two stressed 
syllables U I). Category III has a tripartite division: 
words are assigned to each sub-list according to the 
placement of primary accent. The last category, IV, 
is divided only on the basis of the number of syllables. 
IV (A) contains the four-syllable words, IV (B) the 
five-syllable words, and IV (C) everything else. There 
is little justification because of the low frequency of 
Type IV words to make finer distinctions than these. 

As a footnote to this, I would refer the reader to 
Philip Stone's discussion of the subject of dictionary 
development in Chapter IV of THE GENERAL IN
QUIRER. 

The computer could, of course, be used for syllable 
counting since there are adequate programs that do 
this for line justification in text editing packages, but 
determination of stress would be, at best, difficult. 
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The first category of words, the monosyllables, has a the four major types and their respective sub-types. 
secondary set of classifications based, as I explained For the sake of brevity only words having a frequency 
earlier, on relative content value. Type I (A) contains of greater than three are included. The frequency for 
the "pure" function words, I (B), the words that can each word on the list appears to its right. Although 
be construed as having characteristics of function words 2,650 of the 3,211 total words have, therefore, been 
with some discernible content value, and I (C), the omitted form the lists, the words included account for 
"pure" content words. Following is a list for each of 80.2% of the total occurrences. 

TYPE I (A) 45. of 370 91. yet 51 4. art 49 
46. on 80 92. you 112 5. babe 4 

1. a 169 47. or 81 93. your 100 6. back 9 
2. am 35 48. our 19 7. bad 7 
3. an 27 49. shall 59 TYPE I (B) 8. bare 4 
4. and 490 50. shalt 11 9. base 5 
5. are 71 51. she 33 1. ah 7 10. bath 4 
6. as 122 52. should 44 2. all 118 11. bear 13 
7. at 25 53. shouldst 6 3. both 17 12. best 23 
8. be 140 54. since 24 4. down 5 13. birth 5 
9. been 6 55. so 145 5. each 15 14. black 13 

10. but 17 56. than 44 6. else 5 15. blame 4 
11. by 93 57. that 322 7. far 17 16. blind 6 
12. can 44 58. the 442 8. here 5 17. blood 8 
13. canst 7 59. thee 161 9. how 40 18. boast 5 
14. could 11 60. their 80 10. let 26 19. book 6 
15. did 26 61. them 17 11. more 64 20. born 8 
16. do 84 62. then 78 12. most 27 21. brain 5 
17. done 5 63. these 21 13. much 17 22. brand 5 
18. dost 30 64. they 53 14. must 21 23. brass 4 
19. doth 87 65. thine 44 15. near 5 24. break 4 
20. for 172 66. this 107 16. none 13 25. breast 7 
21. from 82 67. those 33 17. now 46 26. breath 8 
22. had 16 68. thou 235 18. 0 50 27. bright 11 
23. hast 17 69. though 33 19. oft 5 28. bring 8 
24. hath 43 70. through 62 20. once 10 29. brmv 8 
25. have 77 71. thus 22 21. one 42 30. buds 4 
26. he 44 72. thy 272 22. out 17 31. call 10 
27. her 51 73. till 14 23. own 30 32. calls 5 
28. him 35 74. tis 12 24. self 85 33. care 6 
29. his 108 75. to 417 25. some 31 34. catch 4 
30. I 344 76. too 16 26. still 42 35. change 12 
31. if 68 77. was 29 27. such 31 36. cheek 5 
32. in 323 78. we 15 28. thence 8 37. cheeks 4 
33. is 182 79. were 31 29. there 18 38. chide 5 
34. it 115 80. when 106 30. up 16 39. child 8 
35. like 34 81. which 106 31. well 26 40. clouds 4 
36. may 29 82. while 6 32. what 75 41. cold 6 
37. mayst 12 83. whilst 13 33. where 44 42. come 15 
38. me 168 84. who 32 34. why 25 43. count 4 
39. might 26 85. whom 12 44. CrIme 4 
40. mine 63 86. whose 19 TYPE I (C) 45. crowned 4 
41. my 392 87. will 63 46. cure 5 
42. no 79 88. wilt 14 1. add 4 47. dare 4 
43. nor 53 89. with 180 2. age 15 48. date 5 
44. not 166 90. "would 21 3. air 4 49. day 28 
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50. days 17 104. grm" 8 158. look 22 212. sad 7 
51. dead 16 105. grown 4 159. looks 12 213. said 4 
52. dear 22 106. grows 4 160. lose 9 214. sake 8 
53. death 16 107. hand 18 161. loss 10 215. same 6 
54. deeds 10 108. hate 16 162. lost 4 216. save 8 
55. deep 8 109. head 6 163. love 165 217. saw 5 
56. die 13 110. hear 6 164. loved 5 218. say 28 
57. doom 5 111. heart 51 165. loves 9 219. says 5 
58. due 5 112. hearts 4 166. mad 6 
59. dull 6 113. heat 4 167. made 20 TYPE I (C) cont. 
60. dumb 6 114. hell 8 168. make 43 
61. dwell 6 115. help 4 169. makes 8 220. scope 5 
62. earth 12 116. hence 6 170. man 5 221. scythe 4 
63. end· 12 117. hide 5 171. mark 4 222. sea 4 
64. ere 9 118. high 4 172. men 14 223. see 35 
65. eye 39 119. hold 13 173. mind 16 224. seek 4 
66. eyes 51 120. holds 5 174. minds 3 225. seem 12 
67. face 19 121. hope 6 175. moan 5 226. seen 11 
68. faith 5 122. hour 4 176. muse 16 227. sense 4 
69. false 19 123. hours 12 177 name 17 228. set 7 
70. fast 5 124. hue 5 178. need 5 229. shade 4 
71. faults 8 125. ill 19 179. needs 5 230. shame 10 
72. fear 8 126. jewel 4 180. new 26 231. shape 5 
73. fears 6 127. joy 8 181. night 22 232. shine 4 
74. fell 5 128. just 4 182. oaths 4 233. short ;) 

75. find 16 129. keep 9 183. old 22 234. show 23 
76. fire 10 130. keeps 5 184. pain 5 235. shows 6 
77. first 13 131. kill. 5 185. part 20 236. sick 5 
78. form 11 132. kind 12 186. parts 7 237. side 5 
79. forth 7 133. knife 4 187. past 10 238. sight 18 
80. foul 7 134. know 17 188. pen 10 239. sin 8 
81. found 10 135. knows 11 189. place 10 240. sing 7 
82. frame 4 136. lack 5 190. play 5 241. skill 7 
83. free 4 137. laid 4 191. please 4 242. slave 6 
84. fresh 8 138. large 5 192. pluck 4 243. sleep 6 
85. friend 14 139. lays 4 193. poor 15 244. slow 5 
86. friends 4 140. lease 4 194. praise 28 245. smell 4 
87. full 13 141. least 13 195. pride 11 246. song 4 
88. gain 4 142. leave 10 196. prime 4 247. soul ]0 
89. gainst 6 143. leaves 8 197. proud 15 248. speak 8 
90. gave 5 144. left 5 198. prove 12 249. spend 5 
91. gift 5 145. lend 5 199. put 7 250. spent 6 
92. give 27 146. lends 4 200. quite 5 251. spite 5 
93. gives 8 147. less 7 201. rage 5 252. spring 5 
94. glass 10 148. lie 13 202. rank 5 253. stand 8 
95. go 6 149. lies 12 203. rare 4 254. stars 5 
96. gone 9 150. life 23 204. read 5 255. state 14 
97. good 13 151. light 6 205. red 4 256. stay 9 
98. grace 11 152. lines 8 206. rest 6 257. steal 7 
99. grant 4 153. lips 7 207. rhyme 6 258. store 9 

100. great 10 154. live 29 208. rich 11 259. straight 7 
101. green 5 155. lived 5 209. right 11 260. strange 6 
102. grief 5 156. lives 9 210. rose 6 261. strength 5 
103. groan 4 157. long 12 211. rude 4 262. strong 9 



292 Spring Joint Computer Conference, 1970 

263. sum 4 315. world 28 40. image 4 91. subject 5 
264. sun 11 316. worms 4 41. inward 4 92. substance 4 
265. swear 7 317. worse 5 42. judgment 6 93. summer 8 
266. sweet 55 318. worst 7 43. knowest 4 94. sweetest 6 
267. sweets 6 319. worth 21 44. knowing 4 95. tender 7 
268. swift 5 320. wound 4 45. leisure 4 96. therefore 17 
269. take 13 321. writ 6 46. living 7 97. tired 4 
270. taste 4 322. write 10 47. longer 6 98. tongue-tied 4 
271. taught 6 323. wrong 6 48. lovely 8 99. touches 4 
272. tears 5 324. year 5 49. lovest 6 

100. treasure 9 273. tell 15 325. young 4 50. loving 10 
274. ten 7 326. youth 15 51. making 12 101. truly 5 

275. thief 4 52. many 13 102. under 6 

276. thing 12 TYPE II (A) 53. memory 8 103. very 7 

277. things 14 54. merit 5 104. virtue 7 
278. think 15 1. absence 5 55. mistress 4 105. water 5 
279. thinks 6 2. absent 4 56. morrow 4 106. weary 4 
280. thought 18 3. after 11 57. mortal 5 107. wherefore 4 
281. thoughts 18 4. angel 5 58. motion 5 108. wherein 5 
282. three 7 5. any 11 59. music 6 109. whether 6 
283. time 54 6. barren 5 60. nature 10 110. winter 6 
284. times 10 7. beauties 4 61. never 16 111. worthy 5 
285. time's 15 8. beauty 52 62. nothing 19 112. wretched 4 9. being 32 63. numbers 4 113. wrinkles 5 TYPE I (C) cont. 10. better 18 

64. only 6 11. blessed 11 
286. toil 4 12. body 4 65. other 25 TYPE II (B) 

287. told 4 13. buried 5 66. others 11 

288. tomb 5 14. canker 5 67. outward 7 1. above 4 

289. tongue 11 15. comfort 4 68. painted 5 2. account 4 

290. tongues 4 16. common 4 69. painting 6 3. again 10 

291. took 5 17. cruel 8 70. pity 9 4. against 18 
292. true 38 18. errors 4 71. pleasure 11 5. alone 19 
293. truth 22 19. even 24 72. power 9 6. although 9 
294. trust 5 20. ever 14 73. praises 4 7. antique 5 
295. two 9 21. every 31 74. precious 6 8. appear 4 
296. use 13 22. evil 4 

75. present 6 9. assured 4 
297. used 4 23. fairest 5 
298. verse 15 24. flower 5 76. prime 4 10. away 18 

299. view 8 25. flowers 8 77. public 4 11. before 15 

300. want 4 26. former 4 78. purpose 5 12. behind 4 

301. war 6 27. fortune 6 79. reason 6 13. behold 7 

302. waste 7 28. gentle 14 80. roses 7 14. believe 4 

303. way 6 29. given 4 81. second 4 15. cannot 10 
304. wealth 6 30. glory 8 82. seeing 7 16. compare 6 
305. \veeds 4 31. golden 5 83. shadow 7 17. decay 9 
306. white 7 32. graces 5 84. sinful 4 18. delight 8 
307. \vide 7 33. gracious 5 

85. sometime 6 19. desire 11 
308. win 4 34. happy 11 

86. sorrow 5 20. despite 6 
309. wish 6 35. having 6 

21. disgrace 8 
310. wit 7 36. heaven 13 87. sovereign 4 

311. woe 12 37. heavy 6 88. spirit 10 22. enough 6 

312. words 10 38. holy 4 89. stolen 5 23. excuse 7 

314. work 4 39. honor 7 90. story 4 24. forgot 4 



25. forsworn 4 TYPE II (C) 
26. increase 4 
27. removed 4 In this illustration there 
28. return 6 are none of these words. 
29. themselves 6 
30. unless 6 
31. upon 29 TYPE III (A) 

32. within 11 
33. without 8 1. argument 6 

After the dictionaries are stored in memory, a record 
(that is, each line or sentence as the case may be) is 
read and each word is tagged according to its type and 
subtype. The tag consists of six bits of information: 
the first field of the tag indicates the number of words 
in the line or sentence, the second indicates the number 
of syllables in the record, the third is the position of 
the word in the string, the fourth is the major category 
or primary level code, the fifth is the subordinate cate
gory or secondary level code, and the sixth contains a 
number that identifies the position of the word on its 
respective lexicon. To illustrate, the line, "Though thou 
repent, yet I have still the loss" would be tagged in the 
following way (The blank fields are used here merely 
for ease of reading.) : 

09 010 01 01 001 0069 Though 
09 010 02 01 001 0068 thou 
09 010 03 02 005 0028 repent 
09 010 04 01 001 0091 yet 
09 010 05 01 001 0030 I 
09 010 06 01 001 0025 have 
09 010 07 01 002 0026 still 
09 010 08 01 001 0058 the 
09 010 09 01 003 0161 loss 

This six field tag is sixteen character positions long. 
The tags are stripped from the words and concatenated. 
with the redundant information being factored out so 
that the line is represented by a numerical string, as 
follows: 

09 010 I 01010010069 02010010068 03020050028 
04010010091 05010010030 06010010025 
07010020026 08010010058 09010030161 

These tags are the general pattern of the line and serve 
principally to provide information for statistical calcu
lations and to provide a basis for matching with other 
similar strings; however, the string can be interpreted 
visually in such a way as to reconstruct the metrical 
character of the line, an entertaining pastime that is 
useful for testing the system and the underlying as
sumptions. 
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2. beauteous 9 TYPE III (C) 
3. ornament 5 

TYPE III (B) 
In this illustration there 
are none of these words. 

1. abundance 4 
2. contented 4 TYPE IV 
3. eternal 6 
4. invention 5 In this illustration there 
5. remembered 4 are none of these words. 

A more familiar notation may be substituted so that 
any word found in the low stress, monosyllable list 
(I A) will be assigned a "u", any word found in the 
second, intermediate list (I B) will be indicated with 
a "I", and a monosyllable found on the third list (I C) 
gets a "I". Words found in other lists would receive 
appropriate notation (See illustration). The line would 
be marked thus: 

u u ul u u u \ u I 
Though thou repent yet I have still the loss 

Because we know that words appearing on list I (A), 
though tending to be unstressed, receive some stress in 
appropriate contests, for example if two such words 
are juxtaposed, we can apply a simple algorithm: if 
two "u's" appear in sequence, the second of the two 
is changed to a "\". The modification would give us: 

u \ ul u \ u \ u I 
Though thou repent yet I have still the loss. 

The principal application of the concatenated tags, 
as I have noted, is to provide input for something 
more ambitious than this machine scansion. The basic 
purpose of the processor is to enable the investigator 
to correlate (1) the average number of syllables per 
word, (2) the stress pattern, (3) the positions of certain 
words or word types. At this writing I have not fully 
worked out the parameters of the statistical analysis, 
to wit, what kinds of tests would be most meaningful. 
This work, with the help of a grant from the American 
Philosophical Society, is presently underway. However, 
I think I can show in this final section of the paper 
some examples of how the text processing works in 
responding to rhythmic patterns in' verse and prose, 
and what we can learn about style from these results. 

In the accompanying illustration, only one field of 
the tag is used, the secondary level code, with all 
superfluous zeroes eliminated. The lines, from Shake
speare's sonnets, have been selected with an eye toward 
providing several examples of lines that are metrically 
similar, but at the same time with a notable point of 
difference. Thus we see in the two lines, "So great a 
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sum of sums yet canst not live," and "So long as men 
can breathe or eyes can see," nearly identical properties 
in their respective stress patterns. A likely reading 
"Tould produce the following scansion: 

u lui u I u \ u I 
So great a sum of sums yet canst not live 
u I u I u I u I u I 
So long as men can breathe or eyes can see 

The processor would have made the same distinction 
in its numerical notation. 

1 3 1 3 1 3 1 1 1 3 
So great a sum of sums 

3 
yet canst not live 

1 3 1 3 1 1 3 1 3 
So long as men can breathe or eyes can see 

Six-W ol'd Lines 

1 1 1 4 1 10 
And by their verdict is determined ( 46.11) 

1 1 1 4 3 10 
And with his presence grace impiety ( 67. 2) 

1 4 1 5 5 5 
And therefore mayst without attaint o'erlook ( 82. 2) 

1 4 3 1 4 7 
And given grace a double majesty 
1 4 4 4 4 3 
If nature sovereign mistress oVer wrack 

5 1 4 4 1 5 
Against thy reasons making no defense 

5 1 4 4 1 5 
Unless this :general evil they maintain 

Seven-Word Lines 

1 1 1 1 1 4 7 
So dost thou too and therein dignified 
12118 15 

Are both with thee wherever I abide 
1 11 1 8 1 5 

That I in thy abundance am sufficed 
121 4 11 7 
So all their praises are but prophecies 
111 4 1 5 5 
So till the judgment that yourself arise 
14114 1 5 

The other as your bounty doth appear 
1 41144 3 

Thy merit hath my duty strongly knit 
31135 8 3 

Kind is my love today tomorrow kind 
34 4 1141 

Past reason hunted and no sooner had 

( 78. 8) 

(126. 5) 

( 89. 4) 

(121.13) 

(101. 4) 

( 45. 2) 

( 37.11) 

(106. 9) 

( 5.5.13) 

( 53.11) 

( 26. 2) 

(lOS. 5) 

(129. 6) 

3 4 4 1 1 4 3 
Past reason hated as a swallowed bait 
5 13115 5 

Although I swear it to myself along 
513 1 415 

Desire is death which physic did except 

Eight-Word Lines 

1 1 1 3 1 1 8 3 
And in this change is my invention spent 

11 13 118 3 
Not mine own fears nor the prophetic soul 
1214 1 141 

For all that beauty that doth cover thee 
2114 1143 

Ah yet doth beauty like a dial hand 
2114124 3 

All these I better in one general best 
1411224 3 

(129. 7) 

(131. 8) 

(147.12) 

(105.11) 

(107. 1) 

( 22. 5) 

(104. 9) 

( 91. 8) 

That music hath a far more pleasing sound (130.10) 
1 4 1 1 3 1 4 .3 

The wrinkles which thy glass will truly show (77. 5) 
3114 114 3 

Come in the rearward of a conquered woe 
3114 113 5 

Steal from his figure and no pace perceived 
4 1 313 4 1 

( 90. 6) 

(104.10) 
3 

Making their tomb the womb wherein they grew 
( 86. 4) 

N ine-Word Lines 

4 1 3 3 3 tj 1 3 
After my death dear love forget me quite ( 72. 3) 
11 13 31141 

But since your worth wide as the ocean is ( 80. 5) 
111333 143 

That in thy face sweet love should ever dwell ( 93.10) 
121351113 

And all the rest forgot for which he toiled 
111411113 

As with your shadow I with these did play 
1 1 14 1131 

( 25.12) 

( 98.14) 
3 

From whence at pleasure thou mayst come and part 
( 48.12) 

1 3 1 4 1 1 3 1 3 
And life no longer than thy love will stay ( 92. 3) 
231411 313 

How sweet and lovely dost thou make the shame 

2 3 3 3 1 4 1 1 1 
All men make faults and even I in this 
133313115 

( 95. 1) 

( 35. 5) 

IVly love looks fresh and death to me subscribes 
(107.10) 



1 4 2 1 3 1 1 1 1 
That beauty still may live in thine or thee (10.14) 
14 2131313 

That having such a scope to show her pride (103. 2) 
321214123 

Lose all and more by paying too much rent (125. 6) 
3111 5 1123 
Say that thou didst forsake me for some fault ( 89. 1) 

5 13 111112 
Against my love shall be as I am now ( 62. 1) 

5 1·3 1 3 1 3 1 3 
Although she knows my days are past the best 

Ten-Word Lines 

1 1 3 2 1 2 1 3 1 3 
For no man well of such a salve can speak 
11 31131213 

For what care I who calls me well or ill 
3 111121113 

(138. 6) 

( 34. 7) 

(112. 3) 

Save what is had or must from you be took (75.12) 
3 113111112 

Save thou my rose in it thou art my all (109.14) 
3 211111311 

Save where thou art not though I feel thou art 
( 48.10) 

3 1 1 3 1 3 1 3 1 1 
Look what is best that best I wish in thee 
31 1 3 1 1 2 1 1 3 

( 37.13) 

Kill me with spites yet we must not be foes (40.14) 

The same approach, executed on three prose pas
sages-the first two sentences, respectively, from the 
"Gettysburg Address," Hemingway's A Farewell to 
Arms, and my own paper-shows results that are dra
matic enough to be visible to even the most casual 
examination. 

6 1 4 3 5 1 4 3 
(1) Fourscore and seven years ago our fathers brought 

211 7134 5 1 
forth on this continent a new nation, conceived in 

7 1 10 1 1 10 1 2 
liberty, and dedicated to the proposition that all 
318 4 211 5 11 

men are created equal. Now we are engaged in a 
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3 4 3 4 4 1 4 1 
great civil war, testing whether that nation or 

4 4 1 5 1 1 10 1 
any nation so conceived and so dedicated can 

3 5 
long endure. 
1 1 3 4 1 1 3 1 3 11 

(2) In the late summer of that year we lived in a 
31141 3 5141 

house in a village that looked across the river and 
13114 11311 

the plain to the mountains. In the bed of the 
41 14 14 31 

river there were pebbles and boulders, dry and 
3113114131 

white in the sun, and the water was clear and 
4 4 1311 4 

swiftly moving and blue in the channels. 
1 4114115 21 

(3) l\1y purpose in this paper is to explain how a 
8 1 1 3 1 8 10 1 

computer can be used in prosodic analysis and 
215 11317 4 

how the results may be used in stylistic studies. 
115 13 4335 

When I began this work nearly two years ago, 
1 3 1 1 8 1 10 4 

my aim was to develop a computerized method 
1 10 3 1 7 1 5 1 

of classifying lines of poetry with respect to 
7 4 

rhythmical features. 

We can see that the three passages differ significantly 
in several \vays: in the number of low-stress monosyl
lables, in the number of all monosyllables, in the 
rapidity with which certain word types recur, etc. The 
sample, of course, is too small and the data too raw 
for any kind of meaningful observations. 

Right now I am enthusiastic about this technique 
for text processing. Whether the approach is helpful 
as a tool for stylistic analysis of poetry is the first 
question I intend to get answered. If the results of that 
study augur well, refinements to the procedure and 
broader applications of it are in order. 





An approach to the development of an advanced 
information management system 

by J.'E. MYERS and S. K. CHOOLJIAN 

Butler Data Systems 
Hawthorne, California 

INTRODUCTION 

This paper is a follow up to a presentation delivered 
November 19, 1969,at the Fall Joint Computer 
Conference, as part of the panel, "Information Manage
ment Systems for the 70's." In that panel, a prototype 
system, based on a unique method of logically defining 
data, was discussed. This paper is concerned both with 
what has been learned from the prototype effort, and 
the characteristics of a production system. 

A prototype was developed using IBM/360 file man
agement software (DL/I), demonstrated the feasibility 
of the logical concepts. A production system, using the 
same conceptual approach, has been developed by But
ler Data Systems around proprietary file management 
software. 

BACKGROUND 

1970's requirements 

An analysis of projected 1970's information system 
requirements indicated that present data management 
systems are incapable of providing necessary service., 
The following key requirements were identified: 

Data definition and Data Base content must be 
controlled by the user. 

One logical data system must handle all business 
data without restriction to any particular subject or 
data type. 

Application changes must be accomplished without 
significant programming, resulting in reduction of 
incremental costs and time. 

There must be a full range of information transfer 
(input/output) capability in both batch and inter
active mode. 
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The information management system must be able 
to handle normal business data processing along 
with a standard interface and control for other 
disciplines such as numerical control or printing and 
pUblishing. 

The system must be capable of relating all business 
data using a common data language or structure. 

The system must be flexible in design such that 
hardware, software, and application changes cause 
minimum degradation of performance during 
implementation. 

APPROACH 

System concepts 

The Information System is the total communication 
network (formal and informal) of an enterprise. It 
connects the various units of an organization and 
supports the managerial activities involved with plan
ning, organizing, staffing, directing and controlling 'the 
firm. The Information System is composed of two major 
subsystems (Figure 1). The Management Information 
System (MIS) supplies information to users. It is 
composed of objectives, policies, practices and pro
cedures dealing with its main function. The Information 
Management System (lMS) provides all required data 
processing functions in support of the MIS. 

The emphasis on data processing hardware efficiency 
as the primary performance criterion must shift to total 
system effectiveness. As Figure 1 indicates, the MIS 
imposes performance requirements and specifications 
upon the IMS. The measure of response of the IMS to 
the MIS is the true indicator of total system effective
ness. Major system design objectives must, therefore, 
be predicated upon effectiveness considerations so that 
the IMS is responsive to user needs. 
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Figure 1-Information system 

lJiI anagement approach 

Another area of emphasis must be in the management 
of information system development. The IMS subsystem 
requires a .. considerable amount of resources over an 
extended period of time. Management techniques, such 
as those used for development of complex military and 
civil systems, are directly applicable in this area, and 
were used in the prototype development. The system 
life cycle approach divides the life of a system into four 
phases (Figure 2). 

PHASE 

CONCEPTUAL 

DEFINITION 

CONCEPTUAL 

FUNCTION 

Situation analysis, problem defini
tion, conceptual approach formu
lated, establishment of system 
requirements baseline. 
Design trade-offs,' final selection 
of approach, major system defini
tion, establishment of design 
baseline. 

DEFINITION 

6. 
RQMTS 

B/L 

I DEVELOPMENT I 
6. 

DESIGN I OPERATIONAL 

B/L 

Figure 2-IMS life-cycle 

DEVELOPMENT Detailed design of all components, 
testing, production of operational 
system. 

OPERATIONAL Introduction to users and imple
mentation, final documentation, 
sustaining support, final phaseout 
to successor system. 

The most important benefit from this approach derives 
from the emphasis on the first two phases. It is during 
the conceptual and definition phases that the users can, 
by actively participating in establishment of perform
ance criteria, project management and system evalua
tion, assure that the resulting system will be responsive 
to their needs. The data system described in this paper 
was developed in this manner and supports an IMS that 
is user oriented. 

Conceptual information system 

The Conceptual Information System can be depicted 
as a series of concentric rings of activity (Figure 3). The 
outer ring exemplifies the MIS or total requirement for 
information. As shown, this requirement must be 
satisfied by the 1MS through an information transfer 
function. The transfer media employed are extremely 
important as they provide the critical man-machine 
interface. Because the most important consideration in 
any IMS is the data, not the processing techniques or 
hardware employed, any approach to the development 

Figure 3-Conceptllal information system 
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of a 1970's IMS must start with the data itself. Man 
automatically gives data meaning and order within his 
mind without full realization of the associative processes 
involved. Data processing systems by their very nature 
must rely on a specific method of defining and storing 
data to accomplish the same end. The Data System is, 
therefore, the most important part of any IMS as it is 
here that potential system capabilities or limitations are 
established. If data is not commonly defined to some 
explicit standard, and if it is not stored in a meaningful 
way based on this definition, its worth is greatly 
limited. 

Traditionally the definition of data is implicit within 
the using computer application programs. Each program 
contains its own interpretation of the data it is process
ing, with little or no conformity between programs. The 
Data Division of COBOL, for example, does not provide 
sufficient information about the complex relationships 
existing among the data it identifies. This knowledge can 
only be obtained from the way in which the data is 
logically used within the procedure. Obviously this does 
not provide for standards of comparison even between 
seemingly similar application programs. Physically 
maintaining data with computers, even if the processing 
programs were programmed in a generalized way, does 
not attest to the data's worth or even its ability to be 
logically combined. 

Data system 

As shown (Figure 4), the Data System (Data Base) 
performs two distinct functions. First, it logically defines 
data so that it can be processed and used in a common 
way, and second, it stores data based on this definition. 
Though often so defined in the industry, a physical data 
storage system alone does not constitute a Data Base. 
A Data Base exists within limits established by the 
common definition of the data contained. It is impera
tive that Data System design begin with the data defi
nition process. 

Figure 4-I)ata system (data base) 

Design approach 

The design requirement is for a general IMS based on 
a common data system. In the prototype stage, a data 
system was developed around a method of identifying, 
classifying and relating data so that it can be contained 
in one logical Data Base, and processed with common 
computer programs. A prototype IMS was developed to 
prove the feasibility of this approach. 

Prior to development of the prototype, a data survey 
was made by compiling a large sample of business data 
from a variety of sources. This data was analyzed to 
determine the functions performed, and the logical 
relationships existing among the data. From this study, 
a method was developed to formally classify data by 
function performed, and to relate functions by patterns 
of data interdependency. The resulting information was 
used to prepare a set of rules for developing the 
prototype. 

Prototype results· 

The following conclusions were reached from the 
prototype development: 

Data Base -All business data can be logically 
defined using a common system. 
One common file system can be 
developed around the logical data 
structure. 

IMS Software-Common computer programs based 
upon the logical data structure can 
be developed to support all appli
cation requirements. 

Systems Engineering effort after prototype develop
ment resulted in the following system architecture. 

SYSTEM ARCHITECTURE 

Figure 5 is a functional diagram of the total IMS. 
Major subsystems are: 

Hardware -the computer facility. 
External Service-manufacturer's hardware oper

ating system. 
Internal Service -provides system management 

and administrative control over 
all IMS activities. 

Data Support -generalized processing capability 
to accept, maintain, retrieve, 
process and display data. 

Application -user-defined requirements for 
handling data. 
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Figure ;')-IMS-Architect.ure 

Data System -logically defines and physically 
stores data. 

The Data System is the basis around which all other 
subsystems are developed. Because of this, the remaining 
portion of this paper pertains primarily to that subject. 

DATA SYSTEM DESCRIPTION 

As previously stated, the Data System performs two 
distinct functions: the logical definition of data, and 
physical data storage (reference Figure 4). 

Logical definition of data 

The logical definition of data may be accomplished in 
numerous ways. However, within one IMS, only one 
method should be adopted. The method described herein 
has been generalized to accommodate any business 

application and, therefore, uses broad functional data 
classifications. This is accomplished by identifying each 
logical unit of data (Data Element), physically 
describing and functionally classifying these units, and 
establishing relationships between them (Figure 6). 

Data Identification-The same data in various 
combinations are required to support numerous func
tions. For example, the Data Element Part Number, as 
associated with Labor Hours and Account Number, may 
be found in one application, whereas Part Number, 
Drawing Number, and Engineering Change Number 
may be associated in another. In both instances, the 
Part Number may be identified in common by a unique 
identification number (Data Element Number). The 
same is true of a Contract Number as it applies to an 
Account Number and Cost in one application, and with 
Engineering Change Number and Specification Number 
in another. 

Each Data Element can be uniquely identified, 
independent of its many possible uses. If a data value 
cannot be defined in terms of an existing Data Element, 
a new Data Element must be identified. This is 
extremely important, in that d'ata compatibility within 
the Data Base depends on common definitions of 
common data. 

The exact content of a Data Element depends on the 
level of data control desired. For example, a date may 
be considered a Data Element in one instance, and a 
mop.th, day, and year considered Data Elements in 
another. In either case, a Data Element is the lowest 
level at which information is defined and controlled. 

The Data Element can generally be thought of as a 
field on a report or file record. However, these fields may 
be derived from combinations of Data Elements. The 
Data Element is to the Logical Data System what the 
data field is to the physical file system. 

The following list of Data Elements shown in Table 1 
are typical: 

TABLE I-Data Element Identification 

DATA NAME 

Check Account Number 

Account Balance 
Overdraft limit 

Check Number 

Check Amount 

Trust Account Number 

Stock Identification 

Stop Loss AmolUlt 

Stock Cert.ificate Number 

N umber of Shares 

ELEMENT NUMBER 

0001 

0002 
0003 
0004 
0005 
0006 

0007 
0008 
0009 
0010 
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IDENTIFICATION 

RELATIONSHIP 

Figure 6-Data definition process 

Data Classification-Data Elements can be classified 
by the function they perform (Figure 7). As shown, data 
exists either to Identify, Describe or Measure. The usual 
practice has been to classify business data by the 
organizations or applications which call for its use. These 
classifications are usually informal and vary with time 
and changes to company organization, giving rise to 
untold complexities of data maintenance. To avoid this 
pitfall, classifications must be oriented to the data 
functions performed. 

There are two forms of identification data: The 
Identifier, which provides for basic forms of identifica
tion (Part Number, Man Number, Document Number, 
etc.) and the Modifier which modifies this basic 
identification (Revision Number, Serial N~mber, etc.). 
Identification data symbolically represents subjects such 
as the Part Number does for the hardware item or the 
Man Number does for an employee. 

Identification data is the most important type of Data 
Element, because it represents company resources, 
products, and activities and provides the skeletal 
structure on which all other information rests. Few 
identification terms are required compared to the large 
amount of data usually dependent upon them. 

Modifiers provide for variant forms of identification. 

IDENTIFY IIIENT1FIER -- - - - -8 
DESCRIBE (DQCR'"1 

MEASURE B 
Figure 7-Data definition-Classification 

IDENTIFIER ..... ----1 

Figure 8-Data simplex 

This Data Element is affixed to the Identifier and 
provides for unique identification of changes to, or 
specific occurrences of, the subject identified. !he 
Modifier, therefore, is a constituent part of subject 
identification. 

Descriptors are those Data Elements which are used 
to describe subjects. This is usually accomplished by use 
of titles, synonyms, abstracts, descriptions, etc. De
scriptors are usually unformatted and may be one 
character, a complete document text or a digitized 
illustration. This data element type is of prime impor
tance to the merging of data management and printing/ 
publishing technologies. . . . 

Quantifiers . provide measurement or condItIOn (tIme, 
cost, technical) of identified subjects and are computa
tional in format. 

This functional classification technique was validated 
by classifying thousands of Data Elements in a broad 
variety of application uses. 

Data Relationship-The described data classifications 
relate in a very definite way. The Descriptor and 
Quantifier depend directly on the Identifier or upon 
some Identifier/Modifier combination (Figure 8). The 
combination of all Data Elements as they relate to one 
subject identification can be considered a Data Simplex. 

In the illustrated Data Simplex (Figure 9), the 

CHECK 
ACCT NO. 

OVER 
DRAFT 
LIMIT 

~------~ CKAMT 

Figure 9-Data simplex-Check account 
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DOC. NO. 

Figure lo-Dat.a simplex-Document. Number 

PAYROLL 
NO. ~--------------~ 

NO. OF 
EXEMP 

Figure ll-Data simplex-Payroll number 

Figure 12-Dat.a complex 

Figure 13-Data complex-Trust account. number 

COMPONENT f ASSY NO. 
N.O. 

Figure 14-Data complex-Component number 

Identifier is the Checking Account Number with two 
Quantifiers, an Account Balance and an Overdraft 
Limit. The Check Number modifies the Checking 
Account Number and the Check Amount ties to the 
Checking Account Number through the Check Number. 

In Figure 10, the Identifier is a Document Number; 
tied directly to it are two descriptors, Title and Text. 
The Document is modified by a given revision,' and 
attached logically to that identification are a revision 
description and a quantifier, Revision Date. 

In Figure 11, the Data Simplex consists of a Payroll 
N umber and two Descriptors, Employee Name and 
Address. In addition, there are two Quantifiers, 
Employee Salary and Number of Tax Exemptions. 

Many Data Elements only have meaning as they 
apply to multiple subjects. As shown (Figure 12), two 
identification terms may be related in either a hier
archical or equal fashion; these dependencies present 
complex situations of information relationship. Descrip
tors, Quantifiers, and Modifiers may only have meaning 
as they relate to two Identifiers or Identifier/Modifier 
combinations. 

This relationship of data, as it applies to multiple 
identification terms, is considered a Data Complex; 
most interdisciplinary data falls within this category. 
An example of the Data Complex (Figure 13) is a trust 
Account N umber, and a related stock portfolio, 
represented by a Stock Ticker Symbol. Tied to this 
Identifier combination is a Stop Loss Amount. Further, 
the Stock Ticker Symbol can be modified by an 
individual Stock Certificate Number, and associated to 
the Number of Shares Owned. 

In Figure 14, a component is shown as dependent to 
an assembly. This Identifier relationship is modified by 
lot and serial numbers. Further, this identification 
combination has an associated Quantifier, Assembly 
Quantity. The Assembly Quantity has meaning only as 
it applies to both Identifiers. 

Two Identifiers may be considered equal (Figure 15). 
In this example, FICA is equal to Payroll Number, both 
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PART NO • ...-__ ....... PURCHASE 
ORDER NO. 

Figure 15-Data complex-FICA number, part number 

representing a person. Also, a Part Number may be 
equated to a given Purchase Order Item. 

Logical Data Structure-There is a finite number of 
data relationships derived from the various combina
tions of identification description and measurement 
classifications. These can be expressed in symbolic form. 

SYMBOL 

I 
M 
D 
Q 

DATA CLASSIFICATION 

Identifier 
Modifier 
Descriptor 
Quantifier 

Each relationship can be represented by combinations 
of these symbols; i.e., "IMQ" describes an Identifier / 
Modifier/Quantifier relationship (shown in Figure 9) 
using Check Account Number/Check Number/Check 
Amount. 

The complex relationship "I t IQ" is shown in 
Figure 13 using Trust Account Number, Stock Identifi
cation, and Stop Loss amount. 

Data Element numbers, as previously identified in 
Table I, can be added to these symbolic relationships to 
identify a unique logical data element structure. For 
example: 

or 

1(0001).~1(0004)·Q(0005) 

11(0006) 1 12(0007). Q(0008) 

Any logical relationship of data can be expressed by 
using the above techniques. This means that a physical 
file system based on these symbolic relationships can 
support any data. 

Physical data storage 

The physical file is a translation of the logical data 
structure on to a q.ata storage device. 

File Organization-There are many file organization 

FILE·ENTRY 

I IE&:l:o.1 ID£NTIFIER 

1M IE&:l:O.l MODIFIER 

.. D IE~~~O.l DESCRIPTOR 

IQ 1~:o.1 . QUANTIFIER 

ETC 

Figure 16-Physcial file organization 

VARIABlE 
DATA 

LENGTH 

schemes which could satisfy the foregoing requirements 
(i.e., Ring Structure, Inverted List, Multi-list or 
Indexed Sequential). The physical file system described 
uses two data organization methods. The first two is a 
hierarchical structure of indexed sequential organization 
used for primary data storage; the second is random. 
The direct address from the random file is stored as data 
in the primary file. This provides for multiple levels of 
data storage. This scheme was chosen because of its 
ability to support both sequential accessing for batch 
processing and direct accessing for interactive 
processing. 

Depending on storage requirements, data may be 
stored by either method. For example, a Document 
Accession Number (Identifier) would be stored in the 
primary file. The full text (Descriptor) may be in 
secondary storage. The address of the text would be 
stored with the Accession Number. 

Record Definition-Each record is composed of data 
relating around one subject Identifier. Each Identifier 
occurrence is an indexed record key or file entry. 
Dependent Data Elements are placed at subordinate 
hierarchical positions (Segments) depending on their 
relationships (see Figure 16). 

Multiple segment types are allowed at each of the 
dependent levels and there can be multiple occurrences 
of each. Superior segment values are implied in the 
meaning of subordinate segment values. 

Each Segment contains only one Data Element type; 
i.e., Identifier, Modifier, Descriptor or Quantifier. 

Data Elements may be variable in length. Storage is 
not provided unless data is present, thus resulting in 
efficient storage utilization. 

Data Elements stored in the same relationship are 
differentiated by storing a binary coded Data Element 
Number within the value. 

The data file is composed of a fixed number of logical 
data combinations. As a result, processing routines can 
be programmed around these relationships in a highly 
specialized manner to optimize data processing 
efficiency. 
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1M 

IMQ 

IMQ 

1M .1 

hI 

RCD NO.1 

I 9 I PURCHASE ORDER NO. I 

1111 ITEM NO. 

1121 ORDER QTY 1 

RCD NO.2 

11 I PART No·1 

1"1 1 9 1 PURCHASE ORDER No·1 

I"IM 1111 ITEM No.1 

I .. IMD 1141 ITEM DESC 

110 I VENDOR NO. 1-1 --... I 

RCD NO.3 

1101 VENDOR No·1 

1+1 19 1 PURCHASE ORDER No·1 

Figure 17-Physical file-Example 

In the following example (Figure 17), three subject 
records are represented. Record 1 is a Purchase Order 
N umber with dependent Data Elements: Item Number, 
Order Quantity, Cost and Part Number. The dependent 
Identifier, Part Number is indexed to record number 2 
where it itself is an indexed key. Likewise, the Vendor 
N umber indexes to record number 3. In record 2, the 
dependent Data Element, Purchase Order was auto
matically created (logical opposite) and points back at 
record 1. 

As shown, the logical opposite of the Purchase Order, 
Purchase I tern Number and Part Number (which is an 
"1M ~ I" relationship) is the opposite of the "I ~ 1M" 
relationship shown in record 2. The same is true of 
record 3. The result of this approach to file organization, 
is data-oriented files in which each subject and related 
Data Elements are identified, with subject linkages 
automatically ~reated and maintained. The file is, 
therefore, organized around self-indexing subjects and 
not around unrelated application programs. This per
mits the sharing of common data and reduces duplicate 
information. Most of all, data compatibility and 
relatability are insured for interdisciplinary activities. 

APPLICATION CONCEPTS 

Several key application concepts result from this 
approach to IMS development. 

U set inteljace 

The worth of this approach can be demonstrated by 
describing the way a user interacts with the system. 

DICTIONARY 

DRAWl N G SIZE COD E [0212] An alphabetic character 

A thru K designating the finished size of a drawing as defined by Table 

1 of MIL-STO-l00. 

EMPLOYEE NUMBER [0110] The number assigned to a 

person upon hire. Used as employee identification for personal accoun-

tability purposes. SYN. MAN NUMBER, PAYROLL NUMBER. 

PART N U M B E R [0102] A88R. PN, The number used to iden

tify, in common, all Parts, Components or Assemblies that are inter-

changeable in aU applications where used. Its prime function is to 

control hardware assembly and replacement on the basis of interchan-

geability. SYN. COMPONENT, ASSEMBLY. 

SOCIAL SECURITY N~MBER [0152] A88R. SSN. 
The gO'!ernment assigned number for an individual registered by the 

Federal Insurance Contribution Act. Often used for employee identifica

tion. 

Figure 18-Data element dictionary 

The user defines his data (irrespective of application) 
to the IMS by using a single data definition system. 
This results in a data element dictionary (Figure 18) 
automatically maintained and produced by the system. 

The user logically relates data elements as part of the 
data definition process. This places control of file content 
in the hands of the user and results in a completely 
flexible file of user design. A file definition report is 
produced by the IMS. The combination of the two 
reports gives complete data visibility within the 
system. 

Data can be redefined with the same procedures used 
in original definition; this is accomplished by direct 
entry to the system. The elimination of programming 
effort is achieved because data definition is not part of 
the procedural portion of data processing modules, as in 
orthodox applications oriented systems. 

The source and format of the data are defined to the 
system through a series of declarative statements. This 
allows automatic reformatting of input to the predefined 
IMS logical structure via a standard transaction format. 
A common set of file management programs auto
matically perform storage and update functions. 

Data retrieval criteria and display characteristics 
(device and format) are defined to produce data output. 



Development of Advanced Information l\1anagement System 305 

Special processing programs can be specified during 
any phase of the processing stream. 

Data OJ'iented files 

Because the physical fP 3 is data-oriented, or physically 
structured· around the dependencies of the data 
contained, it can support any application. Data is 
physically stored the way in which it has meaning to 
the user. 

An example of possible benefits is in the mechanization 
of product definition (parts) data, which must be 
maintained for many purposes. The same data elements 
are often required for manufacturing, planning, tooling, 
material control, purchasing, provisioning, product 
support and publication purposes, as well as Project 
Management requirements for configuration manage
ment and contract estimating. Typically, parts data is 
independently mechanized by the organizations sup
porting these functions. The following are the usual 
results of this approach: 

-Data does not agree with one another 
-Data does not interrelate with one another 
-Duplicate data often exists to satisfy similar 

objectives 
-Data does not collectively satisfy product 

definition requirements. 

The scope of the problem is immense, considering that 
seventy to eighty percent of the information stored is 
identical. By establishing data-oriented files, the above 
problems can be eliminated. 

The application-oriented data files shown in Figure 19 
contain redundant parts information. 

lijARTS 
DWGS 
CHGS 

ENGINEERING 

~ ~ 
MANUFACTURING 

~ ~ 
SUPPORT 

lij 
ETC. 

lij 
PROJECT 

MANAGEMENT 

Figure 19-Application oriented files-Example 

ANY USER ANY USER ANY USER 

Figure 20-Da ta oriented files-Example 

Figure 20 shows the same dat~ elements as maintained 
using a data-oriented approach. 

Interdisciplinary considerations 

In addition to benefits gained by sharing physical 
files, the system provides a common data communica
tion language. This means that transfer of data among 
different users is carried on automatically within the 
system using the same physical data and common 
definitions. This eliminates the usual problem, such as 
disagreements on content of data, timeliness of multiple 
data input reports, and sequence or phasing of 
information. 

Even though multiple users may share the same data, 
IMS applications can be independently implemented, 
since the Data Base is application independent. 

Because all data relationships were established in the 
initial file design and the IMS does not assume any 
predefined data content, applications can be Incre
mentally implemented without reprogramming. 

Transfer media 

IMS applications are not limited to any single type 
of transfer media. 

The IMS can handle full text and illustrations. This 
allows printing/publishing directly from the Data Base, 
using photo composition equipment. For example, 
Figure 18 was produced in this manner, using RCA 830 
VIDEOCOMP equipment. This provides a practical 
integration of data management and printing 
technology. 

SUMMARY 

There are a large number of deficiencies in present 
Information Management Systems, primarily in their 
effectiveness to the user. These problems basically stem 
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from poor data definition and the inability to respond to 
user requirements. The conceptual approach to the 
solution of these problems was to organize the IMS 
around the logical definition of data. In order to prove 
this concept, a prototype system was designed and 
tested. The concept that all data can be logically defined 
in common has proved feasible and is the basis for the 
described production system. 
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The dat.aBASIC language-A data processing language 
for non-professional programmers 

by PETE- C. DRESSEN 

General Electric Company 
Phoenix, Arizona 

INTRODUCTION 

The dataBASIC*Language is a terminal oriented data 
processing language which combines data base manipu
lation capabilities with a BASICI like procedural state
ments. The language is designed for use by a non
professional programmer. Emphasis is placed upon 
simplicity and ease of learning and remembering its 
syntax and rules. The language permits the storage, 
maintenance, retrieval, and output of data on a content 
addressable basis. Records of any size, containing from 
one field to hundreds of fields may be created without 
record descriptions. Records are self-defining and are 
processed on the basis of the field names and associated 
field values supplied by the user at the time of record 
storage. Records are retrieved for maintenance or out
put based on the selection logic specified by the user. 
Records selected are processed one at a time in ac
cordance with processing statements specified. 

The dataBASIC Language is designed for operation 
in a general purpose time sharing system environment. 
As such, it is assumed that the command language of 
time sharing system is used to perform certain func
tions. These include sign-on sequence, constructing and 
saving programs written in the dataBASIC Language, 
allocating and deallocating named-file space for data
BASIC files and invoking the dataBASIC Language 
Processor. 

DATA DESCRIPTIONS 

For simplicity, record, field, and set declarations 
have been removed from the language. Records, fields 
and sets are, however, very much part of the funda
mental concepts taught to and used by the dataBASIC 
programmers, all handled procedurally. 

* Trademark of the General Elect.ric Company 
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Records in the dataBASIC Language have no pre
defined format or content. They consist merely of the 
collection of fields which they currently hold. 

The record itself has no specific name and is identified 
only on the basis of content. Records stored within a 
specific file form a structure size, which in terms of 
total records and record fields, is restricted only by the 
amount of physical space allotted for the file by the 
user. An important concept in the dataBASIC Language 
is that of a "current record," since many statements in 
the language are dependent upon the presence of a 
"current record" for execution. Only two statements in 
the language make a record the "current record"; the 
ST0RE REC0RD statement which creates a new 
record and makes it the current record, and a F0R 
relational:express1'on statement which selects and makes 
current, one at a time, all records satisfying the speci
fic selection criteria. 

A field is a combination of a field name and its 
associated field value (a field name/field value pair). 
A field name is the name of some "thing" or attribute 
that can be measured or given value and a field value 
is a representation of that measure. The user of the 
dataBASIC Language is free to select and establish 
any number of different field names and field values. 
Furthermore, any number of field name/field value 
pairs may be associated with a given record. Fields 
associated with a record need not be unique, that is, 
there may exist occurrences of duplicates. Likewise, a 
file may contain any number of duplicate records. The· 
existence or nonexistence of duplicate fields, as well as 
records, is controlled procedurally by the user, as is the 
presence or absence of records in a file and fields in a 
record. 

Sets and set classes2 are fundamental to many aspects 
of data base management, however, because of many 
alternate implementations and diverse uses, they have 
not always been clearly recognized. In the case of the 
dataBASIC Language, the rules for set membership 
are defined procedurally3 rather than statically under 
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data declaration contro1.4,5,6 The dataBASIC Lan
guage's F0R relational: expression statement provides 
this set creation and manipulation mechanism. Records 
are selected and presented, one at a time, as the 
"current record" to be acted upon. Such set generation 
capabilities give the advanced dataBASIC programmer 
data structuring tools of considerable merit. 

DATA IVIANIPULATION CAPABILITIES 

A dataBASIC record is created when a ST0RE 
REC0RD statement followed by one or more ST0RE 
field statements are executed. The ST0RE REC0RD 
statement establishes a new record and makes it "cur
rent." Once a current record is established, the ST0RE 
field statement may then be used to affix fields to the 
current record. 

Figure 1 illustrates the language statements used in 
the creation of a record. The statements, when executed, 
will create a record. The record, for the moment, has 
six fields with three of the fields having the same field 
name, but different field values. 

100 STS1RE 'RECS1RD 
110 STS1RE PRS1JECT "DATABASIC" 
120 STS1RE FUNDS "ASD" 
130 STS1RE BUDGET 10000 
140 STS1RE ASSIGNED "JS1NES" "ALLEN" "YOUNG" 

Figure 1 

Selection of records from a dataBASIC file is ac
complished by using a F0R relational: expression state
ment. The" relational: expression.is used to specify the 
selection ~riteria and records selected for processing are 
those records in the file whose data field content' are 
consistent with the relational: expression specified. The 
F0R relational: expression statement initiates the ac
cessing process and, with the corresponding NEXT 
statement, * de-limits the processing of the current 
record. When the corresponding NEXT statement is 
encountered, the record is no longer current and the 
next record is selected. After all records meeting the 
conditions specified·have been selected, control passes 
to the statement following the NEXT statement. Upon 
execution of the statements in Figure 2, all records 
containing the field PROJECT "DATABASIC" and 
the field FUNDS "ASD" will be selected, one at a time, 
and made available for processing. 

* The dataBASIC system assigns the "corresponding NEXT 
statement" by pairing each NEXT with the immediately 
proceeding FS1R statement for which there is no associated 
intervening NEXT statement. 

100 FS1R PRS1JECT = "DATABASIC" 
110 AND FUNDS = "ASD" 

200 NEXT 

Figure 2 

The dataBASIC Language also allows the user to 
select field names and field values independent of record 
selection. To accomplish this, two additional forms of 
the F0R statement are introduced: a F0R FNAME 
statement is used for accessing field names and a F0R 
FV ALUE statement is used for accessing field values. 
A field value may be accessed and made current only 
after a field name has been accessed and made current. 
Once accessed, the field names and field values are 
available for processing or display. In Figure 3, each 
unique field name in the file will be made current for 
processing and for each field name made current, each 
associated unique field value would be made current. 

100 FS1R FN AME ALL 
110 FS1R FVALUE ALL 

200 NEXT 
210 NEXT 

Figure 3 

A user desiring to modify the content of a current 
record may do so by using a ST0RE field statement, 
FIXfield statement or DELETE field statement. These 
statements allow the addition of new fields, the modifi
cation of existing fields and the deletion of existing 
fields. In addition, a DELETE REC0RD statement 
is provided to remove a current record from the file. 
After execution of the DELETE REC0RD statement, 
there is no longer a current record available for proc
essing. Figure 4 shows a set of statements, the execution 
of which will cause the following: for each record in the 
file with a field PR0JECT "SPECIAL," the field 
FUNDS "ASD" will be deleted, 'the field BUDGET 
1000 will be modified to read BUDGET 15000 and the 
field FUNDING c'DP0" will be added. 

100 FS1R PRS1JECT = "SPECIAL" 
110 DELETE FUNDS 
120 FIX BUDGET = 15000 
130 STS1RE FUNDING "DPS1" 
140 NEXT 

Figure 4 



A LET statement together with working storage 
fields allows a user to temporarily hold and manipulate 
values of fields during program execution. Values may 
be assigned as a result of data movement, expression 
evaluation or function evaluation. The content of 
working storage is completely controlled by the user 
except for the SUM, MIN, and MAX functions. For 
these functions, both initialization and assignment are 
accomplished by underlying procedures. Execution of 
the statements in figure 5 would result in the sum of 
all budget amounts for DP0 to be placed into working 
storage location A. 

100 F~R FUNDS = "DP~" 
120 LET A = SUM BUDGET 
130 NEXT 

Figure .5 

Users may display the entire content of the current 
record, selected fields of the current record, the content 
of working storage locations, literals, or any combi
nation thereof. Format control may be completely con
trolled by underlying procedure, partially controlled by 
underlying procedure and partially by the user, or 
completely by the user depending upon the options 
specified. If a user wished merely to print the entire 
record and does not desire to control the output format, 
he uses' a PRINT REC0RD statement as illustrated 
in Figure 6. 

100 F~R PR~JECT "DATABASIC" 
110 PRINT REC~R.D 
120 NEXT 

Output upon execution of statements might be 
PR~JECT "DATABASIC" FUNDS "ASD" 

BUDGET 10000 ASSIGNED "J0NES", "ALLEN", "Y0UNG" 

Figure 6 

However, if a user desires a specific format and only 
selected fields to be displayed he may accomplish it 
with statements similar to those used in Figure 7. 

100 PRINT "PR~JECT BUDGET" 
110 PRINT 
120 F~R FUNDS = "ASD" 
130 PRINT pn~JECT EDIT "BBXXXXXXXXXXBB"; 
140 PRINT BUDGET EDIT "99,999" 
1;jO NEXT 
Output upon execution of statements might he 

PR~JECT BUDGET 
DATABASIC 10,000 

Figure 7 
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SUPPORT FUNCTIONS 

In addition to the dataBASIC statements discussed 
thus far, there are certain statements in the dataBASIC 
Language which play an important support role. These 
statements are especially useful when attempting to 
solve more complex problems. Capabilities provided by 
the introduction of the statements into the language 
include provisions for writing recursive subroutines and 
for the conditional restoring of a file. 

Recursive subroutines are quite valuable when deal
ing with complex data structures like tree or network 
structures. A dataBASIC procedure becomes a sub
routine only when accessed through the execution of a 
G0SUB statement. A subroutine is terminated when 
a RETURN statement is encountel"ed in the sequence 
statements being executed as a subroutine. Control 
then returns to the statement following the G0SUB 
statement which invoked the subroutine. Unlimited 
subroutine recursion in the language is provided by 
allowing the user to specify as part of the G0SUB 
statement working storage fields to be treated as 
variables local to the subroutine. When the G0SUB 
statement is executed, the current value of each working 
storage field specified is saved and a null value assigned. 
When returning from the called subroutine each saved 
value is restored and intermediate values are lost. The 
use of recursive subroutines is further explored in the 
discussion of processing techniques. 

The dataBASIC Language gives the user the ability 
to restore a file to the status prior to the beginning of 
the current run. This allows the user to debug ne,,, 
programs against an established data base as well as 
check file modifications for accuracy while having the 
freedom to restore the file, should an error in data or 
logic be detected during the run. File restoring is 
specified by inserting a RETREAT statement at 
desired locations in the program. When the RETREAT 
statement is executed, the program is terminated and 
the file restored. In the case where an unrecoverable 
system error occurs, file rm;;toring is automatic. 

ASSIGNMENT 

PERSilNNEL 

RE~RD 
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100 STORE RECORD 
110 STORE PROJECT iiDATABASIC" 
120 STORE FUNDS "ASD" 
130 STORE BUDGET 10000 PROJECT RECORDS 
140 STORE RECORD 
150 STORE PROJECT "SPECIAL" 

J 
160 STORE FUNDS "ASD" 
170 STORE BUDGET 1;')000 

180 STORE RECORD 1 
190 STORE ASSIGNMENT "DATABASIC" I 
200 STORE ASSIGNED "JONES" I 
210 STORE RECORD 
220 STORE ASSIGNMENT "DATABASIC" I 
230 STORE ASSIGNED "ALLEN" I ASSIGNMENT RECORDS 
240 STORE .RECORD 
250 STORE ASSIGNMENT "SPECIAL" I 
260 STORE ASSIGNED "MASON" I 
270 STORE RECORD 
280 STORE ASSIGNMENT "SPECIAL" I 
290 STORE ASSIGNED "SMITH" J 
300 STORE RECORD 1 310 STORE NAME "SMITH" I 
320 STORE SALARY 1500 I 
330 STORE MAN AGER "YOUNG" I 
340 STORE RECORD I 
350 STORE NAME "JONES" 

I 360 STORE SALARY 1350 
370 STORE MANAGER "YOUNG" I 
380 STORE RECORD I 
390 STORE NAME "ALLEN" I PERSONNEL RECORDS 
400 STORE SALARY 950 r 
410 STORE MANAGER "JONES" I 
420 STORE RECORD 

\ 430 STORE NAME "MASON" 
440 STORE SALARY 1000 I 
4.50 STORE MANAGER "JONES" I 
460 STORE RECORD I 
470 STORE NAME "YOUNG" I 
480 STORE SALARY 2000 I 
490 STORE MANAGER "WILLIAMS" I 

) 

Figure 10 

PROCESSING TECHNIQUES 

To a casual user of the dataBASIC Language, the 
preceding discussion of data manipulation capabilities 
should suffice. However, a more serious programmer 
should find an examination of some of the powers of 
the dataBASIC Language to treat with complex data 
structure interesting. 

Consider the Data Structure Diagram2 in Figure 9 
which represents the data structure as seen by the file 
user for a project control application. 

Depicted is a compound network structure and a tree 
structure. In the compound network structure there is 
a class of project records (class meaning potential to 
exist), a class of personnel records and a class of assign
ment records. For each actual project record, there is 
a set of assignment records, each assignment record 

associating the project with one personnel record repre
senting the person assigned. In the tree structure there 
is one class of records, personnel records, and one set 
class which represents an organization relationship. 

Assume for the moment that the user wishes to deal 
only with the data items project name, funds, budget, 
employee name, salary, and manager. By placing the 
project name, funds, and budget in the project record; 
the employee name, salary and manager in the personnel 
record; and by adding assignment and assigned, and 
placing them in the assignment record, the user will 
be able to create, through procedures, the data struc
tures desired. Let's now examine a specific case of such 
a file and see how it might be used. 

By executing the statements in Figure 10, a file 
is created with records belonging to the classes dis
cussed. 



100 F0R FUNDS = "ASD" 
110 LET A = PR0JECT 
120 PRINT PR0JECT 
130 F0R ASSIGNMENT = A 
140 LET B = ASSIGNED 
150 F0R NAME = B 
160 PRINT" "NAME SALARY 
170 NEXT 
180 NEXT 
190 NEXT 

Output resulting from execution of the above statements 
would be: 

"DATABASIC" 
"ALLEN" 950 
"MASON" 1000 

"SPECIAL" 
"J0NES" 1350 
"SMITH" 1500 

Figure 11 

Let's now assume that a user wishes to print a list 
by project of persons assigned to the projects funded 
by ASD together with their salaries. The fulfillment of 
this request requires a network structure with relation
ships like those shown in Figure 9. The dataBASIC 
Language statements in Figure 11 will provide this, 
therefore, they represent the procedure required to 
create such a structure dynamically. On close exami
nation of the statements it can be seen that data 
resulting from selection specified by statement 130 is 

100 LET C 0 
110 LET A "WILLIAMS" 
120 LET B A 
130 FOR MANAGER = B 
140 LET C = C + 1 
150 LET D = C 
160 PRINT " " ; 
170 LET D = D 1 
180 IF D > 0 THEN 160 
190 PRINT NAME 
200 PRINT 
210 LET A = NAME 
220 GOSUB 120 B 
230 NEXT 
240 LET C = C - 1 
2;)0 RETURN 

Output when the procedure is executed would be 

"Y0UNG" 

"J0NES" 

"MAS0N" 

"ALLEN" 

"SMITH" 

Figure 12 
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used as the selection criterion in statement 150. This 
action, termed "pivoting," allows for a closed feedback 
loop within a program and is an often necessary part 
of network processing. 

As a second problem, consider the printing of the 
organizational structure of all persons under Mr. 
Williams' control. This will require the creation of the 
tree structure which defines organizational relation
ships. The statements in Figure 12, upon execution, 
represent a solution to the problem. Introduced is the 
use of a recursive subroutine for dealing with the tree 
structure. 

SUMMARY 

A terminal oriented data processing language has been 
defined and some of the more interesting capabilities 
discussed. The language is designed to minimize learning 
time. In supporting this concept, all data descriptions 
have been removed and are handled procedurally. In 
its basic form, the dataBASIC language is a procedural 
language for on-line record storage, retrieval, and dis
play. Additional capabilities such as field name and 
field value manipulation, conditional file restoring, and 
recursive subroutines are provided for the more pro
ficient user. This paper has discussed only those aspects 
of the dataBASIC language which are visiable to the 
user. Underlying data structure and procedure 7 required 
to implement the language capabilities, including on
line update and retrieval and data descriptors defined 
during execution of the program are subjects we leave 
for discussion at a later date. 
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LIST AR-Lincoln Information Storage and Associative 
Retrieval System* 

by A. ARlVIENTI, S. GALLEY, R. GOLDBERG, J. NOLAN and A. SHOLL 

Massachusetts Institute of Technology 
Lexington, Massachusetts 

INTRODUCTION 

This paper describes an information storage and re
trieval system called LISTAR (Lincoln Information 
Storage and Associative Retrieval) being implemented 
on Lincoln Laboratory's IBM 360/67 computer to run 
under the IBM CP ICMS time-sharing system. An 
experimental version of LIST AR d~signed to test its 
main features was implemented on the IBM 7094 under 
the MIT Compatible Time Sharing System (CTSS). 
This version was described in some detail in Lincoln 
Laboratory Technical Report 377.1 Because of its experi
mental nature, the CTSS version of LIST AR limited 
the total space for data files to the non-program space 
available in core memory. The current version allows 
the f\le space to extend beyond core memory to auxiliary 
storage. The logical limit of this space is determined 
by the addressing capacity of the system. File space 
size is currently fixed at 230 (1000 million) bytes. This 
could be increased by relatively minor program changes. 
The current version also introduces new techniques in 
space management to deal with this extended file 
space. 

LIS TAR is written almost entirely in FORTRAN in 
order to render the system somewhat machine inde
pendent. The basic input-output routines and a small 
number of other basic programs were written in as
sembly language. 

GENERAL FEATURES 

LISTAR is primarily an on-line interactive system 
which permits a user to define, search, modify, and 
cross associate data files to suit his own special interests 

*This work was sponsored in part by the Department of the Air 
Force and by the Public Health Service, Department of Health, 
Education and Welfare. 
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and needs. The system' assumes an open-ended library 
of users' files which can be called from auxiliary storage 
for processing by a name designation. A collection of 
files which have a common directory (Master File) is 
called a "file set." Each file set contains, in addition 
to its data files, the directory information required for 
their interpretation and processing. The user is free to 
define, modify, augment, delete, and cross associate 
data in files as his interests dictate. In addition to 
direct support of the terminal user, the system allows 
information storage and retrieval functions to be per
formed at the request of independent task programs. 

A file in LISTAR is a set of entries. Each entry con
sists of a set of data fields which describe the objects 

. covered by the file name. For example, if the subject 
matter of the file is books, then the data fields might 
be title, author, date of publication, publisher, and so 
forth. The data fields ascribed to a file apply to every 
entry in the file. The number of data fields per entry, 
the number of entries per file, and the number of files 
per file set are all variable and the user is free to define 
as many as he wishes. Data field values may be any 
character string, an integer, a floating point number, 
etc., or a list of anyone of these. Entries are ordered 
on the data value in a user specified field called the 
chief field. Information which describes the structure 
of files is maintained in a directory called the Master 
File. The Master File is structured like any other file 
in the system and contains information describing all 
files including itself. 

The system has been designed to permit the user to 
create an association between any two files or parts of 
files in a fiie set by defining a relation between them 
. and giving it a name. This is a system feature which 
was implemented and tested in the earlier version of 
LISTAR and is being implemented in modified form 
for the current version. A relation associates each entry 
of the first file, called the "parent" file, and a set of 
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entries from the second file, called the "linkee" file. An 
entry from the parent file is called the "parent" entry, 
and the subset of entries from the linkee file with which 
it is associated is called its "subfile". The user must 
.also explicitly identify the entries in the linkee file 
which are to be associated with each entry of the 
parent file. 

When a relation is defined between two files, the 
system associates the subfile entries according to some 
ordering rule on one of the data fields of the subfile. 
The user is asked by the system to give the ordering 
rule and the field on which the ordering is to be done. 

The ability of a user to relate files in the system and 
to search on these relations is one of the powerful fea
tures of the system. It gives the user great latitude in 
establishing and using cross references between files. 
The user is free to create as many files and as many 
relations as he chooses. He can therefore cross reference 
the same files in many different ways if this serves 
his purpose. Each relation is independent of the others. 
A file may take part in any number of different relations 
either as parent or linkee. The same file can be both 
parent and linkee in a relation. Multiple users can de
fine relations on the same file set without disturbing 
the data base. 

LISTAR SUPERVISOR AND COMMAND 
LANGUAGE 

The supervisor program for LIS TAR, called the 
"Resident Interpreter," is a Fortran main program. All 
input to the LISTAR programs passes through the super
visor (except for input of a large number of entries 
from a bulk storage medium). The supervisor accepts 
command lines (which the user may issue on a variety 
of input units), scans them for command names and 
parameters and places these latter in a list-structured 
buffer area. 

The command language has been designed with an 
eye to user convenience and flexibility. In addition, the 
command language interfaces with the command func
tions in such a way as to permit relatively simple 
system modifications. Important features of the super
visor and command language are summarized below: 

(1) The terminal user communicates to LISTAR 
entirely by way of simple commands which have 
the same format-free structure. 

(2) The LISTAR command set is open-ended and 
indefinitely expandable through the addition of 
command subroutines. 

(3) Since command subroutines are independent of 
each other, they may be grouped into system 

modules or segments to be executed as needed 
to service the user. 

(4) The supervisor and command language pro
grams are independent of the command function 
subroutines to permit non-terminal task pro
grams to execute LISTAR functions directly. 

(5) The terminal user searches files or relations on 
files by moving markers which he creates and 
positions during a session. He is free to create up 
to ten markers and may move these markers up 
and down a file as needed. Markers are indepen
dent of each other and may be erased individually 
whenever their usefulness has ended. * 

Figure 1 lists a sample set of the commands in the 
system. The command name and identifiers required by 
the command are typed in upper case; parameter labels 
and a brief explanation of the command are typed in 
lower case. Where the user may choose among several 
alternative modes of the same command, the alter-· 
natives are placed in parentheses. For these cases, the 
user must select one of the alternatives. Optional 
parameters are set off by the paired set of symbols 
" <" and ">". Parameters are delimited by spaces. 
Parameter names more than one word long are hy
phenated. A sequence of parameters of indefinite length 
is represented by a string containing the name of the 
first and last parameter separated by three dots ( ... ). 

Figure 2 is an example of a session using a number of 
the commands in Figure 1. For our purpose, we have 
chosen a file which is part of an information retrieval 
system called MEDLARS currently used by the Na
tional Library of Medicine at Bethesda, Maryland. 

The example in Figure 2 was generated by a terminal 
user applying LISTAR to a file called "MESH" con
sisting of medical subject headings and stored on the 
Lincoln Laboratory time sharing facility. 

SPACE MANAGEMENT AND FILE STRUCTURE 

Space allocation and management 

LISTAR enables users to reference data stored in a 
large number of files each consisting of a large number 
of entries. These entries are imagined to reside in a vir
tual file-set space of up to 230 (one thousand million) 
bytes. 

The virtual file set space is mapped into a virtual 
memory which is 256K bytes in size at present, but 
which can go as high as 16M bytes (the address ability 

*The use of markers in LIST AR is patterned after the scheme 
developed by K. C. Knowlton for the Bell Laboratory's L& 
language. See Reference 2. 
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1. STOP 

'STOP' tpr~inatps listar and returns the user to cms. 

2. LOAD filesct-na~e (filpspt-tYne) 

'LOAO' reads the filp set from the user~s disk storage into virtual 
memory. 

3. DEFINE FfLE file-na~e (lev~l-O-entry-name) field-name-l field-typ~-l 
field-lcn~tr-l ••• fn-n ft-n fl-n 

'OEFrr-:E FILF' creatps a file description for the named filc bavin!,: 
the snecificd data fields. 

4. BULK rOrMfT format-name record-lenpt~ records-ner-entry 
bcr, ; n-co 1 ur-:'n -1 < to> end~co.1l1mn-1 fie 1 d -namp-1 
ber:in-colunr.-n <to> end-colun:m-n fie.ld-name-n 

5. BlJLK ItJPUT ( T/\Pn 
( ems-filename cms-ffletype 
( TERt1lt:f\L 

fornat-na~c <count> 

) listar-file-name 
) 
) 

'r;ULK INPliT' causes entric-s to be read from the given bulk medium 
into a. LISTfE file accorrlin~ to t~e bulk for~at. 

6. PUT markcr-ha~e ( FILE file-name ) 
( RELATIOr: relation-namp (file-name> ) 

7. '·10VE marker-rar'e (count ( field-name <zone> condition value> > 

IMOVE' mov~s tre marker down a file, until eit~er t~e numbpr of 
entries given hy 'COUNT' havp been examined or the condition bas 
been met. 

8. FOJ"\fi/\T fo rma t-namr f i 1 e-nam~ 
(t'ORt.l field-naflle-1 
(TAB field-nam~-1 column-no-l 

field-name-n 
field-name-n column-no-n 

'FORMtT' is used to specify formats for printing the contents of 
entries. 

9. PRINT markpr-naMP format-name 

'PRH1T' causes selected data-field values (in the entry at \'Jhich 
tbe marker is positioned) to be printed accordin~ to tbe format. 

10. CH/\t!GE marker-name field-name-l value-I ••• field-name-n value-n 

'CHt.,fJGF' puts values into the snecified fields in the entry at 
which the given marker is positioned. 

11. DELETE EPTRY marker-name 

'OElFTE E~TRY' removes from the file t~~ entry at whic~ the marker 
is positionpn. 

Figure 1 

) 
) 
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=c=>load meshfile 
READY 0.03 

c==>put ml file mesh 
READY 0.02 

c==>format fl mesh norm 'eng main ~dg' tally 'tag word I' 
READY 0.02 

c==>move mIlO tally gt 4000 
READY 0.21 

cc=>print ml fl 

ENG ~1" I N HOG 
TALLY 
TAG \'IORD 1 
READY 0.04 

CORONARY DISEASE 
4665 

CS.26.12 

c==>bulk format cd1 SO 3 1 40 'eng main hdg' S1 95 'tag word l' -
H==> 161 170 tally 

READY 0.50 

===>bulk input terminal mesh cdl 
1==>adult 
2==>gl.4 
3==>S1452 

READY 0.21 

===>put ml file mesh 
READY 0.02 

===>move ml 10 tally gt 400n 
READY 0.20 

ro=·= > p r i n t m1 f 1 

ENG tltA I N HOG 
T-ALL Y 

ADULT 

Gl.4 
81452 

TAG WORD 1 
READY 0.04 

===>change ml 'tag word I' gl.4.l3 
READY 0.04 

===)print m1 f1 

EUG MAIN HDG 
TALLY 
TAG \'/0 RD 1 
READY 0.04 

c==>stop 

ADULT 
81452 

Gl.4.13 

Tc l.54/9.34 17:19:36 Figure 2 
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limit of the IBM 360/67). The size of virtual memory 
is a CP /CMS parameter. The current version of CP / 
CMS maps virtual memory into a real core memory of 
512K bytes.3 

LISTAR files are list structured and processing of 
the files can result in essentially random access within 
virtual memory with an extreme paging-to-computation 
ratio duriI.lg execution. In order to minimize this ratio, 
LISTAR maintains a disciplined check on the use of 
virtual space by way of space allocation and manage
ment algorithms. 

Space allocation ap.d management takes three forms 
in LISTAR. The first is "block" management which 
includes creation, deletion, and moving of blocks, the 
unit of data exchange in LISTAR between virtual 
memory and auxiliary storage. The second is "cell" 
management which concerns management of available 
storage within a block. The third is "entry" manage
ment, consisting 'of assigning and updating a virtual 
address to an entry. An "entry number" is a number 
assigned to each entry of a file at the time it is created. 
The number not only uniquely identifies the entry 
throughout its lifetime, it also specifies the current 
location of the entry within virtual memory space. 
Over its lifetime an entry may be moved from one 
part of the file to another so that the primary linking 
order may be maintained. The entry number contains 
within it all the information necessary to locate the 
entry in the file. 

B lock management 

A file set is created by linking blocks of free space 
representing regions of virtual file sp&ce. The block is 
significant in two respects. First, it represents the unit 
exchange of data for LISTAR to and from auxiliary 
memory. LISTAR programs read blocks of data from 
auxiliary memory into the user's virtual memory space 
as required and, similarly, write blocks of data into 
auxiliary memory to store or update files. The block 
size is an integral number of 360/67 "pages" where a 
page is 4096 bytes. The number of pages per block has 
been fixed at one page for LISTAR. This number can be 
changed with relatively little program modification. 

A new block is created whenever space is needed to 
enlarge a file in the file set and the current available 
space is insufficient to satisfy this need. A block is 
released when all data entries on the block have been 
deleted. 

Every block is assigned a number ranging from 1 to 
218 -1, at the time it is created. The number uniquely 
identifies the block. Reference to blocks residing in 
auxiliary storage is always made by block number. 

LIST AR files will, in general, extend over many blocks 
and will dynamically vary in extent. At anyone time, 
however, a relatively small number of blocks will lie 
in a virtual memory area called the "file area". The 
size of the file area is determined by the amount of non
program space in virtual memory (where program 
space includes the space taken up by the CMS super
visor as well as LISTAR programs). For example, the 
file area might take up 20 pages of a 256K byte virtual 
memory. A table called the "virtual memory table" 
(VM table) is maintained in LISTAR program space 
which records the block number and location of those 
blocks currently in virtual memory. As blocks are 
needed, they are read into locations specified by the VM 
table. If necessary, a block is written out to auxiliary 
memory to make room for one that is more urgently 
needed. 

Cell management 

When a block is created it is divided into smaller 
units called "cells". Cells may range in size from one 
double word to a quarter page (1024 bytes or 128 
double words) . 

Maintenance of free space follows the scheme used by 
K. C. Knowlton in the Bell Laboratories' L6language.4 
The first word of every cell contains a key and cell link. 
The first bit of the key indicates whether the cell is 
free or in use. The next three bits identify the cell size 
in double words as log2n. If a cell consists of 2n double 
words, then n is a three bit index on the cell size where 
the index may range from 0 to 7. Free space on a block 
is implemented as eight chains of cells, one for each cell 
size. The first 2-cell of every block is reserved for a free 
space header called Header 1. Each word of Header 1 
contains a pointer to the first cell of the free cell chain 
of the designated size. A header word (4 bytes) is as
signed to each cell size beginning with size 7 and ending 
with size O. The free-space chains are doubly linked 
lists, that is each free cell has a pointer to its predecessor 
in the chain as well as to its successor. The double 
linking is an aid in maintaining the proper linkage as 
cells are acquired from and restored to the chains. 

When a cell of index n is released, the corresponding 
twin to that cell is immediately checked to determine 
if it is also free. A cell is the twin of another cell if both 
have the same index n, are adjacent on the block and if 
the combined cell with index n + 1 falls on an n + 1 
cell boundary. If the twin is also free, they are com
bined into a free n + 1 cell and the process is repeated. 
In this fashion, the free space within a block is dy
namically accumulated into the maximum size cells. 

Allocation of new cells is made by first checking the 
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First Cell of An Entry 

Key Cell Link 

Key Entry Link 

Entry Number 

Key Ascend Link 

Bit 

Cell Key 

Other 

o 
f-~ 

4-7 

0-6 
7 

Data 

Figure 3 

Meaning 

Free/Used 
Cell size index (1og2 number of 
double words) 
Link type 

Link type 
In-blockjout-of-Block indicator 

count for the chain of the desired size and, if it is zero, 
proceeding to the chain of cells of next larger size which 
is non-empty to decompose a larger cell. Note that 
Header 1 will never be selected as a free cell since its 
busy bit is always set. 

Entry management 

Entry Structure 

Entries are composed of cells chained together by 
cell links. Since an entry will describe one object from 
a set of similar objects, the number and relative location 
within the entry of data fields which characterize the 
particular object are specified for the entire file by 
specifying the format for a typical entry of the file. This 
descriptive information will be described later. Although 
the entry format for each file is unique to that file, cer
tain characteristics of the format. are constant for all 
entries in the system. 

Space is dedicated in the first cell of each entry for a 
cell key and link, a "descend" entry key and link, an 
entry number and an "ascend" key and link. A key is 
always associated with a link. A link is a pointer which 
always points to the first byte of a cell or entry and is 
either a displacement in bytes relative to the start of 
the block or an entry number which is convertible to a 
block number and byte displacement relative to the 
start of the block. A key is one byte long. The four 
high-order bits of a key in a cell link specify the cell 
availability and cell size as described above; for other 
in-block links, these bits are not used. The four low 
order bits of all keys specify a key value representing a 
link type. Five basic types are distinguished: a link to 

an empty list, a branch link to a sublist, a descend link 
to a successor cell or entry, an ascend link to a prede
cessor cell or entry and a return link from a sublist to 
its parent entry in the main list. The lowest order bit 
indicates whether the link is pointing to a cell or entry 
on the same block as itself or to an entry on another 
block. In this latter case, the link is called an "out-of
block" link. Figure 3 illustrates the format of the first 
cell of an entry in which both the entry link and ascend 
link point to in-block entries. If either link were an out
of-block link, it would be the entry number of the entry 
to which it points. LISTAR convention does not allow 
an entry composed of more than one cell to cross a block 
boundary. A cell link, therefore, will never be an out-of
block link, i.e., an entry number. 

An entry in a LISTAR file may be "simple" or "com
plex." A simple entry consists of one or more cells 
linked by the cell link in decreasing cell size. The total 
size of a simple entry is determined initially by the space 
required to store the data values for the data fields 
specified by the user at the time the file was defined. 
Additional cells are acquired whenever new data fields 
are added and the free space internal to the entry has 
been exhausted. Similarly, cells are released from the 
entry when all the data fields assigned to the cell have 
been deleted. The expansion and contraction of an entry 
in a file is applied equally to every entry in the file. 

A complex entry is a collection of simple entries 
which are linked together in a hierarchical structure. 
For convenience in exposition, we will refer to the 
simple entries that make up a complex entry as "sub
entries". The user determines whether his file . will con
sist of simple entries or complex entries at the time he 
defines the file to the system or subsequently, if he 
wishes to modify the definition. He does this by giving 
the name of each sub-entry class, the data fields which 
make up each sub-entry and the parent entry to which 
each sub-entry is to be linked. The sub-entry class name 
is used by LIST AR to label the linkage between each 
parent entry and its list of sub-entries. 

Entries on a block form a chained list which is linked 
on the entry link of the highest level parent. Entries 
are ordered in this list by the values that appear in a 
specially designated field called the chief field. * As 
entries are added to a file, they are inserted so as to 
retain this logical sequence. Under some circumstances 
this may require moving an entry to another block or 
creating a new block to acquire space from the free 
space chains. The algorithm for managing the addition 
and movement of entries is as follows: 

(1) The current block is inspected to determine if 

*The chief field is determined by the user at the time the file is 
defined or described to LISTAR. See earlier section. 
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space is available for the new entry. If space is 
found it is acquired and the new entry added. 

(2) If space is not available and the new entry must 
be added to the end of the file, then a new block 
is created for the entry. Otherwise the pred
ecessor block is inspected and free space is 
acquired for the new entry. 

(3) If space is not available on the predecessor block, 
a new block is created and free space is acquired 
for the new entry. 

(4) If the predecessor block or a new block must be 
used and the logical location of the new entry 
comes after the first entry on the current block, 
then the first entry is moved and the released 
space is used for the new entry. The entry to be 
moved will either be moved to the predecessor 
block or the newly created block. 

The algorithm used by D. G. Bobrow and D. L. 
Murphy in their version of LISP is very similar to the 
one devised for LIST AR and described here.5 ,6 This 
algorithm seeks to minimize the accessing of blocks 
outside virtual memory for the most frequently em
ployed storage and retrievaloperations. 

Out-of-block referencing 

An out-of-block pointer or entry number has the fol
lowing format: 

4 4 

[A I B 

14 

A 

10 

D 
where the 18 bits marked A form a block number rang
ing from 1 to 218 -1; the four bits marked B 
represent an out-of-block key value, * the 10 bits marked 
C represent an index on a table called an "entry table" 
which resides on the block whose number is given in A. 

An entry table is formed on a new block when it is 
created. The table serves as a directory for storing the 
file set location (block and displacement) of an entry at 
the time it is added to the file. Whenever the entry is 
moved, its location is updated in its table. If an entry 
is deleted, the deletion is noted in the entry table. By 
this device, the entry file set location of an entry need 
only be kept in one place, regardless of its actual loca
tion in the file. When an out-of-block pointer or entry 
number is encountered by a LISTAR routine, the 
entry number is decomposed into its 18 bit block num-

*See above section. 

ber and its 10 bit index. The block number specifies 
the block on which the entry table for the entry resides. 
The index is used to determine the slot in the entry 
table where the file set location is stored. 

The format of the entry table is shown below: 

Entry Table 

Usage 
AV Count Block # Disp 

Slots i 5 18 8 

0 

II I 
1 

2 

n-i 

II n 

Each slot in the table is one word (4 bytes) in length. 
An entry table can range in size from 64 slots up to the 
maximum number that can fit on a block. Normally an 
entry table will have 64 or 128 slots. In the unusual 
event that all the slots of a table have been used and 
none are available for a new entry, a special entry table 
is created which fills all the space on another block 
exclusive of Header 1 and Header 2, i.e., 1008 slots. 
The block containing such a table is called a "table 
block". Table blocks are created as needed. In most 
cases a slot will be available for a new entry so that the 
need for a table block should be very infrequent. 

An entry table is formed by acquiring a cell from the 
free space chains. The first bit of the cell is an availa
bility bit (A v in the diagram) and is set to zero to 
i'ndicate the cell is in use. The remaining bits of a slot 
are used to designate the usage count of the slot, the 
block number and the relative block displacement of 
the entry identified by the entry number. The relative 
block displacement is stored in units of 16 bytes 
(double-double words). If an entry is deleted, its entry 
number is retired, and its slot is marked as vacant. The 
slot is then available for use by a new entry. The num
ber of times a slot may be re-used is determined by the 
table size. This number will be referred to as the "modu
Ius". If s is the table size and m is the modulus then: 

s X 2m = 1024 for m = 2, 3, 4 or 5 

and 

s X 2m = 1008 for m = 0 
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FILE INDEX 

TO BLOCK 2, ENTRY I 
LEGEND 

ENTRIES FROM THE MASTER FILE 
BLOCK t 

ENTRY INDEX 

I&II~ I~~~ION I - 111 I 

FIELD IDENTIFIERS ENCODING TYPES 
EI ENTRY INDEX (l,nk) C CHARACTER 
EL ENTRY LINK L LINK 
FI FIELD INDEX Clink) F INTEGER 
FLDN FIELD NAME S SUB-ENTRY 
FN FILE NAME U USER SUPPORTED 
FS FILE START llink) X HEXADECIMAL 
LEN FIELD LENGTH 
LOC FIELD lDCATION 
SEN SUB-ENTRY NAME 
STR STRUCTURE OF SUBENTRY 
T FIELD TYPE 

Figure 4 

FIELD INDEX 
EL FLDN T L.OC LEN 

3141r..~~ IsH-I 

1 I • Irf~TH I X I ~ I-I 

.1 t I~ION IFH-I 

,1 10 I~i~ I C 121-1 

10 I & I~~~ I X 131-1 

12 113 1 ~:J:; IsH-I 
13 1 141~~~E H21-1 

141" 1~~iRT 1 L 131-1 

1111'1~~:~E ILH-I 

IB 11,1 ~~: FIELD 1 L 1&1-1 

19120 I =mT~O':EE 1 L 1'1-1 

2DI211~m~~fHTILI11-1 

21 1221~~R IxH -I 

221 231:':kNT IL131-1 

23 1 241==TFIELDI L I ~ I-I 
241 2~ I PATH 1 L 191-1 

2~11&1:~TIDN 1c121-1 

The usage count is recorded in the five bit field fol
lowing the availability bit of the entry table. The usage 
count also appears as the low order m bits of the index 
field of the 'entry number, where m is the entry table 
modulus. Information necessary to access the entry 
table is recorded in a second header at the top of the 
block called Header 2. 

FILE DESCRIPTION 

There are three principal system files maintained for 
each file set. These are called the Master File, the Re
lation Index and the 'Path File. The Master File con
tains a description of every file in the file set including 
the Master File itself and the other system files. The 
descriptions of the Master File and Relation Index are 
always the first and second entries in the first block of 
a file set. Figure 4 shows a simplified illustration of a 
typical first block. The block has an entry which de
scribes the Master File itself and a second entry which 
describes the Relation Index. We will explain the make-

up of the first entry on the block (the entry which de
scribes the Master File itself) here and explain the 
.second entry (Relation Index) in the next section when 
we take up relations. 

All entries in the Master File are complex entries. 
The Master File entry consists of three sub-entry classes 
called "File Index", "Entry Index" and "Field Index". 
The sub-entries are numbered 1 to 14 to represent 
entry numbers. For this illustration links are shown as 
entry number pointers. A number of the fields, such as 
key field, have been omitted for the sake of simplicity. 
In practice, free space might exist within some of the 
sub-entries and would be available for additional fields 
if needed. This free space is not shown in the figure. 

The field location and length in the Field Index 
specify the position of a field relative to the start of 
the entry of which it is a part and its length in bytes. 
The numbers in the figure are illustrative only and refer 
to positions in the diagram. Omitted values are in
dicated by a dash (-). The field type. specifies the in
ternal coding format of a data value stored in the 
designated field. LISTAR accepts 8 types: integer, 
floating points, character, decimal, binary link, sub
entry and user. The "sub-entry" type identifies the 
linkage between a parent entry and its sub-entry list. 
The "user" type identifies a type defined by the user. 
It provides the user with a means of storing informa
tion which is coded in a form that is especially meaning
ful to him. Input and output of data values stored in a 
"user" type field are handled by an I/O program writ
ten by the user which interfaces with the LISTAR 
routines. The I/O program would normally be prepared 
by the user before defining his file. 

Figure 5 illustrates a second block containing the 
file description of three other files. Two of the files, 
MESH and PIC, are data files; the third is a special 
file created by LISTAR to implement a relation called 
"ZEUS". 

As indicated above MESH is a file of standardized 
medical subject headings. PIC is a special vocabulary 
of medical terms appropriate to Parkinson's disease. 
ZEUS is a relation which maps PIC terms to MESH 
terms. The relation ZEUS will be explained in the 
following section. The descriptive information for each 
of these files is stored as complex entries in the Master 
File. The entry link of the last entry of block 1, "Re
action Index," points to the first entry on block 2, 
"MESH", by way of an out-of-block pointer which is 
here represented by a block and entry number (2-1). 
The last entry of block 2 is the last entry of the Master 
File and points back to the first entry on block 1 (1-1). 

Figure 6 illustrates the makeup of the PIC and 
MESH files. The PIC file contains one field for the PIC 
term (PT). The MESH file contains three fields: the 
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main heading term, Eng Main Hdg (EMH), the Tally 
and the classification term, Tag Word 1 (TW1). The 
entries are linked in alphabetical order on the entry 
link (EL) and each returns to its respective descriptive 
entry in the Master File. 

RELATIONS 

As indicated earlier, the user can create an association 
between any two files in a file set or between entries of the 
same file by defining a relation between them. Rela
tions are implemented as a chain of out-of-block point
ers (entry numbers) which link the entries taking 
part in the relation. 

The entries of a relation chain are distinct from the 
entries in the files or file on which the relation is defined, 
and they are stored in a separate file called a "path 
file" identified by the relation name. The entries in a 
path file are abstracts of the entries in the main files 
being related. A path file links abstract entries from the 
parent file to a set of abstract entries from the linkee 
file. Abstracts are created only for those entries specif
ically relevant to the relation. Each entry of a path 

sAMPLE ENTRIES FROM THE MASTER FILE 
BLOCK 2 

FILE INDEX (continued) ENTRY INDEX lconllnu •• 11 FIELD INDEX (conti_) 

EL FN FS EI EL SEN STR FI EL FLDN T LOC LEN 
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Figure 5 

SAMPLE ENTRIES FROM PIC FILE 
BLOCK 3 

EL PT 

I I 2 I ABDUCENT NUCLEUS I 
2 I 3 I CAVUM EPIDURALE I 
3 1 4 I FASCICULIS CUNEATUS I 

TO BLOCK 2. 
ENTRY 6 

LEGEND 

EMH ENG MAIN HOG 
(mesh 'e,m) 

PT PIC TERM 

TALLY TALLY 

TW I TAG WORD I 

SAMPLE ENTRIES FROM MESH FILE 
BLOCK 4 

EL EMH TALLY TWI 

• I 2 I ABDUCENT NERVE 71 I A8.75.16.1 I 

2 I 3 I ANGINA PECTORIS I 1265 I ca.26.12.1 I 
3 I 4 I COMPUTER DIGITAL I 865 I LOO. 18.13. 1 I 
4 I 5 I CORONARY DISEASE I 4665 I C8.26.12 I 
5 I 6 I DURA MATER I 271 I A8.30.26.1 I 
6 I 7 I HEART DISEASES I 3826 I ca. 26 

7 I 8 I MEDULLA OBLONGATA 729 I A8.30.13.1 I 
8 I 9 I PONS 440 1 A8.30.13.1 I 
9 I 10 I SPINAL CANAL 145 I A2.84.M.I I 

10 2-' SPINAL CORD 

TO BLOCK 2. 
ENTRY I 

Figure 6 

file, whether it be an abstract entry from the parent 
file or from the linkee file, has four data fields in addi
tion to the standard fields of an entry: "back pointer", 
"branch link", "return link" and "value". The back 
pointer is the entry number of the entry from which the 
abstract was formed. The branch link connects a 
parent entry with its sub-list of linkees. The linkees 
are chained on their entry link. The last entry link of 
of the sub-list contains a key value indicating a return 
to its parent entry in the path file. The return link 
provides an additional link from the sub-list to its 
parent entry if one is needed for purposes of more 
rapid search. The value field contains a copy of the 
data value from each entry in the main files which takes 
part in the relation. The parent and linkee entries in 
the path file are ordered on the value field. 

At the time a relation is created the user must specify 
the parent entries and the linkee entries that are to be 
associated. He must also specify the fields in the main 
files on which the entries in the relation file are to be 
ordered. The data values from each of the entries 
designated are copied into the value field of the rela
tion file entries, and the entry number of the entry 
from which a value is copied is stored in the back 
pointer field of the relation file entry. The path file 
entries then contain just those data values which are 
relevant to the relation and each entry is an abstract 
of its correlate in the main file. 

Information describing a relation is stored in the 
Master File and in a system file called the Relation' 
Index. The name assigned by the user identifies a 
particular path file. Each such file has a description in 
the Master File. For example the relation ZEUS men
tioned in the preceding section identifies a relation 
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Figure 7 

which maps terms from the PIC vocabulary to asso
ciated terms in the MESH vocabulary. The entry in 
the Master File (Figure 5) gives a description of the 
path fil~ entries that take part in the relation. More 
specific information on each relation is stored in the 
Relation Index. A description of the Relation Index 
as it would appear in the Master File is illustrated in 
Figure 4. Figure 7 shows, in simple form, the entry for 
the relation ZEUS as it would appear in the Relation 
Index. The Relation Index entry contains the name of 
the relation (RN), the entry number of the parent 
file (PN), the entry number of the linkee file (LN), the 
entry number of the ordering field for linkee entries 
(LOF) , the entry number of the path file description 
(P) and the ·ordering rule (OR). All values for these 
fields except the relation name and ordering rule are 
entry numbers which point to Master File entries. 
The ordering rule determines whether the ordering in 
the linkee entries is alphabetic, logical, numeric, or user 
defined and is specified by a preset code. 

In addition to the standard chaining on the entry 
link, entries in the Relation Index are chained on two 
other links. One of these connects all Relation Index 
entries which have the same parent file in the relation 
(NXP). The other connects all entries ,vhich have the 
same linkee file in the relation (NXL). 

When the user defines a relation he specifies the 
files to be related, the fields on which the parent and 
Iinkees are to be ordered, the ordering rule and the name 
he' wishes to assign to the relation. With this informa
tion, LISTAR creates an entry in the Master File for 
the relation file and an entry in the Relation Index. 
Once the relation has been defined the user may then 
generate the path file by directing LISTAR to associate 
specific entries from the linkee file and the parent file. 
A particular path file may be generated incrementally 
by the user or, if an algorithmic association applies, 

by a global procedure. The user searches a relation in 
the same way he searches a file, by employing the com
mands PUT and MOVE. 

The relation implementation scheme adopted for 
this version of LIST AR is one of several choices made 
possible by the LISTAR design rules. It has the dis
advantage of requiring redundancy in the storage of 
field values, but this is offset by advantages in pro
gramming. Under this scheme the same system func
tions can be applied equally to the processing of rela
tions and files with little or no need to treat relations 
as specialized structures. 

CONCLUSION 

LISTAR was designed primarily to maximize facility 
and flexibility in file management. Empirical evidence 
is insufficient at this point to determine what the cost in 
speed of searching might be in attaining these goals. It 
is however, clear that the system is very easy to use 
a~d gives the user great latitude in creating, modifying 
and searching files. Ease of use has been achieved by 
providing a relatively simple English-like command 
language which requires the user to have no program
ming experience and very little knowledge of file or
ganization. The self defining character of the Master 
File and the fact that the same structuring rules apply 
to the Master File as to data files make it possible to 
modify the Master File as easily as data files. Finally, 
the ability to create relations provides the user with a 
powerful tool for associating data entries in ways that 
are especially meaningful to him and which offer more 
rapid searching than direct searching of his primary 
files might allow. 
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INTRODUCTION 

Our concept of what is considered large-library
processing changes with the growth of published in
formation and with the progress of the relevant· data 
processing technology. The size of the library may be 
characterized by the number of entities that it con
cerns and the average number of retrieval terms that 
index the information about each entity. This applies 
to the processing of bibliographic services in prepara
tion of recurring bibliographies of periodical literature 
and to the processing inherent in acquisition and cus
tody of a library collection and communicating in
formation regarding the collection to the library's users. 
In this context, a large library may be considered to 
have from 50,000 to tens of millions of individual 
publications with each publication characterized by 
from 10 to 100 retrieval terms. Numerous existing 
libraries and bibliographic services fall in this range. 

Cost, personnel availability and service quality 
problems provide the justification for developing all
automatic processing methodology for a large library. 
This is similar to the justification for mechanizing any 
other industrial, commercial or service function. These 
three problem areas are particularly acute in the 
library field. The cost of present library processing is 
very high. A major component of the budget of li
braries covers the processing functions which include 
iI)dexing, cataloging, vocabulary maintenance, and 
communicating information to the library's users. 

* The research reported has received support from the Informa
tion Systems Program of the Office of Naval Research under 
Contract 551(40) and from the Bell Telephone Laboratories. 
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There is generally a shortage of qualified personnel 
even where funds are available. In anyone of the large 
libraries there are thousands of monographs and serials 
that are awaiting to be indexed and cataloged. These 
often lay unused because of the dearth of competent 
indexers and catalogers, especially those expert in 
particular subjects arid languages. The increased 
amount of material that is being disseminated requires 
substantial increases in staff. Staff with such com
petence is extremely scarce; low salaries and monotony 
of processing work discourage young people from 
entering the library field. Finally the services are not 
satisfactory as indicated by the very low utilization of 
library resources by the scientific community. Further
more, the libraries generally operate at a low, almost 
inacceptable, retrieval effectiveness and the library 
user requiring specific information is overwhelmed 
with much irrelevant information. 

There are three major processing functions:· (1) 
indexing and classifying; (2) thesaurus (vocabulary) 
and classification maintenance; and (3) user query 
interpretation. In developing an approach to the 
carrying out of these functions, there is a choice be
tween the semi-automatic and all automatic processing 
approach. Either approach requires direct interaction 
of the staff and users of the library with the automatic 
system. However, in a semi-automatic approach, the 
staff shares" with the automatic system the minute 
decisions in carrying out the above functions. Since 
such sharing of decisions and functions will continue 
to require expenditure in funds and highly trained 
staff, the semi-automatic approach will not respond 
fully to the problem areas delineated above. The 
following therefore is devoted to exploring the all
automatic methodology for processing in a large library. 
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The methods employed in libraries for a century 
such as indexing and classification have proven of 
lasting value and serve as a foundation for the all
automatic library processing as well. Furthermore, 
methods of content analysis for indexing and classified 
concordance preparation, which require merely clerical 
procedures, have been proposed for centuries. 33 

To cope in a practical manner with a mass of data, 
the traditional approaches can be performed auto
matically with only minimal guidance provided by 
the library staff. Thus, in the all-automatic processing 
of a library the indexing of documents can be per
formed entirely by the computer following content 
analysis algorithms which select index terms from title, 
abstract, table of contents or references included in a 
document. This procedure also does away with the 
vocabulary maintenance work through maintaining 
an open ended index word vocabulary which is 
uncontrolled. 

Next, an automatic process can be applied which 
generates a library classification system for the library 
collection. The classification system represents a 
scheme for placing documents on shelves, in micro
forms, in bibliographic publications, or in the computer, 
as appropriate. The classification system created auto
matically differs however from conventional classifica
tion systems employed in libraries. The prevalent ap
proach to creating a classification system is that of 
applying human judgment a priori to divide the li
brary collection into progressively more specific classes. 
By contrast, automatic classification systems are gen
erated a posteriori from the information in the docu
ments in the respective collection; namely, the index 
terms are extracted automatically from each document 
as it enters the collection. The division of the collection 
into progressively more specific classes is then per
formed automatically, based on the index terms ex
tracted from the respective documents. The notable 
advantage of such a classification system is that, being 
generated automatically by a computer, it can always 
be brought to reflect an up-to-date situation incorporat
ing new documents or using new algorithms in re
indexed documents. Thus the significance of new 
classes in the library collection is incorporated in the 
classification system. 

Finally, placing publications (or bibliographic cita
tions) according to a classification (similar to manual 
classification) provides the ability to browse in a 
library and find documents on related subjects placed 
together. This browsing capability can be retained in 
bibliographic publications (as will be shown) as well as 
in library shelves, in microform storage, or in the 
memory of the computer: wherever the documents or 
the surrogate information are stored. The retrieval 

procedure then consists of reference to a classification 
schedule which points to the respective areas where 
relevant information is found. The look up of respective 
index terms (or their conjunctions or disjunctions) pro
vides the respective classification numbers, which can 
be algorithmically translated into storage locations. 
This contrasts with coordinate indexing retrieval 
systems, where the user's needs must be interpreted 
into a logical formula which should incorporate all 
the relevant index terms including appropriate syno
nyms. Such an interpretation requires expenditure of 
much time by highly skilled staff and by the computer. 

The remainder of this chapter deals with three of 
the functions which are considered to be the major 
ones in an all automatic processing of a library. These 
are the automatic indexing which is the subject of the 
following section, the automatic classification which is 
the subject of the third section and the retrieval 
through browsing with the aid of a classification sched
ule which is the subject of the fourth section. However, 
the principal and novel aspect reported here is the 
generation and application of the Automatic-Classifica
tion in the third and fourth sections. The discussion of 
Automatic Indexing, in the following section, is there
fore brief and of review nature. 

AUTOMATIC INDEXING 

A variety of automatic indexing approaches have 
been described by Stevens.36 

Of interest here are only those indexing methods 
which do not involve human control of the indexing 
vocabulary. In selecting these methods there is an ap
parent lack of direct concern with the concepts, things, 
or people behind the mechanically selected index 
words. This is indeed not so, since to conceive anything 
is to represent it in symbolic form, which in the context 
here means representation in words which are selected. 

The assimilation of new publications into the collec
tion consists of text analysis and extraction of words 
through a clerical procedure. These words are then 
entered into a concordance of index terms. The con
cordance may be further processed to omit terms in 
some algorithmic way (based on frequency, for instance) 
and to form a classification system. The new publica
tion is thus assigned a classification number and ac
cordingly allocated storage space. Retrieval queries 
are similarly processed, where words in the query are 
extracted and used to reference the classification 
schedule; thereby determining the respective areas of 
the collection which are of interest. 

The language analysis in deriving automatically the 
index terms may be based on the entire text, on cita-



tion and header information, such as table of contents 
or references, or merely on the title. The cost of tran
scription of the publications into machine readable 
form decreases greatly as the amount transcribed is 
reduced; however, this also reduces the eventual re
trieval effectiveness. ,There is an indication however 
that effectiveness of retrieval by subject area increases 
considerably· (20% to 25%) when the transcription of 
the abstract is added to the transcription of the bib
liographic citation. 9 ,31 Content analysis of full text has 
not proven to sufficiently improve the effectiveness of 
retrieval to warrant the considerably greater cost of 
transcription. 

Similarly, increasingly more complex language analy
sis procedures may be employed. However, again, the 
increased complexity of the algorithms may contribute 
only very little to the eventual retrieval effectiveness. 

The simplest procedure is to analyze a text to recog
nize and generate stems of words encountered in the 
input material and treat these word-stems as candidate 
index terms. This involves only recognizing the suffixes 
of words and elimination of highly common words. 
Suffix editing procedures are simple; a procedure for 
English has been described by Stone, et al.,37 and a 
procedure for French has been described by Gardin. 16 

Similar procedures have been developed by numerous 
other investigators. 32 Such simple procedures, where 
stem words are derived from title or abstract, without 
reference to thesaurus, has proven effective for retrieval 
in situations where the user is satisfied with retrieval 
of one or few relevant documents. In a library arranged 
by subject, according to a classification, additional 
documents on relevant subjects will be found in adja
cent storage areas. This simple indexing procedure can 
therefore serve for the all-automatic large library 
processing. 

More sophisticated procedures employing syntactic 
analysis of sentences and semantic analysis involving 
look-up in dictionaries may be employed in the auto
matic indexing process. Natural language processing 
and machine translation research are relevant, as 
many of the algorithms developed there are directly 
applicable to automatic indexing. 30 

The aggregate of the index terms extracted from the 
incoming or re-indexed documents constitute an all
inclusive directory or concordance of the inde~ terms. 
These directories are generated a posteriori from the 
documents themselves. An important step in deriving a 
usable thesaurus is the elimination of the very high and 
very low frequency words.15 More sophisticated process
ing of the index word vocabularly may be employed. 
For instance, a smaller thesaurus may be obtained by 
including only terms with high frequency of use in 
retrieval queries, or index terms of documents which 
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have been retrieved frequently. Analysis of queries 
may also serve as a guide regarding important relation
ships among terms. Statistics about frequencies of co
occurrence of terms may be used to combine terms into 
phrases which will be used in their entirety as a single 
term. Finally, the automatic generation of a classifica
tion, described later, may provide further information 
about grouping and sub-grouping of terms so that 
separate thesauri for some specific subject areas may be 
prepared where relationships between index words are 
established in the context of the subject areas. 

AUTOMATIC CREATION OF A LIBRARY 
CLASSIFICATION 

A posteriori creation of a classification 

The basic aim of a classification system for a collec
tion of documents is to group "like" documents to
gether into categories. A posteriori classification does 
this by setting up the categories only after the docu
ments are available. Thus, a posteriori classification, as 
opposed to a priori can optimize the categories with 
respect to the documents actually existing in the collec
tion. Coupled with the automatic nature of the process, 
this leads to a large degree of flexibility and ability to 
maintain up-to-date classification schedules. 

Lance and Williamsl8 ,19 divide a posteriori classifica
tion strategies into hierarchical and clustering types. 
They further subdivide hierarchical strategies into 
agglomerative and divisive types. In agglomerative 
strategies the hierarchy is formed by combining docu
ments, groups of documents, and groups of groups of 
documents until all documents are in one large group: 
the entire collection itself. The hierarchy being thus 
formed, all that remains is to select some criterion, 
such as category size, at which one cuts off the bottom 
of the hierarchy. Experiments using such a method 
were performed by Doylel2 ,13 using the Ward grouping 
program.38 Prywes25 ,26 ,27 has also devised a system of 
this type, with only small scale work done on this 
algorithm,39 because of computational difficulties. 

Divisive techniques have long been thought the 
realm of philosophers and other designers of a priori 
breakdowns of knowledge. With this technique, one 
starts with the entire collection and successively sub
divides it until appropriately sized categories are ob
tained. Doyle14 has proposed a system of this type (see 
Dattolall for pr~liminary experiments). However, this 
system requires some a priori categories as a starting 
point at each level of classification. Another classifica
tion algorithm of the divisive hierarchical type is that 
of "CLASFY." This algorithm was devised by Lef-
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TABLE I -Sample Nodes of Hierarchy 

Node 1.5 Node 1.5.1 Node 1.2.3 

CHEMISTRY ORGANIC CHEMISTRY NUCLEAR EXPLOSIONS 

chemical reactions 
chemical analysis 
reaction kinetics 
absorption 

organic compounds nuclear explosion 
radioactivity 
radioisotopes 
contamination 
environment 
detection 

stability 
solutions 
separation process 
uranium 

organic nitrogen compounds 
organic sulfur compounds 
organic bromine compounds 
organic fluorine compounds 
methyl radicals 
propyl radicals gamma radiation 

temperature 
analysis impurities 

thermodynamics 
decomposition 
labelled compounds 
thorium oxides 
oxidation 
electric potential 
adsorption 
lattices 

isomers 
amines 
benzene 
ethanol 
ethers 
urea 
ammonia 
acetic acid 
nitric acid 
heterocyclics 

pressure 
computers 
radiation protection 
safety 
economics 

Node 1.2.3.2 

cations 
spectroscopy 
polymers 

solvent extraction 
polymerization 

FISSION PRODUCTS 

alkyl radicals 
salts 
solubility 

oxygen compounds 
cycloalkanes 

fission products 
filters 
decontamination 
waste solutions 
standards 

organic acids 
chromatography 
phenyl radicals 
organic chlorine compounds 
alcohols 
phenols 

hydroxides 
catalysis 
amides 
hexane 

kovitz.20 Preliminary experiments have been reported1,21 
and an in-depth investigation of this algorithm along 
with extensive {50,000 document descriptions) testing 
of it has been recently (1969) performed by Litofsky.22 
Some results of these experiments will be discussed 
later in this chapter. 

Clustering systems involve a wide variety of classifi
cation techniques which seek to group index terms or 
documents with high association factors together into 
"clusters, "3,17 ,29 "clumps"10,23,24,34,35 or "factors"2,4,5, 7,8 
without trying to obtain a hierarchy. Most of these 
methods require matrix manipulation, though it should 
be added that the precise manner of these manipula
tions varies widely with the particular scheme used. 

A tabular summary of automatic classification ex
periments reported upon through 1968 is presented by 
Litofsky.22 

Regardless of the quality of the categories produced 
by a classification algorithm, the algorithm must do its 
task in a reasonable period of time for large collections 
in order to be practical for use in libraries. In most 
automatic classification systems being considered today 
(clustering types), classification time is proportional to 

the square, or even the cube, of the number_of docu
ments in the system. This is because of the need to 
compare every document (or partial category) with 
every other document (or partial category) or to gen
erate and manipulate matrixes whose sides are propor
tional to the number of documents and/or the number 
of discrete keywords in the system (see Doyle,14 
"Breaking the Cost Barrier in Automatic Classifica
tion"). This means that the cost of classification per 
document goes up at least linearly with the number of 
documents. Considering collections numbering in the 
millions of documents, it is evident that systems with 
the above characteristics are unacceptable. 

There are two systems which are known to break 
this N2 effect (N documents in the collection). These 
are the two aforementioned algorithms (that described 
by Doyle,14 and CLASFY) of the hierarchic, divisive 
type. In both, the time proportionality factor is ap
proximately N log N, where the logarithmic base is 
the number of branches at each node of the hierarchy. 
With appropriate selection of this node stratification 
number, the classification time (and hence cost) per 
document for these two systems can be held to a con-



stant. Using CLASFY, Litofsky22 has estimated 
classification times, using third generation computers, 
of about .04 seconds per document, independent of 
the number of documents in the collection. 

The resulting classification schedule 

Classification schedules are required in order to be 
able to make use of a hierarchically classified document 
collection. These schedules consist of what shall be 
called here a "node-to-key" table (see for instance 
further Table I) and a "key-to-node" table (Table II). 
The node-to-key table is analogous to the Dewey 
decimal classification schedule where "node" 621.3 
points to "key" Electrical Engineering. The key-to
node table performs the. inverse function, that of pro
ducing node numbers corresponding to given keys. 
Because the systems under consideration here are of 
the a posteriori type, the index terms, referred to here 
as keywords, rather than a priori titles (such as Elec
trical Engineering) are present in these tables. These 
tables are produced by first forming a hierarchy of 
keywords. 

The hierarchy of keywords is formed from the 
bottom to the top. It should be noted that this key
word hierarchy is not used as a semantic hierarchy in a 
thesaurus in order to obtain descriptors for documents, 
but comes about a posteriori. Initially, the terminal 
nodes, or categories, are assigned the keywords which 
result from the union of the keyword surrogates of the 
documents in that category. The keywords of the termi
nal nodes under a parent (next level up the hierarchy) 

TABLE II-Sample Portion of a Key-to-Node Table 

MUTATIONS BARLEY 

1.1.1.1.3.2. c 1.1.1.3.1. c 
1.1.1.1.3.3. c 1.1.1.3.2. c 
1.1.1.1.5 c 1.1.1.3.3 c 
1.1.1.2.1 c 1.1.1.4.2 c 
1.1.1.2.4 c 1.1.1.5 
1.1.1.3.1 c 1.1.5.1 c 
1.1.1.4.1 c 1.1.5.4 c 
1.1.1.4.3 c 1.3.1.4 c 
1.1.1.5 1.5.3 c 
1.1.3.1.1 c 
1.1.3.1.4 c 
1.1.3.5 c 
1.1.4 
1.1.5 
1.2.5.1 c 
1.5.5 c 
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node are then intersected and those resulting keywords 
are assigned to the parent node. The keyword sets of 
the original nodes are then deleted of the keywords 
assigned to the parent node. This process is continued 
until the top node is reached. In this way, it is guaran
teed that the keywords of each document description 
are wholly contained in the set of keywords consisting 
of the keywords at the nodes in the direct path from 
the top of the hierarchy to the terminal node, or cate
gory, which contains that document. In addition, each 
keyword will appear at most once in any given path 
from the top of the hierarchy to a terminal node. 

By this means the keywords at a node represent 
somewhat of an abstract of the fields of knowledge con
tained beneath· that node. It is evident that as one 
goes up in the hierarchy, one will encounter more fre
quent or generic terms while finding the more infre
quent or specific terms lower in the hierarchy. Just 
how this information can be used to aid browsing~.will 
be covered later. . 

Table I shows some sample nodes of a hierarchy 
generated by Litofsky22 using CLASFY. They are 
part of a classification of almost 50,000 document 
descriptions (subject matter was nuclear science) into 
265 categories. The capitalized words in Table 1 are 
manually assigned titles for the nodes. The node num
bering scheme used is such that node 1.5.1 is directly 
under node 1.5 (the node stratification number equals 
five) and 1.2.3.2 is under 1.2.3. The node-to-key table 
consists of lists such as the ones shown in Table 1. The 
key-to-node table is the inverse of this. Thus, for this 
example, node 1.5 would appear in the key-to-node 
table under "chemical reactions." Figure 1 shows a 
portion of the hierarchy tree (c indicates a terminal 
node or category). The keywords themselves are not 
shown due to lack of space. 

Of course, the 'classification schedules are produced 
automatically by computer at the time tte document 
file is classified. 

Figure I-Portion of hierarchy 
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Figure 2-Keys per category, 46821 documents 

Evaluation of a classification 

Evaluation of a classification is not an easy matter. 
Until recently, almost all value judgments for classifica
tion systems were sorely hampered by dependence on 
human judgment. One example of this can be found by 
examining the automatically produced nodes of Table 
I. The keywords for each node seem (at least to the 
authors) to represent reasonably coherent areas of 
knowledge. However, this is a qualitative, not quan
titative, measure and being thus makes it very difficult 
to compare this system with others. 

A number of quantitative measures have been de
scribed by Litofsky.22 Two of these will be discussed 
here. The "likeness" of two documents can be mea
sured, to some extent, by the number of common index 
terms of these documents. Extending this notion, a 
measure of the- quality of a classification system is how 
well the classification algorithm minimizes the average 
number of different keywords per category. 

Figure 2 presents curves for this measure applied to 
almost 50,000 document descriptions for CLASFY, an 
existing manual classification system (a priori, docu
ments classified by subject specialists) and for control 
purposes, a randomly ordered file. The parallelogram 
represents the theoretical boundaries for these 
curves.22 ,28 Besides indicating closer content in cate
gories, a lower curve also represents smaller storage re
quirements for the classification schedules. It is evident 
that CLASFY outperforms the manual systems with 
respect to this measure. 

The second measure directly affects retrieval time 
for on-line retrieval systems. Most mass storage devices 
have two components to the time required to retrieve 
a record. The larger component is the time required 
for the read mechanism to approach the vicinity of the 
desired information (or vice versa). This is called the 

access time and is itself made up of two components, 
'motion access and latency (usually averaging one-half 
revolution of the recording media). The smaller compo
nent of the retrieval time is the actual data transmis
sion time. In general: 

(1) Once the access time has been "spent," it costs 
relatively little more to read additional data as 
long as another access time is not involved. 

(2) An appreciable time savings can be made by 
reducing the required number of memory accesses. 

These points are very pertinent to manual ~s well as 
computerized on-line retrieval systems because the 
lack of the ability to batch queries leads to a large 
number of memory accesses. Automatic classification 
takes advantage of item (1) by grouping like documents 
(i.e., categories) into cells which are segments of 
memory (shelves, pages, tracks, cylinders, etc.) which 
do not require more than one memory access. Thus, it 
costs little extra in time to retrieve an entire cell than 
it would to retrieve a single document. 

In addition, classification reduces the number of 
memory accesses required by the very fact that the 
documents in a given cell are close to each other in 
content. This "likeness" increases the probability that 
multiple retrievals for a given query would appear in 
the same cell. This in turn reduces the number of cells 
accessed per query and hence the number of memory 
accesses required. 

This reduction in memory accesses can be translated 
into greater capacity for a system. Alternatively, it 
might speed operations up enough to justify slower, 
but less costly mass storage devices. 

Thus, the second measure is the number of cells 
searched (accessed) for a given number of retrieval 
requests. Figure 3 shows the numbers of cells searched 
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Figure 3-Cells (categories) searched, 46821 documents 



in response to 165 real retrieval requests. Once again, 
CLASFY does better than the manual classification 
system. 

RETRIEVAL 

Browsing in the collection 

Retrieval -by conjunctions and disjunctions of key
words is performed by executing the proper boolean 
function on the node lists of the key-to-node table. 
This is done in a manner similar to that of inverted 
files with the difference being that instead of resulting 
in individual documents, the results here are categories. 

In physical form, these 'categories could be books on 
shelves or microfilm. Once pointed toward a particular 
shelf or microfilm reel, the user could browse through 
the documents in that category to find pertinent 
documents. 

If desired, the computer could serially scan the 
descriptions of the documents in a category to find the 
precise documents which satisfy the query. 

In "The Conceptual Foundations of Information 
Systems," Borko6 notes: 

"The user searches for items that are inter
esting, original, or stimulating. No one can find 
these for him; he must be able to browse 
through the data himself. In a library, he 
wanders among the shelves picking up docu
ments that strike his fancy. An automated 
information system must provide similar 
capabilities. " 

The abiiity to browse through parts of a collection 
should be an essential portion of every IS&R system. 
There are many times when one has only a vague idea 
of the type of document desired. Browsing can help 
channel pseudo-random thoughts towards the informa
tion actually desired. 

Browsing in the schedule 

Effective browsing demands a hierarchical classifica
tion system in order to enable one to start with broad 
categories and work towards specifics. Automatic 
classification can produce such hierarchical sets of 
categories. In a priori systems, nodes are given names 
and index numbers. However, in a posteriori systems 
the node names are generated automatically and con
sist of the sets of keywords (see Table I). If a set of 
keywords is too large, humans or preferably automatic 
processes can be employed to condense the set and 
provide a suitable title for the node. 
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Naturally, automated browsing can only be effective 
in on-line computer systems through man-machine 
interaction. The user can enter nodes through keying 
conjunctions or disjunctions of keywords. The system 
would then display the nodes (showing the respective 
parts of the node-to-key table) beneath the original 
ones, as well as some statistics, such as how many docu
ments there are beneath each node. When the user 
selects branches, the cycle repeats with the new nodes. 
If desired, one could backtrack up the hierarchy or 
jump to completely different portions. Once the user 
has narrowed his search, he can demand retrieval of 
some or all of the documents by specifying keywords 
and/ or categories. 

Another way of browsing in a classified set of docu
ments is to start at the very bottom. Assume one has 
a specific query in mind and upon submitting it to the 
system, obtains only one document. If this is insuffi
cient one could broaden the search by requesting the 
display of other documents in the category of the one 
retrieved. Since these documents are close in content 
to the original, they might also be satisfactory or their 
keywords might suggest ways for the user to refine his 
query in order to reference other nodes and retrieve 
other documents of interest. 

None of these modes of browsing could be utilized 
by files with strict serial or inverted file organization. 

Off-line browsing 

An on-line computer is not a necessity for browsing 
in the schedule (though if computers are used, they 
should be on-line). The schedules could be made in 
book form and the browsing done by hand. The pro
cedures would be similar to those outlined above, but 
somewhat slower due to page turning. 

Table II represents a sample portion of a key-to
node table. It will be used to illustrate manual use of 
the classification schedules for a query consisting of 
the conjunction of MUTATIONS and BARLEY. A finger is 
placed at the first node entry under each of the terms. 
The numeric classification number under BARLEY 

(1.1.1.3.1) is higher than that under MUTATIONS 

(1.1.1.1.3.2), therefore, the listing of MUTATIONS is 
scanned until 1.1.1.3.1 is reached. This indicates that 
both keywords are contained in category 1.1.1.3.1. 
The scanning is continued on the list with the lower 
number under one's finger untii 1.1.1.5 is reached. 
Since this node is not a category, both keywords ap
pear in all categories starting with 1.1.1.5 (in this 
example there happen to be five such categories). 
Scanning is continued until 1.1.5 is encountered on the 
MUTATIONS list while 1.1.5.1 is found under BARLEY. 
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Since MUTATIONS is found in all categories under 1.1.5, 
the conjunction can be found in 1.1.5.1 (and 1.1.5.4). 
Continuing the scan does not result in any more com
mon categories. 

This process has resulted in a number of categories 
which would now be browsed through. The major 
advantage of this method is that in the indicated 
categories one is likely to find relevant documents 
which were not indexed by both keywords in addition 
to those documents which were indexed by both 
MUTATIONS and BARLEY. 

Thus, an automated classification system can start 
relatively simple and grow in complexity (and cost). 
The classification can be done by a batched computer 
with retrieval done by hand from printed classification 
schedules. When collection size and system utilization 
warrants, the retrieval function could be converted to 
an on-line computer with little conceptual difference 
from the user's point of view. 

Browsing simplicity 

The methods of browsing outlined above are strik
ingly similar to those employed in traditionally or
ganized libraries. They do not require users to be 
familiar with a thesaurus, its structure or with rela
tions between terms. They do not require formulation 
of query formulae or to understand a computerized 
system processing of such formulae. In short, these 
methods do not require highly trained staff to interpret 
user queries but allow user direct browsing along 
traditional browsing patterns. 
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Natural language inquiry to an 
open-ended data library 

by GEORGE w. POTTS 

Meta-Language Products, Inc. 
New York, New York 

INTRODUCTION 

New technologies often create an effect similar to 
children bragging about their new Christmas toys. 
This "me-too-ism," as it exists in the proprietary soft
ware community, is unfortunate because it robs credi
bility from this emerging industry at a very crucial 
time. In this paper a new computer system and lan
guage, "MUSE,"* is presented with the intention not 
to follow this pattern. 

"MUSE" could be said to belong to that family of 
languages called "non-procedural" in that it is not 
necessary to produce a sequential flow of programming 
logic to force output. This is a somewhat ambiguous 
concept in that "MUSE" does incorporate a capability 
for the user to embed "procedures." It is expected that 
this (among other features) will enable "MUSE" to be 
used as an information system for management as well 
as other disciplines that require easy access to and 
manipulation of large volumes of data. 

In the development of "MUSE" an attempt has been 
made to refrain from producing anything of merely 
academic interest. It is the child of a very informal 
set of circumstances in ~he authors' experience which 
has consistently shown the need for an unstructured 
dialog between those who have non-routine problems 
and the computer that can contribute so much toward 
a solution. 

BACKGROUND 

Among the spectrum of new technologies four seem 
to be travelling convergent courses. They are: 

-Time-sharing 
-Natural programming languages 

* "MUSE," an acronym for Machine-User Symbiotic Environ
ment, is a trademark of Meta-Language Products, Inc. 
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-Data management 
-Management information systems 

Each of these subjects has had a good bit of exposure 
in computer and business publications recently ... 
much of it groping. There follow brief discourses, not 
explanations, on the above subjects with an attempt 
to offer a few preparatory insights. Following that, 
there is a description of "MUSE" and a few of its 
more interesting features that tie these subjects to
gether. 

Time-sharing 

Computer time-sharing, although it provides remote 
access and real-time capability, is primarily a medium 
for nonroutine data processing. Here the interactive 
environment is the message. It is not where or when 
creative interaction takes place, it is that it take place. 

A good bit of controversy exists just because of con
fusion on this first point. It is not surprising that the 
cult of time-sharing purists take issue when a remote 
polling capability is called "time-sharing." Polling 
algorithms are created to provide routine, low-level 
input and inquiry. The advantage of true time-sharing 
is creative interaction. The system designers who have 
diligently labored to develop a general purpose time
sharing capability must be complimented on their re
straint when their work is confused with a reservation 
system or message switching. 

Another point of confusion regarding time-sharing is 
due to a changing optimization emphasis. The entire 
orientation of batch processing is to push jobs through 
the comput.er as fast as possible. In time-sharing, as 
Dartmouth's Dr. Kemeny likes to P9int out, the optimi
zation is more for the user. It is very difficult for some 
to accept the premise that machine time should be 
wasted so that optimum use can be made of the ma-
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chine-user pair. The motivation of some of the recent 
studies of comparative productivity between pro
gramming in a time-shared vs. a "batch" environment 
appears tenacious in the very same sense. While cur
rently the worst case might be only slight increases in 
productivity, the potential of this type of creativity is 
huge using time-sharing while with batch it has about 
run out. 

There are at least three major types of effort that 
lend themselves to the creative use of time-sharing: 

1. Preprogrammed aids for scientists, engineers, etc. 
2. The development and debugging of computer pro

grams for both the batch and time-shared environ
ments. 

3. Information systems for inquiry and interpretation. 

Notice that only the first of these has been exploited 
by the time-sharing vendors. The second use is probably 
a major objective of the large computer networks cur
rently under construction. The last use is the reason 
for this paper. 

Natural programming languages 

English or "natural" programming languages have 
had a somewhat orderly development from the first 
halting steps, using mnemonics for binary machine 
codes, through FORTRAN and COBOL to the "na
tural" languages. It is interesting to note that BASIC, 
a language only slightly simpler than FORTRAN, is 
used by over 60% of all users of time-sharing. 

Languages that had to be debugged in a batch 
processing environment developed quirks of form that 
have a remarkable staying power in the languages now 
being used in time-sharing. Slowly the older languages 
are being modified to permit interactive debugging 
without eliminating the compiler phase. This permits 
the compiled code still to be run in batch. Interpretive 
languages have gained popularity commensurate with 
the increased use of time-sharing. These are languages 
that are not reduced to a machiqe language level but 
rather to encoded forms that are never given machine 
control but are interpreted by other operations code. 
Interpreted code is usually slower running than com
piled code and thus never had much use in batch shops. 
Not surprisingly, however, the first time-sharing lan
guages interpreted are very similar to those that were 
formally compiled (e.g. QUIKTRAN). The advantage 
of both interpretive languages and interactive com
pilation is that they make error detection and cor
rection a creative and involving experience. 

The current step in language development appears 
to be the attempted elimination of all code sequences 

except the problem statement itself (e.g. APL).l With 
refinement the user ignores data input/output detail, 
compiler directives and any explicit statement of the 
sequential flow of logical events within the machine. 
Here then is the threshold of real natural language 
interaction. As the problem statement can be made to 
look more like English, so can the interactive experience 
be made more universal. 

Data management 

Data has been referred to as the fifth economic 
factor of production (as vital as land, labor, capital and 
management). * It is clear that a great deal of this 
data is numeric information and that manipulation of 
this data with computers is becoming indispensable in 
institutional operations. 

The management of this data, or their organization 
for quick and easy reference, is a discipline with a 
checkered past. It would not be stretching a truth too 
far to say that data processing has followed the course 
determined by the development of hardware for inter
facing with external data files. Fortunately for the 
computer industry the first technology of data refer
encing, sequential access, is most easily applied to 
routine data processing (that with the most' obvious 
cost benefits). The other major mode of data referencing, 
direct access, has matured along with the growth of 
time-sharing. Now direct access devices are becoming 
available with data rates, capacities and reliability far 
more suited to nonroutine, unplanned data referencing. 

Again, notice the subtle misapplication of this new 
potential due to lagging system software development. 
l\1any languages in time-sharing still reference data 
files sequentially, even though they are on a direct 
access device. This is forgivable when referencing small 
private data files, but intolerable if reference is at
tempted to very large, common data libraries (which, 
conveniently, also cannot be referenced with most 
languages in time-sharing). It would seem that a large, 
open-ended, data library.that can be directly accessed, 
simultaneously, by a large number of time-sharing 
users would be the answer to most of the logistics 
problems of data management. 

The only rub is that this structure, which is so well 
suited for non-routine data manipulation, is unsuitable 
for routine data processing, where throughput rates are 
far more critical. A simple solution, then, would be to 
have two data structures, one for each orientation. In 
most cases, routine data processing would use sequential 
access (except where transaction levels are small) and 

* I have lost this reference. 



non-routine data processing would maintain its own 
directly-accessed data library. The non-routine environ
ment would accept data from the routine environment 
but not, in general, return any new data in the opposite 
direction. It is as though there were a semi-permable 
membrane between the two structures. This suggested 
solution would probably hold until far cheaper, larger 
and faster direct access devices are available. 

Management information systems 

l\rfanagement information systems might be said to 
have a checkered present, as there seems to be no 
obsolescence of approach. The first attempts, on com
puters, to provide management with the necessary data 
for decision making culminated in "exception report
ing." This resulted not because it was the best way of 
capturing interesting data from the routine processing 
environment, but because it was the easiest. As a 
consequence, exception reporting has two major draw
backs: 

1. Someone must decide, a priori, how decisions are to 
be made and so design exception reports that.contain 
statistics highlighting this methodology. This is a 
dangerous approach because it eliminates flexibility 
at the very point it is most needed. 

2. To generate enough statistics to cover all eventu
alities is to generate too much paper to be con
veniently read. I t is a common experience to see 
stacks of exception reports used more as evidence 
of concern than as a decision-making tool. 

It should be permitted the individual manager, in 
his own way, to have access to all that data that could 
affect his operations and to be able to form constructions 
from this data in a way best suited to the problem at 
hand. 

The recent proliferation in the market place of data 
management systems must indicate an intuitive dis
satisfaction with the old methodologies. However it is 
not plain that many of them offer a new alternative. 

THE SYSTEl\rf 

A computer language has now been developed that: 

-exists in a time-shared environment 
-uses the English sentence form as its basis for 

man-machine communication 
-incorporates a simple data-capturing tool and 

provides reference to a large common data 
library 
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? WHAT WERE SI\I.ES FOR THE I.I\ST QUI\RTER OF THIS YEI\R? 
206.8 MII.I.ION DOI.I.I\RS 

?WHAT IS THE DEFINITION OF "SI\I.ES"? 
SI\I.ES - THE DOI.I.I\R VI\I.UE OF GOODS SHIPPED TO PURCHASERS BEFORE 01 SCOUNTS 

?HOW DO I GET SI\I.ES OF PHYSICI\I. UNITS? 
THE DEFINITION OF SHIPMENTS IS THE NUMBER OF PHYSICI\I. UNITS SHIPPED TO 
PURCHASERS. THI S MIGHT HEI.P. 

?GIVE ME SI\I.ES. SHIPMENTS I\ND I\1.S0 SI\I.ES/SHIPMENTS FOR THE I.I\ST FOUR 
QUI\RTERS FOR CONSUMER PRODUCTS IF THEIR % OF Ml\RKET IS GREI\TER THI\N 25 
I\ND THEIR CURRENT UNIT PRICE IS NOT GREI\TER THAN THEIR UNIT PRICE FOR 
1 'I '68. TITI.E THIS REPORT "SI\I.ES I\NI\I.YSIS SHEET". 

Figure 1 

-is oriented toward the creative involvement of 
managers and other non-technical types with 
the computer 

This language is "MUSE." "l\rfUSE" is not just the 
"MUSE" language. It is an interactive information 
system for non-routine problem solving and creative 
decision making. 

"MUSE" is not a time-sharing system. It is a sub
system that interfaces with a general purpose time
sharing system. It is built in such a manner for trans
ferability to different time-shared computers of differ~ 
ent manufacturers. 

"MUSE" can be easily understood in terms of five 
functional modules: normal interaction module; teach
ing module, data loading and maintenance module; 
meta-language processor; and report generator. Each 
of these modules, in turn, is constructed of submodules, 
many of which are used in common by the larger, 
functional modules. A description, with examples, of 
these modules follows: 

Normal interaction module 

The "MUSE" language, as it presents itself to the 
terminal user, is simple English sentences-questions, 
commands and declaratives. These sentences are com
posed individually or in paragraph form. A small 
sample of a dialog is shown to indicate its general 
interactive nature (Figure '1). 

Questions are used for two main purposes: first, to 
recall and manipulate data; and second, to permit free 
form queries about "l\rfUSE's" capabilities. 

Commands, in general, are the user's control over 
the dialog process. This includes modifying sentences 
or words, listing of all or part of a dialog, inserting or 
removing sentences or words, updating data or defi
nitions, creating new language elements, requesting 
report output, etc. 

Declaratives are the user's statement of what a report 
should contain. 

These three types of sentences may be intermixed in 
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SIMPLE QUALIFICATION CLASS NAMES (UNIVERSAL SETS) 

SALES FOR ALL COMPANIES FOR 1965 
OPTION 1) SALES FOR 1965 FOR G .M. 

OPTION 2) G.M.'S SALES FOR 1965 

OPTION 3) SALES FOR G.M. FOR 19~~ 

1965 

AMERICAN CAN XXX.X 

1965 AVCO XXXX.X 

BETHLEHEM STEEL XXX.X 

G.M. XXXX.X CONTAINER CORP. XX.X 

G.M. XXXX.X 

Figure 4 

Figure 2 
ARITHMETIC FORMULAE 

LISTS (SET CREATI NG) SALES + OTHER INCOME FOR G.M., FORD FOR 1965 

SALES, EARNINGS FOR G.M., FORD FOR 1965 

SALES t- OTHER INCOME 

EARNINGS 
1965 ($ - MILLIONS) 

1965 ($) G.M. XXXX.X 

G.M. XXXX.X XX.XX FORD XXXX.X 

FORD. XXXX.X XX.XX 

Figure 3 Figure 5 



the dialog as the user wishes. However, declaratives 
are the only ones preserved when the dialog is recorded. 
Dialogs may also ref<:rence other dialogs and are identi
fied in the same manner as any other entity in the 
system-up to 5 words of 10 alpha characters each. 

In order to explain the data referencing and manipu
lative capabilities of "MUSE" there follows a series of 
eleven illustrations which represent the relationship 
between dialog and output. The text excerpts that pro
duce the output may comprise part of a declarative or 
interrogative sentence. To visualize this, preface these 
excerpts with "INCLUDE" or "WHAT ARE" re
spectively. Also the output produced is very stylized 
and need not be of three dimensions. 

In Figure 2, the word "for", or its synonyms is used 
in "MUSE" as an oper~tor to order the qualification 
process. This process locates data III a data library of 
N dimensions by figuratively intersecting planes passing 
through identifier-located points on every necessary 
coordinate axis. The intersection of these planes pro
duces a unique disk address for direct data reference. 

In Figure 3, identifiers of like class may be explicitly 
grouped into lists. This normally produces a vector of 
data elements on output. 

In Figure 4, these lists can be given identifiers and 
used implicitly (see Figure 8) or the identifier for a 
class of identifiers implies the universal set. 

POINT FUNCTIONS 

lOG OF SALES FOR G.M., FORD FOR 1965/1964 

1965/19M~ ____ ~ ___ ----~ 

G.M., 

FORD 

x.xxx 

x.xxx 

Figure 6 
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VECTOR FUNCTIONS 

SALES, EARNINGS FOR G.M. FOR THE AVERAGE OF 

1965, 1964, 1963 

AVERAGE OF EARNINGS 
1965, 1964, 1963 (S) 

~--------------~~-----.-

G.M. xxxx.x xx.xx 

Figure 7 

In Figure 5, normal arithmetic capability is available 
within a class of identifiers or between classes (using 
parentheses) . 

In Figure 6, functions are available to transform 
individual data elements on a one-for-one basis. 

LANGUAGE EQUIVALENCES 

.!..!Q!.! (SYNONYMS) 

EQUATE "GENERAL MOTORS INC." WITH "G.M."I 
EQUATE" PlUS" WIT H "+" I 
EQUATE "N.F.C." WITH "NET Fo.RCOMMON"1 

I FOR N (EXPRESSIONS) 

EQUATE "AUTO INDUSTRY COMPANIES" WITH "FORD, 
G.M., CHRYSLER, AMERICAN MOTORS" I 
EQUATE "VALUE ADDED" WITH "SALES-COST OF GOODS 
SOLD" I 

N FOR N (PHRASE STRUCTURES) 

.EQUATE "ADD 'EXPRESSION TO EXPRESSION" WITH 
"EXPRESSION + EXPRESSION" I 
EQUATE" DEFI NE EXPRESSION AS EXPRESSION" WIT H 
"EQUATE EXPRESSION WITH EXPRESSION" I 

Figure 8 
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SET EXPRESSIONS 

SALES FOR THE AUTO INDUSTRY COMPANIES WHICH 

ARE IN THE FORTUNE TOP 10 FOR 1965 

FORD 

e,M, 

CHRYSLER 

XXXX.X 

XXXX.X 

XXXX,X 

Figure 9 

In Figure 7, functions are available to reduce a vector 
of values to a parameter. 

In Figure 8, new identifiers or identifier groupings 
can be equated with old identifiers or identifier/operator 
groupings. 

SIMPLE QUALIFICATION CLAUSE (WITH RELATIONAL OPERATOR) 

SALES, EARNINGS FOR 1966 FOR ALL COMPANIES WHOSE 

SALES FOR 1965 > = $100 MILLION 

EARNINGS 
1966 ($) 

AMERICAN CAN XXXX.X XX.XX 

CO NT AI NER CORP. XXXX.X XX.XX 

G.M. XXXX.X XX.XX 

'.B.M. XXXX.X XX.XX 

Figure 10 

QUALIFICATION CLAUSE (INCLUDING BOOLEAN OPERATOR) 

VALUE ADDED FOR 1966, 1967 FOR ALL COMPANIES WHOSE 

SALES FOR 1965 < SALES FOR 1966 AND EARNINGS FOR 

1967 > $10.00 

AMERADA XX.XX 

I.B.M. XX.XX 

Figure 11 

In Figure 9, explicit or implicit lists can be combined 
using standard Venn criteria. 

In Figure 10, explicit or implicit lists can be culled 
for members which, with further qualification, meet a 
relation~.I criteria. 

In Figure 11, relational tests may be combined with 
boolean operators. 

ASSIGNMENT 

PROFIT FOR 1970 FOR THE PARTS DIVISION IF THE 

TURNOVER IS .5% 

1970 

PARTS DIVISION XX.XX 

Figure 12 



And in Figure 12, identifiers that exist without defi
nitions (variables) in dialogs or language equivalences 
may be assigned values (symbolic or numeric) with a 
form of the verb "to be." 

Syntax analysis in "MUSE" primarily checks oper
ator nesting structures, juxtaposition of language tokens 
and parenthesis balancing. 

With "MUSE," then, a satisfactory data referencing 
algorithm seems to be available within a sentence form 
that seems "natural" to its user. The latitude of possible 
forms is expanded by inserting language equivalences 
into the dictionary. 

Teaching module 

"MUSE" permits a question and answer interaction 
that bears no relation to data or calculations. This is 
an unstructured dialog where information is requested 
about how "MUSE" works. The system responds with 
answers that also suggest other questions. In such a 
manner, the user picks up the "MUSE" technique at 
his own speed. 

This feature's first implementation is very similar in 
approach to that taken in the HELP system developed 
at Berkeley.2 It analyzes how, when and why questions 
with a key word scheme and produces prewritten 
answers to anticipated questions or question sequences. 

A sample of this form of dialog is provided (Figure 13). 

Data-loading and maintenance module 

This module could easily (and probably will) be the 
subject of an entire paper. The idea that there can be 
a generalized interface to the real world of data input 
is the dipole of the earlier concept of generalized data 
output with RPGs. 

Data loading in the "MUSE" system is accomplished 
by first engaging in a unique question and answer 
dialog. Throughout this interchange the system is asking 
the questions and the user is providing the answers. 

~~~: ~~ ~S~~E B~U~~~ING QUESTIONS. COMMANDS OR DECLARATIVE SENTENCES ON 
YOUR TERMINAL WHENEVER YOU SEE A QUESTION MARK (1) AT THE FAR LEFT. 

~W:~:S~~O~ ~~E/s~~~i~~~N~NDING IN A QUESTION MARK (7). AS THE ONE YOU 
JUST TYPED. lIHICH REQUESTS IMMEDIATE INFORMATION FROM THE COMPUTER. 
THERE ARE TWO TYPES OF QUESTIONS ... FORMAL ONES AND INFORMAL ONES. 

7HOW IS A COMMAND DIFFERENT FROM A QUESTION? 
A COMMAND IS A SENTENCE ENDING IN AN EXCLAMATION POINT <I)' IT IS YOUR 
CONTROL OVER THE DIRECTION OF THE DIALOG. IT CAN BE USED TO LIST. 
MODIFY OR DELETE PARTS OF DIALOGS. TO START REPORT OUTPUT. TO MODIFY 
DATA VALUES OR DEFINITIONS. ETC. SEE ABOVE FOR HOW A QUESTION IS USED. 

Figure 13 
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2. IS A PHYSICAL INPUT REQUIRED? YES 
2.1 ON wHAT DEVICE? TAPE 
2.1.1 HOw IS THE INPUT ENCODED? BCD 
2.1.1.1 WHAT IS THE PARITY? YES 
PLEASE ANSWER FROM AMONG THE FOLLOWING: ODD. EVEN 
2.1.1.1 WHAT IS THE PARITY? EVEN 
2.1.2 ARE THERE INITIAL (HEADER) RECORDS TO BE SKIPPED? YES 
2.1.2.1 HOW MANY PHYSICAL RECORDS ARE TO BE SKIPPED? 1 
2.1.2.2 MAXIMUM SIZE OF SKIPPED RECORn(S)? 150 
2.1.3 PHYSICAL RECORD SIZE IS? 150 
2.1.4 LOGICAL RECORD SIZE IS? 300 
2.2 IS PHYSICAL INPUT REQUIRED FOR DATA INPUT? NO 
2.3 IS DATA STRUCTURE (ALL/PART>. DERIVED FROf>1 INPUT? YES 

Figure 14 

An excerpt of this form of dialog is provided 
(Figure 14). 

These systems queries must obviously be answered 
by persons familiar with data processing. They will be 
passing on to the "MUSE" system information re
garding the physical form of the data file, its logical 
form, the identifiers used to reference the data and 
other attributes of the data. This is, in effect, the bulk 
of the documentation normally associated with every 
batch processing data file. 

This dialog is used to actually start the loading 
process and convert the data into the form used by the 
rest of the "MUSE" system. These dialogs are preserved 
for the purpose of updating with similar data files. 

The only assumption made by this data-loading 
mechanism is that the data is in computer acceptable 
form and that it has been formatted for data processing 
(as opposed to typography, for instance). 

M eta-language processor 

This module performs the following major functions: 

-Parsing of character strings into language tokens 
-Syntax analysis of operator sequences and sen-

tence forms 
-Semantic analysis using token groupings 
-Encoding to the threshold of non-reversibility 

into text 
-Idiomatic translation of synonyms and other 

more complex language equivalences 
-Polish interpretation of fully reduced dialog 

structures 
-External referencing of data and the resolution 

of other exogenous requests 
-Performance of operator requirements 

"lVIUSE" is a proprietary product which precludes 
a detailed analysis of system programming techniques 
used to accomplish the above. Suffice it to say that it 
is complex in an orderly way. Its authors have taken 
many pains to a void a kludged construction. 
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The report reproduced (Figure 15) is part of the one 
developed from the declarative sentences displayed un
der Normal interaction module. Notice the symmetr~c 
structure reflecting the dimensional ordering of output. 
The "for" or qualifying operator has served not only 
to arrange the output but also to unravel the sequence 
of references to the data library. 

The "MUSE" user, you may have noticed, has made 
no statement as to what is to go where in the report, 
how headers are to be displayed, what units are dis
played, or even where the decimal point is to be placed. 
These were all developed, by "MUSE," from the 
dialog. There is no user intervention required to organize 
and produce a report from a declarative dialog. He can, 
however, if it be necessary, change the units and scaling 
of data, rotate the report axis, remove or insert extra 
spacing and output the report to a variety of devices. 

The reason why there is such a degree of initiative 
on the part of the system in formatting output is that 
"MUSE" was designed with the assumption that it is 
to be used for non-routine data processing. Doing this 
has caused a reversal in the normal temperament of 
programming. Now the language is far more artistic 
and the output far more functional. 

BUILDING BLOCK CONCEPTS 

The creation of "MUSE" unequivocally depended 
upon the refinem~nt of, and the belief in a small set of 
fundamentals. They are given here to present another 
lens with which to inspect the system: 

Primary data 

The "MUSE" system is designed to operate most 
effectively entirely with stored primary data. This is 
defined as source data, or sampling data, or data to 
which the construction key has been lost. It is the 
opposite of constructed or secondary data which are 

arithmetic combinations of two or more primaty data 
elements. This does not mean that secondary data is 
not available through "MUSE." It just means that it 
is not stored. What are also stored are the declarative 
procedures that can reference primary data, combine 
it arithmetically, and display it as though it had been 
stored. 

The advantages of this approach are as follows: 

-The primary data together with declarative pro
cedures take far less direct-access storage than 
the combination of primary and secondary data. 

-There is no complex back indexing necessary to 
adjust primary data given changes in secondary 
data. 

-There is no chance of inconsistency of result if 
the primary data is updated without the sec
ondary. 

-The user has far more flexibility in changing the 
construction of secondary data elements, or 
creating new ones. In fact, he may even remove 
entire declarative constructions without per
forming violence on the system. 

The dimensionality of data 

The realization that most numeric data, as it is 
organized for data processing, can assume, in this 
organization, a logical structure similar to a regular 
N-dimensional array has been fundamental in the design 
of "MUSE." 

What has tended to obscure this point has been the 
great attention given to physical data structures. These 
physical structures become laborious due to the storing 
of textual information along with numeric, the great 
disparity between the size and number of the vector 
coordinates of the logical structure, and the size and 
dimension constraints of the physical storage medium. 

The advantages of this logical form of data structure 
are: 

-There is much less indexing information neces
sary to permit random retrieval. So much less 
that this indexing information can be stored on 
faster storage (e.g., drum vs. disk). 

-This, of course, allows much faster accessing of 
data. 

-I t greatly simplifies the language needed for data 
referencing. For example, the qualification se
quence "SALES FOR XEROX FOR 1965" is 
all that is needed to delimit a unique data 
element. 

-It permits the direct loading and interfacing 
with the current data library of virtually any 
new data file. 



Bootstrapping language 

"MUSE" is an extendable language. When the 
"MUSE" system is installed it has a dictionary, with 
definitions, of approximately 250 entries. This dic
tionary is expanded as a result of two classes of activity: 

1. The loading of data and the resultant adding of 
new _ identifiers, definitions, secondary data con
structions, and identifier groupings. 

2. The inserting into the dictionary of synonyms and 
more complex language equivalences. 

The concept of a bootstrapping language is interesting 
because: 

-The dictionary is almost entirely user-built. 
-It provides the user the opportunity to com-

municate in his own idiom. 
-The multitude of possible language forms can 

make the system seem very "forgiving." 
-It permits both verbose and shorthand notation. 

Information about information 

In any single arithmetic computation there is really 
more than one thing going on. Not only are numbers 
being combined but also the attributes of numbers are 
(or should be) similarly resolved. The development of 
"MUSE" has taken into account this parallelism of 
calculation and provides the following levels of compu
tation with every simple arithmetic operation: 

-The scaling of both numbers is combined to 
provide the scaling of the answer. 

-A count of significant digits for output is main
tained. 

-The units of both values are compared or com
bined to provide the answer units. 

-Attempts are made to preserve the integer form 
of any numbers. 

Human engineering 

In the design of "l\1:USE" effort has been expended 
to make it sympatico with its user. If non-technicians 
are to be brought into dialog with a computer they 
must be appreciated for what they are, not what they 
might be. The adjustment must be made in the elec
tronics and not the emotion. The following are some of 
"MUSE's" features that were motivated by the above 
realizations: 

-The translation process takes place in a series of 
levels. Each one notes different user errors and 
permits correction of these errors. This is not 
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precisely the same as incremental compilation 
which translates, completely; one statement at a 
time. In "l\1USE," each statement goes through 
functional phases of translation which, in some 
cases, may be separated in time. 

-"MUSE" provides full line, word, and character 
editing capabilities at all levels of the dialog 
process. 

-The syntax of commands permits construction 
of user requests which expand on the standard 
VERB-OBJECT form. 

-The "MUSE" system from time to time will 
give suggestions or warnings to the user. These 
are not errors, but potential errors. 

-The "MUSE" system uses the Teletype char
acter set in a standard way. "$" is meant to 
mean "dollars" and not some special notation 
to help the system designers through a rough 
spot. 

-Definitions are maintained for every language 
token in the system. These definitions can be 
recalled at will by the user. The entire dic
tionary, with definitions, is also available. 

Efficient systems architecture 

The "l\1:USE" system has incorporated many effi
ciencies of structure: 

-l\1:odular system construction is used for across
computer-implementation and ease of upgrading 
capabilities. 

-Assembly language coding permits economies of 
size and speed. 

-The "MUSE" dialogs are, in fact, applications 
programs for the sake of reproducibility of 
output. 

-As a subsystem, "MUSE" borrows features of 
the time-sharing system which condenses its 
size. 

-Advanced system programming techniques are 
used throughout. 

CONCLUSION 

The general objective of "l\1:USE" has been to en
hance the time-shared computer environment by pro
viding a natural language for machine-user communi
cation. It is designed to provide the manager with a 
medium'of interaction with a large common data base, 
loaded and maintained by the "MUSE" system. 

"MUSE" is capable of performing as a simulation 
model builder, statistical tool, data screening and sort
ing aid, and report organizer for non-routine, creative 
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use. It is not particularly intended to handle routine 
da~a processing problems requiring high-resolution data 
and non-symmetric, highly formatted output such as 
invoicing, payroll, billing, accounts payable and the 
like. This is why it is created in a time-shared environ
ment where the machine-user interaction and not the 
material flow is the focus of optimization. 
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Computer instruction repertoire-Time for a change 

by CHARLES C. CHURCH 

Litton Systems, Inc. 
Van N uys, California 

INTRODUCTION 

A famous slogan a few years ago from a famous com
puter manufacturer was a single, simple word-THINK. 
And we in the computer profession must have taken 
this slogan to heart. One look at the voluminous ma
terial printed year after year on computer technology 
since the advent of the computer age-a quarter' of a 
century ago-will convince anyone that a lot of thinking 
concerning computers has preceded us. The proceedings 
for this conferenc!3 alone will cover two thick volumes, 
if we can judge from previous experience. 

I hardly need mention the technological change in 
computer system hardware, sizes, speed, weight, cost, 
languages and other similar changes that have been 
wrought from those primitive days twenty-five years 
ago. But, some things have not altered, or only slightly 
so, like the Model T, they have remained invariant, 
upright, slow, inefficient and immune to the winds of 
progressive technological improvement. And if they did 
get us from point A to point B, if not in comfort, at 
least, we got there. I am referring to the basic form and 
rigid format of our instruction sets. I deliberately said 
our instruction sets because we have all inherited them 
from one original source. 

With all due respect for our heritage, I think it is 
time to rethink our requirements for an adequate in
struction repertoire. 

THE PROBLEM: 

The symptoms of the problem are obvious: 

• Programming costs are high and increasing. 
• Program implementation times are long. 
• Program modification is difficult and time con

suming. 
• Hardware systems are getting larger and larger. 

It is legitimate to blame many of these difficulties 
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on the increased complexity of problems that computers 
are being asked to solve. It is legitimate, but not 
helpful. Many of these problems could be alleviated if 
we modified our computer tool so that its capabilities 
more closely matched the job that needs to be done. 

Following this logic, we did a study at Litton to 
roughly determine how the current machine instructions 
were being used. Table~ I and II show some of our 
results. 

Instructions Percent Total 

Arithmetic 8.3 1,146 

Data Moves 39.4 5,437 

Logic 2.7 372 

Shifts 2.3 312 

Transfers 23.9 3,303 

Jumps 12.0 1,655 

1/0 0.7 99 

Miscellaneous 10.7 1,480 

13,804 

TABLE I-Instruction Occurrence by Instruction Class 

Instructions Percent Total PropIm Monitor Naviption Propam Track Correlation Propam 

Arithmetic 10.5 100,206 177 12,370 87,659 

Data Moves 38.4 369,645 6,035 21,228 342,382 

LOSic 1.4 14,064 66 3,160 10,838 

Shifts 1.3 12,642 1 1,490 11,151 

Transfer 26.6 256,589 4,172 18,601 233,816 

Jumps 17.1 165,121 3,893 8,668 152,560 

1/0 0.1 803 97 706 0 

Miscellaneous 4.6 44,387 410 4,780 39,197 

Total 100.0 963,457 14,851 71,003 877,603 

TABLE II-Instruction Execution by Instruction Class 
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The high correlation between instruction occurrence 
and execution was interesting. Of real significance, 
however, was the small percentage of the repertoire 
devoted to accomplishing the job, as compared to the 
large percentage to placate the computer's whims. 

In instruction occurrence we found arithmetic 8.3 
percent and jumps 12 percent. What are we doing with 
the rest of the commands? Obviously, we need the 
"Data Moves" function, but do flow charts call for 
anything near 40 percent? And what of the transfers? 
My flow charts do not call for anything near 23 percent 
of the problem to be involved in transferring. 

It becomes obvious that the majority of the pro
grammer's required work is involved ,with placating 
the computer, while a relatively small remaining portion 
of the work is actually applied to the job. 

What is the problem? Basically, it's that current 
machines have machine-oriented instructions. We must 
design computers that are more problem-oriented. 

TWO SOLUTIONS TO THE PROBLEM 

There are two major areas that must be attacked if 
a job-oriented computer is ever to exist: 

a. Excessive Editing* 
b. Fixed Length Instructions 

Litton has been experimenting with solutions to these 
problem areas, and as a result has developed a tech
nique of Automatic Editing for the first area, and a 
system of Variable Length Commands for the second. 
These Litton techniques are described in subsections 
which follow. 

Excessive editing 

Excessive editing largely results from two basic and 
common weaknesses in modern computers: 

a. Inflexible word or character addressing 
b. Excessive register orientation 

Data fields do not align to the word or character 
boundary, and consequently a large portion of the 
program is devoted to converting input data into inter
mediate formats. This approach results in several un
desirable conditions. The first, and most obvious, is 
that intermediate storage is required, and instructions 

* Editing is that work required to ready a data field for use. For 
example, we want to add a memory field to a data register. The 
field starts at bit 2 and is 14 bits long. The work required to 
convert the field to a data format that can be added to the 
register is defined as editing. 

are required to convert the data to intermediate storage 
format. These two factors combine to increase the total 
amount of memory required by the system. This 
memory expansion of course compounds the problem 
because the execution speed of the program decreases 
in direct proportion to the increased memory access 
required. 

The strong register orientation of current computers 
is another stumbling block to efficient programming. 
To move data from one place in memory to another 
generally requires LOAD and STORE register com
mands, or worse yet, LOAD, LOAD, AND, AND, 
SHIFT, OR, and STORE. 

This register orientation of modern computers results 
in roughly the same drawbacks as our current inade
quate addressing. It demands excessive instructions to 
accomplish the job, and like the addressing problem, 
this results in: 

a. Increased memory requirements 
b. Decreased throughput speed 

Now let's examine some solutions for these cumber
some, time-wasting operations. 

Automatic editing 

The negative effects of excessive editing can be dra
matically reduced by the following computer features: 

a. Address to the bit. 
b. Automatic crossing of word boundaries. 
c. Automatic editing for memory-to-memory opera

tions. 
d. Automatic editing for register operation. 

Address to the bit and automatic crossing of word 
boundaries combine to provide field addressing. It is 
perfectly legitimate for a 33-bit field to start on bit 17 
and cross a word boundary, and it is past the time that 
computer designers should recognize this. Field ad
dressing negates the necessity for most intermediate 
storage (this is not meant to include tables, such as 
track stores). In addition, the majority of the LOAD, 
AND, OR, and SHIFT commands are no longer 
needed. This results in reduced memory requirements 
and increased execution speed. 

Automatic editing for memory-to-memory operations 
would be obvious if it were generally recognized that 
memory-to-memory operations were required. Up to 
now memory-to-memory operations have been word or 
character oriented and generally slow. Memory-to
memory operations don't have to be ineffectual, but 
it is possible to design them that way. Addressing must 
be to the field. Memory move, or compare commands, 
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Figure 1-Problem 1: Variable length field reformatting: 

Format 1 

must . look at memory words in para~lel, not some 
inconsequential sUbportion in sequence. In this way 
these commands can become effective and the pro
grammer can forget the time-consuming memory jug
gling of the registers. 

To illustrate these points we will use two reformatting 
problems (Figure 1 and 2). We coded these problems 
on. a conventional processor and on Litton's new Poly
·processor. The conventional processor uses its registers 
for editing, while the Polyprocessor uses memory-to
memory commands with automatic editing. 

Problems 1 and 2 contain exactly the same fields. 
I 

The difference in the two problems is that Problem 
One (Figure 1) has no word boundary crossovers where
as Problem Two (Figure 2) has two boundary cross
overs. The added co~lexity of Problem Two imposes 
on the conventional processor a requirement for 14 
more instructions, an increase of almost 50 percent. 
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Figure 3 

.xxxxx I 
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In contrast, the number of instructions required by the 
Polyprocessor remained the same, and the only oper
ations were two extra memory accesses. 

In these problems the Polyprocessor does well in the 
important aspects of memory required and execution 
speed, while the memory for the conventional processor 
(124 versus 61, 180 versus 61) has increased dramati
cally. The reason Litton's Polyprocessor executes this 
much faster is simply that it does not access memory as 
often. 

The requirements for automatic editing for register 
operations is not as obvious now that the data format
ting functions have been removed from the registers. 
In Litton's Polyprocessor the registers are basically 
used for: 

a. Arithmetic computations 
b. Indexing 

The arithmetic area requires substantial automatic 
editing; however, in moving data to and from the 
registers the field capability removes the necessity for 
editing. It is now possible to say "Add the 13-bit field 
that starts at bit 23 to the process register." 

The arithmetic process should have automatic align
ment and overflow when required. For example, assume 
that we want to add a signed 13-bit field to a process 
register, Figure 3. 
The ADD command will: 

a. Isolate and edit the 13-bit memory field into register 
format, Figure 4. 

b. Align the two arithmetic fields, Figure 5. 

Is __ ----------------SYyYyyYYYY.xxx 

587:J.4A 

Figure 4 
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I s ..... ------Syyyyyyyyy.xxxoo I 
5673·5A 

Figure 5 

c. Add the two fields. If the result overflows, it will be 
shifted to the right one place so that it will fit. 

d. Return result to the register. 

In this case automatic editing for register operation 
has accomplished several things for us. It has removed 
the usually required LOAD, SHIFT, AND, Test Sign 
and Jump on Positive, and Set register negative com
mands. It has also removed the "clean up" computation 
commands (i.e., testing for overflow and the associated 
patch up commands). Finally, intermediate storage, 
and its associated bookkeeping, for values like this is 
no longer required because the value is easy to access 
within its input stream format. 

What do all of these advantages of automatic editing 
mean? Very briefly we can say that they will provide 
you with: 

a. Less programming complexity 
b. Less memory required for the problem 
c. Higher execution speeds because less memory IS 

accessed 

Variable length comman ds 

The concept of fixed length commands is probably 
the major reason that computer instruction repertoires 
have made so little progress. There is no optimal 
command length. Timid recognition of this fact is evi
dent in some of our modern computers, but two or 
three command lengths still cannot solve the problem. 

For examples, let's consider the following command 
functions: 

a. Register to register command 
b. Memory to register command 
c. Memory to memory command 
d. Scan characters under table control. 

Register to register cOIllIlland 

This command can be accomplished with one char
acter if the Polish Notation concept is used for register 

addressing. If the register were called out it would t~ke 
two characters. For example add register 3 to register 5. 

MeIllory to register cOIllIlland 

This command requires 3 to 6 characters depending 
upon its implementation. For example, add location 
1500 to register 5. 

MeIllory to IIleIlloJ,"y cOIllIlland 

This command will probably require 6 to 10 char
acters. If we move memory to memory the command 
will require 2 memory addresses, a count and an 
operation code. 

Scan characters under table control 

Here we want to determine the length of the next 
field in a string of characters. The field length can be 
terminated by many characters hence a table is re
quired to quickly identify which character will cause 
the scan to stop. The required instruction parameters 
are: 

a. Data address 
b. Length of character string 
c. Character size 
d. Table address 
e. Transfer condition 
f. Transfer address 
g. Optional mask 
h. Optional pattern address. 

This command is obviously greater than ten characters 
in length. 

The wide variation in the memory requirements for 
these commands demonstrate why problem-oriented 
instruction repertoires have not appeared. The general 
cry is that instructions with this range of capability 
will cost a fortune. Our experience at Litton says that 
this is not true. In fact, bec~use smaller memories are 
required, we find that the total systems cost less. The 
cost of this type of instruction repertoire compares 
very' favorably with common computer features, such 
as instruction overlap and local memories. 

In summary, I can say that we at Litton are con
vinced that the variable length instruction is required 
if the computer instructions are to be problem-oriented. 
Further, we believe that this problem-oriented concept 
must be pursued, in the face of programming response 
time and implementation costs which have risen so 
high that they must be reduced. As a consequence of 



Conventional Computer Polyprocessor Percentage 

IIIIIrUcIIonTotal 2« 100 41.0 

Total Memory Required in 
Bytes 

Actual 20,852 10,182 48.8 

IfTables Optimally 
Compact 11,968 10,182 85.1 

Microseconds 85,024.4 22,460.4 26.4 

TABLE III-Program Summary 

these convictions, variable length instructions have 
been included in Litton's new Polyprocessor. 

CONCEPT VERIFICATION 

To assure ourselves that we were moving in the right 
direction, three bench mark problems, which were pre
viously programmed for a conventional computer, were 
recoded in the proposed Litton Polyprocessor instruc
tion set. Coding for both machines was in assembly 
language. Also, a comparison for each problem was 
made as to the number and type of instructions, number 
of memory accesses, program memory requirements 
including tables, and time of execution. 

The execution times for the Polyprocessor were of 
necessity estimated (hopefully on the conservative 
side) with the best information available to us at the 
time the study was done. The conventional computer 
has a 1.0-microsecond memory. The Polyprocessor has 
a O.5-microsecond memory. 

Our conclusion (see Tables III and IV) was that in 
all cases the Polyprocessor could accomplish the same 
result with fewer instructions and a diminished program 
space requirement. You will note, in particular, the 
complete lack of shift, logical, and move type instruc
tions with the Polyprocessor instruction set, and the 
reduction in the computer "setup" instructions which 
are grouped under the heading of Other. The memory 
space saving is most apparent when comparing the 
space allocated to the tables. 

Con.entional Computer Polypro .. sSOl Per .. nt .... 

Loads. 77 50 64.9 

Stor .. II 8 72.7 

Shift. 28 0 0 

Arithmetlca 60 39 65.0 

LoaICaJ 9 0 0 

Othen 57 16 28.1 

TABLE IV-Instruction Summary 
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Input or 
Fi.1d Description No. 0( Bits I Parameter Ran", Output 

X Reetan ... lar X Coordinate 13 Both 
f :t640RM 

(Radsr Mile = 2000 yds) 
y Reetan ... 1ar Y Coordinate 13 Both 

R PoIarR ...... 12 Both 

(J Polar Anale 12 o to 359 Both 

TABLE V-Program 1: Parameters 

Bench mark program 1 

There are 512 different random sets of coordinate 
information. Half of these sets contain polar coordi
nates, and the other half contain rectangular coordi
nates. Problem 1 is in two parts, a and b: 

Problem 1a: Convert the 256 polar coordinates to 
rectangular coordinates using the following formulas: 

x = Rcos() 

Y = R sin () 

Problem 1 b: Convert the 256 rectangular coordinates 
to polar coordinates using the following formulas: 

R = VX2 + y2 

() = arctan (XjY) 

A minimum end accuracy of 12 bits plus sign per 
coordinate position is maintained throughout the prob
lem. Double precision arithmetic is used whenever 
necessary. 

The parameters shown in Table V are used by both 
problem 1a and problem lb. 

ProblelIl 1: coding results 

Tables VI and VII display the number of instructions 
and other data required of each computer program to 
accomplish Bench Mark Program 1. 

Conventional Processor Poly processor 

Instructions 116 34 

Memory Required in Bytes 

Instructions 464 85 

Actual Constsnts and Tables 8.260 3,200 

OptimaDy Compact Constants and Tables 4,164 3.200 

nme (microseconds) 301 82.9 

TABLE VI --Program 1: Summary 
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C'ompUkr Lo.ds Stores Shifts Arithmctics Logical Other Totals 

Conventional 37 15 26 26 114 
Prol,..~ssur 

Polyp,ocessor 20 34 

TABLE VII -Program 1: Instruction Summary 

eon_tiona! 
rroce... PoIyproceaor 

............ 107 46 

a.nc... 

........... 421 108 

AcIIIII~"T."'" 7,Z12 4,634 

o,a-a,C ..... C_t ...... T .... 5,100 4,634 

l'IIM,..-.-...) 77,770.1 lO,ZU.4 

TABLE VIII-Program 2: Summary 

Computer LoadI St_ Shifb Arilhmelicl lcJtjcIl Other TolIII 

ConftIIIionIl 35 5 13 27 2 25 107 

P'Ioceaw 

~. 17 2 - 23 - 4 46 

TABLE IX-Program 2: Instruction Summary 

Parameter Input or 
Field Description R .... Output 

X Position InX 1640RN Input 

Y PositionlnY 1640RN Input 

FX Batlery Position In X AclUalW.apon Input 
System 

FY Battery Position in Y PosilioninX Input 
andY 

TARG Friendly or Foe Input and 
Indicator Oor 1 Output 

nNE Time of hostile to 
battery N/A Output 

VEL Velocity of hostile 187S yards/sec. Constant 

TABLE X-Program 3: Parameters 

ConftIItioul 
~ ~ 

.......... 21 1O 

a...-
.......... 84 62 

AnII1T ..... 4,384 2,093 

o,tIaIIaJ Compact T ..... 2,704 2,093 

l'IIM(~) 6,952.6 2,115.1 

TABLE XI-Program 3: Summary 

Bench mark problem 2 

There are 256 distinct tracks in ·the system, Half of 
these tracks are local and the rest are remote, Problem 
2 updates each track's ground position and slant range 
upon each radar scan, 

Each radar scan is subdivided into 20-degree sectors. 
All tracks within a sector are linked and are updated 
before tracks of another sector are considered, 

Track identification for determining the actual tracks 
falling within a sector is provided by Track Process. 
This is an input array which contains a chain that 
links in geographical proximity. 

All of the 256 track files are in the same format. 
Problem 2 determines the output parameter using the 
following formulas: 

Xg = Xpy + XTp - T + 1/S(AT - AA) 

Yg.::!: Ypg + YT.p - T + 1/S(AT - AA) 

Xg2 + 1/g2 
Xs = Xg2 + Y g2 + H2 (Xg) 

Yg2 + Yg2 

Ys = Xg2 + Y g2 + H2 (Yg) 

Problelll 2: coding results 

Tables VIII and IX display data required for each 
computer program to accomplish Bench Mark Pro
gram 2. 

Bench mark program 3 

There are 256 distinct tracks in the system. Sixty-four 
of the tracks are hostile and are randomly dispersed 
among the remaining friendly 192 tracks. If a track is 
hostile, the designation time of the hostile to a friendly 
battery is computed. Table X presents the track pa
rameters. All of the 256 track files are in the same 
format. 

Problem 3 determines if a track is hostile. This is 
the case when the TARG friendly, or foe, parameter 

Computer Loada s_ Aritlunetic:l l.oPcII Other To .... 

eo._tioIIal. 5 2 7 I 6 21 

r.-

~ 6 2 7 - 5 20 

TABLE XII-Program 3: Instruction Summary 



is non-zero. Then the flight time of the hostile track to 
the battery is computed by the following formula. 

V(X - FX)2 + (Y - FY)2 
TIME = VEL 

The TIME and battery position are stored in the 
target array. If the track is friendly, no action is to be 
taken. 

ProbleDl 3: coding results 

Tables XI and XII display the data required of each 
computer program to accomplish Bench Mark 
Problem 3. 

SUMMARY 

As demonstrated by our coding experience, Litton has 
found that Automatic Editing and Variable Length 
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Instructions result in: 

a. Dramatic reduction in instructions required to ac
complish programming jobs. 

b. Dramatic reduction in memory required to hold in
structions and data. 

c. Substantially increased internal processing speed be
cause fewer memory accesses are required. 

Litton has incorporated these features in its Poly
processor computer. We expect that these features, 
along with others, will provide users of our computer 
with a substantial increase in capability. 
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The PMS and ISP descriptive systems 
for computer structures* 

by C. GORDON BELL and ALLEN NEWELL 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

INTRODUCTION 

In this paper we propose two notations for describing 
aspects of computer systems that currently are handled 
by a melange of informal notations. These two nota
tions emerged as a by-product of our efforts to produce 
a book on computer structures (Bell and Newell, 1970). 
Since we feel it is slightly unusual to present notations 
per se, outside of the context of particular design or 
analysis efforts that use them, it is appropriate to 
relate some background history. 

The higher levels of computer structure-roughly, 
all aspects above the level of logical design-are 
becoming increasingly complex and, as a result, de
veloping into serious domains of engineering design. 
By serious we mean the growth of techniques of 
analysis and synthesis, with a body of codified tech
nique and design experience which professional de
signers must assimilate. In the present state, most 
knowledge about the technologies for computer archi
tecture is embedded in particular studies for particular 
computer systems. Nothing exists comparable to the 
array of textbooks and systematic treatments of 
logical design or circuit design. 

We started off simply to produce a set of readings 
in computer systems, motivated by this lack of syste
matic treatment and the inaccessibility of good exam
ples. As we gathered material we became impressed 
(depressed is actually a better term) with the diversity 

* This paper is taken from Chapters 1 and '2, substantially 
compressed and rewritten, of a book, Computer Structures, 
Readings and Examples (Bell and Newell, McGraw-Hill, 1970), 
which is about to be published. All figures in the paper have been 
reproduced with the permission of McGraw-Hill. The research in 
this paper was supported by the Advanced Research Projects 
Agency of the Office of the Secretary of Defense (F 44620-67-C-
0058) and is monitored by the Air Force Office of Scientific 
Research. This document has been approved for public release 
and sale; its distribution is unlimited. 
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of ways of describing these higher levels. The amount 
of clumsy description-downright verbosity':""-even in 
purely technical manuals acted as a further depressant. 
The thought of putting such a congeries of descriptions 
between hard covers for one person to peruse and 
study was almost too much to contemplate. We began 
to rewrite, and condense many of the descriptions. As 
we did so, a set of common notations developed. 
Becoming aware of what was happening, we devoted a 
substantial amount of attention and effort to creating 
notational systems that have som:e consistency and, 
hopefully, some chance of doing the job required. 
These are the PMS des9riptive system for what we 
will call the PM S level of computer structure (essen
tially the information flow level), and the ISP descrip
tive system for defining the programming level in 
terms of the l~gic level (actually, the register-transfer 
level). 

Thus, these two notations were developed to do a 
descriptive task-to be able to write down the informa
tion now given in the basic machine manual in a 
systematic and uniform way for all current computers. 
They were to provide a complete defining description 
for complete systems, such as the IBJV[ 7090 or the 
SDS 930. Hence, the essential constraints for the 
notations to satisfy were ones of completeness, flexi
bility, and brevity (i.e., high informational density). 

We think the two notations meet these requirements. 
They have not yet been used in a way that meets 
additional requirements that we would all put on 
notational systems; namely, that there be analysis and 
synthesis techniques developed in terms of them. * 

* There is currently a thesis in progress establishing a substantial 
amount of standard analysis at the PMS level. In addition, there 
exists at least one simulation system at the register-transfer level 
(Darringer, 1969) that bears a close kinship to ISP. Finally, one 
new computer, the DEC PDP-ll, reported in this conference 
(Bell, et al., 1970), was designed using PMS and ISP as the 
working notations. 
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use by many people. Thus, they are undoubtedly 
imperfect in a number of ways (even beyond the usual 
questions of taste in notation, which always prevents 
uniform agreement and satisfaction). 

By way of justification let us simply note the many 
places where pure descriptions (without analysis or 
synthesis techniques) are critical to the operation of 
the computer field. The programming manual serves 
as the ultimate educational and reference document 
for all programmers. Professional papers reporting on 
new computing systems give descriptions of the overall 
configuration; currently these are done by informal 
block diagrams. Each manufacturer adopts descriptive 
names of its own choosing, often for marketing purposes, 
to describe the components of its systems in sales 
brochures-e.g., selector, channel, peripheral processor, 
adapter, bus. During negotiations for the purchase or 
sale of computer system, overall descriptions (at the 
PMS level, as it turns out) are passed between manu
facturer and p<5tential customer. Large amounts of 
rough performance analyses are based on such abbre
viated system descriptions. In. the classroom (and 
elsewhere) systems are presented briefly to make 
particular points about design features. A user, even 
though he knows the order code of a machine, needs to 
learn the configuration available at a given installation 
(which, again, is a description at the PMS level). The 
list could be extended somewhat further, but perhaps 
the point is made. There is a substantial need for a 
uniform way of describing the upper levels of computer 
structures, not just for computer design, but for 
innumerable other purposes of marketing, use, com
parison, education, etc. 

With this preamble, let us describe the two nota
tions. Notations are' not theoretically neutral. That is, 
they are based on a particular view of the systems to 
be described. Thus, to understand PMS and ISP we 
give briefly this view of computer systems. This· ma
terial is elementary and known, at least implicitly, to 
all computer designers. But it serves to provide the 
rationale for the notations and to locate them with 
respect to other descriptions of computer systems. 
After we have given some of this background, we will 
describe, first, PMS and then ISP. The two descriptive 
However, the gains to the computer field simply from 
the use of good descriptive notations are immense. 
Thus, we think that these two notations should be 
put forward to the computer community, both for 
criticism and as one concrete proposal for the adoption 
of a uniform notation. ** The present notations are 
quite new and have hardly been thoroughly tested in 

** A standards committee might be set up for dealing with these 
system levels and their description. 

systems have a common base of conventions, but it is 
simpler to treat them separately, especially when 
being informal.W e will use the PDP-8 as an example 
for both PMS and ISP, since it is small enough to be 
completely described within the confines of this paper. 
At the end, in order to give some indication of gener
ality, we will treat briefly the CDC 6600. 

Our treatment here of these notations is essentially 
informal and heuristic. A complete treatment, as well 
as many examples, can be found in the forthcoming 
book (Bell and Newell, 1970). 

HIERARCHICAL SYSTEM LEVELS 

A computer system is complex in several ways. 
Figure 1 shows the most important. There are at least 
four levels that can be used in describing a computer. 
These are not alternative descriptions. Each level 
arises from abstraction of the levels below it. 

A system (at any level) is characterized by a set of 
components, of w~ich certain properties are posited, 
and a set of ways of combining components to produce 
systems. When formalized appropriately, the behavior 

..... - .. -.---------.---- .. ----.- -r-------------. 
Structures: Network/N 
--- Computer/C 
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'" Transducers/T. Data Operators/O, 
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g' ~omponen~s_: state (memory cells) 
.- Instructions, operators, controls !] interpreter. 
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~ 
, ,: --
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Figure I-Hierarchy of computer structures 



of the systems is determined by the behavior of its 
components and the specific modes of combination 
used. Elementary circuit theory is the prototypic 
example. The components are R's, L's, C's and voltage 
sources. The mode of combination is to run wires 
between the terminals of components, which corre
sponds to an identification of current and voltage at 
these terminals. The algebraic and differential equa
tions of circuit theory provide the means whereby the 
behavior of a circuit can be computed from the proper
ties of its components and the way the circuit is con
structed. 

There is a recursive or nested feature to most system 
descriptions. A system, composed of components 
structured in a given way, may be considered a com
ponent in the construction of yet other systems. There 
are primitive components whose properties are not 
explicable as the resultant of a system of the same 
type. For example, a resistor is usually not explained 
by a subcircuit, but is taken as a primitive. Some
times there are no absolute primitives, it being a matter 
of convention what basis is taken. For example, one 
can build logical design systems from many different 
primitives (AND and NOT; NAND; OR and NOT; 
etc.). 

A system level, as we have used the term in Figure 
1, is characterized by a distinct language for repre
senting and analyzing the system (that is, the compo
nents, modes of combination, and laws of behavior). 
These distinct languages reflect special properties of 
the types of components and of the way they combine. 
Within each level there exists a whole hierarchy of 
systems and subsystems. However, as long as these 
are all described in the same language-e.g., a sub
routine hierarc~y, all given in machine assembly 
language-they do not constitute separate system 
levels. 

The circuit level, and the combinatorial switching 
sublevel ,and sequential switching sublevels of the 
logic level, are clearly defined in the current art. The 
register-transfer level is still uncertain because there is 
neither substantial agreement on the exact language 
to be used for the level, nor on the techniques of 
analysis and synthesis that go with it. However, there 
are many reasons to believe it is emerging as a distinct 
system level. 

In the register-transfer level the system undergoes 
discrete operations, whereby the values of various 
registers are combined according to some rule, and 
then stored in another register (thus "transferred"). 
The law of combination may be almost anything, from 
the simple unmodified transfer (A t- B) to logical 
cnmbination (A t- B /\ C) to arithmetic (A t- B + C). 
Thus, a specification of the behavior, equivalent to 

PMS and ISP Descriptive Systems 353 

the boolean equations of sequential circuits or the 
differential equations of the circuit level, is a set of 
expressions (often called productions) which give the 
conditions under which such transfers will be made. 

There have been a number of efforts to construct 
formalized register transfers systems. Most of them 
are built around the construction of a programming 
system or language that permits computer simulation 
of systems on the RT level (e.g., Chu, 1962; Darringer, 
1969). Although there is agreement on the basic 
components and types of operations, there is much 
less agreement on the representation of the laws of 
the system. 

The state system representation is also at the logic 
level, but it has been put off to one side in Figure l. 
The state system is the most general representation of 
discrete system available. A system is represented as 
capable of being in one of a set of abstract states at 
any instant of time. (For digital systems the set is 
finite or enumerable.) Its behavior is specified by a 
transition function that takes as arguments the current 
state and the current input and determines the next 
state (and the concomitant output). A digital computer 
is, in principle, representable as a state system, but 
the number of states is far too large to make it useful 
to do so. Instead, the state system becomes a useful 
representation in dealing with various subparts of 
the total machine, such as the sequential circuit that 
controls a magnetic tape. Here the number of states is 
small enough to be tractable. Thus, we have placed 
state systems off to one side as an auxiliary to the 
logic level. 

The program level is not only a unique _level of 
description for digital technology (as was the logic 
level), but it is uniquely associated with computers, 
namely, with those digital devices that have a central 
component that interprets a programming language. 
There are many uses of digital technology, especially 
in instrumentation and digital controls which do not 
require such an interpretation device and hence have 
a logic level but no program level. 

The components of the program level are a set of 
memories and a set of operations. The memories hold 
data structures which represent things both inside 
and outside of the memory, e.g., numbers, payrolls, 
molecules, other data structures, etc. The operations 
take various data structures as inputs and produce 
new data structures, which again reside in memories. 
Thus the behavior of the system is the time pattern 
of data structures held in its memories. The unique 
feature of the program level is the representation it 
provides for combining components-that is, for 
specifyip.g what operations are to be executed on what 
data structures. This is the program, which consists of 
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a sequence of instructions. Each instruction specifies 
that a given operation (or operations) be executed on 
specified data structures. Superimposed on this is a 
control structure that speCifies which instruction is to 
be interpreted next. Normally this is done in the order 
in which the instructions are given, with jumps out of 
sequence specified by branch instructions. 

In Figure 1 the top level is called the Processor
Memory-Switch level, or PMS level for short. The 
name is not recognized, nor is any other, since the 
level exists only informally. Nevertheless, its existence 
is hardly in doubt. It is the view one takes of a com
puter system when one considers only its most aggre
gate behavior. It then consists of central processors, 
core memories, tapes, discs, input/output processors, 
communication lines, printers, tape controllers, busses, 
Teletypes, scopes, etc. The system is viewed as process
ing a medium, information, which can be measured in 
bits (or digits, characters, words, etc.). Thus the 
components have capacities and flow rates as their 
operating characteristics. All details of the program 
are suppressed, although many gross distinctions of 
encoding and information type remain, depending on 
the analysis. Thus, one may distinguish program from 
data, or file space from resident monitor. One may 
remain concerned with the fact that input data is in 
alphameric and must be converted into binary, or is in 
bit serial and must be converted to bit parallel. 

We might characterize thIs level as the "chemical 
engineering view of a digital computer," which likens 
it more to a continuous process petroleum distilling 
plant than to a place where complex FORTRAN 
programs are applied to matrices of data. Indeed, this 
system level is .more nearly an abstraction from the 
logic level than from the program level, since it returns 
to a simultaneously operating flow system. 

One might question whether there was a distinct 
systems level here. In the early days of computers 
almost ali computer systems could be represented as in 
the diagram in MIT's Whirlwind Computer program
ming manual in Figure 2: the four classic boxes of 
memory (storage), control, arithmetic, and input/ 
output (separated, in the figure). But current time
sharing and multiprocessing systems are orders . of 
magnitude more complex' than this, and it is known 
that the structure at this level has a determining 
influence on system performance. (See the PMS diagram 
for the 6600 in Figure 6, by no means the most complex 
of current systems.) 

With this total view of the various systems levels 
we can locate both PMS and ISP. PMS is, of course, a 
systems level of its own, namely, the top one. ISP is a 
notation for describing the components and modes of 
combination of the programming level in terms of the 

ARITI~fETIC ..... ---f CONTROL 
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t----.. STORAGE 

OIlTPUT 

Figure 2-Simplified computer block diagram Whirlwind I 
(courtesy of M.LT.) 

next level down, i.e., in terms of the register transfer 
level. That is, the instructions, operations and inter
pretation cycle are the defining' components of the 
programming level and must be given in terms of a 
more basic systems level. The programming level 
itself consists of programs written in the machine code 
of the system. In essence, a register-transfer description 
of a processor is an interpreter program for interpreting 
the instruction set. The interpreter describes the actual 
hardware of the processor. By carefully structuring a 
register-transfer description of a processor, instructions 
are precisely defined. 

Thus, ISP is an interface language. Similarly, inter
face definitions exist at all levels of a system hierarchy, 
e.g., between the circuit level and the logic level. 
Normally, it is not neces.sary to have a special language 
for the interface; e.g., one simply writes a circuit 
description of an, AND-gate. But with the programming 
level, it is most useful not to use simply a register 
transfer language, but to introduce a special notation 
(i.e., ISP). This will become clear when we describe 
ISP. 

PMS and ISP are also strongly related in that ISP 
statements express the behavior of PMS components. 
Thus, for every PMS component there are constructs 
in ISP that express its behavior; and each ISP state
ment implies particular PMS structures. 

A word should be said about antecedents. The PMS 
descriptive system is close to the way we all talk 
informally about the top level of computer systems; 
no one effort in the environment stands out as a pred
ecessor. Some notations, such as CPU (for central 
processing units), have become widespread. We clearly 
have assimilated these. Our modifications, such as Pc 
instead of CPU, are dictated entirely by the attempt 
to build a consistent notation over the whole range of 
computer systems. With respect to ISP, we have been 
heavily influenced by the work on register transfer 
languages. * The one that we used most as a kernel 



from which to grow ISP was the work of Darringer 
and Parnas (Darringer, 1968). In particular, their 
decision to work within the framework of ALGOL 
suited our own sensibilities, even though the final 
version of ISP departs from a sequential algorithmic 
language in a number of respects. 

PMS LEVEL OF DESCRIPTION 

Digital systems are normally characterized as 
systems that at any time exist in one of a discrete set 
of states, and which undergo discrete changes of state 
with time. Nothing is said about what physical state 
corresponds to a system state; or the behavior of 
compoo.ents that transform the system from one state 
to another. The states are given abstract labels: SI, 
S2, .... The transitions are provided by a state-transi
tion table (or state diagram) of the form: if the system 
is in state Si and the input is Ij, then the system is 
transformed to Sk and evokes output Ol. The "state
system" view captures what is meant by a discrete (or 
digital) system. Its disadvantage is its comprehensive
ness, which makes it impossible to deal with large 
systems because of their immense number of states (of 
the order 10107 states for a big computer). 

Existing digital computers can be viewed as discrete 
state systems that are specialized in three ways. First, 
the state is realized by a medium, called information, 
which is stored in memories. Thus, a processor has all 
its states made explicit in a set of registers: an ac
cumulator, an address register, an instruction register, 
status register, etc. No permanent information is 
kept in digital devices except as encoded in bits or 
some other information unit base in a memory. Sequen
tial logic circuits that carry out operations in the 
system may have intermediate non-staticized states 
(e.g., during a multiply instruction), but these are 
only temporary. Second, the current digital computer 
systems consist of a small number of discrete sub
systems linked together by flows of information. The 
natural representation of a digital computer system is 
as a graph which has component systems at the nodes 
and information flows as branches. This representation 
as an information flow network with functionally 
specialized nodes is a real specialization. Finally, each 
component in a digital system has associated with it a 
small number of discrete operations for changing its 
own state or the state of neighboring components. The 

* We have not been influenced in a direct way by the work of 
Iverson (Falkoff, Iverson and Sussenguth, 1964) in the sense of 
patterning our notation after his. Nevertheless, his creation of 
a full description of the IBM System/360 system in APL stands 
as an important milestone in moving toward formal descriptions 
of machines. 
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total behavior of the system is built up from the 
repeated execution of the operations as the conditions 
for their execution become realized by the results of 
prior operations. 

To summarize, we want a way of describing a system 
of an interconnected set of components, which are 
individual devices that have associated with them a set 
of operations that work on a medium of information, 
measured in bits (or some other base). For the PMS 
level we ignore all the fine structure of information 
processing and consider a system consisting of compo
nents that work on a homogeneous medium ca]1ed 
information. Information comes in packets, called 
i-units (for information units) and is measured in bits 
(or equivalent units, such as characters). I-units have 
the sort of hierarchical structure indicated by the 
phrase: a record consists of 300 words; a word consists 
of 4 bytes; a byte consists of 8 bits. A record, then, 
contains 300 X 4 . X 8 = 9600 bits. Each of these 
numbers-300, 4, 8-is called a length. 

Other than being decomposable into a hierarchy of 
factors, i-units have no other structure at the PMS 
level. They do have a referent-that is, a meaning. At 
the PMS level we are not concerned with what is 
referred to, but only with the fact the certain com
ponents transform i-units, but do not modify their 
meaning. These meaning-preserving operations are the 
most ba'Sic information processing operations of all
and provide the basic classification of computer 
components. 

PM S primitives 

There are seven basic component types, each distin-
guished by the kinds of operations it performs: 

Memory, M. A component that holds or stores 
information (i.e., i-units) over time. Its operations 
are reading i-units out of the memory, and writing 
i-units into the memory. Each memory that holds 
more than a single i-unit has associated with it an 
addressing system by means of which particular 
i-units can be designated or selected. A memory can 
also be considered as a switch to a number of sub
memories. The i-units are not changed in any way 
by being stored in a memory. 
Link, L. A component that transfers information 
(i.e., i-units) from one place to another in a computer 
system. It has fixed terminals. The operation is 
that of transmitting an i-unit (or a sequence of 
them) from the component at one terminal to the 
component at the other. Again, except for the change· 
in spatial position, there is no change of any sort in 
the i-units. 
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Control, K. A component that evokes the operations 
of other components in the system. All other com
ponents are taken to consist of a set of discrete opera
tions, each of which-when evoked-accomplishes 
some discrete transformation of state. With the 
exception of a processor, P, all other components 
are essentially passive and require some other active 
agent (a K) to set them into small episodes of ac
tivity. 
Switch, S. A component that constructs a link 
between other components. Each switch has asso
ciated with it a set of possible links, and its opera
tions consist of setting some of these links and 
breaking others. 
Transducer, T. A component that changes the i-unit 
used to encode a given meaning (i.e., a given 
referent). The change may involve the medium 
used to encode the basic bits (e.g., voltage levels to 
magnetic flux, or voltage levels to 'holes in a paper 
card) or it may involve the structure of the i-unit 
(e.g., bit-serial to bit-parallel). Note that T's are 
meaning preserving, but not necessarily information 
preserving (in number of bits), since the encodings 
of the (invariant) meaning need not be equally 
optimal. 
Data-operation, D. A component that produces 
i-units with new meanings. I t is this component 

Mp-K-T-X 
I 
D 

where the heavy information carrying lines are for 
instructions and their data, and the dotted lines 
signify control. 

Often logic operations were lumped with control, 
instead of with data operations-but this no longer 

Pc := 

or 

that accomplishes all the data operations, e.g., 
arithmetic, logic, shifting, etc. 
Processor, P. A component that -is capable of inter
preting a program in order to execute a sequence of 
operations. I t consists of a set of operations of the 
types already mentioned-lVI, L, K, S, T and D
plus the control necessary to obtain instructions from 
a memory and interpret them as operations to be 
carried out. 

Computer model (in PMS) 

Components of the seven types can be connected to 
make stored program digital computers, abbreviated by 
C. For instance, the classical Gonfiguration for a com
puter is: 

C := Mp - Pc - T - X 

Here Pc indicates a central processor and Mp a primary 
memory, namely, one which is directly accessible from 
a P and holds the program for it. T (input/ output 
device) is a transducer connected to the external 
environment, represented by X. (The colon-equals 
(: =) indicates that C is the name of what follows to 
the right.) 

The classic diagrams had four components, since it 
decomposed the Pc into a control and an arithmetic 
unit: 

Mp- ~-T-X 
''- , I 

\ '\. I / 
" .. K ...... 

seems to be the appropriate way to functionally de
compose the system. 

N ow we associate local control of each component 
with the appropriate component to get: 

Mp ----+----~ -----1f---- ~- X data l 
1 instructions I I 

I 

• K(Mp)- - - -

I 

I 

I 
- K(T) 



where the heavy lines carry the information in which 
we are interested, and the dotted lines carry informa
tion about when to evoke operations on the respective 
components. The heavy information carrying lines 
between K and Mp are instructions. Now, suppressing 
the K's, then lumping the processor state memory, 
the data operators, and the control of the data, opera
tors and processor state memory to form a central 
processor, we again get: 

Mp-Pc-T-X 

Computer systems can be described In PMS at 
varying levels of detail. For instance, we did not 
write in the links (L's) as separate components. These 
would be of interest only if the delays in transmission 
were significant to the discussion at hand, or if the 
i-units transmitted by the L were different from those 
available at its terminals. Similarly, often the encoding 
of information into i-units is unimportant; then there 
is no reason to show the T's. The same statement 
holds for K's-sometimes one wants to show the 
locus of control, say when there is one control for 

M.disk := 
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many components, as in a tape controller; but often 
this is not of interest. Then, there is no reason to show 
K's in a PMS diagram. 

As a somewhat different case, it turns out that D's 
never occur in PMS diagrams of computers, since in 
the present design technology D's occur only as sub
components of P's. If we were to make PMS-type 
diagrams of analog computers, D's would show exten
sively as multipliers, summers, integrators, etc. There 
would be few memories and variable switches. The 
rather large patchboard would be represented as a 
very elaborate manually fixed switch. 

Components are themselves decomposable into 
other components. Thus, most memories are composed 
of a switch-the addressing switch-and a number of 
submemories. Thus a memory is recursively defined as 
either a memory or a switch to other memories. The 
decomposition stops with the unit-memory, which is 
one that stores only a single i-unit, hence requires no 
addressing. Likewise, a switch is often composed of a 
cascade of I-way to n-way switches. For example, the 
switch that addresses a word on a multiple-headed 
disk might look like: 

[S(randOm)~ S(randOm)~ S(linear) ~ S(CYCliC)~ M(word) J 

The first S(random) selects a specific Ms.diskLJdrivtLJ 
unit; the second S(random) is a switch with random 
addressing that selects the head (the platter and side); 
S(linear) is a switch with linear accessing that selects 
the track; and S(cyclic) is a switch with cyclic address
that finally selects the M(word) along the circular 
recurring track. Note that the switches are realized by 
differing technologies. The first two S(random)'s are 
generally electronic (AND-OR gates) with selection 
times of 10 ,-....., 100 microseconds, or perhaps electro
mechanical (relay). The S(linear) is the electrofYIechani
cal action of a stepping motor or a pneumatic driven 
arm which holds the read-write heads-the selection 
time for a new track is 50 ,-....., 500 milliseconds. Finally, 
the S(cyclic) is determined by the rotation time of 
the disk and requires from 16 ,-....., 60 milliseconds, 
depending on the speed (3600 ,-....., 1000 revolutions/ 
minute). This decomposition capability allows us to 
be able to describe components with varying precision 
and accuracy. 

The control element of a computer is often shown 
as being associated with the processor-not to the 

control of a disk or magnetic tape, such a K is often 
more complex. When we suppress detail, controls often 
disappear from PMS diagrams. Alternatively, when we 
agglomerate primitive components. (as we did above 
when combining Mp and K(Mp) to be just Mp) into 
the physically distinct sub-parts of a computer system, 
a separate control, K, often appears. The functionally 
and physically separate control* has evolved in the 
last decade. These controls, often larger than a Pc, 
are sometimes computers with stored control programs. 
When we decompose such a control there are: data 
operations (D) for calculating addresses or for error 
detection and error correction data; transducers (T) 
for changing logic signal levels and information flow 
widths; memory (M) as it is used in D, T, K, and for 
buffering; and finally a large control (K) which coordi
nates the activities of all the other primitives. 

* A variety of names for K's are used, e.g., controller, adapter, 
selector, interface, buffer multiplexor, etc. Often these names 
reflect other functions performed by the device. 
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The components are named according to the function 
they perform and they can be composed of many 
different types of components. Thus, a control (K) 
must have memory (M) as a subcomponent, and a 
memory, M, may have a transducer (T) as well as a 
switch (S) as subcomponents. All of these subcompo
nents, of course, exist to accomplish the total function 
of the component, and do not make the component 
also some other type. For instance, the M that does a 
transduction (T) from voltages on its input wires to 
magnetism in its cores and a second transduction from 
magnetism to voltages on its output wires does not 
thereby become a transducer as far as the total system 
functioning is concerned. To the rest of the system 
all the M can do is to remember i-units, accepting and 
delivering them in the same form (voltages). We 
define for each component type both a simple com
ponent and a compound component, reflecting in 
part the fact that complex subsystems can be put 
together to perform a single function from the view
point of the total system. For example, a typewriter 
may have 4 f'--' 6 simple information transduction 
channels using video, tactile, auditory, and paper 
information carriers. 

PM S notation 

Various notational conventions designate specifica
tions for a component, e.g., Mp for a functional classi
fication, and S(cyclic) for a type of switch access 
function in the case of rotating memory devices like 
drums. There are many other additional specifications 
one wants to give. A single general way of providing 
additional specifications is used so that if X is a com
ponent, we can write: 

X(ai: VI; a2: V2; .... ) 

to indicate that X is further specified by attribute al 
having value VI, attribute a2 having value V2, etc. Each 
parameter (as we call the pair ai Vi is well defined inde
pendently of what other parameters are given; hence, 
there is no significance to the order in which they are 
written, or to the number which have to be written. 

According to this notation we should have written 
M(function:primary) or S(access-function:random) 
rather than Mp or S (random). There are conventions 
for abbreviating and abstracting parameters to avoid 
such a lengthy description. Alternative ways of writing 
Mp are: 

M (function: primary) 
M(primary) 

complete specification 
drop the attribute, function, 
since it can be inferred from 
the value 

M.primary 

M.p 

Mp 

use the value outside the pa
renthesis, concatenated with a 
dot 
use an explicitly given abbre
viation, namely, primary /p 
(only if it is not ambiguous) 
drop the concatenation marker 
(the dot), if it is not needed to 
recover the two parts (all 
components are given by a 
single capital letter-here 'M) 

Each of these rules corresponds to a natural tendency 
to abbreviate when redundant information is given; 
each has as its condition that recovery must be possible. 

In the full description (Bell and Newell, 1970) each 
component is defined and given a large number of 
parameters, i.e., attributes with their domain of values. 
Throughout, the slash U) is used to introduce abbre
viations and aliases as we go. * Any list of parameters 
does not exhaust those aspects of a component that 
one might ever conceivably want to talk about. For 
instance, there are many quite distinct dimensions for 
any component in addition to the information dimen
sion: packaging, physical size, physical location, 
energy use, cost, weight, style and color, reliability, 
maintainability, etc. Furthermore, each of these 
dimensions includes an entire set of parameters, just 
as the information dimension breaks out into the set 
of parameters illustrated in the figures. Thus the 
descriptive system is an open one and new parameters 
are definable at any occasion. 

The very large number of parameters provides one 
of the major challenges to creating a viable scheme to 
describe computer systems. We have responded to this 
in part by providing automatic ways in which one can 
compress the descriptions by appropriate abbreviation 
-while still avoiding a highly cryptic encoding of 
each separate aspect., Abstraction is another major 
area in which some conventions can help to handle 
the large numbers of parameters. For instance, one 
attribute of a processor is the time taken by its opera
tions. This attribute can be defined with a complex 
value: 

Pc(operation-times: add:4 J.1.S, store:4 J.1.S, load:4 J.1.S, 

multiply: 16 p,s, ... ) 

That "is, the value is a .list of times for each separate 
operation. One might also give only the range of these 
numbers; this is done by indicating that the value is a 
range: 

Pc(operation-time: 4 f'--' 16 J.1.s). 

* There is no difficulty distinguishing this use from the use of 
slash as division sign-the latter takes priority, since it is the 
more specific use of the slash. 
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Similarly, one could have given typical and average 
times (under some assumed frequency mix of instruc
tions) : 

values whenever desired, is that it keeps the number 
of attributes that have to be defined small. 

Pc( operation-times: 4 fJs) 
Pc(operation-times: average: 8.1 fJs). 

A PMS example using the DEC PDP-8 

The advantage of this convention, which permits 
descriptions of values to be used in place of actual 

Figure 3 gives the detailed PMS diagram of an 
actual, small, general purpose computer, the DEC 

r-,----------T.console

I1p(JI017)~S~S_Pc~S4----r-K6----TLTeletype; 10 charls; 8 b/char; 64 char)-

I ~ J 
K---Tpaper tape;, (reader; 300 char/s)/ (pUnCh]. -I,O~ ta Break; 

l Dtpect 100 charls); 8 b/char 

K----TCincreme. n,tal point plot; 300 point/s: .O~--+ 
em01'11 Access 

In/point 

SlOMOI Data J Multiplexor; 

radi a I; 

from: 7 p. K; 

to: Mp 

K---T(card; reader; 2001800 card/min)~" 

K T(card; punch; 100 card/min)-+ 

K "fl ine; printer; 300 line/min; 120 col/I ine]. -+ 

L64 char/col 

K-_-"fCRT: display; area: 10 X 10 in2 15 X 5 in2J-+ 

L30 ~s/point; .01 /.005 in/point J 
K---T(Iight; pen)J 

K ___ T(Oataphone; 1.2',... 4.8 kb/s)-

K(#I:IO)-L(analog; output; 0 ...... -10 volts)--+ 

K-S-L(#0:63; analog; input; ° ...... -10 volts}~ 

r-t-------'--K- S- K(#0:63; Teletype; 110. 180 b/s)-

K- s_ MSC#"O:7; 'DEC~ape; addressable magnetic tape; 1-
133 ~s/w; length: 260 ft; 350 char/in; 3 o/chad 

M=======K_S_M{"#0:7; magnetic tape; 36/451751112.5 In/s~-
L200,556,aOO b/ln; 61a b/char J 

K- S_MS~0:3; fixed head disk; tdelay: 0"", Ii mSJ' 

(66 ~/w; 32768 w) I (16 ~s/w; 262144 w); 

(12,1 parity) b/w 

-= P(display; '338)~T(#0:3; CRT; display: area: 10 )( 10 in2)....., 

~ T(#0:3; light; pen)J 

e- '= Pc ~~: ~::::y 1 . :~C:;:;~ : ::::c ::~::~s ~d:::::~:: ~ magne tI c tape ~ _ 
~omputer/LIN:l 6.25 kw/s: 2 7 w J 

lHp(core; J.5 liS/Wi 4096 Wj (12 + I)b) 

:as ('Hemory Bus) 

T(#0:I5; knobs, analog; input)~ 

T(CRT; display; 5 X 5 In2)-+ 

T(digital; Input', output)-

T('Data Terminal Panel; digital; input, output)-

3pCO _2 w/ins.truction: data: w, i,bv; 12 b/w; H.processor state(2t .... 3t1 w; technolo~y: transistors; 
antecedents: PDP-5; descendants; PDP-8s, PDP-8I, PDP-L) 

4S('1/0 Bus; fromj Pc; to; 64 K) 

6 K(J _ ,. Instructions; ",.buffed) char-2 w) 

Figure 3-DEC LINC-8-338 PMS diagram 
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LINC-8-338, which is a PDP-8 with a LINC processor 
and a type 338 display processor. We will concentrate 
on the notation, rather than discussing substantive 
features of the system. A simplified PMS diagram of 
the system shows its essential structure: 

.--- T.console-

Mp-S Pc-S - T-

I--~ ____ Ms 

t--_~_P.display- T-

____ Pc('LINC)- Ms-

This shows the basic Mp-Pc-T structure of a C with 
the addition of secondary memory (Ms) and two 
processors, one of which, Pc('LINC), has its own Ms. 
Two switches are used: the I/O-bus which permits 
access to all the devices, and a direct access path to 
Mp via Pc for high data rate devices. There 1tre many 
other switches in the actual system as one can see 
from Figure 3; for example, M p is really 1 to 8 sepa
rate modules connected by a switch S to Pc. Also 
there are many T's connected to the input-output 
switch, S, which we collapsed as a single compound T; 
and similarly for S (direct memory access). 

Consider the Mp module. The specifications assert 
that it is made with core technology, that its word 
size is 13 bits (12 data bits plus one other with a 
different function); that its size is 4096 words; and 
that its operation time is 1.5 f.J.s. We could have written 
the same information as: 

M (function: primary; technology: core; operation-time: 
1.5 f.J.S; size: 4096 w; word: (12 + 1) b) 

In Figure 3 we wrote only the values, suppressing the 
attributes, since moderate familiarity with memories 
permits an immediate inference about what attributes 
are involved. As another example, we did not specify 
the function of the additional bit in the word when 
we wrote (12 + 1) b. Informed readers will assume 
this to be a parity bit, since this is the common reason 
for having an extra bit in a word. If the extra bit had 
some unusual function, then we would have needed to 
define it. That is, in the absence of additional informa
tion, the most common interpretation is to be as
sumed. 

In fact, we could have been even more cryptic and 
still communicated with most readers: 

M.core (1.5 f.J.s/w; 4 kw; 12 b), 

corresponding to the phrase, "A 12 bit, 1.5 f.J.S, 4k 

core store". 4 kw stands for 4 X 1024 = 4096; how
ever, if someone who was less familiar took it to be 
4 X 1000 = 4000 no real harm would be done. 

Consider the magnetic tapes for Pc. Since there are 
eight possible tapes that make use of the same con
troller, K, through a switch, S, we label them #0 
through #7. Actually, # is an abbreviation for the 
index. attribute whose values are integers. Since the 
attribute is a unique character, we do not have to 
write #:3 (although we could). The additional param
eters give information about the physical attributes of 
the encoding. These are alternative values and any 
tape has only one of them. A vertical bar (\) indicates 
this (as in BNF notation for grammars). Thus, 75\112 
in/s says that one can have a tape with a speed of 75 
inches per second or one with 112 inches per second, 
but not a tape which can be switched dynamically to 
run at either speed. 

For many of the components no further information 
is given. Thus, knowing that M.magneticL..Jtape is 
connected to a control and from there to the Pc tells 
generally what that K does. It is a "tape controller" 
which evokes all the actions of the tape, such as read, 
write, rewind; and therefore these actions do not have 
to be done by Pc. The fact that there is only one K 
for many Ms's implies that only one tape can be 
accessed at a time. Other information could be given, 
although that just provided is all that is usual in 
specifying a controller in an overall description of a 
system. 

We have used several different ways of saying the 
same thing in Figure 3 in order to show the range of 
descriptive notations. Thus, the 64 Teletypes are 
shown by describing a single connection through a 
switch and putting the number of links in the switch 
above the connecting line. 

Consider, finally, the Pc in Figure 3. We have given 
a few parameters: the number of data types, the num
ber of instructions, and the number of interrupts. 
These few parameters hardly define a processor. Several 
other important parameters are easily inferred from 
the Mp. The basic operation time in a processor is a 
small multiple of the read time of its Mp. Thus it is 
predictable that Pc stores and reads information in 
2 X 1.5 f.J.s (one for instruction fetch, one for data 
fetch). Again, where this is not the case (as in the CDC 
6600) it is necessary to say so. Similarly, the word 
size in the Pc is the same as the word size of the Mp-
12 data bits. More generally, the Pc must have instruc
tions that take care of evoking all the components of 
the PMS structure. These instructions of course do 
not use the switches and controls as distinct entities; 
rather, they speak directly to the operation of the 
M's and T's connected via these switches and controls. 



Other summary parameters could have been given 
for the Pc. None would come close to specifying its 
behavior uniquely, although to those knowledgeable 
in computers still more can be inferred from the 
parameters given. For instance, knowing both the 
data types available in a Pc and the number of instruc
tions, one can come very close to predicting exactly 
what the instructions are. Nevertheless, the way to 
describe a Pc in full detail is not to add larger' and 
larger numbers of summary parameters. I t is more 
direct and more revealing to develop a description at 
the level of instructions, which is the ISP description. 

In summary, a descriptive scheme for systems as 
complex and detailed as digital computers must have 
the ability to range from extremely complete to highly 
simplified descriptions. It must permit highly com
pressed descriptions as well as extensive ones and 
must permit the selective suppression or amplification 
of whatever aspects of the computer system are of 
interest to the user. PMS attempts to fulfill these 
criteria by providing simple conventions for detailed 
description with additional conventions that permit 
abbreviation and abstractions, almost without limit. 
The result is a notation that may seem somewhat 
fluid, especially on first contact in such a brief intro
duction as this. But once assimilated, PMS seems to 
allow some of the flexibility of natural language within 
enough notational controls to enhance communication 
considerably. 

ISP LEVEL OF DESCRIPTION 

The behavior of a processor is determined by the 
nature and sequence of its operations. This sequence 
is determined by a set of bits in Mp, called the pro
gram, and a set of interpretation rules, realized in the 
processorr that specify how particular bit configurations 
evoke the operations. Thus, if we specify the nature 
of the operations and the rules of interpretation, the 
actual behavior of the processor depends solely on the 
particular program in Mp (and also on the initial state 
of data). This is the level at which the programmer 
wants the processor described-and which the pro
gramming manual provides-since he himself wishes to 
determine the program. Thus the ISP (Instruction 
Set Processor) description must provide a scheme for 
specifying any set of operations and any rules of 
interpretation. 

Actually, the ISP descriptive scheme need only be 
general enough to cover some broad range of possi
bilities adequate for past and current generations of 
mac:hines along with their likely descendants. As with 
the PMS level, there are certain restriction~ that can 
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be placed on the nature of a computer system, spe
cializing it from the more general concept of a discrete 
state system. For the PMS level, it processes a medium, 
called information; it is a system of discrete components 
linked together by information transfers; and each 
component is characterized by a small set of operations. 
Similarly, for the ISP level we can add two more such 

. restrictions, which will in turn provide the shape of 
its descriptive scheme. 

The first specialization is that a program can be 
conceived as a distinct set of instructions. Operation
ally, this means that some set of bits is read from the 
program in Mp to a memory within P, called the 
instruction register, M.instruction/M.i. This set of 
bits then determines the immediately following se
quence of operations. Only a single operation may be 
determined, as in setting a bit in the internal state of 
the P; or a substantial number of operations may be 
determined, as in a "repeat" instruction that evokes 
a search through Mp. In a typical one or two address 
machine the number of operations per instruction 
ranges from 2 to 5. In any event, after this sequence 
of operations has occurred, the next instruction to be 
fetched from Mp is determined and obtained. Then, 
the entire cycle repeats itself. 

The above cycle of activity is just the interpretation 
cycle, and the part of the P that performs it is the 
interpreter. The effect of each instruction can be ex
pressed entirely in terms of the information held in 
memories at the end of the cycle (plus any changes 
made to the outside world). During execution, opera
tions may have internal states of their' own as sequen
tial circuits which are not represented as bits in memo
ries. But by the end of the interpretation cycle, what
ever effect is to be carried on to a later time has been 
staticized in bits in some memory. * 

The second additional specialization ~ on the data 
operations. A processor's total set of operations can be 
divided into two parts. One part contains those neces
sary to operate other components given in the PMS 
diagram-links, switches, memories, transducers, etc. 
The operations associated with these components and 
the extent to which they can be indirectly controlled 
from P are highly constrained by the basic nature of the 

* This description holds true for a P with a single active control 
(the interpreter). Some P's (e.g., the CDC 6600) have several 
active controls and get involved in "overlapping" several in
structions and in reordering operations according to the data 
and devices available. With these, a more complex statement 
is required to express the same general restriction we have been 
stating for simple P's: that the program can .be decomposed into 
a sequence of bit sets (the instructions), each of which has local 
contro] over the behavior of the P for a limited period of time, 
with all inter-instruction effects being staticized as bits in M's. 
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components and their controls. The second part con
tains those operators associated with a processor's D 
component. So far we have said nothing at all about 
them, except to exclude them completely from all PMS 
components except P. These are the operations that 
produce bit patterns with new meaning-that do all 
the "real" processing-or changing of information. * 
If it weren't for data operators, the system would 
only just transmit information. As we noted in our 
original definitions, a P (including a D) is the only 
component capable of directly changing information. 
A P can create, modify, and destroy information in a 
single operation. As we noted earlier, D's are like the 
primitive components in an analog computer. Later, 
when we express instruction sets as simple arithmetic 
expressions, the D's are the primitive operators, e.g., 
+, -, X, /, X2n ,/\ , Y , E9, and concatenation (D), 
which are evoked by the instruction set interpreter 
part of a processor. 

The specialization is that all the data operations 
can be characterized as working on various data-types. 
For example, there is a data-type called the signed
integer, and there are data operations that ad9. two 
signed-integers, subtract them, multiply them, take 
their absolute value, test for which of two is the greater, 
etc. A data-type is a compound of two things: the 
referent of the bit pattern (e.g., that this set of bits 
refers to an integer in a certain range); and the repre
sentation in the bit pattern (e.g., that bit 31 is the 
sign, and bits 30 to 0 are the coefficients of successive 
powers of 2 in the binary representation of the integer). 
Thus, a processor may have several data-types for 
representing numbers: unsigned-integers, signed-inte
gers, single~recision-floating-point, double-precision
floating-point, etc. Each of these requires distinct 
operations to process it. On occasion, operations for 
several data-types may all be encoded into a single 
instru~tion from the programmer's viewpoint, as when 
there is an add instruction with a data-type sub-field 
that selects whether the data is fixed or floating point. 
The operations are still separate, no matter how 
packaged, and so their data-types remain distinct. 

With these two additional specializations-instruc
tions and data-types-we can define an ISP description 

* In principle, this view that only D components do "real" 
processing- is false. It can be shown that a universal Turing 
Machine can be built from M, S, L, and K components. The 
key operation is the write operation into M, which suffices to 
construct arbitrary bit patterns under suitably controlled 
switches. Hence, arbitrary data operations can be built up. The 
stated view is correct in practice in that the data operations 
provided in a P are highly efficient for their bit transformations. 
Only the foolish add integers in a modern computer by table 
lookup. 

of a processor. A processor is completely described at 
the ISP level by giving its instruction-set and its 
interpreter in terms of its operations, data-types and 
memories. 

Let us first give the instruction-set. The effect of 
each instruction is described by an instruction-ex
pression, which has the form: 

condition ~ action-sequence. 

The condition describe's when the instruction will be 
evoked, and the action-sequence describes what trans
formations of data take place between what memories. 
The right arrow (~) is the control action (of a K) of 
evoking an operation. 

Since all operations in a computer system result in 
modifications of bits in memories, each action in a 
sequence has the form: 

memory-expression ~ data-expression 

The left arrow (~) is the transmit operation of a 
link, and corresponds to the ALGOL assign operation. 
The left side must describe the memory location that 
is affected; the right side must describe the informa
tion pattern that is to be placed in that memory 
location. The details of data-expressions and memory 
expressions are patterned on standard mathematical 
notation, and are communicated most easily by ex
amples. The same is true of the condition, which is a 
standard expression involving boolean values and 
relations amOI).g memory contents. 

There are two important features of the action
sequence. The first is that each action in the sequence 
may itself be conditional; i.e., of the form, "condition 
~ action-sequence." The second is that some actions 
are sequentially dependent on each other, because the 
result of one is used as an input to the other; on other 
occasions a set of actions are independent, and can 
occur in parallel. The normal situation is the parallel 
one. For example,- if A and B are two registers, then 

(A~B; B ~A); 

exchanges the contents of A and B. When sequence is 
required, the term 'next' is used; thus, 

(A ~ B; next B ~ A) ; 

transfers the contents of B to A and then transfers it 
back to B, leaving both A and B holding the original 
contents of B (equivalent to A ~ B). 

An ISP example using the DEC PDP-8 Pc 

The memories, operations, instructions, and data
types all need to be declared for a processor. Again 



these are most easily explained by example, although 
full definitions exist (Bell and Newell, 1970). Conse
quently, let us examine the ISP description of the Pc 
of the PDP-8, given in Figure 4. 

Processor state 

We first need to specify the memories of tlie Pc in 
detail, providing names for the various bits. Thus, 

AC(O:ll) the accumulator 
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is a memory called AC, with 12 bits, labeled from 0 to 
11 from the left. Comments are given in italics*-in 
this case that AC is called the accumulator (by the 
designers of the PDP-8). Alternatively, we could have 
used the alias or abbreviation convention: 

AC(O: 11>/ Accumulator (0 : 11). 

* There are a few features of the notation, such as the use of 
italics, which are not easily carried over into current comput~r 
character sets. Thus, the ISP of Figure 4 is a publication language. 

DEC PDP-8 ISP Description 

Pc State 

AC<O: I I> 

L 

PC<O: II> 

Run 

Interrupt..,state 

I O....pulse ... 1 ; 10....pulse..2; 10...pulseJ+ 

Mp State 
Extended memol"'Y is not included. 

H[0:7777
8

]<O:II> 

Page~[0:I77S]<O:II> :- H[0:I77a]<O:II> 

Auto ... lndex[0:7]<O: I I> : .. Page.p[IOa: 17
8

]<0: 1.1> 

Pc Console State 

Accumulatol' 

Link bit/AC extension fol' ovel'flow and cal'ry 

Progrcun Countez' 

1 when Pc is interpreting instroctions or "ronning" 

1 when Pc can be intel'ropted; undel' pl'ogl'ammed contl'ol 

IOpulses to IO devices 

special array of dil'ectly addl'essed memol"'Y l'egisters 

special al'ray when addl'essed indi'l'ectly~is incl'emented by 

Keys fol' 8ta'l't~ stop~ continue~ examine (load from memol"'Y), and deposit (store in memory) are not included. 

Data swltches<D:II> data ente'l'ed via con80le 

Instroction Format 

Instructlon/l<O:II> 

op<O:2> .- 1<0:2> 

Indl rectJllt/lb :- 1<3> 

page ... OJl 1 tIp .- 1<4> 

page..,address<o:6> :- 1<5:11> 

th 1 s....page<O: 4> :- PC ' <O:4> 

PCI<o: 1 I> :- (PC<O:ll> -I) 

I O..,select<O: 5> :- 1<3:8> 

lo..,pl..,blt :.- 1<11> 

lo..,p2 ... blt :- 1<10> 

io..,p4J> 1 t :- 1<;9> 
sma ;- 1<5> 

sza :- 1<6> 

snl :- 1<7> 

Effective Add'l'es8 Cal~Zation Pl'OCe88 

z<O: 11> :- ( 

Ib 1\ <lOS s Zll s 17
8

) -+ (H[z"] 4-H[z"] + I; next); 

Ib -+ H(zll]) 

z l <O:Il> :- (..., Ib -+z": Ib -+H[Z"» 

ZIl<O: I I> :- (page ... O ... b It -+ th I s.,J)agecpage ... address; 

-page..,O..,blt -+Ocpage..,address) 

~ mic~coded instruction 0'1' instruction bit(s) within an instruction 

op code 

O~ direct; 1 indirect memory reference 

o selects page 0; 1 select8 this page 

selects a T 0'1' M8 device 

these 3 bits contl'ol the selective generation of -3 vOltB~ 
0.4 ~s pulses to I/O devices 

~ bit jOl' skip on minus AC~ operate 2 gl'oup 

~ bit for skip on aero AC 

~ bit fol' s1<ip 011 'ton 2el'0 Link 

efj'ectiv(; 

auto indexing 

di'l'ect add'l'eBc 
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Instruction Interpretation PPQcess 

Run 1\ -, tlnterrupt ... request 1\ Interrupt...state) -+ ( 

Instruction ~H[PC]; PC ~PC + 1; next 

Instructlon ... execution); 

Run 1\ Interrupt ... request 1\ Interrupt ... state -+ ( 

H[O) ~ PC: Interrupt ... state· ~ 0; PC ~ 1) 

Instruction Set and Instruction Execution Process 

Instructlon ... executlon :- ( 

and (:- op - 0) ..... (AC ~ AC 1\ H[z]); 

tad (:- op - 1) ..... (LDAC ~ LcAC + H[ z]) ; 

Isz -(:- op - 2) ..... (H[ZI] ~ H[z] + I; next 

{H[ZI] - 01. ..... crc (-pC t IU, 
dca (:- op - 3) ..... (H[z] ~ AC; AC (- 0); 

J ms (: - op - ,.) ..... (H[ z] ..... PC; nex t PC (- Z + I); 

Jmp (:- op - 5) ..... (PC (- z); 

lot (:- op - 6) -+ ( 

Io....pl ... blt ..... 10...,plIlse..,1 ~ 1; next 

lo...p2...b1 t -+ 10..,pulseu2 ~ 1; next 

I o ... p4 ... b I t -+ I O..,pu I se ... 4 (- 1) ; 

no interrupt interpreter 

fetch 

execute 

interrupt interpreter 

logical and 

two's complement add 

index and skip if zero 

deposit and clear AC 

jump to subroutine 

jump 

~ in out transfer, microprogrammed to generate up to 3 pulses 
to an io device addressed by .[O ... select 

opr (:- op - 7) ..... Operate ... executlon the operate instruction is defined below 
end Instruction execution 

Operate Instruction Set 
The microprogrammed operate instructions: operate group l, operate group 2, and extended arithmetic are defined as a separate 
instruction set. 

Operate..,executlon :- ( 

cIa (:- 1<4> - 1) ..... (AC ~ 0); clear AC. Corrmon to all operate instructions. 

op r ... I (:- 1<3> - 0) -+ ( operate group 1 

c I I (:- kS> - I) ..... (L ~ 0): next ~ clear link 

cma (:- 1<6> - I) ..... (AC ~-, AC); ~ complement AC 
cml (:- 1<7>. I) ..... (L ~-, L): next 

lac (:- i<lI> - I) ..... (L~C ..... Lo\C + I); next 

ral (:- 1<8: 10> • 2) ..... (L~C ~ LO\C X 2 {rotate»; 

rtl (:- i<8:IO> - 3) ..... (LOAC ~LOAC X 22 {rotate); 

rar (:- i<8:10> .. 4) ..... (LOAC ~LOAC /2 {rotate}}; 

rtr (:- i<8:IO> - 5) ..... (LOAC ~LOAC / 22 (rotate1»; 

opr..,2 (:- 1<3.11> - 10) -+ ( 

~ complement L 

IJ. increment AC 

IJ. 1?otate left 

\l. rotate twice left 

IJ. rotate right 

IJ. rotate twice right 

operate group 2 

skip condItIon EB (1<8> - 1) ..... (PC (- PC + 1); next IJ. AC,L skip test 

ski)" condItIon :- «sma" (AC < 0» V (sza 1\ (AC - 0» \I (snll\ L» 

osr (:= i<g> - 1) -+ (AC (- AC V Oata swItches): IJ. ''(If>'' switches 

hit (:"" 1<10>- 1) -+ (Run (- 0»; IJ. ha"lt or stop 

F.AE (.:- l<d.I1>- lJ) ..... EAF...,tnstructlon.Jlxecution) optional EAE description 

Figure 4-DEC PDP-8ISP Description 

AC corresponds to an actual register in the Pc. How
ever, the ISP does not imply any particular implemen
tation, and names may be assigned to various sets of 
bits purely for descriptive convenience. The colon is 
used to denote a range or list of values. Alternatively, 
we could have listed each bit, separating the bit names 
by commas, as: 

AC(O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11). 

Having defined a second memory, L (which has only 
a single bit), one could define a combined register, 
LAC, in terms of L, and AC, as: 

LAC(L, 0:11) := LOAC. 

The colon-equal (: =) is used for definition, and the 
middle square box (0) denotes concatenation. Note 
that the bit named L of register LAC corresponds to 
the 1 bit L register. 



MeInory state 

In dealing with addressed memory, either Mp or 
various forms of working memory within the processor, 
we need to indicate multidimensional arrays. Thus, 

Mp[0:77778](0: 11) 

gives the primary memory as consisting of 77778 (i.e., 
base 8) words of 12 bits each, being addressed as 
indicated. Such an address does not necessarily reflect 
the switching structure through which the address 
occurs, though it often will. (Needless to say, it re
flects only addressing space, and not how much actual 
M is available in a PMS structure.) In general, only 
memory within the processor will occur as operands of 
the processor's operators. The one exception is primary 
memory (Mp), which is defined as a memory ex
ternal to a P, but directly accessible from it. 

In writing memories it is natural to use base 10 for 
all numbers and to consider the basic i-unit of the 
memory to be a bit. This is always assumed unless 
otherwise indicated. Since we used base 8 numbers 
above for specifying the addressing range, we indicated 
the change of number base by a subscript, in standard 
fashion. If a unit of information other than the bit 
were to be used, we would subscript the angle brackets. 
Thus, 

Mp[0:77778](0: 1)64 

reflects the same memory. The choice carries with it, 
of course, some presumption of organization in terms 
of base 64 characters-but this would show up in the 
specification of the operators (and is not true, in fact 
of the PDP-8). We can also have multi-dimensional 
memories (i.e., arrays), though no examples are used 
in Figure 4. These just add the extra dimensions with 
an extra pair of brackets. For example, a more precise 
description would have used: 

Mp[0:7][0:31][0: 127](0: 11) 

to mean 8 memory fields, each field with 32 pages, 
each page with 128 words and each word with 12 bits. 

Instruction forIllat 

It is possible to have several names for the same 
set of bits; e.g., having defined instruction (0: 11) we 
define the format of the instruction as follows: 

op(0:2) := instruction (0:2) 
indirectLJbit : = instruction (3 ) 
pageLJOLJbit : = instruction(4) 
pageLJaddress(O: 6) : = instruction(5: 11) 

PMS and ISP Descriptive Systems 365 

The colon-equal (: = ) is used to assign names to various 
parts of the instruction. In effect, this is a definition 
equivalent to the conventional diagram for the in
struction: 

I op I i I pi page address 
I 

0 3 4 5 11 

1 L pageuOub i t 

indirectubit 

Notice that in pageLJaddress the names of all the bits 
have been shifted, e.g., pageLJaddress(4) := instruc
tion(9). 

In general, a name can be any combination of upper 
and lower case letters and numerals; not including 
names which would be considered numbers (integers, 
mixed numbers, fractions, etc.). A compound name 
can be sequences of names separated by spaces ( ) or 
a hyphen. In order to make certain compound names 
more recognizable, a space symbol (LJ) may optionally 
be used to signify -the non-printing character. 

The instruction set 

With all the registers defined, the instructions can 
be given. These are shown on the second page of Figure 
4. The second page is a single expression, named 
InstructionLJexecution, which consists of a list of 
instructions. These are listed vertically down the 
page for ease of reading. Each instruction consists of a 
condition and an action sequence, separated by the 
condition-arrow (~). In this case the condition is an 
expression of the form (op = octal-digit). Since op is 
instruction(0:2), this expresses the condition that the 
operation code of the instruction has a particular 
value. Each condition has been given a name in pass
ing; e.g., 'and' is the name of (op = 0). This provides 
the correspondence between the operation code and 
the mnemonic name of the operation code. If this 
correspondence had been established elsewhere, or if we 
didn't care what numerical operation code the "and" 
instruction is, we could have written: 

and ~ (AC f- AC 1\ M[z]) 

We would not have known what condition the name 
'and' stood for, but could have surmised (with little 
difficulty) that it was simply an equality test on the 
operation code. Or we could define it elsewhere as: 

and := (op = 0) 
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Most generally the form of an instruction is written as: 

two'sLJcomplementL...Jadd/tad(:= op = 1) ~ 

(LDAC ~ LDAC + M[z]) 

Here, we simultaneously define the action of the tad 
instruction, its name, an abbreviation for the name, 
and the conditions for tad's execution. The first paren
theses are, in effect, a remark to allow an in-line 
definition. 

The instructions in the list constitute the total 
instruction repertoire of the Pc. Since all the condi
tions are disjoint, one and only one condition will be 
satisfied when a given instruction is interpreted, 
hence one and only one action sequence will occur. 
,Actually, all operation codes might not be present, so 
there would be some illegal op codes that would evoke 
no action sequence. The act of selection is usually 
called operation decoding. Here, ISP implies no par
ticular mechanism by which this is carried out. 

I t might be wondered why the conventions are not 
more stylized-e.g., some sort of table with mnemonic 
names in one column, bits of the operation code in 
another, etc. Though standard processors would fit 
such a stylized scheme, many others would not-e.g., 
microprogram processors. By making the ISP descrip
tion a general expression for evoking action-sequences 
we obtain the generality needed to cover all varia
tions. (Indeed, you will notice that the PDP-8 ISP is a 
single expression, and that it incorporates two micro
programmed instructions with no difficulty.) 

For the action-sequence standard mathematical 
infix notation is used. Thus we write 

AC ~ AC /\ M[z] 

This indicates that the word in Mp at address z (deter
mined by the expression on page 1 of Figure 4) is 
anded with the accumulator and the result left in the 
accumulator. Each processor will have a basic set of 
operations. that work on data-types of the machine. 
Here the data-type is simply the 12 bit word viewed 
as an array of bits. 

Operators need not necessarily involve memories 
actually within the Pc (the processor state). Thus, 

Mp[z] f- Mp[z] + 1 

expresses a change in a word in Mp directly. That 
this must be mechanized in the PDP-8 by means of 
some temporary register in Pc is irrelevant to the 
ISP description. 

We also use functional notation, e;g., 

AC ~ abs(AC) 

replaces the contents of the AC with its absolute value. 

Effective address calculation 

In the examples just given we used z as the address 
in Mp. This is the effective address (simplified) and is 
defined as a conditional expression (in the manner of 
ALGa L or LISP) : 

z(O: 11) : = (n indirect-bit ~ z'; 

indirect-bit ~ Mp[z']) 

The right arrow (~) is the same conditional sign used 
in the main instruction, similar to the "if. .. then 
... " of ALGOL. The parentheses are used to indicate 
grouping in the usual fashion. However, we arrange 
expressions on the page to make reading easier. 

As the expression for z shows, we permit conditional 
within conditionals, and also the nesting of definitions 
(z is defined in terms of a variable z'). Again, we should 
emphasize that the structure of such definitions may 
reflect directly the underlying hardware organization, 
but it need not. When describing existing processors 
the ISP description often does or can be forced to 
reflect the hardware. But if one were designing a 
processor, then ISP expressions would be put down as 
design objectives to be implemented in a register 
transfer structure, which might differ considerably. 

Special note should be taken of the opr instruction 
(op = 6) in Figure 4, since it provides a micropro
gramming feature. There are two separate options 
depending on instruction(3) being 0 or 1. But common 
to both of these is the operation of clearing the AC 
(or not), associated with instruction (4). Then, within 
one option (instruction (3 ) = 0) there are a: series of 
independently executable actions (following the clear
ing of L); within the other (instruction(3) = 1), 
there are three independently settable control actions. 
The nested conditionals and the use of 'next' to force 
sequential behavior make it easy to see exactly 
what is going on (in fact a good deal easier than de
scribing it in natural' language, as we have been doing). 

The instruction interpreter 

From the hardware point of view, an interpreter 
consists of the mechanisms for fetching a new instruc
tion, for decoding that instruction and executing the 
operations so designated, and for determining the 
next instruction. A substantial amount of this total 
job has already been taken care of in the part of the 
ISP that we have just explained. Each instruction 
carries with it a condition that amounts to one frag
ment of the decoding operation. Likewise, any further 
decoding of the instruction that might be done in 
common by the interpreter (rather than by the indi-



vidual operation circuits) is implied in the expressions 
for each instruction, and by the expression for the 
effective address. The interpreter then fetches the 
next instruction and executes it. 

In a standard machine, there is a basic principle 
that defines operationally what is meant by the "next 
instruction." Normally the current instruction address 
is incremented by one, but other principles are used 
(e.g., on a processor with a cyclic Mp). In addition, 
several specific operations exist in the repertoire that 
can affect what program is in control. The basic prin
ciple acts like a default condition-if nothing specific 
happens to determine program control, the normal 
"next" instruction is taken. Thus, in the PDP-8 we 
get an interpretation process that is the classic fetch
execute cycle: 

Run ---; (instruction ~ Mp[PC]; PC ~ PC + 1; 

next InstructionL...Jexecution) 

The sequence is evoked so long as Run is true (i.e., 
its bit value is 1). The processor will simply cycle 
through the sequence, fetching, then executing the 
instruction. In the PDP:-8 there exists a halt operation 
that sets Run to be 0, and the console keys can, of 
course, stop the computer. It should be noted that 
this ISP description does not include console behavior, 
although it could. 

The ISP description does not determine the way the 
processor is to be organized to achieve this sequencing, 
or to take advantage of the fact that many instructions 
lead to similar sequences. All it does is specify what 
operations must be carried out for a program in Mp. 
The ISP description does specify the actual format of 
the instruction and how it enters into the total opera
tion, although sometimes indirectly. For example, in 
the case of the and operation (op = 0), the definition 

. of AC shows that the AC does not depend on the 
instruction and the definition of z shows that z does 
depend on other fields of the instruction (indirectLJbit, 
pageLjOLjbit, p ageLj address ). Likewise, the form of the 
ISP expression shows that AC and PC both enter into 
the instruction implicitly. That is', in the ISP descrip
tion all dependence on memory is explicit. * 

* This is not correct, actually. In physically realizing an ISP 
description, additional memories may be utilized (they may even 
be necessary). It can be said that the ISP description has these 
memories implicitly. However, it is the case that a consistent 
and complete description of an ISP can be made without use 
of these additional memories; whereas with, say, a single address 
machine, it does not seem possible to describe each instruction 
without some reference to the implicit memories-as we see in the 
effective address calculation procedures where definitions look 
much like registers. 
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Data-types and data operations 

Each data-type has a set of .operations that are 
proper to it. Add, subtract, multiply and divide are 
all proper to any numerical data-type, as well as 
absolute value and negation. Not all of these need 
exist in a computer just because it has the data-type, 
since there are several alternative bases, as well as 
some levels of completeness. For instance, notice that 
the PDP-8 first of all does not have multiply and 
divide (unless one has its special option), thus having a 
relatively minimal level of arithmetic operations; and 
second, it does not have a subtract operation, using a 
two's complement add, which permits negation ( - AC) 
to be accomplished by complementation (/\ AC) 
followed by add 1. 

The PDP-8, unlike larger C's, does not have several 
data representations for what is, externally considered, 
the same entity. An operator that does a floating add 
and one that does an integer add are not the same. 
However, we denote both by the same symbol (in 
this case, +), indicating the difference parenthetically 
after the expression. Alternatively, the specification 
of the data-type can be attached to the data. Thus, 
in the IBM 7094 we would see the following add 
instructions: 

Add/ ADD ~ (AC ~ AC + M[e]); 
Add and Carry Logical! ACL ---; (AC ~ AC + M[e]{sl}). 

Floating add/FAD ---; (AC ~ AC + M[e]{sf}) ; 
Un-normalized floating add/UF A ---; 

(AC ~ AC + M[e]{suf}); 

Double precision floating add/DF AD ---; 
(ACMQ ~ ACMQ + M[e]OM[e + 1]{ df}); 

Double precision un-normalized floating add/DUFA ---; 
(ACMQ ~ ACMQ + M[e]OM[e + 1]{ duf}) 

The braces { } differentiate which operation is 
being performed. Thus above, the data-type* is en
closed in the braces and refers to all the memory 
elements (operands) of the expression. Alternatively, 
we also use braces as a modifier to signify the encoding 
of the i-unit. For example, a fixed point to floating 
point data conversion operation would be given: 

AC{floating} ~ AC{fixed}. 

We also use the braces as a modifier for the operation 
type. For example, shifting (left or right) can be a 

* The conventions for naming data-types is a concatenation of 
precision, a name and a structure. Examples include i/integer; 
dijdouble integer; div /double integer vector; single floating/sf; 
suf/single unnormalized floating; bv /boolean vector; ch.string/ 
character string. 
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multiplication or division by a base, but it is not 
always an arithmetic operation. In the PDP-8, for 
instance, we had 

LOAC ~ LDAC X 2{rotate}; 

where the end bits Land AC(ll) are connected when 
a shift occurs (the operator is also referred to as a 
circular shift), or equivalently 

(LOAC ~ LDAC X 2; AC(ll) ~ L). 

In general, the nature of the operations used in 
processors are sufficiently familiar that no definitions 
are required, and they can all be taken as primitive. 
I t is only necessary to have agreed upon conventions 
for the different data representations used. In essence, 
a data-type is made up recursively of a concatenation 
of subparts, which themselves are data types. This 
concatenation may be an iteration of a data-type to 
form an array. 

If required, an operation can be defined in terms of 
other (presumably more primitive) operations. It is 
necessary, of course, first to define the data format 
explicitly (including perhaps some additional memory). 
Variables for the operands are permitted in the natural 
way. For example, binary single precision floating 
point multiplication on a 36 bit machine could be 
defined in terms of the data fields as follows; 

sf mantissa/mantissa 
sf sign/sign 
sf exponent/exponent 
sf exponentLJsign 
xl ~ x2 X x3{sf} 

where normalize is: 

(0:27) 
(0) 
(28:35) 
(28) 

. - (xl mantissa : = x2 man
tissa X x3 mantissa; 

xl exponent : = x2 ex
ponent + x3 exponent; next 

xl ;= normalize(xl){sf}) 

xl ~ normalize(x2) {sf} : = ( 
(xl mantissa = 0) ~ (xl exponent : = 0) 
(x2 mantissa ~ 0) /\ (x2(0) = x2(1» ~ ( 

xl mantissa : = x2 mantissa X 2; 
xl exponent : = x2 exponent-I; next 
xl := normalize (x2){sf}) 

Three additional aspects need to be noted with 
respect to data-types; two substantive, one notational. 
First, not everything one does with an item of data 
makes use of all the properties of its data-type. For 
example, numbers have to be moved from place to 
place. This operation is not a numerical operation, 
and does not depend on the item being a number. 
Second, one can often embed one kind of operation in 
another, so as to coalesce- data-types. An example is 

encoding the Mp addresses into the same integer 
data-type as are used for regular arithmetic. Then 
there need be no separate data-type for addresses. * 

The notational aspect is our use in ISP of an mne
monic abbreviation scheme for data-types. We have 
already used sf for single-precision-floating-point. More 
generally, an abbreviation is made up of a letter show
ing the length, a letter showing the type, and a letter 
showing the structure. The simple naming convention 
does not take into account all we know about a data
type. The information carrier for the data is only 
partially included in the length characteristic. Thus 
the carrier should also include the data base and the 
sign convention for representing negative numbers, 
(e.g., sign-magnitude). 

PM S structure of the CDC 6600 series 

A simplified PMS structure of the C('6400I'6600) is 
given in Figure 5. Here we see the C(io; #1: 10) each 
of which can access the primary memory (Mp) of the 
central computer (Cc). Figure 5 shows why one con
siders the 6600 to be a network. Each Cio (actually a 
general purpose, 12 bit C) can easily serve the spe
cialized Pio function for Cc. The M p of Cc is an Ms 
for a Cio because the Cio cannot execute programs 
from this memory. By having a powerful Cio more 
complex input-output tasks can be handled without Cc 
intervention. These tasks can include data-type con
version, error recovery, etc. The K's which are con
nected to a Cio can also be less complex. 

A detailed PMS diagram for the C('6400, '6416, 
'6500, and '6600) is given in Figure 6. The interesting 
structural aspects can be seen from' this diagram. The 
four configurations, 6400 I"'-' 6600, are included just by 
considering the pertinent parts of the structure. That 

,.---Pc 

y-] 
~p(12 b/W>-Pc(H1>-: +-r-SI~_S_MrITIK-

Mp(12 b/w~Pc(H10 K-
\ J ~ 

C 10(#1: 10) peri phery 

Figure 5-CDC 6600 PMS diagram (simplified) 

* However logical such a course may seem, it is not always done 
this way. For example, the IBM 7090 (and other members of that 
family) have a 15 bit address data type and a 36 bit integer data 
type, with separate operations for each. 
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M('BqrrelJ workinq: lOw: 51 h/w:,J IJ.s/w) 

I I· T('Dead Start Console)-

Mp(HO:9)l- S2 __ ~PC3 (110:9) --Stm_-_SC#l: 12J' [K-_- L(1 ILS/W; 12 b/w)-

I 
fixed K-ST T(H1 :2; CRT; disp1ay)-

C[#0:9; ,periPheraj ? L-T(keyboard)-

and Control Pro- K['Read Pyramid; bUfferj' 
cessor/PCP 12 b/w: M(workinq: 

(1+2+3+4+5): 12 b/w): 

.2 I1s/w) 

K['vri ~e Pyramid; bUffer;]? 
12 b/w: M(working 

(5+4+3+2+1) w: 12 b/w; 

.2 IJ.s/w 

K['Extended Core couP1erl-,s(4 K: 16 Ms)_Ms6 (HO:15) 

. 1 ~s/w; 60 b/w J I 
Mp4(HO:31)_Soo" __ ---I ..... c8 L(H2,3,4: to: 'Extended Core Coupler) 

C('Central) 

lMp(core; 1.0~s/w: 4096w: 12 b/w) 

2S(time multiplex: .2 ~s/w: 12 b/w) 

3Pc('Periphera1 and Control Processor: HO:9; time mu1tiplex:.1 ~slw: 1 address/instruction: 

12 b/w; Mps('Proqram Counter, Accumulator) 1,2 w/instruction) 

4Mp(core: 1.0 ~s/w; 4096 W; (5 x 12) b/w) 

6S(time multiplex: 0.1 IJ,s/w: 60 b/w) 

6Ms('Extended Core Storage/FCS: 3.2IJos/w; (125952 I R) w: (R X (60, 1 parity» b/w) 

?See Chapter 39 for operation. 

80n ly present in CDC 6500 

9 No C('Centra1) in CDC 6416: CDC ~500 and CDC 6400 do not have K('Scoreboard), separate D's, 

and M('lnstruction Stack). 

Pc('6600; 15, 30 b/instruction; techno1ogy:transistor: - 1964: data: s i ,bv ,w,sf ,df) := 

Mps(flip flop: -16 w)-S('Switchboard) D('Shift) , , 
I I D (' Boolean) 
I , 

I : 
D(Hl: 2: 'Increment) 

-S-- K(interpreter) ~('Scoreboard) o (' Br~nch) 
D('Add; 0.3 IJos) M.working 

D (' Long Add) 

0(#1 :2: Multiply; IJos) 

M.instructioI'lnstruction Stack; 1 
content addressable; 

flip flop; 8 W; 60 b/w 

D ( , 0 i v i de: 2. 9 IJo s ) 

Figure ~CDC 6600 PMS Diagram 

is, a 6416 has no large Pc; a 6400 has a single straight
forward Pc; a 6500 has two Pc's; and the 6600 has a 
single powerful Pc. The 6600 Pc has 10 D's, so that 
several parts of a single instruction stream can be 
intBrpreted in parallel. A 6600 Pc also has considerable 
M.buffer to hold instructions so that Pc need not 
wait for Mp fetches. 

The implementation of the 10 Cio's can be seen 
from the PMS diagram (Figure 6). Here, only 1 
physical processor is used on a time shared basis. Each 
0.1 p's a new logical P is processed by the physical P. 
The 10 Mp's are phased so that "a new access occurs 
each 0.1 p.s. The 10 Mp's are always busy. Thus, the 
information rate is (10 X 12) b/p.s or 120 megabit/so 
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This structure for shifting a new Pc state into position 
each 0.1 }lS has been likened by CDC to a barrel. 

The T's, K's and M's are not given in the figures, 
although it should be mentioned that the following 
units are rather unique: a K for the management of 

64 telegraph lines to be connected to a Cio; and 
Ms( disk) with four simultaneous access ports, each at 
1.68 megachar/s data transfer rate; and a capacity of 
168 megachar; a Ms(magnetic tape) with a K(#1 :4) 
and S to allow simultaneous transfers to 4 Ms; the 

CDC 6400, 6500, 6600 Central Processor ISP Description 

Pc State 

P<17:0> 

)([0:7]<59: 0> 

A[O: "ld7 :0> 

B[0)<17:0> :- 0 

B[1 :7)<17:0> 

~un 

EM<17:0> 

AddressuPutuofurangeumod~ 

OperanduPutuPfurangeumode 

IndefiniteuPperandumode 

:- EM<12> 

:= EH<I3> 

:- EM<14> 

Program counter 

Main arithmetic registers. X[l:5), are implicitly loaded from 
Mp When A[1:5) are loaded. X[6:?) al'eimpZicitly stored in 
Mp When A[6:?] are loaded. 

B register8 are general arithmetic register8, and can be used 
as index register8. 

1 if interpreting instructions, not under program control. 

Exi t mode bi ts 

The above description is inaomplete in that the- above 3 mode's alarm allOlol conditions to trap Pc at Mp[RA). Trapping occurs if 
an alarm condition occurs "and" the mode i8 a one. 

Mp State 

Mp [0 :777777 s. )<59: 0 > 

Hs [0:2015232 )<59:0> 

RA<17:0> 

FL<17:0> 

RAECS<59: 36 > 

FLECS<59:36> 

AddressuOutuOfurange 

main core memory of 218 w, (256 ~) 
ECS/Extended Core Storage Program can only transfer data between 

Mp and Ms. Program cannot ne executed in Ms. 

reference (01' relocation) addres8 register to map a logical Mp' 
into physical Mp 

field length - the bour4S register which limits a program's 
access to a range·of Mp' 

reference 01' relocation register for M8(Extended Core Storage) 

field length for ECS 

a bit denoting a state when memory.mapping is invalid 

Memory Mapping Process 
This process maps 01' relocate8 a logical program, at location Mp', and M8',into physical Mp and M8. 

Mp'[X) := ((X < FL) ~Mp[X + RA); logical Mp' 

(X :<!: FL) ~ (Run ~O; AddressuOutuOfurange ~ 1) 

Ms'[X) :- ((X < FLECS) ~Ms[X)+ RAECS); 

(X :<!: FLECS) ~ (Run ~O; AddresSuoutuofurange ~ 1» 

Exohange jump storage allooation map at location, 1'1 within Mp: 

logioal Ms' 

The following Mp" array is reserved when Po state is stored, and switohed to another job. The exohange jump instruotion in 
a Peripheral and Control hoooessor enaots the operation: (Mp" ~ Up; Mp ~ Mp"). 

Mp"[n)<53:0> := poA[O)oOOOOOOS 

Mp"[n+l)<53:0> := RAoA[I)oB[I) 

Mp"[n+2)<53:0> :~ FLoA[2JoB(2) 

Mp"[n+3)<53:0> := EMoA[3)oB[3) 

Mp"[ n+4) : = RAECSoA[ 4 loBe 4) 

Hp"[n+5) :- FLECSoA[5)oB[5) 

Mp"[n+6)<35:0> := A[6)oB[6) 

Mp"[ n+ 7 )<35: 0> : = A[ ?JOB[?J 

Mp"[n+l0S:n+17S):= X[O:7] 

Figure 7-CDC 6400, 6500, 6600 Central Processor ISP Description 
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T(direct; display) for monitoring the system's opera
tion; K's to other C's and Ms's; and conventional 
T(card reader, punch, line-printer, etc.). 

ISP OF THE CDC 6600 

The ISP description of the Pc is given in Figure 7. 
The Pc has a straightforward scientific calculation 

Instruction Format 

instructlon<29:0> 

fm<5:0> :- instruction<29:24> 

fmi<8:0> :- fmOi 

i.-:2:0> 

J<2 :0> 

k<2:0> 

jk<5 :0> 

K<17:0> 

:: Instruction<23:21> 

;= instruction<20:18> 

:= instruction<17:15> 

:- jd<. 

:= instruction<17:0> 

10ng u instruction .- «fm < lOa) v 

(50 '" fm < 53) v 

(60 <: fm < 63) 'J 

(70 ~ fm .-: 73» 

shortulnstructlon :- ~ long instruction 

Instruction InterpY'etation Process 

althouqh 30 bits, most ir!st1'Uctions are 15 bits; see 
InstY'ucf;ion InteY'p1'etation ProceSR 

operation code 01' funct-ion 

extended op code 

specifies a register 01' an extension to op code 

speaifies a register 

specifies a register 

a shift constant (6 bits) 

an 18 bit addY'ess siae constant 

30 bit instruction 

15 bit instruction 

A 15 bit (short) 01' 30 bit (long) instY'uction is fetched from Mp'[P]<p x 15 + 15 - l:p x 15> where p = 3, 2, 1, 01' O. A 30 
hit instruction cannot be stm'etl acY'oss ",'oY'd boundaries (01' in 2,' Mp' locations). 

p<I>4 a pointer to 15 bit quarter word which has inst1'Uction 

Run -.(instruction-29:15:· .-Mp'[P]«p x IS + 14):(p x 15)',: next (ptC!h 

p .- p - I: next 

(p - 0)" 10ng u instructlon --.Run .-0; 

(p ~ 0)" long u instruct ion'" ( 

instruction <14:0> '-Mp'[P]«p x 15 + 14):(p XIS) , 

p .- p - I); next 

Instructionuexecution; next 

(p - 0) -, (p • 3; P • P + 1) 

In8truct£on !.-'et an.i InstY'u(!tion Execution Process 

e:r{'cute 

Opel"arz,i fetches or stoY'es between Mp' and X[i] (>("~UY' _ h'l 7oa,ling 01" stoY'1:ng regiRters A[ iJ. If (0 < i <,6) a fetch from 
:~!" [;11 i rl ,"·'IH';'. l/ <" ? t;) c'1 IltoY'e is marie to Mp'1 AI ill. 'T'izelesorirUon ,foes not describe Addresswoutt..Jof..,range case, 
"I-,:',!:: ,':. iI'Plt.',;' lU:e .l nl.dl. orel'ation. 

Instruction~.execution :-, ( 

:;pt 111 i I/o";; 

"SAl Aj + K" (fm ... SO) -4 (A [i ) ,-A [j J + K; next Fetcht..JStore); 

"SAi Bj + K" (fm - 51) -4 (A [I ] ~B[J] + K; next Fetcht..JStore); 

"SAi Xj + K" (fm - 52) -4 (A[I ] ,-XU ]<17:0> + K; next Fetch....store); 

"SAi XJ + Bk" (fm • 53) -4 (A[i] ~X[j }-':17:n> + 

"SAi Aj + Bk" (fm - 54) -4 (A[I] ~A[J] + B[k]; 

"SAi Aj - Bk" (fm - !is) -4 (A [I] ~A [J ] - B [k]; 

"SAl Bj + Bk" (fm .. 5!)) -4(A[i] ~Blj] + BU<J; 
"SAi Bj - Bk" (fm .. 57) -4 (A[i] ~ B[j] - e [k]; 

Fetch..,Store :- ( 

(0 < i <6) -4 (X[I] <--Mp'[A[i]); 

(i ~ 6) -4 (Mp'[I\[i] ~. X[i)) 

Operation:; on B and X 

Set B [i VSBi 

"SBi Aj + K" (fm = 60) -+ (B[ IJ ~A[J] + K); 

B[k]; next Fetch~Store); 

next Fetcht..JSto re ); 

next Fetch~Store); 

next Fetch~tore); 

next Fetcht..JStore); 

proee68 to get operand."n.X 01' store operand from X I1Jhen A 
is writ~en 

Figure 7 (Continued) 
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oriented ISP with 48 bit mantissa single preCISIOn 
floating point (also double precision floating point 
operations is provided). The Pc state has three sets of 

general registers. This structure assumes that a pro
gram consists of several read accesses to a large array(s), 
a large number of operations on these accessed ele-

"SBi Bj + K" {fm .. 61}. -) (B[ i] (- B[j] + K); 

"SBi Xj + K" (fm - 62) -) (B[ i] (- X[j]<17:Q::> + K); 

"SBi Xj + Bk" (fm - 63) -) (B[ I] ~ X[j]<17:Q::> + B[k]); 

"SBI Aj + Bk" (fm - 64) -) (B[I] f-A[j] + B[k]); 

"SBi Aj - Bklt Um • 65) -) (B[ I] ~ A[j] - B[k]); 

"SBi Bj + Bk" Um • 66) -) (B[ I] ~ B[j] + B[k])"; 

"SBI Bj - Bk" Um. 67) -) (B[I] ~s[j] - B[k]); 

Set X[ i )/SXi 
"SXi Aj + K" (fm - 70) -) (X[ I] ~ signuextend(A[j] + K): 
"SXi Bj + K" {fm - 71} -) (X[ I] f- slgnuextend(B[j] + K»): 
"SXi Xj + K" (fm - 72) -) (X[ I] (- signuextend(X[]] + K); 

"SXi Xj + Bk" (fm • 73) -) (X[ I] ~ sfgnuextend(X[j] + B[kJ}); 

"SXI Aj + Bk" (fm .. 74) -) (X[i] ~signuextend(A[J] + B[k]); 

"SXI Aj - Bk" (fm .. 75) -) (X[i] ~signJ!xtend(A[j]. B[k])): 

"SXi Bj + Bk" (fm .. 76) -) (X[ I] ~ sign....,extend(B[j] + B[k]); 

"SXI Bj - Bk" (fm • 77) -) (X(I] ~signJ!xtend{B[J] • B [k]) ) ; 

Miscellaneous ppogpam contpol 
"PS" (:= fm .. 0) -) (Run ~ 0); 

"NO" (:= fm· 46) -); 

Jump unconditional 
"JP BI + K" (:= fm '" 02) -) (p ~ B[ I] + K; p ~ 3); 

Jump on X[j] conditions 

"lR Xj K" (:= fml .. 030) -) {(X[j] - 0) -) (p ~ K; 

"Nl Xj K" (:= fmi .. 031) -) «X[j] ~ 0) -) (p ~ K; 

"PL Xj K" (:- fmi • 032) -) «X[j] ~ 0) -) (p ~ K; 

liNG Xj K" (:= fml .. 033) -) «XU] < 0) -) (p ~K; 

"IR Xj K" (:- fmi - 034) -) ( 

p ~ 3»; 

p ~ 3»; 

p ~ 3»; 

P ~ 3»; 

....,«X[]JI<59:4b- 3777)V (X[j]<5C):48>-4000» -)P ~K; P ~3); 

"OR Xj K" (:= fml .. 035) -) ( 

(X[j]<59:48>a3777) V (X[j]<59:48>-4000)-) (p ~K; p ~3)l; 

proogroam stop 

no operation; pass 

jump 

aeroo 

non aeroo 

plus oro position 

negative 

out of pange constant tests 

"OF Xj K" (:= fml '" 036) -) ( 

(X [j ]<59: 48>-1777) v (X [j ]<59: 48>-6000) 

"10 Xj K"(:= fml .. 037) -) ( 

indefinite fo~ constant tests 

-) (p ~K; p ~3»; 

(X[j ]<59:48>-1777) v (X[j ]<59:48>-6000) (p ~K; p ~3»; 

Jump on B[i], B[j] compapison 

"EQ BI Bj K" (:- fm" 04) -)((B[I]" B[J]) -)(p ~K; p ~3»; 

"N.E BI Bj K" (:- fm - 05) -) «B[i] ~ B[j]) -J [p +- K; p +- 3»); 

"GE BI Bj oK" (:- fm .. 06) -) «B[i] ~ B[j]) -) (p +- K; p +- 3»; 

"LT BI Bj K" (:- fm .. 07) -) «B[I] < B[j]) -) (p ~K; p ~3»; 

Subpoutine call 

"RJ K" (:- fml .. 010) -) ( 

M[K] <59:30> ~048c008o(P + I) C()OOOOOS; next 

(p ~ K + I; p ~ 3» ; 

equal 

not equal 

groeathep than op equal 

less than 

peturon jump 

Peading (REC) and wpiting (~C) Mp with Extended Coroe Storoage, subjected to bounds checks, and Ms', Mp' mapping 

"REC Bj + K" (:= fml '" 011) -) ( pead extended coroe 

FiglU'e 7 (Contiuued) 
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ments, followed by occasional write accesses to store 
results. 

Cc has provisions for multiprogramming in the form 

of a protection and relocation address. The mapping is 
given in the ISP description for both Mp, but an 
Ms('Extended Core Storage/ECS) is not described. 

~o'[A[n]:A[('I] + BU] + K-i] (-Ms'[X[O]:X[O] + BU] + K-l]); 

""'Fe BJ + K" (:= fmi = 012) -7 ( lJr'ite extended aOr'e 

~s'[X[O]:X[O] i· BU] + K-I] Mp'[A[O]:A[O] + BU] + K-I]); 

Fixe,l I'oin.t ApH!lmet:',J ..l~Z'; ;,oJt,~,d O! ci'ai :~)'~i; UI;in.g X 

"IXi XJ + Xk" 1:,- fm .. 3(.) ·(X[i]· XU] + X[k]); 

"'Xi XJ - Xk" (:- fm .. 3]) . '(X(j] . XU J - :~[kJ);' 

"Oi Xk" (:-,: fm .. 471 . (X[i J • sum~/l1odul0.-,2(X[k]); 

"BXi Xj" (:= fm = lOA) ·(X[i]. XU]); 

"8Xi Xj ,', Xk" (:= fm .. l1 A) ·(X[i)· Xli] ,-XU] AX[k]); 

"BXi Xj + Xk" (:~ fm .. 12) ·(XCi]· XU] VX[k]); 

"BXi Xj - Xk" (:= fm = n) ,(X[i] ,-XU] E9'-<[kJ); 

"BXi - Xk" 1:= fm .. 14) .(X[il.--~XLk]); 

"RXi - Xk ,', XJ" (:= fm '-' lS) . {Xli J ,-XU] ", X[k]); 

"BXi - Yk+ XJ" (:= fm = 1~). (X[i] <-XU'] v,X[k]); 

"BXi Xk - XJ" (:= fm z: 1])-. (X!:i] .-XU] EP,X[k]); 

"LXi jk" (:= fm = 20) • (X[i J XCi] x 2Jk [rotate}); 

"AXi jk" (:z: fm = 21) -7 (X[i) .-X[i] /2jk); 

"LXi Bj Xk" (:= fm = 72) -'I 
,R[j]<17> -·X[i] ·-X[kJ x 2 B(JJ<5:0> {rotate}; 

R[j]<17> -,XCi] '·X[k] / 2-' B[j}.10:()~); 

"AXi Bj Xk" (:~ fm = 23) __ ( 

-,B[j]<17> -'X[i]~X[k] /2 B[j]<10:0>; 

B[J]<17> -... X[i] • X[kJ x 2- Blj }<5:(» {rotate}); 

"f'lXi Jk" (:~ fm == 43)·, ( 

X[iJ<59:59-jk+l> ._2
jk 

- I; 

Uk = 0) -·X[i] ,·0); 

integer' 8um 

integer' differ'ence 

aount the numbep of bits inX[K] 

transmit 

logioal Jlroduat 

logical sum 

Zogiaal difj'epence 

tpansr>'!i t comp lement 

log'ieal proifuct and complement 

logiaal sum and aomplement; 

logical. :Uffepence and complement: 

ilr'itr.metie }'ig71t shirt 

left shift nominally 

apithmetic J·ight shift nominally 

Floattng ['oint Apitlzrrletia using X 
(lnl11 the least sigm:,r1:aant (70) rapt cf ar'1:thmetia ill stored in Floating D1' opl'?l'ations. 

"FXi Xj + Xk" (:= fm .. 30) -) (X(j] .. XU] + X[k] {sf}); floating sum 
"FXi XJ - Xk" (: .. fm = 31) .... (X[i] '·X[j] - X[k] [sf}); float'~ng (Hfference 
"OXi XJ + Xk" (:= fm .. 32) -, (X[i] .- XU] + X[k] (ls.df1); ftoath1g dp sum 
"f1Xi Xj - Xk'.' (: .. fm = 33) -. (X[i] (·-X[j] - Y[k] [Is.df}); fZoattng dp differenae 

"RX i Xj + Xk" (: = fm = 34) -4 ( 

XCi] i- round(X[j]) + round(X[kJ) [sf}); 

"RXi Xj - Xk" (:= fm'" 35) -, ( 

XCi] ~ round(X[j]) - round(X[k]) [sf); 

"FXi XJ ,~ Xk" (:= fm = 40) _.) (X[ i] .,.- X[j] X X[k] {sf}); 

"RX i Xj ,~ Xk" (: = fm '" 41) _) ( 

Xli] (. X[n x X[k] {sf1; next Xli] ~ round(X[iJ) [sf]); 

Y'o1.md fZoating difference 

floating pl'oduct 

pound ftoating ppoduat 

"OXi Xj ,', Xk" (:= fm'" 42) ~ (X[i] (-X[j] X X[k] [Is.dfl); floating dp ppoduat 

"FXi Xj / Xk" (:~ fm = 44) ~ (X[i] ,-X[j] / X[k] (sf}); floating divide 

"RXi XJ / Xk" (:'" fm = 45) ~ (X[i] i- round (X[J] / X[k]) [sf)); pound ftoating divide 

"NX i Rj Xk" (:= fm = 24) -) ( nOr'malize 

Xli] i-normalize(X[kJ) [sf}; 

B[J] ~ normal izeuexponent(X[k]) (sf); 

Figure 7 (Continued) 
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"ZXI Bj Xk" l:- fm - 25) -+ ( 

X[I] ~ round(X[k]) (sf}: next 

X[i] ~ normalize(X[i]) (sf); 

B[j] ~normalizeuexponent(X[i]) (sf}): 

round and normalise 

"UXi Bj Xk' (:- fm- 26) -+(B[]] ~X[k]<58:"8> (si}: unpack 

X[I] ~X[k]<59.47:0:> (si}); 

"fXI Bj Xk" (:- fm - 27) -+ (X[k]<58:48> ~ B[]] (51}; 

X[k]<59 .47:0> ~ X[ I] (51)); 

pack 

end Inetructionuexecut1?n 

Figure 7 (Continued) 

SUMMARY 

We have introduced two notations for two aspects of 
the upper levels of computer systems: the topmost 
information-flow level, here called the PMS level 
(there being no other common name); and the inter
face between the programming level and the register 
transfer level, called ISP. 

IN e were induced to create these notations as an 
aid in writing a book describing the architecture of 
many different computers-which served to make 
us painfully aware of the (dysfunctional) diversity 
that now exists in our way of describing systems. It 
would have been preferable to have notational systems 
constructed around techniques of analysis or syn
thesis (i.e., simulation languages). But our immediate 
need was for adequate descriptive power to present 
computer systems for a text. Considering the amount 
of effort it has taken to make these notational systems 
reasonably polished, it seems to us they should be 
presented to the computer profession, for criticism 
and reaction. 

The main sources of experience with the notation so 
far is in the aforementioned book, where we have 
developed PMS diagrams for 22 systems* and ISP 

* ARPA network; Burroughs B5500, B6500; CDC 6600; LGP 
30; ComLogNet; DEC LINC-8-338, PDP-ll; English Electric 
Deuce, KDF-9; IBM 1800, 7401, 7094, System/360 (Models 
30 ~ 91), ASP network; LRL network; MIT's Whirlwind I; 
NBS'S Pilot; RW 40, SDS 910 930; UNIVAC 1108. 

descriptions for 14 systems. ** The levels of· details in 
all of these is as adequate as the programming manual, 
i.e., as complete as the description of the PDP-8 
example given here. In addition at least one new 
machine, the DEC PDP-II (these proceedings), has 
made use of the notation at the formulation and 
design stage. 
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Reliability analysis and architecture of a hybrid-redundant 
digital system: Generalized triple modular redundancy 
with self~r>epair 
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"A random series of inept events 
To which reason lends illusive sense, is here, 
Or the empiric Lifes instinctive search, 
Or a vast ignorant mind's colossal work ... " 

Savitri, B.I.C.2-Sri Aurobindo1 

INTRODUCTION: FAULT-TOLERANT 
COMPUTING 

The objective to attain fault-tolerant computing has 
been gaining an increasing amount of attention in the 
past several years. A digital computer is said to be 
fault-tolerant when it can carry out its programs cor
rectly in the presence of logic faults, which are defined 
as any deviations of the logic variables in a computer 
from the design values. Faults can be either of transient 
or permanent duration. Their principal causes are: 
(1) component failures (either permanent or inter
mitent) in the circuits of the computer, and (2) 
external interference with the functioning of the com
puter, such as electric noise or transient variations in 
power supplies, electromagnetic interference, etc. 

Protective redundancy in the computer system pro
vides the means to make its operation fault-tolerant. 
It consists of additional programs, additional circuits, 

*This work was done in partial fulfillment towards the Ph.D. in 
the Computer Science Department of the University of California, 
Los Angeles. A preliminary version of this paper was presented 
as a working paper at the IEEE Computer Group Workshop on 
"Reliability and Maintainability of Computing Systems," 
Lake of the Ozarks, Missouri, October 20-22,1969. 
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and additional time of operation that would not be 
necessary in a perfectly fault-free system. The re
dundancy is deliberately incorporated into the circuits 
and/ or software of the computer in order to provide 
either masking of or recovery from the effects of some 
types of faults which are expected to occur in the com
puter. Repetition of programs provides time redun
dancy. Programmed reasonableness checks and diag
nostic programs are forms of software redundancy. 
Finally, monitoring circuits, error-detecting and error
correcting codes, structural redundancy of logic cir
cuits (component quadding, channel triplication with 
voting, etc.), replication of entire computers, and self
repair by the switching-in of standby spares (replace
ment systems) are the most common forms of hard
ware redundancy. 

The historical perspective shows that the study and 
use of hardware redundancy, which began nearly 20 
years ago,2,3 has been steadily increasing in the past 
decade. A very strong reason for this has been the 
evolution of integrated circuit technology. The inclu
sion of redundant circuitry is now economically more 
feasible. The large cost and size of diagnostic software 
in today's complex computer systems also motivates 
the relegation of as much checking as possible to special 
hardware. This special hardware is required to inter
act with a supervisory program to provide fault
tolerance and recovery without interaction with the 
human operator. 

The presently existing computer systems with ex
tensive use of hardware redundancy are found in ap
plications with extreme reliability requirements. The 
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most interesting illustration is the SATURN V launch 
vehicle computer which employs triple-modular redun
dancy (TMR) with voting elements in its central 
processor and duplication in the main memory.4 Sub
sequent studies of fault-tolerance in manually non
accessible computers with life requirements of over 10 
years have shown that replacement systems with 
standby spares of entire computer subsystems offer 
advantages over complete triplication.5 These studies 
have led to the design and construction of an experi
mental Self-Testing-And-Repairing (STAR) computer.6 
This computer is presently in operation at the Jet 
Propulsion Laboratory. It is being used as an experi
mental vehicle to study and refine self-repair tech
niques which incorporate fault-detection and recovery 
by repetition of programs and/or by automatic replace
ment of faulty subsystems. 

Many systems with hardware redundancy (including 
the STAR computer and other replacement-repair 
systems) share the common problem of a "hard core." 
This "hard core" consists of logic circuits which must 
continue to function in real time in order to assure the 
proper fault detection and recovery of the entire 
system. The purpose of this paper is to present the 
results of a general study of the architecture and 
reliability analysis of a new class of digital systems 
which are suitable to serve as the "hard core" of fault
tolerant computers. These systems are called hybrid
redundant systems and consist of the combination of a 
multiplexed system with majority voting (providing 
instant internal fault-masking) and of standby spare 
units (providing an extended mean life over the purely 
multiplexed system). The new quantitative results 
demonstrate that hybrid systems possess advantages 
over purely multiplexed systems in the relative im
provement of reliability and mean life with respect to a 
nonredundant reference system. 

It is also possible that the continuing miniaturization 
of computers will make hybrid redundancy applicable 
at the level of an entire computer serving as the non
redundant reference unit. The hybrid-redundant multi
computer system may then serve as the hard core of 
very large and complex data handling systems, such 
as those required for spacecraft, automated telephone 
exchanges, digital communication systems, automated 
hospital monitoring systems, and time-sharing-utility 
centers. 

TABLE OF SYMBOLS AND NOTATION 

Failure rate of a non-redundant ac
tive unit, (A ~ 0). 

Failure rate of a non-redundant 
standby-spare unit, (p. ~ A). 

K 
S 

N 

n 

c 

T 
tor T 

(~) 

DD 
SU 
R-S-D unit 

Simplex system 
TMR system 

NMR system 

Hybrid (N, S) 
system 

H(N, S) 
H(N, 0) 

H(3, 0) 

R ("System 
Characteriza
tion") 
["time"] 

Ratio of A to p., (= A/ p.), 1 ~ K ~ 00. 

Total number of standby-spare units, 
(S ~ 0). 

Total number of active redundant 
units, (=2n + 1). 

Degree of active redundancy, 
(= (N - 1)/2). 

Total number of units in a system, 
(=N + S). 

Mission time, (~O). 
Dummy variables for time, 
(O~t or T~T). 

Combinatorial notation for 

A! 

(A - B)!B!· 

Disagreement detector. 
Switching unit. 
An abbreviation for the unit which 

incorporates the restoring organ, 
switching unit, and the disagree
ment detector. 

A non-redundant unit or system. 
Triple-modularly redundant system, 

(N = 3). 
N -tuple-modularly redundant 

system .. 
A hybrid redundant system having a 

total of N + S units of which N 
units are active and S units .are 
standby-spares. 

An abbreviation for Hybrid (N, S). 
A reduced case of H(N, S) which 

yields an equivalent system to 
basic NMR under the assumption 
of fail-proof R-S-D unit and voter 
elements. 

A reduced case of H(N, 0) which 
yields an equivalent system to 
basic TMR. 

The format of a compact notation 
for simplifying the writing of re
liability equations. Here "R" the 
reliability is followed in parenthe
ses by the "system characteriza
tion" such as (N, S), (NMR) , 
(TMR) or (Simplex) and is then 
succeeded in square brackets by 
the parameter "time." The param
eter "time" is usually the mission 
time T and this term may be 
omitted if it is unambiguous to do 



so. If the "system characteriza
tion" refers to a simplex system, 
then both the "system characteri
zation" term and the "time" term 
may be omitted. 

Thus, 
R(N, S)[T] is the reliability of a hybrid redun

dant system H (N, S) for a mission 
time of duration T. 

THE N-TUPLY MODULAR REDUNDANT 
SYSTEM 

The basic TMR types of systems are first reviewed 
and are illustrated in Figure 1. A simplex or nonredun
dant system having reliability R is shown in Figure 
1 (a). The reliability of the basic triple-modular or 
TMR system as shown in Figure 1 (b) is given (under 
the worst-case assumption that no compensating 
failures occur) by the following well known equation: 

R(TMR) = R3 + 3R2(1 - R) (1) 

The generalization of the TMR concepts7 to an N
tuply modular system utilizing N = 2n + 1 units 
and having a (n + 1) ollt-of-n-restoring organ is illus
trated in Figure 1 ( c) and is therein designated as the 

(a) SIMPLEX 

"I R .. 
(b) TMR 

R 

R 

R 

(c) NMR 

2 

3 

'. N = 2n + 1 t----

Figure I-Basic TMR-type systems 
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Figure 2-Reliability of NMR-type systems vs normalized time 

NMR system; its reliability equation is 

R(NMR) = E (~) (1 - R)'RN-i (2) 

h h b· . 1 . (N) N! were t e com matorm notatIOn . = ( _.)'.' 
't N 't .'t. 

The family of curves illustrating its behavior is 
shown in Figure 2, with reliability plotted as a function 
of normalized time AT. The underlying failure law 
throughout this paper is assumed to be exponential.s 

Thus the simplex reliability R is given by exp ( - AT) , 
where A is the failure rate of the nonredundant system 
when it is active. In the ensuing development of the 
probabilistic model for the Hybrid (N,S) systems, 
the assumptIon of statistical independence of failures 
has been'made. 

THE HYBRID(N,S) SYSTEM 

The Hybrid(N,S) system concept (Figur~ 3) con
sists of an NMR core, with an associated bank of S 
spare units such that when one of the N active units 
fails, the spare unit replaces it and restores the NMR 
core to the all-perfect state. The active NMR units 
have a failure rate designated by A, while the standby
spare units, which are said to be in a dormant mode,9 
have a failure rate designated by p, (p, ::; A), with the 
corresponding reliability Rs = exp (- p,T) . 

The physical realization of such a system is shown 
in Figure 4, where the disagreement detector (DD) com
pares the system output .from the restoring organ with 



378 Spring Joint Computer Conference, 1970 

SYSTEM INPUTS 
R 

2 

R . 
N = 2n + 1 : 

R 

t 
1 I R 

s 

SPARES 2 I R 
s 

S I R 
s 

Figure 3-Hybrid (N, S) sytem concept 

the outputs of each. one of the active 2n + 1 units. 
When a disagreement occurs, a signal is transmitted 
to the switching unit (SU), which replaces the unit 
that disagreed by switching it out and switching in one 
of the spares.· If the spare "were to fail in the dormant 
mode and was switched in on demand from the DD 
unit, the disagreement would still exist and the SU 
would again replace it by one of the spares. The Hy
brideN,S) system reduces to a simple NMR system 
when all the spares have been exhausted, and the whole 
system fails upon the exhaustion of all the spares and 
the failure of any n + 1 of the basic 2n + 1 units. In 
the special case where N = 3 the Hybrid(N,S) sys
tem reduces to a Hybrid(3,S) system.lO In the case 
of zero spares the Hybrid(3,S) system then reduces 
to Hybrid(3,0) which is the basic TMR system. 

N IASIC I NMR 
UNITS 

~i-4----4-t SWITCHING 
UNIT 

SYSTEM 
OUTPUT 

RESTORING 
ORGAN 

Figure 4-Hybrid (N, S) system block diagram 

The "Hybrid(N,S) system concept has been con
sidered by other researchers from the architectural 
standpoint. ll ,12 A derivation13 of the reliability equation 
when dormancy of the S spare units is not considered 
(i.e., when all the S + 3 units in the system are con
sidered to have identical failure rates) yields 

R(3, S) = 1 - (1 - R)s+2[1 + (R) • (S + 2)J 

which is simply the probability that at least any two 
of the total S + 3 units survive the mission duration, 
when assumption is made that the majority organ and 
associated detection and switching logic are fail-proof. 

DERIVATION OF R(N,S), THE CHARACTER
ISTIC RELIABILITY EQUATION OF THE 
HYBRID(N,S) SYSTEM 

First an expression for the reliability of Hybrid (N,l) 
system (i.e., S = 1) will now be derived. Let the N 
basic units be designated as aI, a2, ... aN, and the 
spare as 81, as follows: 

HYBRI D(N ,5) 

al 

a2 

51 

· · · aN =2" + 1 

.. - I 

- --
.. - . ~ 

Three cases may be distinguished which yield the 
success of the system for any mission time T. These 
three cases are illustrated by means of the line drawings 
shown in Figure B, Figure C, and Figure D. The nota
tion of these descriptive drawings is explained in Figure 
A. 

-' ~ AN ACTIVE UNIT,.I FAilS AT TIME If 

~~~ {f TIME --.. 

~~------~-----Ir~--------~~~.----~IT 

~T { 11 $II I, $12 l'-._PlAClMENT IV $12 

A DOWANT UNIT $II ~ TAKES PLACE AT 13 
fAILS AT TIME 12 

The nomenclature in Figure A is the following. The 
horizontal line represents the time axis from the start 
of the mission (time = 0) to the end of the mission 



(time = T). The region above the lines is the domain 
of the active units (massively redundant) while the 
region below the line is the domain of the dormant 
units (selectively redundant). Arrows leaving the line 
represent failure of a unit. The direction of the arrow 
leaving the line towards the active or the dormant 
domain indicates failure of an active or dormant unit 
respectively. An arrow going towards the line indicates 
a replacement action where a dormant unit replaces a 
failed active' unit, thus in Figure A t3 would equal tl 
since the failure of an active unit demands a replace
ment from the spare bank. 

Case (i). All units survive mission time T: 

/(01,02, .... ON) (01,02, ... ON)~ 

°1~ ______ ~ __________________ ~IT 
'--(s1) (11)./ 

Figure B shows that the active units (aI, a2, ••• aN) 
which were good at time = 0 are still good at time = T 
and likewise for the dormant unit s1. This event has 
the probability RN . Rs. 

Case (ii). The spare unit is the first unit to fail: 

14 HYBRID (N, 1) ~I" NMR ~I 

/(01,02, ... oN) 

01 
t 

lSI i T 

'-(11) 

At some time t (0 ~ t ~ T) the spare unit sl fails, 
leaving the system in basic NMR, i.e., Hybrid(N,O), for 
the unelapsed time [T - t]. The probability of this 
event is 

where 

T j e-NXt • J.Le-p.t • R(N, 0) [T - t] dt 
o 

R(N, O)[T - t] = L . . (1 - R[T - t])i n (N) 
i=O t 

• RN-i[T - t] 

which is the reliability of the basic NMR system for a 
mission time [T - t]. 
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Case (iii). An active unit fails before the spare: 

~ HYBRID (N, 1) -,- NMR 

Ila',02, ... aN) 

'l., °1 
'-(s1) 

~ ________ ~"""·IT 
At some time t one of the basic N units fails and is 

replaced by the spare sI, thus leaving the system in 
basic NMR for the rest of the time [T - t]. The 
probability of this event is: 

T 

N j e-p.t. ';..e-Xt • e-(N-l)Xt • R(N, 0) [T - t] dt 
o 

Summing the above three cases yields 

R(N, 1) [T] = RN[T]R8[T] + (N';.. + J.L) jT e-(NHp.)t 
o 

• R(N, O)[T - t] • dt (3) 

Similarly it may he shown that for the case of two 
spares 

R(N, 2) [T] = RN[T]R82[T] 

+ (N';.. + 2J.L) jT e-(NH2p.)t • R(N, 1) [T - t] • dt (4) 
o 

and, in general, for S spares 

R(N, S) [T] = RN[T]RsS[T] 

T 

+ (N';.. + SJ.L) j e-(NHSp.)t 
o 

.R(N,S-I)[T-t].dt (5) 

which may be rewritten by letting T = T - t as 

= RN[T]RsS[T] 

. {1 + (N). + Sp,) f.T e(NA+S.). • R(N, S - 1)[TJ· dT) 

(6) 

The recursive integral equation for the case of one 
spare (S = 1) has the solution 

R(N, 1)[TJ = RNR. [1 + (NK + 1) E G) 
i (i) (-1) i-l ( 1 )] 

. ~ l (Kl + 1) RsRl - 1 
(7) 
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and the general solution for (S > 1) is given by 

8-2 (NK + S) 
R(N, S)[T] = RNRs8 1 + E j + 1 

o (~ _ l)i+l + t (~) (NK + S) 
Rs ~=O ~ S 

(i) , (-l)~-l 

i l {( 1 ) 8-2 (Kl + S) oI: --1 -I: 
1-0 eZ; ') RfR' j=O j + 1 

° --1 (
1 )i+l} 

Rs 
(8) 

where K = A/ p,; p, ~ A and 1 ~ K < 00. 

For the special situation of non-failing spares, we 
have K = 00, (i.e., p, = 0) and the solutions (7) and 
(8) reduce to: 

(i) for S = 1 

R(N, 1)[TJ = RN {I + XNT( -I)" (~) 

n (N) i ( i) (-1) i-j (~_ )} +NI: . I:, . R' 1 
i=1 ~ j=1 J J 3 

(7a) 

(ii) for S > 1 

_ N {8-1 (NAT) i (NAT)s( -l)N 
R(N,S)[T] - R I: ., + , 

i=O 2. 8. 

(2n) n (N) i (i) 
° + N8 ~ . ~ . ( -1) i-j 

n ~=1 ~ 3=1 J 

o [~ (~ _ 1) _ 8-1 ~]} 
js Rj E l! js-l (8a) 

The proof that equations (7) and (8) are the solu
tions to the recursive integral equation (6) may be 
verified by inserting them on the righthand side of (6) 
with parameter equal to S - 1. The meanings of all 

symbols in the above equations are summarized in 
Table 1. 

In the derivation of the above equations it was as
sumed that the restoring organ, the switching unit, 
and the disagreement detector (jointly referred to as 
the R-8-D unit) are fail-proof. In order to incorporate 
the reliability of these units, they may be assigned a 
lumped parameter Rv, reflecting their reliability; and 
with the simplifying assumption that the R-S-D unit 
has a series reliability relative to the ideal Hybrid 
(N, S) configuration, the term Rv may be used as a 
product term to directly modify the reliability equa
tions derived here. 

DISCUSSION OF THE MODEL BEHAVIOR 

The application of redundancy in general does not 
necessarily guarantee improvement in reliability. This 
is especially evident from the characteristic reliability 
curves of the simple NMR system as shown in Figure 2. 
It is to be noted that if R (the reliability of the non
redundant unit) is less than 0.5 (i.e., AT > 0.697) then 
the system is worse off with redundancy. Furthermore 
the application of higher orders of redundancy (larger 
value of N) makes the system progressively worse. 
Also one of the characteristics of such a system is that 
the cross-over point where the redundant system reli
ability is equal to the non-redundant system reliability 
does not vary with the order of redundancy N. It sets a 
large lower bound on the reliability of the original 
system amenable to improvement by the application 
of the basic NMR form of redundancy technique. 
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Figure 5-Comparative reliability curves of H (3, S), NMR, 
and simplex systems 
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Figure 6-Reliability comparison of a H (3, S) and NMR 
systems vs normalized time X T 

The effects of hybridization (i.e., the addition of 
standby spares) on the NMR system with the replace
ment form of redundancy as analytically expressed by 
equation (8) are shown graphically in Figure 5 through 
Figure 10. The reliability of the Hybrid(3,S) system 
for the case of N = 3, K = 1 and with several values 
of S (the number of spares) is shown in Figure 5 and 
Figure 6. Also alongside for comparative purposes the 
reliability curves of the NMR system and the non
redundant system are also shown. In Figure 7 and 
Figure 8 are shown the reliability of the Hybrid(N,S) 
system versus the reliability R of the non-redundant 
unit for several values of N. They illustrate the effect 

1.00 
HYBRID(N,1) 

0.80 

i 0.60 
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iii 

C z 6 « 0.«1 ::; 
C=8 ~ 

0.20 

0.-40 0.60 0.80 1.00 

R(SIMPLEX) • EXp( -LAM8DA Ie n 

Figure 7-Reliability R (N, 1) vs R (Simplex) 
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Figure 8-Reliability R (N, 2) vs R (Simplex) 

of the variation of the order of redundancy N in the 
NMR core. In Figure 9 and Figure 10 are shown 
reliability curves for K = 1 and K = 10 respectively 
for various values of the number of spares S. 

The improvement in reliability of the Hybrid(N,S) 
system over the NMR system is readily seen from the 
curves. It is to be noted that the well-known crossover 
point, which in NMR systems occurs at a reliability 
of 0.5 is significantly reduced in the Hybrid(N,S) 
system. With N = 3 and S = 1 the crossover point 
occurs at R = 0.233 for the value of K = 1, and rapidly 
diminishes with higher allocation of the number of 
spares (S > 1). The shift in the crossover point is also 
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• 
lit 
% 

i 0.60 
~ 
~ 

'" 
~ 
::; 0.«) 
iii « ::; 
ILl 

'" 
0.20 

.00 
0.01 0.20 0.«) 0.60 0.10 1.00 

R(SIMPLfX) - EXP(-LAMlDA Ie n 

Figure 9-R (3, S) vs R (Simplex) with K = 1 
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1.00 HYBRID(3,S) 
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Figure lO-R (3. S) vs R (Simplex) with K = 10 

sensitive to variations in the value of K. The effect of 
changes in values of J( on the system reliability and 
the shifts of the crossover point become very slight 
when K exceeds the value of 10. 

The decision as to how to allocate redundancy for a 
given total number of units C = N + S, where N is the 
number of active redundant units in the NMR core 
and S is the number of standby spares, is resolved by 
the curves shown in Figure 7 and Figure 8. Since N is 
always an odd number it follows that if C is odd then 
S is even and vice versa. The possible allocation policies 
are then as tabulated below. 

With one spare, S = 1, as shown in Figure 7 the 
improvement in reliability in going to higher order N 
of active redundancy is restricted to the range 0.58 < 
R < 1. When the number of spares is increased to two, 
S. = 2, with N as the variable, the range of improved 

TABLE II 

ALL POSSIBLE ALLOCATION POLICIES OF C 

N = 3 
N = 5 

N=N 

Co is odd 

S = Co - 3 N = 3 
S = Co - 5 N = 5 

S = Co - N N = N 

Ce is even 

S = Ce - 3 
S = Ce - 5 

S = Ce - N 

N = Co - 2 S = 2 N = Ce - 3 S = 3 

_N_=_C_o_-L_S_=_O ___ ---' .. _N = Ce 
- 1 I S = 1 

reliability is further restricted to 0.65 < R < 1. Also, 
within this shrinking range (as a function of increased 
S), the improvement in reliability due to larger values 
of N also tends to become less significant. This indi
cates that the order of massive redundancy N should 
be kept at a minimum in the NMR core (i.e., N = 3). 
Maximum redundancy should be inserted in the spares 
bank, thus in practical implementation N should equal 
three, with S as variable to suit the desired level of 
mission reliability. 

Hardware utilization and hence cost is another 
major advantage of the Hybrid (N,S) redundant 
system. Efficient hardware utilization over comparable 
NMR systems is due to the fact that for an equal num
ber of total N units the NMR system will tolerate 
failures of only (N - 1) /2 units whereas the Hybrid 
(3,S) system will tolerate as many as N - 2 failures. 
Thus when an NMR system fails it leaves behind n 
good units while in the Hybrid(3,S) system only one 
good unit remains upon system failure. In general the 
Hybrid (N,S) system upon exhaustion of all spares 
and subsequent failure of the system leaves (N - 1)/2 
good operating units which is a minimum when N = 3. 
Thus another argument for keeping the parameter N 
confined to the value three in Hybrid(N,S) system is 
this of efficient hardware utilization. 
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The architecture of a large associative processor 

by GERALD JOHN LIPOVSKI 

University of Florida 
Gainesville, Florida 

INTRODUCTION 

This paper will describe features of architectural 
significance to the segmentability of a processor; it is not 
intended to be a detailed description of a processor for 
Information Storage and Retrieval. We regret that the 
incorporation of some features cannot be defended here 
because of the length of this paper. They are presented 
in a report.16 We first state the types of problems to be 
processed. This will lead to the overall organization of 
the processor. In Information Storage and Retrieval, 
a processor should have the capability to store data 
which is formatted as ordered sets or unordered sets, and 
to retrieve all such sets having a specified subset. An 
unordered set search for a given subset 8 retrieves all sets 
·containing 8. An ordered set search for a given ordered 
subset 8 retrieves all ordered sets containing 8. A string 
search for a given string 8 retrieves all ordered sets 
(strings) having a substring 8. For example, if S = 
(SI, S2, S3) and 81 = (SI, a, S2, S3), 82 = (a, b, SI), S2, S3, C, d), 
83 = (S2, SI, S3) and 84 = (SI, a, b, S2). Then an unordered 
set search for 8 would retrieve 81, 82, 83, an ordered set 
search for 8 would retrieve 81 and 82, and a string 
search for 8 would retrieve 82. 

By storing ordered sets and unordered sets and 
allowing pointers to another set to be stored as elements 
of a set, one can store data formatted as a colored 
relational graph.22 By permitting ordered sets or un
ordered sets to be elements of another ordered set or 
unordered set, one can store data formatted as one of 
several types of trees. Thus, the capability to store 
ordered and unordered sets is sufficient to store most 
useful types of data. The retrieval capability of this 
processor extends beyond set, ordered set, and string 
searches, but this feature will not be discussed. 

A class of processors which are well suited to the 
problems discussed above are those having a linear array 
of associative memory cells (Linear array processors). 
Each cell has a fixed size word of memory, W, and a 
comparator. All cells simultaneously receive a word C 
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and a mask M, which are broadcast in the channel; 
normally, a cell is said to match if 1 = /\ / (C = W) V M 
(Iverson notation). A set is generally stored in a 
collection of contiguous cells (aggregate) with one 
element of the set in each cell. Contiguous cells are 
consecutively numbered in Figure 1. (The numbers are 
for descriptive purposes in this paper, they are not 
addresses.) One or more rails between cells are used to 
combine the results of matches from various cells in the 
aggregate to detect the existence of a given ordered 
subset, or substring, in the ordered set stored in the 
aggregate, or the existence of a given subset in the set 
stored in the aggregate. 

A linear array processor was first used by Lee and 
Paull for string searches.14 Gains and Lee9 found it 
useful for ordered set searches, and Savitt et al.23 found 
it useful for unordered set searches. Sturman28 showed 
it possible to store and broadcast instructions from these 
associative memory cells, and therefore dispense with 
the need for a central processing unit, and Smathers25 

has added several practical improvements to this 
iterative processor model. These approac;hes were con
solidated into an iterative processor designed for set, 
ordered set, and substring searches.16 

For information retrieval theproeessor should be 
large to efficiently handle large data 'Sets, and it should 
have the capability to be loaded and unloaded quickly. 
Since the same cell can be made to store data or 
broadcast an instruction, it is clear that an iterative 
processor based on any of the previously discussed 
linear array processors can be segmented ·into several 
independently acting collections of cells, each executing 
a different program or different parts of the same 
program. We have found that the capability to broad
cast instructions and segment a processor increases the 
"cost" (number of gates) in a basic associative memory 
cell by 18% in a possible realization of a processor which 
was studied. Therefore, if 36% of all programs run on 
the processor can be executed in pairs of segments si
multaneously in the processor, the capability to segment 
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a processor is economically justified. This is expected to 
be the case in large processors. A high degree of parallel 
programming for subprograms of the same program is 
made available, and each segment can be connected to a 
different I/O device for parallel, more efficient, loading 
and unloading of information in a segmentable processor. 

THE TREE CHANNEL PROCESSOR 

A linear array processor (Figure 1) suffers from 
excessive propagation delay and a succeptability to 
faults, especially where a cell output amplifier is 
stuck-on-one. Propagation delay on the rail, where a 
signal may have to propagate through many cells in one 
clock period, is especially slow. Figure 2 shows a better 
connection scheme (tree channel processor). 

The word, C, normally is broadcast to all cells 
"simultaneously" via the channel in the tree branches 
shown, and rails are used to communicate the results of 

to other cells 

Note: Cell numben are for descriptive purposes in this report; they are not addr. 
Cell numbering is determined by relative position of the 
cellon the rail. The root cell always has the largest number. 

Figure 1-A linear array processor Figure 2-A dubtree of a tree channel processor 
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searches in aggregates just as in the previous connection 
scheme. This processor has two rails, each connected as 
the rail in Figure 2. Note that the rail connects consecu
tively numbered cells in Figure 2 just as in Figure 1. 
(Cell i is said to be above cell j, j > i and below cell k, 
k < i.) However, if a signal at point "a" on the rail must 
propagate to and through cells 1, 2, and 3 to point "b" 
and beyond in Figure 2, it will "short cut" directly 
through cell 3. This decreases the delay time. The 
~aximum propagation delay time through gates. and 
through transmission lines in the channel or rails 
determines the clock rate of the processor. For a 
processor having n cells, it grows like a log(n) + 
b(n)lOg72 in a 7-way homogenous tree,* which IS con
veniently realizeable in three dimensions. 

* Iverson Notationll 

The tree structure is economically segmented. In 
Figure 3, by setting a flip-flop in, say, cell 3, the channel 
can be disconnected between cell 3 and cell 7 (delimit 
the channel at cell 3). This forms a subtree, cells 1, 2, 
and 3. In each subtree both rails are effectively recon
nected between pairs of cells to provide a "linear array," 
as in Figure 2 or 7. Within each subtree, in one clock 
time unit, some cell broadcasts its word into the channel 
to all cells in that subtree. Each cell amplifies the 
channel signal and propagates it as soon as possible. All 
cells obey this instruction in the same time unit. Each 
subtree operates independently and simultaneously. 
Because these subtrees define the extent of broadcast of 
instructions, they are called instruction domains. (ID's) 

While ID's normally act independently, they can 
issue instructions to delimit the channel or reconnect it 
(processor management). Input output is provided at 
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various leaves of the tree, as in Figure 3. An ID, for 
example, "A" in Figure 3, gains control of an I/O 
channel channel below cell 8 by merging with ID's "B" 
and "C". It does this by changing the flip-flops that 
delimited the channel in cells 3 and 8. It is clearly 
possible to simultaneously connect ID "F" to the other 
I/O unit and load data into cells in "F" while "A" is 
also being loaded. 

This architecture has two basic drawbacks. The 
placement of I/O channels is fixed; for example, it is 
inconvenient for ID "A" to utilize the I/O channel 
below cell 17 (Figure 3), and impossible, while this I/O 
transaction is taking place, for ID "F" to gain access to 
the I/O channel below cell 8. Further, as we show in a 
later section, for each I/O transaction, programs in all 
ID's are temporarily stopped while some ID's are 
merged in order to connect an I/O channel to the ID 
requesting it. Later, programs in all ID's must again be 
stopped to restore the previous arrangement of ID's. In 
a large processor, the "overhead" to begin and terminate 
each I/O will be high. To circumvent these difficulties, 
a switching network (SW-structure) is used at the root 
of the processor tree. The resulting architecture has 
some properties of a computer network; it will be 
discussed later. 

ESSENTIAL CHARACTERISTICS OF THE CELL 

A description of the cell will be incompletely given for 
two reasons. Firstly, a complete discussion of the 
instruction set for the processor which was studied 
would be too long and would detract from the study of 
the segmentation of a processor. Secondly, the results 
obtained here apply to various iterative processor 
architectures in which instructions are broadcast in a 
channel. 

~.I----='" _0011_ ... 
lit! _ao-. RCff _ColI 

FCff FouIty ColI 8If ... oct 
ICff _ .. ColI 

SCfI .......-CoII MIt _ ........ ,-MIl _T_ TMIf T __ ._ 

Figure 3-A processQl'. with I/O Figure 4-The essential cell 
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TABLE I -Cell, Instruction Domain, and Response Modes 

Instruction domain modes: 

Cell modes Assignment SM 
TM 

RC SC IC 

Independent root 1 1 0 
Dependent root 1 0 0 
R-instruction 0 0 1 
S-instruction 0 1 1 
R-data 0 0 0 
S-data 0 1 0 

Faulty FC = 1 

The essential elements of the cell are shown in 
Figure 4. The flip-flops, FCff, TMff, ICff, RCff, and 
SCff, and the lines MTr and SMr, are used to control 
the processor as we shall now describe. In the following 
discussion of modes and mode changes, for the sake of 
concreteness and clarity, a tentative assignment of 
states, or modes, to these flip-flops and lines will be 
made. 

The tree channel processor possesses instruction do
main modes. These modes are indicated in each cell by 
SMt and TMff (Figure 4 and Table I). In a given ID, all 
cells are in the same instruction domain mode. The run 
mode enables the normal execution of instructions for in
formation retrieval. The transfer enable mode provides for 
efficient loading and unloading of words in the word 
register of cells by means of the channel. The supervisor 
mode enables channel delimiting cells to be set up or 
changed. The operation of these three modes will be 
explained in the next three sections. 

All cells are essentially identical in construction and 
capability in this iterative processor. Each cell, however, 
has a cell mode fixed by RCff, SCff, ICff, (Figure 4 and 
Table I) to assign to it a specific modus operandi. For a 
given instruction domain mode and a given cell mode, 
a cell has a response mode (Table 1). The data mode, or 
data response mode, permits a cell to store data and 
interpret instructions that search or write in data cells. 
The instruction mode, or instruction response mode, 
permits a cell to issue instructions. In the passive mode a 
cell will not issue instructions, it cannot be written in, 
and none of its control flip-flops can be changed directly 
by instructions in the channel. Rails to the cell im
mediately above it are connected to the cell immediately 
below it, and the cell itself does not broadcast a "one" 
signal on either rail. Cells detected to be faulty can have 
FCff set; they then become permanently passive. Both 
the B-delimiting (bidirectorial delimiting) and R-de-

Supervisor Transfer Enable Run 

1 0 0 
0 1 0 

Data B-delimit B-delimit 
Data R-delimit R-delimit 
Passive Passive Instruction 
Instruction Passive Passive 
Passive Transfer Data 
Data Passive Passive 

Passive Passive Passive 

limiting (rootward delimiting) modes are similar to the 
passive mode except that they cause a cell to delimit the 
channel. A B-delimiting cell completely separates the 
channels of two ID's, while an R-delimiting cell permits 
leaf-ward broadcasting through it but delimits rootward 
broadcasting through it. In either case, the rail is 
reconnected to connect consecutively numbered cells in 
each instruction domains set up as in Figure 2. For 
example, in Figure 3, if cell 3 is B-delimiting, the 
instruction in the channel of ID "A" must be broadcast 
from some cell of ID "A." On the other hand, if cell 3 is 
R-delimiting, the instruction in the channel of ID "A" 
is the bit-wise OR of the instruction broadcast by a cell 
in ID "B" and the instruction broadcasting a cell in 
ID "A." This type o'f connection is particularly useful 
in diagnoising cells. 

OPERATION IN THE RUN MODE 

In the run mode, R-data cells are in the data mode and 
R-instruction cells are in the instruction mode. The 
generation of instructions in a segment able processor 
poses some problems. It is possible, of course, to merge 
two ID's, both broadcasting their own sequences of 
instructions, into one ID, in which only one sequence of 
instructions is broadcast. The machinery for selecting a 
cell in an ID to broadcast must be able to automatically 
resolve which sequence broadcasts and when. The 
Z-propagating rail26 does not satisfy this requirement. 

An instruction is any command that a programmer 
can effect by causing some cell to broadcast its stored 
word. In each ID, at each clock pulse, one instruction is 
read into the channel and is broadcast to all cells in the 
ID. The mechanism for selecting this broadcasting cell 
is the broadcast queue flip-flop, Bff, and the broadcast 
priority rail, BPr, in a conventional priority-determining 



circuit. The set of data or instruction cells with B = 1 
constitute the broadcast queue. By means of BPr, which 
broadcasts a "one" signal from cell i, if B = 1 in cell i, 
to BPt'in all cells j, j > i, a B-prior cell will be selected; 
it will have B = 1, BP = O. This cell will broadcast its 
word in the channel and reset Bff. Thus, at the next 
clock pulse, another cell becomes B-prior and broadcasts 
in the channel. 

For example, if B = 1 in cells 2, 3, 4, and 6 in Figure 5, 
cell 2 would set BP = 1 in cells 3-7; cell 2 only would 
broadcast. 'Vhen cell 2 resets Bff, cell 3 broadcasts, then 
cell 4, and cell 6 in turn. 

Cells in the data response mode are assumed to obey 
at least the following instructions. A Match instruction 
resets Mff in data cells, then sets Mff if the comparator 
detects a match between the contents of the channel and 
the word stored in the cell. The match result rail has a 
switch controlled by some flip-flop in the cell (not 
shown) ; by means of this rail, the value in Mff in a cell 
is broadcast so that string searches, at least, can be 
carried out. We also require an instruction or program 
for selecting the one cell i with M = 1 and smallest 
integer i for which M = 1 (priority instruction). A write 
instruction is assumed, to change the word in a cell. 
Several processors have these basic instructions. 14 ,9,22,16 

We have included a flip-flop, Sff, in our cell for the 
transfer enable mode; we require some instruction to 
load Sff from Mff. Other instructions will be explicitly 
mentioned in the following sections. 

Instruction mode cells can be made to broadcast their 
word if Bff is set. This setting is accomplished with the 
help of the match result rail (Figure 4). Broadcasting 
the JUMP instruction clears Bff in all instruction cells 
and loads the value, U, on the match result rail into Bff. 
Suppose, in Figure 5, that the switch in the match result 

• 

Figure 5-An ID with instructions 

Architecture of Large Associative Processor 389 

...... 2 ........ ·2 

...... 3 • 

....... ·1 

...... 4. ....... 12 

Figure 6-A tree 

rail is open only in cell 7. If the most recent match 
instruction set Mff in cellI, a data cell, then U = 1 in 
cells 2-7; a JUMP instruction sets B = 1 in cells 2, 3, 4, 
and 6 and clears Bff in any other instruction cell. Cell 2 
broadcasts next. If the most recent match instruction 
set Mff in cell 5, then U = 1 in cells 6 and 7; a JUMP 
sets B = 1 in cell 6 only and clears Bff in cells 2-4 and 
any other instruction cells. This simple mechanism can 
be used in programming a variety of conditional jumps 
as well as unconditional jumps. 

It will be shown that all cells are initially in the 
R-data mode. In this mode, an addressing scheme for 
locating cells to become channel delimiting is necessary 
to segment the .. processor in a predictable way. In 
Figure 3, for example, one must be able to locate cell 9 
to set up instruction domain B. An address for each cell 
is neither practical nor desirable. Instead, only leaf cells, 
cells in level 4 in Figure 6 are marked. 

An instruction, LOCATE LEAF, sets M = 1 in all 
these leaf cells and resets Mff in all other cells. Consider 
a 2-way homogenous tree in Figure 6. A cell n is in level 
f, - k if cell n - k is a leaf cell and all cells m, n - k < 
m ~ n, are not leaf cells. For example, cell 7 is in level 
f, - 2 since cells 7-0 = 7, 7-1 = 6 are not leaf cells, and 
cell 7-2 = 5 is a leaf cell. It is clearly possible to replace 
the match instruction with a LOCATE LEAF instruc
tion in a string search in order to set Mff in all cells of 
level f, - k. The exact mechanism for a specific instruc
tion set depends on the way string searches are 
programmed with that instruction set. The priority 
instruction can then be used to "count down" cells in 
level f, - k to choose a specific cell. 

Repeated use of this method can be used to locate any 
cell in the tree in a short time. For example, to locate 
cell 9 in Figure 6, we use the above method to locate 
cell 14, then in the subtree below cell 14, we use this 
method· to locate cell 10, and in its subtree, we locate 
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TABLE II-Mode Changing Instructions 

INSTRUCTION 

SET IC 
RESET IC 
SET SC 
RESET SC 
SET RC 

RETSET RC 

ACTION 

In data cells where U = 1, set ICff 
In instruction cells where U = 1, reset ICff 
In data cells where M = 1, set SCff 
In data cells where M = 1, reset SCff 
In the supervisor mode, in data cells where 

M = 1, setRCff 
In the supervisor mode, in data cells where 

M = 1, reset RCff 

cell 9. This method reduces the amount of "counting" 
using the priority instruction. The maximum number of 
program steps to locate any cell grows logarithmically 
with the number of cells in the processor; Once the cell 
has been located, a unique word can be stored in its 
word register so that it can later be found with a simple 
match instruction. 

Since all cells are initially in the R-data mode, some 
instructions are required to change cell modes. To 
change cells found by the technique just described to 
channel delimiting cells, they are first changed into 
S-data cells in the run mode, and then to root cells in 
the supervisor mode (SM = 1). One must be able to 
convert R-data cells to R-instruction cells, and vice 
versa to compile and then execute instructions. These 
mode changes are carried out with instructions given in 
Table II. Note that ICff is reset or set from the signal on 
the match result rail, similar to the JUMP instruction. 
Lastly, instructions are required to change instruction 
domain modes. These, the TRANSFER CALL and 
SUPERVISOR C~LL, will be examined in turn. 

OPERATION IN THE TRANSFER MODE 

A transjeT is the operation of broadcasting a word 
either from one R-data cell or from an input channel and 
writing that word in an R-data cell or sending it to an 
output channel. An efficient transfer mechanism is 
required to load large data bases into or out of a large 
processor. This is proyided by the transfer enable mode, 
which is described in simplified terms below. 

This mode is entered when the instruction, TRANS
FER CALL, is broadcast. In the instruction doma1n, 
R-instruction cells. become passive, and R-data cells 
become transfer cells. The contents of Sff which were 
obtained earlier from Mff are loaded into Bff in all 
R-data cells at this time. Whatever sequence of 
instructions was being broadcast from R-instruction 
cells is temporarily halted since these cells become 
passive, and the contents of the channel are not 
interpreted as instructions even though they would be 
legitimate instructions in the run mode. 

The combination, Bff and BPr, is used to select words 
to broadcast, as in the run mode, and Mff and the match 
result rail, with all switches closed (Figure 4) are used 
to select a cell to be written in, in a similar way. If any 
transfer cell has B = 1 the transfer cell with B = 1, 
BP = 0 broadcasts its word into the channel and resets 
Bff. If any transfer cell has M = 1, the transfer cell with 
M= 1 and U = 0 writes this word in the channel into 
its register and resets Mff. 

If an I/O channel is connected to the instruction 
domain in the transfer enable mode, words broadcast 
from cells will be sent to the I/O channel. To output 
some words, we set S = 1 in cells containing these words, 
we reset Mff in all R-data cells so these words are not 
written in other cells, and we merge ID's to include the 
I/O channel. Some transfer cells above these cells 
contain channel comments in their word register; we set 
S = 1 in these cells too. Then in the transfer mode, the 
channel commands are first broadcast to select an output 
device and format, and the words to be output are 
broadcast. To input some words, we use the transfer 
mode twice. The first time, we output channel commands 
to select an input device and format. Then, we reset Sff 
in all R-data cells and set M = 1 in cells to be written 
in. When we re-enter the transfer mode, words are read 
from the input device until an end-of-file is encountered. 
While the I/O channel broadcasts words into the 
channel, it broadcasts a "one" signal in BPl to the root 
cell of the ID (See Figure 7). Mff and the match result 
rail selects one cell each time to write the word broadcast 
from the input channel. 

The transfer enable mode is terminated when neither 
the I/O channel nor any cell is broadcasting. In this 
condition, BP = 0 in the root cell of the ID, and that 
cell broadcast M T = 1 to all cells in the ID. (See 
Figure 7) These cells reset TMff. The ID returns to the 

1 CoIIo_ ... _·...,,_ - .......... --

Figure 7-Controllines in the transfer enable mode 



run mode, and R-instruction cells, no longer passive, 
continue broadcasting the instruction sequence exactly 
where they left off when the transfer enable mode was 
entered. 

OPERATION IN THE SUPERVISOR MODE 

The supervisor mode is provided for processor 
management. In it, dependent and independent root 
cells are set up or changed, thereby, ID's are changed. 
(See Figure 8) These root cells and S-data cells are in the 
data mode, and can be searched, written in, or changed. 
S-instruction cells, which are in the instruction mode, 
are created only when the supervisor mode is en
tered. 

If some ID in the processor wishes to enter the 
supervisor mode to change the segmentation structure, 
it broadcasts the instruction, SUPERVISOR CALL. 
This sets SCff in all R-instruction cells in that ID. 
These become S-instruction cells. Whenever any 
S-instruction cell exists, it continuously broadcasts a 
"one" signal on the supervisor mode line, SMt, to all 
cells in the processor (Figure 7). This signal causes all 
cells, and thus all ID's, to simultaneously enter the 
supervisor mode, and remain in it as long as 8M = 1 
(Figure 8). All R-data cells, and all R-instruction cells 
in ID's which did not broadcast SUPERVISOR CALL, 
become passive. Therefore, if some ID were interrupted 
while executing some program because some other ID 
broadcast a SUPERVISOR CALL, all information 
pertinent to that program is "frozen" in passive cells. 
If that ID returns to the run mode, it will co~tinue 
executing the program where it left off. This is also true' 
if the ID were in the transfer enable mode when the 

7 --____ -.,- ..... __ -
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Figure 8-Controllines in the supervisor mode 
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supervisor mode was entered. A programmer can 
therefore ignore the possible interruption of his program 
by an entry into the supervisor mode unless the ID in 
which he is programming is changed during the 
interruption. 

In the supervisor mode, the instruction sequence is 
provided by S-instruction cells. Data cells are dependent 
and independent root cells, and S-data cells, all of which 
could not be changed while an ID was in the run mode. 
The entire processor appears to be a single instruction 
domain, although almost all cells are passive. All the 
search and write instructions that were available in the 
run mode are available in this mode to identify root 
cells or write in them, and the instructions, SET RC and 
RESET RC (Table II) can be used to set them up or 
change them. 

It is possible for two ID's in the run mode to 
simultaneously broadcast SUPERVISOR CALL. The 
instruction sequence for the supervisor mode will be a 
mixture from the S-instruction cells in both ID's. 
Further, two ID's may wish to change the processor 
segmentation structure in contradictory ways at 
approximately the same time. To accommodate these 
possibilities, some software conventions are necessary. 
In one of these, a separate ID is designated the executive. 
I t alone will keep an updated account of the processor 
structure. In the supervisor mode, it alone will change 
root cells. Other ID's that wish to change the structure 
will set flags in some R-data cell and change this cell to 
an S-data cell while the ID is still in the run mode. The 
executive will then periodically inspect these S-data 
cells when in the supervisor mode to determine what 
requests are impending. 

When no more instructions are broadcast in the 
supervisor mode, BP = 0 in the root cell of the processor. 
(See Figure 8) This cell broadcasts MT = 1 to all cells. 
S-instruction cells reset SCff, when M T = 8M = 1, 
thereby becoming R-instruction cells. Since S-instruction 
cells no longer exist, no "one" signal is broadcast on 
SMt to all cells. All ID's then return to the run mode or 
transfer mode that they were in just before they 
entered the supervisor mode. 

We remark that some mechanism must exist to start 
a sequence of instructions broadcasting in a new ID 
when it is set up. One way is to let the word 00 ... 0 in 
the channel be the code word for JUMP. Before the new 
·ID is segmented away from the "parent" ID, the latter 
can broadcast a MATCH instruction to set U = 1 in 
selected R-instruction cells in what will be the new ID. 
After segmentation has been complete,. the first instruc
tion in the run mode in the channel will be JUMP 
because no cell will broadcast. This will cause a sequence 
of instructions to be broadcast from the selected cells in 
the new ID. 
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SOME REMARKS ON THE TREE STRUCTURE 

The architecture of the tree array processor has two 
unrelated properties that are, nevertheless, quite 
important. Some hints of these properties appeared 
earlier. We now discuss the capability of a tree array 
processor to test for and operate in the presence of 
faulty cells, and the propagation delay in a physical 
realization of a tree array processor. 

Before initializing a processor or instruction domain, 
it is expedient to test it for faulty cells. The test will 
change the word stored in the word register. While the 
exact nature of these tests depends upon the hardware 
realization of the cell finally selected, we can sketch 
some points of architectural significance here. 

First, by means of an extra line, we force all cells to 
become dependent root cells (FC = SC = IC = 0, 
RC = 1). In this situation, an output amplifier stuck
on-one in a cell will not prevent correct testing of most 
other cells because the "one" signal it generates can 
travel only leaf-wards to cells in its subtree. For similar 
reasons, for a tree of t levels, after f, cycles no cell will be 
broadcasting. All cells are then simultaneously diag
nosed. Under the control of additional lines, the channel, 
word register and comparator are checked out by writing 
the same words in all cells and by matching for these 
words and for variations of them that would be caused 
by errors. Then all the rails are checked out. Cells found 
to be faulty have FC set in them. (Weare assuming an 
idealized fault detection mechanism where the fault 
detection circuitry is itself free of faults.) If a channel 
amplifier is stuck-on-one, all cells leafward from it will 
be diagnosed faulty. If, for a given cell, all cells 
connected next to it in the leafward direction are faulty, 
the whole subtree below a cell is cut off by making the 
cell permanently B-delimiting and the cell itself sets FC. 
For example, in Figure 2, if cells 1 and 2 are faulty, then 
-cell 3 is made permanently B-delimiting, and cells 1, 2, 
and 3 become inaccessible. The processor can run in the 
presence of the faulty cells. 

The physical arrangement of cells in a processor will 
now be considered. The primary goal is to estimate the 
propagation delay time, and thus determine the clock 
rate to evaluate-the cost of programming. A secondary 
goal is to find a spacial realization of the tree structure. 
In this section, we shall consider a good realization of a 
7 -way homogeneous tree. (A similar realization exists for 
25-way or 50-way homogeneous trees. However, a tree 
fanout of seven permits electrical fanouts of rail 
amplifiers that are reasonable for integrated circuits.) 

The following heuristic procedure generates a tree 
structure by beginning at the tree leaf cells. Put cells in 
the center and at seven of the corners of a cube. Mark 
the remaining corner "A. " Link each corner to the 
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Figure 9-Connection of leaf modules 

center cell. This is a leaf module. In general, connect 
seven identical modules so that their "A" corners 
coincide, put a cell where these coincide, put a link from 
that cell to the free corner, corner "B," of the larger 
module just created (Figure 9). This procedure can be 
repeated by connecting seven identical modules of the 
kind just made so that their "B" corners coincide, and 
so on. Any 7 -way homogeneous tree can be realized by 
repeating the above process. 

The clock rate for such a· structure is determined by 
the propagation time in any line or rail through, at 
most, 2(L - 1) cells, each with bulk delay {3 due to gate 
delays in amplifiers, and by the transmission time of the 
pulse on links in the structure. The longest transmission 
path in this structure is on a straight line through 
opposite corners of the largest module (Figure 9). To 
find this length, suppose that a cube with edge E will 
house a processor cell and provide enough room for a 
mechanical mole to test or replace the cell. The leaf 
module can be housed in a cube with edge 2E. (To do 
this, the center cell of the leaf module is moved into the 
available space towards the "A" corner of it.) A tree of 
L levels can be put into a cube with edge 2 (L-l)E. 
(Again, the center cell can be moved into unoccupied 
space in each module.) The longest transmission path is 
eV'3/22L. The clock period is therefore approximately 
. ./3"/2 2L + 2{3(L - 1) where a is the transmission 

delay of a pulse on a transmission line of length E. 



Consider an estimated propagation time of a typical 
processor. A 7 -way homogeneous tree with 8 levels has 
960,800 cells. If E is three inches, if pulses propagate at 
Ins./foot, {3 is 20 nanoseconds, and lOOns is required to 
decode the. instruction in each cell, then the clock 
period of a processor with nearly one million cells is 
expected to be about 436 nsec. 

THE SW-STRUCTURE 

An earlier section presented a mechanism for dis
connecting processors into separately acting instruction 
domains. This will now be complemented with a, 

mechanism for connecting processors together to form a 
larger instruction domain. This mechanism for inter
connecting processors can be used instead of the 
mechanism for segmenting the processor. Both mecha
nisms provide essentially the same capability-namely 
that of fitting the processor size to the size required by 
the program being run-but they have different 
properties and different costs. The former mechanism is 
suitable for running interdependent programs concur
rently in instruction domains; the ability to merge or 
divide instruction domains in this mechanism appears 
to offer considerable programming flexibility. However, 
as the processor size increases, the number of instruction 
domains that request I/O increases, and the resulting 
"bottleneck" slows down the processor. A mechanism 
will be presented that circumvents this difficulty. 

A connection network is desired to connect processors 
together. It must provide for correct interconnection of 
all rails and lines used in the processor. The maximum 
propagation delay time must be' kept low, yet the 
interconnections possible in this network must be many. 
I t would be further desirable that the network could be 
reduced to a tree structure, so that it could be physically 
realized in a structure with low transmission delay 
times. 

The SW -structure is a connection network that is 
derived from a tree. In Figure 10, all of the tree above 
level 2 is reproduced and attached to the original tree at 
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level 2. In that figure, a tree structure can be restored 
by disconnecting links between levels one and two. In 
fact two tree structures can be obtained. For' example, 
by cutting links between nodes (3, 2) and (2, 2) and 
again between nodes (3,4) and (2, 4), one tree has nodes 
(3, 4), (2, 2), (1, 1) and (1, 2), and the other tree has 
nodes (3, 2), (2, 4), (1, 3) and (1, 4). In Figure 10c, all 
of the tree above level 3 has been reproduced again. 
Here, four tree structures can be obtained. In fact, for 
each partitioning of the nodes (1, 1), (1, 2), (1, 3) and 
(1, 4), a collection of disjoint trees can be found such 
that each tree has the nodes of each block of the 
partition. In essence, then, and SW-structure is a 
connection network that partitions a set of nodes, here 
at level 3, into blocks, and provides a tree structure for 
each block. 

This process of reproducing can be done at each level 
of a tree having.£ levels. It can be generalized to a tree 
whose fanout is I, just as easily as to the binary tree of 
Figure 10. Further, more than one reproduction, say 
s - 1 reproductions, can be made at each level. The 
resulting structure is a (uniform) SW-structure of -llevels, 
with fanout I and spread s. This structure will have Il-l 

base nodes (at the bottom of the structure) and Sl-l apex 
nodes (at the top of the structure). By means of such an 
SW-structure, the set of Il-l base nodes can be parti
tioned into Sl-l or fewer partition blocks. (We note that 
for s = .£ = 2, the structure is similar to a permutation 
switching network.12) 

The nodes of the SW -structure are cells. Base cells 
occupy base nodes, apex cells occupy apex nodes, and 
connection cells occupy the remaining nodes of the 
structure (Figure 10). The links are communication 
channels; each base or connection cell essentially 
connects at most one link towards the apex from it. 
Base and connection cells each have a switching state SS. 
SS = 0 if no link apex-ward link is connected, and 
SS = i if the ith apex-ward link i = 1, 2, ... S, is 
connected. There connected links form one or more 
trees in the SW -structure. 

The SW -structure is used to connect together proc
essors and I/O channels, as in Figure 11, to form a 
processor system. Each base cell of the SW -structure 
connects to a root cell of a processor, or to a single cell 
which controls access to an I/O channel. A set of 
processors and I/O channels connected together in the' 
SW -structure is a processor block. The entire processor 
block has the interconnection pattern of a tree. (See 
heavy line in Figure 11) In this tree, SW-structure cells 
appear to be permanently passive ~ells in their functional 
relation to cells in the processor; they have the channel 
and rail amplifiers that such a passive cell would have. 
In particular, the perimeter rails go around this tree, 
part of which is within the SW -structure, to provide a 
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linear ordering of cells in processors. Connection cells 
may have some hardware to detect faulty operation in 
them, since the SW -structure can operate in the presence 
of faulty cells, but this is not investigated here. 

The SW-structure is manipulated by a control unit 
(Figure 11). Commands are sent to this unit as though 
it were an output channel. Exactly one instruction 
domain then, will be connected to this device, and it will 
send commands to it by sending out a string of data 
words while it is in the transfer enable mode as though 
the control unit were an I/O device. Meanwhile, other 
processor blocks operate without interruption. 

We consider the connection and then the disconnec
tion of a tree structure in the following discussion. 
Commands are sent to the control unit to connect a 
tree structure in the SW-structure. The three steps in 
connecting a tree are: (1) selecting some base nodes to 
which a suitable collection of processors and I/O units 
are attached, (2) choosing an apex node that can 
become a root cell of the tree structure which has all the 
selected base nodes in it, and finally, (3) arranging the 
switching state, SS, in base and connection cells to 
connect the tree structure. 

The first step can be done in many ways. For example, 
each base node might have an address, and the control 
unit might use a small channel, to base cells only, in 
order to select base cells one at a time by addressing 
them. The second step must prevent an unwanted 
disconnection of trees which are being used to connect 
present processor blocks when the tree for this processor 
block is connected in step 3. For the second step, we 
provide a line in each link of the SW -structure. One at a 
time, each selected base cell broadcasts a "one" signal 
apex-ward on these lines. An SW-structure cell delimits 
this broadcast if it is already being used in a tree 
connecting together some processor block (SS ~ 0), and 

is therefore not available. All apex cells receiving "one" 
on this line have a chain of unused SW-structure cells to 
the selected base cell. When this procedure has been 
repeated for each base cell, of those apex cells that are 
connectable to each selected base cell, a hardware 
priority circuit among vertex cells selects one such cell 
to be the root of the tree. 

For the third step of the problem, we use a second 
line in each link of the SW-structure. The selected apex 
cell broadcasts base-ward on this line, while on the line 
used in step 2, all selected root cells simultaneously 
broadcast apex-ward. Any SW -structure cell receiving a 
"one" from both an apex and base cell will set its 
switching state, SS, to connect that branch apex-ward 
from it on which the "one" signal from an apex cell 
arrived. If a tree structure exists to connect the 
processor block, this technique will connect it up. 

Commands are sent to the control unit to disconnect 
a tree structure in a processor block which has completed 
its program. A third line is provided in each link of the 
SW -structure. By this line, any base cell can broadcast 
to exactly those cells used to connect the tree structure. 
To disconnect the tree, a command selects some base 
cell in the tree, and a second command causes this base 
cell to broadcast on this third line. All cells receiving a 
"one" signal on this line sets SS, the switch state, to 0, 
thereby disconnecting the tree. These cells now become 
available for connecting new tree structures. 

We remark that a processor system has some useful 
properties of a computer network. Suppose that 
informati~n for each area in the 2-D grid of Figure 12 
were processed in a separate processor. By means of an 
SW -structure, the processor for area i, j could be 
connected to the processor for area i + 1, j then i-I, 
j then i, .f + 1 then i, J' - 1. Meanwhile, the processor 
for area i + 1, j could be connected to i, j then i + 2, 
i then i + 1, j + 1, then i + 1, j - 1. Two dimensional 
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differential equations, or picture processing, or other 
iterative parallel programs could be executed in parallel 
in this system. Further, higher degree grids can also be 
handled. This system appears to offer many advantages 
of a Holland space.10 

CONCLUSIONS 

A processor for Information Storage and Retrieval 
apparently must be large to be practical. We have 
presented two solutions to several problems associated 
with large processors. One solution is the segmentation 
of a processor, and the other is a system of processors. 
The architectures have low propagation delay, and 
provides for fast loading and unloading data in parallel 
from different I/O channels, and permit highly parallel 
programming. The diagnosis of cells was only lightly 
considered here. There are many indications that this 
diagnosis will be relatively simple. It is apparent that 
both architectures are capable of operating in the 
presence of some cells found to be faulty. Further, a 
graceful degradation of performance occurs when most 
cells are faulty. The results presented here apply to a 
number of associative memory processors, and may also 
apply to future iterative processors that broadcast 
instructions in a channel, even though they do not use 
the associative search operation as associative processors 
do. 
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Application of invariant imbedding to the solution of 
partial diffe~~ntial equations by the continuous
space discrete-time method 

by PAUL NELSON, JR. 

Oak Ridge National Laboratory* 
Oak Ridge, Tennessee 

INTRODUCTION 

The continuous-space discrete-time (CSDT) method l 

of solving initial-boundary value problems for partial 
differential equations leads to two-point boundary
value problems for a system of ordinary differential 
equations. In order to solve such problems on an analog 
computer it is necessary to find an algorithm which 
expresses the desired solution in terms of initial-value 
problems. Various methods for accomplishing this are 
discussed in a recent survey article by Vichnevetsky.2 

The invariant imbedding technique, which originally 
arose in connection with radiative transport problems, 
is essentially a method for converting a two-point 
boundary-value problem for a linear system of ordinary 
differential equations to an equivalent initial-value 
problem for an associated nonlinear system of ordinary 
differential equations. The purpose of this paper is to 
suggest the possibility of using invariant imbedding 
within the CSDT method, and to preliminarily explore 
some of the ramifications of this suggestion. Extensive 
references to work in invariant imbedding are given 
in the book by Wing,3 and the articles by Bellman, 
Kalaba, and Wing, 4 by Bailey and Wing,5 and by 
Nelson and Scott.6 

For clarity and ease of exposition we shall attempt to 
illustrate the application of invariant imbedding to the 
CSDT method within the context of a simple example. 
The example selected is the standard one of time
dependent heat diffusion in one spatial dimension, 
but with rather special boundary conditions. The last 
section of the paper contains a discussion of possible 
extensions, as well as limitations, with pertinent 
references. 

* Operated by Union Carbide Corporation for the U. S. Atomic 
Energy Commission 
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THE CSDT METHOD 

We follow Vichnevetsky7,8 in describing the applica
tion of the CSDT method to the time-dependent heat 
diffusion equation in one spatial dimension, x. The 
specific heat and conductivity are assumed independent 
of x, time, t, and temperature, u. The unit of time is 
selected so that the ratio of conductivity to specific 
heat is unity, and the unit of length is selected to have 
x varying between ° and 1. The corresponding diffusion 
equation is 

au a2u 
- = - + S(x t) at ax2 " 

(1) 

where the known function S determines the internal 
heat source. The temperature, u(x, t), is required to 
satisfy the initial condition 

u(x, 0) = Uo(x), 

and the boundary conditions 

u(O, t) == 0, 

u(l, t) = U(t), 

where Uo and U are given. 

(2) 

(3) 

(4) 

We introduce a positive discrete time step, llt, and 
write Ui(X) for u(x, illt) , Si(X) for S (x, illt). The 
fundamental idea of the CSDT method is to replace 
(1) by the system of equations 

UiH - Ui = (J [d2
Ui+l + S. (x) ] 

At dx2 tH 

i = 0, 1, .•. , (5) 

where (J is some constant. Equation (5) can be re-
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written in the form 

i=O,l,···, (6) 

where 

S,(x) = U;~) + S'+l(X) + (1 ~ 8) [~~' + S,(x) ] . 

(7) 

Since Uo is known from (2), we can find So from (7), 
thence Ul from (6) and the boundary conditions (3) 
and (4), which then determines SI from (7), etc. More 
practical methods of determining the Si are discussed 
by Vichnevetsky.7,8 

THE IMBEDDING FUNCTIONS 

Inasmuch as the time index i plays no essential role 
for a while, we shall omit it until further notice. Thus 
we consider the second-order ordinary differential 
equation 

dx2 ()dt 
-Sex), (S) 

S (x) given, and u to satisfy the boundary conditions 

u(O) = 0, 

u(l) = a, 

(9) 

(10) 

where the constant a is given. This problem can, of 
course, be solved explicitly, up to an integral of S(x), 
but our purpose here is to illustrate a technique rather 
than to solve a problem. 

A well-known result, quite fundamental to our de
velopment, is that, for () > 0 and y rf= 0, the only 
solution of 

satisfying 

d2u U 
---=0 
dx2 ()dt ' 

u(O) = u'(y) = 0, 

(11) 

(12) 

where the trivial solution u (x) == O. In order to use 
this result we henceforth assume () > O. 

Let 'U be the class of nontrivial (i.e., not identically 
zero) functions satisfying (11) and (9). If u, u E 'U, 

then it follows from the fundamental result stated 
above that u (x) = cu (x) for some constant c. Conse-

quently the functions 

R ( x) = u ( x) / u' ( x) , 

T ( x) = u' (0) / u' ( x) , 

u E 'U, 

u E 'U, 

(13) 

(14) 

are well defined; i.e., the values on the right-hand side 
are independent of the particular element u E 'U. 

In order to solve the problem (S)-(10), we need to 
introduce two additional auxiliary functions. Our intro
duction of these functions is motivated by the work 
of Wing,9 who first rigorously applied invariant im
bedding to inhomogeneous problems. We henceforth 
regard S (x) as fixed, and defined for 0 ::; x ::; 1. Con
sider that solution of (S) which satisfies the boundary 
conditions (12), where y E [0, 1J is arbitrary, and 
denote this function by 'o,(x, y) to indicate its depend
ence on the parameter y. Existence and uniqueness of 
'o,(x, y), for arbitrary fixed y, is a standard result in 
the theory of ordinary differential equations.10 

We denote the partial derivatives of functions of 
two variables by subscripts, the subscripts 1 and 2 in
dicating partial differentiation with respect to the 
first and second arguments, respectively. Let Er(x) 
and E z (x) be defined for 0 ::; x ::; 1 by 

Er(x) = l1(x, x), 

Ez(x) = '0,1(0, x). 

(15) 

(16) 

The functions R, T, Er , and E z can be shown to 
satisfy the differential equations 

R'(x) = 1 _ R2(X) 
()dt ' 

T' (x) 
R(x) T(x) 

()~t 

E/(x) = R(x) [- E;~) + S(x) ] , 

[ 
Er(x) ] Ez'(x) = T(x) - -- + Sex) , 

()dt 

and to have the initial values 

T(O) = 1, 

(17a) 

(17b) 

(17c) 

(17d) 

(lSa) 

R(O) = Er(O) = Ez(O) = O. (1Sb) 

The initial values (IS) are easy consequences of the 
above definitions, -as are the differential equations 
(17a-b) for Rand T. The derivation of (17c-d) is 
somewhat lengthy and difficult to motivate, although 
basically quite simple. It is outlined in the appendix, 
in order to avoid having at this point a lengthy digres
sion from our main purpose, namely solution of (S)
(10) . 



SOLUTION OF EQUATIONS (8)-(10) 

We now suppose the functions R, T, Er , and E z are 
known, and attempt to construct the solution of the 
original problem (8)-(10) from these functions. Let 
u(x) be the solution of (8)-(10), suppose a(x, y) is 
as above, with y anywhere in [0, IJ, and define cp(x, y) 
by 

cp(~y) = u(x) - a(~y). (19) 

Then cP, considered as a function of x· for fixed y, is 
either identically zero, or is in the class 91, defined 
above. In either event the identities 

cp(x, x) = CPl(X, x)R(x), (20) 
and 

CPl(O, x) = CPl(X, x)T(x) (21) 

follow from the definitions (13) and (14) and the 
fundamental result stated at the beginning of the pre
ceding section. 

From (19), (20), (19) (again), the definition of a, 
and (15), we obtain the identity 

u(x) = cp(x, x) + a(x, x) 

= CPl(X, x)R(x) + a(x, x) 

= [u'(x) - aleX, x) JR(x) + a(x, x) 

= u'(x)R(x) + Er(x). 

Similarly the identity 

(22) 

u' (0) = u' (x) T (x) + E z (x) (23) 

is easily established. 
The identities (22) and (23) are the key results 

which enable us to solve the original problem. First 
note that taking x = 1 in (22) and taking account of 
(10) enables us to express u' (1) in terms of known 
quantities, to wit 

u' (1) = [a - Er(l) JIR(1). (24) 

With this result in hand, one can solve the original 
problem as an initial value problem, the initial data 
being given at x = 1 by (10) and (24). This is the 
algorithm suggested by Wing,3 and used extensively 
by Rybicki and Usher.ll If the original problem (8) 
were computationally stable in the backward direction, 
then this would probably be the best procedure; how
ever one of the solutions of the homogeneous equation 
associated with (8) is exp (-xlYot:.t), which shows 
that (8) is very unstable in the backward direction 
for the small values of t:.t which are needed to keep the 
time discretization error reasonably small. There is a 
second way to find u(x), due essentially to Scott12 (see 

Application of Invariant Imbedding 399 

also Nelson and Scott6) which avoids this difficulty, 
and which we now describe. 

Letting x = 1 in (23), we find the equality 

u' (0) = u' ( 1 ) T ( 1) + E z (1 ) , (25 ) 

which expresses u' (0) in terms of known quantities, 
u' (1) being known from (24). Equation (23) then 
gives u' (x) in terms of known quantities, and (22) 
yields an expression for u (x) in terms of knowns. The 
final expression is 

_ R(x) T(1) ,- E ( ) R(x) T(l) 
u(x) - a R(I) T(x) r 1 R(1) T(x) 

+ [Ez(l) - Ez(x) J R(x) + Er(x). (26) 
T(x) 

The reason for this peculiar grouping of terms will be
come apparent in the next section. 

COMPUTATIONAL CONSIDERATIONS 

On a digital computer it would be quite feasible to 
obtain u from (26), with R, T, Er, and Ez obtained by 
integrating (17) subject to (18). In fact similar ap
proaches have been implemented digitally, and have 
been shown to be quite stable computationally.13 How
ever this formula is not appropriate for analog solution 
of (17)-(18), at least in the context of the CSDT 
method. The reason is that (26) contains ratios which 
must be known accurately to yield an accurate value 
of u (x), while the quantities entering these ratios are 
too small to be determined accurately from analog 
solution of (17)-(18). In order to see this let us look 
somewhat more closely at (17)-(18). 

The function R (x), which is determined by ( 17 a ) 
and (18b), will be an increasing function, with slope 
approximately unity near x = 0, and the slope de
creasing as x increases, with R (x) asymptotically ap
proaching YOt:.t as x ~ 00. In fact R(x) should be, 
for practical purposes, approximately equal to y ot:.t 
for x greater than a few multiples of YOt:.t. (This 
follows from the inequalities 

Yot:.t exp (-2xl YOt:.t) ~ YOt:.t - R(x) 

~ YOt:.t exp (-xl Yot:.t) , 

which can be established fairly easily.) Now 0 is of 
the order of unity, and t:.t must be taken fairly small, 
say certainly t:.t ~ .01, in order to keep the time 
discretization error reasonably small. Thus we conclude 
that R(x) will rise quite rapidly from 0 at x = 0 to 
(almost) YOt:.t as x increases, and that R(x) ~ YOt:.t 
for € ~ X ~ 1, where € is small. 
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Block Diagram for the Application of Invariant Imbedding to the Hybrid 
Solution of Equations (1) -(4) by the CSDT Method. 

Figure 1-Block diagram for the application of invariant 
imbedding to the hybrid solution of Equations (1)-(4) 

by the CSDT method 

Considering now (17b) and (18a) we find, SInce 
R(x) ~ veAt for most values of x, that 

T(x) ~ exp (-xl v eAt) , (27) 

the approximation being quite good for x greater than 
a few factors of veAt, and certainly for x near 1. Now 
(27) shows that the largest values of the ratio 
T (1) IT (x), which appears in the first two terms of 
(26), occur near x = 1. But (27) also shows that both 
T (1) and T (x), x near 1, are down at least 3-4 orders 
of magnitude from the maximum value T (0) = 1. 
Consequently, because of the low intensity resolution 
of analog computers, these quantities will both essen
tially be reported as zero by analog solution of (17)
(18). Thus the most inaccurate values of T(I)IT(x) 
are obtained for exactly those x at which accuracy is 
most important. 

In order to get around the above difficulty we intro
duce the function (3 (x), defined by 

(3(x) = T(I)IT(1 - x), o ~ x ~ 1. (28) 

Then (3 is determined by the initial value problem 

(3' ( x) = - R (1 - x) (3 ( x ) Ie At, (29) 

(3 (0) = 1. ( 30) 

In order to solve (29)-(30), R(x) must be available 
for 0 ~ x ~ 1 from previous solution of (17a) subject 
to R(x) = O. Analog computer integration of (29)
(30) will produce reliable values of (3(1 - x) for x 
near 1, which is precisely where this factor is most im
portant in (26). 

At first look it might be thought that similar diffi
culties would be associated with the factor 

'Y (x) = [El ~.i.) - El(X) JIT(x) (31) 

in (26). However a little further study shows that 
'Y (x) is actually a decreasing function of x, and that 
El(X) approaches E l (l) somewhat faster than T(x) 
approaches zero. Consequently 'Y (x) will be zero, 
within analog resolution, before T (x), and the proper 
computational procedure is to set 'Y (x) = 0 for larger 
x by internal logic. 

In terms of (3 and 'Y, (26) becomes 

R(x) R(x) 
u(x) = a R(I) (3(1 - x) - Er(l) R(I) (3(1 - x) 

+ 'Y(x)R(x) + Er(x). (32) 

We note in passing the interesting fact that the first 
three terms in (32) are important only in relatively 
thin boundary layers, near x = 1, x = 1, and x = 0, 
respectively. The first term represents the effect of the 
imposed boundary condition at x = 1, and the re
maining terms stem from the source function. The 
behavior near x = 0 is do~inated by the third term, 
and near x = 1 by the first term, except when a = 0 
the combined second and fourth terms dominate near 
x = 1, in spite of the fact that they cancel exactly at 
x = 1. The behavior far (i.e., a few multiples of veAt) 
from either ~oundary is dominated by the fourth term, 
Er(x) . 

HYBRID IMPLEMENTATION 

Figure 1 shows a block diagram of one possible 
hybrid implementation of the method presented here. 
We have written E/n) and El(n) for Er and Ez corre
sponding to S = Sn, and 'Yn for 'Y corresponding to 
Ez = El(n). 

Note that R, T, and (3 are retained permanently in 



digital storage, but that they are generated anew in 
the analog section each time (17c-d) are to be inte
grated to obtain E/n) and El(n). This procedure is in
tended to minimize the time consumed by D / A data 
transmission, and to make available accurate informa
tion regarding the high frequency components of R 
and T during the integration of (17 c-d). The latter 
consideration is particularly important near x = 0, 
where all of the imbedding functions are changing 
quite rapidly. It is true that the low frequency pass 
band of the digital section does not permit' accurate 
knowledge of the high frequency components of 8n in 
integrating (17c-d), but these are probably relatively 
less important in most cases than are the high fre
quency components of Rand T. 

As a programming note we remark that the procedure 
indicated in Figure 1 never requires Eland '¥ to be 
available at the same time, and therefore these two 
variables can occupy the same locations in digital 
storage. The same comment holds for the variables u 
and E r • 

EXTENSIONS AND LIMITATIONS 

The invariant imbedding technique may be thought 
of, at least with regard to its application in the CSDT 
method, as fundamentally applying to problems of the 
form 

u' (x) = A (x) u (x) + B (x) v (x) + 8 1 (x) , 

v' (x) = C (x) u (x) + D (x) v (x) + 82 (x) , 

with two-point boundary conditions of the type 

u(O) = exv(O) + (3, 

v(xo) = ,¥u(xo) + o. 

(33a) 

(33b) 

(34a) 

(34b) 

Here x is to range between 0 and Xo, u and v are vectors 
of finite (but not necessarily equal) length, A, B, etc., 
and ex, (3, etc. are respectively matrix functions and 
constant matrices of the appropriate sizes. The problem 
(8)-(10) is of this form after the substitution v = u'. 
Details of the imbedding functions and their applica
tion in solving (33) - (34) are given by Scott12 and by 
Nelson and Scott.6 

The statements of the preceding paragraph imply 
that the invariant imbedding solution of the CSDT 
equations can be applied, at least in principle, to any 
linear partial differential equation, provided the as
sociated boundary conditions in the continuous variable 
can be put in the linear inhomogeneous form (34). The 
method does not apply directly to problems in which 
either the differential equation or the boundary condi
tions are nonlinear. However the other methods2 pro-
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posed for solving the ordinary differential equations of 
the CSDT method share this defect, except for the 
shooting method, and the latter is well known to have 
serious stability defects.' Vichnevetsky14 has suggested 
that nonlinear problems be solved by an iterative 
predictor-corrector technique, with the decomposition 
method to be used to solve an approximating problem 
linearized about the predicted solution. In a similar 
vein, but with digital application in mind, Allen, Wing, 
and Scott15 have considered the idea of solving non
linear problems by the application of invariant im
bedding to an appropriate sequence of linearized 
problems. 

In conclusion, we believe that the method presented 
here shows sufficient promise to warrant further in-: 
vestigation. Such investigations should, include a 
quantitative comparison of the present method with 
other commonly used techniques for solving the CSDT 
equations, with due regard to both effectiveness and 
computer requirements for frequently occurring types 
of problems. We intend to pursue such a study, and 
hope to communicate the results elsewhere. 
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APPENDIX 

Recall that u (x, y) is defined to satisfy the differ
ential equation (8) and the boundary conditions (12), 
as a function of x. These defining conditions can be 
written respectively as 

Uu (x, y) 
u(x, y) 

----= 
()~t 

(A-I) -Sex), 

and the identities 

u(O, y) = Ul(Y, y) = o. (A-2) 

To obtain a differential equation for Er , first note 
that (15) and (A-2) yield 

(A-3) 

If we could express U2 (x, x) in terms of Er and known 
functions of x, then (A-3) would give a differential 
equation for E r • This is the objective in the next 
paragraph. 

If (A-I) is differentiated with respect to y, the result 

can be put in the form 

U2l1(x, y) - U2~~tY) = 0, 

after using equality of mixed partials. Equation (A-2) 
gives 

U2(0, y) = o. 
The last two equations imply that, for any y E [0, IJ, 
either U2 (x, y) as a function of x is in the class 'ti de
fined above, or U2 (x, y) is identically zero. In either 
case we have the identity 

_ _ u(x) 
U2 (x, y) = U21 (x, y) u' (x) , u E 'ti, 

in x, y E [0, 1]. If we set y = x in this identity, and 
recall (13), then we find 

U2(X, x) = U21(X, x)R(x). 

But differentiation of the identity Ul (x, x) = 0 III 

(A-2), and application of (A-I) and (15) gives 

-Ull(X, x) 

-u(x, x) 
()~t + Sex) 

-Er(x) + S(x). 
()~t 

The two equations immediately preceding give an 
expression for U2(X, x) in terms of R, Er, and S. If 
this expression is substituted into (A-3), the result is 
the differential equation (17 c) for E r • A similar de
velopment shows that 

E/ (x) = U12(0, x) 

_ u' (0) 
= U21(X, x) u'(x) 

_ u' (0) 
= -Ull(X, x) u'es) 

= [sex) _ u(x, X)] u'(O) 
()At u' (x) 

= 7' ( x) [-:~; x) + S ( x) ] , 

where U is an arbitrary element of 'ti. This gives the 
equation (17 d) for E l. 
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INTRODUCTION 

Numerical methods of solving partial differential equa
tions (PDEs) using analog or hybrid computers fall 
into three broad categories. Assuming, for concreteness, 
that one of the independent variables is time and the 
rest are spatial, the continuous-space and discrete-time 
(or CSDT) methods envisage to keep the space-like 
variable continuous and discretize the time-like vari
able. Similarly, the terms discrete-space and continuous 
time (DSCT) and discrete-space and discrete-time 
(DSDT) approximations are self-explanatory. For a 
one-space dimensional PDE, for instance, both the 
CSDT and DSCT approximations yield a set of ordi
nary differential equations while the DSDT approxi
mations lead to a set of algebraic equations. Because 
of the inherent need to handle a continuous variable, 
both CSDT and DSCT approximations lend themselves 
well for computation on analog or hybrid computers. 
Indeed, several analog and hybrid computer implemen
tations of all these three methods are currently in 
vogue each method claiming to be superior in some 
respect to the others. However, it was the CSDT 
method that showed great promise and produced little 
results. The purpose of this paper is to present another 
alternative to this problem. 

One of the fundamental advantages of the CSDT 
method over others is its ability to handle moving 
boundaries. This can be readily achieved by controlling 
the analog computer's integration interval since the 
problem space variable is represented by computer
time. A second advantage is that the analog hardware 
requirements of the CSDT method are very modest 
because a relatively small analog circuit is time-shared 
to solve the entire problem. With the advent of modern 
high-speed iterative analog and hybrid computers the 
above promises of the CSDT method appeared to be 
almost within the reach.1 ,2 
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In practice, however, considerable difficulties were 
encountered in obtaining dependable results using the 
CSDT method. 2 ,3 The major difficulty is that the CSDT 
methods are inherently unstable. Methods that were 
proposed to circumvent this stability problem are 
either conceptually wrong or impose additional compu
tational burdens making their efficiency debatable. A 
second difficulty with the CSDT methods is that the 
basic spatial sweep from boundary to boundary, at 
each discrete time level, yields a two point boundary 
value problem (TPBVP) which in turn has to be solved 
iteratively. It is not clear, at the outset, whether any 
advantage gained by time-sharing of the analog hard
ware is really tangible when compared to the price 
paid in solving a TPBVP. A third disadvantage is that 
the CSDT method is essentially limited to handle 
problems in one space dImension only. 

This paper suggests a new alternative which still 
adopts the basic CSDT procedure but results in an 
initial-value problem. By this formulation the first two 
difficulties cited in the preceding paragraph are elimi
nated. This paper still treats a one-space-dimensional 
problem and no attempt was made here to extend the 
concept to higher dimensions. However, it is not quite 
inconceivable to extend this technique to higher dimen
sions by using this in conjunction with an alternating 
direction iterative method. 

STATEMENT OF THE PROBLEM 

Consider the simple diffusion equation 

u = U(x, t) (1) 

with the initial conditions 

U(x,O) = Uo(x) = f(x); 0 ~ x ~ 1 (2) 
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and without loss of generality5,7 with the homogeneous 
boundary conditions 

U(O, t) = O} 
U(l, t) = 0 

(3) 

A CSDT approximation to (1), (2) and (3) can be 
written, as usual, by using a backward difference ap
proximation for the time-derivative. Specifically, at 
time t = tk, using a simple difference scheme, Eq. (1) 
can be approximated by 

where L~d2/dx2 is a differential operator and (At) is 
the size of the time step taken. With this approxi
mation, the auxilary conditions (2) and (3) take the 
form 

(5) 

(6) 

The classical method of implementing the CSDT 
method is to solve (4) on an analog computer with the 
initial condition (5) and the boundary conditions (6). 
However, equations (4), (5) and (6) constitute a 
TPBVP as such Uk (x) for 0 ~ x ~ 1 at any time level 
t = tk cannot be obtained in a single computer run; 
an iterative procedure is required to determine Uk (x) 
at each t = tk. This iterative procedure is often per
formed using either a trial and error procedure or by 
using a search technique such as the steepest descent 
method. Under such circumstances; scaling limitations 
of analog computers place severe restrictions on the 
region of search making them unattractive. Coupled 
with the inherent instability of the analog computer 
circuit solving (4), this necessity to solve a TPBVP 
at each time level is therefore the major drawback of 
the conventional CSDT method. 

FORMULATION OF INTEGRAL EQUATION 

The initial value formulation starts once again with 
equations (4), (5) and (6). Instead of solving them as 
a TPBVP, equations (4) through (6) are first trans
formed into an equivalent integral equation of the 
Fredholm type. The first step of this procedure, which 
can be found in any standard work,4-7 is to determine 
a Green's function of the differential operator L in (4) 
that also satisfies the homogeneous boundary conditions 
in (6). Specifically, a Green's function for the operator 

L = d2/ dx2 that satisfies the homogeneous boundary 
conditions in (6) can be written as 

{

X (1 - '1/); 0 ~ x ~ '1/ ~ 1 
K(x, y) = 

'1/(1 - x); 0 ~ '1/ ~ x ~ 1· 
(7) 

It is important to note that the Green's function 
has one form for x < '1/ and another for '1/ < x and that 
in each semi-interval it has a structure of the product 
of a function of x alone and a function of '1/ alone. Such 
a structure is called semi-degenerate, which can greatly 
simplify the problem. If the Green's function K(x, '1/) 
obtained is not degenerate or semi-degenerate, it can 
always be approximated, to any desired degree of accu
racy, by a semi-degenerate kernel using standard tech
niques.5- 7 Therefore, the procedure presented here is 
not good for any nondegenerate kernel. 

Solution of the TPBVP described by (4), (5) and 
(6) can now be written in terms of the Green's function 
(7) as 

1 11 
- (At) 0 K(x, ~) Uk(~) d~ (8) 

or 

Uk(x) = !k-l(X) + A 1c 

K(x, ~) Uk(~) d~ (9) 
o 

where !k-1 (x) is 'the first term on -the right hand side 
of (8) and can be explicitly evaluated because U k-1 (x) 
represents a solution obtained at the preceding time 
level t = tk-1. The terms A and cin (9) are defined by 

and are introduced merely for convenience and 
generality. 

Equation (9) is a Fredholm integral equation of the 
second kind in its most familiar format. In (9), !k-1(X) 
is called the free term, A the parameter and U(x,~) is 
called the kernel. Without going into the details of a 
proof, let it be stated that for a well-posed problem, 
the solution U(x, t) of the given PDE can he approxi
mated by the sequence of functions Uk (x) which are 
indeed the solution of the above integral equation. 

This procedure of transforming the given PDE into 
an equivalent Fredholm type integral equation was ap
parently suggested also by Chan8 in a recent paper but 
he adopts an iterative procedure to solve the integral 
equation. 
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SOLUTION OF THE INTEGRAL EQUATION 

The next computational step is to solve the integral 
equation presented in (9) for Uk (x). Classical methods 
of solving (9) are essentially iterative in nature9 and 
so are not suitable for real-time operation. Further
more, analog computers are ideally suited for solving 
problems with prescribed initial conditions. It, there
fore, is logical to search for methods of transforming 
integral equations into sets of ordinary differential 
equations with prescribed initial conditions. Such a 
method was recently suggested by Kalaba.lo 

Kalaba's method is essentially one of treating the 
interval of integration (0, c) as a variable rather than 
as a constant. By regarding the solution at a fixed 
point as a function of the interval of integration (now 
being treated as a variable), a set of ordinary differ
ential equations with a complete set of initial conditions 
can be obtained. With a knowledge of the solution for 
one interval length, it is now easy to generate solutions 
for other interval lengths or for any interval length 
using this equation as a vehicle. Furthermore, the set 
of ordinary differential equations with prescribed initial 
conditions can be solved very easily on an analog 
computer. 

Equation (9) is the starting point for the formulation 
of the initial-value problem. Treating the interval (0, c) 
as a variable, (9) can be rewritten as 

Uk(x, T) = !k-I(X) + iT K(x, ~) Uk(~, T) d~; 
o 

o ~ x ~ T (10) 

It is assumed that (10) has a solution for T ~ c. For T 

sufficiently small and 

(11) 

the solution Uk(x, T) of (10) can be proved (see ap
pendix) to be identical to the solution of the set of 
equations defined by (12) through (20). 

G(T) ~ (1 - T) + Tr(T) 

d~~) ~ [G ( T ) J2 

(12) 

(13) 

de(T) 
~ ~ G(T) elk-leT) + (1 - T)e(T) J; 

T > 0 (14) 

with the initial conditions at T = 0 given by 

reT = 0) = reO) = 0 

e(T = 0) = e(O) = 0 

(15) 

(16) 

and 

dJ (x, T) = G (T ) [T • J (x, T) J; T > X 
dT 

(17) 

dUk(x, T) = elk-leT) + Te(T)]J(x, T) • T; T> X(18) 
dT 

with the initial condition at T = x given by 

J(x, T = x) = (1 - x) + xr(x) (19) 
and 

Uk(x, T = x) = !k-I(X) = xe(x) (20) 

COMPUTATIONAL PROCEDURE 

Equations (12) through (20) can now be solved 
using an analog computer or a hybrid computer. The 
various computational stages are indicated below. 

Step 1. Solve (13) and (14) on an analog computer 
over the interval 0 ~ T ~ x by treating 'F as computer 
time. Initial conditions for this computer run are given 
by (15) and (16) respectively. 

Step 2. After integrating until time T = x, the analog 
computer is placed in HOLD mode and the solutions 
rand e, at T = x, obtained in step 1 are used to evaluate 
the expressions in (19) and (20). These values will be 
useful as initial conditions while solving (17) and (18) 
in the next step. 

Step 3. At time T = x, and after (19) and (20) are 
evaluated equations (17) and (18) are adjoined to the 
original set (13) and (14) and both sets are integrated 
over the interval x ~ T ~ c by putting the analog com
puter back in COMPUTE mode. During this phase of 
integration, the initial conditions of the additional set 
are the values of J and Uk evaluated not at T = 0 but 
at T = x. This is precisely the reason and purpose of 
the computation in step 2. 

Step 4. The output of the integrator solving equa
tion (18) in Uk(x, T) and this is the solution of (9) at 
the argument x. This is also the solution of the PDE 
(1) at a particular time level t = tk. 

DISCUSSION 

Initial-value problems are conceptually simple, com
putationally easy to solve and are susceptible for 
simulation studies. Simulation inherently involves trial 
and error experimentation in which the validity of a 
model is verified; sensitivity to environment is explored 
and variation of performance due to parameter changes 
evaluated. Such problems come under the classical 
heading of inverse problems-that is, problems where 
a sy~tem's performance is known from a measured set 
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of observations and the nature of the system is to be 
determined. While solving such inverse problems by 
using such search techniques as gradient methods, it is 
often necessary to solve not only the dynamic equation 
of the system, such as (1), but also an additional equa
tion called the derived equation. This is not a mere 
doubling of computational effort as it appears at first 
sight. The computational effort required in the evalua
tion of the gradient increases very fast if the derived 
equation is an adjoint equation posed as a final value 
problem. It is precisely in bottleneck situations like 
this that an initial-value formulation comes in handy. 

A second possible application of this method would 
be in on-line control or identification of distributed 
parameter systems. 

Implementation of this method, particularly when 
the kernel has no simple structure requires some degree 
of sophistication in the analog system. If the Green's 
function (or Kernel) contains, or is approximated by, 
expressions that are sums of products of a large number 
of terms then the analog circuit generally contains a 
large number of multipliers. This may make the scaling 
a little more difficult. Finally, computation from step 
2 to step 3 requires a degree of sophistication in the 
analog switching system. Many present generation 
hybrid computer systems can indeed handle most of 
these requirements. 

No attempt was made in this paper to present a 
procedure that can be applied to any partial differ
ential equation. Similarly no assumptions were made 
that would restrict the procedure to the simple case 
presented. In the general case, an easy procedure is 
required to obtain equations (12) through (20) from 
(10). Material filling these gaps and results supporting 
this procedure will be presented in a subsequent paper. 
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APPENDIX 

Outline of the initial-value formulation 

Step 1: The proof starts with a realization that if 
cI>(x, r) is a solution of the integral equation 

cI>(x, r) = K(x, r) + fT K(x, ~)<p(~, r) d~, 
o 

o ~ x ~ r (AI) 

then 

W(x, r) ~ cI>(x, r) U(r, r) (A2) 

is a solution of the equation defined by 

W(x, r) ~ K(x, r)u(r, r) + fT K('l'-.,~) W(~, r) d~ 
o 

(A3) 

A proof of this statement can be found in any standard 
book on integral equations.5,7 

Step 2: To prove that the integral equation (10) 
is equivalent to the set of differential equations (12) 



An Initial Value Formulation of the CSDT Method 407 

through (20), equation (10) is first differentiated with 
respect to r. Denoting derivatives with respect to r by 
primes, this differentiation yields 

Uk' (x, r) = K(x, r) Uk(r, r) + 11' K(x, ~) Uk'(~, r) d~ 
o 

(A4) 

If Uk' (x, r) is identified with W (x, r), equation (A 4) 
is identical to (A3). Therefore, the solution Uk' (x, r) 
of Eq. (A4) can be written as 

Uk' (x, r) = <I>(x, r)U(r, r); 0 ~ x ~ r (AS) 

where <I> (x, r) is the solution of (AI). 
Step 3: Directing attention once again on (AI) and 

replacing the kernel K (x, r) by its semi-degenerate 
approximation, namely 

r x(l - r); 
K(x, r) = ~ 

l (1 - x)r; 

equation (AI) can be written as 

(A6) 

<I>(x, r) = r(l - x) + 11' K(x, ~)<I>(~, r) d~; x ~ r 
o 

(A7) 

(AS) 

where J (x, r) is defined by the integral equation 

J(x, r) ~ (1 - x) + 11' K(x, ~)<I>(~, r) d~ (A9) 
o 

Step 4: If J (x, r) can be determined, then using 
(AS) the function <I> (x, r) can be obtained which in 
turn will aid in getting Uk (x, r) from (AI 0). The pro
cedure to get J (x, r) is very similar to the one used 
to get (AS). 

Differentiating (A9) with respect to r and using the 
same principle indicated in Step 1, one gets 

J'(x, r) = <I>(x, r)J(r, r) (A10) 

Step 5: In order to get J ( r, r), one goes back to 

(A9), from which 

J(r, r) = (1 - r) + 11' K(x, r)J(~, r) d~; (All) 
o 

= (1 - r) + 11' x(l - ~)J(~, r) d~ (A12) 
o 

= (1 - r) + X • r(r) (A13) 

where r ( r) is defined by 

r(r) ~ 11' (1 - ~)J(~, r) d~; 0 ~ r (A14) 
o 

Step 6: The value of r ( r ) can be determined by 
using, once again, a procedure similar to that used in 
Step 2. Differentiating (A14) with respect to r 

r'(r) = (1 - r)J(r, r) + 11' (1 - ~)J'(~, r) d~, (A1S) 
o 

Substituting (A10) in (A1S) 

r'(r) = (1 - r)J(r, r) + 11' (1 - ~)cp(~, r)J(r, r) d~ 
o 

(A16) 

The value of <I>(~, r) from (AS) can now be substituted 
in (A16). 

r'(r) = (1 - r)J(r, r) + r 11' (1 - ~)J(~, r)J(r, r) d~ 
o 

(A17) 
using the definition of r(r) from (A14) 

r'(r) = (1 - r)J(r, r) + rJ(r, r)r(r) = [G(r)J2 

(A1S) 
where G(r) is defined in (12) 

Thus, the differential equation for r (r) is obtained. 
The initial conditions for this differential equation can 
be obtained readily from (A14) as 

r(r = 0) = reO) = 0, 

The procedure to obtain other equations in the text 
is similar. A more rigorous and elaborate proof can b~ 
found in Reference 10. 
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INTRODUCTION 

The classical techniques of separation of variables and 
eigenfunction expansions apply to a wide variety of 
boundary value problems in partial differential equa
tions. Analogous procedures exist for certain partial 
difference equations that arise from discretization of 
the differential equations. The coefficients in the ex
pansions associated with difference equations are de
fined by finite sums involving the eigenfunctions and 
the unknown function. Under the conditions specified 
in the next section, the coefficients for a discretized 
form of Poisson's equation satisfy a tridiagonal system 
of linear algebraic equations which are easily solved. 

Hockney5 has detailed a direct method for solving 
the five-point difference equation for Poisson's equa
tion \72cp = p when boundary conditions are periodic. 
We have worked out the complete development when 
the values of cp are given on the boundary of a rectangle 
(Dirichlet Problem) and the finite difference network 
is composed of rectangles. The restrictions illustrated 
in Figure 1 are removed in a later section simply by 
redefining p. The paper is self-contained and thus re-
peats some of Hockney's formulas. . 

PROBLEM 

Consider the boundary value problem for the two 
dimensional Poisson equation 

a
2
,p(x, y) + a2

cp(x, y) = \72 ( ) _ ( ) (1) 
ax2 ay2 - cp x, y - p x, y . 

By the interior Dirichlet problem associated with (1), 
we mean the following. If f (x, y) is a continuous func
tion prescribed on the boundary B of some finite closed 
region R, and p(x, y) is a continuous function prescribed 
in R, then determine a twice differentiable function 
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cp (x, y) such that 

\72cp(x, y) = p(x, y), 

cp(x, y) = f(x, y), 

(x, y) E R - B, 

(x, y) E B. 

The rectangle oriented on a coordinate system as in 
Figure 1 is indicated by the coordinates of the corners. 
The point (x, y) E B if (x, y) is on the perimeter of 
the rectangle. The point (x, y) E R if (x, y) is inside 
the rectangle or if (x, y) E B. The solution of the 
Dirichlet problem to be described here is restricted to 
the rectangle shown in Figure 1. 

A method involving Fourier series may be used to 
great advantage if certain restrictions are placed on 
f (x, y). These restrictions are 

cp(x, 0) = bo(x) 1 
~O ~ x ~ l, 

cp (x, m) = bm ( x) J 

cp(O,y) = 01 
~O <y< m. 

cpO, y) = OJ 
(2) 

.,. bill Ix) 
10.m) t--------.;,;,;....-------...... It.m) 

o 
• 
9. 

o 
• 
9. 

10.0) L..-_______ ., -. bo---:"lx"":"")-------lt.L.-
O
)-+ 

Figure 1 
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Now a separation of variables is employed and the 
solution to equation (1) is 

00 7rkx 
cp(x, y) = E 'Pk(Y) sin -l- , 

211 . 7rkx 
'Pk(Y) = l 0 cp(x, y) sm -l- dx. (3a) 

00 7rkx 
\72 E 'Pk(Y) sin -l- = p(x, y), (3b) 

E{:;, i?k(Y) sin 1r~X - (~k)' i?k(Y) sin 1r~X} 

= p(x, y) (3c) 

211 . 7rkx 
Pk(Y) = l 0 p(x, y) sm -l- dx. 

(3d) 

Equations of this type provide the motivation for con
sidering analogous equations in the determination of a 
discrete approximation to cpo 

l\1:ETHOD 

Finite difference representation 

Rather than solve for cP (x, y), it is usual to define 
the set of network iines 

Yj = jhy 

(i = 0, 1,2, .. ·Nx ), 

(j = 0, 1,2, .. ·Ny ), 

hxNx = l, 

hyNy = m, 

and solve for the (Nx - 1) (Ny - 1) unknowns cpi,jthat 
are approximations to cp(Xi, yj), i = 1, 2, 3, •• ·Nx - 1; 
j = 1, 2, 3, .. ·Ny - 1. As a matter of notation let 

Pi,j = p(Xi, yj). 

The Laplacian operator in equation (1) is now replaced 
by the standard 5-point linear difference operator, 
and equation (1) is approximated as 

i = 1,2,3, ···,Nx -1; j = 1,2,3, ···,Ny -1. (4a) 

It is convenient to introduce the quantities 

and 

and rewrite equation (4a) as 

CPi,j-l + r2(CPi_l,j + RCPi,j + CPi+l,j) + CPU+! = hy2pi,j 

i = 1,2,3, ... , N x - 1; 

j = 1,2,3, ... , Ny - 1. (4b) 

The boundary conditions enter in a straightforward 
manner-

CPi,O = bO(Xi), CPi,Ny = bm(Xi), CPO,j = CPNx,j = o. (4c) 

A brief look at equation (4b) as a partitioned matrix 
equation will be helpful: 

A I 0 o 

I A I 

o I A 

A I 0 

I A I CPNy-2 

o • 0 I A CPNy-l 

(Sa) 

where 

RIO o 

1 R 1 

o 1 R 

(5b) 

RIO 

1 R 1 

o o 1 R 



'PU 

'Pu 

'P3,i 

'Pi = 

'PNx-l,i 

j = 1, 2, 3, .•. , Ny - 1, 

f(X3,0) J(X3, m) 

'Po = . , 'PNy = , (5c) 

f(XNx-3,O) f(XNx-3, m) 

f(XNx-2,0) f(XNx-2, m) 

f(XNx-I,O) f(XNx-l, m) 

and 1 is the identity matrix of order N x-I. 
As a future aid in reducing the amount of Fourier 

analysis, a rather simple algorithm, to be known as 
odd/ even reduction, will be applied. This algorithm 
requires that Ny be an even integer, but this is generally 
a very mild restriction. Looking at equation (5a) as a 
system of matrix equations, we have 

'Pi-2 + A'Pi-1 + 'Pi = qi-l, 

'Pi-l + A'Pi + 'Pi+l = qh 

'Pi + A'Pi+1 + 'Pi+2 = qi+1, 

(5d) 

for j = 2, 4, 6, ... , Ny - 2. Pre-multiplying the jth 
equation by - A and adding the (j - 1) th and 
(j + 1) th equations,_ we obtain the set of reduced 
equations 

'Pi-2 + A *'Pi + 'Pi+2 = q/, (6a) 
where 

A* = 21 - A2, 

Equation (6a) now represents the following sets of 
linear equations: 

(i) for i=2,3,4, .•• ,Nx -2, 
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", .. 2 - r4{1/l. ? . + 2RI/l. I . + [R2 + 2 - 2r-4]1/l .. -yt,J- -yt-~,J -yt- ,J -yt,J 

(6b) 

where 

(ii) for i = 1, 'PO,i = 0, 

'PI,i-2 - r4{ [R2 + 1 - 2r-4]'PI,i + 2R'P2,i + 'Pu} 

+ 'PI,i+2 = ql,/, (6c) 
where 

ql,/ = qU-I - r2{Rqu + q2,i} + qU+1; 

(iii) for i = N x - 1, 

+ [R2 + 1 - 2r-4]'PNx-l,i} 

+ 'PNx-I,i+2 = qNx-U*, (6d) 
where 

In equations (6a)-(6d), j = 2, 4, 6, ... , NlI - 2. 

Fourier transform 

The 'Pi,]" can be expressed by the finite Fourier series 

Nx-l 
'Pi,]" = 2: ~k,i sin (7rki/Nx), (7a) 

k=l 

where the coefficients ~k,i are determined from the 
following considerations. Multiply (7a) by sin(7rki/Nx ) , 

sum with respect to i, and change the order of 
summation: 

Nx-l 
(a) 2: 'Pi,i sin (7rli/Nx ) 

i=O 

where the bracketed sum may be written 

({3) 

When k = l, the first of these sums is simply N x/2; 
otherwise, it is expressed as the real part (R) of a 



412 Spring Joint Computer Conference, 1970 

geometric series of exponentials 

- R L eL7r (k-l) i/N x 
1 {NX-l } 

2 i=O 

. (1 - (-I)k-l)/4, 

where, designates the imaginary unit (,2 = - 1). Sim
ilarly, the second sum is (1 - (-I)k+l)/4, and the 
total expression ({3) is either N x/2 (for k = l) or 0 
(for k ~ l). The right side of (a) thus collapses to 
(Nx/2)'Pl,i; thus 

Nx-l 

'Pk,i = (2/Nx ) L cpi,jsin (-ffki/Nx )' (7b) 
i=l 

Furthermore, let 

Nx-l 

qi,/ = L qk,/ sin (7rki/Nx ) , (8a) 
k=l 

with 

Nx-l 

ib,/ = (2/Nx ) L qi,/ sin (7rki/Nx ). (8b) 
i=l 

Substituting equations (7a) and (8a) into equation 
(6b) and employing some trigometric identities give 

Nx-l 

('Y) 0 = L {'Pk,i-2 + Ak'Pk,i + 'Pk,i+2 - ijk,/} 
k=l 

where 

( 
7rk 27rk) 

Ak = 2 - r4 R2 + 2 + 4R cos N x + 2 cos N x • (9) 

Since ('Y) is the Fourier expansion of the function zero, 
all coefficients are zero, and 

'Pk,i-2 + Ak'Pk,i + 'Pk,i+2 = ijk,/, 

.i = 2, 4, 6, ... , Ny - 2; 

k = 1, 2, 3, .•• , N x - 1. (10) 

It is this set of (Ny/2) - 1 linear equations which 

where 

o 

(12a) 

Ak 1 0 

1 Ak 1 

o 0 1 Ak 

'Pk,2 ijk,2* - 'Pk,O 

'Pk,4 - * qk,4 

'Pk,6 ijk,6* 

'Pk = ijk* = 

'Pk,Ny-6 - * qk,Ny-6 

-k * q ,Ny-4 

- * -qk,Ny-2 - CPk,Ny· 

(12b) 

In equations (11) and (12) k = 1, 2, 3, ... , N x - 1. 
The matrix Ak is factored as 

(13) 

such that 

1 00· o 

1 0 

poses the next problem. Lk 

Direct solution for even lines 

With a Fourier transform of the boundary conditions 
cpo and CPNy' equation (10) is written in matrix form as 

(11) 

1 

o o 

o o 

1 o 

-tNy -4 1 

(14a) 



and 

-t2- 1 1 0 o 

0 -t4- 1 1 

0 0 -t6- 1 

Uk = 

o 

o 

o o o -tNy_2-1 

(14b) 

where tj is used as an abbreviation for tk,j' From (13) 

j = 4, 6, 8, ••• , Ny - 2. 

The elements tk,j then are given as 

tk.j = -1/ (tk,j-2 + Ak), j = 4, 6, 8, ... , Ny - 2. (15) 

Now equation (11) is written as 

(16a) 

By introducing a new set of vectors 

(16b) 

the simple form of 

(16c) 
is obtained. 

The vector Sk is obtained from equation (16c) by 
simple forward substitution 

- - * Sk,2 - qk,2 , 

Sk,i = ijk,/ -t tj-2Sk.j-2,j = 4,6,8, ... , Ny - 2. (17) 

Now the vector 'Pk is obtained from equation (16b) 
by simple back substitution 

(18) 

After solving equation (18), note that 'Pk,j has been 
determined for k = 1, 2, 3, •.. , Nx - 1 and j = 2, 4, 
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6, ... , Ny - 2. The 'Pk,j are the solutions of the Fourier 
transform of equation (6b), which has subscripts 
i = 2,3,4, ···,Nx - 2andj = 2,4,6, ···,Ny - 2. 
Now the Fourier synthesis is performed using equation 
(7a), and <Pi,i is determined for i = 2, 3, 4, ... , N x - 2 
and j = 2, 4, 6, ... , Ny - 2. Equations (6c) and (6d) 
are rearranged such that 

<PU-2 - [r4(R2 + 1) - 2J<Pl,j + <PU+2 = qu**, 

where 

and 

where 

j = 2, 4, 6, ... , Ny - 2. 

The similarity of the above equations and equation 
(10) is shown below 

CPl,j-2 + 'Y<Pl,j + <Pl,j+2 = ql,/*, 

where 
'Y = - [r4(R2 + 1) - 2J. 

The above two equations are again written in matrix 
form given in equation (11) but with 'Y replacing Ak. 

At this step, half of the unknown <Pi,j are determined. 

Direct solution for odd lines 

Determination of the balance of the unknown <Pi,j 

is a much more simple task. For j an odd integer, 
equation ( 4b ) becomes 

i = 1,2,3, .•. , Nx - 1; 

j = 1,3,5, ... , Ny - 1. (19) 

With boundary conditions <PO,i = <PNx,j = 0, the above 
equation is written in matrix form as Acpj = bj, or 

(20) 
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where 

b3,/ 

b/ = 

and r-2 A and 'Pi were previously defined in (5b ) and 

U= 

o 

where the elements Ui are given as 

UI = -l/R, 

1 o 

Ui = -l/(Ui-1 + R), i = 2,3,4, "', N x - 1. (22) 

Now equation (20) is written as 

LUCPi = b/. (23a) 

By introducing the new set of vectors 

(23b) 

the simple form of 

LVi = b/ (23c) 
is obtained. 

The vector Vi is obtained from equation (23c) by 
simple forward substitution 

VI,i = bi ,/ + Ui-IVi-I,j, i = 2, 3, 4, "', N x - 1. (24) 

Now the vector 'Pi is obtained from equation (23b) by 

(5c). The matrix r-2A is factored into r-2A = LU, 

where L is lower triangular and U is upper triangular: 

1 0 0 0 

-UI 1 0 

0 -U2 1 

L (21a) 

1 0 0 

-UNx-3 1 0 

0 0 -UNx-2 1 

o 

(21b) 

-UNx_3-I 1 0 

0 -UNx_2-1 1 

0 1 -UNx-I-1 

simple back substitution 

i = N x - 2, N x - 3, "', 1. (25) 

Extension of boundary conditions 

Let 

in the rectangle (Figure 1) with 

'P(O, y) = fey) and 'P(l, y) = g(y), 0 ~ y ~ m. 

and let 

l- x x 
'P = 'PA + fey) -l- + g(y) l ; 



then 

V
2 

_ d2f(y) l - X d2g(y) X _ 
CPA - P - ~ -Z- - ~ 1 = PA· 

Now 

CPA(O,y) = CPA(l,y) = 0, 

is directly solvable by the methods described in this 
paper. 

Extensions to the method 

The preceding portions of this section employed 
many conditions which allowed the method to be more 
clearly explained. Many of these conditions can be 
removed with no more serious result than changing a 
few coefficients in some of the equations. The following 
extensions do not alter the basic algorithm: 

dcp dcp 
a) dx (0, y) = dx (l, y) = 0, o ~ y ~ m, 

b) general boundary conditions of the second or 
third kind at (x,O) and (x, m), 0 ~ x ~ l, 

c) exterior problems with asymptotic boundary 
conditions, 

d) periodic boundary conditions, 
e) more general elliptic equations such as 

a ( acp) a ( acp) ax a(y) ax + ay bey) ay + c(y) cP = p(x, y), 

f) applications to one dimensional wave equations 
associated with cyclic processes, 

g) conformal transformations to extend the types of 
boundaries which may be used. 

A large class of problems exist where this method 
loses its directness but still may be applicable: 

a) successive approximation of the non-linear equa
tions resulting from discretizing certain non-linear 
elliptic equations, 

b) solving blocks of difference equations in the 
process of some block iteration techniques, 

c) solving Poisson's equation over non-rectangular 
regions. 

APPLICATION 

The equations of motion of a viscous, unsteady, in
compressible fluid past a finite flat plate are written in 
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the elliptic coordinate system as 

(26a) 

where 

The vorticity is denoted by r and the stream function 
by 1/1; q = a (x, y) / a (~, 'f1) is the modulus of transforma
tion between the cartesian coordinates (x, y) and the 
elliptic coordinates (~, 'f1). The components of velocity 
u and ware defined as 

a1/l u=-- a~' 

The domain is rectangular and is given by 

o ~ ~ ~ E, o ~ 'f1 ~ 7f'. 

The vorticity equation and the stream function 
equation are coupled together in a non-linear manner. 
One method of solution which has had success is shown 
by the following algorithm: 

a) estimate 1/1, 
b) calculate u, w from estimate of 1/1, 
c) solve linearized vorticity equation (26a) for r, 
d) solve (26b) for stream function with newly ob

tained value of r, 
e) repeat from b) with new 1/1 until convergence. 

The boundary conditions on the stream function 
equation are 

1/1(0, 1]) = 1/1(~, 0) = 1/1(~, 7f') = 0, 

1/I(E,1]) = f('f1)· 

The direct solution of the stream function equation 
makes the above algorithm attractive from the stand
point of computer efficiency. 

For N x = 64 and Ny = 46 the execution time for one 
direct solution of equation (26b) was .67 sec.* Prior to 
implementation of the direct solution, equation (26b) 
was solved by successive-line-over-relaxation (SLOR). 
Solving equations (26a, b) for 150 time steps typically 
took about 90 minutes when SLOR was used. This 
execution time was reduced to 15 minutes using the 
direct methods shown in this paper. 

* Execution time is for the UNIVAC 1108 computer with single 
precision arithmetic. The Fast Fourier Transform Algorithm3,4 

was used to evaluate the finite sine series. 
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Architecture of a real-time fast fourier 
radar signal processor 

by ARTHUR S. ZUKIN and S. Y. WONG 

Hughes Aircraft Company 
Culver City, California 

SU1VIl\1ARY 

This paper describes the architecture of an all-digital 
signal processor for a high pulse repetition frequency 
(high PRF) radar.1,2 The processor replaces a bank of 
hundreds of (approximately) 100 Hz bandwidth analog 
filters with an equivalent but more capable and smaller, 
lighter and less expensive digital system. The digital 
system acts in real-time by converting input signals 
(time domain) from analog to digital form, collecting 
sets of such converted signals and then performing a 
discrete Fourier* transform3.4 upon them. Thus, it 
produces a (frequency domain) result which is equiva
lent to the output from the bank of analog filters or 
from a spectrum analyzer. 

Because the processor is employed on a full-time 
basis solely to perform the Fourier transform, it can 
be designed to do this task at lower cost than a general 
purpose computer and with lower performance logic 
circuits and memory than would be required in a gen
eral purpose computer. It can perform direct and in
verse Fourier transforms and could be used in pattern 
matching and convolution.5 The processor described 
can be modified and/or adapted to low or medium 
PRF1,2,6,7 and/or synthetic array modes as well as to 
communications systems. For example, this basic 
design has been successfully used in communications 
systems to perform both the direct and inverse trans
form and serves as both demodulator and modulator. 

The selected processor architecture separates the 
functions to be performed from each other and in most 
cases assigns physically distinguishable portions of the 
equipment to the functions because: 

1. If the functions are not conceptually separated, 
the overall task is unduly complex. Like a conven-

* Fast Fourier transform digital processing and digital filters and 
their relationship are discussed in the appendix. 
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tional digital computer, the processor is a collection of 
simple blocks; though complex considered in the en
semble, they are easily understood separately. 

2. Separating functions and associating them one
for-one with equipment demonstrates the equivalence 
between the generalized fast Fourier (Cooley
Tukey) 8-18 procedure and the equipment. 

3. By designing for the application from the outset 
one can pick efficient hardware for implementing the 
functions. The result is a straightforward design with a 
comparatively small number of efficient functional 
blocks. 

INTRODUCTION 

System capability 

The analog system which is equivalent to the digital 
signal processor would have a total bandwidth of 146 
kHz. (See Table I.) This would be comprised of two 
73 kHz subbands. * It would have two modes of 
operation. 

In the first mode each subband would drive 512 
filters having a matched bandwidth of 143 Hz. Thus, 
the system would provide a total bandwidth of 146 
kHz in 1,024 143 Hz filters. 

In the second mode, each subband would drive 
1,024 filters having a matched (filter) bandwidth of 
72 Hz. Thus, the system would provide a total band
width of 146 kHz in 2,048 72 Hz filters. 

In the digital system, the sampling rate for both in
phase and quadrature signals* is 146,000 per second 
per subband. I.e., in each of the two subbands, there is 
a vector sampling rate of 146,000 per second and the 
total vector sampling rate is 292,000 per second which 

* See "Terminology Used." 
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TABLE I -Comparison of Analog and Digital Systems 

Analog System 

a) Total Bandwidth, Hz (2 subbands) 
b) Bandwidth per Subband, Hz 
.c) No. of Filters per Subband 
d) Filter Bandwidth, Hz 

Digital System 

a) Total Bandwidth, Hz (2 subbands) 
b) Bandwidth per Subband, Hz 

Total Vector Sampling Rate 
per Sec 

Vector Sampling Rate per Sec, 
per Subband 

Frame Time, Millisec 
No. of Vector Samples per Frame) 

per Subband l 
Filters HCreated" per Frame f 

per Subband 
c) Filters "Saved" per Frame 

per Subband ' 
d) Filter Bandwidth, Hz 

Mode 1 Mode 2 

146,000 146,000 
73,000 73,000 

512 1,024 
143 72 

146,000 146,000 
73,000 73,000 

292,000 292,000 

146,000 146,000 

7 14 

1,024 2,048 

512 1,024 

143 72 

is twice the bandwidth of the analog system and 
~atisfies the Nyquist requirement. 

In the first mode, the frame time (that is, the time 
for one set of samples) is 7 msec. which results in a 
filter width of (0.007 sec)-l or 143 Hz as in the equiva
lent analog system. During the 7 msec frame 1,024 
vector samples are made for each of the two sub bands. 
Thus, 1,024 data enter the processor for each subband 
even though only half this quantity (512) filters are 
to be created. Tt~is is necessary because of the 2: 1 
oversampling mentioned in the previous paragraph. At 
the end of the fast Fourier procedure the desired 512 
"filters"* are retained and the other 512 are ignored. 
(If the fast, Fourier procedure were done base-2, one 
could merely skip one-half of the last base-2 procedure.) 

Likewise in the second digital mode, twice as many 
samples are taken as the desired number of retained 
filters. The quantities are 2,048 vector samples in a 
14 msec frame per subband and 1,024 filters are retained 
for each subband. The filter width is (0.014 sec)-l or 
72Hz. 

It is important to note that the provision of both 
512 143 Hz filters and 1,024 72 Hz filters in the same 
analog system is . very expensive and the likely com
promise for the sort of system described here would be 
to supply only 512 filters which in mode one would be 
switched from one subband to the other. Another 
highly likely economy move would be the use of s'ingle 

* See "Terminology Used." 

compromise bandwidth somewhere between 72 and 
143 Hz and use of the same 512 filters for both modes 
one and two. Despite its lower cost the digital system 
does not need to make either of these sacrifices. If 
enough memory is provided for the 1,024 filter per 
subband case and enough speed for the 7 msec frame 
case, the "variable" filter bandwidth is "free." 

Radar background informationl.2.6.7.19 

Radar systems determine target range (R) by meas
uring time ( t) between transmission of a pulse and 
reception of the target echo signal. Since the radar 
signal travels a distance of 2R, one obtains 

2R 
t =

c 
or R=~ 

2 
(1) 

where c is the velocity of propagation, roughly 160,000 
nautical miles per second. If the target is moving with 
respect to the radar the target velocity (v or R) along 
the line of sight will cause the received echo signal to 
differ from the transmitted signal frequency (f) by an 
amount, !::.f. This is the well known doppler effect. 

!::.f = (2v/c)f (2) 

Replacing c by Af (A is the wavelength of the radar) 
gives 

!::.f = 2v/A (3) 

For velocities of interest (up to 5000 feet per second) 
and wavelengths of interest (0.03 foot to 3 feet) the 
absolute value of the doppler frequency shift may be as 
great as 300,000 Hz and the frequency region of interest 
can easily span one-half megahertz. 

Because the pulse radar is inherently a sampled 
data system, the spectruml.2.6.19 of the received signal 
is complex even in an idealized case. The spectrum of 
the transmitted signal consists of spectral lines sepa
rated from each other by the pulse repetition frequency 
( fr) ; the envelope of the spectral lines has a (sin X) / X 
shape, is centered about the transmitted frequency (f) 
and has a frequency width of 2/7 between the first pair 
of zero crossings where 7 is the width of the transmitted 
pUlse. The· important attribute of the transmitted 
waveform is that it is comprised of f, f ± fr, f ± 2fr, 
f ± 3fr, and so on. 

As a result, the received signal is not simply f + !::.F 
as would be surmised from Equation (2) but contains 
many frequencies, f + I::.F, f ± fr + I::.f, f ± 2fr + I::.f, 
f ± 3fr + I::.f and so on. Therefore, doppler frequencies 
of F, F + ir, F + 2fr etc. are indistinguishable from 
each other. Because of this the total doppler frequency 
bandwidth that can be measured unambiguously is fro 



The consequence is that in order to measure velocity 
unambiguously, iT must be at least as great as the total 
doppler bandwidth and the pulse repetition period 
(PRP) which is the inverse of the PRF may perforce 
be of the order of a few microseconds or 10 micro
seconds. This means that the maximum range which 
can be measured unambiguously is very, very small. 
For example, if the PRF is 100,000 per second (PRP is 
10 microseconds) the maximum unambiguous range 
which can be measured is about O.S nautical mile and 
-all ranges will be measured modulo-O.S nautical mile. 
On the other hand as long as the doppler frequencies 
span no more than 100 kHz, they can be unambiguously 
measured modulo-lOO kHz. With the above parameters 
given, the system would be what is called a high PRF 
radar; that is, it would be a radar which measures 
range ambiguously but measures doppler unam
biguously. 

If the PRF were changed to 1000 per second, (PRP 
of 1000 microseconds), the llnambiguous range would 
be SO nautical miles and ranges would be measured 
modulo-SO nautical miles. But doppler frequencies 
could be measured unambiguously only as long as they 
spanned no more than 1 kHz and would be measured 
modulo-l kHz. For most applications the doppler in
formation would be essentially useless at this PRF. 
With these parameters, the system would be a low 
PRF radar for targets of less than SO miles range. That 
is, range would always be measured unambiguously 
but velocities of practical interest would be measured 
ambiguously. 

When the radar parameters are such that both range 
and velocity are measured ambiguously it is said to be 
a medium PRF radar. Although this appears to be a 
useless system, it is not necessarily so; with modern 
digital equipment both range and frequency (doppler) 
can be measured ambiguously with each of a set of 
related PRF's and the unambiguous values computed 
from the sets of measurements. For example, the com
bination of ambiguous range measurements modulo-19 
nautical miles and modulo-lO nautical miles yields 
unambiguous range out to 190 nautical miles. 

Terminology used 

The system described represents an effort to apply 
new technology to an old problem. ~,loreover, the 
technology is digital and the problem is traditionally 
solved with analog implementation. Therefore, it ap
pears appropriate to define a few terms which are not 
familiar to all. 

Sample and hold circuits which are the source of the 
input signals to the processor are used in an analog-to-
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digital converter when it is desirable to make a meas
urement of a signal and to know precisely when the 
input signal corresponds to the results of the measure
ment. 

In-phase and quadrature signals (I and Q) refer to the 
component of the input signal which is in phase with a 
reference signal and to the component which is in 
quadrature (leads or lags by 90 electrical degrees) with 
the in-phase signal. These correspond to the real and 
imaginery portions of the input signal which is assumed 
to be the vector sum of all of the input components. 

Subbands refer to the division of the total input fre
quency band into two subbands each of which contains 
one-half of the total bandwidth of the system. This 
may be done for a number of reasons. For example, 
the input signal may have too large range between 
maximum and minimum amplitude for the analog-to
digital converter. In this case, and if the distribution of 
energy across the band is fairly uniform, the range may 
be reduced by the use of subbands each covering a 
portion of the spectrum. 

Since an all-digital processor uses no physical filters, 
the equivalent of analog filter responses is synthesized 
by the processor using the time domain to frequency 
domain Fourier transform. * At the end of the trans
form procedure the input data has been converted to 
a set of vector numbers representing the voltages one 
would have obtained from a set of analog filters with 
the same characteristics as the digital filters. Each 
vector is called a filter or a comple:c filter and is subse
quently mUltiplied by its complex conjugate to obtain 
a quantity representative of the power which would 
have passed through the equivalent analog filter in 
the same time interval. 

SUMMARY SYSTEM DESCRIPTION 

The digital processor block diagram is shown in 
Figure 1. The driving circuits (sample and hold) and 

Figure I-Digital processor block diagram 

* See appendix. 
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and one of the three fast Fourier steps has been com
pleted. 

During the next fast Fourier step, the procedure is 
similar with alternate bursts of five or six memory 
cycles employed to read in new data and 16 memory 
cycle bursts employed to exchange memory data 
destined for the vector processor with processed data 
from the vector processor. There are, however, two 
important differences from the first step. These are: 

1. In order to perform the required rotation, operands 
(complex) leaving the memory are multiplied by ap
propriate unit vectors3 ,4,8-10 in the vector multiplier 
before entering the vector processor. For a rotation of 
f) radians, the unit vector cos f) + i sin f), is generated 
by the sine/cosine table which is provided with the 
rotation angle by the address sequence control. Trigono
metric functions of angles from zero to 7r / 4 are generated 
directly by an interpolation procedure; functions for 
angles from 7r / 4 to 27r are derived from the directly 
generated functions. The procedure and its mechaniza
tion are simple and do not require extensive equipment. 

2. Operands are taken in groups of eight (G-8) for 
the second step of a 14-millisecond 4,096 sample frame 
and in groups of four (G-4) for the second step of a 
7-millisecond 2,048 sample frame. However, the trans
fers between the memory and the vector processor still 
occur in bursts of 16 memory cycles. The 16 words 
involved represent two G-8s or four G-4s. 

During the last of the three fast Fourier steps proc
essing again utilizes G-16s. However, the last step 
differs from the first in that the complex data is multi
plied by the appropriate unit vectors in the vector 
multiplier. The multiplication and sine/cosine pro
cedures are identical to those employed in the second 
step. 

The data returned to the memory during the third 
(last) step represents the complex magnitUdes of the 
filtered input signals (filters) and enters the memory 
during the last one-third of the frame after that in 
which it was obtained. During the next frame, as new 
data enters the memory in bursts of five or six memory 
cycles, an equal quantity of filters is read out of the 
memory. Like all information leaving the memory, the 
filters pass through the vector multiplier where each 
complex filter is multiplied by its own complex con
jugate to provide the square of its magnitude according 
to the well-known relationship, 

magnitude2 = f(a + ib) = a2 + b2 = (a + ib) (a - ib). 

The squared magnitudes are proportional to the 
power output of the equivalent analog filters and are 
the digital processor output signals to the threshold 
cirCllits. In these circuits they are compared against a 

threshold level and an output is generated whenever 
the threshold is crossed. 

OVERALL DESIGN DECISIONS 

Some system design decisions and equipment choices 
and mechanizations are described in this section. 

111 emory selection 

Fora particular level of capability, probably the 
most meaningful measure of the worth of a digital 
processor design is the ability to "get by" with a single 
economical, easily produced memory with little penalty 
in other portions of the processor. The memory in this 
design uses 4,096 words of 32 bits with a cycle time of 
1.71 microseconds. Thus, it stores 131,000 bits and 
requires an information rate of less than 19 bits per 
microsecond. " 

Because data for an entire 7- or 14-millisecond frame 
is processed as a "set," the absolute minimum amount 
of memory is that required to store the 4,096 samples 
obtained during the longer frame. If only this much 
storage is provided, processing must be performed in
sta~taneously at the end of a data gathering period 
and results transferred to the using equipment in
stantaneously. These conditions are obviously impos
sible. A reasonable upper limit is the storage required 
for two frames of data· or 2 X 4,096 = 8,192 samples. 
This results in a system in which data processing takes 
one frame time and occurs during the next frame after 
the" data is gathered, and the processed data is un
loaded during the second frame after its samples were 
loaded into the memory simultaneously with the load
ing of new data. 

Serious effort was made to avoid using a memory 
large enough for two frames of data, but this was not 
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Figure 3-Staggered processing memory storage requirement and 
frame-timing for 14 milliseconds, 2 subbands, 2,048 

samples per subband per frame 



the receiving circuits (threshold circuits) are conven
tional and will not be considered here. 

Data flow in the digital processor is designed to pro
vide a simple sequence in which information is cycled 
between the memory and the vector processor until the 
(input) vector samples are converted to (output) 
vector- quantities representing the real and imaginary 
portions of the signal voltage which has "passed 
through" an equivalent analog filter. Input data 
(Figure 1) flows into the memory and thence from 
memory through the vector multiplier and vector 
processor and back to the memory. This loop flow oc
curs three times, the information returned to the 
memory after the third step representing the filter 
outputs. These are then read out of the memory 
through the vector multiplier in which they are con
verted into the squares of the (scalar) magnitudes, and 
become the output of the digital processor. 

In-phase and quadrature input signals for each of 
the two subbands are digitized in the analog/digital 
converter to provide 8-bit (seven bits plus sign) con
version of the in-phase and the quadrature signals. A 
total of 585,144 8-bit conversions occur each second' , 
each set of four 8-bit conversions represents. the in
phase and quadrature components (I and Q) of the 
signals of the two subbands and results in one 32-bit 
word comprised of two 16-bit halves; each half contains 
the I and Q for one subband. Thus, the average rate 
into the memory is one-quarter of 585,144 or 146,286 
words per second. 

Five or six input words are collected in the sample 
buffer and in a burst of five or six successive memory 
cycles (see Overall Design Decisions) are read into the 
memory at the same time that an equal number of 
filters* are read out of the memory. The procedure is 
an exchange of data in which data flowing into the 
memory replaces the data flowing out of the same 
memory location at a rate of one word per 1.71 micro
seconds memory cycle. Data leaving the memory repre
sents the complex filter output voltage and is multiplied 
by its complex conjugate in the vector multiplier to 
form the square of the magnitude. 

When the processor is first turned on, no useful 
processing can occur until one complete frame of data 
has entered the memory. Subsequently groups of 16 
operands per subband (called G-16's**) are read out 
of the 2M-word memory from locations (0, M/16, 
2M/16, 3M/16, ... ), (1, M/16 + 1, 2M/16 + 1, 
3M/16 + 1, ... ), (2, M/16 + 2, 2M/16 + 2, 3M/16 + 

* Which represent the processed result of data gathered two 
frames before the input frame. 
** Each of the 16 words in the G-16 contains 16 bits of subband 
A data and 16 bits of subband B data. 
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Figure 2-Timing diagram for burst processing 

2, ... ), and so on. The 16 words are read in a burst of 
16 memory cycles while five or six words are collected 
in the input buffer. Between successive 16 word bursts , 
a burst of five or six memory cycles is employed to 
load five or six new data words and unload five or six 
filters. 

Like all data leaving the memory the G-16 passes 
through the vector multiplier word by word, but in 
this first step is passed through the vector multiplier 
without change and on into the vector processor. In 
the vector processor, the G-16 data for each of the sub
bands is subjected to a base-169 fast Fourier transform 
procedure. The time allowed -for this is five or six 
memory cycles. (See timing diagrams, Figure 2.) At 
the end of the base-16 procedure, the 16 pairs of 
results*** in the 16 words of the G-16 are returned 
word by word to the memory in a burst of 16 memory 
cycles to replace the 16 words of the next G-16 as they 
are read out of the memory through the vector mul
tiplier to the vector processor, etc. 

Ideally, the processed G-16 would be returned to 
locations in the memory from which the (same) input 
G-16 had been obtained. This would require one memory 
cycle to read the data plus another memory cycle to 
write, resulting in a total of two memory cycles per 
word. However, the information exchange can be per
formed during a single memory cycle per word. The 
effectively double memory speed is not obtained with
out penalty and forces. the use of an address sequence 
control (see Overall Design Decisions) to keep track 
of the changing memory addresses. After the last G-16 
passes through the vector processor, it is returned to 
the location from which the first G-16 was obtained 

*** One result per subband per word. 
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Figure 4-Memory storage requirement and frame-timing for 
7 milliseconds, 2 subbands, 1,024 samples per subband per 
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successful. A scheme called "staggered processing" was 
devised in which the start of the frame times for -the 
two subbands A and B, differed by 7 milliseconds (i.e., 
one-half of a 14-millisecond frame) and the information 
for the individual subband frame was processed during 
a period of 7 milliseconds. This is illustrated by Figure 
3; the alternate of nonstaggered processing is illustrated 
for the 7- and 14-millisecond frame times by Figures 4 
and 5. Although potentially useful, staggered processing 
was not adopted because of a number of difficulties , 
namely: 

1. It appears desirable to store (at least) two samples 
or pieces of data in each memory word. If staggered 
processing is used, the two must be from the same sub
band. However, it is desirable that the two represent 
equivalent data from the (in this case) two subbands 
in order that the use of twice as many trigonometric 
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Figure 5-Memory storage requirement and frame-timing for 
14 milliseconds, 2 subbands, 2,048 samples per subband per 

frame. Processing not staggered 

function "look-ups" and twice as fast a trigonometric 
table be avoided. 

2. A requirement for a special sorting pass of the 
filtered data to obtain the desired output sequence 
and/ or the acceptance of n parallel streams, each of 
which is a properly sequenced stream containing l/nth 
of the results. 

3. Greater complexity in the address sequence con
trol because of the multiplicity of address patterns that 
accompany the staggered processing scheme. 

Choice of arithmetic base of vector processor 

The choice of arithmetic base8 •9 for the vector proces
sor is closely related to selection of the memory. The 
choice of a particular processor base leads to a total 
memory input-output data rate and the choice of a 
memory data rate places a lower limit on the processor 
(arithmetic) base. Accompanying each base is a mini
mal number of registers within the vector processor· 
this is the product of the base times th~ number of 
samples per memory word. Thus, the higher the base, 
the more registers are needed in the vector processor 
itself. However, the higher base processor can be in
ternally mechanized as a series of lower base substeps. 
Thus an externally viewed base-16 _processor could 
internally use four base-2 or two base-4 substeps. If a 
higher base is used in this manner, the total amount of 
equipment, other than registers, is only weakly de
pendent on the base. In the (externally viewed) base-
16 design described, fewer multipliers are used in the 
entire system than would have been required if a 
base-4 processor were used. 

Moreover, the use of a high base is a definite ad
vantage in reducing the speed of the memory and the 
arithmetic circuits. This is so because for N samples, 
the number of memory cycles and of multiplications 
per unit of time varies as 10gB N where B is the arith
metic base. Since 10gB N = loge N /loge B, the required 
memory speed and arithmetic speed vary inversely 
with the natural logarithm of the base. 

If the base is two or four, the vector operations 
within the processor ~re trivial; that is, they are multi
plications by the sine and cosine of 0, 7r /2, 7r and 37r / 4 
and thus no explicit multiplier is required within the 
vector processor.* Therefore, except under unusual 
circumstances, the lowest base to be considered should 
be four. 

* As stated in Summary System Description and illustrated in the 
system block diagram (Figure 1), all vector multiplications other 
than those within the vector processor, and all rotation of vectors 
are performed by the vector multiplier through which all informa
tion Hows as it leaves the memory. 



In the case of the system described here, the actual 
selection of a base was based on the criteria indicated 
in the first paragraph of this section; the number of 
samples to be processed (4,096) was divided into the 
amount of time (14 milliseconds) allowed for processing. 
This gave a total memory cycle time of 3.42 micro
seconds for all accesses to each sample-assuming one 
sample per memory word. Because one and three 
sample-per-word (16 and 48 bit per word) memories 
led to less economical systems, the decision was made 
to go -to two samples per word. This results in 6.84 
microseconds total cycle time for all accesses to each 
sample. Based on this number, a curve of number of 
passes through the entire memory can be drawn as in 
Figure 6. 

Assuming the previously stated minimum cycle of 
1.5 microseconds is used, Figure 6 shows that the maxi
mum number of passes through the entire memory is 
4.56. In general, the use of fractional passes does not 
seem to offer any advantages except for two special 
cases: 

1. Special operations at the start or end of a frame, 
such as time to operate on the address sequence control. 
Such operations probably have an effect of no greater 
than a few percent on the memory speed. 

2. The use of a first processing step as new samples 
enter the memory. If a base of two is used, processing 
of samples could start just after* one-half of the samples 
have been loaded; if a base of four is used, processing 
could start just after three-fourths of the samples are 
loaded; for a base of B, processing could start just after 
B - liB of the samples are loaded. Such a step was 
considered in this design, but was rejected because it 
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* Here "just after" means when one more sample has been 
digitized. 

Radar Signal Processor 423 

did not result in either reducing the number of sub
sequent passes through the memory or in· a significant 
simplification of the vector processor. (If a last pass 
through the vector processor were performed as data 
left the memory, the use of an input pass would have 
been profitable. The scheme, which was rejected, ** 
would have used 4-Y2 passes through the memory. 
Processing would be base-2 at input and base-2 at out
put; three base-8 processing steps would occur between 
input and output; 2 X 83 X 2 = 2,048 = number of 
samples per sub band per frame.) 

Because the use of fractional passes was rejected, 
the selected memory was that for the next integral 
number of passes below the 4.6 (that is four) allowed 
by a 1.5-microsecond memory (see Figure 6). Since 
one of the four passes is required to load samples into 
the ,memory and simultaneously unload filters from the 
memory, this resulted in allowing three passes for 
processing. If the same base is used for all three steps 
with a total of 2,048 samples per subband, the base 
used must be (2048)1/3 = 12.7. A practical compromise 
is to use 16, 8 and 16 for the bases of the three passes. 
It is preferable that the passes be in the sequence listed 
since the symmetry (that is, having the first and last 
of the three passes use the same base) avoids unneces
sary complexity in the address sequence control. 
Similarly for the 1,024 samples in the 7 -millisecond 
case, bases of 16, 4 and 16 have been selected. 

A base-8 processor* requires a total of five passes 
through the memory which must provide a cycle time 
of 1.4 microseconds and eliminates registers for eight 
words or 8 X 32 bits within the vector processor; this 
tradeoff is about even in dollars, but for a new design 
favors the slower memory in schedule risk and de
velopment cost. A base-4 processor** requires a memory 
cycle of 0.98 microsecond and eliminates registers for 
12 words or 12 X 32 bits within the vector processor 
and might also save six 8-bit (scalar) multipliers, but 
requires much faster circuitry (arithmetic and other
wise) throughout the system. Thus no cost advantage 
appears to accrue to the lower base even though it 
requires a faster memory. Considering all such factors, 
the selected system appears optimum for its intended 
application since it is at worst no more expensive than 
the alternatives and is the most easily designed and 
developed. 

** The use of a processing pass concomitant with data input 
appears to complicate the timing and does make the data flow 
more complex. 
* Actually 8/8/4/8 or 8/4/8/8 (2,048 pulses per subband). 
** Actually five passes of base-4 and one of base-2 (2,048 pulses 
per subband). 
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Burst processing 

The concept of burst processing allows uninterrupted 
use of a period equivalent to five memory cycles for 
the operations within the vector processor. Thus it 
permits acceptably slow arithmetic circuits within the 
processor without a disproportionate increase in the 
number of buffer registers. 

The read-write cycle associated with loading a new 
sample into the memory occurs once for each sample 
and occurs three times during processing of each sample; 
i.e., of each four memory cycles three are required for 
processing alone. Thus, while 16 memory cycles are 
used to read a new set of 16 operands per subband into 
the processor and transfer a set of 16 results per sub
band from the processor, the average time span during 
which these 16 memory cycles occur is actually 4/3 X 
16 = 21-~ memory cycles. 

On the other hand, as noted previously, if an internal 
base of two is used, processing in the base-16 vector 
processor cannot start until ,the ninth operand is avail
able and cannot start until the thirteenth operand is 
available if an internal base of four is used. A more 
stringent limitation results from the decision to always 
exchange memory data; each time an operand is read 
from the memory, there must be a result ready to put 
back in the memory. If this decision is retained, two 
undesirable alternatives result: to perform all processing 
in one memory cycle using very fast circuits or to pro
vide a redundant set of registers for 16 words. The 
latter would allow a procedure similar to that which is 
used with a random access memory large enough for 
two frames of data and in which one-half the storage is 
used for input-output while the other half is used for 
processing. Since neither alternative is pleasant, it is 
highly desirable that a method be conceived to in
crease the allowed processing time to four or five un
interrupted memory cycles. 

The scheme adopted was to perform the transfer* 
of the 16 operands of the two subbands from the 
memory (through the vector multiplier) to the vector 
processor in one burst of 16 memory cycles. During the 
16 cycles, new samples destined for the memory from 
the analog/digital converter are stored in an integrated 
circuit buffer of six words each of which represents one 
sample from each of the two sub bands. The six-word 
buffer may store either five or six words, as illustrated 
in the timing diagram of Figure 2. 

As shown in that figure, four pairs of samples are 
obtained during the first 16-memory-cycle burst used 

¥ As each operand is transferred from memory to processor, a 
result (from a set of 16 previous operands) is transferred from the 
processor into the same memory position. 

to communicate with the vector processor and a fifth 
pair is obtained soon thereafter. The five pairs are 
then transferred, in a burst, to the memory as an equal 
number of results are read out of the memory through 
the vector multiplier to the threshold circuits. 

The procedure is repeated in bursts as depicted in 
the figure with every third input burst transferring six 
sample pairs rather than five. 

SYSTEM DESCRIPTION 

Address sequence control 

The functions of the address sequence control (see 
Figure 1) are: 

1. To determine the locations (addresses) in the 
random access memory (RAM) from which data is 
read and into which data is written. 

2. To provide the sine/cosine table with a measure 
of the rotation angles (unit vectors) to be used to 
rotate vectors leaving the memory for the vector 
processor. 
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To avoid confusing the reader with a mathematical 
notion (of the fast Fourier transform procedure) in
volving many changeable subscripts, the explanation* 
of the address sequence control is in terms of exemplify
ing logic block diagrams for the 2,048 sample per sub
band case. 

Description of processing sequence 

Let 
1 2047 

f( j) = -- I: mkeiejk 
2048 k=O 

where 0 = 21r /2048 and i = vi - 1. Let 

j = j2128 + j116 + jo 

k = k2128 + kl16 + ko 

where 

j2, jo, k2, ko = 0, 1, 2, •• ·15 

1 15 

= 16 I: exp [inC j2128 + j116 + jo)koJ 
ko=O 

(4) 

(5) 

(6) 

(7) 

(8) 

15 1 
I: 16 mk2128+k116+ko exp [iOjol28k2J 
k2=0 

Step 1 (Base-16) Compute 

. 1 15 

f( Jo, k1, ko) = 16 I: mk2128+k116+ko exp [iOjol28k2J (9) 
k2=0 

Step 2 (Base-8) Compute 

f( jo, j., 1<0) = ~ .E f( jo, k., 1<0) exp [i8( j.16 + jo) 16k.] 

(10) 
Step 3 (Base-16) Compute 

* Also see appendix. 
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Address control for readout sequence 

Equations (9), (10) and (11) constitute the three 
steps in the algorithm adopted for this processor and 
Equations (7) and (8) define the ranges of the j's and 
k's. The first step sorts the data according to the 
lowest digit of the frequency representation. Since the 
summation is over k2, there are 128 different f( jo, k1, ko) 
for each jo. 

If a counter is organized in three sections corre
sponding to k2, k1 andko, in terms of the original input 
data, one counts in ko and carries from ko to k1 and 
thence to k2• This is shown in Figure 7 a. 

To form the set of f( jo, k1' ko) in Equation (9) (Step 
1), the summation requires a count of k2 and then 
progresses to cover all combinations of k1 and ko. It is 
accomplished by inj ecting the count pulse into the k2 
section of the counter and letting the carry flow to ko 
and thence to k1• At the end of this step, the data has 
been sorted according to jo as shown in Figure 7 (a) . 

The next two steps of the algorithm (Equations (10) 
and (11)) evaluate the sets f( jo, j1, ko) and f( jo, j1, j2) 
and proceed similarly with the counter inputs as shown 
in Figures 7 ( c ) and (d), respectively. Due to special 
system requirements, the output must be read out in 
order of frequency. With the counter significance, in 
terms of j's shown in Figure 7 ( d), the carry path must 
be reconnected in order to read out in the proper fre
quency sequence. This is shown in Figure 7 (e). Since 
this is by design* also the next input sequence, the con
nection for the output sequence in Figure 7 (e) is the 
same for the next input sequence; thus Figure 7 (f) is 
the same as Figure 7 (e r with j's replaced by k's. 

In Figure 7 (b), k2 carried to ko although carrying to 
either k1 or ko was proper as long as all the combina
tions of kl and ko are eventually gone through. Similarly, 
in the step of Figure 7 (g), k2 carries to k1 and thence to 
ko to again use the original counter configuration. As 
before, after the first step, the k2 counter has the 
significance of jo. The next two steps are again similarly 
performed as shown in Figures 7 (h) and 7 (j ) . 

The output sequence shown in Figure 7 (k) is iden
tical to Figure 7 (a), thus completing one cycle of 
counter configurations. 

Melllory data exchange cycling 

The previous section explains the operation of the 
readout cycle and ignores the control cycle for returning 
processed data to the memory. The design described 
operates by exchanging a set of 16 (or eight) previ-

* To avoid a split-cycle memory or a fa.'5ter memory. 
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ously processed data from the vector processor for a 
set of 16 (or eight) unprocessed data from the memory. 
This way, only 16 (or eight) memory cycles are re
quired for each batch. Thus, the particular counter 
configuration of Figure 7 displaces the data after 
processing, by 16 memory positions. For example, 
after processing, the 16 pieces of data from k2 = 0, 
1; 2, ... 15, kl = 0, ko = ° as shown in Figure 7 (b), are 
returned to k2 = 0, 1, 2, ... 15, kl = 0, ko = 1. Finally, 
the 16 pieces of data from k2 = 0, 1, 2, ... 15, kl = 7, 
ko = 15 are returned to k2 = 0, 1, 2, ... 15, kl = 0, 
ko = 0, which was the source of the first 16 pieces. 

. This last step requires an extra 16 (or eight) memory 
cycles in addition to the 2,048 cycles required for each 
pass of the Cooley-Tukey algorithm. 

A simple concept to keep track of the memory address 
precession is through the description of index registers. 
Consider a memory with addresses enumerated 0, 1, 
2, . . . k, . . . 211 - 1. This transfer may be hidden 
from outside world if an index adder is connected as 
shown in Figure 8. 

Similarly a sequence of such transfers such as mk to 
mk+p· followed by mk+Pl to mk+P2' etc., can be disguised 
with an index register. For the purpose of the address 
sequence generator, the index register in Figure 8 can 
be made in the form of an accumulating register so 
that it always contains 2:Pi' modulo 211. Therefore, 
this configuration can keep track of any number of 
address shifts. 

In Figure 7, if the counters shown are considered as 
equivalent (to the outside world) to the memory 
address register and if the modulo 211 adder and index 
registers are interposed as shown in Figure 8, the cor
rections are made .as follows: 

After Step Add to Index Register 

Phase 1 

1 
l(b) 20 

1 (c) 27 

l(d) 24 

1 
l(g) 24 

l(h) 27 

1 (j) 20 

Phase 2 

It is noted that once initialized ·the index register is 
never set to zero. 

There are two alternate frames to be controlled. If 
the two occupy separate areas in the memory from 
addresses 0 to 211 - 1 and from 211 to 212 - 1, the 
same address control may be used as identical opera-

TO _MOllY 

'-r-...-----..,~ 

MEMORY ADDRESS 
REIISTER (UN-INDEXEDI 

.ouTSi: :..:'tL.-___ ---I 

.MOIIY AIIORESS REGISTER 
AS SEEN IY MEMORY !INDEXED I 

INDEX REGISTER 
(MODULO -1"1 

Figure 8-Memory address indexing 

tions delayed by one frame are performed in memory 
addresses that differ by 211. If we add 211 to the index 
register for the second frame, the general operational 
area of the memory will be shifted to the other half. 
The simplest way to cope with the two alternate 
frames is to double the equipment for the address 
counters and index registers while sharing the index 
adder. In this way, the two sequences can be generated 
independently. 

Phase shifter coefficients 

The three processing steps Equations (9), (10) and 
(11) may be written as: 

Step 1 (Base-16) 

1 u .. 
f(jo, kl' ko) = i6 Eo mk2128+kll6+ko exp [~Jo(-n/8)k2] (12) 

Step 2 (Base-8) 

f( jo, j" ko) = ~ f. {f( jo, k" ko) exp [ijo( .. /64)k,JI 

exp [ijl('1I/4)kl] (13) 
Step 3 (Base-16) 

f( jo, jl, j2) = ~ t {f( jo, jl, ko) exp [ijo('11/1024)ko] 
16 ko=O 

exp [ijl('11/64)ko]} exp [ij2(?r/8)ko] (14) 

These equations are implemented in a base-16 vector 
processor that provides vector rotation in multiples of 
?r/8 (and hence ?r/4). This corresponds to the factored 
out exponent. The. operations inside the big brackets in 
steps 2 and 3 are one operation to each "f" so that 
they may be performed as information transits from 
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Figure 9-Vector multi pIer shown in phase rotation mode 

the memory to the vector processor. The coefficients 
are functions of the address counter. 

In Step 2, the rotations are in units of 71"/64. There 
are 128 possible entries in a table. The product of jokl 
can range from 0 to 105. If a 7-bit number is used for 
representing this product, the first two digits may be 
used to indicate the quadrant so that the table is re
duced to 32 places. In Step 3, there are two exponents 
in the bracket. The multiples of 71"/64 can be treated 
the same as before except the multiplier is now jlko. 
The other exponent involves multiples of 71"/1024. 
Since there are 226 different products of joko, a table 
of 226 places will be sufficient. The two vector multipli
cations may be performed in cascade. 

Vector multiplier 

The vector multiplier receives memory words at a 
rate of one each 1.71 microseconds and in the "phase 
rotation" mode (see Figure 9) receives the sine and 

r-""---, 
I IIIDIOIIY L. ____ ...J I 

o I 
I I 
I I j-__ - ___ .....J 

I 
I cosJJ .. , 
I ~ iiiii-' 
I LT..TJ 
I 

r--.L--, 
I COIITIIOL I L ____ ...J 

Filgure 10-Vector multiplier shown in filter magnitude mode 
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cosine of the rotation angle at a similar rate from the 
trigonometric function table; in the "filter magnitude" 
mode (see Figure 10) used to obtain the squared 
magnitude no other input is required. 

In both modes of operation, each 32-bit word coming 
from the memory is comprised of a 16-bit datum for 
each of the two subbands. The 16-bit quantity has an 
8-bit real portion and an 8-bit imaginary portion. The 
real and imaginary parts of the A and B subband data 
are loaded (Figures 9 and 10) into the four 8-bit 
registers Areal, Breal , A imag and Bimag. In the phase 
rotation mode (Figure 9) operation occurs in four 
sequences (one after another) to give (in the a and (3 
registers) : 

1. areal = Real [(Areal + iAimag) (COS (J + i sin (J) ] 

= Areal cos (J - A imag sin (J 

2. aimag = Imag [(Areal + iAimag) (COS (J + i sin (J) ] 

= Areal sin (J + A imag cos (J 

3. {3real = B real cos (J - B imag sin (J 

4. {3imag = B real sin (J + B imag cos (J 

Within each sequence, the two required multiplications 
occur simultaneously in the two (scalar) mUltipliers 
(Mpier) and the products are immediately added in 
the adder/subtractor. A complete memory cycle, less 
only setting time for the A and B registors, is available 
for four sequences. An allowance of 400 nanoseconds 
for each sequence seems realistic. 

FROM VECTOR 
"ULTIPLIER 

FILTER 
ARITH .. ETIC 
PROCESSOR 
'.ASE 4/2) 
(INCLUDING 

WiltED FUNCTION 
TA.LEOf'SINlCOS 
Of' .. ,. ANO "'4) 

..... -----.... ~~ .. ORY L..-__ --.J 

Figure 11-Vector processor 
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TABLE II-Operation Sequences Within Filter Arithmetic Processor 

Operation of the vector multiplier in the filter mag
nitude mode is essentially similar (Figure 10)' except 
that only two sequences are performed. These result 
in the following a and {3 register contents: 

1. areal = Areal
2 + A imal 

Vector processor 

Within the vector processor, fast Fourier processing 
employs either a base-4 or base-2 procedure. For an 

(externally viewed) overall base of 16, two base-4 steps 
occur and for a base-8 procedure, a base-4 and base-2 
step are combined. 

Conceptually and equipment-wise, the vector proces
sor (Figure 11) can be viewed as two 16-register sets 
of 16-bit registers RAo to RA15 and RBo to RBI5• Each set 
stores the 16 data associated with the processing of a 
one-subband group of 16 operands; thus the 16 16-bit 
registers can contain one G-16 (see Summary System 
Description) or two G-8's or four G-4's. (Only the 
G-16 case is described.) 

As a new G-16 enters the vector processor from the 
vector multiplier, it is appropriately loaded into the 32 
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TABLE III-Rewritten Operation Sequences Within Filter Arithmetic Processor 

registers by the loading and set-transfer switches. * At 
the same time the old G-16 (the result of the previous 
operation) is transferred out of the registers and into 
the random access memory where it replaces the G-16 
being read in. Transfer from the memory occurs under 
control of the output sequence switches. Thus, during 
a 16 memory cycle burst, the processed (old) G-16 in 
the vector processor is exchanged for a (new) G-16 
from the memory; as it passes through the vector 
multiplier, the data of the new G-16 are multiplied by 
the proper unit vectors. 

During the subsequent five memory cycles, ** the 
~ctual processing of the G-16 occurs. In this process a 
sequence of fout:-register-sets is selected by the set 
selection switches, transferred to the filter arithmetic 
processor (FAP) where they are subjected to a base-4 
fast Fourier procedure and then returned to the four 

* The switches are a part of the control and are considered 
separately only to facilitate the description. 
** When six memory cycles are available for processing, the sixth 
cycle is a "dead period." 

registers from which they came. In order to process 
the G-16, a total of four sets must "go through" the 
FAP per base-4 step per subband. This is illustrated 
by the base-16 column at the right of Table II. In that 
table, it is seen that the first base-4 step uses (for each 
subband) operands 00, 0 4, Os and 0 12 to give results 
Ro, R4, Rs and R12 and uses operands 0 1, Os, 0 9 and 0 13 

to give results R1, Rs, R9 and R13 , and so on. The second 
step is described by the lower half of the base-16 
column of Table II. 

Table II presents the fast Fourier arithmetic in its 
most conventional form. The actual equations chosen 
to be mechanized are shown in Table III in which the 
equations have been rewritten to reduce the number of 
multiplier circuits required. The F AP itself is shown 
in Figure 12. 

As demonstrated by Table III, the operations per
formed on the (input vector) operands and on com
binations of the operands consist of multiplication by 
±1 and ±i (= vi=l), addition and subtraction and 
multiplication by the sine of 7r /4 and/or the sine and 
cosine of 7r /8. All operations except multiplication by 
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Figure 12-Filter arithmetic processor 

the sines and the cosine occur in the "controlled 
adders" of Figure 12. In the controlled adders, pairs 
of vectors are added to or subtracted from each other 
either directly or after prior multiplication by ± 1 or 
±i. The results of the addition or subtraction may also 
be mUltiplied by ± 1 or ±i. 

Multiplication of the appropriate information by 
functions of 7r /4 and 7r /8 is performed in the six 8-bit 
(scalar) multipliers shown in Figure 12; these multi
pliers are similar to those used in the vector multiplier. 

Since each word entering the vector processor con
tains one operand per subband (and there are two sub
bands) and sin<le four sets of four operands are processed 
in the vector processor for each of the two base-4 steps 
which comprise a base-16 step, a total of 2 X 4 X 2 = 
16 sets of four operands must be processed by the F AP 
in 16 substeps during each five memory cycle period of 
8.57 microseconds. This gives time of 0:53 microsecond 
per substep. Note that the period of 0.53 microsecond 
is not the time from the insertion of operands (into 
the input set of controlled adders) until the availability 
of the results in the four output registers. (As long as 
the delay is not great enough to endanger system timing 
the allowable time is a function of the overall vector 
processor design and system timing is not a problem 
because the first four sets of results for both subbands 
can be made available to the memory at the end of only 
10 of the 16 substeps.) The significance of the 0.53 
microsecond is that no procedure in the F AP may take 
a time approaching 0.53 microsecond; the longest pro
cedure in the F AP is the 8-bit scalar multiplication and 
this requires only 0.3 microsecond. Thus, there are no 
special problems in the mechanization of the vector 
processor. 

Sine/ cosine table 

At a rate of one set per 1.71-microsecond memory 
cycle, the sine/cosine table must provide sines and 
cosines of the multiples of the angle 27r /2048; that is, 
of the angles O(27r/2048) where 0 is an integer between 
o and 2047. The angles are specified to the sine/cosine 
table by the j's and k's generated by the address se
quence control. An internal function of the sine/cosine 
table is to compute (from the j's and k's) the value of 
o which is to be used as the independent variable in 
entering the table. In Figure 13, which is the block 
diagram of the sine/cosine table, the value of 0 is com
puted by the multiplier, Mpier. (This operation is 
trivial and is not described here.) Output of the multi
plier is an II-bit value of O. 

The value of 0 is converted to a 9-bit positive number 
OT which is ultimately used to obtain the appropriate 
sine and cosine of an angle between 0 and 7r / 4; that is, 
all sine and cosine values are computed for angles no 
greater than 7r/4 and the computed first-octant sine 
and cosine are used according to the trigonometric 
identities for complementary and supplementary angles 
and for angles which differ by 7r radians. These identities 
translate into the' algorithms of Table IV which demon
strates how the angle 0 is translated to the first octant 
angle OT or its two's complement and used in computing 
the sine and cosine. 

Computation of the sine and cosine of OT is performed 
using a five-point table and linear interpolation between 
the five points 0, 7r/16, 7r/8, 37r/16 and 7r/4. The inac
curacy of the interpolation is less than one part in 200 
over the range of interest. Of greater import is the 
fact that the magnitude. of . the error is less than 2-8 

..... 

r---'=---.,....... I lIT _ 
.... 1:0 
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Figure l3-Sine/cosine table block diagram 
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TABLE IV-Determination of First-Octant Angle Used in Sine/Cosine Computation and Related Rules 

Most 
Significant Bit 

7r 7r/128 

! 

23 

7r/256 

! 
7r/512 7r/1024 

! ! 
Least 

Significant Bit 

~------------------------~----~-------------------
~ Modify --l-

signs, possibly 
interchange table outputs 

If 

1. (JT ~ 28 

Look-up Interpolation 

Compute sine/cosine as follows 

Use (JT. 

2. 28 < (JT ~ 29 

3. 29 < (JT ~ (29 + 28) 

4. (29 + 28) < (JT ~ 210 

Use 2's complement of (JT. Interchange sine and cosine outputs. 

Use (JT. Put - sign on cosine and then interchange sine and cosine. 

Use 2's complement of (JT. Put - sign on sine. 

5. 210 < (J T S (Jmax = 211 - 1 Using all bits except 210 do as above (1 to 4) and reverse all signs at output. 

while the eight arithmetic bits employed represent 
sign and seven magnitude bits; thus the maximum 
error is less than one-half of the least significant bit. 

The computational procedure employs a wired table 
of the sines and cosines of the selected five points and 
also supplies the slope of the sine and cosine at the 
first four points. (Since f)T ~ ?r/4, no slope is required 
beyond ?r / 4.) Each slope is provided to one of the two 
multipliers which also receive the six least significant 
bits of f)T; these represent the difference between f)T 

and the next lower argument of the tabulated values of 
sine and cosine. Thus, the products of the two multi
pliers represent the amounts to be added to the tabular 
value of the sine and subtracted from the tabular value 
of the cosine* to obtain the function of f)T. Addition 
and. subtraction occur in the adder and subtractor as 
shown in Figure 13 and selection of sine and cosine and 
assignment of the proper signs are performed according 
to Table IV. 

SUMMARY 

A fast Fourier digital processor designed for the real
time filtering of radar signals has been described. This 
processor design can perform direct and inverse trans
forms and thus is also applicable to communications 
systems, correlation and pattern matching, convolu
tion and other processes using the discrete Fourier 
transform. The design could also be used for a stand
alone Fourier transform system or for a system to be 

* The slope of the cosine curve is negative. 

used in conjunction with a general purpose computer. 
In the real-time radar application, the processor 

replaces 512 (analog) filters of 143 Hz bandwidth or 
1024 filters of 72 Hz bandwidth. 

The processor is employed on a full time basis to 
perform the Fourier transform. Thus, it can be designed 
to do this task more efficiently and at lower cost than 
would a general purpose computer. Design concepts 
which make this possible are: 

1. The use of a fast Fourier base of 16 (rather than 
two) in order to reduce the memory arid logic circuit 
requirements, 

2. The use of a timing scheme (burst processing) 
which maximizes the uninterrupted periods allowed 
for processing, 

3. Simple flow of information through and within 
the processor, 

4. Separation of functions to be performed from one 
another and performing these functions in special 
purpose functional equipment. 
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APPENDIX 

Fast Fourier transform digital processing and digital 
filters 

During the last two decades, the problem of extract
ing or filtering out a small signal from considerably 
more powerful noise has been given much practical 
and theoretical attention for real-time processes such 
as radar and sonar signal processing and for delayed
time processes such as telemetry data reduction. In 
general, the filters and the real-time processors have 
been limited in complexity and conceptual sophistica
tion by the requirement that they be realizable with 
acceptable quantities of hardware. 

The delayed-time processes could often use very 
large computers, but were limited by the long, slow 
iterative procedures. As a result, significant effort was 
devoted to computational procedures. Probably the 
most useful of these has been the application of Fourier 
methods. However, as larger and larger complexes of 
data were attacked, these methods became more and 
more unwieldy because the amount of computation 
rose approximately as the square of the amount of 
data involved. Thus, if data were collected at fixed 
intervals over one "frame" (during which time N 
samples are collected), the computational effort in
volved in processing would be proportional to the 
square of the duration of the frame or for N measure
ments would vary directly with N2. This is true since 
Fourier spectrum analysis, in digital form, with fre
quency resolution matched to the length of time the 
signal is under observation, is of the form 

where 

N-l 

F j = L:: A keijk (21l"IN) 

k=O 

(A-I) 

Ak = the kth sampled values of the signal, k 0, 

1,2, ... , N - 1 

~ = V - 1 and both A's and F's are complex (in-
phase and quadrature sampled) 

Brute force calculations required N2 operations since 
the NF/s are to be evaluated and each is the sum of 
N products. In high PRF processing, N is typically 
1,000 or larger so that the amount of arithmetic by this 
method is prohibitively large for real-time operation. 

An algorithm developed by J. W. Cooley and J. W. 
Tukey8 reduces the computational load to N 10gB N 
where B is the base (typically a power of 2 such as 2, 
4, 8 or 16) to which the logarithm of N was taken and 
also represents the number of data from the full set of 
N which are processed in each substep of the procedure. 



TABLE A-1-Calculating Time 

Time (in minutes) 
N 

Number of Points Conventional Method Fast Method 

512 0.17 0.0 
1,024 0.67 0.0 
2,048 2.70 0.01 
4,096 0.03 
8,192 0.07 

16,384 0.16 

Table A-I provides a comparison of the time for calcu
lating a Fourier transform by a popular conventional 
method and by the faster Cooley-Tukey method. 
These are proportional to N2 and N log2 N, respectively. 
Both methods were programmed in basic FORTRAN 
and run on the IBM 7094.* 

This radical improvement makes Fourier methods 
directly applicable to real-time all-digital processing 
of sensor information with presently available com
puter memories and integrated circuits. The Cooley
Tukey method will be described step-by-step, in terms 
of the procedures involved but without any attempt at 
proving their equivalence to· the direct method. For 
proof of the equivalence of the two methods, the reader 
is referred to the references. ' 

For the radar application, the important filter char
acteristic is the so-called amplitude frequency response, 
or simply frequency response, H ( jw) which is inde
pendent of the phase of the signal at the input of the 
filters. Tbis may be analyzed by either Fourier trans
forms or by Fourier series. 

The calculation of the Fourier series of Equation 
(A-I) can be performed digitally by calculating the 
complex discrete Fourier series in the form: 

(A-2) 

where 

Ak = the kth input sample pair (the real part is the 
in-phase component and the imaginary part is 
the quadrature component) 

W k = the kth complex member of the weighting 
sequence 

F = the complex filter response which was deter
mined by the weighting sequence Wo, WI, ... , 
WK - 1 

* From reference 12. Note that the IBM 7094 computer is slow 
compared to present generation airborne computers. 
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TABLE A-2-First Step of Fast Fourier or Cooley-Tukey Process 

(16 samples per frame: B = Base = 2, 8 = Samples, 

T = Result of first step) 

81 + 8 9 = Tl 
8 2 + 810 = T2 
8 3 + 811 = T3 
8 4 + 8 12 = T4 
8 5 + 8 13 = T5 
86 + 814 = T6 
8 7 + 815 = T7 
8 8 + 816 = Ts 
81 - 8 9 = T9 
82 - 810 = T 10 

8 3 - 811 = T11 
8 4 - 8 12 = T12 
8 5 - 813 = T 13 

8 6 - 814 = T14 
8 7 - 815 = T 15 

8 8 - 816 = T 16 

eiO = 1 + iO = 1 
ei7r = -1 + iO = -1 

Here, the magnitudes of the sequence of W's determine 
the filter shape while the phase angles of the W's de
termine the frequencies of maximum filter response. 
Thus, we may form a bank of N filters using equation 
(A-2) and the arithmetic requirement can be greatly 
reduced by the use of the fast transform algorithm if 
the following reasonable restrictions are accepted. 

1. All filters in the bank are the same shape. 
2. Filter response frequencies for different filters are 

uniformly spaced with a spacing of 

sampling frequency 

any power of 2 

3. The filters required should cover a total band
width which is a significant part of the maximum un
ambiguous bandwidth (the sampling frequency). 

Restriction (1) means that the amplitude part of the 
weighting sequence is the same for each filter and 
allows the weights to be the roots of a unit vector with 
a zero phase angle. Then the amplitude sequence need 
be applied only once to the incoming data sequence 
for the entire· filter bank. The weights that distinguish 
different filters in the bank all have the same magnitude. 

If we assume that a table is available to supply the 
real and imaginary parts of e-i271'nIN, the major arith
metic (to evalut::l,te Equation (A-2) in order to syn
thesize a filter bank) is a series of complex multiplica
tions and additions. Using the base-two (or B = 2) 
version of the fast Fourier method, one of each two 
input measurements (vector voltages) is rotated by an 
appropriate amount and added to and also subtracted 
from the other of a pair of vector measurements. 
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TABLE A-3-Second Step of Fast Fourier or 
Cooley-Tukey Process 

(16 samples per frame: B = Base = 2, T = Result of first step, 

U = Result of second step) 

TI + T5 = UI 
T2 + T6 = U2 

T3 + T7 = U3 
T4 + Ts = U4 

TI - To = U5 

T2 - T6 = U6 
T3 - T7 = U7 
T4 - Ts = Us 

Tg + TI3(i) = U g 

TIO + T14(i) = U IO 
TIl + TI5(i) = Un 
TI2 + T I6 (i) = UI2 

T9 - TIa(i) = Uia 

T IO - T14(i) = U14 

Tn - TI5(i) = UI5 
TI2 - T16(i) = U16 

eiO = 1 + iO = 1 
ei1r12 = 0 + i1 = i 

ei21r12 = -1 + 1:0 = -1 

ei31r12 = 0 - i1 = -i 

Thus, for 16 input samples, there would be 8 "pairs." 
These are the first and the ninth, the second and tenth, 
the third and eleventh, and so on. Rotations at this 
step are by multiples of 211'/2 radians. 

The procedures for the first step are described by 
Table A-2 in which S's are samples and T's are the 
result of the processing. 

During the second step, the T's are operated upon 
in a similar manner except that this time the T's taken 
together are four subscripts apart instead of eight as 
were the S's. (The general rule is that the S's are one
half the sample set apart, the T's one-quarter the 
sample set apart and subsequently the U's which come 
from the T's will be one-eighth set apart and so on.) 
Also, during the second step, the vector rotations are 
by multiples of 27r /4 radians and accordingly the vector 
multiplications are by: 

{

( -1)nI2 
n7r .. n7r 

en'lr/2 = cos - + 't SIn - = 
2 2 i( _1)n-1/2 

n = even 

n = odd 

In each subsequent step, the vector rotations are by 
multiples of angles one-half as great as in the preceding 
step. Thus to form V's from U's, rotations are by 
multiples of 7r /4 and the sines and cosines are 0, ± 1, 
±0.707; to form X's which are from the V's, the rota
tions are by multiples of 7r/8 radians. The X's differ 
from the filter outputs, or F's only in the permutation 
of subscripts (see Table A-5). 

The procedures for the second, third, and fourth 
(last) steps are shown in Tables A-3, A-4, and A-5. It 
should be noted that for the case shown, there are 4 
steps. This is true because using the base, B of 2, there 
are 10gB 16 = 4 steps as was previously described. And 
each step required N / B = N /2 complex multiplications 
and N / B = N /2 complex additions as was described. 

The example given here is perhaps trivial because 
only 16 samples were used for each data frame and 
because the base used was only 2. However, if the same 
16 samples were used but the base were raised to 4, 
the number of steps would reduce from 4 to 2 with an 
overall reduction ratio of 1610g2 16:1610g4 16 or 2:1. 
In the case of a base-4 approach rotations in the first 
step would be by multiples of 27r/4 and the first, fifth, 
ninth, and thirteenth sample would be summed after 
being rotated, etc. In the second and last step, rota
tions would be by multiples of 27r/16 and the first, 
second, third and fourth result of the first step would 
be summed after being rotated, etc. Thus, the exten
sion of the simple-16 sample base-2 example to the 
equally simple 16-sample base-4 example shows the 
general method of the fast Fourier method as well as 
the great reduction in processing compared to the con
ventional method. 

TABLE A-4-Third Step of Fast Fourier or 
Cooley-Tukey Process 

(16 samples per frame: B = Base = 2, U = Result of second step, 

V = Result of third step) 

UI + Ua = VI 

U2 + U4 = V2 

U1 - U3 = Va 
U2 - U4 = VI. 

U5 + U 7(i) = Va 
U6 + Us(i) = V6 

U5 - U7(i) = V 7 

U6 - Us (i) = Vs 

eiO = 1 + iO = 1 

ei1r14 = 0.707 + iO.707 
"ei21r/4 = 0 + il = i 

ei31r/4 = -0.707 + iO.707 
ei47r/4 = -1 + iO = -1 

ei57r/4= -0.707 - iO.707 
ei67r/4 = 0 - 1·1 = -i 

U g + UIl(O. 707 + iO. 707) = V g ei77r/4 = 0.707 - iO.707 
Ulo + UI2 (0. 707 + iO. 707) = V IO 

Ug - Un (0.707 + iO.707) = Vu 
U IO - UI2(0. 707 + iO. 707) = V I2 

Un + UI5(-0.707 +iO.707) = V I3 
UI4 + U16( -0. 707 + iO. 707) = V14 

UI3 - UIa(-0.707 +iO.707) = VIa 
U14 - U16( -0. 707 + iO. 707) = V16 
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TABLE A-5-Last (Fourth) Step of Fast Fourier or Cooley-Tukey Process 

(16 samples per frame B = Base = 2, U = Result of third step, F = Filtered outputs = Result of fourth step) 

VI + V 2 = Xl = Fo 

VI - V 2 = X 2 = Fs 

Va + V 4(i) = Xa = F4 

Va - V 4(i) = X 4 = FI2 

V5 + V 6(0.707 + iO. 707) = X5 = F2 

V5 - V 6(0.707 + iO.707) = X6 = FlO 

V 7 + V s( -0. 707 + iO.707) = X 7 = F6 

V 7 - V s(-0.707 + iO.707) = Xs = F14 

V9 + V lo(0.924 + iO.383) = X9 = FI 

V9 - V lo(0.924 + iO.383) = X IO = F5 

V lI + V 12 ( -0.383 + iO.924) = XlI = F9 

Vll - V 12 ( -0.383 + iO.924) = X l2 = F la 

VIa + V 14(0.383 + iO.924) = Xu = Fa 

VIa - V u (0.383 + iO.924) = Xu = Fu 

V l 5 + V 16( -0.924 + iO.383) = Xli> = F7 

VIS - V 16( -0.924 + iO.383) = X l6 = F lj 

eiO = 1 + iO = 1 

ei7r/8 = 0.924 + iO .383 

e i27r/8 = 0.707 + iO.707 

ei37r/S = 0.383 + iO.924 

ei47r IS = 0 + i = i 

ei57r IS = - 0 .383 + iO. 984 

ei67r/8 = -0.707 + iO.707 

e i77r/ S = -0.924 + iO.383 

eiS7r/8 = -1 + iO = -1 

ei97r IS = - 0 . 924 - iO. 383 

e ilO7r /S = -0.707 - iO. 707 

eilb/S = -0.383 - iO.924 

e il27r IS = 0 - i = - i 

eil37r 18 = 0.383 - iO. 984 

eil47r/8 = 0.707 - iO.707 

eil57r IS = 0.924 - iO. 383 
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INTRODUCTION 

A great amount of research for the solution of linear 
inequalities has been undertaken in the past ten years. 
One of the reasons for this research is the development 
of linear separation approaches to pattern recogni
tionl -5 ,8-16 and threshold logic problems.6 ,7,9 Both of 
these problems require the determination of a decision 
function or decision functions which, in the case of 
linear separation, involve a system of linear inequalities. 

In this paper, an improved iterative algorithm will 
be developed for the solution of the set of linear in
equalities which is written in the following equation: 

Aw> o. (1) 

This algorithm is an improvement of the Ho-Kashyap 
algorithm by choosing a criterion function 

N 

J(y.) = 4 L (cosh !Yi)2 (2) 
i=l 

to be minimized where Yi is the ith component of the N 
by 1 vector y defined below 

Y = Aw - b, b > O. (3) 

The improvement lies in an acceleration of the Ho
Kashyap algorithm caused by a steeper gradient of 
J (y ) as can be seen when a comparison is made be
tween the two criterion functions. Let J hk (y) designate 
the criterion function used in the Ho-Kashyap 
algorithm, 

N 

Jhk(y) = II Y 112 = LYi2. (4) 
i=l 

Since J (y) and J hk (y) reach their respective minimum 

*Presently with Gulf Research & Development Company, Pitts
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when each (cosh !Yi) 2 and each Yi2 are respectively 
minimized, one can simply compare J (Yi) and J hk(Yi) , 
the convex functions of one variable only. Taking the 
gradients of J (Yi) and J hk(Yi) with respect to Yi, one 
obtains 

and 

aJ hk(Yi) 
--- = 2Yi. 

aYi 
(6) 

It is clear that the absolute value of aJ (Yi) / aYi is 
greater than the absolute value of aJhk(Yi)/aYi every
where except at Yi = 0 where they are equal. In gen
~ral, the gradient aJ (y) / ay is greater than the gradient 
aJ hk (y) / ay everywhere except at the origin Y = O. 
Since the gradient descent procedure is used in both 
algorithms, and since Y and b, or Y and w, are linearly 
related, it is conceivable that the proposed algorithm 
may have a higher convergence rate for a solution w. 

As mentioned previously, J(y) reaches a mi!limum 
when each "term (cosh !Yi)2, (i = 1, ... , N), is mini
mized. For each (cosh !Yi)2 to be a minimum, each 
Yi, (i = 1, .... ,N), must equal zero and Y = 0 gives a 
desired solution. Since the b/s are only constrained to 
be positive, J(y) can be minimized with respect to both 
wand b subject to the condition that b > O. Note that 
it is not necessary to attain the minimum value of 
J (y); in fact, a solution w* is obtained whenever 
Y 2:: 0 with b > 0 from which follows A w* 2:: b > o. 

DEVELOPMENT OF THE TWO-CLASS 
ALGORITHM 

Let the matrix A, whose transpose is 
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be represented as 

[an al2 ... aI.] 
A = ~l ~2 • • • U-2n , (7) 

aNI aN2 aNn 

where lXi is an n by 1 augmented pattern vector, 
n = r + 1, and N = nl + n2. The gradient of 
J (y) with respect to w is given by 

where 

aJ(y) 
-- = 2A ts(y) 

aw 

st(y) = [sinh YI, ••• , sinh YN], 

(8) 

and the gradient of J (y) with respect to b is given by 

a~~) = -2s(y), (9) 

where the derivative of a scalar with respect to a 
column vector is a column vector. Since w is not con
strained in any way aJ(y)/aw = 0 implies s(y) = 0 
which, in turn, implies Yi = 0 for all i = 1, 2, ... , N. 
Therefore, for a fixed b > 0, minimizing J (y) with 
respect to w gives 

Y = Aw - b = O. 

Solving the above equation for w, one obtains 

w = A~b (10) 

where A ~ is the generalized inverse of A. 
On the other hand, for a fixed w, aJ (y) / ab = 0 with 

b > 0 dictates a descent procedure of the following 
form, with k denoting the iteration number: 

b(k + 1) = b(k) + db(k) (11) 

where the components of dbi(k), i = 1, 2, ... , N, of 
i1b (k) are governed by 

- b = 2 smh Yi If Yi > 0, 
Abi(k) ex: a i (12) 

1 
(aJ(Y(k) )) . . 

o if Yi ~ O. 

Introduce a positive scalar p (k) as the proportionality 
constant and rewrite equation (12) in the vector form, 

db (k) = p (k ) h (k) , (13) 
where 

h(k) = [hi(k)] = [sinh Yi(k) + I sinh Yi(k) I] (14) 

(i=I,2,···,N). 

As can be shown later, p(k) may be chosen to equal 

p(k) 
1 

(15) 
cosh Ymax (k) 

where 

Ymax(k) = Max I Yi(k) I . (16) 

Substituting (13) into (11) and, from (10), writing 

w(k + 1) = w(k) + p(k)A~h(k), (17) 

one obtains the following algorithm: 

( 

w(O) = A~b(O), b (0) > 0 but otherwise arbitrary 
y(k) = Aw(k) - b(k) 

b(k + 1) = b(k) + p(k)h(k) (18) 
w(k + 1) = w(k) + p(k)A~h(k) 

where h (k) and p (k) are given by equations (14) and 
(15) respectively. Note that in this algorithm p (k ) 
varies at each step and is a nonlinear function of Y (k ) . 
A recursive relation in y(k) can also be obtained from 
(18) , 

y(k + 1) = y(k) + p(k) (AA~ - J)h(k). (19) 

Just like the Ho-Kashyap algorithm, it can be shown 
that the above algorithm (18) converges to a solution 
w* of the system of linear inequalities in a finite number 
of steps provided that a solution exists, and simultane
ously acts as a test for the inconsistency of the linear 
inequalities. These properties are formally stated in 
Theorem I given in the next section. 

THEOREM I 

Before discussing the main theorem, a lemma to be 
used in the proof of the theorem will be given first. 

Lemma 1: Let one consider the set of linear inequalities 
(1) and the algorithm (18) to solve this set. Then 

1) y(k) ::I> 0 for any k; 

and 

2) if the set of linear inequalities is consistent, 

then 
y(k) <I: 0 for any k. 

This lemma is the same as the one given by Ho and 
Kashyap8 except that the iterative algorithm is differ
ent. The proof of the lemma is not given here since it is 
similar to the proof of Ho-Kashyap lemma. Recall 
again the notation used in the lemma: y (k ) ~ 0 means 
that Yi(k) ~ 0 for all i but y possesses at least one 
negative component. This lemma is a rigorous state-



ment that with a consistent set of linear inequalities 
Aw > 0, the elements of the vector y(k) cannot be all 
non-positive. 

Theorem I: Consider the set of linear inequalities (1) 
and the algorithm (18) to solve these inequalities, 
and let V[y(k)J = II y(k) 112. 

1) If the set of linear inequalities is consistent then 

a) ~V[y(k)J ~ V[y(k + I)J - V[y(k)J < 0 

and lim V[y (k) J = 0 implying convergence 
k-+oo 

to a solution in an infinite number of steps; 
and 

b) actually, a solution is obtained in a finite 
number of steps. 

2) If the set of linear inequalities is inconsistent, 
then there exists a positive integer k* such that 

Proof: 

~V[y(k) J < 0 for k < k* 

~V[y(k) J = 0 for k ~ k*, 

and 

y (k) <I:: 0 for k < k* 

y(k) = y(k*) ~ 0 for k ~ k* 

and 

w(k) = w(k*) for k ~ k* 

b(k) = b(k*) for k ~ k*. 

In other words, the occurrence of a nonpositive 
vector y (k ) at any step terminates the algo
rithm and indicates the inconsistency of the 
given set of linear inequalities. 

Part 1: Since the algorithm (18) can be rewritten as a 
recursive relation in y (k ) given by (19), and 8 

V[y(k) J = II y(k) W > 0 for all y(k) ¢ 0 (20) 

V[y (k ) J can be considered as a Liapunov function 
for the nonlinear difference equation (19). Thus 

~ V[y(k) J ~ V[y(k + 1)]- V[y(k) J 
= Ily(k+ 1) 112 -lly(k) W 
= yt(k + l)y(k + 1) - yt(k)y(k) 

= p(k)ht(k) (AA* - I) ty(k) 

+ p(k)yt(k) (AA* - I)h(k) 

+ p2(k)ht(k) (AA* - I) t(AA* - I) h(k). 
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AA*y(k) = 0, ~ V[y(k) J reduces to 

~ V[y(k) J = -2p(k)ht(k)y(k) 

+ p2(k)ht(k) (I - AA*)h(k). (21) 

Further simplification leads to 

~V[y(k)J = -[y(k) + I y(k) I Jt[p(k)R(k) 

+ p2(k)R(k) (AA* - I)R(k) J[y(k) + I y(k) I J 
= -II y(k) + I y(k) I II 2p2(k)R(k)AA*R(k) 

+ p (k ) R (k) - p2 (k ) R2 (k ) . (22) 

d. [sinh Yl sinh YN] where R = lag --, 000, -- • 

Yl YN 

For ~ V[y(k) J to be negative semidefinite, ~ V[y(k) J = 
o only if y(k) = 0 or y(k) ~ 0, the matrix 

[p2(k)R(k)AA*R(k) + P (k)R(k) - p2(k)R2(k) J 

must be positive definite. AA* is positive semidefinite 
because AA* is hermitian idempotent, xtAA*x ~ 0 for 
any x; it follows that ztRAA*Rz ~ 0 for any z; hence 
RAA*R is also positive semidefinite. Now one can 
choose a p(k) such that [p(k)R(k) - p2(k)R2(k) J 
is positive definite. [p(k)R(k) - p2(k)R2(k) J is 
positive definite if 

[p (k ) r u ( k) - p2 ( k ) r ii2 (k ) J > 0 

for all i = 1,2, 000, N. (23) 

Since ruCk) = sinh Yi/Yi > 0 for all i and p(k) is re
stricted to be positive, the above condition reduces to 
the condition, 

1 - p(k)ru(k) > 0 for all i = 1,2, • 00, N. (24) 

For p(k) chosen in equation (15), 

1 
p(k) = ---

cosh Ymax (k ) 

1 sinh Yi(k) 
p(k)ru(k) = -h--(-k) .(k) cos Ymax y~ 

sinh Yi(k) 

t Yi2rf(k) 

n=O (2n + 1) ! 
-----<1. 

t Ymax2n (k) 
n=O (2n) ! 

Since (AA* - I) is hermitian idempotent, and Thus the condition (24) is satisfied and [p(k)R(k) 
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p2(k)R2(k) J is positive definite for 

1 
p(k) = . 

cosh Ymax (k ) 

Then Ll V[y (k ) J has the desired property of negative 
semidefinite for p(k) = l/cosh Ymax(k) and for any 
finite y(k). 

From equation (22) one notes that Ll V[y (k ) J equals 
zero if and only if y(k) = 0 or y(k) ::::; O. Since it is 
assumed that the set of linear inequalities (1) is con
sistent, and from the lemma y (k) « 0, therefore 

Ll V[y(k) J < 0 for all y(k) =;t. 0 (25) 

=0 if y(k) = o. 

By Liapunov's stability criterion, the equilibrium 
state y = 0 of the discrete system (19) can be reached 
asymptotically, i.e., lim II y(k) 112 = 0, which corre-

k~oo 

sponds to a solution w** with A w** = b > O. This 
completes the proof of Part 1 (a) . 

To prove the convergence of the algorithm (18) in a 
finite number of steps, one notes that b (k ) is a non
decreasing vector. Let bt(O) = [1, 1, ..• , 1J, then 

bt(k) ~ bt(O) ~ [1,1, •.. , 1J for any k > o. 

Since Aw(k) = b(k) + y(k), I yt(k) I < [1,1, •.. , 1J 
implies A w* (k) > 0 when a solution w* is reached. 
But V[y(k) J ::::; 1 impli~s I yt(k) I < [1, 1, ..• , 1]. 
Since V[y(k) J converges to zero in infinite time, it 
must converge to the region V[y(k) J = 1 in finite 
time, hence I yt(k) I < [1, 1, ... , 1J, AW(k) > 0, and 
a solution w* = w (k) is obtained in a finite number of 
steps. This completes the proof of Part 1 (b) . 

Part 2: It has been proved in Part 1 that V[y(k) J is 
negative semidefinite independent of the consistency 
of the linear inequalities. Now, if the set of linear in
equalities (1) is inconsistent, one notes that y (k) 
cannot be 0 and hence V[y (k ) J cannot become zero 
for any k > O. There must exist a value of k, called 
k*, such that 

Ll V[y(k) J < 0 for 0::::; k < k* 

=0 for k = k*, 

y(k) « 0 for 0::::; k < k*. 

But V[y(k*) J = 0 if either y(k*) = 0 or y(k*) ::::; O. 
Since y(k*) =;t. 0, this implies y(k*) ::::; 0 and hence, 

from (14), h(k*) = O. Equation (19) indicates that 

y(k) = y(k*) ::::; 0 for all k ~ k* 

As a consequence, one obtains 

Ll V[y(k) J = 0 'for all k ~ k* 

h(k) = 0 for all k ~ k* 

w(k) = w(k*) for all k ~ k* 

b(k) = b(k*) for all k ~ k* 

This completes the proof of the theorem. 

A n Optimum Choice of the Scalor p (k ) 
The choice of p(k) = l/cosh Ymax(k) in the previous 

section is only one of many possible choices of p (k ) 
for the convergence of the algorithm (18). The con
vergence rate may be further improved by choosing a 
p (k) such that the decrease in the Lyapunov function 
V[y(k) J is maximized at every step, that is, 
-~V[y(k)J is maximized with respect to p(k). Taking 
the partial derivative of ~ V[y (k ) J in equation (22) 
with respect to p(k) leads to an optimum value of 
p(k) given by 

p(k) 
[y(k) + I y(k) I JtR(k) [y(k) + I y(k) I J 

2[y(k) + I y (k) I JtR(k) 
• [/ - AA*JR(k) [y(k) + I y(k) I J 

(26) 

provided that / - AA # > O. For this value of p (k) , 
~ V[y(k) J is negative definite in [y(k) + I y(k) I J 
which is required in the convergence proof of the 
algorithm (18). A flow chart summarizing the above 
procedure is shown in Figure 1. 

EXAMPLES 

The algorithm (18) has been applied to pattern 
recognition and switching theory problems. For switch
ing theory problems the generalized inverse of the N 
by n pattern matrix A is simplified to 

A* = 2-(n-l)At. 

Two example problems will be presented, one in switch
ing theory and the other in pattern recognition. 

Example 1: Consider a Boolean function of eight binary 
variables which corresponds to the separation of the 
two classes: 

Class C1 /= (127, 191, 215, 217 to 255) 

Class C2 = (0 to 126, 128 to 190, 192 to 214, 216). 



yes 

Problem is 
not 
linearly 
separable 

p - equation (15) 
or equation (26) 

yes 

Problem is 
linearly 
separable 

Figure l-Flow chart of the proposed 2-class algorithm 

Here m = 2r = 256 and n = r + 1 = 9, where r is the 
number of binary variables. For 

bt(O) = [.1, .1, .1, •.• , .1, .1, .1J 

and p(k) given in equation (26), the algorithm termi
nates after the tenth iteration and gives a solution 
weight vector w for the switching function, 

w t = [0.3732, 0.2278, 0.2278, 0.1654, 0.0769, 0.0569, 

0.0247, 0.0247, 0.0247J, 

The same example was solved using the Ho-Kashyap 
algorithm.s It required 229 iterations with the same 
initial b(O). The solution weight vector w for the Ho
Kashyap algorithm is 

w t = [0.5741, 0.3447, 0.3447, 0.2425, 0.1155, 0.1080, 

0.0436,0.0436,0.0436]' 

The computing time for the proposed algorithm was 
50 seconds on IBM 7090 with a cost of $1.50, while 
the Ho-Kashyap algorithm required 80 minutes with a 
cost of $23.50. Thus the proposed algorithm not only 
reduced the number of required iterations but also 
the computing time and cost to solve the problem. It 
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was observed, that for 0.5 ~ bi(O) ~ 0.001 and p(k) 
given by equation (26), for all examples tried by the 
authors that the number of iterations was less than or 
equal to the number of iterations required by the Ho
Kashyap algorithm. In some cases the number of 
iterations was reduced by a factor of 25.17 

Example 2: The proposed algorithm was also applied 
to a preliminary study of a biomedical pattern recog
nition problem. The problem is to investigate whether 
or not a change exists in the diurnal cycle of an in
dividual person upon a change in his environmental 
condition or physiological state and if such a change 
may be used to diagnose physical ailments under 
strictly controlled conditions by measuring the amounts 
of electrolytes present in urine samples every three 
hours. IS The data used in this example consisted of 
thirteen sample patterns under two different conditions. 
Each pattern lias eight components which represent 
the mean excretion rates of an electrolyte for each 
three-hour period of the twenty-four hour cycle. Thus 
N = 13 and n = r + 1 = 8 + 1 = 9; the size of the 
pattern matrix A is 13 by 9. The pattern matrix A is 
shown in Table 1. Let bt(O) = [0.1,0.1, ···,0.1]' For 
this problem the Ho-Kashyap algorithm with p = 1 
required 7 iterations to determine the separability. 
However, the proposed algorithm with p(k) given by 
equation (26) required only two iterations, where 
p(l) = 5.270684 and p(2) = 3.197152. The problem 
is linearly separable and a solution weight vector w 
obtained by the proposed algorithm is 

wt(2) = [-13.6089, 2.5915, 1.6847, 2.2314, 0.3414, 

3.0077, 1.8428, 1.6559, 0.0096J 

EXTENSION TO THE MULTICLASS 
ALGORITHM 

The problem of multiclass patterns classification is 
that it must be determined to which of the R different 
classes, Cl , C2, ••• , C R, a given pattern vector, x, be
longs. If the R-class patterns are linearly separable, 
there exist R weight vectors Wj to construct R dis
criminant functions gj (x), (j = 1, 2, ... , R), such 
that 

gj(x) = XtWj> XtlVi = gi(X) for all i ¢ j, x E Cj. (27) 

Chaplin and LevadPo have formulated another set of 
inequalities which can be considered as a representa
tion of linear separation of R-class patterns. This set 
of inequalities is 

II xtU - e/ II < II xtU - eit II for alIi ¢j, x E Cj (28) 

for allj = 1,2 ••• ·, R 
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TABLE 1-The Pattern Matrix A for Example 2 

Xo Xl X2 X3 

1.00 .96 1.19 1.35 
1.00 .75 1.19 1.35 
1.00 .80 1.13 .85 
1.00 .66 1.40 1.25 
1.00 2.04 1.14 1.10 
1.00 1.02 1.32 1.06 

-1.00 - .48 -1.01 - .68 
-1.00 -.55 -.55 -1.04 
-1.00 -.87 -.79 -1.34 
-1.00 -.09 -.70 -.67 
-1.00 -1.12 -1.75 - .51 
-1.00 -1.20 -1.47 -.60 
-1.00 -1.43 -1.79 -.68 

where U is an n X (R - 1) weight matrix and the 
vectors e/s are the vertex vectors of a R - 1 dimen
sional equilateral simplex with its centroid at the 
origin. If each ej is associated with one class, x is classi
fied according to the nearest neighborhood of the 
mapping xtU to the vertices. Inequalities (28) are, 
in fact, equivalent to inequalities (27) with 

(j = 1, 2, 00 0, R) (29) 

Let the N X n pattern matrix A be defined in the 
following manner, 

A= Aj ~ lxtj (30) 

njxti 

AR 

IxtR 

X4 Xs X6 X7 Xs 

.75 1.12 .94 .73 .97 
1.06 1.07 .97 .81 .81 

.90 1.14 1.27 1.01 .88 
1.09 1.54 .79 .27 .00 

.57 .62 .66 .47 1.39 
1.03 1.07 1.16 .77 .57 

- .72 -1.76 -1.25 - .62 -1.47 
- .91 -1.40 -1.17 -1.28 -1.09 
-.86 - .44 -2.15 -.82 -.74 
-.80 -1.93 -1.29 -1.14 -1.39 
-.72 -1.25 -.46 -.89 -1.29 
-.96 -1.13 -.89 -.74 -1.00 
-.75 -.82 -.56 -.94 -1.04 

where Aj is an nj X n submatrix having as its rows nj 
transposed pattern vectors of class C j, 

zxtj, (l = 1, 2, 000, nj), 

where the right subscript denotes the pattern class and 
the left subscript denotes the lth pattern in that class, 
and N = nl + n2 + 0 0 0 + nR. Designate the n X 
(R - 1) weight matrix U as composed of (R - 1) 
column vectors Uq, (q = 1, 2, 000, R - 1), 

U = [Ulo 0 °Uqo 0 OUR-I]. (31) 

Also define an N X (R - 1) matrix B as 

lb tl 

lb t j 
B= B j ~ (32) 

njbtj 

BR 

lb t 



whose row vectors lbtj, (j = 1, 2, ••• , R; l = 1, 2, .•• , 
nj), correspond to the class groupings in the A matrix 
and satisfy the following inequalities 

for all i ~ j (33) 

for all j = 1, 2, .•• , R. 

B j is an nj X (R - 1) submatrix of B, j = 1,2, ... , R. 
Let an N X (R - 1) matrix Y be defined as 

Y ~ AU - B. (34) 

The representation of Y may be in the form of either 
an array of (R - 1) column vectors, Yq, (q = 1, 2, ••• , 
R - 1), 

(35) 

or an array of N row vectors l Y j, (j = 1, 2, ... , R; 
l' = 1, 2, .•• , nj), corresponding to the class groupings 
in ,the A matrix, 

lYj 
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in this paper is 

AjU(ej - ei) > 0 for all i ~ j 

for all j = 1, 2, ..• , R 

(38) 

Associated with it is another set of linear inequalities 

Yj(ej - ei) = (AjU - B j) (ej - ei) > 0 

for all i ~ j 

for all j = 1, 2, •.• , R 

or 

(IXtjU - zb tj ) (ej - ei) > 0 

for all i ~ j 

(39) 

foraH j = 1,2, ··R 

for all l = 1, 2, • ·nj. 

Since, by (33), Bj(ej -=- ei) is constrained to have posi
tive components for all i ~ j, inequalities (39) implies 
the inequalities (38) and hence (27) or (28). When 
inequalities (38) are satisfied for all i ~ j and for all 
j = 1, 2, ..• , R, a solution weight matrix U is reached 
which will give linear classification of R-class patterns; 
that is, if 

for all i ~ j 

then x is classified as of class Cj. 

Y= Yj ~ (36) DEVELOPMENT OF THE MULTI-CLASS 

njYj 

YR 

lYR 

where Yj is an nj X (R - 1) submatrix of Y, 

Y j = AjU - B j 

or 

j = 1,2, •.• , R 

l = 1, 2, ••• , nj. 

(37) 

The set of linear inequalities which will be discussed 

ALGORITHM 

For the notational simplicity in the derivation of 
the gradient function to be developed below, let the 
matrices A, U, B, and Y in equations (30), (31), (32), 
and (35) be represented respectively as 

(40) 

u= (41) 

(42) 

and 

(43) 
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SUbstituting these into equation (34), one obtains 

n 

Yij = L aikUkj - bij. 
k=1 

Let C (Y) be an N X (R - 1) matrix defined by 

(44) 

C(Y) = [eij] ~ [cosh !Yij] (45) 

(i = 1, "',N;j = 1, "',R -1). 

The criterion function J (Y) to be minimized is chosen 
as the trace of 4C t ( Y) C (Y) , 

N R-l 

J(Y) ~ Tr (4CtC) = L LJij(Y) (46) 
i=1 j=1 

where 

Jij(Y) = 4 (cosh !Yij)2. 

Determine the gradients of J (Y) with respect to both 
U and B, 

aJ(Y) = 2AtS(Y) 
au 

aJ(Y) = -2S(Y) 
aB 

(47) 

(48) 

where S(Y) is an N X (R - 1) matrix with the follow
ing representation 

S (Y) ~ [sinh Yij] 

(i = 1, 2, "', N; j = 1, "', R - 1) 

n1Sl(Y) 
Sl(Y) ------

lSj(Y) 
Sj(Y) 

~ ~ (49) 
njSj(Y) 
------

SR(Y) 

------
lSR(Y) 

and zS j (Y) is a row vector of the following form 

zSj( Y) = [ZSjl (Y), ZSj2(Y),' • " ZSj(R-l) (Y)] 

= [sinh Y(nj_d"Z) ,1, "', sinhY(nj_l+Z),R-l]. (50) 

Since U is not constrained in any manner, aJ ( Y) / au = 

o implies that S (Y) = 0, which, in turn, implies that 
sinh Yij = 0 and hence Yij = 0 for all i = 1, "', Nand 
j = 1, 2, "', R - 1. Therefore, for aJ(Y)/au = 0 
and a fixed B, 

Y = AU - B = 0 

which gives a least square fit of 

U = A#B. (51) 

On the other hand, for a fixed U and the constraint 
Bj(ej - ei) > 0 for all i ¢ j as given in (33), one 
might attempt to increment B according to the follow
ing gradient descent procedure to reduce J (Y) at each 
step, 

B(k + 1) = B(k) + oB(k) (52) 

where the qth element, o[zbjq(k)], of o[zbl(k)] in 
oBj(k) is given by 

[
-P(k) [aJ(Y)(k)] 

z aB jq 

o[zbjq(k)] = if zYj(k) (ej - eq) > 0 

1 

= 2p(k) ZSjq(Y(k»), 

for any q ¢ j 
o if zYj(k) (ej - eq) S 0 

l for any q ¢ j. 

However, zYj(k) (ej - eq) > 0 does not imply 
zSj(Y(k») (ej - eq) > O. In order to make o[zb/(k)] • 
(ej - eq ) ~ 0 so that (33) can be satisfied at eaJh 
step, a modified gradient descent procedure, similar to 
the one adopted in Teng and Li's generalization of the 
Ho-Kashyap algorithm,16 is to be used. Let a (R - 1) X 
(R - 1) non-singular matrix E j be defined as16 

Ej = [ej - el, "', ej - ej-l, ej - ej+l, "', ej - eR]. 

(53) 
Also define 

Zj = YjEj for all j = 1,2, "', R. (54) 

The increment o[zbjq(k)] is then given in terms of 

12p(k) ZSjq(Z(k») 

j 
= p(k) [zSjq(Z(k») + zAjq(k)] 

if zZjq(k) 
o[zbt·(k)E] - = zYj(k) (ej - eq) > 0 (55) 

J J q -lo if zZjq(k) 

= zYj(k) (ej - eq) S 0 
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where where p (k) may be chosen as equal to 

(56) 

and, following (50), 

R nj 
L: L: {zEj(k) + zHj(Y(k)) (El)-IR-l 
j=1 Z=1 

ZSjq(Z(k)) = Sinh zZjq(k). (57) 
R-I 

Putting into vector representation, 2 L: hqt(J - AA#)hq 

(58) 
q=1 

(65) 
or 

provided that 
o[zbj(k)] = p(k) [zSj(Z(k) ) + zAj(k)]Erl 

= p(k) zHj(Y(k)) 
R n° 

(59) L: t {zEj(k) + zHj(Y (k)) (El)-IR(zZj(k) )El 

where 

zHj(Y(k)) ~ [zSj(Z (k)) + zAj(k) ]Erl. (60) 

Hj(Y(k)) = [Sj(Z(k)) + Aj(k) JErI 

H(Y(k)) = Hj(Y(k)) 

HR(Y(k)) nRHR(Y(k)) 

= [hl(Y(k)) ••• hq(Y(k)) ••• hR_I(Y(k))]. 

(61) 

j=1 Z=l 

• Hj(Y(k))} > 0 (66) 

where17 

(67) 

C,i = 1, 2, "', R; l = 1, 2, "', nj) 

( Z 0) ~ Sinh zZjq > 1 
rqq z J Z -, 

z jq 
(q = 1, "', R - 1). (68) 

ZEj ~ [zZjR(zZj) + zAjJ(ElEj)-IR-l(ZZj) 

• [zZjR(zZj) - zAj]t ~ 0 for all j and all l. 

(69) 

The initial B matrix, B(O), may be chosen from 

It follows from (58) and (56) that Bt(O) = ~[el' •. ·el I ••• ! ej, "', ej l ••• 1 eR, "', eR], 

o[zbj(k) ](ej - ei) ~ 0 for all i ~ j and for allj. ~ > O. (70) 

Then, from (59), 

o[B(k) J = p(k)H(Y(k)). 

Substituting the above equation into (52), one has 

B(k + 1) = B(k) + p(k)H(Y(k)) (62) 

Using the above equation in (51), one has 

U(k + 1) = AlfB(k + 1) 

= AIf{B(k) + p(k)H[Y(k)]} 

= U(k) + p(k)AlfH[Y(k)] (63) 

Therefore, an iterative algorithm to solve for U can be 
proposed in the following: 

1 
U(O) = AlfB(O) 
Y(k) = AU(k) - B(k), Zj(k) = Yj(k)Ej 

B(k + 1) = B(k) + p(k)H[Y(k)] 
HlY(k)) = [Sj(k) + Aj(k) JErI 
U(k + 1) = U(k) + p(k)AlfH[Y(k)] (64) 

A recursive relation in Y(k) is also obtained as follows: 

Y(k + 1) = Y(k) + p(k) (AAIf - J)H[Y(k)] (71) 

This algorithm is a convergent algorithm for the 
solution U of the set of linear inequalities (38). The 
nonlinear separability of the multi-class patterns can 
also be detected by observing at a certain step k* 

for all i ~ j 

for all j = 1, 2, "', R. 

CONVERGENCE PROOF OF THE 
MULTI-CLASS ALGORITHM 

The convergence of the proposed multi-class algo
rithm can be proved in the following steps. 

Lemma 2. Consider the set of inequalities (38) and the 
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algorithm (64) to solve it. Then 

1) Yj(k) (ej - ei) :1> 0 for all i :;C j 

for all j = 1, 2, •• , R 

for any k 

2) If (38) is consistent, then 

Yj(k) (ej - ei) <t 0 for all i :;C j 

for all j = 1, 2, ••• , R 

for any k 

This lemma can be proved by contradiction. 17 ,16 

Theorem II: Consider the set of linear inequalities (38) 
and the algorithm (64) to solve it, and let 

V[Y(k)] = II Y(k) II ~ Tr [Yt(k)Y(k)] 

and 

R-l R nj 

= :E II yq(k) W = :E :E II iYj(k) 112 (72) 
q=1 j=1 i=1 

1) If the set of linear inequalities is consistent, then 

a) ~ V[Y(k)] ~ V[Y(k + 1)] - V[Y(k)] 

<0 
and 
lim V[ Y (k )] = 0 implying convergence to 

a solution in an infinite number of iterations; 
and 

b) a solution is obtained in a finite number of 
steps. 

~) If the set of linear inequalities is inconsistent, 
then there exists a positive integer k* such that 

V[Y(k)] < 0 

V[Y(k)] = 0 

for k < k* 

for k ~ k* 

zYj(k) (ej - ei) <t 0 for k < k* 

for all i:;c j 

for all j = 1, 2, •.• , R 

zYj(k) (ej - ei) = Yj(k*) (ej - ei) ~ 0 

for all k ~ k* 

for all i :;C j 

U(k) = U(k*) 

B(k) = B(k*) 

for all j = 1, 2, ... , R 

for k ~ k* 

for k ~ k*. 

That is, the occurrence of a matrix Y (k) with all non
positive elements of Y (k) (ej - ei) for all i :;C j and 

all j at any step terminates the algorithm and indicates 
the nonlinear separability of the R-classpatterns. 

Proof: Making substitution of the recurrence relation 
of Y(k) in (71) and simplification, it can be shown 
that 

~V[Y(k)] = Tr [Yt(k + I)Y(k + 1) - yt(k)Y(k)] 

R nj 

= -2p(k) :E :E zHj(Y(k» zY/(k) 
j=1 l=1 

R-l 

+ p2(k) :E hqt(Y(k» (I - AA*)hq(Y(k». 
q=1 

(73) 

From (57), (50) and (67), 

zSj(Z) = zZjR(zZj). (74) 

Substituting (74) into (60) gives 

zHj(Y(k» = [zZj(k)R(zZj(k» + zAj(k) ]Erl. (75) 

Substitute (75) and (54) into the following expression, 

R nj 

-2p :E :E zHj zY/ 
j=1 l=1 

= -p :E :E zHj(Y(k» (E/)-lR-l(ZZj)E/ zH/(Y(k» 
j z 

- p :E :E [zZjR(zZj) + zAj](E/Ej)-lR-l(lZj) 
j z 

• [ZZjR(lZj) - zA;]t. (76) 

It has been shown that the off-diagonal elements in 
(E/Ej )-1 are negative,16 and, from (67) and (68), 
R-l(zZj) is a diagonal matrix with all positive diagonal 
elements. It follows that the off diagonal elements of 
(E/Ej)-IR-l(ZZj) are also negative. From (56), (60), 
and (74), the elements of [zZjR(zZj) + zAj] are either 
positive or zero, and the corresponding elements of 
[zZjR(zZj) - zAj] are either zero or negative. Hence, 
the last term in (76), which is equal to -lEj as defined 
in (69), is shown to be non-positive. Substituting (69) 
into (76), which, in turn, is substituted into (73), one 
obtains 

R ni 

~ V[Y(k)] = -p(k) :E :E zHj(Y(k» {(E/)-l 
}=1 l=l 

R nj 

- p(k) :E :E ZEj(k) 
}=1 l=1 

R-l 

- p2(k) :E htq(Y(k) )AA*hq(Y(k». (77) 
q=1 

~V(Y(k» is negative definite if the right hand side 



of the· above equation is negative definite in lH j (Y (k) ) 
or in [lZjR(lZj) + lAj]. The last two terms on the 
right hand side are negative semi-definite. If a value 
of p (k) can be found such that 

R nj 

L: L: lHj(Y(k» {(E/)-l[R-l(lZj) - p(k)I]Ejt} 
j=l l=l 

• lHj(Y(k» > 0 

then aV(Y(k» is negative definite in [lZjR(zZj) + 
lAj]. Note that if 

1 
p(k) = , 

cosh Y max(k) j,l,q 

[R-l(lZj) - p(k)I] is positive definite and has real 
eigenvalues as can be shown by following (67) and 
(68); but it is not certain that (E/)-l[R-l(ZZj) -
p(k)I]E/ can be positive definite for all j and alll. Let 
p(k) be so chosen as to maximize -aV[Y(k)] at each 
step, one obtains a choice of p(k) as given in (65), 
provided the condition (66) is satisfied to make sure 
that p(k) > O. For this value of p(k), 

[ t E {/Ej(k) + ,Hj(Y(k» (E;')-l 

• R(,zj(k) )E;'(,Hj(Y(k») I J 
aV(Y(k» = - ---------

R-l 

4 L: htq(Y(k» (I - AA#)hq(Y(k» 
q=l 

~O for zHj(Y(k» ~ 0 or [lZjR(zZj) + zAj] ~ 0 

for alll and j. 

Hence, .aV[Y(k)] is negative definite in [ZZjR(lZj) + 
lAj]. Note that ZZjR(lZj) + lAj = 0 for all j and alll 
only if zZj ~ 0, that is, only if Y(k) = 0 or iYj(k) • 
(ej - ei) ~ 0 for all i ~ j and for all j. Since it is as
sumed that the set of the inequalities (38) is consistent, 
from the lemma Yj(k) (ej - ei) ~ 0 for all i ~ j and 
for all j; therefore, 

aV[Y(k)] < 0 

=0 

for all Y(k) ~ 0 

if Y(k) = 0 

and the solution Y = 0 of the equation (71) can be 
reached asymptotically, that is, 

lim II Y(k) 112 = 0 
k-+«) 

which corresponds to a. solution U** with A U** = B 
such that AjU**(ej - ei) = Bj(ej - ei) > 0 for all i ~ j 
and for all j. This is the proof of Part 1 (a). 
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Note that for B (0) given in (70), and 0 > 0, 

lbtj(k + l)Ej = lbtj(k)Ej + p(k) [lSj(Z(k» + lAj(k)] 

for all land j. 

For a sufficiently large but finite k, V[Y (k)] < 1 such 
that IllYj(k) 112 < 1 and 

lYj(k)Ej > -{3e/Ej 

It follows then 

for all l ~ j 

AjU(k)Ej = Bj(k)Ej + Yj(k)Ej > 

and all j. 

(1 + o)Bj(O)Ej - Bj(O)Ej > oBj(O)Ej > 0 for all J 

which indicates a solution U* = U(k) is obtained in a 
finite number of iteration steps. This is the proof of 
part 1 (b). 

Part 2 can be proved in the same way as that in the 
Ho-Kashyap theorem.17 

CONCLUSION 

A new generalized inverse algorithm for R-class pattern 
classification is proposed which is parallel to the one 
given by Teng and Li. In the case of R = 2, the algo
rithm is reduced to the improved dichotomization 
algorithm developed in the beginning; except here A2 
is composed of transposes of augmented pattern vectors 
without change of sign and B2 is a column vector con
sisting of elements all equal to e2 = -1. This corre
sponds to the reformulation of the Ho-Kashyap algo
rithm as mentioned by Wee and Fu.15 The-proposed 2-
class algorithm has a higher rate of convergence than 
previous methods for a certain range of initial b vector 
or vectors. A comparison has been made between this 
improved algorithm with p(k) given by equation (26) 
and the Ho-Kashyap algorithm with p = 1, the con
vergence rate may be greatly increased for .001 ~ 
bi(O) ~ 0.5 (i = 1, 2, "', N), as verified by the 
computer results of several switching theory and 
pattern classification problems. For problems where a 
large number of iterations, for example, greater than 
twenty, were required for the Ho-Kashyap algorithm, 
the proposed algorithm reduced this number of itera
tions by a factor of 20 or more. Even though the cost 
per iteration for the proposed algorithm is 10 to 20 
per cent greater than the Ho-Kashyap algorithm, the 
total cost is reduced. For problems where a small num
ber of iterations were required by the Ho-Kashyap 
algorithm, less than twenty, the proposed algorithm 
reduced the number of iterations by as much as 30 
percent. Experimental results suggest that the proposed 
algorithm is advantageous· for problems requiring a 
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large number of iterations by the Ho-Kashyap 
algorithm. 
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The social impact of computers 

by O. E. DIAL 

Baruch College 
New York, New York 

People are afraid of computers, 
But they shouldn't be. 
Computers are good guys! 

MADMAN KRONENBERG 

During two recent years at MIT, I had a teletype
writer assigned to my use. The teletype gave me instant 
access to a large computer complex in which I had 
various sets of data stored. The teletype was located 
in a basement room which was generally dark except 
for the light focused over my teletype and small desk. 
It was always silent in that room except for the noise 
of the teletype. In this setting, I would conduct analysis 
of my data by the hour. I would sort along particular 
variables, intersect those which seemed promising and 
in this way be led from one avenue of investigation 
to another. I was in effect carrying on a dialogue with 
the computer. I asked a question and I got an answer. 
The answer led me to other questions. Sometimes the 
computer would complain that I had not made my 
inquiry in the correct form and it would suggest that 
I try again. It kept me informed of the time I had used 
and how much I had remaining; what data sets I had 
placed on file and what analysis I had completed. I 
could cuss it (and often did), thank it, wait impatiently 
the few seconds it sometimes required to respond, and 
get excited about what it was telling me. Given all of 
this, it should not seem strange that this machine came 
to be human to me for long periods of time. It had 
personality, value, integrity-and it carried on conver
sations with me alone. I understand Kronenberg when 
he says "computers are good guys. "1 

But of course computers are neither good nor bad. 
They are neutral instruments which are used for good 
and bad purposes. But their stated purposes often do 
not take accounts of other effects they are having in 
society. The purpose of this paper is to speculate on 
some of those effects. 

First let me recount a few statistics which will serve 
to suggest the magnitude of the subject. After doing so, 
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I believe that you will conclude with me that the most 
impressive thing about computers is the future, not 
the past. Over 71,000 computers have been installed 
in the United States by the time of this writing. Equally 
important, there are back orders for over 15,000 more.2 

This means that there are back orders in this year 
alone for more than one-fifth of the total number of 
computers installed during the past, say, twenty-five 
years. Demand for computers is changing, becoming 
stronger. 

So much for numbers of computers. How about 
changes in the computer itself. Paul Armor recently 
had occasion to report these changes in terms of orders 
of magnitude. 3 He says that the speed with which 
computers operate has increased by an order of magni
tude about every four years. The size of the computer 
has decreased an order of magnitude in the last ten 
years, and it will shrink another three orders of magni
tude in the next ten. The cost of computation, too, has 
declined, by an order of magnitude every four years. 
To summarize at this point computers are becoming 
more numerous, faster, smaller and cheaper. 

But other changes are' taking place. For one, the 
computer industry is serviced by our system of higher 
education. In the brief span of years since the term 
"Computer Scientist" was invented, the system has 
produced computer scientists at a rate which has al
ready wedged out 2% of· America's scientific man
power.4 At a lower order of preparation, the successive 
tides of graduates from the countless programming 
schools in every large city of the country have even 
now not met demand. Perhaps the best evidence of 
this unsatisfied demand is the recruiting piracy which 
has become commonplace in many computer hardware 
and software companies. 

Another area to be noted here is that of computer 
applications. These have increased along an exponential 
curve in both breadth and depth. From earlier employ
ment in scientific computation, we now find computers 
in use by virtually every size and level of public and 
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private activity, and for an incredible range of appli
cations-from trash-collection routing, to optimization 
of freight hauling and warehousing; from the operation 
of traffic control systems, to the optimal stationing of 
emergency vehicles; from the automation of library 
inventories and ordering, to the management of military 
supply and equipment inventories; from hospital pa
tient monitoring, to the conduct of regional health 
planning; and from matching the unemployed with 
available jobs, to matching the lonely heart with avail
able dates. 

We. find similar variety in the users of systems-the 
clergy, politician, physician, professor, builder, man
ager, government official, soldier, sportsman, and on to 
an endless list of persons who just a few years back 
could not have anticipated their own involvement with 
computers. For example, a new tide of computer-related 
technology has made multiple-access networks common- . 
place, and already we are looking for its marriage to 
CATV in bringing the blessings of the computer to the 
housewife. This application will not only require the 
ultimate in user-oriented languages, but some change 
in the rules as to· who has the last word as well. 

In any event, it must be perfectly clear that com
puters are so well entrenched in every segment of our 
society that it is merely academic to discuss its impact. 
There is not much we could do about it at this point 
even if we tried. But it does make an interesting subject 
for speculation, which is what I want to try to do at 
this time. 

When a computer is performing in a particular appli
cation, its first-order effect is assessed fully in terms of 
how well it is performing with respect to that appli
cation. But taken as a whole, it must be obvious that 
the computer industry has created a whole range of 
second and third order effects. Second-order effects 
might include a wide assortment of contributions, e.g., 
contribution to GNP, contribution to efficiency in pro
duction and administration, contribution to improved 
scientific and technological capabilities, and a sub
stantial contribution to an improved potential for the 
collection, storage and selective retrieval of important 
data and all that this implies. 

Third-order effects flow from these contributions. 
For example, a municipality is for the first time able to 
create an informational-decision system which is useful 
for the conduct of its operations, and the planning and 
evaluation of its programs. This can yield enlightenment 
in goal formulation and improvements in the quality of 
life. Whether this potential will be exploited remains to 
be seen, but it is there, as an indirect effect of computer 
technology. 

But it is not these effects that I am interested in 
for purposes of this paper. I believe that computer 

technology has had a number of impacts upon society 
where the causal relations are even more remote than 
the examples I have enumerated, and thus more difficult 
to trace and prove. They must be considered specu
lative. 

First of all, there is a growing persuasion to the sys
tems approach in the belief that it is the only profitable 
method of inquiry. Of course, there is disenchantment 
in some quarters, but not enough to slow the movement. 
This persuasion is understandable given the fact that 
all computer programs are in fact systems. Input is 
processed to output. Computer programs are discrete 
and capable of precise specification. Its processes are 
clearly visible for inspection and verification. Further
more, much of it is modular, thus permitting hier
archical structuring as sub-systems into larger systems. 
The complex can and must become simple with this 
approach. All mystery is removed. The problem of the 
social sciences, for example, is merely to isolate and 
relate the variables in the social system. We can begin 
at simple levels and build toward the complex. If we 
are successful, given a variety of inputs for purposes of 
testing their effects, we can simulate processes within 
systems at all levels. 

Second, I think, is the pervasiveness of programming, 
or perhaps I should say, the universality of program
ming. Witness its spread from the computer to becom
ing a methodology for pedagogy. Considerable atten
tion has been given to the wonders of the programmed 
textbook, the programmed plan, the programmed 
career, and so on in a list challenged only by the 
innovative limits of the entrepreneur. The extent to 
which programs already govern our thought processes 
is most appropriate for inquiry. It carries with it a 
subtle reenforcement of rationality as a value in our 
society, but rationality as defined in terms of program
ming. All options are reduced to the program's world of 
mutually exclusive IF STATEMENTS. Computers and 
programs are absolutely rational and because of this, 
they can solve infinitely complex problems with great 
accuracy, provided that the unravelling can reduce the 
problem to additions no more complex than a value of 
one or zero to a value of one or zero. That which 
cannot be reduced to such algorithms are merely held 
in abeyance until its true nature can be understood. 
Understanding is equivalent to order.' The reduction of 
phenomena to specific variables is essential; nothing 
else will compute. A corollary to this spells the decline 
of intuition and belief as positive values in society. 

Third, I think, developments in computer technology 
are encouraging streams of reevaluation as to the 
feasibility of keeping and using historical records of 
all types. Record reductions may increasingly be based 
on entire statistical populations, as opposed to sampling. 



This can permit, in fact encourage, the collection of 
environmental and social data on a scale never before 
contemplated. This may be amassed longitudinally in 
such quantities and periods as to permit real headway 
in social sciences research. Such headway has profound 
implications for the close monitoring of the behavior, 
activities and welfare of increasingly more numerous 
segments of society and its institutions. With knowledge 
and monitoring can come control. 

Fourth, I think, the developments I have just dis
cussed will precipitate an increasingly tense confron
tation with the individual's right to privacy as a trade
off with society's right to know. To paraphrase Alan 
Westin, the practical boundaries of privacy, as we knew 
them before the age of the computer, are being re
defined in the onslaught of the greatest data-generating 
society in human history. 5 Where this will take us is of 
course unknown, but I deeply suspect that it will be 
in the direction of acceptance of progressive reductions 
of the data trails which we now hold to be private. 
The urgency of the crises presented by over-population 
and environmental pollution will demand (and we will 
accede to) planning controls. These are planning and 
controls which could never have been contemplated 
without computer technology. The masses of data which 
are prerequisite would quickly have inundated manual 
processes of data collection, retrieval and massage. It 
may well be that privacy is going the way of the skirt 
length-ever more revealing of the subject it covers. 

The remaining areas of impact of computer tech
nology on society seem to me to be relatively trivial, 
but nonetheless worthy of note. We can anticipate in
creasingly insistent pressures to articulate the param
eters of highly repeti~ive and routine decisions to the 
end that they may be automated. This should elevate 
decision-making in which true judgment is involved to 
higher orders of application. The lingering worry is, of 
course, that in. our anxiety to do this work we will 
force the articulation of these parameters, ruling in a 
measure of cases, however small, in which judgment 
should remain a factor. This has implications for the 
demise of concepts of the importance of the individual 
and of the justice which must be granted him. Where 
we explicitly settle for validity in two or three sigmas, 
we are in fact writing off the cases beyond that as 
unworthy of concern. 

While this list of speculations is by no means ex-
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haustive, it should serve to illustrate at least some of 
the impacts of computer technology upon society. The 
odd thing is, that we shall not really know what the 
second and third-order effects are until we have applied 
computers on a considerable scale to the search. I 
don't think that this will be done for many years. 

The difficulty is, of course, that society does not 
value information sufficiently at the margin. When 
computers are employed for public purposes, we demand 
that their application have a short payoff. Political 
feasibility is not tested by the automation of personnel 
accounting systems because savings achieved over man
ual systems are quickly realized. On the other hand, the 
development of comprehensive information systems for 
purposes of collection and storage of environmental 
and social information have long-run payoffs, and hence 
do not meet the test of political feasibility. When the 
time comes to allocate the substantial funds that are 
required, or to make the organizational, jurisdictional, 
political and private compromises that are a part of the 
cost, we effectively reject comprehensive information 
systems. And yet the problems of our society today are 
of such a nature that these systems are considerably 
more important than systems which merely achieve 
economies of time and dollars. It is quite possible that 
we should be talking of survival. 

I must conclude, therefore, that we will learn of the 
social impact· of computer technology much as we 
learned of the profound impact of the automotive in
dustry-considerably after the fact. 
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INTRODUCTION 

The study of time-sharing scheduling algorithms has 
now reached a certain maturity. One need merely look 
at a recent survey by McKinneyl in which he traces 
the field from the first published paper in 19642 to a 
succession of many papers during these past six years. 
Research which is currently taking place within the 
field is of the nature whereby many of 'the important 
theoretical questions will be sufficiently well answered 
in the very near future so as to question the justifica
tion for continuing extensive research much longer 
without first studying the overall system behavior. 

Among the scheduling algorithms which have been 
studied in the past are included the round robin (RR) , 
the feedback model with N levels (FBN) , and varia
tions of these.1 The models introduced for these sched
uling algorithms gave the designer some freedom in 
adjusting system performance as a function of service 
time but did not range over a continuum of system 
behaviors. In this paper we proceed in that direction 
by defining a model which allows one to range from the 
first come first served algorithm all the way through 
to a round robin scheduling algorithm. We also find a 
variety of other models within a given fami]v which 
have yet to be analyzed. 

Thus the model analyzed in this paper provides to 
the designer a degree of freedom whereby he may adjust 
the relative behavior for jobs as a function of service 
time; in the past such a parameter was not available. 
Moreover, the method for providing this adjustment 
is rather straightforward to implement and is very 
easily changed by altering a constant within the 
scheduler. 

* This work was supported by the. Advanced Research Projects 
Agency of the Department of Defense (DAHC15-69-C-0285). 
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A GENERALIZED 1VIODEL 

In an earlier paper3 we analyzed a priority queueing 
system in which an entering customer from a particular 
priority group was assigned a zero value for priority 
but then began to increase in priority linearly with 
time at a rate indicative of his priority group. Such a 
model may be used for describing a large class of time
sharing scheduling algorithms. Consider Figure 1. 
This figure defines the class of scheduling algorithms 
which we shall consider. The principle behind this class 
of algorithms is that when a customer is in the system 
waiting for service then his priority (a numerical func
tion) increases from zero (upon his entry) at a rate a; 
similarly, when he is in service (typically with other 
customers sharing the service facility simultaneously 
with him as in a processor shared system4) his priority 
changes at a rate {3. All customers possess the same 
parameters a and {3. Figure 1 shows the case where 
both a and {3 are positive although, as we shall see 
below, this need not be the case in general. The history 
of a customer's priority value then would typically be 
as shown in Figure 1 where he enters the system at 
time to with a 0 value of priority and begins to gain 
priority at a rate a. At time tl he joins those in service 
after having reached a value of priority equal to 
a(tl - to). When he joins those in service he shares on 
an equal basis the capacity of the service facility and 
then continues to gain priority at a different rate, {3. 

It may be that a customer is removed from service 
before his requirement is filled (as may occur when one 
of the slopes is negative) ; in this case, his priority then 
grows at a rate of a again, etc. At all times, the server 
serves all those with the highest value of priority. 
Thus we can define a slope for priority while a customer 
is queueing and another slope for priority while a cus-
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Figure 1-Behavior of the time-varying priority 

tomer is being served as 

queueing slope = a 

serving slope = {3. 

(1) 

(2) 

A variety of different kinds of scheduling algorithms 
follow from this model depending upon the relative 
values of a and {3. For example, when both a and {3 are 
positive and when {3 2:: a then it is clear that customers 
in the queue can never catch up to the customer in 
service since he is escaping from the queueing customers 
at least as fast as they are catching up to him; only 
when the customer in service departs from service 
after his completion will another customer be taken 
into service. This new customer to be taken into the 
service facility is that one which has the highest value 
of priority. Thus we see that for the range 

(3) 

we have a pure first come first served (FCFS) scheduling 
algorithm. This is indicated in Figure 2 where we show 
the entire structure of the general model. 

Now consider the case in which 

o ~ {3 ~ a. (4) 

This is the case depicted in Figure 1. Here we see that 
the group of customers being served (which act among 
themselves in a processor-shared round robin (RR) 
fashion) is attempting to escape from the group of 
customers in the queue; their attempt is futile, how
ever, and it is clear from this range of parameters that 
the queueing customers will eventually each catch up 
with the group being served. Thus the group being 
served is selfishly attempting to maintain the service 
capacity for themselves alone and for this reason we 
refer to this system as the selfish round robin (SRR). 

Figure 2-The structure of the general model 

What happens in this case is that entering customers 
spend a period of time in the queue and after catching 
up with the serving group proceed to be served in a 
round robin fashion. The duration of the time they 
spend in the queue depends upon the relative param
eters a and {3 as we shall see below. It is clear however 
that for {3 = 0 we have the case that customers in 
service gain no priority at all. Thus any newly entering 
customer would have a value of priority exactly equal 
to that of the group in service and so will immediately 
pass into the service group. Since all serving customers 
share equally, we see that the limiting case, (3 = 0, is 
a processor-sharing round robin (RR) scheduling 
algorithm! It happens that SRR yields to analysis very 
nicely (whereas some of the other systems mentioned 
below are as yet unsolved) and the results of this 
analysis are given in the next section. 

Another interesting range to consider is that for 
which 

a ~ {3 < o. (5) 

Here we have the situation in which queueing customers 
lose priority faster than serving customers do; in both 
cases however, priority decreases with time and so any 
newly entering customer will clearly have the highest 
priority and will take over the complete service facility 
for themselves. This most recent customer will continue 
to occupy the service facility until either he leaves due 
to a service completion or some new customer enters 
the system and ejects him. Clearly what we have here 
is a classical last come first served (LCFS) scheduling 
algorithm as is indicated in Figure 2. 



Now consider the range 

a < 0 < {3. (6) 

In this case a waiting customer loses priority whereas a 
customer in service gains priority. When an arriving 
customer finds a customer in service who has a negative 
value for priority then this new customer preempts the 
old customer and begins service while at the same time 
his priority proceeds to increase at a rate {3; from here 
on no other customer can catch him and this customer 
will be served until completion. Upon his completion, 
service will then revert back to that customer with the 
largest value of priority. Since customers lose priority 
with queueing time, then all customers in the system 
when our lucky customer departed must have negative 
priority. One of these will be chosen and will begin to 
gain priority; if now he is lucky enough to achieve a 
positive priority during his service time, then he will 
seize the service facility and maintain possession until 
his completion. Thus we call this range LCFS with 
seizure (see Figure 2). 

In the special case 

a=O<{3 (7) 

we have the situation in which a newly emptied service 
facility will find a collection of customers who have 
been waiting for service and who have been kept at a 
zero value priority. Since all of these have equal priority 
they will all be taken into service simultaneously and 
then will begin to gain priority at a rate {3 > O. Any 
customers arriving thereafter must now queue in bulk 
fashion since they cannot catch up with the current 
group in service. Only when that group finishes service 
completely will the newly waiting group be taken into 
service. We refer to this case as bulk service. 

The last case to consider is in the range 

{3 < 0, {3 < a. (8) 

In this case a customer being served always loses 
priority whereas a queueing customer loses priority at 
a slower rate or may in fact gain priority. Consequently, 
serving customers will tend to "run into" queueing 
customers and pick them up into the service facility at 
which point the entire group continues to decrease in 
priority at rate {3. We refer to this region as LCF S with 
pickup (see Figure 2). 

Thus Figure 2 summarizes the range of scheduling 
algorithms which this two-parameter priority function 
can provide for us. We have described a number of 
regions of interest for this class of algorithms. The 
FCFS, LCFS, and RR systems, of course, are well 
known and solved. The three regions given by Equa
tions 4, 6, and 8 are as yet unsolved. As mentioned 
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before, the SRR system yields very nicely to analysis 
and that analysis is given in this paper. This system 
has the interesting property that we may vary its 
parameters and pass smoothly from the FCFS system 
through the SRR class to the familiar RR system. The 
others (LCFS with seizure and LCFS with pickup) 
are as yet unsolved and appear to be more difficult to 
solve than the SRR. Of course other generalizations 
to this scheme are possible, but these too are yet to 
be studied. Among these generalizations, for example, 
is the case where each customer need not have the 
same a and {3; also one might consider the case where 
growth (or decay) of priority is ~ non-linear function 
of time. Of all these cases we repeat again that the 
SRH has been the simplest to study and its analysis 
fo llows in the next section. 

THE SELFISH ROUND ROBIN (SRR) 
SCHEDULING ALGORITHM 

We consider the system for which customers in 
service gain priority at a rate less than or equal to the 
rate at which they gained priority while queueing (see 
Equation (4)); in both cases the rate of gain is positive. 
We assume that the arrival process is Poisson at an 
average rate of A customers per second 

P [inter-arrival time::; t] = 1 - e-Xt t ~ 0 (9) 

and that. the service times are exponentially distributed 

P [service time ~ x] = 1 - e-P.X x ~ 0 (10) 

Thus the two additional parameters of our system are 

average arrival rate = A (11) 

average service time = 1/ fJ. (12) 

As usual, we define the utilization factor 

P == A/fJ. (13) 

For the range of a, {3 under consideration it is clear 
that once a customer enters the service facility he will 
not leave until his service is complete. Consequently, 
we may consider the system as broken into two parts: 
first, a collection of queued customers; and second, a 
collection of customers in service. Figure 3 depicts· this 
situation where we define* 

Tw = E[time spent in queue box] (14) 

Ts = E[time spent in service box] (15) 

Nw = E[number in queue box] (16) 

Ns = E[number in service box] (17) 

* The notation E[x] reads as "the expectation of x." 
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Figure 3-Decomposition of the SRR system 

We further define 

T = Tw + Ts = E[time in system] (18) 

~ = N w + Ns = E[number in system] (19) 

Due to the memoryless property of the exponential 
service time distribution, it is clear that the average 
number in system and average time in system are 
independent of the order of service of customers; this 
follows both from intuition and from the conservation 
law given in Reference .5. Thus we have immediately 

T = I/p. 
1 - p 

N=-P-
1 - P 

(20) 

(21) 

For our purposes we are interested in solving for 
the average response time for a customer requiring t 
seconds of service; that is for a customer requiring t 
seconds of complete attention by the server or 2t seconds 
of service from the serVer when he is shared between 
two customers, etc. Recall that more than one customer 
may simultaneously be sharing the attention of the 
service facility and this is just another class of processor
sharing systems.4- Thus our goal is to solve for 

T (t) = E[ response time for customer requiring 

t seconds of service] (22) 

where by response time we mean total time spent in 
the system. The average of this conditional response 
time without regard to service time requirement is 
given by Equation 20. Due to our decomposition we 
can write immediately 

T(t) = Tw (t) + Ts(t) (23) 

where T w (t) is the expected time spent in the queue 
box for customers requiring t seconds of service and 
T8(t) is the expected time spent in the service box 
for customers requiring t seconds of service. Since the 

system is unaware of the customer's service time until 
he departs from the system, it is clear that the time he 
spends in the queue box must be independent of this 
service time and therefore 

(24) 

Let us now solve for Ts (t). We make this calculation 
by following a customer, whom we shall refer to as the 

I "tagged" customer, through the system given that this 
. customer requires t seconds of service. His time in the 
queue box will be given by Equation 24. We now 
assume that this tagged customer has just entered the 
service box and we wish to calculate the expected time 
he spends there. This calculation may be made by 
appealing to an earlier result. In Reference 4, we 
studied the case of the processor-shared round robin 
system (both with and without priorities). Theorem 4 
of that paper gives the expected response time con
ditioned on service time and we . may use that result 
here since the system we are considering, the service 
box, appears like a round robin system. However, the 
arrival rate of customers to the service box conditioned 
on the presence of a tagged customer in that box is no 
longer A, but rather some new average arrival rate A'. 
In order to calculate A' we refer the reader to Figure 4. 
In this figure we show that two successive customers 
arrive at times tl and t2 where the average time between 
these arrivals is clearly I/A. The service group moves 
away from the new arrivals at a rate (3 and the new 
arrivals chase the service group at a rate a; as shown 
in Figure 4, these two adjacent arrivals catch up with 
the service group where the time between their arrival 
to the service box is given by I/A'. Recall that the 
calculation we are making is conditioned on the fact 
that our tagged customer remains in the service box 
during the interval of interest; therefore the service 
box is guaranteed not to empty over the period of our 
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Figure 4-Calculation of the conditional arrival rate to the 
service box 



calculations. 'A' is easily calculated by recognizing that 
the vertical offset y may be written in the following 
two ways 

y = (~) ~ 

and so we may solve for 'A' as follows 

(25) 

(recall that for the SRR system (3 ~ a). For con
venience we now define 

p' = 'A'I p, (26) 

We may now apply Theorem 4 of Reference 4 and 
obtain the quantity we are seeking, namely, 

t 
T (t) =--

8 1 _ p' (27) 

The only difference between Equation 27 and the 
referenced theorem is that here we use p' instead of p 

since in all cases we must use the appropriate utilization 
factor for the system under consideration. That theorem 
also gives us immediately that 

p' 
N =--

8 1 _ p' (28) 

This last equation could be derived from Equation 27 
and the application of Little's result6 which states that 

(29) 

and where 

T=~ 
8 1 _ p' (30) 

We may now substitute Equation 27 into Equation 
23 to give 

t 
T(t) = Tw + --, 

1 - p 
(31) 

In order to evaluate T10 we form the average with 
respect to t over both sides of Equation 31 to obtain 
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and so 

T=T +~ 
10 1 _ p' 

Using Equation 20 we have the result 

Tw = lip, _~ 
1 - p 1 - p' 

(32) 

(33) 

Upon SUbstituting Equation 33 into Equation 31 we 
obtain our final result as 

T(t) = lip, + t - lip, 
1 - p 1 - p' 

(34) 

Another convenient form in which to express this result 
is to consider the average time wasted in this SRR 
system where wasted time is any extra time a customer 
spends in the system due to the fact that he is sharing 
the system with other~ customers. Thus, by definition, 
we have 

VI(t) = T(t) - t (35) 

and this results in 

Wet) = pip, + (t - IIp,)p' (36) 
1 - p 1 - p' 

In both Equations 34 and 36 we observe for the case 
of a customer whose service time is equal to the average 
service time (II p,) that his average response time and 
average wasted time are the same that he would en
counter for any SRR system; thus his performance is 
the same that he would receive, for example, in a 
FCFS system. We had observed that correspondence 
between the RR system and the FCFS system in the 
past; here we show that it holds for the entire class of 
SRR systems. In Figure 5 below we plot the perform
ance of the class of SRR systems by showing the de
pendence of the wasted time for a customer whose 
service time is t seconds as a function of his service 
time. We show this for the case p = %: and p, = 1. 
The truly significant part regarding the behavior of the 
SRR system is that the dependence of the conditional 
response time upon the service time is linear.' Once 
observed, this result is intuitively pleasing if we refer 
back to Figure 3. Clearly, the time spent in the queue 
box is some constant independent of service time. 
However, the time spent in the service box is time 
spent in a round robin system since all customers in 
that box share equally the capability of the server; we 
know that the response time for the round robin system 
is directly proportional to service time required (in 
fact, as shown in Reference 8, this statement is true 
even for arbitrary service time). Thus the total time 
spent in the SRR system must be equal to some con-
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Figure 5-Performance of the SRR system 

stant plus a second term proportional to service time 
as in fact our result in Equation 34 indicates. Again 
we emphasize the fact that customers whose service 
time requirements are greater than the average service 
time requirement are discriminated against in the SRR 
system as compared to a FCFS system; conversely, 
customers whose service time requirement is less than 
the average are treated preferentially in the SRR sys
tem and compared to the FCFS system. The degree 
of this preferential treatment is controlled by the 
parameters ex and {j giving the performance shown in 
Figure 5. 

CONCLUSION 

In this paper we have defined a continuum of scheduling 
algorithms for time-shared systems by the introduction 
of two new parameters, ex and {j. The class so defined 
is rather broad and its range is shown in Figure 2. 
We have presented the analysis for the range of pa
rameters that is given in Equation 4 and refer to this 
new system as the selfish round robin (SRR) scheduling 
algorithm. Equation 34 gives our result for the average 
response time conditioned on the required service time 
and we observed that this result took the especially 
simple form of a constant plus a term linearly de
pendent upon the service time. Moreover, we observe 
that the parameters ex and {j appear in the solution 
only as the ratio {j/ ex. This last is not overly surprising 
since a similar obser.vation was made in the paper3 
which was our point of departure for the model de
scribed herein; nameiy, there too the slope parameters 

appeared only as ratios. Thus in effect we have intro
duced one additional parameter, the ratio {j/ ex, and it 
is through the use of this parameter that the designer 
of a time-sharing scheduling algorithm is provided a 
degree of freedom for adjusting the extent of discrimi
nation based upon service time requirements which he 
wishes to introduce into his algorithm; the implemen
tation of this degree of freedom is especially simple. 
The range of the algorithm is from the case where there 
is zero discrimination base(- on service time, namely 
the FCFS system, to a case where there is a strong 
degree of discrimination, namely the RR system. 

The'mathematical simplicity of the SRR algorithm 
is especially ·appealing. Nevertheless, the unsolved sys
tems referred to in this paper should be analyzed since 
they provide behavior distinct from the SRR. In any 
event, this continuum of algorithms is simply imple
mented in terms of the linear parameters ex and {j, 
and the scheduling algorithm can easily choose the 
desired behavior by a~justing ex and {j appropriately. 
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INTRODUCTION 

There is a clear tendency for large-scale and, especially 
time-sharing computer systems to have several levels 
of random access memory with gradations in access 
time, degree of address ability, and functional capa
bility. In our configuration at The University of Texas 
at Austin these are a high-speed magnetic core memory, 
an extended core memory of magnitude 4 times the 
size of the main memory, and 4 large, fast disks. An 
extensive literature1 ,2,3,4 has already developed on the 
management of multi-level systems where the main 

analysis, the use of two dual-channel 6638 disks (ef
fectively, four independent disks), together with 131,000 
words o'f main memory, allows us to attain central 
processor efficiency in the range 85 to 90 percent. 

Our intention is to use ECS to provide a significant 
interactive computing capability without significantly 
degrading the current high level of system performap.ce. 
The following analysis will show how that is possible. 

SYSTEM CHARACTERISTICS 

memory is structured in pages, usually with an ex- The particular system which we use to parameteriz--e 
tended logical addressing space. our models is a CDC 6600 with 131,000 60-bit words 

The management of multi-level memory systems of high-speed main memory, 524,000 words of extended 
where the main memory is not paged has received much core storage (ECS), and four 6-million-word disks. 
less attention.5 ,6,7 Certain problems are characteristic For future reference, we shall summarize certain 
of systems which can assign main memory to a given characteristics of the CDC ECS: (a) Transfers be-
process only in a single contiguous block. These prob- tween ECS and main memory proceed at the ac-
lems become performance-limiting factors when the ceptance rate of main memory (10 words per micro-
computer system supports a multi-programming batch second) after a transfer is initiated. (b) Average 
system and a substantial interactive load. We discuss transfer initiation time is 3.4 microseconds. (c) Trans-
some models for memory management where both a fers are initiated by central processor instructions and 
multiprogramming batch system and heavy interactive hold the central processor until the transfer is complete. 
usage compete for the resources of a three-level memory (d) ECS is internally structured in 8-word records. 
system with a non-paged main memory. These models A peripheral processor may interrupt an ECS transfer 
are based on detailed measurements8 of system per- at th~ end of an 8-word record. One main memory 
formance and job characteristics for the current oper- word may be read or written in one microsecond by 
ation of a CDC 6600 computer system. We pay special the peripheral processor before the transfer is auto-
attention to the competition between batch and inter- matically resumed with an additional start-up time. 
active jobs for memory resources and on the costs of Each main memory access by a peripheral processor 
data flow between levels of random access memory. during an ECS transfer will be delayed an average of 

Fuchel and Heller5 have studied the general char- 400 nanoseconds and will increase the total transfer 
acteristics of Control Data's extended core storage time by 4.4 microseconds. (e) ECS is word addressable 
(ECS) as a swapping medium and a storage medium by the central processor for data transfers between it 
for active files. Fuchel, Campbell, and Heller15 have and main memory, but instructions and data cannot 
studied in detail the use of ECS as a buffering device be fetched directly to CPU registers. Thus ECS cannot 
for active files with the motive of increasing CPU be used as a direct logical extension of main memory, 
efficiency. Such uses of ECS in our configuration does as IBM Large Core Storage can, but must be con-
little to improve CPU efficiency. As predicted by their sidered as auxiliary storage. 

459 
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Figure I-Histogram of disk I/O times 

The operating system for The University of Texas 
at Austin 6600 system supports both local site and 
remote batch job entry as well as conversational inter
action. The operating system is locally written, having 
been derived from an early (1966) version of the 
standard CDC (SCOPE 2.0) operating system. We 
shall describe those features which are essential to the 
management of memory resources. 

The operating system divides main memory into not 
more than eight blocks or work spaces. One work 
space is a fixed length block for system tables and 
monitor code. Up to seven variable length work spaces 
may be allocated to active processes. Each assigned 
work space is associated with a control point. One 
control point is used to control and drive the peripheral 
input and output ~quipment and the remote computers. 
Another is assigned to the management of. the remote 
on-line terminals. Five control points and 85,000 words 
of main memory are left for user programs. Adminis
trative policy constrains batch jobs to 73,000 words 
or less and 'interactive jobs to 32,000 words or less. 

Files are assigned to the four disks in a round-robin 
fashion. The next file to be assigned is assigned to the 
next disk in the round-robin. No space is allocated on 
that disk until the file is actually written. The disks 
have moveable arms but only 32 different positions. 
The basic allocation unit on a disk is called a half
track, 3072 words, comprising every other sector (64 
words) of a particular arm position and head select. 
Each arm position covers 64 half-tracks. Half-tracks 
are numbered according to their physical order on the 
disk .. At the moment in time when a file needs more 
space, the lowest numbered half-track available on the 
disk to which the file is assigned is allocated to that 
file. The effect of these facts and allocation policies is 
that currently active files are distributed over the avail-

able disks and active files that are on the same disk 
tend to be interleaved under a given arm position. 
This minimizes the principal difficulty with moveable 
arm disks, namely arm motion. Figure 1 is a histog·ram 
of user disk I/O times under these policies. 

The relevant data on the 6638 disks with respect to 
this figure is that the average rotational latency is 25 
milliseconds and arm motion requires between 20 and 
100 milliseconds, depending on the distance involved. 

For practical purposes, we take this structure as 
given and we consider next the allocation and scheduling 
strategies within this structure which affect system 
performance. 

ALLOCATION OF RESOURCES BETWEEN 
BATCH AND INTERACTIVE USAGE 

It is desired to allocate the resources of the system; 
access to the CPU, main memory, ECS, etc. so as to 
insure rapid (one second or less) response time to a 
substantial number (e.g., about 30-40) of interactive 
users while maintaining a fast batch system throughput 
and a high (~80%) central processor efficiency. The 
primary factors in determining the allocation strategy 
are job load characteristics, the characteristics and 
capacity of the swapping media, the swapping overhead, 
and the competition between the batch and interactive 
job streams. These problems and the allocation of CPU 
activity between control points are discussed in the 
next sections. The interference between the batch and 
interactive systems is primarily a competition for main 
memory. The factors dominating this competition are 
interference with disk I/O due to main memory lockout 
during swapping, the scheduling of batch jobs for 
loading into main memory, and the "memory com
pacting" problem. A separate section is devoted to 
each of these factors. 

JOB-LOAD CHARACTERISTICS 

The job-load characteristics have been determined 
by measurement of more than 50,000 jobs. The meas
ured mean size of user batch programs is 21,000 words. 
The mean interactive program size is 12,800 words. 

Let S denote the siz~on an arbitrarily chosen active 
job and F s ((3) = P[ S ~ (3J be the distribution function 
of job sizes. Figure 2 shows F s ((3) for batch and inter
active jobs. At any given time, the probability that 
any given batch job in execution will be 21,000 words 
or less in size is one-half. The core-size distribution is 
such that five control points are active 20 percent of 
the time and four are active 65 percent of the time. 
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The mean I/O wait time (t1O) is 46 milliseconds. The 
distribution function of tlO is extremely compact as 
can be seen from Figure 1. Disk channels are active 
22 percent of the time per channel. This means that a 
disk I/O request is queued because of conflicting channel 
usage only a small percentage of the time. The com
pactness of this distribution is produced by the disk 
space allocation strategies described in the previous 
section. The mean time (te ) a batch job computes 
before requesting an I/O operation is 48 milliseconds. 
The _mean CPU time per interaction is not much above 
one millisecond. The measured median "think time" 
for an interactive user is 10 seconds (12). This figure is 
very close to that found in studies of other systems.13 •14 

THE ALLOCATION OF THE CPU TO 
ACTIVE JOBS 

Modeling and analysis done by Gaver17 has shown 
that there are four principal effects on CPU efficiency 
in a multiprogramming computer system: (1) the ratio 
of te , the average interval of execution between I/O 
operations for any single given job and tlO, the average 
length of an I/O operation; (2) J, the degree of multi
programming or the number of jobs in main memory 
executing, doing I/O, or awaiting either; (3) I, the 
number of I/O units; and (4) (12, the variance of the 
compute time distribution. It is interesting to note that 
the "shape" of the compute time distribution curve 
seems relatively insignificant compared to the value 
of (12. 

In order to increase the degree of multiprogramming, 
we make use of "memory compacting." The operating 
system will move the contiguous block of memory as
signed to a control point from one absolute location to 

PROBABILITY DISTRIBUTION OF JOB CORE SIZES 

Figure 2--Probability distribution of job core sizes 

another. This increase in the degree of multiprogram
ming is achieved by the job scheduling policy developed 
in a following section. The cost of memory compacting 
under the resulting policy depends on the packing 
policy used. The last section describes a policy which 
makes this cost very small (less than one percent of 
the CPU time) with respect to the increased CPU 
efficiency gained from the increased degree of multi
programming, even with a heavy interactive job load. 
In actual practice we observe a CPU efficiency between 
85 and 90 percent. 

The variance, (12, of the CPU compute time distri
bution can be affected by CPU scheduling strategies. 
Gaver's analysis17 considered no CPU scheduling other 
than first come, first served. However, by switching 
the CPU among jobs ready to compute, we can effec
tively lower the variance of the compute time distri
bution. Lowering (12 will increase the CPU efficiency as 
w~ll as increase the I/O rate. A full analysis of this 
effect has not yet been completed but preliminary 
results on a round-robin servicing discipline indicate 
that there is an optimum quantum size for a given 
distribution of I/O operations and compute times and 
a given cost of switching the CPU from one job to 
another. This optimum is most affected by the cost of 
switching. For a CDC 6600, this cost is approximately 
32 microseconds. A quantum size of five milliseconds 
seems to achieve the best results with respect to in
creasing the I/O rate and increasing the CPU efficiency. 

ALLOCATION OF ECS 

Despite the speed of the disks with respect to the 
I/O demands of the batch system, it is easy to see that 
they are extremely slow swapping devices for a non
paged system, especially compared to ECS. For the 
mean interactive job size of 12,800 words a disk transfer 
would require at least 250 milliseconds exclusive of any 
queueing and positioning time. The transfer time for 
ECS depends on the block size used. Figure 3 shows the 
actual transfer time as a percentage of the maximum 
theoretical transfer time as a function of the block size. 
It should be noted that the limiting percentage of 64 
percent is due to the PP break-ins experienced in a run
ning system. This curve makes clear the desirability of a 
large block size to take maximum advantage of the 
speed of ECS. Thus we want B, the block size to be as 
large as possible. However, if S is the mean program 
size and B «S then the waste per program is B /2. 
We now require that the waste, 13/2/ S, be less than 2 
percent. B = 512 achieves this objective while giving 
an ECS transfer utilization rate near 50 percent. Since 
B « S for this value, the result is valid. 
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Figure 3-ECS transfer speed utilization 

Because of the unsuitability of the disks for inter
active swapping, the memory capacity of ECS effec
tively defines the "natural capacity" of the system for 
handling interactive jobs. The interactive job-size dis
tribution shows the ECS capacity to be about 42 users. 
Recalling that measured median think time for a given 
interactive user is 10 seconds and the mean CPU time 
per interaction is on the order of one millisecond, it is 
clear that with the CPU scheduling policy described 
above, a single control point could service interactive 
demands up to the "natural capacity" of the system 
with response times of less than one second. A CPU 
quantum size of five milliseconds insures CPU allo
cation to the interactive control point at least once 
every 25 milliseconds so that there is no appreciable 
delay due to CPU queueing. The interaction rate of 
once every 250 milliseconds for a set of 40 interactive 
users and a mean swap time (in and out) of 5.2 milli
seconds will give a CPU overhead in this case of ap
proximately 2 percent. We consider this to be a very 
reasonable price to pay for the attained interactive 
service. 

INTERFERENCE WITH DISK I/O DUE 
TO SWAPPING 

The most serious effect of swapping interactive jobs 
through ECS is the effect on disk I/O. The alternate 
sector coding technique used on the disks requires that 
the peripheral processors doing disk I/O have sufficient 
access to main memory between alternate sectors to 
access 64 words. The transfer itself between main 
memory and peripheral processor memory requires 320 
microseconds. The total available time between alter
nate sectors is 500 microseconds. Because of the book-

keeping to be done, there is very little time to spare. 
Delays in accessing main memory will cause the pe
ripheral processors to miss the next sector and have to 
wait a full revolution of the disk to access the missed 
sector. Since ECS transfers with a block size as small 
as 8 words cause sufficient delay (in main memory 
access for the peripheral processors) to generate· this 
problem, it is important to assess the level of ECS 
usage and the amount of this disk I/O degradation. 
A missed sector adds 50 milliseconds to the I/O service 
time for an I/O request that encounters this problem. 
The level of ECS usage predicted in the preceding 
analysis will cause an increase of approximately 15 
percent in the average I/O service time. This will cause 
an increase in the probability that a process is in an 
I/O wait state and thus an increase in the expected 
CPU idle time. This effect may require a change in the 
alternate sector coding technique used on the disks. 
On CDC 6638 disks; without ECS interference, the 
alternate sector coding technique is so close to optimal 
that a high level of ECS usage could be counterpro
ductive; however, preliminary studies indicate a de
crease in expected CPU efficiency of about 5 or 6 
percent at peak periods. Thus the total expected over
head and increased CPU idle time is less than 10 
percent, a figure we consider acceptable. 

BATCH JOB SCHEDULING 

To schedule jobs, the basic administrative policy is 
to give fast turnaround to jobs with small resource 
requirements. We can justify this policy on the basis of 
job load. For example, 90 percent of all jobs use less 
than 20 percent of all CPU time charged to users. 

The scheduler has available the same swapping 
mechanism for batch jobs as for interactive jobs. A 
scheduling strategy which pre-empts a long batch job 
when a short job arrives in the queue and resumes the 
long job after the short job terminates can be used. 
This is commonly called a pre-emptive-resume type of 
scheduling strategy. We desire to find a scheduling 
strategy which makes "optimal" use of the available 
space with respect to the above policy. 

To describe the situation formally, we make use of a 
simple type of mathematical programming model. The 
scheduling problem consists, essentially, of examining 
the n jobs which are currently awaiting execution and 
selecting some or all of these for loading. Let Xi be a 
variable assuming the values 0 or 1, denoting re
spectively the decision not to load, or to load, job i. 
Each job i has a space requirement Si, and at scheduling 
time has a time remaining requirement ti, the total 
time requirement for job i minus the elapsed execution 
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time. If the main memory available for batch jobs is S, 
and if each job is assumed to have a "utility" Ui = l/ti 

(which represents the anticipated completion rate· for 
job i), one way of formulating the scheduling problem 
is to determine values for the variables Xl, ••• , Xn 

which solve 

·n 

Maximize L: UiXi 
i=l 

n 

subject to· L: 8iXi ~ S 
i=l 

and Xi = 0 or 1. 

(1) 

Since Ui and 8i are strictly positive for all i, this is the 
familiar "knapsack problem" of mathematical program
ming. The actual scheduling algorithm will not be de
termined by solving (1) for several reasons. First, the 
available space S is not constant over the time interval 
within which a given scheduling decision will be effective 
and thus is not known with certainty. This is a result 
of the rapidly changing space requirements of the 
control point assigned to interactive jobs. Second, the 
discrete character of the variables Xi makes an optimal 
schedule determined by (1) unduly sensitive to fluctu
ations in S, an undesirable lack of robustness of the 
solution. For this reason, we reformulate (1) to take 
into account the uncertain nature of S. Specifically, we 
suppose S is a random variable with known distribution 
function F s. This function can be determined from the 
data presented graphically in Figure 1. In view of the 
"policy" character (versus "resource" character) of the 
space constraint, a particularly appealing way to en
compass the intent of (1) is to express the space re
striction as a "chance constraint."16 We rewrite (1) as 
follows 

n 

Maximize L: UiXi 
i=l 

subject to P [ E s,x, ;;; s ] ;;; " (2) 

and 0 ~ Xi ~ 1. 

Here a is the confidence with which we require the 
space constraint to be satisfied. A typical value for a, 
which is specified a priori and is not a variable whose 
value is to be determined, might be .9. We shall see 
below that the relaxation of the explicit integrality 
condition on Xi does not depart radically from the 
desired interpretation of Xi since for some confidence 
level close to a, an optimal solution to (2) will auto
matically assign only 0-1 values to the Xi. Since there 
is nothing sacred about .9, for example, we shall in 

practice begin with a "judicious" choice of a! To proceed 
with derivation of an optimal scheduling algorithm 
from (2), we note that the chance constraint simply 
states that 

when the distribution function F s is given by F s (t) 
peS < t]. Since the Xi are to be chosen as constants 
and not as functions of S, they are "zero-order" de
cision rules in the usual terminology of chance con
strained programming. It is not difficult to prove, using 
the monotonicity of F s and the definition of F S-l (given 
by FS-1(1 - a) = sup{t: Fs(t) ~ 1 - a}) that the set 
of values for the Xi which satisfy the chance constraint 
of (2) is the same as the set of values for which 

n 

L: 8iXi~ FS-l(1 - a) (3) 
i=l 

where FS-l(1 - a) denotes the 1 - a fractile of the 
distribution function .of S. Note that this is true even 
if F s is discontinuous or not 1-1. In view of this, 
(2) is equivalent to the ordinary linear programming 
problem 

n 

maximize L: UiXi 
i=l 

n 

subject to L 8iXi ~ Fs-l(l - a) (4) 
i=l 

and 0 ~ Xi ~ 1. 

Two observations are pertinent here. First, FS-1(1 - a) 
provides a "certainty equivalent" for the random space 
S which will actually be available. The structure of the 
linear programming problem (4) is so special that an 
optimal solution is obtainable by inspection, as is well 
known. Such an optimal solution is determined as 
follows. Order the variables Xi such that uti 81 ~ U2/ 82 ~ 
••• ~ Un/8n and take Xl = 1, X2 = 1, ... until Xk = 1 
would violate (3). Xk should then be set to the fractional 
value 

k-l 

FS-l(1 - a) - L: 8iXi 
i=l 

in order to just use up the remaining space. However, 
if a happened to be such that 

k-l 

Fs-1(1 - a) = L: 8iXi, 
i=l 

we can see that no variable Xi would need to be set to 
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Figure 4-Main memory allocation transition 

a fractional value. In view of the approximate nature 
of the policy restriction in (2), it is not unreasonable 
to expect this to be the case for some confidence level 
close to ex if not for ex itself. 

We therefore implement the following scheduling 
method: schedule jobs in decreasing order of their 
Ui/Si values until available space [FS-l(1 - ex) ] is used 
up. In practice, each job has associated with it a "job 
cost" Ci = 8iti. In this terminology, the scheduling order 
is determined by the order of increasing costs Ci since 
Ui/8i = l/ti8i = 1/ Ci; this rule is particularly simple in 
form. 

Our formulatiJ.lg the space requirement as a chance 
constraint has another motivation. If batch jobs were 
never permitted to delay interactive jobs because of 
conflicting space demands, corresponding to a choice of 
ex = 1, the result would be a high incidence of unused 
memory space, a smaller number of active batch jobs, 
and a resulting impairment of CPU efficiency. However, 
a small batch job (e.g., the last one scheduled) can be 
swapped to ECS when interactive needs dictate, with 
a modest reduction in ECS capacity for interactive 
jobs and in interactive response speed. In practice, 
when the loaded batch jobs are confronted with a 
demand for space by an interactive job (corresponding 
to a violation of the space limitation), the last batch 
job scheduled is swapped to ECS. In view of a choice 
of ex approximately equal to .9, this will happen only 
about 10 percent of the time, which is in accord with 
the policy toward interactive response time and efficient 
utilization of the CPU. 

In summary, by a formulation of the scheduling 
problem as the maximization of the sum of the com-

pletion rates l/ti of the jobs scheduled, subject to per
missible interference with interactive jobs if this inter
ference is sufficiently infrequent, an optimal scheduling 
policy with extremely simple form can be achieved. 

In the next section we consider the effect of this 
scheduling policy on the memory compacting problem. 

l\1:EMORY COl\1:PACTING PROBLEl\1: 

In a non-paged memory system with only a single 
bounds-checking facility per process, the memory allo
cated to a given job must be continuous. When a job 
terminates in a multiprogramming non-paged system, 
the total memory available to the next job scheduled is 
potentially the sum of all unallocated memory regions. 
This is the amount assumed in the previous discussion 
of batch job scheduling, i.e., we assumed that memory 
compacting was done whenever required. Making this 
potential total actually available frequently requires 
that other jobs, which are still running, be moved. 
We now consider the factors which affect the frequency 
with which these storage moves are necessary and 
memory management policies used to minimize the 
total cost of compacting. 

Memory compacting may be necessary whenever a 
job ceases to occupy its memory. For a batch job, this 
situation can arise because of a termination or a pre
emption. For an interactive job, the situation is caused 
primarily by a terminal wait condition or a time slice 
pre-emption. In the current system, the memory re
quirements of the batch system change about once 
every 10 seconds. In the worst case, this wili require 
approximately 30 milliseconds of compacting with one 
block of ECS dedicated to this application. The effects 
of the changing memory requirements of the interactive 
partition on the necessity for memory compacting could 
be much more serious. If these changes require that 
batch jobs be moved, the overhead will be substantial. 
In addition, in the previous section we discussed the 
possibility of swapping a batch job to and from ECS 
in order to fill in the valleys of interactive storage 
requirements and increase the average number of active 
processes in order to decrease the CPU idle time. If 
the swapping of this batch job requires that other 
batch jobs be moved, the overhead could also be large. 
In order to avoid these problems most of the time and 
minimize the cost of memory compacting we use the 
following ordering policy for active processes. All batch 
jobs are packed into one end of main memory in the 
order scheduled. Since jobs are scheduled in order of 
increasing costs, the batch job likely to be swapped 
because of interactive memory demands normally is 
last, i.e., closest to the unallocated region. Hence 
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swapping of this job will not require moving other batch 
jobs. The interactive control point is placed last. It is 
next to the unused memory. This unused memory is 
sufficient to satisfy its demands 90 percent of the time, 
as described in the previous section. Figure 4 illustrates 
the insertion policy used by the scheduler to maintain 
this ordering. Job a, the lowest cost batch job running, 
terminates. The scheduler decides to load job e whose 
cost is between the cost of job d and job c. Thus jobs 
band c must be moved down to fill the gap left by a and 
job d n:t-ust, in general, be moved to either make room 
for job e or fill an additional gap created by job e. 
It should be noted that the cost of a job varies with 
time so that the cost ordering of jobs in memory may 
change. In practice, this rate of change is very small 
with respect to the scheduling rate for the interactive 
control point. When it does happen, the highest cost 
job will be pre-empted when a pre-emption is necessary, 
regardless of the ordering in main memory. If this job 
is then rescheduled, it will be put in the proper place 
to restore the cost ordering in memory. This policy 
minimizes moves due to changes in the memory de
mands of the interactive system but maximizes moves 
generated by completions in the batch system. How
ever, the average rate of completion of batch jobs is 
one every 10 seconds. Thus this overhead is still less 
than .3 percent in practice. 

CONCLUSION 

A non-paged multi-programming computer system re
quired to support a time-sharing system and a batch
processing system faces the problem of memory com
pacting and memory demand interference. Proper mem
ory management policies can minimize these difficulties. 
Measurements of the system and job characteristics 
provide the basis for an adequate design. We have 
shown that such a design for a CDC 6600 and CDC 
Extended Core Storage can support an interactive load 
of approximately 40 users with a response time of less 
than a second at very small cost to a highly efficient 
batch processing system. 
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INTRODUCTION 

There is frequently a severe mismatch between achiev
able processor and memory speeds in today's computer 
systems. For example, the CDC-7600 has a 27ns 
(nanosecond) processor cycle time and a 270ns mem
ory cycle time;l the IBM-360j91 has a 60ns processor 
cycle time and a 750 ns memory cycle time.2 In order 
to obtain the desired increase in the effective memory 
speed, an efficient memory system must use such 
techniques as interleaving memory modules and imple
menting an automatic level in a memory hierarchy 
(e.g., a slave memory3 as in the IBM-360j854 or 1955 

and the CDC-7600). In the past, interleaving was 
often studied by simulation using a random address 
generating source to obtain memory requests.6•7 This 
paper discusses results of mathematical analyses of 
models of interleaved memory systems. In these in
vestigations the properties of addresses generated by 
instructions and data have been distinguished. 

Interleaving is achieved by dividing the memory 
into separate, independent modules that can be in 
simultaneous operation. Information is then stored in 
the memory with sequential items residing in modules 
that are consecutive, modulo the number of memory 
modules; equivalently, the low order address bits 
specify the memory module number, and the high 
order bits specify the word within a module. 

We will first present a model of interleaved memory 
systems. In the analysis of this model we obtain a 
figure of merit for such systems, viz. the average num
ber of memories in operation on data or on instructions 
during a memory cycle. Results of numerical investi
gations of this figure of merit, which we call the average 
memory bandwidth, will be displayed both individually 

for instruction and data requests and for a combination 
of these requests into a system structure utilizing 
interleaving. 

ANALYSIS OF A MATHEMATICAL MODEL OF 
INTERLEAVED MEMORY SYSTEMS 

Model and terminology 

The model is pictured in Figure 1. There are n identical 
modules each capable of reading or writing one word 
per memory cycle. We shall assume that the modules 
operate synchronously and with identical memory 
cycle times. In practice the Request Queue contains 
conventional instruction and data storage addresses; 
however, for our purposes only the module number 
from the address is of interest. Thus, we will consider 
the requests ri, i = 1, 2, "', to be integers from the 
set (0,1, "', n - 1). 

The Scanner operates by admitting new requests to 
service until it attempts to assign a request to a busy 
memory module. To do this, prior to the start of a 
given memory cycle, i.e., during the previous memory 
cycle, the Scanner inspects the Request Queue be
ginning with rl and determines the maximum length 
sequence of distinct module requests. That is, it scans 
the queue to the first repetition of a module request. 
The memory requests in this maximum length sequence 
are then sent to the appropriate memory modules so 
that they will be active in the next memory cycle. 
The maximum length sequences found in this manner 
are called request sequences, and their lengths can be 
from 1 to n requests. We shall assume that the Request 
Queue always contains at least n items when inspected. 

467 
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Memory Modules 

Return 

e 

r 

Figure 1-Interleaving model 

In effect, the queue will always be saturated and the 
system operating at capacity. More formally then, a 
sequence of requests rl, r2, 0 0 0, rk at the head of the 
request queue is a request sequence if and only if (1) 
for all i, j (1 ~ i ~ k, 1 ~ j ~ k) i ~ j implies ri ~ rj, 
and (2) there exists a p, (1 ~ p ~ k), such that 
rp = rk+l' 

We will assume that the Scanner can process n re
quests per memory cycle; this is equivalent to assuming 
that the processor can handle n words per memory 
cycle. (We shall shortly consider the case where the 
Scanner can process M ~ n requests per cycle.) 

I t is then clear that the effectiveness of an inter
leaved memory system is determined by the probability 
density function (pdf) for the lengths of request se
quences. Let P(k), k = 1, 2, 3, 00 on, denote this pdf. 

Then Bn = tk=l kP (k) denotes the mean value of 
this pdf. Bn will also be called the average memory 
bandwidth with the units of words/memory cycle. In 
practice, repetitions in the Request Queue occur sufIi
ociently often such that Bn is considerably less than n, 
the maximum value for Bn. We will thus be interested 
in considering systems with M processor cycles per 
memory cycle where 1 ~ M ~ n. (Clearly M > n is 
useless in terms of obtaining information from the 
memory since we are assuming we have only n memory 
modules each capable of accessing one word per mem
ory cycle.) Such a system allows a slower processor to 
be used and yet may offer almost the same average 
memory bandwidth as a system with M = n. The 
average memory bandwidth for such a system will be 
denoted by B M and will also be calculated directly 
from the P (k) mentioned above. 

To compute the P(k) (and therefore B n), it is neces
sary to know the properties of the sequences rl, r2, r3, 0 0 0 

in the Request Queue. Hellerman8 has analyzed this 
model under the assumption that for all i, Pr [r i = j] = 

l/n for allj E Sn, and that this probability is stationary 
(i.e., the same for every memory cycle). A simple 
analysis for this model shows that the probability of a 

string of k distinct integers followed by a repetition of 
one of these k is given by 

P(k) 
(n - 1) (n - 2) 0 0 0 (n - k + 1) ~ 

n 
(1) 

ken - 1h-l 

where we use the notation9 

( i) j = i (i - 1) (i - 2) 0 • 0 (i - j + 1) ; (1 ~ j ~ i) 

and 
(i)o = 1 

Hence, 

Bn = f kP(k) = f k
2
(n -k 1h-l 

k=l k=l n 
(2) 

Hellerman has carried out curve fitting to get the 
approximation Bn ~ n·56, 1 ~ n ~. 45, which is ac
curate to within about 4 percent. 

In his model, Hellerman assumed that instruction 
and data requests were intermixed in the Request 
Queue. Inasmuch as successive instruction requests 
tend to have more serial correlation than successive 
data requests, we have chosen to represent instruction 
and data request sequences separately in our model. 
In addition we will investigate a system structure in 
which these requests are handled separately. Thus, we 
consider the model of Figure 1 to contain two separate 
queues, the Instruction Request Queue and the Data 
Request Queue. In this ·paper, we will only consider a 
system structure that alternates instruction and data 
cycles. That is, for one memory cycle the Scanner ob
tains all requests from the Instruction Queue and for 
the next cycle only the Data Queue is scanned. We 
refer to this system structure as the Instruction Data 
Cycle Structure, IDCS. 

The above operation enables us to carry out separate 
mathematical analyses in order to determine the 
average memory bandwidth for an instruction cycle, 
IBn, and for a data cycle, DBn. Bn is obtained from a 
weighted sum of IBn and DBn. The weighting depends 
on the assumed percentage of the instructions that 
request data and as a result on the actual values of 
IBn and DBn. Studies of program composition1o sug
gest that approximately 80 percent of all instructions 
require an operand (data) reference to storage. We will 
make the somewhat more conservative assumption 
that 80 percent of the instructions executed, excluding 
branch instructions, request data. We shall use this 
as an assumption to calculate Bn from DBn and IBn. 



one memory cycle 

-(~ processor cycles)_ 

processor cycle 

[InstrUCtion Cycle 

II ......... 1 

1. n instructions are 
being fetched from 
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2. Data for the next 
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11 ......... 1 I 
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memory and are 
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Instruction Cycle I 
11 ..... ILlJ 
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4. Instructions for 
the next cycle are 
requested* 

* N9te that all!. sequential instructions can be requested at once since 

they are for sequential words that are located in sequential memory 

modules. 

Figure 2-Instruction processing 

Instruction model 

The efficient use of an interleaved memory in a 
single processOJ: system is predicated on the existence 
of a processor fast enough to handle several instruc
tions per memory cycle. In order to obtain this multiple 
instruction capability, each memory cycle the processor 
requests a number of instructions beyond the present 
instruction counter address, i.e., it looks ahead. There
fore, such a system must have buffering for instruc
tions, for data (operands), and for storage addresses. 

For the purpose of determining the memory band
width we only need to assume that the instruction 
buffer holds the :'maximum number of instructions that 
can be obtained from the memory during a memory 
cycle, n, and that the instruction decoding unit can 
decode all these instructions in one memory cycle. (In 
other words, the system is capable of decoding one 
instruction per processor cycle.) We also assume that a 
branch instruction requested during one memory cycle 
will be decoded in the next memory cycle, and will im
mediately affect the instruction stream. 

Under the foregoing assumptions, our system oper
ates as shown in Figure 2 and as described below. 

1. At the beginning of an instruction cycle the 
Scanner requests the n sequential instructions following 
the present instruction counter address. Thus, n mem
ory modules are busy during this cycle. 

2. If an instruction requesting a branch is decoded 
during the next data cycle, the n sequential requests 
for the next instruction cycle will start from the branch 
address, i.e., the instruction counter will be loaded 
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with the branch address. If a branch is not found, the 
next instruction cycle will request n sequential words 
starting with the word following the last requested 
instruction. 

With the Instruction Queue we associate the param
eter "X, the stationary and independent probability 
that any given instruction generates a branch. Observe 
that in the data cycle following an instruction cycle 
in which a branch was requested, all instructions that 
were requested after the branch will not be decoded. 
(This is all right since the look-ahead mechanism only 
guessed that n sequential instructions would be used.) 
The instructions that are requested but not decoded 
in a given memory cycle are referred to as internal 
waste. With "X given, internal waste is accounted for in 
P(k), the probability that k of the n instruction words 
obtained in an instruction cycle are actually decoded. 

P(l) = "X 

P(k) 

pen) 

(1 - "X)k-1"X; 

(1 - "X)n-l 

l<k<n (3) 

Note that P (n) is obtained by observing that if the 
first n - 1 instructions are not branches then we ob
tain the maximum number of modules, n, regardless 
of the actual length of this string of sequential 
instructions. 

IBn is obtained from: 

n 

IBn = "L kP(k) 
k=l 

= "X + 2X(1 - X) + 3X(1 - X)2 + 
+ n(1 - X) (n-l) (4) 

which can be reduced to: 

1 - (1 - x)n 
IBn = ----

X 
(5) 

This is the desired formula for the average memory 
bandwidth in the IDCSmodel. 

Data model 

We use the following model for data request se
quences. (This is a generalization of Hellerman's 
model applied only to data requests.) The first data 
request in the Data Queue addresses a module at 
random; thereafter, the ith request (i ~ 2) addresses 
the next module in sequence (modulo n) with stationary 
probability cx, and addresses anyone of the modules 
out of sequence with equal probability 

{3 = (1 - cx)/(n - 1). 
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Figure 3-Request graph 

Thus, for example, the sequences of requests 0, 2, 3, 2 
and 1, 2, 3, 1 would have probabilities (l/n)a,82 and 
(l/n)a2,8, respectively, in a system having at least 
n = 4 modules. Letting rl, r2, •• ·rn denote the contents 
of the Data Queue prior to the start of a memory cycle 
we assume: 

1 
Pr [1'1 = kJ = -

n 
l:S;k:S;n (6) 

Pr [ri+l = (ri + 1) mod n J = a l:S;i<n (7) 

Pr [ri+1 ¢' (ri+l) mod nJ = ,8 l:S;i<n (8) 

With this model we address the problem of computing 
for the Data Request Queue the probability of request 
sequences of length k, Q(k). (We have substituted 
Q(k) for P(k) in order to avoid confusion between 
instruction and data results.) A recursive enumeration 
procedure has been developed using request graphs to 
represent sequences of data requests. An example 
of such a graph is shown in Figure 3. This particular 
graph is representative of the case where k = 5, and 
where the sixth request is a repeat of the second request 
1'2. One set of module requests corresponding to this 
graph is 1'1 = 4, 1'2= 5, T3 = 6, 1'4 = 2, 1'5 = 3. (Note 
that an a probability connecting two nodes requires 
that they are sequential requests.) By our definitions 
of the Data Queue model this set of requests has prob
ability (1/ n) a3,82. In fact, all sets of requests corre
sponding to a given request graph have the same prob
ability. For a given k, there are a number of possible 
request graphs corresponding to varying the probabili
ties between the requests and varying the request that 
is repeated at position k + 1 in a sequence. Thus Q(k) 
can be determined by counting the number of request 
sequences corresponding to each possible request 
graph of length k, multiplying the counts by the prob
ability associated with each graph, and then summing 
these values for all graphs. The enumeration procedure 
developed carries out the above operations by using 
counts for graphs of length k - 1 to determine the 
counts for graphs of length k. A compl~te discussion 

of the enumeration procedures can be found in refer
ence 11; in the material that follows we will use the 
results of calculations of Q (k) in order to display nu-

merical investigations involving DBn = tk=1 kQ(k). 

Maximum memory bandwidth values 

The Instruction and Data Queue models developed 
above used a formula for IBn and DBn which assumes 
that the maximum memory bandwidth, M, is equal to 
n. However, in many systems the memory cycle accom
modates fewer than n processor cycles. For example, 
the CDC-7600 has 10 processor cycles per memory 
cycle, or a maximum memory bandwidth of 10; whereas 
n can be as high as 32. In a typical system M would be 
determined by economic constraints. That is, building 
a memory or processor faster than certain speeds may 
require much greater complexity or a new, more sensi
tive or expensive technology. Therefore, it is necessary 
to know what would be gained by an increase in mem
ory and processor speed or an increase in the speed of 
one with respect to the other. To gain insight into this 
latter trade-off in an interleaved system we will con
sider 111 :s; n. 

For 111 = n we assumed that the Scanner scanned the 
memory request queue until it found the first repetition. 
With M < n, we will assume that the Scanner scans the 
queue until either M distinct requests have been found 
or the first repetition is found. Thus since at most M 
memory modules will be active in any memory cycle, 
we have the following extensions to our earlier defini
tions of IBn and DBn: 

M n 
IBM = L kP(k) + L 1IIP(k) (8) 

k=l k=M+l 

1 - (1 - A)M 

A 

M n 
DBM = L kQ(k) + L MQ(k) (9) 

k=l k=M+l 

where the procedures discussed earlier are used to 
calculate P(k) and Q(k). Note also that both IBM and 
DBM are always less than or equal to M, the maximum 
memory bandwidth. 

NUMERICAL STUDY OF INTERLEAVING 

To study the performance gain that can be expected 
from interleaving, we shall examine the following 
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These four curves are sufficient to see the effects of the 
parameters on instruction and data bandwidths. They 
are shown in Figures 4, 5, 6 and 7. 

Figure 4 is a plot of IBM versus (1 - A). For higher 
values of (1 - A)-less branching-IBM rises sharply 
to its maximum, M. In particular, programs 'with 
moderate to high values of (1 - A), i.e. (1 - A) 2:: Ys, 
make good use of the interleaved memory system. A 
detailed analysis of various program mixes would be 
necessary to determine the most likely range of A for 
any particular mix. However, some preliminary analysis 
shows that values of A between Ys and X 6 are likely 
for a range of programs, and thus these programs make 
good use of the memory in a system structure that 
groups instruction requests, e.g., the IDeS. 

When designing a computer system economic con
straints require that a good choice of relative memory 
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and processor speeds be made. If the memory cycle 
time, mc, is fixed by technology considerations then 
increasing the ratio M = (memory cycle time) I 
(processor cycle time) corresponds to decreasing the 
processor cycle time, pc. Figure 5 shows a plot of IBM 
versus M with mc fixed. For the lower values of (1 - A), 
due to internal waste there is a distinct flattening of 
the curves as M is increased. Thus, for a given value of 
A, it is of little value to decrease the processor cycle 
time beyond a certain point. 

Figure 6 shows a plot, for various values of n, of the 
mean memory bandwidth, DBn , versus the parameter 
a. (These and subsequent results' for the Data Queue 
are obtained from reference 11.) Substantial improve
ments in DBn are obtained only in the region, .5 < 
a < 1.0. The minimum points in the graph correspond 
to a = lin, i.e., random addressing. 

Precise specification of a for any given program mix 
would require program analysis not yet undertaken. 
From preliminary analysis, however, a between .125 
and .5 appears typical. 

Figure 7 shows DB M vs. M for several values of a. 
The memory cycle is assumed fixed. From the point 
of view of practical design, it is clear from our earlier 
remarks that the lower values of M correspond to less 
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expensive systems since the processor speeds need not 
be as great relative to memory speeds. I tis then inter
esting to observe that for a < .5, M can be as small as 
n/2 without reducing the mean bandwidth more than 
15 percent below its maximum value. This effect is 
the result of increased interference among data requests 
for larger values of M; thus, for M much larger than 
n/2, the probability of a blockage, i.e., a request asking 
for a busy module, is very high. Consequently, in
creasing M beyond a certain point is of marginal value 
in improving memory bandwidth. 

Figure 6 gives some indication of the usefulness of 
increasing n for a given a; this effect is made clearer 
in Figure 8, where we have plotted DBM versus n, for 
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M as a parameter and for a and me fixed. The behavior 
for the other values of a was similar. 

To summarize, we have observed the following 
significant features with respect to instruction and 
data requests in an interleaved memory system: (1) 
the value of interleaving for programs that have a 
high a or a small A; (2) the slow increase of DBM (and 
to a lesser extent IBM) with decreasing processor cycle 
time once M is sufficiently large; and (3) the increase 
in DBM as n is increased. Next we will use these ob
servations in the investigation of a system structure 
that takes advantage of the interleaved memory system 
as modeled. 

Instruction data cycle structure 

We recall that IBM and DBM as calculated are for a 
system structure, the IDCS, in which we have assumed 



that alternate memory cycles are allocated to instruc
tion accessing and data accessing. This operation was 
described earlier and depicted in Figure 2. We will 
derive a method of calculating B M for this structure 
that takes into account the actual dependence of the 
Data Queue on the Instruction Queue. As stated earlier, 
this dependence is specified by our assumption that .8 
of the executed instructions add requests to the Data 
Queue. We now make the important observation that 
the advantage of this structure is that it places into 
blocks requests that are likely to be sequential. Thus 
the system utilizes interleaving to obtain the increased 
average memory bandwidth observed for instructions 
and data in the previous section. In addition, within. a 
memory cycle there is no interference between data· 
and instruction requests; thus this structure can achieve 
a p.igher average memory bandwidth than, for example, 
structures that use the same Scanner but alternate 
instruction and data requests within a memory cycle. 

Because instruction and data requests are inter
related, we note that, depending on the values of A and 
a, either instruction accessing or data accessing can 
limit the average memory bandwidth. That is, given 
M and a, there is a sufficiently large A beyond which 
fewer than DB M items will be added to the Data Queue 
per data cycle, i.e., the Data Queue will not be saturated. 
In this case of limited instruction accessing, the average 
data bandwidth is simply the average number of items 
added to the Data Queue per memory cycle. B M can 
then be calculated by taking half the sum of IBM and 
this latter average. On the other hand, data accessing 
will limit B M if for M and a given, A is small enough 
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such that on the average more than DB M requests are 
added to the Data Queue per data cycle. In this case 
the system must periodically add an extra data cycle 
in order to avoid overflowing any amount of buffering 
allocated to the Data Queue. A formula for calculating 
B M in this case can be derived from these statements; 
but these calculations are not shown here since our 
present interest is simply in the curves resulting from 
these calculations. 

Although the IDCS can be shown to be efficient for 
a wide range of n values, we shall study n = 16 here. 
Moreover, in Figures 9 and 10 we choose A and a values 
in the most likely ranges discussed earlier, namely 
a = .25 and A = yg and VI 6. Comparing Figure 9 to 
Figure 5, we note that the slope after each change in M 
is less here than for the corresponding curve from 
Figure 5. This is to be expected since only .8 of the 
executed instructions request data and since the Data 
Queue saturates for M ~ 8 (see Figure 7). Figure 10 
shows BM vs. (1 - A) for M = 10. Here again we can 
observe the limiting effect of data accessing on BM as 
A is increased. In particular, for (1 - A) I""-' 11/12 the 
Data Queue saturates and thus restricts further sub
st&'ntial increases in BM with increases in A. 

SUMMARY 

We have discussed an analysis of interleaved memory 
systems where the distinct properties of instruction 
and data requests have been considered. The figure of 
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merit used to investigate interleaved systems was the 
average memory bandwidth. Numerical investigations 
of models for the Instruction Request Queue, the Data 
Request Queue, and the IDCS demonstrated the trade
off between instruction and memory cycle speeds and 
also showed the significant value of separately grouping 
instruction and data requests when accessing the mem
ory. This latter grouping of requests substantially in
creases the average memory bandwidth. Although we 
have not investigated it here, we note that additional 
increases in bandwidth can be achieved by reading 
multiple words from each memory module instead of 
one word as discussed above. This technique is particu
larly useful for increasing IBM if }.. is small. 
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A computer system for bedside medical research* 

by STEVEN E. WIXSON, EUGENE M. STRAND and H. WILLIAM PERLIS 

The University of Alabama Medical Center 
Birmingham, Alabama 

INTRODUCTION 

The University of Alabama Myocardial Infarction Re
search Unit (MIRU) supports clinical research on 
patients who have sustained a myocardial infarction 
(heart attack). MIRU is a contract from the National 
Heart Institute whose goal is the reduction of mortality 
and morbidity from myocardial infarction. Patient 
rooms provide the environment for intensive coronary 
care and research. Two laboratories facilitate study of 
critically ill patients with complicating conditions, such 
as, shock, congestive heart failure and severe arrhyth
mia. The digital computer housed adjacent to the 
patient rooms is dedicated to on-line real-time MIRU 
research (see Figure 1., MIRU). 

The Shock Research Unit of Los Angeles County 
Hospital pioneered the application of digital computers 
for on-line clinical research of cardiovascular functions.! 
Following that effort, electronic data processing tech
niques are being used increasingly for patient moni
toring.2- 5 These applications emphasize clinical care of 
postoperative patients, and they primarily monitor 
only a few variables, such as, blood pressure, heart 
rate, respiratory rate, temperature, and urine flow. The 
patient monitoring programs developed by Sheppard, 
et aI., at the University of Alabama5 are used in the 
clinical care of patients in the MIRU. 

The variety of MIRU research ·protocols (e.g., ther
mal dilution cardiac output, assisted circulation, ECG 
rhythm analysis) demand a changeable support system 
both in the bedside instrumentation and in the com
puter software. The MIRU research system emphasizes 
flexibility in facility allocation and ease of programming 
and operation. 

* Supported in part by U.S. Public Health Service Contract No. 
PH43-67-1441 
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Figure I-Myocardial infarction research unit 

Computer Requirements 

MIR U research requires the following computer 
capabilities: 

• Acquisition and analysis of data from mUltiple beds, 
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Figure 2-System design 

• Control of measurement and therapy devices, 
• Real-time display of information, and 
• Concurrent development of computer programs. 

The patient data for research studies include physio
logical, historical, physical examination, laboratory, 
clinical observation, intervention, and pathological data. 
Intervention data include medication, therapy, changes 
in position, and research protocols. Physiological data 
acquired in analog form include sampled data and 
derived parameters. 

Computer configuration 

The IBM 1800 Data Acquisition and Control System6 

with the Multiprogramming Executive (MPX)1 pro
vides the foundation for the system which meets these 
requirements. Supplementing MPX, a MIRU executive 
supports data entry at multiple terminals and allocates 
system facilities to multiple patients. This executive 
requires minimal alteration to MPX. 

The IBM 1800 processor . controller is a 32K word, 
2-microsecond cycle time computer. Each word is 16 
bits plus 2 bits for parity checking and storage pro
tection. Digital input, digital output, and analog output 
features allow connection of special devices, e.g., remote 
terminals (see Figure 2., System Design). 

Three direct access disk drives provide 1.5 million 
words total of on-line storage for programs and data 
(see Table I, Disk Allocation). Two drives are reserved 
for the real-time parts of the MIRU system. The third 
is a utility drive serving as one of the following: 

• backup for the system drives, 
• storage for source and object programs during de

velopment, 
• storage of the MIRU master patient index for sta

tistical studies, and 
• large volume disk storage for a particular research 

protocol. 

Two 60kb tape drives provide high volume storage 
for research studies. One, the real-time tape drive, 
logs data from patient files for retrospective study. 
The other, the special study tape drive, provides 
temporary data storage in scheduled research proce
dures and backup for the real-time tape drive. 

Two 20kc analog-to-digital converters provide con
tinuous and noncontinuous modes for analog data 
acquisition. One, the real-time converter, converts data 

TABLE I-Disk Storage Allocation 

SECTORS DRIVE 0 DESCRIPTION 

300 IBM system programs. 
800 TASK working storage. 
293 Coreload storage. 

60 Temporary patient file. 
2 Terminal control file . 

.54 Interrupt save area. 
27 Batch save area. 
56 Executive Director. 

8 Cold start program. 

SECTORS DRIVE 1 DESCRIPTION 

24 Disk index table. 
350 IBM relocatable programs. 
100 General relocatable subroutines. 
286 Batch work storage. 
40 Test process work storage. 
50 Test coreload area. 

750 Source program file. 

SECTORS DRIVE 2 DESCRIPTION 

8 Disk index table 
1000 Patient active file. 
592 Coreload area. 



which is processed continuously by core-resident rou
tines. The second, the special study converter, is used 
for converting bursts of data for routine clinical proc
essing and research experiments. MPX schedules the 
second converter by queueing conversion requests. The 
queued requests are serviced according to a priority 
assigned to the research experiment. Experiments de
manding immediate response receive a high priority. 
The special study converter serves as back-up for the 
real-time converter. 

Multiprogramming executive 

The IBM 1800 Multiprogramming Executive oper
ating- system is the real-time monitor for the computer. 
l\1PX provides automatic handling of interrupts from 
data input-output (I/O) devices and user sources, 
automatic program scheduling, on-line hardware diag
nostics, and time sharing for real-time routines, process 
programs, and background processing. The MIR U 
system provides these areas for program execution: 
Special coreload area (SPAR), coreload area, and vari
able core. These areas service, respectively, programs 
of high response and short execution (1 millisecond), 
medium r~sponse and medium execution (1 second), 
and slow response with variable execution (see Table 
II, Core Allocation). 

The MIRU executive features: (1) Remote terminal 
control of system facilities, (2) Computer controlled 
medical instrumentation, (3) Task concept for allo
cation of system facilities, (4) FORTRAN programming 
environment with multiple entry points, (5) Flexible 
program communication including program control of 
exception conditions, and (6) Standardized handling 
for data storage in the patient file. 

REMOTE TERMINALS 

Remote terminals control the work load of the disk 
oriented computer system. The remote terminal con
sists of a storage oscilloscope and a keyboard for display 
and entry of information. The storage oscilloscope pro
duces excellent graphic and alphanumeric displays for 
review of information. High quality graphic plots are 
essential in the MIRU environment where large quan
tities of analog data are processed. The storage oscillo
scope also offers visual quality control of signals sampled 
by the computer. 

The keyboard keys and lights are connected to the 
computer's digital input and output points. Data en
tries (numerics, minus sign, blank, decimal point) are 
displayed on the top line of the scope for visual verifi
cation as the key is depressed. Action keys (clear, enter, 
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TABLE II -Core Storage Allocation 

PARTITION OR 
AREA 

Inskel Common 

Executive I/O and 
Director 

MIRU Executive and 
FORTRAN 
Subroutines 

SPAR 

Core Load Area 1 

Core Load Area 2** 

Variable Core 

SIZE DESCRIPTION 

3 K* Core resident storage area 
for program communica
tions. Terminal control 
block, bed and param
eter control blocks, task 
block and working stor
age. 

10 K* Core resident parts of the 
IBM MPX System. 
Interrupt Handler, Pro
gram Scheduler, Disk 
I/O Routine, Error 
Routine. 

3 K* Keyboard entry routine, 
instrumentation handler, 
MIRU housekeeping rou
tine, task timer control. 
Frequently used FOR
TRAN subroutines. 

4 K* Special coreload area for 
fast response (Millisec). 
Continuous signal pro
cessing. 

4. 5 K Medium response (1-5 sec). 
Short execution times 
(Up to 1 sec). Disk 
loaded programs to 
handle remote terminals. 

4 K Slow response (10-20 sec). 
Longer executing time 
(5 sec). Work horse area 
used by most MIRU 
processing programs. 

7.5 K 1st priority-high response 
processing on a core ex
change basis for pro
grams too large for Areas 
1,2. 

2nd priority-long execut
ing, large programs with 
no response required. 

3rd priority-batch pro
cessing. 

*These areas are storage protected. 
** This area is planned for the future when additional core 
storage can be obtained. These programs are now executed as 1st 
priority in variable core. 

respond, reset) cause the computer to perform the 
specified function. The lights (attached, busy, message) 
show the terminal's status. 

The keyboard and oscilloscope terminals facilitate 
communication between programs and researchers. 
Through audio-tone and lights on the terminal, alarm 
conditions, alert conditions, and routine messages can 
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TABLE III-Terminal Control Block (TCB) 

WORDS p* DESCRIPTION 

1 P Terminal number. 
2 P Address of task block in control of terminal. 
3 P Bed control block number. 
4 P Hardware bit mask for lights and display. 
;)-8 Display "mode" scale factors. 
9-10 Display origin for keyboard entry. 

11-13 Display origin for FORTRAN IOCR. 
14-21 Display scale factors. 
22-31 P Special function program names. 
32-47 Keyboard buffer and pointer. 
48 Time of data entry. 
49 P Digital input address. 
50 Reserved. 

* NOTE: "P" means storage protected, and a blank space 
means not protected. 

be signalled. The user can enter data at the keyboard 
for a program, and the program can display textual, 
numeric, and graphic information. 

A fixed in-core table of parameters exists for each 
terminal. This terminal control block (TCB) contains 
information pertinent to the generating of displays and 
keying of data. MIRU executive plot routines reference 
the TCB for scaling factors. The keyboard entry routine 
buffers characters in the TCB (see Table III, Terminal 
Control Block). 

The patient's bedside or nurses' station terminal can 
be used to call programs into execution and to enter 
data during program execution. A terminal is normally 
in program call mode (unattached). A program request 
through a MIRU executive subroutine dedicated (at
taches) a terminal for data entry. 

A three-digit name identifies each process program. 
The first digit is the hardware priority6 level at which 
the program will execute. Digits 2 and 3 provide identifi
cation for programs which execute on that level. Entry 
through the keyboard of a program name queues the 
program for execution. Function buttons on the key
board map through the TCB into the ten programs 
most frequently called from a particular terminal. Se
lecting a function button queues a specific program for 
execution. Thus a program can be selected either by 
keying the three digit name or by selecting a function 
button. 

When a keyboard has been attached to a program, 
data can be entered for that program. Up to 15 char
acters of information (numerics, minus sign, blank, 
decimal point) can be buffered in the TCB. Individual 
data words are separated by the blank, so more than 

a single value can be entered. For example, the string 
[5 12.7 1 -53 15] represents five distinct· data entries. 
MIRU executive subroutines move the character string 
from the TCB and convert it to FORTRAN real or 
integer values. 

BEDSIDE INSTRUMENTATION 

Commercially available medical instrumentation pro
vides 7 to 14 channels of analog signals from each 
patient room. The instrumentation has been modified 
to permit computer identification of transducers and 
modules and to allow computer control of bedside 
devices. The modular computer-controlled instrumen
tation meets the research requirements of MIRU, as 
the, bedside instrumentation requirements vary with 
different protocols being conducted. In patient rooms, 
computer-connected cabinets accept up to 7 channels 
of instrumentation. In the two laboratories, up to 14 
computer-connected module positions are available 
(see Figure 1, MIRU). Transducer panels above the 
patient's bed provide one computer-coded transducer 
connector for each module position in the cabinet. 
Above each connector is the "transducer active" button 
used to signal the computer to put a transducer on-line. 

When a analog signal is needed, the nurse connects 
the transducer, plugs in an amplifier module, and 
presses the transducer active button. The computer 
reads digital information from the amplifier module 
and transducer connector. A computer program checks 
the 5-bit code to insure proper setup of the instrumen
tation. Using the remote terminal, the program guides 
the calibration of the amplifier. A light in the "trans
ducer active" button signifies the signal is on-line. 

A second pressing of the button sets the signal off-line 
removes the calibration tables, and turns off the trans
ducer active light. 

In the computer, tables store module addressing and 
calibration information for all programs using a signal. 
A bed control block (BCB) for each patient in the 
research unit contains identification and physiological 
information used frequently by programs. Programs 
access the data in the BCB through MIRU executive 
routines which load or save values. A program can only 
address the BCB of the bed for which it is active. 

Since instrumentation requirements vary, a block of 
storage called the parameter control block (PCB) is 
dynamically allocated when a parameter (e.g., blood 
pressure, surface ECG) is placed on-line. A fixed section 
of the PCB contains addressing and calibration infor
mation. A variable section holds the derived data re
lated to the parameter. The derived value~ are usable 
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for all programs and are referenced through system 
load/store routines (see Table IV, BCB's and PCB's). 

TASK CONCEPT 

The basic unit of work in the MIRU system is the 
'task.' A task is defined as a disk loadable program 
that is active for a specific patient and is uniquely 
identified "by a program name and a bed number. It 
may be of short duration (a few hundred milliseconds), 
such as, a summary display; or it may be of long 
duration (the entire patient stay), such as, a monitoring 
program executed at periodic intervals. Tasks can be 
initiated from the remote terminals or through other 
tasks. 

Since a new task is started for each patient, one 
program is serially reusable for all patients on the 
unit. This conserves disk storage; since only one copy 
of a program need be stored on disk. 

The task concept dynamically provides system fa
cilities to each patient in the research unit. The bedside 
terminal will be dedicated to any task for entry or 
display of information. Core and disk working storage 
are dynamically allocated for intermediate storage of 
parameters. Lights and audio alarms are available for 
signalling alarm and message conditions. Real-time 

WORDS 

0 
1 
2-5 
6-12 

13 
14-40 
41 
42-** 

WORDS 

0 
1 
2 
3 
4 
5+ 

TABLE IV-Bed Control Block (BCB) 
and Parameter Control Block (PCB) 

BED CONTROL BLOCK 
p* DESCRIPTION 

P BCB length. 
P Bed control block number. 
P Patient number. 
P Patient name. 
P Digital input/output addresses. 

Physiological data storage. 
P Maximum number of PCB's. 

Parameter block addresses. 

PARAMETER CONTROL BLOCK 
p* DESCRIPTION 

P PCB length. 
P Multiplexor address of module. 
P Address of task block in control of module. 
P Slope calibration. 
P Zero calibration. 

Derived physiological parameters. 

* NOTE: "P" means storage protected, and a blank space 
means not protected. 
** NOTE: = 73 for laboratories. 

= 47 for uncomplicated patient rooms. 

t ~~I _____ Le_ve_l __ ~ _____ B_it ____ ~1 ~ 
l Task Inactive 

Terminal Bed 

Timer Switch Main Switch 

I I I I 11 r Word Count 

Work 

Disk Address 

Timer Switch 
<\i'lv~ Ar~i'I 

Reserved 
Erase 
Task In-execution 
Terminal Attached 
Message Pending 
Alert Condition 
Alarm Condition 
Timer Active 

Area Address 

Sector Count 

Main Switch 
S;!Vp Arpi'l 

Timer 

*NOTE: IIpll means storage protected, and blank 
space means not protected. 

Figure 3-Task block 

measurements from parameters are available to all 
programs, and any program can log information to the 
patient file. 

A programmable timer is provided for each task. 
The I-sec. time base timer can be used to recall a 
program at a set interval, check data entry or response 
to alarm conditions, or schedule a program execution 
on a periodic basis. 

At task request time, the MIRU executive allocates 
eight words of core called a task block and initializes 
task parameters. The parameters include the program 
name, the terminal number, the bed number, two 
program switches, eight program status flags, the word 
count and address of in-core storage, the sector address 
and count of disk storage, a program switch save area, 
and a task timer (see Figure 3, Task Block). 
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Figure 4-MIRU Sample Task Program 

SAMPLE TASK PROGRAM 
II FOR STASK 

(J************************************************************** 
(J* NAME STASK * 
(J* TITLE SAMPLE MIRU TASK PROGRAM * 
(J* DATE 4/1/70 * 
(J* FUN (JTION THIS ILLUSTRATES HOW PRO- * 
(J* GRAMSARESTRU(JTUREDIN * 
(J* THE UNIVERSITY OF ALABAMA * 
(J* MIRU SYSTEM. THE WRITEUP * 
(J* IN THE MIRU PROGRAMMERS * 
(J* GUIDE EXPLAINS THIS PRO- * 
(J* GRAMMING IN DETAIL. * 
(J* ENTRY (JALLTASK (NAME, IERR) FROM * 
(J* ANOTHER PROGRAM OR (JALL * 
(J* FROM REMOTE TERMINAL * 
(J* (PROGRAM SWIT(JH SET TO 1) * 
(J* (JALL TASKP (NAME, WD(JNT, * 
C* NOPAR, ARRAY, IERR) FROM * 
(J* ANOTHER PROGRAM (PRO- * 
(J* GRAM SWIT(JH SET TO 2) (JALL * 
(J* TENTR (NAME, I(JODE, IERR) * 
(J* BY ANOTHER PROGRAM (PRO- * 
(J* GRAM SWIT(JH SET TO 3) * 
(J* ERROR RE(JALL (PROGRAM * 
(J* SWIT(JH SET TO 4) * 
(J* EXIT (JALL MEXIT (TYPE, NEXT * 
(J* SWIT(JH, TIMER SWIT(JH, * 
(J* TIMER INTERVAL) * 
(J************************************************************** 

PROGRAM ORGANIZATION 

To enhance response times, core utilization, and disk 
storage capacity, the MIRU programming system pro
vides multiple entry points to a FORTRAN program. 
Thus, without being rolled-out (saved) onto disk, a 
program can be exited and entered at a later time. 
In-core storage is dynamically available to each pro
gram for the preservation of intermediate parameters. 
While a program is not active (executing), its coreload 
area is used by other programs. On recall for execution 
a fresh copy of the program is read from disk and the 
execution continues from the designated entry point. 

This programming system conserves -the overhead 
time that would otherwise be required to save an 
interrupted coreload on disk and frees a coreload area 

DATA NAME IZ***I 
(J*****PROGRAM NAME IS A THREE DIGIT NUMBER. 

(JALL INITL (NAME, IPRSW, IALTS, IBED, ITERM, 
ISA VM, ISA VT) 
GO TO (100, 200, 300, 400, 500) IPRSW 

(J 
(J*****PROGRAM INITIALIZATION WITHOUT 

PARAMETERS 
100 CALL WORK (lO,IERR) 

C*****INSURE WORK AREA IS ALLOCATED (IERR IS 
'-' OR '+') 

IF (I ERR) 110, 1000, 110 
110 CONTINUE 
CALL MEXIT (ITYPE, IPRSW, IALTS, INTVL) 

C 
C*****PROGRAM INITIALIZATION WITH PARAMETERS 

200 CONTINUE 
(J*****WORK STORAGE HAS BEEN ASSIGNED BY 

(JALLER 
C*****USE 'LDTSK' TO RETRIEVE INITIAL 

PARAMETERS 
(JALL MEXIT (ITYPE, IPRSW, IALTS, INTVL) 

(J 
(J*****EXTERNAL ENTRY SE(JTION 

300 CONTINUE 
(J*****'IALTS' (JONTAINS ONE WORD FROM THE 

EXTERNAL CALLER 
GO TO 1000 

(J 
(J*****PROGRAM ERROR RE(JALL SECTION 

400 (JONTINUE 
(J*****'IALTS' CONTAINS THE ERROR (JODE 

GO TO 1000 
C************************************************************** 

500 (JONTINUE 
C 
(J*****PRO(JESSING (JOMPLETE EXIT 

1000 CALL MEXIT (0, 0, -0, 0) 
CALL EXIT 
END 

while a program is inactive. While one task waits for 
the entry of data from a keyboard, another task pro
gram is executing. 

Task program 

A task program is many program segments con
nected together under the control of two program 
switches, the main and timer switches. The switch 
mechanism is the FORTRAN computed-go-to state
ment. 8 A program segment begins at one of the state
ment numbers in the computed-go-to statement and 
ends with a call to the MIRU executive exit routine. 
This gives a FORTRAN program multiple entry points. 

In the computed-go-to statement, GO TO (100, 200, 



A Computer System for Bedside Medical Research 481 

300, 400, 500), IPRSW, the numbers are the entry 
points to the program and "IPRSW" is the main 
program switch (see Figure 4, MIRU Sample Task 
Program). By selectively setting "IPRSW" as 1, 2, 
... , N, the program can begin execution at entry 
points 100, 200, ... respectively. This provides a power
ful but easy mechanism to select the same or different 
entry point each time the program is executed. 

The switches provide the programmer with two inde
pendent control paths for each task. The first or main 
switch is the entry point following data input via a 
remote terminal or response to an alarm, alert, or 
message signal. 

The·second or timer switch is the entry point follow
ing a time-out of the task timer. Since the two switches 
are independent, each may point to a different segment 
of the program. A program requesting data can regain 
control after a specified time interval, whether or not 
data has been entered. 

Entry point selection 

The MIRU executive initializes the switches at task 
setup time. At the end of each program segment, the 
MIRU exit routine sets the switches for the next entry. 
A task program determines its entry point through a 
call to the task initialization routine. 

A task program begins with the task initialization 
routine. This routine identifies the task being processed 
and places the task block address on the MPX level 
work area, that is, the MPX mechanism for reentrant 
coding. 7 Subsequent MIRU executive routines reference 
the task block through the saved address. The initiali
zation routine' sets the task active flag and returns the 
program switches. 

The last executable statement of every program seg
ment is a 'CALL MEXIT' (i.e., MIRU executive exit 
routine). Through this routine, a program communi
cates with the task block. The user can specify why 
he is exiting the program (exit type), where he wishes 
to return (main switch), where to return on a timer 
recall (timer switch), and the increment of time to 
remain inactive. The MIRU executive saves this infor
mation in the task block, designates the task as inactive, 
and removes the task block address from the MPX 
level work area. 

The following are task exit types: 

O-complete task processing, 
I-signal alarm condition, 
2-signal alert condition, 
3-signal message pending, 
4-remain inactive for specified time interval, 

5-request data from terminal without erasing dis
play, and 

6-request data from terminal and erase display. 

Certain main entry points are reserved and defined 
as follows: 

I-task initialized without parameters, 
2-task initialized with parameters, 
3-task reentered from external source, and 
4-task recalled through error condition. 

Initial entry without parameters 

A task initialized through the terminal has no in-core 
or disk work storage; and hence, it can have no initial 
parameters. Working storage can be attained through 
a request to the MIRU executive. The task program 
can request up to 255 words of in-core storage and up 
to 128 sectors of disk storage. This storage space is 
found by the MIRU executive, which returns its ad
dress to the task block. The executive also returns 
status indicator: Work storage already exists; no work 
area remains; request successfully filled. 

Initial entry with parameters 

A task initialized from another task program can be 
in one of the following states: 

• N either disk nor in-core storage, 
• Disk but not in-core storage, 
• In-core but not disk storage, or 
• Both in-core and disk storage. 

A task program starting a new task can transfer data 
through in-core working storage. The MIRU executive 
selects a task block, initializes the program switches 
to entry point 'two', allocates task working storage, 
moves the data to the storage, and queues the new 
task for execution. 

Using another MIRU executive routine, a program 
can transfer both in-core and disk working storage to 
the new task. This routine uses the existing task block 
for the new task, thus completing the processing by the 
first task. The parameters contained in in-core and 
disk working storage are passed to the second task. 
The program switches are set to entry point 'two'; the 
new task. is queued for execution; and the existing 
program is exited. 

Task working storage cannot be referenced directly. 
I t is accessed indirectly through the work area address 
stored in the task block. On request, MIRU executive 
routines 'load or store values in the working storage. 
The load and, store functions validate the relative 



482 Spring Joint Computer Conference, 1970 

TABLE V-MIRU Abort Messages and Restart Codes 

MIRU TASK ABORT MESSAGES 
MESSAGE MEANING 

'MULT ER ABT' 
'WHOOPS BATCH CALL' 

'WHOOPS TSK AD INV' 

'WHOOP~ INV LVL/BT' 

'DAMN DAMN DAMN' 

Word 

1 
2 
3 
4 
.5 
6 

Multiple error abort. 
System routine called invalidly 

from BATCH 
No 'CALL INITL' has been 

made prior to a call to a 
system routine. 

No active task found for name 
input to 'INITL.' 

Programmed status dump. 

Definition 

Level/Area 
I (User variable) 
Terminal/Bed 
Alternate switch/Main switch 
Flag/Word count 
Audit trail switches (Previous 

entry point) 

MIRU ERROR RESTART CODES 

4-1 Multiple error recall. 
4-2 MPX program restart (FORTRAN error detected). 
4-3 Task load/store relative word error. 
4-4 Invalid switch in 'MEXIT' call. 
4-.5 Invalid type in 'MEXIT' call. 
4-6 No interval in type 4 'MEXIT' call. 
4-7 Invalid word count in 'WORK' call. 
4-8 Attempted use of terminal attached to another 'TASK' 

(e.g., 'CALL TEXT'). 
4-9 Invalid terminal call in 'MEXIT.' 
4-10 Terminal number error in 'ATACH' call. 
4-11 Error in code in 'TENTR' call. 
4-12 Error in word count in 'TASKP' call. 
4-13 Sector count error in 'DWORK' or 'MADDR' call. 
4-14 Invalid name in 'TASK,' 'TASKP,' 'TASKT' call. 
4-15 Sector count outside reserved area in 'MADDR' call. 
4-16 Display number is zero, negative, or greater than 

number of displays on system. 

MIRU EXTERNAL ENTRY CODES 

3-1 System reload (Storage protect, op code, or parity error). 
3-2 Forced terminal separation (Keyboard reset). 

address of the word affected. A task restart occurs if 
a program attempts to address an invalid core storage 
location. 

External entry 

A task reentered through a system reload, through 
the keyboard reset, or from another task receives a 
communication code in the alternate (timer) switch. 
This external entry disrupts the normal flow of the 

task execution. The MIRU executive saves the former 
switches; and the task initialization routines returns 
these to the program. The user can reestablish the 
flow of execution. 

Restart entry 

A task restarted through an exception or error con
dition receives a code in the alternate switch. The 
MIRU executive leaves control with the program when
ever possible. Only the program knows the significance 
of an exception condition and what corrective action is 
necessary. On restart, the program can shut down a 
process or inform the user of the error condition. Only 
as a program loops in multiple restarts is it forceably 
aborted. Abort conditions are logged on the system 
printer (see Table V, MIRU Abort Messages and 
Restart Codes). 

DATA MANAGEMENT 

A disk file for each patient's data contains all infor
mation needed in real-time. A variety of data types can 
be saved in the patient file: Raw analog-to-digital 
values, derived parameters, coded information and 
narrative data. Information saved in the patient file 
is used to generate summary displays and for retro
spective studies. 

MIRU executive routines log each pie~e of infor
mation to a temporary disk file, sort data for individual 
patient files, and dump disk files to magnetic tape. 

When entered into the logging files, information is 
identified with patient's number, a data type code, 
and time stamp. A retrieval program collects infor
mation from the patient file by code and patient num
ber. Using the code, retrieval routines can extract the 
requested data without reference to an external source 
for attributes, e.g., word count. The code also allows 
logging a group of data, each element identified only 
by its relative position in the group and the code of 
the record. This fixed position format is used to log 
the mUltiple results of a program without coding each 
piece of data within the record. 

A log request moves the data to a core buffer area. 
After sixteen requests the core Duffel' i8 transferred to 
the temporary log file on disk. Periodically, a program 
sorts the temporary disk file (which has data mixed
from all patients) for the real-time tape, and individual 
patient disk file (the patient active file), or the nurse's 
printer. The tape records are blocked five disk records 
to one tape record (see Figure 5, Information Logging). 
When a patient is dismissed from the research unit, a 
program extracts the data for that patient and gener-
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ates an individual tape file. This forms the permanent 
record for retrospective studies. 

Analog-to-digital values and large arrays of derived 
data may be written directly to the real-time tape. 
In logging data directly to the real-time tape, the user 
must provide a tape header including patient identifi
cation, data type, and time of acquisition. Otherwise, 
the record will be discarded when the real-time tape is 
sorted into individual patient files. 

CONCLUSION 

The research system has been operational since July, 
1969, with a single prototype of the medical instrumen
tation and two keyboard/oscilloscope terminals. The 
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Myocardial Infarction Research Unit opened in October, 
1969, so the computer and instrumentation system is 
being used for research studies from two patient rooms 
and two laboratories. Instrumentation of an animal 
laboratory is projected for 1970. 

We have not had sufficient experience in a multiple 
bed research environment to note the strengths and 
weaknesses of the system. These will be reported at 
the conference. 
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Linear programming in clinical dental education 

by C. E. CRANDELL 

University of North Carolina 
Chapel Hill, North Carolina 

Linear programming techniques have seldom been 
used in studying educational processes and are just 
now becoming of interest in health care delivery 
systems. 

The objectives of our pilot research project at the 
School of Dentistry, University of North Carolina, 
have been to: (1) demonstrate the feasibility and 
merits of linear programming for the optimum alloca
tion, scheduling, and utilization of teaching staff and 
physical facilities in clinical dental education; (2) to 
demonstrate a practical application of linear program
ming by introducing the total patient care concept; and 
(3) to make these data available to other schools. 

The introduction of the total patient care concept 
will provide students with a clinical experience in dental 
school which will more closely simulate the conditions 
to be encountered in private practice after graduation. 
Optimization techniques will permit a comparison of 
clinical dental education in which students provide 
comprehensive care to patients as opposed to the tradi
tional point and block systems of fragmented care. 
Specifically, our pilot program at UNC has sought to 
demonstrate that the total patient care concept can be 
introduced without detriment to the quality of clinical 
teaching or without increasing the cost of clinical 
dental education. Hopefully, parameters will also be 
discovered which can be varied in such a way as to 
reduce costs without detriment to the quality of clinical 
teaching or to increase the quality of clinical teaching 
without increasing costs. Either of these worthy objec
tives would be to the benefit of the student, the school, 
and the population we serve. 

Actually.over the past three years, our work has been 
along the following lines: first, we analyzed the clinical 
teaching situation in the School of Dentistry and iden
tified those significant factors relative to the effective
ness and efficiency of clinical instruction. These in
cluded an analysis of technique procedures that stu
dents are required to accomplish, a classification of 
students in terms of ability, and the time required 
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with reference to these procedures; the rate of utiliza
tion of equipment and physical facilities; the rate of 
utilization of instructors' services and a classification 
of patients in terms of the complexity of their dental 
needs. Secondly, we assumed that the relationships' 
between these factors were linear and simulated them 
conceptionally in a mathematical model of the dental 
clinic. This information was fed into the computer as 
representing a typical clinical situation. The functional 
relationships of these variables have been studied 
using linear programming techniques. We have identi
fied variables which we feel might represent the dental 
clinic. The problem for the computer then was to select 
which set of factors in any of those equations would 
give us the most efficient operation of the dental clinic. 
Once we are satisfied that our mathematical model 
truly represents the clinical situation, we can then 
experiment with various changes in the operation of 
the dental clinic within the computer without making 
any changes in the real world or clinical situation. 

The objective function formulation was done by 
William S. Jewell. 

The initial computer experience was with M3LP 
(SHARE), using 73 equations, 113 variables, 1265 
elements, and a density of 15.33. Later, MPS/360 was 
used on an IBl\1 360/75, with a preprocessor preparing 
the inputs. 

A run has been made with an expanded matrix of 
158 rows, 90 columns, 248 variables, 5990 elements, 
and a density of 15.28. A feasible solution was found 
after four iterations; the optimal solution was found on 
the ninth iteration. The full matrix is estimated to 
contain 800,000 elements. Consideration is being given 
to random sampling of inequalities to reduce the size 
of the matrix to more manageable size. 

Early and tentative evaluation of the clinical phase 
or practical application of this project is probably not 
of great interest to this audience. However, the dental 
educators involved believe that linear programming 
and other operations research techniques will become 
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useful tools in the delivery of dental care to the Ameri
can public. 

OBJECTIVE FUNCTION OF DENTAL 

CLINIC MODEL 

Minimize 

a = Junior students 
b = Senior students 
T = Clinical Sessions 
J = Clinical Procedures 

+ cPj ".Ltfi(Xi t + DiYit
)] 

ieS; 

Sj = Set of procedures in Specialty j 

C j = Number of chairs in Specialty j 
".Lt = Sum of procedures in Specialty j 
ieS; 

P j = Minimum points for juniors in Specialty j 
Qj = Minimum points for seniors in Specialty j 
Di = 0 for joint procedures; 1 for all others 
H j = Maximum faculty hours in Specialty per quarter 
H/ = Maximum faculty hours in Specialty j available 

in time period t. 
ai = Average hours of performance by juniors doing 

procedure i. 
bi = Average hours of performance by seniors in 

procedure i. 
fi = Faculty instruction, supervision, checkout, and 

waiting time in procedure i. 
a = Cost per junior student hour 
{3 = Cost per senior student hour 
cPj = Cost per faculty hour in Specialty j. 
Xit = Number, junior students in proc. i in time t. 
Yi t = Number, senior students in proc. i in time t. 



Automatic computer recognition and 
analysis of dental x-ray film* 

by DAVID A. LEVINE, HERBERT H. HOPE 

State University of New York 
Stony Brook, N ew York 

and 

l\10RTIlVIER L. SHAKUN 

USPHS, Tufts University 
Boston, Massachusetts 

INTRODUCTION 

For the past two years work has been in progress at the 
State University of N ew York at Stony Brook to 
develop a hybrid system linking. a small digital com
puter to a programmable flying-spot scanner. This 
scanner was designed and built to accomplish the task 
of automatically analyzing x-ray films giving a pano
ramic view of the teeth, jaw and visually proximate 
structures, and producing dental diagnostic data as 
output. 

The principal application of this computer-scanner 
system is to provide a tool for the mass-screening of 
dental patients and to provide automatic acquisition 
and storage of dental data.! The salient features of this 
system are: 

1. The position of the spot at which the film density is 
read by the scanner is under program control of the 
computer. The x-ray film in the scanner is then 
treated by the computer as a random-access, not 
fully repeatable memory. 

2. The pictorial data is acquired from the film under 
highly selective program control, involving the use of 
pattern recognition algorithms. The scanner is 
directed as a result of these algorithms using sparsely 
sampled data, to regions of interest. In these regions 
dental ·pattern information is sampled selectively, 
but more densely, to provide the data base for 
reliable feature recognition. 

3. The automatic sequence of region-selection and 

* Supported under Contract No. DADA17-67-C-7Q94 U.S. 
Army Medical Research and Development Command. 
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feature recognition algorithms is not entirely fixed 
in advance, but is conditionally chosen from a clinical 
decision-tree under program control, depending on 
the analysis of the information as acquired. 

4. Video display, keyboard, and console-switch control 
of the system are also provided for man-directed 
operation. Useful statistical and graphic analysis as 
well as control procedures are organized in an ex
pandable utility-executive software system with 
facilities for direct use and user-program linkage. 
General programs and procedures under development 
are linked to this utility. Data acquired from scanner 
operation may also be stored and analyzed off-line. 

Although the system has been designed and built to 
achieve the principal application, it has many features 
which make it a general tool for other applications.2 ,3 

DEVELOPl\1ENT OF THE COl\1PUTER
SCANNER SYSTEl\1 

The system was designed and achieved in several 
steps. The steps were to some extent overlapping, but 
their sequence is as follows. First, a preliminary 
reconnaissance of available systems was made. No 
system with the envisioned capability and cost was 
found at that time. During this reconnaissance most of 
the algorithm design and program development was 
initiated in simulated form at the Stony Brook Com
puting Center. Pictorial data for this simulated system 
was synthesized as needed and read into a matrix in 
core memory. 

Second, real data, produced from x-ray film scans 
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Figure I-Stony Brook computer-scanner system 

with a sequential flying-spot scanner*, and recorded on 
magnetic tape was used. This data when read into the 
picture matrix in core memory added realistic contrast 
levels and noise problems to the simulated system. 

Third, a small digital computer, an IBM 1130, was 
obtained for use as the planned computer component of 
the hybrid system. The computer chosen has a 16 bit 
word-length and 8,096 words of core memory. A 
magnetic disk drive provides storage of over a half
million 16 bit words for relatively fast access to the 
large volume of programs and data estimated as 
required. The drive accepts removable disk packs. A 
card-reader and punch, a line-printer, a keyboard and 
typewriter and console switches give a useful mix of 
input-output peripherals. The software, written in 
FORTRAN, which was used for the simulation at the 
Computing Center on the IBM 360/67 was then 
transferred to the 1130 computer. The picture matrix of 
off-line scanner data which had been stored in core 
memory of the 360/67 computer was stored on the 
magnetic disk of the 1130. Sub matrices, representip.g 
picture "windows" were transferred to the core memory 
of the 1130 as needed. 

Fourth, as algorithm development went forward on 
the 1130 computer (using data in the off-line mode), 
a flying-spot scanner was designed with operational 
characteristics sufficient to meet the estimated require
ments of the dental application. The scanner was built 
and mated to the 1130 computer. After a long and 
rigorous period of modification, the scanner satisfied the 

* This data was furnished with a sequential scanner at the 
Albert Einstein Memorial Hospital of Yeshiva University. 

initial requirements of accuracy, speed, repeatability 
and reliability. At this point, the system was realized as 
a working basic model of the envisioned hybrid system. 
(See Figure 1). 

THE BASIC FUNCTIONING OF THE SCANNER 
IN THE SYSTEM 

The computer transmits the coordinates, (X, Y), of 
some selected spot on the x-ray film to two input 
registers of the computer-scanner interface. The com
puter next triggers a request to the scanner to return a 
number, D, representing the gray-level, i.e, the optical 
density at the requested location, (X, Y). The scanner 
then responds first, by converting the digital coordinates 
in the input register to proportional analog form in the 
scanner. These analog voltages are used to position a 
spot focussed of light at the requested film location. 
N ext, the amount of light transmitted through the film 
at the requested spot is measured and converted from an 
analog voltage to a proportional digital number, D. 
This number is sent to an output register in the com
puter-scanner interface. The computer may recover this 
digital value, D, from the output register any time 
after the scanner completes its response (See Figure 2). 

This request-response cycle may be viewed from the 
programmer's point of view as operating somewhat as 
an implementation of a function-subprogram, D(X, Y). 
Here, X and Yare the arguments and D is the returned 
function value. In fact, a FORTRAN compatible 
function subprogram with precisely the form of 
D(X, Y) was written in assembly language as a basic 
scanner-interface program. There are some important 
differences, however,between this hybrid subprogram 
and a purely digital one, which will be treated below 
in the section on User Characteristics of the Scanner. 

OPTICSa CRT El..ECTAONCS a 
oa CONVERSION 

COMPUTER 

Figure 2-Block schematic of system 
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SCANNER DATA ACQUISITION 

The hybrid function subprogram just described is, for 
the first model, the basic data acquisition tool of all the 
programmed algorithms. A single use of this sub
program at a point (X, Y) produces a gray-level value, 
D, only at a single location on the film. 

Half the x-ray film is accessible to the scanner at one 
time. An electro-mechanical stage, cradling the film
holder, is used to shift to the other half-portion. In 
each half, any location in a square raster of over four 
million· points (2048 points long by 2048 points wide) 
may be queried randomly by the hybrid subprogram 
D(X, Y). Since the physical area of the film thus access
sible is about 4.4 inches square, each location of the 
raster is about .002 inches from its neighbor on the 
film. 

The light transmitted through the film at each 
location is measured and quantized into sixty-four 
gray-levels, distributed over an optical density range of 
zero (clear) to two (dark) in density value. 

One view of the scanner, then, is that of a random
access data storage of over four million picture elements, 
each represented by a six-bit number (sixty-four gray 
levels). Since the request-response cycle time of the 
scanner, that is, the speed of the hybrid subprogram is, 
at this writing, about 200 microseconds, this represents 
the access time of any data element in the picture 
storage. 

It is evident that with this mass of picture data 
accessible to the computer, a highly selective procedure 
for acquiring picture elements is needed. Indeed, the 
strategy employed leaves the bulk of the data un
acquired from the film, utilizing it as a computer 
storage device. 

ALGORITHMS FOR FEATURE LOCATION 
AND IDENTIFICATION 

The features on the panoramic dental x-ray that are 
noticed, even by the lay observer (see Figure 3), are 
the dark central area separating the relatively light
colored crowns of the teeth and the tooth-shapes 
embedded in the background of gray, lacy bone struc
ture. The shape of the roots of the teeth are in some 
cases clearly discernible 'and in others often blur into 
the background a short distance from the tooth-crown. 

A computer program has been devised in two phases 
to operate the scanner in the graphic environment 
just described producing, in the first phase, a count and 
identification of teeth present and missing, the identi
fication and location of certain gross pathologies, such 
as impacted teeth or retained roots, large abcesses, and 
the location and identification of gross restorations, 

Figure 3-Panoramic dental x-ray picture (positive) 

such as bridgework and dummy teeth. In the second 
phase, a computer algorithm has been devised to 
examine the density values inside the tooth outlines, 
sampling the data more heavily and returning a table 
of features which identifies and locates within the tooth 
structure pathologies, including caries, and finer 
restorations such as fillings, root-canal work, and tooth 
caps. 

Heuristic algorithms were developed, many anal
ogizing clinical procedures and decisions in the reading 
of x-ray film and the recording of results on dental 
charts and dental-student files4• This was followed by 
programming efforts to design and implement more 
mathematical algorithms dealing with feature edge
location, and edge-followings. 

A feature of note in Figure 3 is the curved reference 
block with ball-shaped marks spaced along its length. It 
is the feature of greatest contrast and is centered 
between the separated teeth. As a first try, a radio
translucent, plastic bite-block was designed with radio
opaque balls imbedded inside. This bite-block may be 
placed between the teeth of the patient being x-rayed 
and produces on the film this unique-reference for the 
guidance and location of the scanning spot by the 
computer programs. 

Software was written which employs this reference 
and acquires the coordinates of the edge of the tooth, 
if present, and the coordinates of the jaw or maxillary 
bone when a tooth is missing. 

UTILITY-EXECUTIVE SOFTWARE SYSTEM: 

This software system consists of a main program, 
called UTIL Y, which accepts commands and param-
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eters detailing the command, from the computer 
console keyboard. UTIL Y then interprets and executes 
the command by deploying its various subprograms. 
Interruption, control, and sequencing of commands is 
done with the computer console switches for the most 
part. The system has three main classes of commands. 

The first class of commands are those which execute 
utility subprograms currently compiled into the 
system. These utility subprograms include those which 
control the selection of picture sub-matrices, the video
displ9,y of the scanner, the production of off-line data 
from the scanner, the focusing options of the scanner 
and filtering of data from the scanner. In addition, they 
process and output on the line-printer and typewriter 
useful statistical results and pictorial information, 
inciuding numerical or character picture-matrices, 
histograms of densities, etc. 

The second class of commands are those which 
provide execution linkage to user-supplied programs. 
Any user program may thus be executed by the system. 
A common data area is used to supply parameters to the 
user-program from the executive and to return param
eters to the executive. 

The third class of comands are the meta-commands. 
These include commands which store, retrieve, edit, 
execute, and provide data for other sequences of 
commands. In this sense the third class of commands 
forms the nucleus of a programmable command
language for the hybrid system. 

USER CHARACTERISTICS OF THE SCANNER 

As mentioned earlier in the paper, the scanner's 
request-response cycle may be viewed from the pro
grammer's point of view as the implementation of a 
hybrid subprogram of the form, D(X, Y), where (X, Y) 
is the argument list of the subprogram giving the 
locatiori of a picture element and D is the returned 
value of the function giving the quantized gray-level 
on the film at location (X, Y). In comparison with a 
purely digital implementation of D(X, Y) an impor
tant difference is evident. 

Due to the analog method of controlling spot location, 
the finite size of the spot of light and its method of 
generation in the CRT, the method of measuring the 
transmitted light and quantizing its measurement, 
etc., the returned value of D is not always the same for 
successive readings at the same digital location co
ordinates (X, Y). Initial calibration tests performed 
on the scanner by repeating cyclically many times a 
series of density readings on several thousand random 
film locations show that the modal density value is 
returned at a location about eighty percent of the time. 

Some twenty percent of the time a value differing from 
the mode by one gray level (of a possible 64 levels) 
is obtained. This amodal response is split about equally 
between positive and negative deviations. This has been 
a nearly uniform observation for samples at all 64 
density levels and in all film locations. 

This scanner response error may be reduced by 
careful maintenance, calibration and modification of the 
scanner. A summary of the user characteristics at the 
time of this writing follows: 

SPOT LOCATION: 

(1) The spot at the film plane is .006 inches in 
diameter at the 50 percent intensity circle. This 
size increases 15 percent at the edge of the raster 
field. 

(2) The raster has 2048 by 2048 picture elements. 
(3) Scale at the film plane is 466 picture elements per 

linear inch. 
(4) Raster size at the film plane is 4.4 inches square. 
(5) Non-linearity of the pin-cushion type produces 

a picture element one percent larger at the corner 
of the raster. 

(6) Other non-linearities produce an error less than 
.2 percent of the raster size. 

(7) Location repeatability has an error less than .02 
percent of the distance from the electric center 
of the CRT plus .1 percent of the full raster 
width. 

DENSITY: 

(1) Density repeatability for any point has an error 
of ± 1 density units out of 64. Eighty percent of 
of the repeated points have the modal quantized 
value. 

(2) The value returned from a location of known 
density differs from the average of all returns 
from locations having the same density by not 
more than ±2. 

(3) Polarity of returned density values: clear is 
rendered as level 64; dark as level 1. 

(4) Conformity of density level spacing to optical 
density references: the interval between O. and .30 
in optical density contains 13 scanner density 
levels. The interval between 1.5 and 1.8 in optical 
density is four scanner density levels. (This non
conformity was produced by optical halation in the 
CRT faceplate.) 

TIMING: 

Total response time of the scanner from location 
query to density value response is 200 microseconds. 
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SUlVIl\1ARY 

The computer scanner system developed at Stony 
Brook has as its primary application the automatic 
scanning of dental x-ray panoramic film opera
tionally used for the mass-examination of dental 
patients. The application software is designed to 
produce as output of the system, reliable dental 
diagnostic data in a form suitable for examination and 
treatment of large numbers of patients. 

The system, however, has been designed with im
portant general-purpose, hybrid graphics processing 
features which suggest a spectrum of new applications 
in the bio-medical field and other areas as well. The 
features which are of general interest include: 

1. The present version of the system accepts any 
transparent film of reasonable size as input. 

2. The system has a general utility-executive software 
system with user-program linkage to help develop 
applications-software and perform a variety of useful 
graphics research computations. 

3. The system can be viewed as a basic research tool for 
a spectrum of applications. By using existing 
programs some work has been done in the examina
tion of films of bone slices* (in conjunction with 
osteoporosis studies) and the examination of nuclear 
scintillation-scan film **. Through creation of new 
software, pattern recognition of a variety of filmed 
objects is deemed feasible. 

* In collaboration with E. Pellegrino, R. Biltz, and M. Skolnick 
of the Stony Brook Health Sciences Center. 
** Through the kind cooperation of L. Levy, Long Island Jewish 
Memorial Hospital. 
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A translation grammar for ALGOL 68 

by VICTOR B. SCHNEIDER 

Purdue University 
Lafayette, Indiana 

INTRODUCTION 

In this paper, a translation grammar is presented for a 
major subset of the ALGOL 68 programming language. 
This translation is from ALGOL 68 into an intermedi
ate language that was originally designed for an 
EULER programming system.9 •11 It appears that many 
of the ALGOL 68 programming facilities, especially 
the union declaration, the use of structures, and the 
manipulation of arrays with flexible dimension bounds 
can easily and naturally be expressed using EULER 
concepts along with some relatively straightforward 
EULER system procedures. Another advantage of 
using an EULER intermediate language is that imple
mentations of the Euler system exist on the UNIV AC-
1108, IBM-7094, Burroughs-6500, CDC-6500, and 
doubtless on the IBM-360 line of computers. Therefore, 
it would require a relatively modest effort for any or
ganization having one of these computers to obtain a 
working "first version" of ALGOL 68. 

The drawbacks of using EULER to implement 
ALGOL 68 should be mentioned: Since EULER .per
forms run-time type checking, it might be argued that 
an EULER implementation of ALGOL 68 would run 
more slowly than necessary. However, it would not be 
difficult to extend the EULER intermediate language 
to add operators that do not perform any type checks. 
At any rate, ALGOL 68 itself demands run-time type
checking because of its use of variables that can store 
more than one data type and because of the existence 
of a so-called "conformity operator" that presupposes 
the existence of a run-time mechanism for keeping 
track of data types stored within variables. The second 

objection concerning use of the EULER system is that 
EULER lists must certainly use computer memory 
space less efficiently than ALGOL 68 arrays and struc
tures could. This objection seems quite valid. We can 
only answer by saying that our present translation 
grammar certainly offers hope of a quick implementa
tion, and that the techniques used in this "toy" trans
lator must certainly have counterparts in a more 
ambitious code-producing ALGOL 68 compiler. The 
fact that this smaller version of ALGOL 68 retains the 
full expressive power of the entire language should not 
be over looked. 

The version of ALGOL 68 to be presented here is 
simplified in the sense that, for example, not all versions 
of iterative statements are presented; the mode declara
tion is only given in its basic form; declarations are 
ALGOL 60 -style- -the only initializations possible are 
in the priority declaration, the operator declaration, 
and the mode declaration. These restrictions certainly 
have no effect on what can be programmed in the lan
guage, and any program written in our subset of 
ALGOL 68 should be immediately transferrable to a 
standard ALGOL 68 system. 

NOTATION FOR A TRANSLATION GRAM1\1AR 

In the translation grammar that follows, an Irons
style notation1 •2•3 is used to specify our subset of 
ALGOL 68. The following simplified programming 
language syntax illustrates our notation and introduces 
some of the basic commands used by our intermediate 
language: 

Grammar 1-A Simple Programming Language 

Syntactic Rule 

(expr) ~ (var) = (expr) 
I (sum) 

493 

Rule of Translation 

(var) (expr) assign 
I 
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(sum) ~ (sum) + (term) 
I (term) 

(term) ~ (term) * (factor) 
I (factor) 

(factor) ~ (sum)) 
I at (var) 
I (var) 

I (var) . ( expr-sequence ) ) . 
(var) ~ (name) 
(expr-sequence) ~ (expr) 

I (expr-sequence), (expr) 

Note that the rules of translation above refer to se
quences of symbols on the right parts of syntactic rules. 
In this example, we see that the rules of translation 
specify how symbols and sequences of symbols in the 
source language are rearranged and rewritten in the 
translated language. Where no change at all is indicated 
in the translation of a particular rule, the symbol "I" 
appears as a translation rule. Ai:, an example of how 
sequences of symbols are rearranged for translation, 
the infix addition of 

(sum) + (term) 

is translated into the reverse polish sequence of symbols 
consisting of a "(sum)" followed by a "(term)" followed 
by the intermediate-language command for adding 
together the values resulting from evaluation of the 
previous two sube;pressions. As in good polish nota
tion, parenthesis are removed from around expressions, 
and this process is specified by associating the transla
tion rule "(sum)" with the syntactic rule 

(factor) ~ (sum)). 

The remaining rules having (factor) on the lefthand 
side are used for translating arithmetic operands into 
the intermediate language. For example, the syntactic 
rule 

(factor) ~ (var) 

indicates that operands in arithmetic expressions are 
variable names, and the translation of a (var) into 
sequence 

(var) in 

indicates that the "in" command is used for fetching 
the value associated with (var) and for storing that 
value on top of the run-time operand stack of the inter
mediate-language interpretor. 

The other syntactic rule 

(factor) ~ at (var) 

=} (sum) (term) add 
=} I 
=} (term) (factor) multiply 
=} I 
=} (sum) 
=} (var) 
=} (var) in 
=} (expr-sequence) (var) in 
=} variable (name) 
=} I 
=} (expr-sequence) (expr) 

reflects the fact the intermediate language permits use 
of program variables that are pointers to data named 
by other program variables. Hence, the effect of the 
"at" command of the source language is to suppress the 
appearance of "in" in the translated program after 
the translated variable name. In this case, a pointer to 
the data stored in (var) is left on top of the interpretor 
operand stack at run time. Finally, the rule 

(var) ~ (name) 

means that the names of program variables are trans
lated into the sequence "variable (name )." Here, the 
effect of the "variable" command is to find a pointer to 
the data stored in the following name at run time and 
to place this pointer on top of the run-time operand 
stack. 

The sequence "(var). ( (expr-sequence))." on the 
right 'part of the remaining (factor) rule is the definition 
of a function call. Function calls are translated with the 
parameters preceding the function name in the trans
lated program. In this way, the function call can be 
made to look like a reverse polish operator having n 
operands, with n the number of parameters. A param
eterless function call is translated exactly the same way 
as a program variable. Thus, the sequence 

"variable (name) in" 

in a translated program serves both to fetch data and 
to initiate a call on a function, depending on the (name) 
involved. This calling sequence will be referred to in 
the full grammar that follows. 

We have attempted to make our translation grammar 
for program variables. Hence, the effect of the "at" 
command of the source language is to suppress the ap
pearance of "in" in the translated program after the 
translated variable name. In this case, a pointer to the 
data stored in (var) is left on top of the interpretor 
operand stack at run time. Finally, the rule 

(var) -7 (name) 



means that the names of program variables are trans
lated into the sequence "variable (name)." Here, the 
effect of the "variable" command is to find a pointer to 
the data stored in the following name at run time and 
to place this pointer on top of the run-time operand 
stack. 

The sequence "(var). ( (expr-sequence»)." on the 
right part of the remaining (factor) rule is the defini
tion of a function call. Function calls are translated 
with the parameters preceding the function name in 
the translated program. In this way, the function call 
can be made to look like a reverse polish operator having 
n operands, with n the number of parameters. A param
eterless function call is translated exactly the same way 
as a program variable. Thus, the sequence 

"variable (name) in" 

in a translated program $erves both to fetch data and 
to initiate a call on a function, depending on the (name) 
involved. This calling sequence will be referred to in 
the full grammar that follows. 

We have attempted to make our translation grammar 
for ALGOL 68 as self-contained as possible. Thus, each 
translation rule is followed by an explanation of what 
effects the intermediate language commands are pro
ducing. It should be noted that the larger grammar uses, 
e.g., the symbol" =" in place of the "assign" command 
of our small example, and, in general translates as 
many source symbols as possible into similar commands 
of the intermediate language. A full description of the 
intermediate language can be found in Schneider.9 ,lo 

PROGRAM: ·STRUCTURE IN ALGOL 68 

Since many programming features in ALGOL 68 
are defined in terms of ALGOL 68 constructs, ALGOL 
68 programs must contain an outer block in which these 
features are defined. Thus, an ALGOL 68 program con
sists of an inner block which is the "particular pro
gram" of some programmer and an outer block con
taining library subroutines and standard definitions. 
For the moment, we will concentrate on particular 
programs and treat the outer block as though it were 
an implementation-dependent set of control cards neces
sary to the running of ALGOL 68 programs. Thus, we 
can write syntactic rule 1: 

(program) ~ (standard prelude) (block); exit: 

(standard postlude) ) (1) 

Here, the sequence "exit:" is a label definition that 
is global to everything in the particular program 
(block). Thus, a particular program can always be 
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terminated by a statement such as 

go to exit; 

The left and right parentheses used to surround the 
outer block of a program are essentially interchange
able with begin and end, which are also symbols In 
ALGOL 68: 

(block) ~ begin (clause) end =? (clause) 
I ( (clause») =? (clause) (2) 

Except in a few cases, ALGOL 68 treats blocks as 
though they were expressions that have values. Thus, 
the statement 

a : = bx (c + d) ; 

means the same thing in ALGOL 60 as in ALGOL 68: 
The value obtained from adding c to d is mUltiplied by 
the value of b and stored in the location denoted by a. 
The ALGOL 68 statement 

a : = b X begin real y; y : = 1; y + a end 

means that the _ value obtained from adding y to a in 
the block will be multiplied by the value of b and stored 
in the location denoted by a. Note that here the 
sequence 

tty + a" 

is treated as a statement of the language that yields a 
value. 

DECLARATIONS AND DATA TYPES 

Variables declared in an ALGOL 68 block are local 
to that block in essentially the same fashion as in 
ALGOL 60-only, in ALGOL 68, these declared 
variables are said to be "protected" instead of local. As 
near as I can determine, protection of variables in
volves tagging them with a higher block number than 
the variables of their outer block: 

(clause) ~ (statementsequence) =? I 
I (declarations); (statementsequence) 

=? $BEGIN (declarations); (statementsequence) 
$END (3) 

In this translation rule, the $BEGIN command of the 
intermediate language increments the block number 
count, and $END decrements that count. In addition, 
the $END command initiates a "garbage collection" 
procedure that dismantles arrays and data structures 
constructed within its block. Since more than one 
declaration can' appear in a block, we have the addi-
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tional rule: 

(declarations) ~ (declaration) =? I 
I (delcarations) ; (declaration) =? I ( 4) 

There are four primitive data types used in ALGOL 
68 declarations. In addition, data types can be con
structed that consist of structures containing the primi
tive types together with other invented data types. 
Rules (5) list the primitive types, together with the 
(indicant) that has the same effect as a data type 
declaration: 

(declarator) ~ real =? $NUMBR 0 
I long real =? $NUMBR 0 
lint =? $NUMBR 0 
I long int =? $NUMBR 0 
I bool =? FALSE (5) 
I char =? .*-
I (indicant) =? $V ARBL (indicant) $IN 

Note that the "long" prefix indicates an extra mUltiple 
of arithmetic precision. A primitive data type has no 
translation, since it provides type information to the 
compiler. By contrast, an (indicant) is some data type 
designation invented by the programmer in the course 
of writing his program. Naturally, a given (indicant) 
can only have one definition attached to it at any given 
point in a program: 

(indicant) ~ (name) =? I (6) 

The basic data types can be prefixed with what are es
sentially attributes and then concatenated together 
into regular expressions that yield information about, 
e.g., whether a variable is a reference to the data stored 
in another variable or a procedure or some structural 
combination of references, procedures, invented data 
types, etc. 

(indication) ~ (declarator) =? (declarator) 
I ref (indication) =? $V ARBL $REF 
I ref [ J (indication) =? $V ARBL $REF 
I ref [ (boundslist ) J (indication) =? $V ARBL $REF 
I proc =? .$2$. 
I proc (typelist» =? .$2$. 
I proc (indication) =? .$2$. 
I proc [ J (indication) =? .$2$. 
I proc [ (boundslist) J (indication) =? .$2$. 
I proc (typelist» (indication) =? .$2$. 
I proc (typelist» [J (indication) =? .$2$. 
I proc (typelist» [(boundslist) J (indication) =? .$2$. 
I struct (typepack» =? . (typepack» . 
I union (declaratorpack» =? $UNDEF (7) 

It can be seen in rules (7) that "ref" is a prefix 
attribute indicating that the variable being declared is a 
pointer. Thus, the declaration 

ref [1 :50J real a; 

means that the variable "a" can contain a pointer to an 
array of fifty floating-point numbers. The declaration 

proc (real, int) [1 :5J int u; 

means that the variable "u" is a procedure whose two 
parameters' are respectively "real" and "integer," and 
that the procedure returns a value consisting of a five
element integer array. 

In our translation scheme, declarations are used to 
initialize the data types of variables and to enter these 
variables on the run-time name table. Thus, in rules 5, 
all numbers are initialized to zero by the "$NUMBR 0" 
sequence; logical variables are initialized by the 

"$F ALSE" datum; characters are initialized to a blank 
by the ". *-" sequence; and invented data types are 
called onto the operand stack by the "$V ARBL 
(indicant) $IN" sequence that fetches the data defini
tion associated with the invented (indicant). In rules 
(7), we find that all variables whose declarations are 
prefixed with ref are initialized to point to an undefined 
system variable "$REF." The sequence "$VARBL 
$REF" brings the pointer to $REF onto the run-time 
operand stack. All variables whose declarations are 
prefixed with "proc" are set equal to the empty pro
cedure definition ".$2$.": Finally, the "struct" declara
tion constructs a list of the typed elements within it 
and sets the declared variables equal to a copy of that 
list. Since all variables in our system· can actually store 
any data type or structure, any "union" declaration 
simply initializes the declared variables to the value 
"$UNDEF" (meaning "undefined"). 



The mechanism for constructing a prototype list in a 
struct declaration is given in (8): 

(typepack) ~ (type) (name) 
=} (type) (8) 

(typepack) ~ (typepack), (type) (name) 
=} (typepack), (type) 

(type) ~ (indication) =} I 
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Because the translator must retain subscripting in
formation for declared structures, it is assumed that a 
copy of each structure declaration will be stored by 
the translator, and that the translator can discover 
situations in which one structure is an element of 
another structure. 

Rules (9) tell us that a (type) can define arrays or 
simple variables: 

I [ J (indication) =} • (indication») . 
I [(boundslist) J (indication) 
=} . (boundslist») . (indication) $V ARBL $ARRA Y $IN (9) 

In rules (9), simple variable declarations are left un
changed, but array declarations cause lists to be con
structed. In the case of empty array brackets "[ J," a 
one element list appears in the translation. To change 
the size of such an array, the programmer must assign 
sets of values to appropriate elements of the array. 
Array declarations having nonempty boundslists cause 
the system procedure "$ARRA Y" to be called, and 
this procedure constructs an appropriately dimen
sioned list of lists, each element of which contains a 
datum given by the translation of (indication). In the 

(typedecl) ~ (type) (name) 

typedeclaration of rules (10), the translations in rules 
(9) are copied by the system procedure "$COPY" that 
initializes and declares variables at run time. Because 
$COPY returns as its value a copy of its first parameter, 
a chain of calls on $COPY allows the system to handle 
declarations such as 

[1: 10, 1 :200J real x, y, z; 

in which three separate two-dimensional arrays must 
be constructed. 

=} (type) $NEW (name) $VARBL (name) $VARBL $COPY $IN 
(typedecl) ~ (typedecl), (name) 

=} (typedecl) $NEW (name) $V ARBL (name) $V ARBL $COPY $IN (10) 

Procedures "$COPY" and "$ARRA Y" are documented 
in Appendix 1. 

In the translation scheme above, the system sub
routine $COPY is set into action by the calling sequence 
"$VARBL $COPY $IN." The two parameters of 
$COPY are stored in sequence on the run-time operand 
stack. Its first parameter is a list or a value. Following 
this parameter, the $NEW command allocates a space 
on the run-time nametable for the declared (name), 
and then a pointer to that (name) is called onto the 
operand stack by the sequence "$VARBL (name )." 
Thus, both parameters are loaded onto the operand 
stack before the iCOPY routine is called. $COPY is 
programmed to return a copy of its first parameter to 
the top of the operand stack as its value. As a side 
effect, storage is allocated for (name). Thus, the second 
rule of (10) works in the same way as was just described, 
only here, the first parameter of $COPY is supplied 
by the previous call on $COPY that was made by a 
(typedec). 

To complete our description at this pomt, we give 
the translations of (boundslist) and (declaratorpack): 

(boundslist) ~ (bounds) =} I 
I (boundslist), (bounds) =} I (11) 

(bounds) ~ (sum) (1) : (sum) (2) =} (sum)<1); (sum) (2) 

I (sum) :flex =} (sum) 
I flex: (sum) =} (sum) (12) 
I flex:flex =} $UNDEF 

(declaratorpack) ~ (uniteddeclarator) =} I 
I (declaratorpack), (uniteddeclarator) 
=} (declaratorpack) (uniteddeclarator) (13) 

(uniteddeclarator > ~ (declarator> =} -

I [ J (declarator> =} - (14) 
I union (declaratorpack» =} -

In the translation of array bounds in ALGOL 68, one 
has to take into account the possibility of undefined 
array limits indicated by the "[ J" sequence or by 
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the following translation rules: 

(clausesequence) --7 (clause)::::} .$ y(clause )$.1' 

I (clausesequence) --7 (clausesequence), (clause) 

::::} (clausesequence ),.$y(clause )$:.!t' (17) 

A typical procedure definition in the translation of 
(clausesequence) would look like the sequence 

Here, the ".$" command tells the run-time system that 
what follows is a procedure definition. It therefore 
leaves as its value the value of the translated program 
location counter that begins the translated (clause). 
Since the procedure is not activated when the procedure 
definition is assigned to some variable, the ".$" com
mand is followed by a jump to the code directly follow
ing the procedure definition. The "$." command is 
part of the code in the procedure definition. The "$." 
is executed as a return jump command that looks up a 
return label on a table of return jumps and transfers 
control back to that point in the program where the 
procedure was called. 

Finally, for our particular choice of intermediate 
language, subscripting is accomplished by the ")" 
command. This ")" command assumes that the top
most operand of the run-time operand stack is an integer 
number, and that the next-to-top operand is a reference 
to a list cell. Thus, we have the translated sequence 

(subscriptvar) (subscripts») 

given in rules (16), and the following rules for transla
tion of (subscripts): 

(subscripts) --7 (sum) ::::} I 

I (subscripts), (sum)::::} (subscripts») (sum) (18) 

To complete this description of SUbscripting, we intro
duce the next layer of rules above rules (17) in the 
system of precedence: 

(selection) --7 (subscriptvar) ::::} I 
I (name) of (selection) (19) 

::::} (selection). 3 [(name)]) 

Thus, in our syntax, the numerical subscripting of (16) 
takes precedence over the logical subscripting of (19) 
because of the ordering of rules. When a variable is 
logically subscripted as described in (19), the translator 
provides a numerical subscript to the translated pro
gram, and this numerical subscript corresponds to the 
position in its own structure of the logical subscript 

that is used. The notation 

3 [(name)]) (20) 

in rules (20) represents the translator-supplied sub
script number followed by the subscripting command. 
This subscripting capability of course implies that the 
translator must itself keep track of structures and 
pointers from one element of a structure to another 
structure. In this way, the translator must have a list 
processing capability for tracing lists and sublists to 
any desired depth of nesting. 

DATA CONSTANTS AND PROCEDURE 
DEFINITIONS IN ALGOL 68 

At this point, it is convenient to introduce the data 
types used in the language. Data of type char (char
acter) is denoted by the following syntax: 

(charprim) --7 "(alphameric)"::::} .*(alphameric) (21) 

The sequence ". * (alphameric)" stores that symbol on 
top of the run-time operand stack. Here, (alphameric) 
is whatever set of symbols are available for a particular 
computer. By convention, a quote symbol (") is repre
sented by a pair of quotes (" ") in the language. Thus, 
the assignment 

V ·=""""· . , 
stores a single quote in character variable v. 

Data of type bool (logical) is denoted by the follow
ing syntax: 

(logicalprim) --7 true::::} $TRUE 
I false ::::} $FALSE (22) 

The $TRUE ($FALSE) command stores the internal 
representation of logical truth (or falsety) on top of 
the run-time operand stack. 

Although ALGOL 68 allows real and integer numbers, 
as well as multiple precision versions of numbers, we 
have for simplicity translated all numbers into single
precision floating point: 

(number) --7 (integer) ::::} $NUMBR3[ (integer)] 
I (integer) . (integer) 

::::} $NUIVIBR3[ (integer) . (integer)] (23) 

In both cases of rules (23), the command "$NUIVIBR" 
is followed by the internal floating point representation 
of the appropriate character strings. "$NUMBR" 
serves to place the following translated word on top of 
the run-time operand stack. 

For convenience in initializing small arrays, ALGOL 
68 allows structures similar in appearance to lists. So, 
we will call them lists, instead of using the ALGOL 68 



"flex" in place of a definite upper or lower bound. As 
handled in the translation scheme above, all arrays 
translate into lists. Hence} a lower index bound of 1 
always exists for each dimension of an array, whether 
or not the programmer asks for that lower bound. In 
addition, arrays with no bounds specified for some 
dimension contain one element undefined sublists for 
that dimension. 

Translation of variables declared to be of type union 
is simple and direct, since our run-time system treats 
all variables as though they were capable of storing 
any legal data type. The translator merely keeps a 
record of which variables are of particular data type. 

VARIABLES AND SUBSCRIPTING IN ALGOL 68 

From the syntax in the preceding section, we see 
that the declaration 

struct (real x, [1:10, 1:5Jinty)z; 

is legal in ALGOL 68. This declaration causes z to refer 
to a two-element structure of values whose second 
element is a two-dimensional array that stores fifty 
integers. In order to store values into z or extract values 
from z, these elements of z are referred to by name; e.g., 

xofz:= (yofz) [8,3J; 

In this statement, the forty-third integer in the second 
element of z is converted to a real number and stored 
into the first element of z. Thus, we have two methods 
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for subscripting variables in ALGOL 68, and these 
methods can be used separately or in combination. 

Another feature of variable usage in ALGOL 68 is 
that variables can be "selected" before being sub
scripted. Thus, the statement 

a : = if gl then b else cft [5, 3J; 

is valid in ALGOL 68 if a, b, c and gl are appropriately 
declared, and the subscripts "[5, 3J" are within the 
bounds of band c. Another, essentially similar, usage 
is one in which a case statement (similar to the case 
statement in ALGOL W) is used for selecting a vari
able: 

if gl then d else eft: = case i in a, b, c esac [2, 4J; 

This use of conditional expressions for selecting vari
ables in ALGOL 68 leads to a translation difficulty in 
which the translator is unable to decide whether it is 
translating a chain of variable references or expressions 
yielding values because either interpretation is correct 
for a conditional expression. To get around this diffi
culty, we have decided to write our translation grammer 
so as to treat every expression as though it were a 
variable reference until the last possible minute. Thus, 
we obtain the following strange-looking syntax of sub
scripted variables: 

(name) ---7 (letter) :=} I 
I (name) (letter) :=} I 
I (name) (digit) :=} I 

(15) 

In rules (15), a table lookup mechanism informs the 
translator that some (name) is actually a declared 
variable. Then, rules (16) are applied. 

(subscriptvar) ---7 (name) :=} $V ARBL (name) 
I (block) :=} I 
I if (clause )(1) then (clause )(2) else (clause )(3) ft :=} (clause )(1) $IF L[ (clause )(2) $THEN'F4'(clause )(3)1' 

I case (clause) in (clausesequence) esac 
I (subscriptvar) [(subscripts) J 

:=} (clause) . (.$ (clausesequence) $.) . $V ARBL $CASE $IN 
:=} (subscriptvar) (subscripts) J (16) 

In rules (16) above, it should be explained that the 
translator must have an operand stack that permits it 
to keep track of data types associated with variables 
and expressions. With this operand stack, the translator 
will only allow subscripting to follow an expression 
whose value is a variable reference. In translating the 
conditional statement of rules (16), the translator also 
uses a stacking mechanism to supply program labels 
to the conditional branch command "$IF" and the un
conditional branch command "$THEN." These labels 

are indicated schematically in the rules by the " ~" 

notation. Finally, a- case statement is translated into a 
two-parameter procedure call on. the system procedure 
"$CASE." The first parameter is an expression that 
has a subscript as its value, and the second parameter 
is a run-time list of parameterless procedure definitions 
that is to be subscripted by the first parameter in the 
process of calling one of the list elements. 

This list of procedure definitions is constructed by 
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name for them: 

(listprim) --4 ({clause), (list end ) 
=? . ({clause), (listend) 

(list end ) --4 (clause») =? (clause») 
I (clause), (list end ) =? (clause), (listend) (24) 

Here, if we use the declaration "[1: 2J real x" and 
follow this by the assignment "x : = (1.0, 3.5)"; we 
can see how the lists are used. Thus, these list primaries 
translate directly into our own notation, with the excep
tion that lists of zero or one elements cannot be repre
sented ~sing list notation. This is to avoid an am
buiguity, e.g., in which the sequence "(I)" is inter
preted as being both a (block) and a (listprim). 

In an analogous vein, ALGOL 68 has provisions for 
representing strings of symbols: 

(stringprim) --4 "(alphameric) (string end ) 
=? . (. *(alphameric), (stringend) 

(stringend) --4 (alphameric)" =? . * (alphameric») . 
I (alphameric) {stringend)=? * (alphameric ), (stringend) 

(25) 

Thus, a string translates into an array of characters in 
the same fashion as in ALGOL 68. Here again, strings 
o( length zero and one cannot be directly represented 

(procdef) --4 expr{assignment) 

to prevent ambiguity. As we will see, it is possible to 
invent a data type called string whose variables all 
consist of character arrays with flexible upper bounds. 

Finally, we include procedure definitions in this sec
tion because procedure definitions ~an be assigned to 
variables in the same way as other data constants. We 
have chosen to use an older version of the ALGOL 68 
procedure definitions, because the keyword "expr" 
used in these older versions is subject to fewer usages 
in the language than the ":" that replaces expr in the 
syntax. We have also chosen to force the programmer 
to be explicit about his choice of procedure definitions 
in our version. Thus, the assignment statement 

vI: = 1f g 1 then expr v2 else expr v3 fi ; 

(Assign procedure definition v2 to vI if gl is true, other
wise assign procedure definition v3.) is legal in our 
version of ALGOL 68 as well as the "full" version of 
the language. But we do not allow the alternate assign
ment statement: 

vI : = if gl then v2 else v3 fi; 

even though this is also legal in ALGOL 68 and is 
equivalent to the first statement. We thus have the 
syntax of procedure definitions in rules (26): 

=? .$y{assignment) $.1' 

I (indication) expr (assignment) =? .$ L( (assignment) $·1 

I ({p. list») expr {assignment =? .$ L (p. list) (assignment) $. t 
I ({p.list») (indication) expr (assignment) =? .$1.( (p.list) (assignment) $. t (26) 

These procedure definitions are of the same form as 
described in rules (18). However, here the procedure 
definition symbols ".$" and "$." surround what will be 
seen to be single statements. In order for a procedure 
to be permitted to return a value in ALGOL 68, the 
type of its returned value must be indicated in the pro-

cedure definition. Thus, all the procedure definitions 
having an (indication) before the expr keyword behave 
like ALGOL 60 or FORTRAN functions, while the 
remaining definitions are similar to procedured in 
those languages. Finally, we have the translation 
syntax of the parameter list: 

(p. list) --4 (type) (name) =? $FOR1VIA (name) 
I (p.list), (name) =? $FORlVIA (name) (p.list) 
I (p. list), (type) (name) =? $FORl\1A (name) (p. list) (27) 

Here, the formal parameters are translated into a 
reverse sequence. The command "$FORMA" has the 
effect of entering the following (name) of a parameter 
onto the run-time name table. $FORMA then fetches 
the topmost operand on the runtime operand stack, 
and stores its value and type into the newly declared 
parameter (name). Because of this method for passing 

parameters to procedures, the old call-by-name and 
call-by-value conventions in ALGOL 60 procedures 
have been abandoned in favor of allowing the pro
grammer to pass procedure definitions, pointers to 
variables, and actual values into his procedure calls. 
As an illustration, if vI is a reference variable, v2 is an 
integer variable, and v3 is an appropriate procedure 



name, then the procedure call 

v3 (vI, int expr v2, 5) 

passes as parameters to the procedure definition of v3 
a pointer stored in vI, a procedure definition whose 
body "calls" v2, and an integer value. As we will see, 
the procedure calling mechanism puts these three 
parameters onto the operand stack in the right sequence 
for allowing the $FORMA commands to pick off their 
values for the formal parameters. 

PROCEDURE CALLS AND EXPRESSION 
PRIMARIES 

In a number of preceding rules, we implicitly assumed 
the existence of a procedure calling mechanism in our 
intermediate language. This mechanism works as 
follows: A typical procedure call is of the form 

(value 1) (value 2)· .. (value n) $V ARBL (name) $IN. 

The n values are stored in sequence on the run-time 
operand stack, and then the command sequence 
"$V ARBL (name) $IN" passes control to the pro
cedure. This procedure is assumed to have n formal 
parameters, and therefore n "$FORMA (name)" 
sequences at the beginning. These "$FORMA (name)" 
sequences pick off the values stored on the operand 
stack in the reverse of the sequence in which they were 
stored. Hence, any procedure calling system must have 
a mechanism for matching actual and formal param
eters. When we discuss the extendible operations 
feature of ALGOL 68, we will justify the necessity for 
our use of this procedure calling· command sequence. 

The mechanism needed for matching actual and 
formal parameters is further complicated by the 
legality of ALGOL 68 procedure calls such as in the 
following example: 

if gi then pI else p2 fi [3, 9J (4, real expr p3) ; 

Here, one of two procedure arrays is chosen by a con
ditional statement. Then, the chosen procedure array 
is subscripted, and finally, the actual parameters are 
supplied when that procedure element is called. To 
explain our method for translating such ALGOL 68 
procedure calls, we give the following syntax of pro
cedure calls: 

(procall) ~ (subscriptvar) (a. p. list») 
=} (subscriptvar) . (a. p. list») . $V ARBL 

$XEQUT $IN (28) 

We see that a program procedure call with parameters 
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is translated into a call on a system procedure named 
"$XEQUT." This is accomplished by transforming the 
program procedure call into two parameters. The first 
parameter is a (possibly SUbscripted or selected) 
pointer to where the procedure call is stored on the 
run-time name table. The second parameter is a link 
to a list constructed from the actual parameter list of 
the program by rules (28) and (29) : 

(a. p. list) ~ (assignment) =} I 
I (a. p. list), (assignment) =} I (29) 

The listing of the $XEQUT procedure can be found in 
Appendix 1. 

A procedure call without parameters can be treated 
syntactically like an ordinary value primary of the 
language. This is because the sequence 

(selection) $IN 

is sufficient to execute procedures as well as to bring 
values referenced by (selection) pointers to the operand 
stack. 

We can thus begin to give a syntax for expression 
primaries in ALGOL 68: 

(prim) ~ (pro call ) =} I 
I (procdef) =} I 
I (stringprim) =} I 
I (listprim) =} I 
I (number) =} I 
I (logicalprim) =} I 
I (charprim) =} I 
I (selection) =} (selection) $IN 
I (referenceprim) =} I 
I val (prim) =} (prim) $IN (30) 

In rules (30) above, the $IN command is supplied by 
the translator to fetch values in two instances. For the 
first instance to apply, the translator program must 
determine by inspection of its operand stack that 
(selection) appears after the left part of an assignment 
statement such that the left part is not of type refer
ence. This is because the assignment statement, 

a: = b; 

where "a" is a variable of type reference, is legal in 
ALGOL 68. Thus, "b" must be treated as a (refer
enceprim), and the translator must determine by con
text (using its own operand stack) whether or not 
some (selection) is a (referenceprim) as in rule (31) or 
a value-bearing (prim) as in rules (30) : 

(referenceprim) ~ (selection) =} I (31) 
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Of course, the sequence 

means that the programmer explicitly desires to fetch a 
value to which a (referenceprim) refers. So as to spare 
the translator from the necessity of trying to discover 
how many layers of pointers must be traced through 
in order to fetch a value, we will require the use of val 
whenever a (referenceprim) is to be "depressed" to a 
value in the middle of an expression. 

EXPRESSIONS AND THE PRECEDENCE OF 
OPERATORS 

In ALGOL 68, there are ten levels of operator 
precedence. Corresponding to each level is a set of 
standard operators for that level. These operators can 
be redefined by the programmer, who may change their 
precedences, introduce new procedures that describe 
their actions, and introduce new operators to suit his 
convenience. The syntax for such redefinable operations 
must take into account this new facility: 

(unary) ~ (op 10) (prim) => (prim) $VARBL (op 10) $IN 
I go to (prim) => (prim) $GOTO 

(complex) ~ (unary) => I 
I (complex) (op 9) (unary) => (complex) (unary)· $VARBL (op 9) $IN 

(exponent) ~ (complex) => I 
I (exponent) (op 8) (complex) => (exponent) (complex) $VARBL (op 8) $IN 

(product) ~ (exponent) => I 
I (product) (op 7) (exponent) => (product) (exponent) $VARBL (op 7) $IN 

(sum) ~ (product) => I 
I (sum) (op 6) (product) => (sum) (product) $VARBL (op 6) $IN 

(inequality) ~ (sum) => I 
I (sum)(l) (op 5) (sum)(2) => (sum)(l) (sum)(2) $VARBL (op 5) $IN 

(confrontation) ~ (inequality) => I 
I (inequality)(l) (op 4) (inequality)(2) => (inequality)(l) (inequality)(2) $VARBL (op 4) $IN 

(conjunction) ~ (confrontation) => I 
I (conjunction) (op 3) (confrontation)=> (conjunction) (confrontation) $VARBL (op 3) $IN 

(disjunction) ~ (conjunction) => I 
I (disjunction) (op 2) (conjunction) => (disjunction) (conjunction) $VARBL (op 2) $IN 

(assignment) ~ (disjunction) => I 
I (selection) (op I) (assignment) => (selection) (assignment) $VARBL (op 1) $IN (32) 

The complete table of standard ALGOL 68 operators 
is given in section 8.4.2 of (11). In rules (32) above, 
we use operator categories (op 1), ... , (op 10) to re
place the usual arithmetic, logical, and relational 
operators that appear in similar grammars. For the 
translator to know which category an operator belongs 
to, it must have a table of legal operators similar to its 
nametable, and with each operator will be an associated 
level number. To each of these operators there corre
sponds either a standard intermediate-language opera
tion (in which case, the intermediate language opera
tion is written into the translated program) or a pro
cedure definition (in which case the procedure call 
"$VARBL (OPn) $IN" is written into the translated 
program). Procedures defining the . standard operations 
and their effects when executed are given in section 
10.2 of (11). 

It should be mentioned that we would include 
several operations that are not in the ALGOL 68 
table. For example, the standard operations of (con-

frontation). are the relational "=" and "~". In addi
tion to these standard operators at that level, the 
ALGOL 68 conformity symbol "::" (which checks 
whether two expressions are of the same mode) and 
the ALGOL 68 identity symbol ": = :" (which asks 
whether two expressions yield references to the same 
(name» are included because they are used in essen
tially the same way as "=" and "~". 

Note also that the definition of a jump instruction 
in ALGOL 68 is put into the (unary) rule of (32) be
cause its precedence in the language is compatible 
with that level of the grammar. However, the "go to" 
operation is most emphatically not redefinable, and 
so is listed separately. 

OPERATOR DEFINITIONS AND 
DECLARATIONS 

Now that we have seen a-syntax for expressions, we 
can discuss the syntax of operator declarations and 



priority declarations in ALGOL 68. A priority declara
tion has the form 

(priority dec!.) ~ priority (operator) = (priority) 
I (priority dec!.), (operator) = (priority) (33) 

A priority declaration is not translated, since its role is 

A Translation Grammar for ALGOL 68 503 

to provide information to the operator table of the 
translator. Naturally, the (priority) is some (integer) 
from 1 to 10: 

(priority) ~ 1 I 2 I ••• 110 (34) 

An operator declaration takes the form 

(operator dec!.) ~ op (operator) = (p.list») (indication) expl' (assignment) 
==? $NEW (operator) $VARBL (operator) .$'( (p.list) (assignment) $.1 (3.5) 

In (35), the translator enters the new (operator) name 
onto its operator table and translates the operator 
declaration as a new procedure definition. Although the 
(p. list) l!lechanism is used for simplicity in the transla
tion process, an operator declaration is meaningless un
less the (p. list) consists of only one or two parameters. 
Moreover, as in ALGOL 68, it is assumed that all 
unary operators have a non-redefinable priority of 10. 
This is because of the ambiguity that would result if a 
programmer attempted to redefine the precedence of 
unary "+" or "-", where the binary addition and 
subtraction have the same denotations. 

As an example of an operator declaration, we give 
here our version of subtraction with real operands in 
ALGOL 68: 

op- = (ref real a, b) real expr val a minus val b; 
op- = (ref real a, real b) real expr val a minus b; 
op- = (real a, ref real b) real expr a minus val b; 
op- = (real a, b) real eXl!r a minus b; 

Here, the operator "-" is translated into the inter
mediate-language comm:and for subtracting the two 
topmost values on the run-time operand stack. This 
definition should be compared with definition 10.2.4 (g) 
of the ALGOL 68 report (11), where the definition of 
subtraction is given in words and then addition and 
negation are programmed in terms of this subtraction 
operator. 

MODE DECLARATIONS 

As a complement to the facility for defining new ex
pression operators, ALGOL 68 allows the definition of 
new data types and structures of data types. This is 
accomplished by the mode declaration: 

(mode dec!.) ~ mode (indicant) = (indication) 
==?$NEW (indicant )$V ARBL (indicant) (indication) = 

(36) 

Here, the translation of . (indication) produces some 
initial value, array, or structure. The (indicant) is 
translated as though it were a newly declared program 

variable, and the translation of (indication) becomes 
its value. This means that, along with its name table 
and operator table, the translator must have a table of 
indicants that stores links at translation to any struc
tures that may be assigned- to indicants. Thus, when a 
variable is logically subscripted whose mode is a struc
ture, the translator can find its own prototype copy of 
that structure and supply appropriate numerical sub
scripts in t!!e translation. 

Because the (indicant) is treated as a program vari
able by the run-time system (and as a mode declarator 
by the translator), the translation of (indicant) given 
in rules (5) presents to the $COPY procedure a list 
which is copied and assigned to all variables later 
declared to be of the mode given by the (indicant). 

PROGRAM STRUCTURE OF ALGOL 68 

At this point, we can complete our description of 
ALGOL 68 program structure and fill in some remain
ing details concerning implementation of the language: 
First, we can draw together the different declarations 
outlined so far: 

(declaration) ~ (mode dec!.) ==? I 
I (operator dec!. ) ==? I 
I (priority dec!. ) ==? I 
I (type dec!.) ==? I (37) 

We can then complete our definition of a program 
(statement) : 

(statementsequence) ~ (labelstat.) ==? I 
I (statementsequence); (labelstat.) ==? I (38) 

The effect of the semicolon in rules (38) should not be 
ignored. Its effect as an intermediate-language com
mand is to unstack the topmost operand of the run
time operand stack. Because of the semicolon, the 
(block) 

(x:=x+1; 2+x) 

causes the intermediate value "x + I" to be unstacked, 
but leaves the value of "2 + x" on the operand stack 
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as the value of the (block). This same mechanism is 
used for returning function values, since the last value 
on the operand stack before exit from a procedure is 
its value. 

Following the scheme of precedence in our syntax, 
we next define labeled statements: 

(labelstat) ~ (statement) ==} I 
I (name): (labelstat) 

==} $LABEL (name) "t-t (labelstat) (39) 

Here, the sequence" (name):" invokes a label declara
tion in the translated program. The notation "'i-1''' 

(statement) ~ (assignment) 
==}I 

means that the value of the translated progra~ loca
tion counter plus one is inserted following "$LABEL 
(name)" in the translated program. Strictly speaking, 
the translator will also have a mechanism for writing 
out 

$LABEL (name) 

whenever a go to statement is translated before the 
appropriate label is encountered. In addition, it should 
be noted that program labels are treated as variable 
names by the syntax of (15), (16), (19), (30) and (32). 

N ext, we have a syntax for (statement): 

(statement) ~ for (selection) from (clause )(1) by (clause )(2) to (clause )(3) do (statement) 
==} (selection) (clause )(1) (clause )(2) (clause )(3) .$y (statement )$. t $VARBL $FORSL $IN 

(statement) ~ from (clause )(1) by (clause )(2) to (clause )(3) do (statement) 
==} (clause )(1) (clause )(2) (clause )(3) .$ Y(statement )$. 1 $VARBL $FOR $IN 

(statement) ~ while (clause) do (statement) 
==} .$ Y (clause)$. t .$ Y(statement)$. f $VARBL $WHILE $IN (40) 

Listings of the system procedures "$FORSL," "$FOR," 
and "$WHILE" can be found in Appendix 1. 

With these forty sets of rules, we have completed a 
description of the essential features of ALGOL 68. 
Missing from the syntax is any built-in procedure for 
input-output, as well as any description of formatting. 
As the language is described in this report, formatless 
input and output procedures for this language can be 
written that are quite similar to the procedures given 
in. section 10.5.2 of the ALGOL 68 report (11). Such 
input-output routines have been programmed for the 
CDC-6500 computer at Purdue University, and are 
currently being tested together with the remaining 
components of the ALGOL 68 translator. 
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APPENDIX 1-SYSTEM: PROCEDURES USED 

The following "system procedures," with the excep
tion of the $XEQUT routine, are written in Wirth and 
Weber EULER.14 It is understood that their translated 
versions are supplied by the ALGOL 68 translator to 
the run-time interpreter system as part of the (standard 
prelude) of a translated (program). Hence, these pro .. 
cedures are globally defined in every translated ALGOL 
68 program. 

$WHILE f- 'formal clause; formal stat; if clause then 
(stat; $WHILE ('clause', 'stat')) else Q'; 

$FORSL f- 'formal var;formal from; 
formal by; formal to; formal stat; 
begin new sign; label cycle; 
sign f- if by < 0 then - 1 else + 1 ; 
var. f- from; 
cycle: if (to - var .) X sign >0 
then begin stat; var . f- var . + by; 
go to cycle end else Q end'; 

$FOR f- 'formal from; formal by; 
formal to; formal stat; 
begin new index; 
$FORSL (@ index, from, by, to, 'stat') end'; 

$CASE f- 'formal subscript; formal statementlist; 
statementlist [subscript]'; 

$COPY f- 'formal structure; formal var; 
var . f- if islist structure then 
begin new dimension; new index; 
dimension f- list (len gth structure) ; 
$FORSL (@ index, 1, 1, length structure, 
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'$COPY (structure [indexJ, @ dimension [indexJ) ') ; 
dimension end 
else structure'; 

$ARRA Y f- 'formal boundslist; formal value; 
begin new dimension; new index; 
dimension f- list boundslist [1 J ; 
if length (boundslist) = 1 
then$FORSL (@index, 1, 1, boundslist [IJ, 
'$COPY (value, @ dimension [indexJ) ') 
else$FORSL (@index, 1, 1, boundslist [IJ, 
'dimension [indexJ 

f- $ARRA Y (tail boundslist, value)') ; 
dimension end' ; 

If it were legal in EULER to omit the semicolon 
between statements, thus leaving the values of pre
ceding statements on the operand stack without erasing 
them, the $XEQUT 'procedure could be written in 
EULER as follows: 

$XEQUT f- 'formal var; formal paramlist; 
(paramlist [1 J if length (paramlist) > 1 
then $XEQUT (var, tail paramlist) 
else var . ) , ; 

The effect of the procedure above is to place all the 
parameters of the procedure call onto the rum .. time 
operand stack, and then call the procedure using the 
"var· " statement. Since the semicolon is missing 
between "paramlist [IJ" and "if", the effect of the 
procedure call is to recursively place the first element 
of paramlist onto the operand stack, and successively 
"pop off" the top of the paramlist in each recursive 
use of paramlist in the call "$XEQUT (var, tail param
list)." In our intermediate language, the $XEQUT 
procedure can be (correctly) written as follows: 

$VARBL $XEQUT .$37 $FOR1VIA PARLST 
$FOR1\1A V AR $V ARBL P ARLST $NUlVIBR 1) 

$IN 
$V ARBL P ARLST $IN $LEN GT $NU1VIBR 1 

$GT 
$IF 13 $VARBL VAR $IN $VARBL PARLST 

$IN $TAIL 
$V ARBL $XEQUT $IN $THEN f) $V ARBL V AR 

$IN $IN $.=; 





BALM-An extendable list-processing language* 
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INTROI!UCTION 

The LISP 1.5 programming language! has emerged as 
one of the preferred languages for writing complex 
programs,2 as well as an important theoretical too1.3,4 

Among other things, the ability of LISP to treat pro
grams as data and vice versa has made it a prime choice 
as a host for a number of experimental languages. 5,6 

However, even the most enthusiastic LISP programmers 
admit that the language is cumbersome in the extreme. 

A couple of attempts7,8 have been made to permit a 
more natural form of input language for LISP, but 
these are not widely available. The most ambitious of 
these, the LISP 2 projf;lct, bogged down in the search 
for efficiency. 

The system described here is a less ambitious at
tempt to bring list-processing to the masses, as well as 
to create a seductive and extendable language. The 
name BALM is actually an acronym (Block And List 
Manipulator) but is also intended to imply that its 
use shoucd produce a soothing effect on the worried 
pr~grammer. The system has the following features: 

1. An Algol-like input language, which is translated 
into an intermediate language prior to execution. 

2. Data-objects of type list, vector and string, with a 
simple ex~ernal representation for reading and print
ing and with appropriate operations. 

3. The provision for changing or extending the language 
by the addition of new prefix or infix operators, 
together with macros for specifying their translation 
into the intermediate language. 

4. Availability of a batch version and a conversational 
version with basic file editing facilities. 

The intermediate language is actually a form of 
LISP 1.5 which has been extended by the incorporation 
of new data-types corresponding to vector, string and 

* This work was done under AEC contract no. AT(30-1)-1480. 

entry-point. The interpreter is a somewhat smoother 
and more general version of the LISP 1.5 interpreter, 
using value-calls rather than an association-list for 
looking up bindings, and no distinction between func~ 
tional and other bindings. The system is implemented 
in a mixture of Fortran (!) and MLISP, a machine
independent macro-language similar to LISP which is 
translated by a standard macro-assembler. New rou
tines wri!ten in Fortran or MLISP can be added by 
the user, though if Fortran is used a certain amount 
of implem~ntation knowledge is necessary. 

The description given here is of necessity incomplete 
because of the flexible nature of the system. In practice 
it is expected that a number of different dialects will 
evolve, with different sets of statement forms, oper
ators, and procedures. What is described here is a 
fairly natural implementation of basic features of the 
intermediate language which will probably form the 
basis from which other dialects will grow. We will 
illustrate the facilities by example rather than by giving 
a formal description, which can hopefully be obtained 
from the manua1. 9 

OVERVIEW OF BALM FEATURES 

A BALM program consists of a sequence of com
mands separated by semi-colons. Each command will 
be executed before the next one is read. The user can 
submit his program either as a deck of cards, or type 
it in directly from a teletype. When submitted as a 
card deck, any data required by the command should 
follow the command immediately, and on the output! 
a listing of the cards will appear, interspersed-with any 
printed output resulting from a command. When ~ 
teletype is used, just the output requested will appear., 

Variables in BALM do not have a type associated· 
with them, so each variable can be assigned any value. 
The command: 

A = 1.2; 

.507 
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would assign the value 1.2 to A, while: 

PRINT(A); 

would print out: 
1.2 

Arithmetic operations are expressed in the usual way, 
so: 

x = 2 * A + 3; PRINT(X); 

would print: 
5.4 

Automatic type conversion is done where necessary. 
A " symbol is used to allow the input of lists. Thus: 

would print: 

A = "(A(B C)D); 

PRINT(HD TL A); 

(B C) 

The prefix operators HD and TL have the same effect 
as the functjons CAR and CDR in LISP, giving re
spectively the first element of a list and the list without 
its first element. The LISP CONS operator is available 
either as a procedure, or as an infix colon associating 
to the right. Thus: 

A = "A:"(B C):"D:NIL; 

would also assign the list "(A(B C)D) to A. 
Vectors can be input in a notation similar to that for 

lists, but using square brackets instead of parentheses. 
Elements of vectors are accessed by indexing. Thus: 

v = "[A[B C]D]; PRINT(V[2]); 

would print: 
[B C] 

Lists can be members of vectors, and vice versa, so: 

PRINT(TL"(A(B C)D)); 

would print: 
((B C) D) 

while: 

PRINT("[A (B C) D][2]); 

would print: 
(B C) 

A non-rectangular matrix can be expressed as a vector of 
vectors: 

W = "[[1][2 3][4 5 6]]; 

and elements can be extracted by indexing. Thus: 

PRINT(W[2]) ; 

would print: 
[2 3] 

Any expression can be indexed so that repeated indexing 
can be used to extract elements of matrices. Thus: 

PRINT (W[2] [1]) ; 

would print out: 
2 

Assignments to vector elements are straightforward: 

W[2][1] = "(A B); 

A whole vector or list can be assigned from one 
variable to another variable in a single assignment, of 
course, but then any operation which changes a com
ponent of one will change a component of the other. 
If this is not desired, the vector or list should be copied 
before the assignment: 

z = COpy (W); 

subsequent changes to Z will then not affect W. 
An arbitrary structure can be broken up into its con

stituent parts by the procedure BREAKUP. This takes 
two arguments, a structure whose elements are con
stants or variables, and a structure to be broken up. 
Parts of the second structure corresponding to variables 
in the first structure are assigned as the values of those 
variables, while constants must match. If the structures 
cannot be matched, the BREAKUP procedure is termi
nated and gives the value NIL. Otherwise it has the 
value TRUE. For example: 

BREAKUP ("(A B), "((C C) (D D))); 

will give the value TRUE and will assign "(C C) to A 
and "(D D) to B. Either structure can involve vectors, 
and constants in the first structure are specified by 
preceding them with the quote mark ("). Thus: 

BREAKUP ("[A "B C], "[[X X] B [Y Y]]); 

will have the value TRUE and will assign "[X Xl to A 
and "[Y Y] to B. The converse of BREAKUP is 
CONSTRUCT, which is given a single structure whose 
elements are variables, and which will construct the 
same structure but with variables replaced by their 
values. Thus: 

x = "(A B);Y = [C D]; 

PRINT(CONSTRUCT ("(X Y))); 

will print ((A B) [C D]). These two procedures allow 
convenient forms such as: 

IF BREAKUP ("(A "+ B), X) THEN RETURN 
(CONSTRUCT("[A B "PLUS])); 

BREAKUP and CONSTRUCT are quite efficient, 



and should be used in preference to the more primitive 
operations whenever possible. 

Character strings of arbitrary length can be specified: 

C = (EXAMPLE OF A STRING); 

They can be concatenated, or have substrings extracted. 
Thus: 

D = C --+ (AND ANOTHER); 

E = SUBSTR(D,9,4); PRINT(E); 

would print 
(OF A) 

The BALM system allows the user to assign prop
erties to variables. A property consists of a name and a 
value. For example, the command: 

"VAR PROP "ABCD = (STR); 

assigns the property called ABCD with an associated 
value of (STR) to the variable V AR. Similarly: 

X = "VAR PROP "ABCD; 

will set the value of X to the value of -the property 
ABCD of variable V AR. A variable can have any 
number of properties and any number of variables can 
have the same property. 

There is complete garbage collection of all inaccessible 
objects in the system, so the user does not need to keep 
track of particular lists or vectors. Procedures are avail
able for creating lists or vectors with values of expressions 
as their elements, with storage being allocated dy
namically: 

LL = LIST(Z + Q, ABC, S (XY»); 

VV = VECTOR(X + W, ABC, S(XY»); 

A procedure in BALM is simply another kind of data
object which can be assigned as the value of a variable. 
The variable can then be used to invoke the procedure 
in the usual way. The statement: 

SUMSQ = PROC(X, Y), xi 2 + Y i 2 END; 

assigns a procedure which returns as its value the sum 
of the squares of its two arguments. The translator 
translates the PROC .. END part into the appropriate 
internal form, which is assigned to SUMSQ. In fact 
this is simply a list, which could equally well have been 
calculated as the value of an expression. The procedure 
can subsequently be applied in the usual way. For 
example: 

PRINT(5 + SUMSQ(2, 3) + 0.5); 

would print: 
18.5 
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Instead of assigning a procedure as the value of a 
variable, we can simply apply it, so that: 

X = 5 + PROC(X, Y), xi 2 + Y i 2END(2, 3) + 0.5; 

would assign 5 + 13 + 0.5 = 18.5 as the value of X. 
Note that a procedure can accept any data-object as 
an argument, and can produce any data-object as its 
result, including vectors, lists, strings and procedures. 
Thus it is possible to write: 

M = MSUM(Ml, MPROD(M2, M3) ); 

where Ml, M2, M3, and M are matrices. Procedures 
can be recursive, of course. 

Analogous to procedures we can also compute with 
expressions. The statement 

E = EXPR A + BEND; 

would assign the expression A + B, not its value, to E. 
Subsequently, values could be assigned to A and B, and 
E evaluated: 

A = 1; B = 2.2; V = EVAL(E); 

EV AL(E) could also have been written as $E. 
A procedure is simply an expression with certain 

variables specified as arguments. The most useful ex
pression for procedure definitions is the block, which is 
similar to that used in ALGOL, but can have a value. 
The statement: 

REVERSE = PROC(L), 
BEGIN (X) , 
COMMENT (FIRST TEST FOR 

ATOMIC ARGUMENT) 
IF ATOM(L) THEN RETURN (L), 
COMMENT (OTHERWISE ENTER 

REVERSING LOOP) 
X = NIL, 
COMMENT (EACH TIME ROUND 

REMOVE ELEMENT FROM L, 
REVERSE IT, AND PUT AT 
BEGINNING OF X) 

NXT, IF NULL(L) THEN RETURN (X) , 
X = REVERSE(HD L) :X, 
L=TLL, GONXT 
END END; 

shows the use of a block delimited by BEGIN and END 
in defining a procedure REVERSE which reverses a 
list at all levels. The COMMENT operator can follow 
any infix operator, and will cause the following data
item to be ignored. 

As well as IF ... THEN ... statement there is an 
IF ... THEN ... ELSE ... as well as an IF ... THEN 
... ELSEIF ... THEN ... etc. Looping statements in-
clude a FOR ... REPEAT ... as well as a WHILE .. · 
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REPEAr .... A label should be regarded just as a 
local variable whose value is the internal representation 
of the statements following it. Accordingly, assignments 
to labels, and transfers to variables or expressions are 
legal, and can give the effect of a switch. A compound 
statement without local variables or transfers can be 
written DO .. , .. , .. END. Of course any of these 
statements can be used as an expression, giving the 
appropriate value. Note that a comma is used to 
separate statements and labels within a block and a 
compound statement. The semicolon is interpreted as 
an end-of command by the system (unless it occurs 
within a string), even if it occurs within parentheses or 
brackets. Any unpaired parentheses or brackets will be 
paired automatically, with a warning message being 
issued. 

EXTENDABILITY 

The TRANSLATE procedure used by BALM to 
translate statements into the appropriate internal form 
is particularly simple, consisting of a precedence analysis 
pass followed by a macro-expansion pass. Built-in syn
tax is provided only for parenthesized subexpressions, 
comments, the quote operator, the NOOP operator, 
procedure calls, and indexing. All other syntax infor
mation is provided in the form of three lists which are 
the values of the variables UNARYLIST, INFIXLIST, 
and MACROLIST. The user can manipulate these lists 
as he wishes, by adding, deleting, or changing operators 
or macros. 

Operators are categorized as unary, bracket, or infix, 
and have precedence values, and a procedure (or macro) 
associated with them. Examples of unary operators 
are -, HD and IF, while infix operators include +, 
THEN, and =. Bracket operators are similar to unary 
operators but require a terminating infix operator 
which is ignored. Examples of bracket operators are 
BEGIN and PROC, which both can be terminated by 
the infix operator END. 

New -operators can be defined by the procedures 
UNARY, BRACKET, or INFIX. These add ap
propriate entries onto UNARYLIST or INFIXLIST. 
For example the statement: 

UNARY("PR, 150, "PRINT); 

would establish the unary operator PR with priority 
150 as being the same as the procedure PRINT. Thus 
we could subsequently write PR A instead of 
PRINT(A). Similarly we could define an infix operator 
by 

INFIX("~, 49, 50, "APPEND); 

to allow an infix append operation. The numbers 49 

and 50 are the precedences of the operator when it is 
considered as a left-hand and right-hand operator re
spectively, so that an expression such as A ~ B ~ C 
will be analyzed as though it were A ~ (B ~ C) 

The output of the precedence analysis is a tree 
expressed as a list in which the first element of each 
list or sublist is an operator or macro. For example, 
the statement: 

SQ = PROC(X), X * X END; 

would be input as the list: 

(SQ = PROC (X) , X * X END) 

and would be analyzed into: 

(SETQ SQ (PROC (COMMA X (TIMES X X»» 
This would then be expanded by the macro-expander, 
giving: 

(SETQ SQ (QUOTE (LAMBDA (X) (TIMES X X»» 
the appropriate internal form. This would then be 
evaluated, having the same effect as the statement: 

SQ = "(LAM.BDA(X) (TIMES X X»; 

which would in fact be translated into the same thing. 
The macro-expander is a function EXPAND which 

is given the syntax tree as its argument. It is actually 
defined as: 

EXPAND = PROC(TR), 
BEGIN(Y), 
IF ATOl\1(TR) THEN RETURN(TR), 
Y = LOOKUP(HD TR, MACROLIST), 
IF NULL(Y) THEN RETURN 

(MAPCAR(TR, EXPAND», 
RETURN (Y(TR» 
END END; 

That is, if the top-level operator is a macro, it is 
applied to the whole tree. Otherwise EXPAND is 
applied to each of the subtrees recursively. Most oper
ators will not require macros because the output of the 
precedence analysis is in the correct form. However, 
operatots such as IF, THEN, FOR, PROC ... etc. 
require their arguments to be put in the correct form 
for the interpreter. For instance, the IF macro can 
be defined: 

MIF = PROC(TR), 
BEGIN(X) , 
X=HDTLTR, 
IF HD X == "THEN THEN RETURN 

("COND: LIST(EXP AND(HD TL X), 
EXPAND(HD TL TL X» :NIL) , 

RETURN ("COND :EXP AND (X) ) 
END END; 



where recursive calls to EXPAND are used to trans
form subtrees in the appropriate way. The statement: 

MACRO("IF, MIF); 

would associate the macro MIF with the operator IF. 
We can think of this expansion procedure as top

down, in the sense that a higher level macro in the 
tree is expanded before a lower level macro. In fact 
the higher level macro can process the tree in any way. 
This may include not processing the tree at all (as is 
done by the QUOTE macro), or expanding selected 
subtrees in a standard or non-standard way. A macro 
can even act as a translator of a special-purpose sub
language which is quite different from BALM. For 
example, the expression: 

SNOBOL "(X (ABC) ARB Y PP(I) = Y :F(FAIL)) 
is perfectly legitimate in BALM, and could be trans
lated into the appropriate internal form by a macro 
associated with the prefix operator SNOBOL. 

One particular outcome of this expansion procedure 
is the ability to write other than simple variables on 
the left-hand-side of assignment statements. These are 
conveniently handled by a macro associated with the 
assignment operator which checks the expression on 
the left-hand-side and modifies the syntax tree ac
cordingly. It is this mechanism which permits an ele
ment of a vector to appear on the left-hand-side, and 
also such statements as: 

HDX = Y; 

which will be translated as though it had been written: 

RPLACA(X, Y); 

The assignment macro currently in use looks up the 
top level operator found on the left-hand-side in a list 
LMACROLIST, applying any macro associated with 
the operator to the tree representing the assignment 
statement.-The set of expressions which can be handled 
on the left-hand-side can easily be extended by adding 
entries to LMACROLIST. For example: 

LMACRO("PROC,MPROC) ; 

could be used to add the left-hand-side macro MPROC 
to permit assignments such as: 

PROC PPP(X,Y) = EXPR ... END; 

as an alternative way of defining a procedure. 
Note that the essential properties of the system are 

those of the intermediate language, the most important 
of which is its ability to treat data as program, and 
thus to preprocess its program. Even the TRANSLATE 
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procedure described above can be ignored and the 
user's own translator substituted. Of course this will 
require a different level of expertise on the part of the 
programmer than simply th~ addition of new operators. 
However, the translator, which takes about 2000 words 
on the CDC 6600, is only about 250 cards, and quite 
straightforward, so this is not an unlikely possibility. 

In summary, the BALM system permits extenda-
bility in a number of different ways: 

1) By addition of user-defined procedures. 
2) By the definition of unary or infix operators. 
3) By the definition of macros. 
4) By the use of a user-defined translator. 

Procedures, macros and translators can be written with 
the full power of BALM, or in MLISP or assembly 
language. 
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Design and organization of a translator for 
a partial differential equation language 

by ALFONSO F. CARDENAS and WALTER J. KARPLUS 

University of California 
Los Angeles, California 

INTRODUCTION 

In recent years a variety of techniques for the design 
and implementation of translators for problem-oriented 
programming languages has been developed. A number 
of these employ a high-level programming language 
such as FORTRAN as the target language, rather than 
translating directly into assembly language or mac-hine 
code. The purpose of the present paper is to demon
strate the unique advantages which can be realized by 
making PL/1 the target language and by utilizing the 
so-called preprocessor (or compile-time) facilities of 
PL/l. This approach has been successfully used in the 
design of a translator for PDEL, a special-purpose lan
guage for the solution of the partial differential equa
tions of classical physics. Details regarding the language 
and its application have been presented in an earlier 
paper! and are, therefore, only briefly summarized in 
the next section. The overall structure and philosophy 
of the translator are described in the third section, 
while more detailed aspects of syntax analysis and 
code generation are described in· the fourth section. In 
the final section a quantitative evaluation of the trans
lator is presented. 

REVIEW OF THE BASIC FEATURES OF PDEL 

PDEL was designed at the University of California 
at Los Angeles and implemented in its basic form in 
1968. Its purpose is to facilitate the solution of those 
partial differential equations which are of particular 
importance to engineers. These include particularly 
the elliptic equations which characterize potential 
fields, the parabolic equations which characterize heat 
transfer and diffusion, the hyperbolic equations which 
characterize wave phenomena, and the biharmonic 
equations which arise in elasticity problems. The classes 
of problems which could be handled by the original 
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translator are shown in Table 1. Subsequent extensions 
of the translator have been directed toward permitting 
the treatment of fields in three space-dimensions, the 
inclusion of a wider variety of boundary conditions, 
and the handling of singularities, moving boundaries, 
and other special features. 

The numerical treatment of such partial differential 
equations most often proceeds from finite difference ap
proximations. The time-space continuum is replaced 
by an array of regularly-spaced points in one, two, 
three, or four dimensions, and sets of algebraic equa
tions are solved simultaneously to provide solutions. 
In the case of elliptic equations, the solutions for all 
points are obtained simultaneously; in the case of 
transient field problems, solutions' are obtained se
quentially for successive steps in the time domain. A 
variety of algorithms are available for the solution of 
the difference equations. In order to obviate the prob
lem of computational stability, the catastrophic ac
cumulation of round-off errors, so-called implicit meth
ods are usually preferred. Even so, the numerical 
analyst must make a judicious choice from among 
several practical algorithms, a choice which sometimes 
has a decisive effect upon computer execution time. 
This choice depends, of course, upon the specific type 
of equation under study, but is also influenced by the 
geometry (whether the field has regular boundaries), 
the parameter distribution (whether the field is linear 
or nonlinear, or constant or variable parameter), the 
required solution accuracy, and by the size of available 
fast memory. 

A language designed to solve partial differential 
equations must, therefore, provide various algorithms 
for the different types of equations; these algorithms 
may necessarily involve the construction of lengthy 
subroutines. To avoid waste of computer time, only 
the subroutine corresponding to the problem at hand 
should be produced and compiled. The preprocessor 
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facilities of PL/l are exceptionally well-suited to this 
end.2 ,3 Accordingly, PL/l was selected as the target 
language of the translator, the translator was written 
in preprocessor PL/1, and all legal PDEL statements 
were designed so as to be legal PL/l preprocessor 
statements. 

A typical PDEL program may contain the following 
statements, expressed in a syntax chosen to be readily 
comprehensible to engineers: 

1. Definition of the equation to be solved, i.e., the 
mathematical form of the equation including parameter 
identifiers, the order of the partial derivatives, Pois
sonian terms, etc.; 

2. Parameter specification, which may be constants 
or functions of the dependent and independent problem 
variables; 

3. Specifications of the finite difference grid spacing 
for the space and the time variables; 

4. Description of the geometry of the field, that is 
the coordinates in the space domain of the field 
boundaries; 

5. Boundary conditions, which may be of the Dirich
let, Neumann or Fourier types; 

6. Selection of one of available algorithms to be 
employed; 

7. Bounds on the number of iterations or the itera
tion error for iterative algorithms 

8. Description of the type and nature of the print
out desired. 

Default conditions are provided for most of these 
statements, so that the programmer may choose to 
omit certain specifications in the program; in this case 
the translator will make the selection for him. An 
example of a PDEL program for a simple partial 
differential equation is presented in Appendix 1, 
together with a typical print out. To date, over a 
hundred partial differential equations have been pro
grammed and solved using PDEL. 

GENERAL TRANSLATION APPROACH 

As indicated in the preceding section, a translator 
for a partial differential equations language must con
tain a selection of algorithms, each suitable for a differ
ent class of partial differential equations, different 
geometries, etc. A study of digital computer programs 
corresponding to a number of these algorithms indicated 
that for a given class of equations, approximately 70% 
to 95% of the total number of program statements was 
common to all programs. The other 5% to 30% of the 
statements dealt with the description of parameters, 
initial and boundary conditions, and geometries which 

SYNTACTIC ANALYSIS 
O,F PDEL PROGRAM 

GENERATION OF PUI 
PROGRAM 

PROCESSING BY PL/I 
COMPILER 

Figure I-Processing of a PDEL program 

vary from problem to problem. The greater the com
plexity of the geometry of the field~ the greater number 
of special statements required for characterizing the 
particular boundary configuration. A key to the suc
cessful and economic translation of partial differential 
equations is the avoidance of the generation of un
necessary code. That is, it is important to assure that 
only those portions of the translator required for the 
specific problem to be solved is selected for compilation, 
and then combined with user-generated statements cor-
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Figure 2 (Part 1), (Part 2)-Conceptual flow chart. of the 
PDEL translator 

responding to the S% to 30% of the program which is 
specific to the problem being solved. 

Among -the major problem-oriented languages cur
rently in wide use, only PL/l, by virtue of its compile
time facilities, permits full control over which' portions 
of a program are to be compiled. The PL/l preprocessor 
language is a subset of PL/l, with many significant 
features particularly suited for character-string manipu
lation and generation, and hence for language transla
tion.2 ,3 As the name indicates, the preprocessing phase 
immediately precedes the actual PL/I compilation. 
During this phase, the program is scanned for all state-
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Add and Mix the Fi_ PL/1 -.-11 willi the o-.tod PU1 
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ments which contain the % identifier; and only those 
statements are executed. 

The PDEL translator is in effect a preprocessor 
program which automatically chooses groups or modules 
of fixed PL/l statements corresponding to the equation 
to be solved and the algorithms to be employed. These 
modules of fixed PL/l code are stored in secondary 
storage devices (e.g., disc, data cells), and constitute 
the 70% to 95% of the statements common to all pro
grams of a given class. The other 5% to 30% of the 
code is generated during the preprocessing phase by 
specially designed code generation routines which are a 

C 
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part of the PDEL translator. If desired, the programmer 
may also include PL/l statements (without the % 
identifier) in his PDEL program. These statements are 
unaffected by the preprocessing and proceed directly 
to the PL/l compiler. 

The overall translation process proceeds as shown in 
Figure 1. The preprocessor phase, which results in the 
generation of a PL/l program, is performed in two 
stages: Syntactic analysis and code generation. This 
permits the diagnosis of illegal statements, program
ming errors, and calls for modules not presently avail
able, prior to generation of PL/l code. The syntactic 
analysis in turn proceeds in two steps: 

1. The standard PL/l preprocessor analyzes the 
PDEL program to determine that it is a valid PL/l 
preprocessor program. 

2. The syntactic analyzers of the PDEL translator 
analyze the strings on the right hand side of each 
PDEL statement, so as to detect violations of PDEL 
syntax. 

Figure 2, is a generalized conceptual flow-chart of 
the PDEL translator. Syntactic analysis is represented 
by blocks Al and A2. Blocks B determine whether the 
required PL/l modules are available in secondary 
storage, while block C contains all the PL/l code 
generators. 

The approximate size of the PDEL program is illus
trated in Figure 3, which also indicates the sequence of 
operations. The two INCLUDE statements appear in 
the original PDEL 'program and serve to call the 
PDEL translator. 

A finer view of the operation of the translator is 
given in the next section. 

step n 
hl't1t1_ 
<Iata_ 
(1nlWdca 
-·tararJe) 

Figure 3-Physical movement of code to translate a 

PDEL program 

DETAILED OPERATION OF THE 
TRANSLATOR 

The whole translator is a set of modules stored in 
external memory. Each module is a subroutine which 
may be retrieved from external storage if needed to 
process the PDEL program. The task of the modules 
retrieved and the order in which they act is shown in 
Figure 2. The order in which they are physically re
trieved from external storage is shown in Figure 3. 

The main modules available are: 

(1) Three subroutines which perform the syntactic 
analysis of PDEL statements, stage A2 in Fig. 2. One 
of these is the master analysis routine which determines 
whether or not each PDEL statement is constructed 
according to the rules of syntax stored in the other 
two subroutines. 

(2) A monitor module which performs all of step B 
in Fig. 2, that is, it identifies the problem defined in 
the PDEL program and retrieves from external storage 
the module made up of the fixed PL/l statements and 
PL/l preprocessor statements corresponding to the 
problem. 

(3) A subroutine which when invoked examines the 
specification of the geometry of the field in the PDEL 
program and generates the appropriate set of PL/l 
statements used to form the PL/l program. 

(4) A subroutine which examines the boundary con
ditions specified in the PDEL program and generates 
the appropriate set of PL/l statements used to form 
the PL/l program. 

(5) A subroutine which examines the initial condi
tions specified in the PDEL program and generates the 
appropriate set of PL/l statements used to form the 
PL/l program. 

(6) A set of subroutines made up of fixed PL/l code 
and preprocessor code. Each subroutine corresponds to 
a given type of equation, and, when processed by the 
preprocessor, produces the PL/l program to solve the 
equation for the particular parameters, initial and 
boundary conditions, geometry of the field and by the 
numerical algorithm indicated in the PDEL program. 

(7) A set of PL/l subroutines which produce plots 
of the solution of the equation, e.g., contour plots. 

As shown in Fig. 3, the first of the two INCLUDE 
statements in a PDEL program retrieves modules (1), 
(2), (3), (4), and (5). The second INCLUDE state
ment retrieves the statements that call on modules 
(1) to do the syntax analysis. If no errors are detected, 
the monitor module (2) is called and it decides which 
module (6) to retrieve in order to produce the PL/l 
program. 
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Some details on the syntax analysis and on the man
ner in which a PL/I program is typically produced 
follow. 

Syntax analysis 

PDEL has been designed such that a valid PDEL 
program is a valid preprocessor program. Every PDEL 
statement is a valid PL/1 preprocessor statement, and 
its general form is (in Backus N aur form) : 

% (variable name or key word) = '(character string 
whose syntax and meaning is the concern of the 

PDEL translator)'; 

The PL/1 preprocessor makes sure of this without 
attaching any meaning to the character string on the 
right hand side of each PDEL statement. The syntax 
and interpretation of such strings is the concern of the 
PDEL translator. The syntax analysis capability of the 
preprocessor is thus utilized as much as possible. If a 
different overall translation approach had been taken 
(e.g., not writing the translator in preprocessor PL/1) 
or if PDEL were not within the syntax of preprocessor 
PL/1, then syntax analyzers for the whole PDEL lan
guage, rather than for only a part of it, would have had 
to be designed. Simple precedence syntax analysis 
techniques, first introduced by Wirth and Weber,5 are 
used in the PDEL translator. 

Production of a PLl1 program 

The manner in which a PL/1 program is typically 
formed will now be illustrated by examining the pro
duction of the PL/I program corresponding to the 
PDEL in Appendix 1 to solve the indicated two-dimen
sional elliptic equation. As already pointed out, the 
general PDEL translation proceeds conceptually in the 
logic manner shown in Figure 2 and with the physical 
movement of code illustrated in Figure 3. At stage B6 
in Figure 2 the module for solving the two-dimensional 
elliptic equation by the specified algorithm (in this 
case by successive overrelaxation) is retrieved from 
external storage and sent to the PL/I preprocessor. 
This module has the structure indicated in Figure 4, 
and is typical of all modules to solve partial differential 
equations. The fixed statements are part of the PL/1 
program formed to solve all two-dimensional elliptic 
equations. 

The module is examined by the preprocessor. The 
preprocessor sends directly to ·the PL/I compiler any 
PL/I statements that it finds and executes the prepro
cessor statements. With this in mind and referring to 
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Figure 4-Structure of the module for a two-dimensional 
elliptic equation 

Figure 4, the PL/I program is formed as follows: 

Cl: These are mostly PL/I statements which are sent 
directly to the PL/I compiler. They include dec
laration statements, statements to print out the 
PDEL program and statements which set up 
default conditions in case that the geometry and 
the boundary conditions of the field are not fully 
specified in the PDEL program. However, a few 
preprocessor statements are intermingled with 
this PL/I code so that when they are executed by 
the preprocessor they will modify the PL/I code 
slightly and thus send the appropriate statements 
to the PL/I compiler. 

C2: These are preprocessor calls to the preprocessor 
procedures GEl\,IGEOl\I and GENBCOND, 
which, as shown in Step II of Figure 3, have been 
already retrieved and placed ahead of the PDEL 
program. GENGEOlVI is executed and results in a 
number of PL/I statements corresponding to the 
geometry of the field specified in the geometry state
ment of the PDEL program; these statements 
control the scan of the numerical algorithm to 
solve the equation. GENBCOND is also executed 
and results in PL/I statements which set up the 
boundary conditions specified in the boundary 
condition statement of the PDEL program. 

C3: This if' a mixture of PL/I and preprocessor code. 
When the preprocessor statements are executed 
they modify the PL/I code. The result is the heart 
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TABLE I-Problems that may be solved by the PDEL translator as of June 1969. 

TYPE PAR rIAL DIWl':RHITIAL EQUATION* PPRJl.T'ft.E1'ERS INITIAL CONDrrIONS OOUNDARY OO!-t)rrIot~S 

Elliptic ~ (O:)_K a roostant ~Iboundary = constant 
1 dimension K= f(~) 

f(x) ~Iboundary= f(x,~) 

Elliptic a (a ~) + ~ (ay~)=-K 1 ~ lconstant I ,constant 
2 dimensions ax Xax ~ boundary = f(x,y) 

K r(x,y) ~I _Iconstant 
en boundary - f(x,y ,~) 

K = f(<t» 

Parabolic a (a ~)_Kl'* + K2 ~= 
(constant I Iconstant ~ I boundary = constant 

1 dimension ax ax (t f(~) ~ t=O= f(x) 
a$1 'f(X,~) en boundary = constant 

~, = constant Ic~tant I ,constant ParaboliG 1.. (ax ~) + !.. (Oy~ )=.K ~ ~lt=O= f(x,y) 
2 dimensions ax ax ay ~ (t K = r(~) 

~ boundary = f(x,y) 

a = ronstant ¢I t - o• ,constant 
Jttperbolic a (a ~ r a (K a<fi) +K2 ~ + K K3 f(x,t) - rex) ~ I boundary = constant 
1 dimension ~ ~ - at 1 at at f(~) 

K, • r~tant 
K f(x) 

, f(~) 

~ I Iconstant 
at t=O= rex) 

* r.Ihe geOOletry of t, .... o dimensional fields can be of any form; the only restriction is that no more than 
four boundaries r:lay exist .... ~en lookirus in the x direction fran any point in the y axis 

of the PL/1 program: the PL/1 code directly re
lated to the numerical algorithm used to solve the 
partial differential equation. These modifications 
depend on the types of parameters of the problem. 
The overrelaxation factor and maximum number 
of iterations specified in the PDEL program are 
also taken intq account here. Actually, a finer 
view shows that there is a series of nine groupings 
of mixed PL/1 and preprocessor code. Each group
ing contains from fifteen to twenty-five statements 
and applies to a particular type of parameter of 
the partial differential equation. The appropriate 
grouping is chosen automatically and is sent to the 
preprocessor to produce the necessary PL/1 
statements. Figure 5 shows the mixed code corre
sponding to the example in Appendix 1, and 
Figure 6 shows the PL/1 code that is then pro
duced. This illustrates in particular the replace
ment of preprocessor variable names. The pre
processor scans the input in sequence. When a 

preprocessor statement (identified by a leading. 
% sign) is encountered, it is executed. When a 
PL/1 statement is scanned, every character string 
in it that is a preprocessor variable and to which a 

.. 

Figure 5-Mixed PL/1 and preprocessor code sent to the PL/1 
preprocessor. This code corresponds to the two-dimensional 

elliptic problem in Appendix 1. 
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TABLE II-Computer time and size of programs for several arbitrarily selected problems. 

-
PROCESSnn TI-!E*, seconds, on m1 360n5 Nor,'lBER OF 

EQUATION \nth standaro PL/l system /srNl'tJ.'!Pl\JI1S 

Translation~B~ Compilatlon Execution Total PDEL PL/l 

a2
4> 4> 

of PDEL 

18 26 11 58 11 108 --= e 
ax2 

~ ((lO+y) =) + ~ ((lO+y) ~) 39 34 19 93 19 154 

= 0 

it 12 28 10 51 16 11R _ 2 = (0.08/4> ) a4> 
ax at 

a2/f! + i4> = 44>-3/4 a4> 23 42 22 91 20 256 ax2 . ay2 at 

* 'l'ranslation (includes associated overhead) + COl'l'IOilation (1.ncludes associated overhead) + Execution 
(includes associated overhead) = Total + distributed overhead. 

**Translatton time "'las obtained by subtracti~ the total ttme required to process sepR.ratel v the PL/l 
program generated from the time required to corrpletelN process the correspondlw PDEL program. 

t \-l1th arbitrarily selected geometries, initlal condit1ofJs and boundar~, conditions or various cQ'11Dlexities. 
'!he more the complexity the p;reate~ the nur:1ber of PL/l statements p:enerated. 

value (a number or another character string) has 
been given is replaced by the value. The statement 
is then sent to the PL/I compiler. The primed 

j;.OW. DO J. 1 TO I Jl1AX-lIl 
"'---,ou- 00 j-lEIIJI TO RIGlIjl; -lf2IJ"'Tlj-~1"'2IJf WHilE- Ilf'2"tJi -'j :i.f 1 

EPS.· IN '.IT.' n£IIAnn"s .... 0. fl'" UtH 
--GRin poililTliiDICAhil, IT is., .. -- -- - ----- -- .-
_!JJ"_~.R,_!!.,_~!!lIh~I,AI __ ~_IPI61_1_ ._. __ . ______________ _ 

Fignre 6-PL/l code sent to the PL/l compiler. Thii'l ('ode 
corresponds to the t.wo-dimensional elliptic problem in 

Appendix 1. 

statement numbers in Figure 6 identify statements 
which are the result of such a replacement activity. 

C4: These statements are sent directly to the PL/I 
compiler. They include: (a) output statements to 
print out the tabular solution of the equation in 
the manner specified in the PDEL output state
ments, and (b) other statements which complete 
the PL/I program. 

C.I): If a plot of the solution is ordered in the PDEL 
program, the module containing the appropriate 
PL/I subroutine to plot two-dimensional solutions 
is retrieved and sent to the PL/I compiler. 

Thus the complete PL/I program is produced. It is 
then compiled and executed like any regular PL/I 
program to produce the solution to the equation. The 
number of PL/I statements involved in this example is 
indicated in Figure 4. 

EVALUATION OF THE PDEL TRANSLATOR 

As yet no generally accepted criteria for the evalua
tion and comparison of translators are available in the 
computer software area. Qualitative discussions gen-
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erally center on: compatibility, diagnostic capability, 
and efficiency. Some comments as to the characteristics 
of the PDEL translator as far as these three qualities 
are concerned, appears in order. 

Compatibility with other computers 

The PDEL translator is compatible with any com
puter for which there exists a standard PL/l compiler 
and sufficient external random access memory. The 
translator itself is written in preprocessor PL/l, a high
level language, and makes no reference to unique hard
ware features. 

Diagnostic capability 

The preprocessor PL/I syntax analyzer (furnished 
with the PL/l compiler) and the PDEL syntax analyzer 
function effectively to detect any programming errors 
involving the violation of syntactic rules. Errors which 
can be detected only at execution time (for example, 
overflow and requests for excessively large arrays) 
create difficulties, difficulties which arise in the use of 
most higher-level programming languages. 

Efficiency 

A working PDEL translator capable of solving the 
problems indicated in Table 1, has been in operation 
since 1968. It contains approximately 3,000 cards. 
The preprocessing, compilation, and execution time for 
four arbitrarily selected field problems are summarized 
in Table II together with the number of PDEL and 
PL/l statements required in each case. Improvements 
in some of these figures have been effected recently by 
evolutionary changes in the translator. 
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APPENDIX 1 

The problem is to solve the two dimensional elliptic 
equation 

in which 

_~ ((TOcl» + ~ ((TOcl» = k 
ox ox iJy oy 

(T = 10 + y 

k=O 

for the following hollow quadratic field with the indi
cated Dirichlet boundary conditions 

100 
J. 

18" 

(l0/3)y-100 1 (10/3 )y-IOO 
18"_ 

100 60" 

o , 
18" 

Figure 7-Appendix I-Hollow quadratic field with the indicated 
dirichlet boundary conditions 
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THE SOLUTION CONVERGES WITHIN 5.00COOE-02 IN 3.500"OF+Ot IT~kATIONS, A~~, FOR EACH GKln poINT INDICAT~O, IT rs: 

PN(O,O)- O.OOOOOOE+OO 
PNIO,SI3 0.000000[+00 
PNCO,101 3 O.OOOOOOE+OO 
PNiO~lSJ· O.OOOOOOE+OO 
PNIO,20)= 3.333333E+Ol 
PNio,25)= 6.666666E+Ol 
PNCO,30Ja 1.000000E+02; 
~NCl,OJ=O.OOOOOOE+OO 
PNCl,SI= 6.314485E+OO 
PNCl,10J= 1.015018E+Ol 
PNC1,L51= 1.511424E+Ol 
~NCt,20J= 4.141614E+Ol 
PNCl,25)= 1.065380E+Ol 
P~Cl,30)= 1.OOOOOOE+02; 
PNC2,OJ: O.OJOCOOE+OO 
PNiZ,SI:- 1.214132E+01 
PHC2,10J: 2.0Z8821E+Ol 
PNI2,15)= 2.183543E+Ol 
PN(2,20)= 4.934300E+Ol 
PNC2,251= 1.~42571E+Ol 
PNIZ,30)= 1.000000E+02; 
PNC3,OI~ 0.000000£+00 
PNC3,5): 1.9086~6E+01 
PNI3,101= 3.042688E+Ol 
PNC3,ISI= 3.921964E+Ol 
PNC3,201= 5.093144E+Ol 
PN(3,2SJ= 7.798208E+Ol 
PH(3,301= 1.000000E+02; 
PN(4,OI. O.OOOOOOf+OO 
PNC4,5)= 2.539424£+01 
PNI4,10)= 4.062991E+Ol 
PNC4,ISJ= S.002168E+Ol 
PNC4,20)= 6.428710[+01 
PNC4,25J= 8.133390f+Ol 
PN(4,30)= 1.000000E+02; 
PN(~,OJ= 0.000000[+00 
PN(5,S)a 3.162348~+OI 
PNIS,101. S.101813E+Ol 
PN(S,lSI· 6.033391E+Ol 
PNCS,201= 1.142692E+Ol 
PNC5,2SI· 8.44925SE+Ol 
PNC5~30J= 1.000000E+02; 
PNC6,OJ= O.OOOOOO~+OO 
PNC6,SJ= 3.710349E+Ol 
PNC6,10Ja 6.178895E+Ol 
PNC6,151= 1.039014E+Ol 
PHC6,20)= 1.843001f+Ol 
PN(6,25J= 8.7421S8f+Ol 
PN(6.30J= 1.000000~+02; 
PN(7,OI· O~OCOOOOE+OO 

PN(O,lt= O.OOOOOOE+OC 
PNCO,6J= O.OOO~OOE+OO 
PNCO,11)= O.OOCOOOE+OO 
PNCC,16J= 6.666666E+OO 
PNCO,ZIJ= 3.999999E+Ol 
PNIO,26J= 7.333333E+Ol 

PNC 1,1 J= 1.6487 82E+00 
PNCl,6)= 7.277188£+00 
PNCl,ll)= 1.074dI9£+01 
PNll,16t= 1.948171E+(1 
PNfl, 11) = 4. 725468.E+0 1 
PNC1,26)= 7.654648E+Ol 

PNCZ,I)= 3.293151E+OO 
PNCZ,61= 1.4~5600E+Cl 
PNI2,11J= 2.142877E+Ol 
PN(Z,16)= 3.123970E+Ol 
PN(Z,Zlt= 5.4256R4f+Cl 
PN(2,26)= 7.Q55107E+Ol 

PNI3,l)= 4.92373AE+OO 
PNC3,6J= 2.183S6gE+Ol 
PN(3,ll)= 3.203278E+01 
PNC3,16)= 4.213358E+Ol 
PNI3,21J= 6.101681E+Ol 
PN(3,26)= 8.231275E+Ol 

PNC4,1)= 6.518893E+00 
PN(4,6)= 2.911164[+01 
PNC4,11)= 4.261211E+Ol 
PN(4,16)= ~.24131bE+Ol 
PNC4,21)= 6.754419E+Ul 
PNC4,16J= 8.501383E+Ol 

PNC5,11= 8.C63937E+OO 
PN(S,6J= 3.636366E+Ol 
PHIS,111= ~.327888E+Ol 
PNIS,lb): 6.221704E+Cl 
PHCS,lll= 7.386238E+Ol 
PNC~,2613 8.148719~+OI 

PN(b,I)= 9.5~14~6E+OO 
PHC6,6J= 4.354351~+01 
PNC6~111a 6.418135E+Cl 
PN16,t61= 1.187387E+01 
PNC6,211= A.OO~845E+01 
PN(6,Z«» = ti.97tHIE+:11 

PH(7,1)- 1.092357E+Ol 

PN(O.2)= O.0"10':00F+O,) 
PNCO,7)= C.CJ00Q2E+GJ 
PN(O,IZ)= O.GOOC0rE+~n 
PN(O,17)= 1.j33313E+Ol 
PNIO,2Z)= 4.666666[+01 
PNCO.21)= 1.Q9099q~.'1 

PN(I,2J= 3.0~bl~2~+00 
PNCl,l)=Q.103J19E+OJ 
PNCl,12)= 1.1]7215[+01 
PN( 1,11)= 2.4·62:J4lL+~Jl 

PNC1,27t= 5.3~~174~+nl 
PN(1,27J= 3.?4~4~5~+O} 

PN(l,21= 6.1(4~3h[+~~ 
PNI7,7)= 1.62131hE+Ol 
PN(2,12)= Z.157449f+Cl 

'PNC2,17)= 3.~3311bE+)1 
PN(Z,2Z)= 5.9l3261f+Jl 
PN(2,l7)= 8.47C~~6r+01 

PNC3,2)= ~.11471Ht+'C 
PN(3,7)= l.4!4~Ir,c+~l 
P~(3,12)= 3.J5b7?1[+~1 

PHI3,llJ= 4.~4~~~~~+Gl 
PN(3,17J: 6.si&416F+11 
PNO,71):: S'.fd('051r+,J I 

PN(4,2J= l.1~711~r+~1 
PNC4,7)= j.?r,L~z~r+~1 
PNC4,12J= •• 43~~S~[+;1 
PHI",17): 5.~lr!3~r+ftl 
tlNI",??): 7.'~"5~r.~+"\1 
PN( 4,211= ~.'11~ h9F+-; } 

PN(~,21= 1.4~4R~~f+'t 
PH( 5, 11:: ".(-761;'<)'-:+'-1 
PN(;,I?)a 5.~1~7~1(+'1 
PN(S,lll", 6.41~?1qr+~1 
PN(5,22)- 7.~j~~nrf+" 
P~(~,Z1J= 9."~ql~~t+'1 

PN(6,ZI= 1.77J391~+~1 
PNC ft, 11 '" 4. tw 70 N~.C 1 
PNCb,IZ)a h.~~1371F+11 
PHC6,11)a 1.144431E+Jl 
PNCb,Zl)= 8.1bj114rt11 
PN(6,171. 9.724qq~t+)t 

PN(O,3)= n.COOJOO~+OO 
PN(O,8t= J.Ol0JCDf+1J 
PN(r,13)= o.oonGoot+00 
PN(O,18J= 1.99q999F+~1 

PN(O,21)= 5.333333F+01 
PN(C,78J= 8.666~~&~.~1 

PN(1,3,= 4.?B5014E+OC 
P~(l,Rt= 8.f,4R941t+OJ 
PHC],11)= 1.212682F+n] 
P~C],IB): 3.CI062hF+~1 

PN(l,23'~ 5.~904~4F+}1 

PNC},?RJ= a.D1~f2qt+~t 

PNC?,3t= ~.~494qlF+r~ 
P~(?,HJ= 1.7713q5f+Jl 
PNC2,lll= 2.3~6?3nF+81 
PN(?,18)= 3.9~11hlf+~1 
PNCl,73)= 6.42~7~qF+Jl 
PN(2,26)= 8.9~~076F+~1 

P~(3,lJ= 1.11~053F+~1 

P~(l,Q)= 1.on2~61E+0l 
P~(3,11)= 1.515q4~.-:+nl 

P~Cl,l~l= 4.90QQ21F+'1 
PN(~,21)= 6.931]51~+rl 

P~(3,7~J= q.12190C~+~1 

~~I',')· 1.~9~58~~+~1 
~~(~.~)= 3.~61711~+~] 

P~C/.,13): 4."1l74.,rt~ 1 
~N(4,1~)= ~.~(19?1[.~1 

~'j(4';1'= 7 ... 2<;1,/1 t.'1 
~~C~,I~J: a.I~Jl~1 •• ~1 

.)NC'),~J ... l.I~'l('-'''[t';l 

P~(~,3Iz 4.47~~~~~."1 
U~(~,'l'. ~.hAl?74[.~1 

PNC~,lj)= (.~6~7o'r+01 
~N(~,?jJa 1.~~11~Jr+:l 

p~C~,~~)= ~.~7~~1~F+'1 

P~fb,ll= 1.4~~~3~~."1 

P~(~,qlt ~.415~11r+rl 

Pt.j( h 13)= 1-.• 1557"'~1-+:; 1 
P~C~,l~l= 1.~"Aqj~~+'1 
iJ~Ct:.,_U'" II. H~19/f.~ 1 
p~(~,?e): 9.4~1Io~r+11 

PN(O,4)= o.roo~nOE+rO 
PN(G,9)= ~.rO)~"F+O' 
PN(O,14'= o.pnr~0~E+O{ 
PN(O,19t= 2.66S~SbE+OI 
PNI0,24)= ~.99Q999f+Oi 
PNfO,29)= q~333j3iF+"1 

PNC1,4)-= 5.:H5Ft42b+f'lil 
PN(l.q)= 9.~~Kl12t+on 
PN(1,14)~ 1.322?02E+01 
PN(I,lQ)= 3.~74q3uF+Ol 
PN(I,?41= 6.4773f'13f+Ol 
PNI1,29l= 9.420142F+Ol 

PN(2,4)-= 1.0744q9f+01 
PNI?,qJ= 1~90h610E~Ol 
P~Cl,14)= ~.550623E+OI 

PN(2,IQ)= 4.451147E+11 
PN(~,24)= 6.Q32369F+Cl 
PN(2,79J= Q.49636If+Ol 

PNI3,4)= t.hrR~17t+Ol 
PNC3;QJ~ 7.A64191b+Ol 
PN(~,14J= 3.7nnn 66E+Ol 
PNC1,I Q)= 5.24~115F+Ol 
~NC3.74)= 1.?64hlQF+Cl 
P~C3,79)= 9.~oS~15~+Gl 

PN(4,4J= 2.1'6?~lt+tl 
P~C4,4)= ?Q318S5F+Pl 
~N(4,14): 4.794Q34E+Ol 
PN(4,l~)= 6.1~q~7~F+Ol 
~N(4,74)= 1.774?5aF.+ol 
PNf4,29J= ~.~301~3f+01 

PNC~,~J= ?~53122r+Ol 
~NC~,~)= 6.~2n812~+al 

PN(S,141= 5.85~493F+rl 
P~C~,19)= 6.9CI524F+Ol 
PN(5,241= 8.162~Olt+Ol 
PN(~.2qJ: 9.~8H43~E+Ol 

PH(b,4)= 3.153921F+Ol 
PN(6,QJ= 5.8513~lE+rl 
PNff,14'= 6.8q7~14E+01 
PN(6,19J= 1.b7661QE+Dl 
PN(6,24)= 8.5l7~H1F.+"1 
PNfb,?9t= q.741~4~F+~1 

Figure 8-Appendix 1-Tabular printout of the field potential for the two-dimensional elliptic problem. 

This system could be a hollow square pipe carrying a 
fluid whose thermal conductivity is nonuniform, with 
the walls being subjected to the indicated temperatures. 

With the understanding that PDEL solves equations 
by finite difference techniques in rectangular co
ordinates, the user of the language then has to indicate 
the following, in addition to specifying unambiguously 
the equation, parameters and conditions, 

1. the rectangular grid to be used 
2. the spacing between each grid point 
3. the form of the printout 

and assuming that the method used to solve two dimen
sional elliptic equatioI).s is the successive point over
relaxation, the following must also be specified, 

4. the overrelaxation factor (if not specified, the 
optimum is used) 

.5. the error tolerance 
6. the maximum number of iterations that are 

allowed 

Assuming that the user specifies the following con
ditions, 

1. a 30 by 30 grid 
2. the spacing between each point in either direction 

is 1.0 
3. the solution at each grid point is to be printed 

out, and also a discrete plot of the solution is desired 
4. the overrelaxation factor is 1.70 
.5. the maximum error allowed is 0.05 
6. the maximum number of iterations allmved is 100 

then the following PDEL program is written to solve 
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the two dimensional elliptic field: 

PDEL Program Statement # 

% INCLUDE $PDEL(INITIAL); 1 
/*THIS PROBLEM SOLVES A 2 DI- 2 

MENSIONAL ELLIPTIC EQUATION 
IN A HOLLOW QUADRATIC FIELD 
BY SUCCESSIVE OVERRELAXATION */ 

% DECLARE (PARAM1, PARAM2) CHAR- 3 
ACTER; 

% EQUATION = 'PARAM1 * PX, PX, 4 
PHI + PARAM1 * PY, PY, PHI 
PARAM2'; 

% PARAM1 = '10 + Y'; % PARAM2 = '0'; 5,6 
% DIMENSION = '2'; 7 
% GRIDPOINTSX = '30'; 8 
% GRIDPOINTSY = '30'; 9 
% DELTAX = '2.0'; % DELTAY = '2.0'; 10,11 
% GEOMETRY = '(1:29,1:8); (1:29,22:29); 12 

(1:8 & 22:29,9:21)'; 
% BCOND = '(*,0) = 0; (*, 30) = 100; 13 

(0,0:15) = 0; (30,0:15) = 0; 
(0,16:29) = (10/3) * Y - 100; 
(30, 16:30) = (10/3) * Y - 100; 
(9:21,9) = 100; 
(9:21,21) = 100; 
(9,9:21) = 100; 
(21,9:21) = 100'; 

% lVfAXERROR = '.05'; 14 
% ITERATE = '100'; 15 
% ORF = '1.70'; 16 
% PRINTINTX = '1.0'; 17 
% PRINTINTY = '1.0'; 18 
% PLOT = 'YES'; 19 

% INCLUDE $PDEL(HEART); 20 

Ahead of statement #1 of the program the user has to 
place the appropriate job control cards to give the 
operating system of the computer the necessary in
formation about the job and where in secondary storage 
the PDEL translator is residing. The statements indi
cated play the following role: 

1: calls from the computer system that part of the 
PDEL translator which performs all the neces
sary initialization. It must be the first state
ment in a program involving a new equation. 
$PDEL(INITIAL) is assumed to be the name 
of the data set where the initialization part of 
the translator is stored. 

2: a comment statement 
3: declares the names to be used for the parameters 

uandk 
4: defines the equation to be solved 

5, 6: define the parameters u and k 
7: indicates that the field is 2 dimensional 

8, 9: indicate that a 30 by 30 grid is to be used 
10, 11: indicate that the distance between grid points 

is 2.0 and equal in either direction 
12: indicates the geometry of the approximated 

field by specifying the points interior to the 
field 

13: indicates the boundary conditions 
14: indicates the maximum tolerable error in the 

solution 
15: indicates the maximum number of iterations 

allowed 
16: indic_ates the overrelaxation factor to be used 

17, 18: indicate how often is space (grid point-wise, 
not space unit wise) the solution is to be printed 
out. 

19: indicates that a scaled plot of the potent~al 
distribution, a contour plot, is to be printed out 

20: calls from the computer system that part of the 
PDEL translator which performs the processing 

»»»»»»»»»»»»»»»> 
YYYYIZZ1ZZIIlIZI1IlllZ!ZllZVVVY 
~~XXYYYYIIlllLLII'lllllYVYVXXWh 
JYWWXXXYYlIZZlll~lllllrYXXXW~VU 
TTUV~WXXYVllllLi"ZILYYXXW~VUTT 
RSTUVVWXYVVlllIZZ1ZZVYYX~VVUT~H 
PQSTUVWXXYYlll'll'ZZYYXX~VUTSUP 
~~QSTUV~XVZllIllIlIZlY(WVUlSOP~ 
MNPQSTV~XVZllIZlllllzyr~VTSQP~M 
1("4(JPRTUwY> >YWUTRPm.1K 
I KMlX)SUWV> >YwU:)(JIJi"i( I 
~JlNP~TVX> >XVTkPNlJ~ 
~HKM~RTVX> >XVT~P~KHF 
DGJlO(Jl VX> >XVT(,J!lLJ.;n 
3FIK~USVX> >KV~UNKlfH 
AOHKN~SUX> >XUS~NKH0A 
ADGJMPRUX> >X1.J,(PM.V;DA 
AOGJlCHUX) >XtnDl.h.Dt\ 
ACFILORUw> >.~IF~nl1FCA 
ACFllNUTh> >~l~~lIr(A 
ACFHKNCl W) )iHrjNKH':CA 
ACEHJ~~SV> >VSP~JHECA 
AC[GJlOJrV.-fx)( x)t')(XXXYwil ffHlJ(;l- C" 
ACEGI KMUR ') T JVVVVVVVUT SPU,-1K T l;fU 
ABOfHJLNU "H SSS T TTSSSi{OUNl JHflJ HA 
~3DEGIJlMNU~JWG0~~wPU~MlJIGfnRA 
ARCEf-G I JKL '1\!;~"!M;·JN;-.;/>:~aKJ I GH:C :34 
.AHCDLFGHIJJKKKKK{KK~JJIH~~~~cqA 
AABCODfFF"(~H~IIHHHHHHG';FI- r_ nr)CbAA 
AAABBCCCOOIJ!Jt:t i- ~ I: ~n;}Gur.CC~P'f\ I\!\ 
AAAAAAAAAAAAhAAAAAAAAAAA\AAAA4A 

ftIotAX· 1.0()()()(E+02j IHtIIN- O~OOOOlE+OOj BANDa 3.84615E+OOj 

Figure 9-Appendix l-Contour plot of the field potential for the 
two-dimensional elliptic problem. 
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of the PDEL program. $PDEL(HEART) is 
assumed to be the name of the data set where 
this key part of the translator is stored. 

Solution printed out 

The solution at each grid point for only a part of the 
field is shown. 

In the contour plot, areas of smaller 'Potential are 

represented by characters A, B, C,_· .. and those of 
larger potential by X, Y, and Z. The grid point(s) with 
the largest potential is (are) represented by character 
>, while each letter represents a band (BAND) of 
potential equal to the difference between the maximum 
and the minimum potential in the field divided by 26 
(the number of letters in the alphabet). The contour 
plot is elongated because the computer printer prints 
out characters leaving more space between each row 
than between each column. 





SCROLL-A pattern recording language* 

by MURRAY SARGENT III 

University of Arizona 
Tuscon, Arizona 

INTRODUCTION 

A number of routines have been developed recently to 
facilitate labeling of computer plotted output. One of 
the more versatile programs is that written by Freeman! 
which is capable of plotting characters in sequence in
cluding sub and superscripts, over and underscoring, 
using italics, changing fonts and returning to a saved 
coordinate. Programs of related nature have been 
written specifically for the purpose of text editing such 
as the IBM TEXT 360 and CALL 360 which are pri
marily printer oriented. Along these lines, all conversa
tional programming systems have editing facilities. 
The routines share a common feature: the interpreta
tion of character strings containing substrings specify
ing the desired output and other substrings specifying 
control functions. The substrings are separated typi
cally by a break character such as a dollar sign or slash 
followed by a character representing the purpose of 
the substring. The use of a single character to represent 
a word or idea is as old as language itself (&> for and, 
$ for dollar, etc.) and the characters so used are called 
logograms or logographs. One of the early programming 
languages to use logograms is APL although the purpose 
of that language is very different from the string lan
guages involved above. A clear advantage of the logo
grammatic language is its brevity. However this can 
be a confusing factor as well. 

In this paper, we present a new logogrammatic lan
guage called SCROLL which extends the string lan
guage of Freeman to allow nesting of the subsuper
script, over-underscore and backward reference facilities 
and most important to include recursive procedure and 
measurement capabilities hitherto absent in plotting 

* Most of the work discussed herein was completed at Bell 
Telephone Laboratories, Inc., Holmdel, New Jersey. 
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languages. * An abstract pattern can be defined by such 
a procedure and invoked as desired with specification 
of appropriate arguments to yield a specific pattern. 
Hence a mathematical fraction procedure measures 
the dimensions .of the plotted output corresponding to 
its two arguments, one for the numerator and one for 
the denominator. This procedure then centers the nu
merator with respect to the fraction bar and denomi
nator, while positioning the pattern elements vertically 
to prevent intersections. The arguments consist of any 
allowable sentences of the language and can in particu
lar reference the procedure to which the arguments 
themselves belong. This allows one to draw, for example, 
a fraction in the numerator of another fraction. 

The semantics and syntax of SCROLL are given in 
the next section of the paper together with numerous 
examples of plot output. A detailed discussion of pro
cedures and measuring functions is given with ex
amples in the third section. The utility of the language 
is discussed in the last section. In the appendices, 
SCROLL syntax is specified using a meta-language 
similar to that used in the COBOL report, and defini
tions of built-in SCROLL procedures given. 

SE1VIANTICS AND SYNTAX 

SCROLL sentences are composed of plot and control 
statements which, syntatically, can be mixed together 
in any order such that the final statement is a termina-

* SCROLL is an acronym for String and Character Recording 
Oriented Logogrammatic Language. The language has been 
incroporated into a general plotting system described in Bell 
Telephone IJaboratories memorandum MM 69-1254-11 by 
M. Sargent III. Details of the SCROLL implementation can be 
found there. 
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TABLE I-Semantics of Logograms for IBM 360, CDC 6000 and Machine Independent Versions of SCROLL. 

LOGOGRAMS-Semantic 1 LOGOGRAMS-Semantic 2 
(machine independent) DEFINITION IBM 360 CDC 6000 

Font change 
Case Inversion 
Subscript 
Superscript 
Sub-superscript return 
Italics 
U nder-overscoring 
Ending sentence 
Carriage control 
Column control 
Linewidth 
Character size 
Omitting output 
Coordinate changes 
Procedure calls 
Diagnostics 
Plotting $ 
Changing semantics 
Process statements 
Null 
Backspace 

0-9 
A-Z 

+ 
/1 
() 
. , 
, 
¢ 
# 
@ 
-",. , 
<> 

? 
$ 

* 
% 
& 

tion control statement. * A plot statement consists of 
any string of characters (a Hollerith literal) terminated 
by and not including a dollar sign. The action implied 
by a plot statement is the plotting of the characters 
constituting the statement. Hence the string 'ABC' 
means "plot 'ABC' ;." This statement cannot by itself 
constitute an entire sentence; it must be followed by a 
control statement which terminates the sentence. 

Control statements are also character strings, but 
inevitably begin with a dollar sign and end according 
to context as described below. The first nonblank char
acter following the dollar sign stands for the type of 
action demanded by the control statement. As such 
the character is a logogram and gives SCROLL its 
logogrammatic nature. More characters may be in
cluded in the statement depending on its purpose. 
Blanks occurring between the initial $ and the final 
character of the control statement are ignored unless 
they belong to a plot statement which is the argument 
of a SCROLL procedure or function call. The simplest 
SCROLL sentence consists of the single control state
ment '$.' which means "terminate the sentence." Com
bined with the plot statement above, one has the 
sentence 'ABC$.' which means "plot 'ABC'." lVlost 
control statements have fixed length. Those having 

* The reader may prefer the schematic definition of SCROLL 
syntax given in the Appendix A to that given here. 

0-9 
A-Z 

+ 
/V 
() 

, I· , 
<> 

t 
$ 
i 
* 

1\ 

0-9 

+ 
/ / 
() 

, 
T (FIV FORMAT) 
W (Width) 
S (Size) 
X 
H (Here) T (There) 
C (Call) 
D (Diagnostics) 
$ 
L (Logogram) 

* 
N(Null) 
B 

variable length are terminated either by a per cent 
sign (%) of the $ of the next control statement. 

In the remainder of this section, the control state
ments are defined and illustrated by figures containing 
prints of unretouched output obtained using an IB1VI 
360/65 computer in conjunction with a Stromberg
Carlson 4060 microfilm recorder. The semantics given 
are for the IBl\1 360 version; Table I summarizes these 
semantics, the CDC 6000 version* and a machine in
dependent set. Additional examples of SCROLL 
sentences are given in Appendix B which gives the 
definitions of the built-in procedures. 

1. Specifying a new type font (see Figure 1a) 
$n change to the font numbered n (1:::; n:::; 9) . 

Four interpretive fonts** have been used 
herein: #1, the upper case English font; #2, 
the lower case English font; #3, the upper 
case Greek font, and #4, the lower case 
Greek font. The fonts include the special 
symbols. % + - = ' ( ) / * I $ ; :, < > [ ] 
¢ # &- { } and characters representing inte
gration, differentiation, infinity, summation, 
product and the Yale seal. Characters not 

* Debugged at the University of Arizona Computer Center. 
** An interpretive font consists of a sequence of coordinates and 
delimiters which is interpreted and scaled to produce characters of 
desired size. 



$n A$4BC$OO$. Af3rD 

A$30HP$lE$~ A~snF 

A$2BCO$OEF$. AbcdEF 

$a A$SC$. AbC 

$+ A$+QR$. AQR 

$- A$-QR$. AQR 

$= A$+R$=Q$. ARQ 

A$+R$-$G$=A$=S$. ARC)AS 

Figure 1-Examples of SCROLL sentences illustrating 
control statements for (a) switching type fonts, (b) shifting 
case for one character and (c) sub and superscripting 

on key punch are retrieved by a number 
sign # followed by a key punch character. 
#A and #B, for example, yield { and } 
respectively. See the plot system memo for 
further discussion. 

$0 return to previous font. 

2. Shifting case for one character only (Figure 1 b ) 
$a where a is any letter of the alphabet inverts 

the shift for one character only: if $A is en
countered and a lower case font is set up 
"A" will be plotted (instead of "a") and 
succeeding characters will be plotted in 
lower case. 
Note: The case may be shifted for one or 
more characters by changing to the appro
priate font or by typing parts of SCROLL 
sentences in lower case when an upper case 
font is set up. 

3. Subscripting and superscripting (Figure lc) 
$ - enter subscript mode, 
$+ enter superscript mode, 
$ = return to previous sub or superscript mode. 

4. Italics (Figure 2a) 
$/ enter italics mode and 
$ I leave italics mode . 

. 5. Under and overscoring (Figure 2c) 
$ ( remember where to start drawing a line, 

under or overscoring, 
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$1 AS/BCD$. ABeo 

$1 A$/BCDSIEF$ . ABCOEF 

$1 A$I4B$I3C$. ABC 

$($)+ A$(BCD$)+F$ . ABCDF 

$($)- A$(BCD$)-F$ . ABCDF 

$($) $('ABC$).$. : ABC 
$$ P$2LOT $$$. Plot $ 

Figure 2-Examples of SCROLL sentences illustrating 
control statements for (a) italics, (b) bold face, (c) over and 
underscoring, (d) returning to a saved plot position and (e) 
plotting a dollar sign 

$) + or $) - overs core (+) or underscore 
(-) the characters between this $) and 
the corresponding $(; $( and $) are 
treated as a pair the same way right and 
left parentheses are treated in FORMAT 
statements, 

$) followed by anything else, draw a line 
between current plot coordinates and 
those saved by corresponding $(. See also 
$_ facility for drawing lines. 

6. Ending sentence (see next section for examples) 
$. (or $;) If encountered in procedure or 

argument sentence, return to calling sen
tence; otherwise return to the plot system. 

$, The interpretation of $, 
starts one on the next line 

$t A$t60B$t65C$. A B 

$& 0$&/ 0 

$- $_0,0; ,2;6,2;6;$. 

$_),2;6; ,-2;-6$. 

Figure 3-Examples of SCROLL sentences illustrating 
control statements for (a) skipping to next line, (b) changing 
column, (c) backspacing and (d) drawing lines 

C 
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7. Starting a new line (Figure 3a) 
$,n advance "carriage" according to value of n: 

n = plus, go to beginning of current line; 
n = 1, go to next frame; n = 0, skip a line; 
n = 2-9, advance (l/n)th of current frame; 
n = anything else, go to next line. If the 
control requests plotting below the frame, 
the frame is automatically advanced. 

8. Specifying plot column (Figure 3b) 
$¢n (n= COLNO-variable in PLTPRM de

scribed in plot system memo) go to column 
n with respect to left side of film (ignore 
XORG and X, positioning variables). The 
variable COLNO determines the number of 
columns assumed on a frame and has the 
default value 80.0. Hence unless COLNO 
is reset larger than 100.0, the control se
quence '$¢100' will require plotting outside 
screen boundaries and error messages will 
be issued. The letter n can be the name of a 
SCROLL process variable containing the 
desired column number. Hence on can set 
"tabs" for printing text. 

9. Changing linewidth (Figure 2b) 
$#n for n = 1 to n = 4, use standard line 

density and change line width to n where 
width is proportional to 2**n (gives varying 
degrees of bold-face. type); for n = 5 to 
n = 8 change linewidth to n - 4 and use 
light density. 

10. Changing character size 
$@n. change character size to SIZE*n/2, where 

SIZE is the nominal character size; 
$@O go back to previous size. 

11. Omitting output 
$-, omit output until $-, ; is encountered, 
$:....,; restore normal output. 

12. Saving and returning to a point (Figure 2d) 
$ < save the current plot coordinates; 
$ > go back to the coordinates saved by the $ < 

corresponding to this $ > ($ < and $ > are 
treated as a pair the way right and left 
parentheses are treated in FORTRAN 
FORMAT statements). 

13. Calling and defining SCROLL procedures (see 
next section) 

$ :an call' the procedure named by the upper 
case alphanumeric character a and nu
meral n (1-9 or null) , 

$ :an (list) call the procedure named an with 
arguments given by list, 

$: (an, sentence) define a procedure named an 
by the SCROLL sentence sentence. 

$:? read characters on next card in FORT
RAN input stream into SCROLL storage 
starting at this $ and continue interpreta
tion. A 0-2-8 punch does the same thing 
and can occur anywhere in a SCROLL 
sentence. 

14. Backspacing (Figure 3c) 
$&n backspace n (1 ~n~9) characters exclu

sive of control characters, 
$&0 backspace 10 plotted characters, 
$& followed by anything else-backspace one 

plotted character and process the next 
character as usual. 
Up to ten characters can be backspaced 
over at a given time unless fewer than ten 
positions have been established. To back
space. more generally, one must use the 
$< and $> facility (see 12). 

15. Rotating output 
$" [expl][,exp2]% where expl and exp2 are 

SCROLL arithmetic expressions. The azi
muthal angle (angle of rotation from the x 
axis in the x-y plane) is set equal to the value 
of expl if present, and the polar angle 
(angle of rotation from the z-axis towards 
the x-y plane) is set equal to the value of 
exp2 if it appears. The two angles have 
default values 0° and 90° respectively. Note 
that in SCROLL Version I, all previous 
measurement information is destroyed by 
this control statement. Hence one cannot, 
for example, draw an unrotated rectangle 
around a rotated pattern. 

16. Shifting plot position and drawing lines (Figure 
3d) 

$_field[_field] ... % shift plot position and/or 
draw lines. A field contains one or more co
ordinate sets separated by semicolons and 
the sets themselves are SCROLL arith
metic expressions separated by commas. 
If a field consists of a single set, the plot 
position is shifted such that the first co
ordinate is added to the x position and the 
second to the y position. If a third co
ordinate appears it is used as the z (depth) 
coordinate in a projected drawing. If an 
equal sign precedes the x coordinate, the 
set specifies an absolute location on the 
plot screen. If more than one set appear 
in a field, lines are drawn between the 



points they determine relative (no =) to 
the current plot position. If a ' > ' is the first 
character of a field, the coordinates are 
treated as vectors, that is, displacements 
from the current plot position. Lines are 
drawn and shifts occur. If a coordinate is 
omitted, it is assumed to be zero; if a single 
coordinate (no comma) appears, it is as
sumed to be x. Examples of shifting are 
given in another section and examples of 
line drawing in the "box" procedure. Shifts 
can be made in process stements also. 

17. Writing diagnostic information 
$? ; terminate printing plot diagnostics, 
$?n turn on the flag for diagnostic class n (see 

discussion of PLTDBG in next section of 
plot system memo for details), 

$? followed by anything else causes descrip
tions of the type of actions resulting from 
subsequent control strings to be printed. 

18. Plotting dollar sign (Figure 2e) 
$$ plot dollar sign ($). 

19. Changing SCROLL semantics 
$!n use control semantics n (lor 2), where 

semantics refers to the meanings of the 
logograms. $!1 causes the semantics de
scribed in this section to be used; $!2 causes 
semantics presumably specified by the 
user to be used (perhaps second set given 
in Table I). 

20. Execll.ting process statements (see Appendix B 
f(,>· ~~:J,mples) 

$* ... % execute the process statements given 
by the ellipsis ( ... ) (see next section 
for further details). 

21. Null statement 
$% statement is ignored. 

Further examples of SCROLL sentences 

To demonstrate a little more of the power of SCROLL 
we consider the first equation in Figure 5. This resulted 
from interpretation of the sentence 

'$:T($4Q$0$.) = -$I[H, $4QJ$--$ 
= -$:F1 (1$.2$.) [$C.QJ$~ +$.' 

Here the string '$: T($4Q$0$.) ' is a procedure call (see 
next Section) to the time derivative procedure T which 
centers a dot above the plot output given by the argu
ment, '$4Q$0$.'. The argument itself is a SCROLL 
s(mtence in which '$4' switches to the lower case Greek 
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font, 'Q' plots the letter p, '$0' returns to the previous 
font (the upper case English. font) and '$.' ends the 
sentence. The next four characters '= -' plot an equal 
sign with blanks on either side followed by a minus 
sign. The' $1' plots i (the dollar sign inverts the case 
for I alone), '[H,' plots itself, '$4' switches to the lower 
case Greek font and 'Q]' plots pl. The '$ - -' subscripts 
a minus sign, '$ =' returns to on-line mode, ' -' plots a 
minus sign with blanks on either side, '$:F1(1$.2$.)' 
calls the simple fraction procedure to plot the fraction 
one half, the '$C' plots r, '$- +' subscripts a plus and 
'$.' ends the SCROLL sentence. In the IBM imple
mentation for fonts 1 through 4, [ is given by #1 and ] 
by #2. 

The second equation resulted from interpretation of 
the sentence 

'$:B($:P(A$. B$. $N$.) = $:R 

($:F(A-B$. B$+Q$-$N$=$=$.)$.) 

$:P(A$. B$. $N -1$.)$.) $.' 

Here the "box" procedure B plots a rectangle tailored 
to fit plot output resulting from its argument. Similarly, 
the partial derivative (P), square root (R) and frac
tion (F) procedures shift their arguments into place 
and draw lines of appropriate length. 

SCROLL PROCEDURES 

In Figure 5 a complex interpretive font character is 
plotted namely the Yale seal. * One often wants to 
plot complicated groups of characters, such as a mathe
matical fraction and could, as for the Yale seal, define 
the desired pattern as an interpretive font character. 
In general this is an exceedingly tedious procedure. 
Instead one would like to define recurrent patterns by 
procedures and invoke particular patterns using appro
priate arguments in the procedure calls. This extremely 
useful possibility is part of the SCROLL language. 
Specifically, the call is a control statement having one 
of the forms 

(1) '$:an', 

(2) '$: an (list) " 

where a (any letter of the-alphabet) and n (1-9 or null) 
identify the procedure, list is a SCROLL paragraph 
whose sentences comprise the procedure's arguments. 
The procedure facility is recursive, that is, a procedure 

* The author is indebted to D. Barth for the coordinates of the 
Yale seal and other characters used herein for plotting. His 
Yale seal appears slightly differently in his article in Computer 
Programsjor Chemistry, Ed. D. F. DeTar, Vol. 3, W. A. Benjamin, 
Inc., New York (1969). 
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p = -i[H, p]_ - ~[r, p]. 

Figure 4-Plot output resulting from interpretation of 
SCROLL sentences 

can call itself, and procedures can define other pro
cedures. Note that a SCROLL procedure differs from a 
SCROLL function in that the latter returns a value 
such as the length of a sentence as contrasted to the 
execution of plot and control statements. 

The fraction procedure 

In plotting mathematical equations one pattern 
which occurs frequently is the fraction. A procedure 
named F has been defined to plot a fraction. 

Figure 5-The Yale seal, example of a complex interpretive 
font character. Note that this figure is static: only its size can 
be changed. The SCROLL procedures allow one to define equally 
complicated figures which are dynamic, that is, the user can 
change parts of a figure merely by changing arguments to 
a procedure 

I t is called by the statement 

'$:F(n, m)' 
which plots 

n 

m 

where nand m are SCROLL sentences. In particular 
the call 

'$:F(A - B$. A$ + C$ - $N$ = $ = $.)' 

plotted the fraction within the square root in Figure 4. 
Every SCROLL sentence constitutes a procedure 

definition. The nth argument in the procedure call is 
inserted whenever the characters '&n' (1 ~ n ~ 9) 
are encountered. For example, the fraction procedure F 
might be defined by the sentence 

'$($($_0.58%&1$) - .-$)$_ - 1.68%&2$_0.68$.' 

Here the $( saves the cJrrent x position for under or 
overscoring, the $ ( saves the x position for later refer
ence, the $_0.58 adds half a character size to the 
vertical (y) coordinate, &1 plots the first argument, 
$) - underscores this argument, $) returns to the x co
ordinate saved by $(, $_ -1.68 subtracts 1.6*SIZE 
from the vertical (y) coordinate, &2 plots the second 
argument, $_0.68 restores the vertical coordinate to 
its value at the start of the call and $. returns to the 
calling string. Simple fractions can be plotted by the 
procedure defined by 

'$+$(&1$) -$&$=$-&2$=$.' 

However, neither definition centers the numerator 
above the denominator or performs shifts to prevent 
intersection of lines. For this, one must use the process 
statement facility described in SCROLL Process State
ments section. 

Partial derivative and other procedures 

An example of a procedure calling another procedure 
is the partial derivative procedure which plots 

when called by the statements '$:P($2Y$. X$. N$.)'. 
Its definition is 

'$: F(#D$+&3$ =&1$. #D&2$+&3$=$.)$.', 

vvhere #D retrieves a in fonts 1-4. Use of this procedure 
"vas made in drawing Figure 4. 

An ordinary derivative procedure is available and is 
named D. A "time derivative" procedure named T 



$ : B5(SNOBOL $ . ) C5&QBoD 

$: B(ABC$.) l0_$SJ 
$ : C($4AB$ . ) @ 
$: 0 1 (A)B$ . ) A)B 

$ : H(PL TBCO$ . ) (P~I_B~D ) 

$: A(5$.) 
~ 

$: H(CALCUL$.)$: A(6$.)$: B(X=$4B$1 $C$. )) 

(CALCUL).....---~1X=~~1 

Figure 6-Examples of SCROLL procedure calls illustrating 
the "bead" (oval), box, circle, diamond, hexagon and arrow 
procedures. The bead, box, circle, diamond and hexagon pro
cedures produce figures of jus't the correct size to enclose the plot 
output resulting from their arguments 

centers a dot above the character(s) specified by the 
argument. These and other procedures are built into 
the language (and plot system), are illustrated in 
Figures 6-8 and are defined in Appendix B. The user 
can define his own procedures simply by including 

$ : F{$A$. A -8$ . ) a 
A-B 

$ : F 1 ( 1 $. 2$.) 1 
2 

$: 81 ($: F{A$. A-B$.)$.) [A~BJ 
$ : B2{$ : F{A$. A -B$ . )$ . ) {A~Bl 
$:Pl ($:F(A$. A-B$. )$.) (A~B) 
$ : O{A$. B$. $N$.) dnA 

dB" 

$ : P(A$. B$. $N$.) anA 
aB" 

Figure 7-Examples of SCROLL procedure calls illustrating 
the fraction and simple fraction procedures, the square bracket, 
curly brace and parenthesis procedures, the ordinary and partial 
derivative procedures. The fraction and bracketing procedures are 
constructed with precisely the correct sizes to fit the plot output 
resulting from their arguments 
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$ : S($N= 1 $. N$.) 

$ : X{$N= 1 $. N$.) 

$ : R{$ : F{A$ . A -B$ . )$ . ) 

N 

L "-I 
N 

IT 
"=1 
.. /-,;:-' 
VA-B 

Figure 8-Examples of SCROLL procedure calls illustrating the 
summation, product and square root procedures 

statements of the form 

'$: (an, sentence)' 

in a call to the plot system. Here a and n identify the 
procedure and sentence is the SCROLL sentence com
prising the procedure's definition. 

SCROLL process statements 

Particularly in the execution of procedures it may be 
necessary to calculate the dimensions of a substring 
or argument. For example, if the numerator of a frac
tion has different length than the denominator, the 
bar of the fraction should be as long as the larger of 
the two and the smaller should be centered with respect 
to the larger. Furthermore both should be shifted far 
enough away from the bar to prevent intersection. 
Clearly the dimension[J of the numerator and de
nominator vary from call to call and cannot be success
fully defaulted ahead of time. One needs a processing 
facility to calculate dimensions on the spot. The 
$* '. . . % control statement serves this purpose and 
has the form 

'$*statement[ {, 1; } statement] ... %' 

Here "statement" can be 

(1) a branch statement-
)±n meaning branCh to the present character 

position ±n, 
)n meaning branch to the nth position in 

current sentence, where n can be either 
an integer constant, e.g., 10, or a SCROLL 
variable ( defined below) whose value 
has been assigned by a q: (see (2»); ) 
followed by anything else causes a return 
to the calling sentence (procedure or 
argument) ; 

(2) an assignment statement 

[q:] a [,b] .. ~ = expression 
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where the (optional) q: assigns the SCROLL 
variable q the current location counter (for 
later branching) , where aLb]... can be 
SCROLL variables (see below), X, Y or Z 
which add the value of the expression to the 
current horizontal, vertical and depth plot posi
tions respectively, nP which stores into the nth 
variable in the labeled common PLTPRJVI (see 
plot system memo, op. cit.), or 1, 2 or 3 which 
store the expression's value into the plot limit 
variables containing the x maximum, y maximum 
and y minimum respectively if that value exceeds 
the one already established (allows one to meas
ure plot output dimensions quickly); 

(3) a conditional statement 

? logical expression {, statement} ... 

where the logical expression has a form described 
below and the statements are any process state
ments. The logical expression dominates all 
statements represented by the ellipsis. A null 
logical expression is true if and only if plotting 
is not suppressed. 

SCROLL variables 

SCROLL variables are named by single letters of 
the alphabet, A through W, and letters A-Z preceded 
by # (i.e., #A). Those named by the letters A through 
Ware local and automatic, that is, the values they 
assume in different procedures are unrelated and are 
lost upon return from the procedure in which they were 
set. Those named by #A through #Z are global and 
static, that is, their values are known to all procedures 
and can be modified in any procedure. 

When a SCROLL variable is used in an arithmetic 
context, it is assumed to be floating-point. When used 
in a logical context, a non-zero value is interpreted as 
true; a zero value as false. 

A SCROLL arithmetic expression consists of a single 
arithmetic primary, a unary arithmetjc operator fol
lowed by an arithmetic primary or two or more such 
expressions separated by binary arithmetic operators. 
An arithmetic primary can be a fixed point constant, 
e.g., 0.5 or 3, a SCROLL variable, a variable in common 
PL TPRJVI (nP retrieves the nth variable), the letters 
X, Y, Z which return the current x, y and z coordinates, 
a function reference or an arithmetic expression. In 
arithmetic context, fixed-point constants and SCROLL 
variables are assumed to have floating-point format. 
Values of SCROLL variables and fixed point constants 
have units of the plot screen. However if a fixed point 
constant is followed by the letter S, it is multiplied by 

the current character size before being used. There are 
four binary arithmetic operators, + (addition) , -
(subtraction), * (multiplication) and / (division). 
There are two unary operators, + (used for emphasis 
only) and - (negation). Binary operators must occur 
between two primaries or between a primary and a 
unary operator which precedes a primary. 

Expressions are evaluated left to right subject to 
the following hierarchy. Functions are evaluated first, 
negation (unary - ) second, mUltiplication and division 
third, and addition and subtraction last. The unary 
plus is ignored. Primaries consisting of parenthesized 
expressions are evaluated before arithmetic operations 
are performed and can be used "as in algebra to override 
the hierarchy. 

Examples of legal arithmetic expressions are 

A*B/(C-D) 

F+E(A$-Q$=X$.)*-D 

B($I$-Q$.) 

The second and third examples contain function refer
ences described below. Note that A * - D is a legal ex
pression, for the minus sign is interpreted as a unary 
operator signifying arithmetic negation rather than 
the binary operator indicating subtraction. Examples 
of illegal expressions are 

AB - C either an operator is missing be
tween A and B, or SCROLL variable 
is misnamed (only one letter is 
allowed) , 

(A *B*(C+D) unpaired parenthesis, 
A - * B two binary operators must be sepa

rated by a primary. 

A SCROLL logical expression consists of a single logical 
primary, a logical negation operator followed by a 
logical primary or two or more such expressions sepa
rated by binary logical operators. A logical primary 
has the value true or false and can be a fixed-point 
constant as above, a SCROLL variable, a logical ex
pression enclosed in parentheses or two arithmetic ex
pressions separated by a relational operator. In logical 
context, fixed-point constants and SCROLL variables 
are considered true if and only if they are nonzero. 
Zero values are false. The relational operators are > 
(greater than) < (less than), > = (greater than or 
equal to), < = (less than or equal to), = (equal to), 
and -, = (not equal to). The binary logical operators 
are I (logical or) and &- (logical and). There is one 
un"ary logical operator, -, (logical negation). The total 
hierarchy of operations for logical expressions is as 



follows 

Operation 

Evaluation of functions 
Unary + and -

Precedence 

8 (highest) 
7 

* and / 6 
+ and- 5 
>, <, >=, <=, and -,= 4 

3 
2 

-, 

'& 

I 1 (lowest) 

As with arithmetic expressions, parentheses can be 
used to override the hierarchy. Examples of valid logical 
expressions are as follows 

A> =B(ABC$.) I -,C 
F 
G&(A I B) 

Process functions 

Five functions are defined for the measurement of 
the plotted output resulting from SCROLL sentence 
interpretation: B returns the bottom and length of its 
argument; D returns the length, height, bottom differ
ence height-bottom of its argument; E returns the 
length alone, G is the same as D except that plotting 
can take place concurrently with measurement, and 
H returns the height and length of the argument. When 
used in an arithmetic statement other than a simple 
assignment, only one value (the first) is returned; in 
simple assignment statements, the first value returned 
is stored in the variable indicated, the second in the 
next variable in the alphabet, etc. The dimensions are 
all given in plot screen units. Vertical measurements 
(height and bottom) are made relative to the bottom 
of an on-line (not sub-superscripted) period. The func
tions are recursive. 

In addition a maximum function M is defined which 
returns the maximum value given by the SCROLL 
variables appearing as arguments (see example below). 

Exam.ple of use 

As an example of process statement use, consider an 
extended definition of the fraction procedure F 

'$* A =B(&l$.); C=H(&2$.); C=C+0.2; 
E=J,!I(B, D); 

$_,.58$<$<$~(E-B)/2, -A+.2 
%&1$>$_0; E,_(E-D)/2,-C 
%&2$>E,-.58$.' 

Here for the sake of readability, numerous blanks have 
been included; ordinarily one deletes blanks to save 
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space and execution time. The first statement stores in 
A and B the bottom and length of the first argument 
(the numerator), the second statement stores in C and 
D the height and length of the second argument (the 
denominator) and the third statement adds 0.2" to 
C. The fourth statement stores in E the larger of the 
lengths stored in Band D. The control statement 
$_,.58 in line 2 shifts the plot position up one half a 
character size. The two $ < statements save the plot 
position for future reference and the $_ (E - B) /2, 
- A + .28 shifts the plot position so that the numerator 
will be centered with respect to the length E and the 
bottom of the numerator will be 0.2 of a character 
size above the bar of the fraction. The percent sign in 
line 3 terminates the shift field, and &1 plots the nu
merator. The $> then returns to the plot position es
tablished before the numerator was shifted into place 
and the $_0;E,_(E-D)/2,-C draws the bar of the 
fraction (length E) and then shifts so that the de
nominator is 0.2 of a character size below the .bar of 
the fraction. The percent sign in line 4 terminates the 
shift field, &2 plots the denominator, $ > returns to 
the saved plot position and $_E,-.58 shifts to the 
original vertical position and a horizontal position on 
the right of the fraction. Note that by saving and 
returning to a known reference position, one does not 
have to know where the numerator and denominator 
finish. 

CONCLUSIONS 

The SCROLL language has been used extensively in 
the preparation of lecture slides such as that printed 

0.8 
1'=0.5 

-~0.6 
ij.. 
H 0.4 

0.2 

0.0 
-5" -3" -" " 3" 5" 

¢ 

Figure 9-A graph labeled using simple SCROLL sentences 
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in Figure 4 and in the labeling of graphs for pUblication 
as shown in Figure 9. The cost involved is dramatically 
less than that incurred when a draftsman is used. Spe
cifically, the first equation if Figure 4 ran on an IBl\,f 
360/65 (using FORTRAN IV level G) 0.226 seconds; 
the second for 0.64 seconds and the complete labeled 
graph in Figure 9 for one second. A second costs about 
ten cents on a typical IB1VI 360/65, and the cost of a 
frame on the Stromberg-Carlson 4060 microfilm re
corder varies between eight and sixty cents according 
to load. This yields a cost for either slide of about 
thirty cents. Furthermore, the turn around time for 
the slides is generally less than a day. Compared to a 
draftsman, this is orders of magnitude cheaper and 
faster. Inasmuch as SCROLL with its recursive pro
cedure and measurement capabilities now provides the 
usei:' with the power hitherto only available from a 
draftsm~n, it is felt that SCROLL represents an im
portant advance in the preparation of figures. It is. felt 
that in general SCROLL represents a substantial ad
vance in the computer preparation of manuscripts for 
publication. 
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APPENDIX A-SCROLL SYNTAX 

In this appendix, a formal definition of SCROLL 
syntax is given in terms of a meta-language muph like 
that used in the IBM PL/I Reference l\,fanual (C28-
8201) . 

A.1 The Syntax 111 eta-language 

The meta-language used below to define the syntax 
of SCROLL consists itself of literals, variables, expres-

sions and operators much as SCROLL or any other 
language does. More specifically, a literal consists of 
any character which is preceded by a bar (I), a blank, 
a left square bracket ([) or a left curly brace ({) and 
is followed by a bar,' a blank, a right square bracket 
(J) or a right curly brace (}). A variable is named by 
a lower-case letter of the English alphabet followed by 
any non-zero combination of such letters and under
scores (_). A primary is a constant or a variable or a 
bracketed expression. Square brac'h:ets are used when 
the expression is optional; curly braces when required. 
A unit is a primary optionally followed by an ellipsis 
(: .. ), the latter indicating that the primary is repeated 
zero or more times. An expression is one of three things: 
1) a single unit, 2) a unit followed first by one or more 
blanks and then by another expression, or 3) a unit 
followed first by a bar (1) optionally preceded and 
followed by blanks and then by another expression. In 
the second case the values of the unit and expression 
are concatenated; in the third case they are considered 
to be alternatives. A variable is given the value of an 
expression when its name is followed first by a colon 
( :), then by one or more blanks and finally by the 
expression. A variable is given the value of an English 
phrase when the variable is followed by a colon, then one 
or more blanks and finally by the phrase. A phrase is 
distinguished from an expression in that the former 
contains undefined variables and always makes sense 
as a phrase. When a syntactic symbol I [J {} is to be 
used as a literal, it is underlined. Hence .1 is a literal I 
rather than the operator separating alternatives. 

In particular the syntax of this meta-language is 
defined in terms of the language itself as follows: 

literal: 

variable: 
primary: 

unit: 
expression: 

definition: 

alblcldlelflglhlilj Ikillminiolplqlrlsitl 
ulvlwlxlylz 
AIBI CIDIEI FI GIHIIIJIKI LIl\1INIOI 
PIQIRISITIUIVIWIXIYI ZI 
I_letter 1.l1[IJI {I} 10111213141516171 
8191,1:1 ;\'I"I?I+I-I*I/I < I > I (I) 1%1 
= 1$1 !I¢I@I&I#I-
I_letter {I_letter I _} •.. 
literal I variable I [ expression ] 
{ expression } 
primary [ ... ] 
unit [[blank]· .. {.llblank} 
[blank} .. unit}·· 
variable : [blank]. .• expression 
an English phrase 

A.2 SCROLL Syntax 

digit: 
integer: 

0111213141516171819 
digit·· . 



letter: AIBICIDIEIFI GIHIIIJIKILIl\1INIOI 
PIQIRISITIUIVIWIXIYI Z 

character: letterlblankldigitl.1 1+ 1-1*1/1 = 1·1 
,I, I < I > I (I) I?I!I;I :1'1%lalblcldlelfl 
glhlilj Ikillminiolplqlrlsitlulvlwixlyl 
zl&I¢I" 

simple_logogram: digitlletterl + I-I = 1/1.1 1·1 ;1$1 < I > I 
(1%1, 

delimiter: % I null if a control statement 
,I follows 

constant: integer [ . J I [integer J • integer 
variable: AIBICIDIEIFI GIHIIIJIKILIMINIOI 

PIQIRISITIUIVIWI#lletter 
factor: 
function: 

a_primary: 
a_term: 
a_expression: 
relation: 

I_primary: 
I_term: 
I_expression: 
expression: 
angle_set: 

constantlvariablelXIYIZI integer P 
letter (sentence) I letter (variable 
[, variable J •.. ) 
factor I (a_expression) I function 
[+1- J ... a_primary 
a_term [{ +I-I*I/} a_term}·· 
a_expression { > I < I = I < = I > = I 
, = } a_expression 
factor I (I_expression) I relation 
[ , J. .. I_primary 
I_term [{&I.1} I_term}·· 
I_expression I a_expression 
a_expression I [a_expression J , 
a_expression 

coordinate_set: [= J [a_expressionJ [, [a_expres
sionJJ [, a_expressionJ 

field: [coordinate_set ;J ... coordinate 
_set 

procedure_name: letter [11213141516171819J 
1 hs: integer P I variable I X I Y I Z 
process_statement:> [[*{ + 1- } J{integerlvariable} JI 

control field: 

[variable:} .. lhs [, IhsJ = ex
pression I ? I_expression {, proc
ess_statement} ..• 

simple-logogram I 
, [blank I digiti + J I 
¢ {integerlvariable} I 
" angle_set delimiter I 
# {OI1121314} I 
@ {OI1121314} I 
) [+l-JI 
& [digitJ I 
? [digit I ;J I ! {l12} I ' ; I 

* 

procedure _name 
[ ( paragraph ) J I 
( procedure_name, sentence) 
I : ? I 
field [_ field J ... delimiter I 
process_statement [ ; proc
ess_statementJ··· delimiter 
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control_statement:$ control_field 
plot_statement: {character I # {character I #}} ... 
sentence: [plot_statement I control_state-

ment } .. $ . 
paragraph: sentence [[blankJ sentence}·· 

APPENDIX B-PROCEDURE DEFINITIONS 

In this appendix, the built-in SCROLL procedures 
are defined. The name of the procedure is given first, 
then the call indicating the number of arguments for 
the procedure and a brief description of the procedure 
and finally the definition itself. 

1. ALIGN-$:A9(&1 &2 &3), where &1 is to be 
centered below &3 and &2 is to be. centered above 
&3 (used for summatio!ls and products). 

'$* A =D(&3$.) $-$* D=D(&l$.); 
G=D(&2$.) ;J=M(A,D,G) $=$ 

*C=C-E-.2; B=B-I+.2; ?"X,l=J, 
2=B+H, 3=C+F,> $<$<$<$_(J -A)/2 

%&3$-$>$_(J -D)/2,C %&l$>$_(J -G)/2,B 
%&2$=$>$_J$.' 

2. ARROW -$: A (&1), where an arrow of length &1 
is to be drawn. Plotting terminates at the arrow's 
tip; the arrow is horizontal pointing to the right if 
&1 is positive and to the left if &1 is < o. 

'$* A = &1; B = .5; ? A> O,B = - B ; 
$_>A_;B,.3_;B,-.3$.' 

3. ARROW1-$A 1: (&1), where an arrow of length 
&1 is to be drawn. Plotting terminates at the 
arrow's tip; the arrow is vertical pointing up if &1 
is positive and pointing down if &1 is negative. 

'$* A=&l; B=.3; ?A>O,B= -B; 
$_> ,A_;.5,B_;- .5,B$.' 

4. BEAD-$: B5 (&1), where &1 is to be enclosed 
within a bead (oval). 

'$* A =D(&l$.); D=D+.4; 2,H =D/2; 
1,E=A+D; ?--',3= -H,X=E,>; 

I=14P; 14P=D $<$_,-H$($@2#E$)$_H 
$($_,D;A,D_)A%#F$)$@O$* 14P=I;Y= 

H - (B+C)/2%&1$>$_E$.' 

5. BOX -$: B (&1), where &1 is to be plotted with a 
box (rectangle) around it. 

'$* A=D(&l$.); H= (B+C)/2; 2,F=H
C+.4; 1,A=A+.8; ?-,3= -F, 

X =A, > .$_, -F;,F;A,F;A, -F;, -F$<$_.4, 
-H%&l$>$_A$.' 
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6. BRACES-$:B2(&1), where &1 is to be enclosed 
in curly braces. 

'$:B9 (&I$.#A$.#B$.) $.' 

7. GENBRK-$:B9(&1 &2 &3), where &1 is to be 
enclosed in the bracketed pair given by &2 and &3. 

'$* A =D(&I$.) ;1,H =A+D/2+.6;?--" 
2=B+D/I0,3=C-D/I0,X=H,> ; 

1=14P; 14P=D; E=D/4+.2 $<$<$_,C$< 
$@2&2$>$_H-E%&3$@0$*14P=I$>$_E&1 

$>$_H$.' 

8. BRACKET -$: B1 (&1), where &1 is to be en
closed in square brackets. 

'$* A=D(&l$.); E=D/6+.1; 1,A=A+2 
*E+.6; 2,B=B+.2;3,C=C

.2;?-',X =A,>$<$_E,C;,C;,B;E,B_A -E,B;A,B; 
A,C;A-E,C_E+.3%&1$>$_A$.' 

9. CIRCLE-$: C (&1) , where &1 is to be encircled. 

'$* A =D(&l$.); D=1If(A,D); 1,D= 1.4*D 
+.4; 3, E= -D/2; ?--" 

2= -E,X=D,>; 1=14P; 14P=D $<$<$-, 
E$@2#0$@0$>$* 14P=I; X = (D-A)/2; 

Y = - (B+C)/2%&1$>$_D$.' 

10. ORDINARY DERIVATIVE-$:D(&1 &2 &3), 
where the &3th derivative of &1 with respect to &2 
is to be plotted. 

'$:F(#8$+&3$=&1$. #8&2$+&3$=$.)$.' 

11. DIAl\10ND-$:D1 (&1), where &1 is to be en
closed 'within a diamond. 

'$* A =D(&l$.); 1= .75*D+A/2+.4; 
2,J = 2*1/3; 1,E=1 +1; ?--" 

3=-J,X=E,> $<$_;I,J;E;I,-J;_I-A/2, 
- (B+C)/2 %&l$>$_E$.' 

12. SIl\IPLE FRACTION-$:F1 (&1 &2), where the 
ratio of &1 to &2 is to be plotted. No measurement 
of arguments is performed: they should have equal 
widths, no undershoots and full height. 

'$($+$(&1$) -$=$)$-&2$=$.' 

13. GENERAL FRACTION-$:F(&1 &2), where 
the ratio of &1 to &2 is to be plotted. The argu
ments can have different dimensions. 

'$* A =D(&l$.); E=D(&2$.); 1=111 (A,E) ; 
?--"X,1=1,2=D+.7, 

3= .3-H,> $_,.!)$<$<$_(1-A)/2,-C 
+ .2%&1$ > $_0;1_ (I - E) /2, - F - .2%&2$ > $_1 

,-';")$.' 

14. GRID-$:G(&l &2 &3 &4), where a rectangle is 
to be drawn containing &1 by &2 boxes each with 
length &3 and height &4. Plotting starts and termi
nates at the upper left-hand corner of the grid. 

'$* E=&3; H=&4; 1, A=&l*E; 
3,B= -&2*H; ?--,,>; I,J = 0 $_,J; 

A,J $*J=J-H; ?B-J>.I,> -31$_I;I,B 
$* 1=I+E; ?1-A>.l,> -27$.' 

15. HEXAGON-$:H(&l), where &1 is to be en
closed within a hexagon. 

'$* A =D(&l$.}; 2,H =D/2+.4; F=H/3; 
A =A+.8; 1,G=2*F+A; ?--" 

3= -H,X=G,>$<$_>F,H;A,;F,-H;-F,-H; 
-A, ;-F,H_F+.4, - (B+C) /2%&1$>$_G$.' 

16. INTEGRAL-$:I(&l &2 &3), where &1 gives 
the lower limit of integration, &2 the upper limit 
and &3 the variable of integration. 

'$@4#3$@0$<$_ -.8,-.8$-&1$>$_ 
- .3,1.8&2$ = $_, -1#8&3$.' 

17. l\1IDDLE-$:M(&1 &2), where &2 is to be 
centered in the box &1 characters long. One starts 
in the middle of the left side of the box and ends in 
the middle of the right side. 

'$* E=&l; ?--"X =E,> ; A =D(&I$.); 
X= (E-A)/2;Y= - (B+C)/2 %&2$>$_E$.' 

18. PAREN-$:Pl (&1), where &1 is to be enclosed 
in parentheses. 

'$:B9(&1$. ($. )$.)$.' 

19. PARTIAL DERIVATIVE-$:P(&l &2 &3), 
where the &3th partial derivative of &1 with 
respect to &2 is to be plotted. 

'$:F(#D$+&3$=&I$. #D&2$+&3$=$.)$.' 

20. SQUARE ROOT-$:R(&l), where the square 
root of &1 is to be plotted. 

'$*A=D(&l$.) ;A=A+.4;E=.2$_, 
C+D/2_>E,.I;D/12+E,-D/2-E-.1; 

D/6,D+2*E_;A;A,-E_E,-B-E$*?--" 
X=A,>$<&l$>$_A$.' 

21. SUl\1l\1ATION-$:S(&1 &2), where the summa
tion of &1 to &2 is to be plotted. Note that &1 must 
contain the equal sign if desired, e.g., if one wants 
A = 1 below the sigma, &1 should equal 'A = 1$.'. 

'$:A9(&1$. &2$. #6$.)$.' 



22. TIlVIE DERIV ATIVE-$: T (&1), where a dot is 
to be plotted above the argument. 

'$* A =G(&l$.) ;I,X = (A-E(.$.) )/2; 

Y,E=B+.2%.$_I,-E$., 
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23. PRODUCT-$:X(&l &2), where the product 
(II) is to be plotted from &1 to &2. &1 must 
contain the equal sign if desired as for summation. 

'$:A9(&1$. &2$. #9$.)$.' 
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INTRODUCTION 

The AMTRAN system (Automatic Mathematical 
TRANslator) is a multiterminal conversational mode 
computing system which enables the mathematically 
oriented user to interact directly with the computer in a 
natural mathematical language. The first version of 
AMTRAN was developed at the George C. lV[arshall 
Space Flight Center in Huntsville, l and was imple
mented on IBM 1620 and, 1130 computers and, as a 
time-sharing version, on a Burroughs 5500 computer. 
A modified 1620 console version is currently in use at the 
University of Georgia. 

In connection with the project of implementing a 
multiconsole version on an IBM 1130 computer, the 
AMTRAN language has been revised and formally 
defined at the University of Georgia Computer Center.2, 3 

The following objectives have been of primary 
importance in the development of the AMTRAN 
systems: 

First, the initial use of a computer by the mathe
matically oriented nonprogrammer and scientist should 
be made easy by using a simple language as similar to 
mathematical notation as possible. The language should 
be designed for incremental learning so that a user may 
successfully use the system without knowing all of its 
details. 

Second, the system should provide powerful pro
gramming capabilities for the solution of medium and 
large scale problems and complicated algorithms by the 
more experienced user or professional programmer. 

Third, since AMTRAN was conceived as a special 
purpose language for mathematical and scientific use, 
the system should provide more flexibility in program
ming, debugging, and turnaround time compared to 
conventional computing systems. 

Fourth, the new design and definition of the 
AMTRAN language should have as few restrictions, 
exceptional rules to remember, and departures from the 
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well-known semantics of algebra as possible without 
reducing the power of the system. The system should be 
fully recursive and there should be no practical limita
tion to the length of variable and program names, the 
number of defined variables, the dimensions of arrays, 
etc. 

DEFINITION OF THE PROGRAMMING 
LANGUAGE AMTRAN 

The BNF notation is the only widely used formal 
method for the definition of a computer language. It 
has been derived from str~ctly structural considerations. 
The use of bracketed English words as metasymbols has 
made the notation look less formidable but, at the same 
time, has introduced semantic aspects which originally 
were not present. As long as these semantic aspects 
served only to characterize necessary structural cate
gories, the method was as originally intended. As soon 
as strict semantic categories were established, with no 
structural characteristics, difficulti~s arose. This can be 
explained by a simple example. The ALGOL 60 report5 

states: 

(variable identifier> :: = (identifier> 

(simple variable> :: = (variable identifier> 

The introduction of the categories (simple variable> 
and (variable identifier> is necessary to distinguish 
between a strictly formal a-numeric string ( (identifier» 
and a special type of a variable. This distinction is 
based only on the meaning assigned to a particular 
string; the structure remains the same. Therefore, the 
difference is not really expressed by the above method 
since the distinction between the categories'is left to the 
arbitrary interpretation of the metasymbols (identifier >, 
and (simple variable> and is by no means formally 
defined. Omitting all these questionable 'semantic 
categories' would diminish the content of such a 
language definition considerably. 
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Realizing these difficulties, a new general method of 
formal definition of a mathematically oriented computer 
language was developed at the University of Georgia 
Computer Center.2 By introducing different levels of the 
language, one structural and several semantic levels, it is 
possible to distinguish between the structure of a 
language and the meaning attached to the structural 
elements. A large part of the semantics is systematized 
in notions like type, range, sign, dimension of numerical 
quantities, and binding power of mathematical opera
tors. It is found to be sufficient to introduce a few 
well-defined semantic values. 

Each structural element is assigned a semantic and 
dimensional characteristic which carries the information 
associated with the structural unit. A structural unit 
and its semantic and dimensional characteristic are thus 
combined to form a constituent of the language. The 
idea of the new method of definition is to describe the 
language by setting up production rules for constituents2 

rather than for structural units by themselves. This 
systematization and formalization covers a much larger 
part of the language than mere 'syntax' definitions or 
the definition by BNF notation. Now it is possible to 
resolve the previous ALGOL example. The structure of 
{simple variable), {variable identifier), and {identifier) 
are the same, an alphanumeric string. But, since the 
semantic characteristics of a strictly formal alpha
numeric string and of a simple variable are different, 
they form different constituents of the language. There
fore, the distinction' between these categories is not left 
to the interpretation of the reader but is a part of the 
language definition. 

BASIC FEATURES OF AMTRAN 

Language features 

The complete definition and a detailed description of 
the AMTRAN language appears in References 3 and 6. 
In this chapter, we shall describe the basic features of 
the language in accordance with the design principles 
and the aims of the AMTRAN systems as presented in 
the introduction. 

Basic operators and functions 

+, -, *, I, power, unary minus, SQRT, LN, ABS, 
EXP, LOG, SIN, COS, TAN, TANH, ARCTAN. 

These operators are intrinsic to the system and, by 
using the well-known semantics of algebra and the 
familiar names for the functions, they can be used 
immediately by the nonprogrammer. 

Absence of diInension stateD1ents 

Arrays are created and changed with complete 
freedom at run time. 
Examples: 

x = ARRAY (0, 5, 5) 

creates an array X with the values 

0, 1, 2, 3, 4, 5 

y = X + 1 

creates an array Y with the values 

1, 2, 3, 4, 5, 6 

even if Y had been a scalar or an array with another 
dimension before. Another operator to construct arrays 
is the concatenate operator &. 

X = 0&1&2&3&4&5 

creates the same array as array X in the previous 
example. 

Absence of declaration stateD1ents 

The type of a variable is automatically defined 
through the assignment statement until it is changed by 
another assignment statement. At execution time, the 
control routine for each operator checks the type and 
range, sign and dimension of the operands. 

A new concept is used for the handling of integers. 
They are stored and treated internally as real numbers, 
but a special rounding routine preserves their integer 
status through any arithmetical manipulations. Every 
time an operator requires an integer argument, the 
system examines the real representation of the value of 
the operand to determine whether it represents an 
integer number; an error message is typed if it does not. 
Thus, AMTRAN will give the right results for ( - 2.5)2 
as well as for (-2.5)3*SIN(1T/6)+O.5. 

AutoD1atic array. arithD1etic 

The basic operators and functions mentioned in 3.1.1. 
and the relational operators can be used not only for 
scalars, but also on arrays. Thus, the user may compute 
directly with the numerical representations of functions 
without writing loops. 
For example, the function 

2 . 
Y=y;.e-xsmx 



is represented in AMTRAN as 

Y = 2/SQRT PI*EXP - X*SIN X 

where X can represent an array of 100 equally spaced 
intervals generated by X = ARRAY (0, PI, 100). The 
resulting function Y is represented by an array of 101 
numbers, where each Y-value is the value of the above 
function for the corresponding X-value. 

Conditional operators: IF, THEN, ELSE 

Relational operators: GT, GE, EQ, LE, LT 

Boolean operators: NOT, AND, OR 

They are basically the same as in ALGOL 60 exc~pt 
that each IF has a corresponding FI (ALGOL 68 style) 
at the end of the conditional expression to avoid the 
dangling ELSE problem. 

Unconditional branch and loop 

The GO TO operator can be used for transfer of 
control to any numbered statement in a program. The 
argument of GO TO may be any expression which 
returns a scalar value. Non-integer values cause a 
warning message. 

The REPEAT-operator is used to repeat a group of 
statements a specified number of times. These repeat
loops can be nested arbitrarily. 

Generality of operands 

As a general rule, every operand or parameter in 
AMTRAN can be an expression, but the result of this 
expression has to fulfill the semantic requirements its 
operator asks for. Example: The third parameter of the 
ARRAY operator (number of intervals) may be an 
expression, but the result has to be an integer with the 
dimension one. 

Fully recursive prograInIning capabilities 

An example of an inherently recursive function is 
Ackermann's function A (111, N), defined over the 
positive integers and zero: 

1. 111 = IN 1, N = IN 2 

2. A = IF 111 EQ 0 THEN N + 1 ELSE IF N 
EQ 0 THEN A(1l1 - 1, 1) ELSE A(1l1 - 1, 
A(1l1, N - 1» FI FI 

3. NA1VIE A 
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Statement 1 picks up two arguments which have to be 
provided by the program call. For example, A (2, 4) will 
give 111 = 2 and N = 4 upon execution of statement 1. 

Powerful instruction set which can easily be 

expanded by the user 

The philosophy of AMTRAN is that the user should 
be given a powerful basic set of instructions which are 
intrinsic to the system, together with a disc file library 
of instructions which are actually routines written in 
AMTRAN. In addition, the user can define his own 
high level operators by writing special AMTRAN 
routines. Operators for automatic numerical analysis 
(integration, derivation), satisfactory for routine situa
tions, are also included. 

ASK- and TEACH-operators 

The ASK-operator can be used to program a dialogue 
between the computer and the user. If the user is not 
satisfied with a system message, he can react with 
'ASK,' and the system will respond with a more detailed 
message. This feature makes AMTRAN to a truly 
conversational system. The experienced user does not 
have to spend time running through the questions and 
answers, which are of great importance for the average 
and beginning AMTRAN -user. 

The TEACH-program allows the user to learn how to 
use AMTRAN directly on the console. The new 
AMTRAN -user does not have to take a course in 
programming; he need not study a programming 
language or learn how to read computer outputs. He 
can get started with a simple teach program on the 
console in a few minutes without having _to learn 
complicated rules. If there occurs a problem in using 
AMTRAN, the user can use the TEACH-operator and 
run the part of the teach program which refers to his 
problem. 

Call by sYInbol concept 

The call by symbol concept allows the passing of 
executable strings as parameters to subprograms. This 
symbolic expression can contain variables local to the 
calling program and variables local to the subprogram. 
Every time the parameter is invoked within the suij~ I 
program, the symbolic expression is evaluated using th~ 
actual internal and external variables. 
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Three m.odes of operation 

1. Execute mode: An interactive system must have 
an execution mode (or desk calculator mode) where each 
statement is executed immediately and control is 
returned to the keyboard. This is the default mode in 
AMTRAN. 

2. Suppressed mode: The suppressed mode (delayed 
mode) allows the user to construct programs which are 
syntax checked and stored for execution at a later time. 

3. Checking mode: AMTRAN has a third mode, the 
checking mode, which allows the user to execute parts 
of suppressed programs while they are being constructed. 
This is an important aid for online program construction. 

Implementation on the IBM 1130 computer 

This AMTRAN version was implemented on an IBM 
1130 computer with 8K of core and a disc. A typewriter 
version is currently being tested, and a multiconsole 
version is under development. 

Some of the goals for the implementation were high 
speed, fully dynamic storage allocation, powerful editing 
and checking capabilities, and a completely re-entrant 
structure for multi console use with short response time. 
The length of programs, the dimension of arrays, the 
ratio of program area to variable area, the number of 
defined variables and programs can be chosen with 
complete freedom as long as the available core storage, 
dependent upon implementation, is not exceeded. 

A special monitor system, independent of IBM 
software, has been developed for a more efficient use of 
the disc to obtain short response times. 

AMTRAN as a tool for pedagogic purposes 

The interactive system AMTRAN is highly useful 
not only for research purposes but also as an educational 
tool. Lowering the level of difficulty in programming 
makes the computing facility available for students who 
are not basically interested in computer science but want 
to expand their understanding of mathematics or 
physics. Graphic display capabilities are very well suited 
for studying and demonstrating the behavior of func
tions. By interacting directly with the computer, the 
student also gets a better feeling for the kind of problems 
involved in programming a computer. 

A multiconsole system eliminates keypunch problems, 
and there are none of the time delay, debugging, or 
control language problems usually found in batch mode. 

COMPARISON WITH OTHER HIGH LEVEL 
LANGUAGES 

A comparative study between AMTRAN and other 
high level languages has to be divided into two parts. 
Only language features can be compared with batch 
mode languages, whereas the whole AMTRAN - system 
can be taken into account for a comparison with other 
interactive systems. 

Batch mode languages 

Most likely, PL/1, ALGOL, or FORTRAN would be 
used to solve mathematical, technical or scientific 
problems in batch mode. A comparison with AMTRAN 
is not really feasible as the basic philosophy and design 
principles of batch mode languages are completely 
different from AMTRAN. 

Since language development goes more and more in 
the direction of powerful general purpose languages, it 
becomes more and more difficult, time consuming, and 
cumbersome for the non programmer to make the first 
step towards use of a computer. But even for the 
experienced user, the three languages mentioned above 
do not provide the convenience and facilities in pro
gramming that AMTRAN does. They need type and 
dimension declarations; the flexibility in changing types 
and dimensions at run time is lacking; and they do not 
have AMTRAN's array handling capabilities. 

PL/1 with its default philosophY, its various types of 
storage allocation, and certain automatic array arith
metic features is close to AMTRAN's facilities and 
philosophy of programming convenience. On the other 
hand, it is inconvenient for the user to keep track of 
storage allocation problems in writing recursive or 
re-entrant programs or in using arrays with computed 
origin. 

PL/1 is truly a general purpose programming 
language. I t is designed for programming needs in 
science, engineering, data management, and business. 
AMTRAN, on the other hand, is a special purpose 
programming language for mathematical, scientific, and 
technical applications and has not been designed to 
compete in general with a language like PL/l. It is not 
intended to handle extensive data; therefore, it does not 
need powerful I/O-capabilities and sophisticated format
ting facilities. But it can compete or even perform better 
within the limits of its special purpose. 

Interactive systems 

An interactive console system fills the gap between a 
desk top calculator and conventional batch mode 



computer programming. On one hand, it has to give 
immediate answers to simple requests; on the other 
hand, it has to provide powerful programmmg 
capabilities. 

A milestone In the development of interactive 
systems was the Culler-Fried-System, which strongly 
influenced the early AMTRAN development. Prof. 
Culler's system represents a highly powerful multi
console system. A disadvantage is that it does not stay 
close to the mathematical notation, and it is not simple 
and easy to learn. 7 

CPS is a conversational subset of PL/l. It has a 
calculator 'mode and a program mode and is a useful 
conversational system although it does not have 
AMTRAN's flexibility and power in array and function 
handling. 

Iverson's language APL (A Programming Language) 
is a more formal approach to application programming. 
I t is particularly useful for classical mathematical 
applications, and it has been implemented as a powerful 
interactive time-sharing system. The language has 
features such as array arithmetic, programming capa
bilities, and a large set of primitive operators including 
matrix handling operators. An extensive set of special 
symbols is used instead of keywords. Thus, a special 
typewriter is necessary. The proponents of APL claim 
that its source code is more efficient per statement than 
that of any other programming language. On the other 
hand, it is less readable. One has to learn special symbols 
instead of using mnemonics. For example, the quad D 
in APL is less informative as an output operator than 
the TYPE in AMTRAN. 

Major disadvantages are that APL does not follow 
classical mathematical notation, there is no hierarchy 
among operators, and the order of execution of state
ments is from right to left. This means the mathema
tician and scientific non programmer must convert his 
formulas, written in normal textbook format, into the 
APL-notation, and the programmer experienced in any 
other language is even more confused. APL is a language 
which requires both care and training for simple 
applications. 
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CONCLUSIONS 

AMTRAN, as described in this paper, can be imple
mented on a small computer. Such a small computing 
system is a serious alternative to a console of a com
mercial time-sharing system. The present developments 
on the hardware market-a decrease in the price of 
small computers-make the outlook for problem-solving 
systems like AMTRAN, particularly bright. 
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Computer network development 
to achieve resource sharing 

by LAWRENCE G. ROBERTS and BARRY D. WESSLER 

Advanced Research Projects Agency 
Washington, D.C. 

INTRODUCTION 

In this paper a computer network is defined to be a set 
of autonomous, independent computer systems, inter
connected so as to permit interactive resource sharing 
between any pair of systems. An overview of the need 
for a computer network, the requirements of a com
puter communication system, a description of the 
properties of the communication system chosen, and 
the potential uses of such a network are described in 
this paper. 

The goal of the computer network is for each compu
ter to make every local resource available to any com
puter in the net in such a way that any program 
available to local users can be used remotely without 
degradation. That is, any program should be able to 
call on the resources of other computers much as it 
would call a subroutine. The resources which can be 
shared in this way include software and data, as well 
as hardware. Within a local community, time-sharing 
systems already permit the sharing of software re
sources. An effective network would eliminate the size 
and distance limitations on such communities. Cur
rently, each computer center in the country is forced to 
recreate all of the software and data files it wishes to 
utilize. In many cases this involves complete repro
gramming of software or reformatting the data files. 
This duplication is extremely costly and has led to 

gether as remote users of each other and permitting 
user programs to interact with two consoles (the human_-
user and the remote computer), the basic characteris
tics of a network connection are obtained. Such an 
experiment was made between the TX -2 computer 
at Lincoln Lab and the Q-32 computer at SDC in 1966 
in order to test the philosophy.1 Logically, such an 
interconnection is quite powerful and one can tap all 
the resources of the other system. Practically, however, 
the interconnection of pairs of computers with console 
grade communication service is virtually useless. First, 
the value of a network to a user is directly proportional 
to the number of other workers on the net who are 
creating potentially useful resources. A net involving 
only two systems is therefore far less valuable than one 
incorporating twenty systems. Second, the degradation 
in response caused by using telegraph or voice grade 
communication lines for network connections is signi
ficant enough to discourage most users. Third, the 
cost to fully interconnect computers nation-wide either 
with direct leased lines or dial-up facilities is prohibitive. 
All three problems are a direct result of the inadequacy 
of the available communication services. 

DESIGN OF A NETWORK COIVIMUNICATIONS 
SERVICE 

considerable pressure for both very restrictive After the Linco]n-SDC network experiments, it was 
language standards and the use of identical hardware clear that a completely new communications service 
systemS. With a successful network, the core problem was required in order to make an effective, useful re-
of sharing resources would be severely reduced, thus source-sharing computer network. The communication 
eliminating the need for stifling language standards. pipelines offered by the carriers would probably have 
The basic technology necessary to construct a resource to be a component of that service but were clearly in-
sharing computer :network has been available since the adequate by themselves. What was needed was a mes-
advent of time-sharing. For example, a time-sharing sage service where any computer could submit a mes-
system makes all its resources available to a number of sage destined for another computer and be sure it would 
users at remote consoles. By splicing two systems to- be delivered promptly and correctly. Each interactive 
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conversation or link between two computers would 
have messages flowing back and forth similar to the 
type of traffic between a user console and a computer. 
l\tlessage sizes of from one character to 1000 characters 
are characteristic of man-machine interactions and this 
should also be true for that network traffic where a 
man is the end consumer of the information being ex
changed. Besides having a heavy bias toward short 
messages, network traffic wil1 also be diverse. With 
twenty computers, each with dozens of time-shared 
users, there might be, at peak times, one or more con
versations between all 190 pairs of computers. 

Reliability 

Communications systems, being designed to carry 
very redundant information for direct human consump
tion, have, for computers, unacceptably high down
time and an excessively high error rate. The line errors 
can easily be fixed through error detection and re
transmission; however, this does require the use of some 
computation and storage at both ends of each com
munication line. To protect against total line failures, 
there should be at least two physically separate paths 
to route each message. Otherwise the service will appear 
to be far too unreliable to count on and users will 
continue to duplicate remote resources rather than 
access them through the net. 

Responsiveness 

In those cases where a user is making more or less 
direct use of a complete remote software system, the 
network must not cause the total round-trip delay to 
exceed the human short-term memory span of one to 
two seconds. Since the time-sharing systems probably 
introduce at least a one-second delay, the network's 
end-to-end delay should be less than Y2 second. 
The network response should also be comparable, if 
possible, to using a remote display console over a pri
vate voice grade line where a 50 character line of text 
(400 bits) can be sent in 200 ms. Further, if interactive 
graphics are to be available, the network should be 
able to send a complete new display page requiring 
about 20 kilo bits of information within a second and 
permit interrupts (10-100) to get through very quickly, 
hopefully within 30-90 ms. Where two programs are 
interacting without a human user being directly in
volved, the job will obviously get through sooner, the 
shorter the message delay. There is no clear critical 
point here, but if the communications system substan
tially slows up the job, the user will probably choose 
to duplicate the remote process or data at his site. For 

such cases, a reasonable measure by which to compare 
communications systems is the "effective bandwidth" 
(data block length for the job/end-to-end transmission 
delay). 

Capacity 

The capacity required is proportional to the number 
and variety of services available from the network. 
As the number of nodes increase, the traffic is expected 
to increase more than linearly, until new nodes merely 
duplicate available network resources. The number of 
nodes in the experimental network was chosen to: (1) in
volve as many computer researchers as possible to 
develop network protocol and operating procedures, 
(2) involve special facilities, such as the ILLIAC, to 
distribute its resources to a wider community, (3) in
volve as many disciplines of science as possible to mea
sure the effect of the network on those disciplines, and 
(4) involve many different kinds of computers and 
systems to prove the generality of the techniques de
veloped. The nodes of the network were generally 
limited to: (1) those centers for which the network 
would truly provide a cost benefit, (2) government
funded projects because of the use of special rate govern
ment-furnished communications, and (3) ARPA-funded 
projects where the problems of intercomputer account
ing could be deferred until the network was in stable 
operation. The size of the experimental network was 
chosen to be approximately 20 nodes nation-wide. It 
was felt that this would be large and diverse enough 
to be a useful utility and to provide enough traffic to 
adequately test the network communication system. 

For a 20 node network, the total traffic by mid-
1971 at peak hours is estimated to be 200-800 KB 
(kilobits per second). This corresponds to an average 
outgoing traffic per node of 10-40 KB or an average of 
0.5-2 KB traffic both ways between each pair of nodes. 
Traffic between individual node-pairs, however, will 
vary considerably, from zero to 10 KB. The total traf
fic per node will also vary widely, perhaps from 5-50 
KB. Variations of these magnitudes will occur in both 
space and time and, unless the connumications system 
can reallocate capacity rapidly (seconds), the users will 
find either the delay or cost excessive. However, it is 
expected that the total capacity required for all 20 
nodes will be fairly stable, smoothed out by having 
hundreds of active network users spread out across four 
time zones. 

Cost 

To be a useful utility, it was felt that communications 
costs for the network should be less than 25% of the 



computing costs of the systems connected through the 
network. This is in contrast to the rising costs of remote 
access communications which often cost as much as the 
computing equipment. 

If we examine why communications usually cost so 
much we find that it is not the communications channel 
per se, but our inefficient use of them, the switching 
costs, or the operations cost. To obtain a perspective on 
the price we commonly pay for communications let us 
evaluate a few methods. As an example, let us use a 
distance of 1400 miles since that is the average distance 
between pairs of nodes in the projected ARPA Network. 
A useful measure of communications cost is the cost to 
move one million bits of information, cents/megabit. In 
the t.able below this is computed for each media. It is 
assumed for leased equipment and data set rental that 
the usage is eight hours per working day. 

TABLE I-Cost. per Megabit. for Various Communicat.ion 
Media 1400 Mile Distance 

Media 

Telegram $3300.00 For 100 words at 30 bits/wd, 
daytime 

Night. Letter 565.00 For 100 words at. 30 bits/wd, 
overnight delivery 

Computer Console 374.00 18 baud avg. use2, 300 baud 

TELEX 

DDD (103A) 

AUTODIN 

DDD (202) 

Letter 

W. U. Broadband 

WATS 

Leased Line (201) 

Data 50 

Leased Line (303) 

Mail DEC Tape 

Mail IBM Tape 

DDD service line & data 
sets only 

204.00 50 baud t.eletype service 

22. ,1)0 300 baud data sets, DDD 
daytime service 

8.20 2400 baud message service, full 
use during working hours 

3 .4:) 2000 baud data sets 

3.30 Airmail, 4 pages, 250 wds/pg, 
30 bits/wd 

2.03 2400 baud service, full duplex 

1.54 2000 baud, used 8 hrs/working 
day 

.57 2000 baud, commercial, full 
duplex 

.47 50 KB dial service, utilized 
full duplex 

.23 50 KB, commercial, full duplex 

.20 2.5 megabit tape, airmail 

.034 100 megabit tape, airmail 

Special care has also been taken to minimize the cost 
of the multiplexor or switch. Previous store and forward 
systems like DoD's AUTODIN system, have had such 
complex, expensive switches that over 95% of the 
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total communications service cost was for the switches. 
Other switch services adding to the system's cost, 
deemed superfluous in a computer network, were: long 
term message storage, multi-address messages and 
individual message accounting. 

The" final cost criteria was to minimize the com
munications software development cost required at 
each node site. If the network software could be gen
erated centrally, not only would the cost be significantly 
reduced, but also the reliability would be significantly 
enhanced. 

THE ARPA NETWORK 

Three classes of communications systems were in
vestigated as candidates for the ARPA Network: fully 
interconnected point to point leased lines, line switched 
(dial-up) service, and message switched (store and for
ward) service. For the kind of service required, it was 
decided and later verified that the message switched 
service provided the greater flexibility, higher effective 
bandwidth, and lower cost than the other two systems. 

The standard message switched service uses a large 
central switch with all the nodes connected to the switch 
via communication lines; this configuration is generally 
referred to as a Star. Star systems perform satisfactorily 
for large blocks of traffic (greater than 100 kilobits per 
message), but the central switch saturates very quickly 
for small message sizes. This phenomenon adds signi
ficant delay to the delivery of the message. Also, a 
Star design has inherently poor reliability since a 
single line failure can isolate a node and the failure of 
the central switch is catastrophic. 

An alternative to the Star, suggested by the Rand 
study "On Distributed Communications"3, is a fully 
distributed message switched system. Such a system 
has a switch or store and forward center at every node in 
the network. Each node has a few transmission lines to 
other nodes; messages are therefore routed from node to 
node until reaching their destination. Each transmission 
line thereby multiplexes messages from a large number 
of source-destination pairs of nodes. The distributed 
store and forward system was chosen, after careful 
study, as the ARPA Network communications system. 
The properties of such a communication system are 
described below and compared with other systems. 

A more complete description of the implementation, 
optimization, and initial use of the network can be 
found in a series of five papers, of which this is the first. 
The second paper by Heart, et al4 describes the design, 
implementation and performance characteristics of the 
message switch. The third paper by Kleinrock5 derives 
procedures for optimizing the capacity of the trans-
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mission facility in order to minimize cost and average 
message delay. The fourth paper by Frank, et al6 de
scribes the procedure for finding optimized network 
topologies under various constraints. The last paper 
by Carr, et aF is concerned with the system software 
required to allow the network computers to talk to one 
another. This final paper describes a first attempt at 
intercomputer protocol, which is expected to grow and 
mature as we gain experience in computer networking. 

Network properties 

The switching centers use small general purpose 
computers called Interface Message Processors (IMPs) 
to route messages, to error check the transmission lines 
and to provide asynchronous digital interface to the 
main (HOST) computer. The IMPs are connected 
together via 50 Kbps data transmission facilities using 
common carrier (ATT) point to point leased lines. The 
topology of the network transmission lines was selected 
to minimize cost, maximize growth potential, and yet 
satisfy all the design criteria. 

Reliability 

The network specification requires that the delivered 
message error rates be matched with computer charac
teristics, and that the down-time of the communica
tions system be extrememly small. Three steps have 
been taken to insure these reliability characteristics: 
(1) at least two transmission paths exist between any 
two modes, (2) a 24 bit cyclic check sum is provided 
for each 1000 bit block of data, and (3) the Il\1P is 
ruggedized against external environmental conditions 
and its operation is independent of any electromechani
cal devices (except fans). The down-time of the trans
mission facility is estimated at 10-12 hours per year 
(no figures are currently available from ATT). The 
duplication of paths should result in average down-time 
between any pair of nodes, due to transmission failure, 
of approximately 30 seconds per year. The cyclic check 
sum was chosen based on the performance characteris
tics of the transmission facility; it is designed to detect 
long burst errors. The code is used for error detection 
only, with retransmission on an error. This check re
duces the undetected bit error rate to one in 1012 or 
about one undetected error per year in the entire net
work. 

The ruggedized IMP is expected to have a mean 
time to failure of 10,000 hours; less than one failure 
per year. The elimination of mass storage devices from 
the IMP results in lower cost, less down-time, and 
greater throughput performance of the IMP, but im-

plies no long term message storage' and no message 
accounting by the IMP. If these functions are later 
needed they can be added by establishing a special 
node in the 'network. This node vmllld accept ac
counting information from all the I~IPs and also 
could be routed all the traffic destined for HOSTs which 
are down. We do not believe these functions are neces
sary, but the network design is capable of providing 
them. 

Responsiveness 

The target goal for responsiveness was .5 seconds 
transit time from any node to any other, for a 1000 bit 
(or less) block of information. The simulations of the 
network show the transit time of a 1 kilobit block of .1 
seconds until the network begins to saturate. After 
saturation the transit time rise~ quickly because of 
excessive queuing delays. However, saturation will 
hopefully be avoided by the net acting to choke off the 
inputs for short periods of time, reducing the buffer 
queues while not significantly increasing the delay. 

Capacity 

The capacity of the network is the throughput rate 
at which saturation occurs. The saturation level is a 
function of the topology and capacity of the transmis
sion lines, the traffic distribution between pairs of nodes 
(traffic matrix) and the average size of the blocks sent 
over the transmission lines. The analysis of capacity 
was performed by Network Analysis Corporation during 
the optimization of the network topology. As the analy
sis shows, the network has the ability to flexibly in ... 
crease its capacity by . adding additional transmission 
lines. The use of 108 and 230.4 KB communication 
services, where appropriate, considerably improves the 
cost-performance of the network. 
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Figure 1-ARPA network initial topology 
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Figure 2-ARP A network expanded topology 
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Initial configuration of the ARPA Network is cur
rently planned as shown in Figure 1. The communica
tions circuits for this network will cost $49K per node 
per year and the network can support an average traf
fic of 16 KB per node. If the traffic builds up, additional 
communication lines can be added to expand the ca
pacity as required. For example, if 23 KB per node is 
desired, the network can be expanded to the configura
tion shown in Figure 2 for an increase of only $10K 
per node per year. Expansion can be continued on this 
basis until a capacity of about 60 KB per node is 
achieved, at which point the IMPs would tend to 
saturate. 

COMPARISON WITH ALTERNATIVE 
NETWORK COMMUNICATIONS SYSTEMS 
DESIGNS 

For the purpose of this comparison the capacity 
required was set at 500 baud to 1 KB per node-pair. 
A minimal buffer for error checking and retransmission 
at every node is included in the cost of the systems. 

Two comparisons are made between the systems: 
the cost per megabit as a function of the delay and the 
effective bandwidth as a function of the block size of 
the data. Several other functions were plotted and com
pared; the two chosen were deemed the most ipf'')rma
tive. The latter graph is particularly informative in 
showing the effect of using the network for short, inter
active message traffic. 

The systems chosen for the comparison were fully 
interconnected 2.4 KB and 19 KB leased line systems, 
Data-50 the dial-up 50 KB service, DDD the standard 
2 KB voice grade dial-up system, Star networks using 
19 KB and 50 KB leased lines into a central switch, and 
the ARPA Network using 50 KB leased lines. 

The graph in Figure 3 shows the cost per megabit 
versus delay. The rectangle outlines the variation 
caused by a block size variation of 1 to 10 Kilobits and 
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Figure 3-Cost vs delay for potential 20 node network designs 

capacity requirement variation of 500 to 1000 baud. 
The dial-up systems were used in a way to minimize the 
line charges while keeping the delay as low as possible. 
The technique is to dial a system, then transmit the 
data accumulated during the dial-up (20 seconds for 
DDD, 30 seconds for Data-.50). The dial-up systems 
are still very expensive and slow as compared with other 
alternatives. The costs of the ARP A Network are for 
optimally designed topologies. The 19 KB Star was 
eliminated because the system saturated just below 
1 KB per node-pair which did not provide adequate 
growth potential though the cost was comparable to 
the ARPA Network. For the 50 KB Star network, the 
switch is assumed to be an average distance of 1300 
miles from every node. 

The graph in Figure 4 shows the effective bandwidth 
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versus the block size of the data input to the network. 
The curves for the various systems are estimated for 
traffic rates of 500 to 1000 baud. The comparison 
shows the ARP A Net does very well at small block 
size where most of the traffic is expected. 

NETWORK PLANS 

Use of the Network is broken into two successive 
phases: (1) Initial Research and Experimental Use, 
and (2) External Research Community Use. These 
phases are closely related to our plans for Network 
implementation. The first phase, started in September 
1969, involves the connection of 14 sites involved 
principally in computer research. These sites are cur
rent ARPA contractors who are working in the areas 
of Computer System Architecture, Information System 
Design, Information Handling, Computer Augmented 
Problem Solving, Intelligent Systems, as well as Com
puter Networks. This phase should be fully imple
mented by November 1970. The second phase involves 
the extension of the number of sites to about 20 to 
include ARPA-supported research disciplines. 

Initial research and experimental use 

During Phase One, the community of users will 
number approximately 2000 people. This community 
is involved primarily in computer science research and 
all have ARPA-funded on-going research. The major 
use they will make of the network is the sharing of 
software resources and the educational experience of 
using a wider variety of systems than previously pos
sible. The software resources available to the Network 
include: advanced user programs such as MATHLAB 
at MIT, Theor.em Provers at SRI, Natural Language 
Processors at BBN, etc., and new system software 
and languages such as LEAP, a graphic language at 
Lincoln Lab, LC2, an interactive ALGOL system at 
Carnegie, etc. 

Another major use of the Network will be for ac
cessing the Network Information Center (NIC). The 
NIC is being established at SRI as the repository of 
information about all systems connected into the 
Network. The NIC will maintain, update and distri
bute hard copy information to all users. It will also 
provide file space and a system for accessing and up
dating (through the net) dynamic information about 
the systems, such as system modifications, new re
sources available, etc. 

The final major use of the Net during Phase One is 
for measurement and experimentation on the Network 
itself. The primary sites involved in this are BBN, who 

has responsibility for system development and system 
maintenance, and UCLA, who has responsibility for 
the Net measurement and modeling. All the sites will 
also be involved in the generation of intercomputer 
protocol, the language the systems use to talk to one 
another. 

External research community use 

During the time period after November 1970, ad
ditional nodes will be installed to take advantage of 
the Network in three other ARPA-funded research 
disciplines: Behavioral Science, Climate Dynamics and 
Seismology. The use of the Network at these nodes will 
be oriented more toward the distribution and sharing 
of stored data, and in the latter two fields the use of the 
ILLIAC IV at the University of Illinois. 

The data sharing between data management systems 
or data retrieval systems will begin an important phase 
in the use of the Network. The concept of distributed 
data bases and distributed access to the data is one of 
the most powerful and useful applications of the net
work for the general data processing community. As 
described above, if the Network is responsive in the 
human time frame, data bases can be stored and main
tained at a remote location rather than duplicating 
them at each site the data is needed. Not only can the 
data be accessed as if the user were local, but also as 
a Network user he can write programs on his own 
machine to collect data from a number of locations 
for comparison, merging or further analysis. 

Because of widespread use of the ILLIAC IV, it 
will undoubtably be the single most demanding node 
in the Network. Users will not only be sending requests 
for service but will also send very large quantities of 
input and output data, e.g., a 106 bit weather map, 
over the Net. Projected uses of the ILLIAC include 
weather and climate modeling, picture processing, linear 
programming, matrix manipulations, and extensive 
work in other areas of simulation and modeling. 

In addition to the ILLIAC, the University of Illinois 
will also have a trillion bit mass store. An experiment 
is being planned to use 10% of the storage (100 billion 
bits) as archival storage for all the nodes on the Net. 
This kind of capability may help reduce the number of 
tape drives and/or data cells in the Network. 

FUTURE 

There are many applications of computers for which 
current communications technology is not adequate. 
One such application is the specialized customer service 
computer systems in existence or envisioned for the 



future; these services provide the customer with infor
mation or computational capability. If no commercial 
computer network service is developed, the future may 
be as follows: 

One can envision a corporate officer in the future 
having many different consoles in his office: one to the 
stock exchange to monitor his own company's and 
competitor's activities, one to the commodities market 
to monitor the demand for his product or raw ma
terials, one to his own company's data management 
system to monitor inventory, sales, payroll, cash flow, 
etc., and one to a scientific computer used for modeling 
and simulation to help plan for the future. There are 
probably many people within that same organization 
who need some of the same services and potentially 
many other services. Also, though the datb, exists in 
digital form on other computers, it will probably have 
to be keypunched into the company's modeling and 
simulation system in order to perform analyses. The 
picture presented seems rather bleak, but is just a 
projection of the service systems which have been 
developed to date. 

The organization providing the service has a hard 
time, too. In addition to collecting and maintaining 
the data, the service must have field offices to maintain 
the consoles and the communications multiplexors 
adding significantly to their cost. A large fraction of 
that cost is for communications and consoles, rather 
than the service itself. Thus, the services which can be 
justified are very limited. 

Let us now paint another picture given a nationwide 
network for computer-to-computer communication. The 
service organization need only connect its computer 
into the net. It probably would not have any consoles 
other than for data input, maintenance, and system 
development. In fact, some of the service's data input 
may come from another service over the Net. Users 
could choose the service they desired based on relia
bility, cleanliness of data, and ease of use, rather than 
proximity or sole source. 

Large companies would connect their computers into 
the net and contract with service organizations for the 
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use of those services they desired. The executive would 
then have one console, connected to his company's 
machine. He would have one standard way of requesting 
the service he desires with a far greater number of 
services available to him. 

For the small company, a master service organization 
might develop, similar to today's time-sharing service, 
to offer console service to people who cannot afford 
their own computer. The master service organization 
would be wholesalers of the services and might even be 
used by the large companies in order to avoid con
tracting with all the individual service organizations. 

The kinds of services that will be available and the 
cost and ultimate capacity required for such service is 
difficult to predict. It is clear, however, that if the 
network philosophy is adopted and if it is made widely 
available through a common carrier, that the communi
cations system will not be the limiting factor in the 
development of these services as it is now. 
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the ARPA computer network* 
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INTRODUCTION 

For many years, small groups of computers have been 
interconnected in various ways. Only recently, how
ever, has the interaction of computers and communica
tions become an important topic in its own right. ** In 
1968, after considerable preliminary investigation and 
discussion, the Advanced Research Projects Agency 
of the Department of Defense (ARPA) embarked on 
the implementation of a new kind of nationwide 
computer interconnection known as the ARPA N et
work. This network will initially interconnect many 
dissimilar computers at ten ARPA-supported research 
centers with 50-kilobit common-carrier circuits. The 
network may be extended to include many other 
locations and circuits of higher bandwidth. 

The primary goal of the ARPA project is to permit 
persons and programs at one research center to access 
data and use interactively programs that exist and 
run in other computers of the network. This goal may 
represent a major step down the path taken by com
puter time-sharing, in the sense that the computer 
resources of the various research centers are thus 
pooled and directly accessible to the entire community 
of network participants. 

Study of the technology and tariffs of available 
communications facilities showed that use of con
ventionalline switching facilities would be economically 
and technically inefficient. The traditional method of 
routing information through the common-carrier 
switched network establishes a dedicated path for each 
conversation. With present technology, the time 
required for this task is on the order of seconds. For 

* This work was sponsored by the Advanced Research Proj·· 
ects Agency under Contract No. DARC 15-69-C-0179. 
** A bibliography of ~elevant references is included at the end of 
this paper; a more extensive list may be found in Cuadra, 1968. 
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voice communication, that overhead time is negligible, 
but in the case of many short transmissions, such as 
may occur between computers, that time is excessive. 
Therefore, ARPA decided to build a new kind of 
digital communication system employing wideband 
leased lines and message switching, wherein a path is 
not established in advance and each message carries an 
address. In this domain the project portends a possible 
major change in the character of data communica
tion services in the United States. 

In a nationwide computer network, economic con
siderations also mitigate against a wideband leased 
line configuration that is topologically fully connected. 
In a non-fully connected network, messages must 
normally traverse several network nodes in going from 
source to destination. The ARPA Network is designed 
on this principle and, at each node, a copy of the mes
sage is stored until it is safely received at the following 
node. The network is thus a store and forward system 
and as such must deal with problems of routing, buffer
ing, synchronization, error control, reliability, and 
other related issues. To insulate the computer centers 
from these problems, and to insulate the network from 
the problems of the computer centers, ARPA decided 
to place identical small processors at each network 
node, to interconnect these small processors with 
leased common-carrier circuits to form a subnet, and 
to connect each research computer center into the net 
via the local small processor. In this arrangement the 
research computer centers are called Hosts and the 
small processors are called Interface Message Processors, 
or IMPs. (See Figure 1.) This approach divides the 
genesis of the ARPA Network into two parts: (1) 
design and implementation of the IMP subnet, and 
(2) design and implementation of protocols and tech
niques for the sensible utilization of the network by 
the Hosts. 

Implementation of the subnet involves two major 
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50 KILOBIT CIRCUITS 

Figure I-Hosts and IMPs 

technical activities: providing 50-kilobit common
carrier circuits and the associated modems; and pro
viding IMPs, along with software and interfaces to 
modems and Host computers. For reasons of economic 
and political convenience, ARPA obtained common
carrier circuits directly through government purchas
ing channels; AT&T (Long Lines) is the central coordi
nator, although the General Telephone Company 
is participating at some sites and other common 
carriers may eventually become involved. In January 
1969, Bolt Beranek and Newman Inc. (BBN) began 
,york on the design and implementation of IMPs; a 
four-node test network was scheduled for completion 
by the end of 1969 and plans were formulated to 
include a total of ten sites by mid-1970. This paper 
discusses the design of the sub net and describes the 
hardware, the software, and the predicted performance 
of the IMP. The issues of Host-to-Host protocol and 
network utilization are barely touched upon; these 
problems are currently being considered by the par
ticipating Hosts and may be expected to be a subject 
of technical interest for many years to come. 

At this time, in late 1969, the test network haR 
become an operating reality. IMPs have already been 
installed at four sites, and implementation of IMPR 
for six additional sites is proceeding. The common 
carriers have installed 50-kilobit leased service con-

necting the first four sites and are preparing to install 
circuits at six additional sites. 

The design of ~he network allows for the connection 
of additional Host sites. A map of a projected eleven
node network is shown in Figure 2. The connections 
between the first four sites are indicated by solid lines. 
Dotted lines indicate planned connections. 

NETWORK DESIGN 

The design of the network is discussed in two parts. 
The first part concerns the relations between the 
Hosts and the subnet, and the second part concerns 
the design of the subnet itself. 

H ost-subnet considerations 

The basic notion of a subnet leads directly to a 
series of questions about the relationship between the 
Hosts and the subnet: What tasks shall be performed 
by each? What constraints shall each place on the 
other? What dependence shall the subnet have on the 
Hosts? In considering these questions, we were guided 
by the following principles: (1) The subnet should 
function as a communications system whose essential 
task is to transfer bits reliably from a source location 
to a specified destination. Bit transmission should be 
sufficiently reliable and error free to obviate the need 
for special precautions (such as storage for retrans
mission) on the part of the Hosts; (2) The average 
transit time through the subnet should be under a 
half second to provide for convenient interactive use 
of remote computers; (3) The sub net operation should 
be completely autonomous. Since the subnet must 
function as a store and forward system, an IMP must 
not be dependent upon its local Host. The IMP must 

------------------------------------------

Figure 2-Network map 



continue to operate whether the Host is functioning 
properly or not and must not depend upon a Host for 
buffer storage or other logical assistance such as pro
gram reloading. The Host computer must not in any 
way be able to change the logical characteristics of 
the sub net ; this restriction avoids the mischievous or 
inadvertent modification of the communication system 
by an individual Host user; (4) Establishment of 
Host-to-Host protocol and the enormous problem of 
planning to communicate between different computers 
should be an issue separated from the subnet design. 

Messages, links, and RFNMs 

In principle, a single transmission from one Host to 
another may range from a few bits, as with a single 
teletype character, up to arbitrarily many bits, as in a 
very long file. Because of buffering limitations in the 
subnet, an upper limit was placed on the size of an 
individual Host transmission; 8095 bits was chosen 
for the maximum transmission size. This Host unit of 
transmission is called a message. The sub net does not 
impose any pattern restrictions on messages; binary 
text may be transmitted. Messages may be of variable 
length; thus, a source Host must indicate the end of a 
message to the subnet. 

A major hazard in a message switched network is 
congestion, which can arise either due to system 
failures or to peak traffic flow. Congestion typically 
occurs when a destination IMP becomes flooded with 
incoming messages for its Host. If the flow of messages 
to this destination is' not regulated, the congestion 
will back up into the network, affecting other IMPs 
and degrading or even completely clogging the com
munication service. To solve this problem we developed 
a quenching scheme that limits the flow of messages to 
a given destination when congestion begins to occur 
or, more generally, when messages are simply not 
getting through. 

The subnet transmits messages over unidirectional 
logical paths between Hosts known as links. (A link is 
a conceptual path that has no physical reality; the 
term merely identifies a message sequence.) The 
subnet accepts only one message at a time on a given 
link. Ensuing messages on that link will be blocked 
from entering the subnet until the source IMP learns 
that the previous message has arrived at the destina
tion Host. When a link becomes unblocked, the subnet 
notifies the source Host by sending it a special control 
message known as Ready for Next Message (or RFNM) , 
which identifies the newly unblocked link. The source 
Host may utilize its connection into the subnet to 
tlransmit messages over other links, while waiting to 
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send messages on the blocked links. Up to 63 separate 
outgoing links may exist at any Host site. When giving 
the subnet a message, the Host- specifies the destina
tion Host and a link number in the first 32 bits of the 
message (known as the leader). The IMPs then attend 
to route selection, delivery, and notification of receipt. 
This use of links and RFNMs also provides for I1\1P
to-Host delivery of sequences of messages in proper 
order. Because the subnet allows only one message at 
a time on a given link, Hosts never receive messages 
out of sequence. 

Host-IMP interfacing 

Each IMP will initially service a single Host. How
ever, we have made provision (both in the hardware 
and software) for the IMP to service up to four Hosts, 
with a corresponding reduction in the number of per
mitted phone line connections. Connecting an IMP to 
a wide variety of different Hosts requires a hardware 
interface, some part of which must be custom tailored 
to each Host. We decided, therefore, to partition the 
interface such that a standard portion would be built 
into the IMP, and would be identical for all Hosts, 
while a special portion of the interface would be unique 
to each Host. The interface is designed to allow mes
sages to flow in both directions at once. A bit serial 
interface was designed partly because it required fewer 
lines for electrical interfacing and was, therefore, less 
expensive, and partly to accommodate conveniently 
the variety of word lengths in the different Host com
puters. The bit rate requirement on the Host line is 
sufficiently low that parallel transfers are not necessary. 

The Host interface operates asynchronously, each 
data bit being passed across the interface via a Ready 
For Next Bit/There's Your Bit handshake procedure. 
This technique permits the bit rate to adjust to the 
rate of the slower member of the pair and allows 
necessary interruptions, when words must be stored 
into or retrieved from memory. The IMP introduces 
between bits a (manually) adjustable delay that limits 
the maximum data rate; at present, this delay is set to 
10 f.,Lsec. Any delay introduced by the Host in the 
handshake procedure further slows the rate. 

Sys tern. failure 

Considerable attention has been given to the possible 
effects on a Host of system failures in the subnet. 
Minor system failures (e.g., temporary line failures) 
will appear to the Hosts only in the form of reduced 
rate of service. Catastrophic failures may, however, 
result in the loss of messages or even in the loss of 
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Figure 3-Messages and packets 

subnet communication. IMPs inform a Host of all 
relevant system failures. Additionally, should a Host 
computer go down, the information is propagated 
throughout the sub net to all IMPs so they may notify 
their local Host if it attempts to send a message to 
that Host. 

Specific subnet design 

The overriding consideration that guided the subnet 
design was reliability. Each IMP must operate unat
tended and reliably over long periods with minimal 
down time for maintenance and repair. We were con
vinced that it was important for each IMP in the 
subnet to operate autonomously, not only indepen
dently of Hosts, but insofar as possible from other 
IMPs as well; any dependency between one IMP 
and another would merely broaden the area jeopardized 
by one IMP's failure. Th~ need for reliability and 
autonomy bears directly upon the form of subnet 
communication. This section describes the process of 
message communication within the subnet. 

Message handling 

Hosts communicate with each other via a sequence 
of messages. An IMP takes in a message from its Host 
computer in segments, forms these segments into 
packets (whose maximum size is approximately 1000 
bits), and ships the packets separately into the net
work. The destination IMP reassembles the packets 
and delivers them in sequence to the receiving Host, 
who obtains them as a single unit. This segmentation 
of a message during transmission is completely in-

visible to the Host computers. Figures 3, 4, and 5 
illustrate aspects of message handling. 

The transmitting Host attaches an identifying 
leader to the beginning of each message. The IMP 
forms a header by adqing further information for 
network use and attaches this header to each packet 
of the message. 

Each packet is individually routed from IMP-to
IMP through the network toward the destination. At 
each IMP along the way, the transmitting hardware 
generates initial and terminal framing characters and 
parity check digits that are shipped with the packet 
and are used for error detection by the receiving hard
ware of the next IMP. 

Errors in transmission can affect a packet by de
stroying the framing and/or by modifying the data 
content. If the framing is disturbed in any way, the 
packet either will not be recognized or will be rejected 
by the receiver. In addition, the check digits provide 
protection against errors that affect only the data. 
The check digits can detect all patterns of four or 
fewer errors occurring within a packet, and any single 
error burst of a length less than twenty-four bits. An 
overwhelming majority of all other possible errors (all 
but about one in 224) are also detected. Thus, the 
mean time between undetected errors in the subnet 
should be on the order of years. 

As a packet moves through the subnet, each IMP 
stores the packet until a positive acknowledgment is 
returned from the succeeding IMP. This acknowledg
ment indicates that the message was received without 
error and was accepted. Once an IMP has accepted a 
packet and returned a positive acknowledgment, it 
holds onto that packet tenaciously until it in turn 
receives an acknowledgment from the succeeding 
IMP. Under no circumstances (except for Host or 
IMP malfunction) will an IMP discard a packet after 
it has generated a positive acknowledgment. However, 
an IMP is always free to refuse a packet by simply 
not returning a positive acknowledgment. It may do 
this for any of several reasons: the packet may have 
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been received in error, the IMP may be busy, the IMP 
buffer storage may be temporarily full, etc. 

At the transmitting IMP, such discard of a packet 
is readily detected by the absence of a returned ac
knowledgment within a reasonable time interval 
(e.g., 100 msec). Such packets are retransmitted, 
perhaps along a different route. Acknowledgments 
themselves are not acknowledged, although they are 
error checked in the usual fashion. Loss of an acknowl
edgment results in the eventual retransmission of the 
packet; the destination IMP sorts out the resulting 
duplication by using a message number and a packet 
number in the header. 

The packets of a message arrive at the destination 
IMP, possibly out of order, where they are reassem
bled. The header is then stripped off each packet and 
a leader, identifying the source Host and the link, 
followed by the reassembled message is then delivered 
to the destination Host as a single unit. See Figure 3. 

Routing algorithIn 

The routing algorithm directs each packet to its 
destination along a path for which the total estimated 
transit time is smallest. This path is not determined 
in advance. Instead, each IMP individually decides 
onto which of its output lines to transmit a packet 
addressed to another destination. This selection is 
made by a fast and simple table lookup procedure. 
For each possible destination, an entry in the table 
designates the appropriate next leg. These entries 
reflect line or IMP trouble, traffic congestion, and 
current subnet connectivity. This routing table is 
updated every halfsecond as follows: 

Each IMP estimates the delay it expects a packet to 
encounter in reaching every possible destination over 
each of its output lines. It selects the minimum delay 
estimate for each destination and periodically (about 
twice a second) passes these estimates to its immediate 
neighbors. Each IMP then constructs its own routing 
table by combining its neighbors' estimates with its 
own estimates of the delay to that neighbor. The 
estimated delay to each neighbor is based upon both 
queue lengths and the recent performance of the 
connecting communication circuit. For each destina
tion, the table is then made to specify that selected 
output line for which the sum of the estimated delay 
to the neighbor plus the neighbor's delay to the desti
nation is smallest. 

The routing table is consistently and dynamically 
updated to adjust for changing conditions in the 
network. The system is adaptive to the ups and downs 
of lines, IMPs, and congestion; it does not tequire the 
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IJJIP to know the topology of the network. In particular, 
an IMP need not even know the identity of its im
mediate neighbors. Thus, the leased circuits could be 
reconfigured to a new topology without requiring any 
changes to the IMPs. 

Subnet failures 

The network is designed to be largely invulnerable 
to circuit or IMP failure as well as to outages for 
maintenance. Special status and test messages are 
employed to help cope with various failures. In the 
absence of regular packets for transmission over a 
line, the IMP program transmits special hello packets 
at half-second intervals. The acknowledgment for a 
hello packet is an I heard you packet. 

A dead line is defined by the sustained absence 
(approximately 2.5 seconds) on that line of either 
received regular packets or acknowledgments; no 
regular packets will be routed onto a dead line, and 
any packets awaiting transmission will be rerouted. 
Routing tables in the network are adjusted automati
cally to reflect the loss. We require acknowledgment 
of thirty consecutive hello packets (an event which 
consumes at least 15 seconds), before a dead line is 
defined to be alive once again. 

A dead line may reflect trouble either in the com
munication facilities or in the neighboring IMP itself. 
Normal line errors caused by dropouts, impulse noise, 
or other conditions should not result in a dead line, 
because such errors typically last only a few milli
seconds, and only occasionally as long as a few tenths 
of a second. Therefore, we expect that a line will be 
defined as dead only when serious trouble conditions 
occur. If dead lines eliminate all routes between two 
IMPs, the IMPs are said to be disconnected and each 
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of these IMPs will discard messages destined for the 
other. Disconnected IMPs cannot be rapidly detected 
from the delay estimates that arrive from neighboring 
IMPs. Consequently, additional information is trans
mitted between neighboring IMPs to help detect this 
condition. Each IMP transmits to its neighbors the 
length of the shortest existing path (i.e., number of 
IMPs) from itself to each destination. To the smallest 
such received number per destination, the IMP adds 
one. This incremented number is the length of the 
shortest path from that IMP to the destination. If 
the length ever exceeds the number of network nodes, 
the destination IMP is assumed to be unreachable 
and therefore disconnected. 

Messages intended for dead Hosts (which are not 
the same as dead IMPs) cannot be delivered; there
fore, these messages require special handling to avoid 
indefinite circulation in the network and spurious 
arrival at a later time. Such messages are purged 
from the network either at the source IMP or at the 
destination IMP. Dead Host information is regularly 
transmitted with the routing information. A Host 
computer is notified about another dead Host only 
when attempting to send a message to that Host. 

An IMP may detect a major failure in one of three 
ways: (1) A packet expected for reassembly of a multi
ple packet message does not arrive. If a message is 
not fully reassembled in 15 minutes, the system pre
sumes a failure. The message is discarded by the 
destination IMP and both the source IMP and the 
source Host are notified via a special RFNM. (2) The 
Host does not take a message from its IMP. If the 
Host has not taken a message after 15 minutes, the 
system presumes that it will never take the message. 
Therefore, as in the previous case, the message is 
discarded and a special RFNM is returned to the 
source Host. (3) A link is never unblocked. If a link 
remains blocked for longer than 20 minutes, the sys
tem again presumes a failure; the link is then unblocked 
and an error message is sent to the source Host. (This 
last time interval is slightly longer than the others so 
that the failure mechanisms for the first two situations 
will have a chance to operate and unblock the link.) 

Reliability and recovery procedures 

For higher system reliability, special attention was 
placed on intrinsic reliability, hardware test capabili
ties, hardware/software failure recovery techniques, 
and proper administrative mechanisms for failure 
management. 

. To improve intrinsic reliability, we decided to rug
gedize the IMP hard,,~are, thus incurring an approxi-

mately ten percent hardware cost penalty. For ease 
in maintenance, debugging, program revision, and 
analysis of performance, all IMPs are as similar as 
possible; the operational program and the hardware are 
nearly identical in all IMPs. 

To improve hardware test capabilities, we built 
special crosspatching features into the IMP's interface 
hardware; these features allow program-controlled 
connection of output lines to corresponding input lines. 
These crosspatching features have been invaluable in 
testing IMPs before and during field installation, and 
they should continue to be very useful when troubles 
occur in the operating network. These hardware test 
features are employed bya special hardware test 
program and may also be employed by the operational 
program when a line difficulty occurs. 

The IMP includes a 512-word block of protected 
memory that secures special recovery programs. An 
IMP can recover from an IMP failure in two ways: (1) 
In the event of power failure, a power-fail interrupt 
permits the IMP to reach a clean stop before the 
program is destroyed. When power returns, a special 
automatic restart feature turns the IMP back on and 
restarts the program. (We considered several possi
bilities for handling the packets found in an IMP 
during a power failure and concluded that no plan to 
salvage the packets was both practical and foolproof. 
For example, we cannot know whether the packet in 
transmission at the time of failure successfully left 
the machine before the power failed. Therefore, we 
decided simply to discard all the packets and restart 
the program.) (2) The second recovery mechanism is a 
"watchdog timer", which transfers control to pro
tected memory whenever the program neglects this 
timer for about one minute. In the event of such 
transfer, the program in unprotected memory is pre
sumed to be destroyed (either through a hardware 
transient or a software failure). The program in pro
tected memory sends a reload request down a phone 
line selected at random. The neighboring IMP responds 
by sending a copy of its whole program back on the 
phone line. A normal IMP would discard this message 
because it is too long, but the recovering IMP can use 
it to reload its program. 

Everything unique to a particular IMP must thus 
reside in its protected memory. Only one register 
(containing the IMP number) currently differs from 
IMP-to-IMP. The process of reloading, which requires 
a few seconds, can be tried repeatedly until successful; 
however, if after several minutes the program has not 
resumed operation, a later phase of the watchdog 
timer shuts off all power to the IMP. 

In addition to providing recovery mechanisms for 
both network and IMP failures, we have incorporated 



into the subnet a control center that monitors network 
status and handles trouble reports. The control center, 
located at a network node, initiates and follows up 
any corrective actions necessary for proper subnet 
functioning. Furthermore, this center controls and 
schedules any modifications to the subnet. 

In trospection 

Because the network is experimental in nature, 
considerable effort has been allocated to developing 
tools whereby the network can supply measures of 
its own performance. The operational IMP program is 
capable of taking statistics on its own performance on 
a regular basis; this function may be turned on and 
off remotely. The various kinds of resulting statistics, 
which are sent via the network to a selected Host for 
analysis, include "snapshots", ten-second summaries, 
and packet arrival times. Snapshots are summaries of 
the internal status of queue lengths and routing in
formation. A synchronization procedure allows these 
snapshots, which are taken every half second, to occur 
at roughly the same time in all network IMPs; a Host 
receiving such snapshot messages could presumably 
build up an instantaneous picture of overall network 
status. Ten-second summaries include such IMP
generated statistics as the number of processed messages 
of each kind, the number of retransmissions, the traffic 
to and from the local Host, and so forth; this statistical 
data is sent to a selecte.~ Host every ten seconds. In 
addition, a record of actual packet arrival times on 
modem lines allows for the modeling of line traffic. 
(As part of its research activity, the group at UCLA is 
acting as a network measurement center; thus, sta
tistics for analysIs will normally be routed to the 
UCLA Host.) 

Perhaps the most powerful capability for network 
introspection is tracing. Any Host message sent into 
the network may have a "trace bit" set in the leader. 
Whenever it processes a packet from such a message, 
the IMP keeps special records of what happens to 
that packet-e.g., how long the packet is on various 
queues, when it comes in and leaves, etc. Each IMP 
that handles the traced packet generates special trace 
report messages that are sent to a specified Host; thus, 
a complete analysis of what has happened to that 
message can be made. When used in an orderly way, 
this tracing facility will aid in understanding at a very 
detailed level the behavior of routing algorithms and 
the behavior of the network under changing load 
conditions. 

The Interface l\1essage Processor 557 

Flexibili ty 

Flexibility for modifications in IMP usage has been 
provided by severa( built-in arrangements: (1) pro
vision within the existing cabinet for an additional 
4K core bank; (2) modularity of the hardware inter
faces; (3) provision for operation with data circuits of 
widely different rates; (4) a program organization 
involving many nearly self-contained subprograms; 
and (5) provision for Host-unique subprograms in the 
IMP program structure. 

This last aspect of flexibility presents a somewhat 
controversial design choice. There are many advantages 
to keeping all IMP software nearly identical. Because 
of the experimental nature of the network, however, 
we do not yet know whether this luxury of identical 
programs will be an optimal arrangement. Several 
potential applications of "Host-unique" IMP software 
have been considered-e.g., using ASCII conversion 
routines in each IMP to establish a "Network ASCII" 
and possibly to simplify the protocol problems of each 
Host. As of now; the operational IMP program in
cludes a structure that permits unique software plug-in 
packages at each Host site, but no plug-ins have yet 
been constructed. 

THE HARDWARE 

We selected a Honeywell DDP-516 for the IMP 
processor because we wanted a machine that could 
easily handle currently anticipated maximum traffic
and that had already been proven in the field. We 
considered only economic machines with fast cycle 
times and good instruction sets. Furthermore, we 
needed a machine with a particularly good I/O capa
bility and that was available in a ruggedized version. 
The geographical proximity of the supplier to BBN 
was also a consideration. 

The basic machine has a 16-bit word length and a 
O.96-,usec memory cycle. The IMP version is packaged 
in a single cabinet, and includes a 12K memory, a set 
of 16 multiplexed channels (which implement a 4-cycle 
data break), a set of 16 priority interrupts, a 100-,usec 
clock, and a set of programmable status lights. Also 
packaged within this cabinet are special modular 
interfaces for connecting the IMP to phone line 
modems and to Host computers; these interfaces use 
the same kind of 1 MHz and 5 MHz DTL packs from 
which the main machine is constructed. In addition, a 
number of features that have been incorporated make 
the IMP somewhat resilient to a variety of failures. 

Teletypes and high-speed paper tape readers which 
are attached to the IMPs are used only for mainte-
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Figure 6-The IMP 

nance, debugging, and system modification; in normal 
operation, the IMP runs without any moving parts 
except fans. Within the cabinet, space has been re
served for an additional 4K memory. Figure 6 is a 
picture of an IMP, and Figure 7 shows its configura
tion. 

Ruggedization of computer hardware for use in 
friendly environments is somewhat unusual; however, 
we felt that the considerable difficulty that IMP 
failures can cause the network justified this step. 
Although the ruggedized unit is not fully "qualified" 
to MIL specs, it does have greater resistance to tem
perature variance, mechanical shock and vibration, 
radio frequency interference, and power line noise. 
Weare confident that this ruggedization will increase 
the mean time to failure. 

Modular Host and modem interfaces allow an IMP 
to be individually configured for each network node. 
The modularity, however, does not take the form of 
pluggable units and, except for the possibility of 
adding interfaces into reserved frame space, recon-

figuration is impractical. Various configurations allow 
for up to two Hosts and five modems, three Hosts and 
four modems, etc. Each modem interface requires 
approximately one-fourth the amount of logic used in 
the C.P.V. The Host interface is somewhat smaller 
(about one-sixth of the C.P.V.). 

Interfaces to the Host and to the modems have 
certain common characteristics. Both are full duplex, 
both may be crosspatched under program control to 
test their operation, and both function in the same 
general manner. To send a packet, the IMP program 
sets up memory pointers to the packet and then 
activates the interface via a programmable control 
pulse. The interface takes successive words from the 
memory using its assigned output data channel and 
transmits them bit-serially (to the Host or to the 
modem). When the memory buffer has thus been 
emptied, the interface notifies the program via an 
interrupt that the job has been completed. To receive 
information, the program first sets pointers to the 
allocated space in the memory into which the informa
tion is to flow. Vsing a control pulse it then readies 
the interface to receive. When information starts to 
arrive (here again bit-serially), it is assembled into 
16-bit words and stored into the IMP memory. When 
either the allocated memory space is full or the end of 
the data train is detected, the interface notifies the 
program via an interrupt. 

The modem interfaces deal with the phone lines in 
terms of 8-bit characters; the interfaces idle by sending 
and receiving a sync pattern that keeps them in charac
ter sync. Bit sync is maintained by the modems them
selves, which provide both transmit .and receive clock
ing signals to the interfaces. When the program initiates 
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Figure 7-IMP configuration 



transmission, the hardware first transmits a pair of 
initial framing characters (DLE, STX). Next, the 
text of the packet is taken word by word from the 
memory and shifted serially onto the phone line. At 
the end of the data, the hardware generates a pair of 
terminal framing characters (DLE, ETX) and shifts 
them onto the phone line. After the terminal framing 
characters, the hardware generates and transmits 24 
check bits. Finally, the interface returns to idle (sync) 
mode. 

The hardware doubles any DLE characters within 
the binary data train (that is, transmits them twice), 
thereby permitting the receiving interface hardware to 
distinguish them from the terminal framing characters 
and to remove the duplicate. Transmitted packets 
are of a known maximum size; therefore, any overflow 
of input buffer length is evidence of erroneous trans-:, 
mission. Format errors in the framing also register as 
errors. Check bits are computed from the received 
data and compared with the received check bits to 
detect errors in the text. Any of these errors set a 
flag and cause a program interrupt. Before processing 
a packet, the program checks the error flag to deter
mine whether the packet was received correctly. 

IMP SOFTWARE 

Implementation of the IMPs required the develop
ment of a sophisticated operational computer program 
and the development of several auxiliary programs for 
hardware tests, program construction, and debugging. 
This section discusses in detail the design of the opera
tional program and briefly describes the auxiliary 
software. 

Operational program 

The principal function of the operational program 
is the processing of packets. This processing includes 
segmentation of Host messages into packets for routing 
and transmission, building of headers, receiving, 
routing and transmitting of store and forward packets, 
retransmitting of unacknowledged packets, reassem
bling received packets into messages for transmission 
to the Host, and generating of RFNMs and acknowl
edgments. The program also monitors network status, 
gathers statistics, and performs on-line testing. This 
real-time program is an efficient, interrupt-driven, 
involute machine language program that occupies 
about 6000 words of memory. It was designed, con
structed, and debugged over a period of about a year 
by three programmers. 

The entire program is composed of twelve func-
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tionally distinct pieces; each piece occupies no more 
than one or two pages of core (512 words per page). 
These programs communicate primarily through com
mon registers that reside in page zero of the machine 
and that are directly addressable from all pages of 
memory. A map of core storage is shown in Figure 8. 
Seven of the twelve programs are directly involved in 
the flow of packets through the IMP: the task program 
performs the major portion of the packet processing, 
including the reassembly of Host messages; the modem 
programs (IMP-to-Modem and Modem-to-IMP) 
handle interrupts and resetting of buffers for the 
modem channels; the Host programs (IMP-to-Host 
and Host-to-IMP) handle interrupts and resetting of 
buffers for the Host channels, build packet headers 
during input, and construct RFNMs that are returned 
to the source Host during output; the time-out program 
maintains a software clock, times out unacknowledged 
packets for retransmission, and attends to infrequent 
events; the link program assigns and verifies message 
numbers and keeps track of links. A background loop 
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TABLE I-Program Data Structures 

5000 WORDS-MESSAGE BUFFER STORAGE 
120 WORDS-QUEUE POINTERS 
300 WORDS-TRACE BLOCKS 
100 WORDS-REASSEMBLY BLOCKS 
150 WORDS-ROUTING TABLES 
400 WORDS-LINK TABLES 
300 WORDS-STATISTICS TABLES 

contains the remaining five programs and deals with 
initialization, debugging, testing, statistics gathering 
and tracing. After a brief description of data struc
tures, we will discuss packet processing in some detail. 

Buffer allocation, queues, and tables 

The major system data structures (see Table I) 
consist of buffers and tables. The buffer storage space 
is partitioned into about 70 fixed length buffers, each 
of which is used for storing a single packet. An unused 
buffer is chained onto a free buffer list and is removed 
from this list when it is needed to store an incoming 
packet. A packet, once stored in a buffer, is never 
moved. After a packet has been successfully passed 
along to its Host or to another IMP, its buffer is re
turned to the free list. The buffer space is partitioned 
in such a way that each process (store and forward, 
traffic, Host traffic, etc.) is always guaranteed some 
buffers. For the sake of program speed and simplicity, 
no attempt is made to retrieve the space wasted by 
partially filled buffers. 

In handling store and forward traffic, all processing 
is on a per packet basis. Further, although traffic to 
and from Hosts is composed of messages, the IMP 
rapidly converts to dealing with packets; the Host 
transmits a message as a single unit but the IMP 
takes it one buffer at a time. As each buffer is filled, 
the program selects another buffer for input until the 
entire message has been provided for. These successive 
buffers will, in general, be scattered throughout the 
memory. An equivalent inverse process occurs on 
output to the Host after all packets of the message 
have arrived at the destination IMP. No attempt is 
ever made to collect the packets of a message into a 
contiguous portion of the memory. 

Buffers currently in use are either dedicated to an 
incoming or an outgoing packet, chained on a queue 
awaiting processing by the program, or being processed. 
Occasionally, a buffer may be simultaneously found on 
two queues; this situation can occur when a packet is 
\vaiting on one queue to be forwarded and on another 
to be acknowledged. 

There are four principal types of queues: 

Task: Packets received on Host channels are placed 
on the Host task queue. All received acknowledg
ments, dead Host and routing information, I heard 
you and hello packets are placed on the system task 
queue; all other packets from the modems are placed 
on the modem task queue. The program services the 
system task queue first, then the Host task queue, and 
finally the modem task queue. 

Output: A separate output queue is constructed for 
each modem channel and each Host channel. Each 
modem output queue is subdivided into an acknowl
edgment queue, a priority queue, a RFNM queue, 
and a regular message queue, which are serviced in 
that order. Each Host output queue is subdivided into 
a control message queue, a priority queue, and a 
regular message queue, which are also serviced in the 
indicated order. 

Sent: A separate queue for each modem channel con
tains packets that have already been transmitted on 
that line but for which no acknowledgment has yet 
been received. 

Reassembly: The reassembly queue contains those 
packets that are being reassembled into messages for 
the Host. 

Tables in core are allocated for the storage of queue 
pointers, for trace blocks, for reassembly information, 
for statistics, and for links. Most noteworthy of these 
is the link table, which is used at the source IMP for 
assignment of message numbers and for blocking and 
unblocking links, and at the destination IMP to 
verify message numbers for sequence control. 

Packet flow and program. structure 

Figure 9 is a schematic drawing of packet process
ing; the processing programs are described below. 

The H ost-to-I M P routine (H ~ I) handles messages 
being transmitted from the local site. The routine 
uses the leader to construct a header that is prefixed 
to each packet of the message. It also creates a link 
for the message if necessary, blocks the link, puts the 
packets of the message on the Host task queue for 
further processing by the task routine, and triggers 
the programmable task interrupt. The routine then 
acquires a free buffer and sets up a new input. The 
r~)Utine tests a hardware trouble indicator, verifies the 
message format, and checks whether or not the destina
tion is dead, the link table is full, or the link blocked. 
The routine is serially reentrant and services all Hosts 
connected to the IMP. 



The lJ!Jodem-to-IMP routine (M -? I) handles inputs 
from the modems. This routine consists of several 
identical routines, one for each modem channel. (Such 
duplication is useful to obtain higher speed.) This 
routine sets up an input buffer (normally obtained 
from the free list), places the received packet on the 
appropriate task queue, and triggers the programmable 
task interrupt. Should no free buffers be available for 
input, the buffer at the head of the modem task queue 
is preempted. If the modem task queue is also empty, 
the received packet is discarded by setting up its 
buffer for input. However, a sufficient number of free 
buffers are specifically reserved to assure that received 
acknowledgments, routing packets, and the like are 
rarely discarded. 

The task routine uses the header information to 
direct packets to their proper destination. The task 
routine is driven by the task interrupt, which is set 
whenever a packet is put on a task queue. The task 
routine routes packets from the Host task queue onto 
an output queue determined from the routing algorithm. 

For each packet on the modem task queue, the task 
routine first determines whether sufficient buffer space 
is available. If the IMP has a shortage of store and 
forward buffers, the buffers on the modem task queue 
are simply returned to the free list without further 
processing. Normally, however, an acknowledgment 
packet is constructed and put near the front of the 
appropriate modem output queue. The destination of 
the packet is then inspected. If the packet is not for 
the local site, the routing algorithm selects a modem 
output queue for the packet. If a packet for the local 
site is a RFNM, the corresponding link is unblocked 
and the RFNM is put on a queue to the Host. If the 
packet is not a RFNM, it is joined with others of the 
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same message on the reassembly queue. Whenever a 
message is completely reassembled, the packets of 
the message are put on an output queue to the Host 
for processing by the IMP-to-Host routine. 

In processing the system task queue, the task routine 
returns to the free list those buffers from the sent 
queue that have been referenced by acknowledgments. 
Any packets skipped over by an acknowledgment are 
designated for retransmission. Routing, I heard you, 
and hello packets are processed In a straightforward 
fashion. 

The IlJ!JP-to-lJ!J odem routine (I -? M) transmits 
successive packets from the Modem output queue. 
After completing the output, this routine places any 
packet requiring acknowledgment on the sent queue. 

The IMP-to-Host routine (I -? H) sets up successive 
outputs of packets on the Host output queues and 
constructs a RFNM for each non-control message 
delivered to a Host. RFNM packets are returned to 
the system via the Host task queue. 

The time-out routine is started every 25.6 msec 
(called the time-out period) by a clock interrupt. 
The routine has three sections: the fast time-out 
routine, which "wakes up" any Host or modem inter
rupt routine that has languished (for example, when 
the Host input routine could not immediately start a 
new input because of a shortage in buffer space); the 
middle time-out routine, which retransmits any packets 
that have been too long on a modem sent queue; and 
the slow time-out routine, which marks lines as alive 
or dead, updates the routing tables and does long 
term garbage collection of queues and other data 
structures. (For example, it protects the system from 
the cumulative effect of such failures as a lost packet 
of a multiple packet message, where buffers are tied 
up in message reassembly.) It also deletes links auto
matically after 15 seconds of disuse, after 20 minutes 
of blocking, or when an IMP goes down. 

These three routines are executed in the following 
pattern: 

FFFF FFFF FFFF FFFF FFFF FFFF ... 

M M M M M 

S 

and, although they run off a common interrupt, are 
constructed to allow faster routines to interrupt slower 
ones should a slower routine not complete execution 
before the next time-out period. 

The link routine enters, examines, and deletes entries 
from the link table. A table containing a separate 
message number entry for many links to every possible 
Host would be prohibitively large. Therefore, . the 
table contains entries only for each of 63 total out-
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going links at any Host site. Hashing is used to speed 
accessing of this table, but the link program is still 
quite costly; it uses about ten percent of both speed 
and space in a conceptually trivial task. 

Initialization and background loop 

The IMP program starts in an initialization section 
that builds the initial data structures, prepares for 
inputs from modem and Host channels, and resets all 
program switches to their nominal state. The program 
then falls into the background loop, which is an end
lessly repeated series of low-priority subroutines that 
are interrupted to handle normal traffic. 

The programs in the IMP background loop perform 
a variety of functions: TTY is used to handle the IMP 
Teletype traffic; DEBUG, to inspect or change IMP 
core memory; TRACE, to transmit collected informa
tion about traced packets; STATISTICS, to take and 
transmit network and IMP statistics; P ARAMETER
CHANGE, to alter the values of selected IMP pa
rameters; and DISCARD, to throwaway packets. 
Selected Hosts and IMPs, particularly the Network 
Measurement Center and the Network Control Center, 
will find it necessary or useful to communicate with 
one or more of these background loop programs. So 
that these programs may send and receive messages 
from the network, they are treated as "fake Hosts". 
Rather than duplicating portions of the large IMP-to
Host and Host-to-IMP routines, the background loop 
programs are treated as if they were Hosts, and they 
can thereby utilize existing programs. The "For IMP" 
bit or the "From IMP" bit in the leader indicates 
that a given message is for or from a fake Host program 
in the . IMP. Almost all of the background loop is 
devoted to running these programs. 

The TTY program assembles characters from the 
Teletype into network messages and decodes network 
messages into characters for the Teletype; TTY's 
normal message destination is the DEBUG program 
at its own IMP; however, TTY can be made to com
municate with any other IMP Teletype, any other 
IMP DEBUG program or any Host program with 
compatible format. 

The DEBUG program permits the operational· 
program to be inspected and changed. Although its 
normal message source is the TTY program at its 
own IMP, DEBUG will respond to a message of the 
correct format from any source. This program is 
normally inhibited from changing the operational 
IMP program; local operator intervention is required to 
activate the program's full power. 

The STATISTICS program collects measurements 

about network operation and periodically transmits 
them to the Network Measurement Center. This 
program sends but does not receive messages. STA
TISTICS has a mechanism .for collecting measure
ments over 10-second intervals and for taking half
second snapshots of IMP queue lengths and routing 
tables. It can also generate artificial traffic to load 
the network. When turned on, STATISTICS uses 10 
to 20 percent of the machine capacity and generates a 
noticeable amount of phone line traffic. 

Other programs in the background loop drive local 
status lights and operate the parameter change routine. 
A thirty-two word parameter table controls the opera
tion of the TRACE and STATISTICS programs and 
includes spares for expansion; the PARAMETER
CHANGE program accepts messages that change 
these parameters. 

Control organization 

It is characteristic of the IMP system that many 
of the main programs are entered both as subroutine 
calls from other programs and as interrupt calls from 
the hardware. The resulting control structure is shown 
in Figure 10. The programs are arranged in a priority 
order; control passes upward in the chain whenever a 
hardware interrupt occurs or the current program 
decides that the time has come to run a higher priority 
program, and control passes downward only when 
the higher priority programs are finished. No program 
may execute either itself or a lower priority program; 
however, a program may freely execute a higher pri
ority program. This rule is similar to the usual rules 
concerning priority interrupt routines. 

In one important case, however, control must pass 
from a higher priority program to a lower priority 
program-namely, from the several input routines to 
the TASK routine. For this special case, the com
puter hardware was modified to include a low-priority 
hardware interrupt that can De set by the program. 
When this interrupt has been honored (i.e., when all 
other interrupts have been serviced), the TASK 
routine is executed. Thus, control is directed where 
needed without violating the priority rules. 

Some routines must occasionally wait for long inter
vals of time, for example, when the Host-to-IMP 
routine must wait for a link to unblock. Stopping the 
whole system would be intolerable; therefore, should 
the need arise, such a routine is dismissed, and the 
TIMEOUT routine will later transfer control to the 
waiting routine. 

The control structure and the partition of responsi
bility among various programs achieve the following 



timing goals: 

1. No program stops or delays the system while 
waiting for an event. 

2. The program gracefully adjusts to the situation 
where the machine becomes compute-bound. 

3. The Modem-to-IMP routine can deliver its 
current packet to the TASK routine before the 
next packet arrives and can always prepare for 
successive packet inputs on each line. This 
timing is critical because a slight delay here 
might require retransmission of the entire packet. 
To achieve this result, separate routines (one per 
phone line) interrupt each other freely after new 
buffers have been set up. 

4. The program will almost always deliver packets 
waiting to be sent as fast as they can be accepted 
by the phone line. 

5. Necessary periodic processes (in the time-out 
routine) are always permitted to run, and do 
not interfere with input-output processes. 

Support software 

Designing a real-time program for a small computer 
with many high rate I/O channels is a specialized kind 
of software problem. The operational program requires 
not only unusual techniques but also extra software 
tools; often the importance of such extra tools is not 
recognized. Further, even when these issues are recog
nized, the effort needed to construct such tools may be 
seriously underestimated. The development of the 
IMP system required the following kinds of supporting 
software: 

1. Programs to test the hardware. 
2. Tools to help debug the system. 
3. A Host simulator. 
4. An efficient assembly process. 

So far, three hardware test programs have been 
developed. The first and largest is a complete program 
for testing all the special hardware features in the 
IMP. This program permits running any or all of the 
modem interfaces in a crosspatched mode; it even 
permits operating together several IMPs in a test 
mode. The second hardware test program runs a 
detailed phone line test that provides statistics on 
phone line errors. The final program simulates the 
modem interface check register whose complex be
havior is otherwise difficult _to predict. 

The software. debugging tools exist in two forms. 
Initially we designed a simple stand-alone debugging 
program with the capability to do little more than 
examine and change individual core registers from the 
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console Teletype. Subsequently, we embedded a 
version of the stand-alone debugging program in to 
the operational program. This operational debugging 
program not only provides debugging assistance at a 
single location but also may be used in network testing 
and network debugging. 

The initial implementation of the IMP software 
took place without connecting to a true Host. To 
permit checkout of the Host-related portions of the 
operational program, we built a "Host Simulator" 
that takes input from the console Teletype and feeds 
the Host routines exactly as though the input had 
originated in a real Host. Similarly, output messages 
for a destination Host are received by the simulator 
and typed out on the console Teletype. 

Without recourse to expensive additional periph
erals, the assembly facilities on the DDP-516 are 
inadequate for a large program. (For example, a listing 
of the IMP program would require approximately 20 
hours of Teletype output. ) We therefore used other 
locally available facilities to assist in the assembly 
process. Specifically, we used a PDP-1 text editor to 
compose and edit the programs, assembled on the 
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TABLE II-Transit Times And Message Rates 

Minimum Maximum 

SINGLE WORD MESSAGE 

Transit Time 
Round-trip 
Max. Message Rate/Link 

5 msec 
10 msec 

100/sec 

SINGLE FULL PACKET MESSAGE 

Transit Time 
Round-trip 
Max. Message Rate/Link 

8-P ACKET MESSAGE 

Transit Time 
Round-trip 
Max. Message Rate/Link 

45 msec 
50 msec 
20/sec 

265 msec 
195 msec 

5/sec 

50 msec 
100 msec 

lO/sec 

140 msec 
190 msec 

5/sec 

360 msec 
320 msec 

3/sec 

DDP-516, and listed the program on the SDS 940 
line printer. Use of this assembly process required 
minor modification of existing PDP-1 and SDS 940 
support software 

PROJECTED IMP PERFORMANCE 

At this writing, the subnet has not yet been sub
jected to realistic load conditions; consequently, very 
little experimental data is available. However, we have 
made some estimates of projected performance of the 
IMP program and we describe these estimates below. 

Host traffic and message delays 

In the subnet, the Host-to-Host transit time and 
the round-trip time (for RFNM receipt) depend upon 
routing and message length. Since only one message 
at a time may be present on a given link, the reciprocal 
of the round-trip delay is the maximum message rate 
on a link. The primary factors affecting subnet delays 
are: 

. Propagation delay: Electrical propagation time 
in the Bell system is estimated to be about 10 
J.Lsec per mile. Cross country propagation delay is 
therefore about 30 msec. 

• Modem transmission delay: Because bits enter 
and leave an IMP at a predetermined modem bit 
rate, a packet requires a modem transmission 
time proportional to its length (20 J.Lsec per bit on 
a 50-kilobit line). 

. Queueing delay: Time spent waiting in the IMP 
for transmission of previous packets on a queue. 
Such waiting may occur either at an intermediate 
IMP or in connection with terminal IMP trans
missions into the destination Host. 

. IMP processing delay: The time required for the 
IMP program to process a packet is about 0.35 
msec for a store-and-forward packet. 

Because the queueing delay depends heavily upon 
the detailed traffic load in the network, an estimate of 
queueing delay will not be available until we gain 
considerable experience with network operation. In 
Table II, we show an estimate of the one-way and 
round-trip transit times and the corresponding maxi
mum message rate per link, assuming the negligible 
queueing delay of a lightly loaded net. In this table, 
"minimum" delay represents a short hop between 
two nearby IMPs, and "maximum" delay represents a 
cross-country path involving five IMPs. In all cases 
the delays are well within the desired half-second 
goal. 

In a lightly-loaded network with a mixture of nearby 
and distant destinations, an example of heavy Host 
traffic into its IMP might be that of 20 links carrying 
ten single-word messages per second and four more 
links, each carrying one eight-packet message per 
second. 

Computational load 

In general, a line fully loaded with short packets 
will require more computation than a line with all 
long packets; therefore the IMP can handle more 
lines in the latter case. In Figure 11, we show a curve 
of the computational utilization of the IMP as a func
tion of message length for fully-loaded communication 
lines. For example, a 50-kilobit line fully loaded in both 
directions with one-word messages requires slightly 
over 13 percent of the available IMP time. Since a 
line will typically carry a variety of different length 
packets, and each line will be less than fully loaded, 
the computational load per line will actually be much 
less. 

Throughput is defined to be the maximum number 
of Host data bits that may traverse an IMP each 
second. The actual number of bits entering the IMP' 
per second is somewhat larger than the throughput 
because of such overhead as headers, RFNMs, and 
acknowledgments. The number of bits on the lines are 
still larger because of additional line overhead such 
as framing and error control characters. (Each packet 
on the phone line contains seventeen characters of 



overhead, nine of which are removed before the packet 
enters an IMP.) 

The computational limit on the IMP throughput is 
approximately 700,000 bits per second. Figure 12 
shows maximum throughput as a function of message 
length. The difference between the throughput curve 
and the line traffic curve represents overhead. 

DISCUSSION 

In this section we state some of our conclusions about 
the design and implementation of the ARPA Network 
and comment on possible future directions. 

We are convinced that use of an IMP-like device is 
a more sensible way to design networks than is use of 
direct Host-to-Host connection. First, for the subnet 
to serve a store-and-forward role, its functions must be 
independent of Host computers, which may often be 
down for extended periods. Second, the IMP program 
is very complex and is highly tailored to the I/O struc
ture of the DDP-516; building such complex functions 
into special I/O units of each computer that might 
need network connection is probably economically 
inadvisable. Third, because of the desirability of 
having several Host computers at a given site connect 
to the network, it is both more convenient and more 
economic to employ IMPs than to provide all the 
network functions in each of the Host computers. The 
whole notion of a network node serving a multiplexing 
function for complexes of local Hosts and terminals 
lends further support to this conclusion. Finally, 
because we were led to a design having some inter
IMP dependence; we found it advantageous to have 
identical units at each node, rather than computers 
of different manufacture. 

Considering the multiplexing issue directly, it now 
seems clear that individual network nodes will be 
connected to a wide variety of computer and terminal 
complexes. Even the initial ten-node ARPA Network 
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includes one Host organization that has chosen to 
submultiplex several computers via a single Host 
connection to the IMP. We are now studying variants 
of the IMP design that address this mUltiplexing 
issue, and we also expect to cooperate with other 
groups (such as at the National Physical Laboratory 
in England) that are studying such multiplexing 
techniques. 

The increasing interest in computer networks will 
bring with it an expanding interaction between com
puters and communication circuits. From the outset, 
we viewed the ARPA Network as a systems engineer
ing problem, including the portion of the system sup
plied by the common carriers. Although we found the 
carriers to be properly concerned about circuit per
formance (the basic circuit performance to date has 
been quite satisfactory), we found it difficult to work 
with the carriers cooperatively on the technical details, 
packaging, and implementation of the communication 
circuit terminal equipment; as a result, the present 
physical installations of circuit terminal equipment 
are at best inelegant and inconvenient. In the longer 
run, for reasons of economy, performance, and reliabil
ity, circuit terminal equipment probably should be 
integrated more closely with computer input/output 
equipment. If the carriers are unable to participate 
conveniently in such integrations, we would expect 
further growth of a competing circuit terminal equip
ment industry, and more prevalent common carrier 
provision of bare circuits. 

Another aspect of network growth and development 
is the requirement to connect different rate com
munication circuits to IMP-like devices as a function 
of the particular application. In our own IMP design, 
although there are limitations on total throughput, 
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the IMP can be connected to carrier circuits of any 
bit rate up to about 250 kilobits; similarly, the inter
face to a Host computer can operate over a wide 
range of bit rates. We feel that this flexibility is very 
important because the economics of carrier offerings, 
as well as the us~r requirements, are subject to sur
prisingly rapid change; even within the time period 
of the present implementation, we have experienced 
such changes. 

At this point, we would like to discuss certain aspects 
of the implementation effort. This project required 
the design, development, and installation of a very 
complex device in a rather short time scale. The diffi
culty in producing a complex system is highly de
pendent upon the number of people who are simul
taneously involved. Small groups can achieve complex 
optimizations of timing, storage, and hardware/ 
software interaction, whereas larger groups can seldom 
achieve such optimizations on a reasonable time 
scale. We chose'to operate with a very small group of 
highly talented people. For example, all software, 
including software tools for assembly, editing, debug
ging, and equipment testing as well as the main opera
tional program, involved effort by no more than four 
people at any time. Since so many computer system 
projects involve much larger groups, we feel it is worth 
calling attention to this approach. 

Turning to the future, we plan to work with the 
ARPA Network project along several technical direc
tions: (1) the experimental operation of the network 
and any modifications required to tune its perfor
mance; (2) experimental operation of the network with 
higher bandwidth circuits, e.g., 230.4 kilobits; (3) a 
review of IMP variants that might perform multi
plexing functions; (4) consideration of techniques for 
designing more economical and/ or more· powerful 
IMPs; and (5) participation with the Host organiza
tions in the very sizeable problem of developing tech
niques and protocols for the effective utilization of 
the network. 

On a more global level, we anticipate an explosive 
growth of message switched computer networks, not 
just for the interactive pooling of resources, but for 
the simple conveniences and economies to be obtained 
for many classes of digital data communication. We 
believe that the capabilities inherent in the design of 
even the present subnet have broad application to 
other data communication problems of government 
and private industry. 
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Analytic and simulation methods 
in computer networkdesign* 

by LEONARD KLEINROCK 

University of California 
Los Angeles, California 

INTRODUCTION 

The Seventies are here and so are computer networks! 
The time sharing industry dominated the Sixties and 
it appears that computer networks will play a similar 
role in the Seventies. The need has now arisen for many 
of these time-shared systems to share each others' 
resources by coupling them together over a communica
tion network thereby creating a computer network. 
T& mini-computer will serve an important role here 
as the sophisticated terminal as well as, perhaps, the 
message switching computer in our networks. 

It is fair to say that the computer industry (as is 
true of most other large industries in their early de
velopment) has been guilty of "leaping before looking" ; 
on the other hand "losses due to hesitation" are not 
especially prevalent in this industry. In any case, it is 
clear that much is to be gained by an appropriate 
mathematical analysis of performance and cost measures 
for these large systems, and that these analyses should 
most profitably be undertaken before major design 
commitments are made. This paper attempts to move 
in the direction of providing some tools for and insight 
into the design of computer networks through mathe
matical modeling, analysis and simulation. Frank 
et al., 4 describe tools for obtaining low cost networks by 
choosing among topologies using computationally 
efficient methods from network flow theory; our ap
proacn complements theirs in that we look for closed 
analytic expressions where possible. Our intent is to 
provide understanding of the behavior and trade-offs 
available in some computer network situations thus 
creating a qualitative tool for choosing design options 
and not a numerical tool for choosing precise design 
parameters. 

* This work was' supported by the Advanced Research Projects 
Agency of the Department of Defense (DAHC15-69-C-0285). 
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THE ARPA EXPERIMENTAL COlV[PUTER 
NETWORK-AN EXAMPLE 

The particular network which we shall use for pur
poses of example (and with which we are most familiar) 
is the Defense Department's Advanced Research 
Projects Agency (ARPA) experimental computer 
network.2 The concepts basic to this network were 
clearly stated in Reference 11 by L. Roberts of the 
Advanced Research Projects Agency, who originally 
conceived this system. Reference 6, which appears in 
these proceedings, provides a description of the ~is
torical development as well as the structural orgamza
tion and implementation of the ARPA network. We 
choose to review some of that description below in 
order to provide the reader with the motivation and 
understanding necessary for maintaining a certain 
degree of self containment in this paper. 

As inight be expected, the design specifications and 
configuration of the ARPA network have changed 
many times since its inception in 1967. In June, 1969, 
this author published a paper8 in which a particular 
network configuration was described and for which 
certain analytical'models were constructed and studied. 
That network consisted of nineteen nodes in the con
tinental United States. Since then this number has 
changed and the identity of the nodes has changed and 
the topology has changed, and so on. The paper by 
Frank et al., 4 published in these proceedings, describes 
the behavior and topological design of one of these 
newer versions. However, in order to be consistent 
with our earlier results, and since the ARPA example 
is intended as an illustration of an approach rather 
than a precise design computation, we choose to con
tinue to study and therefore to describe the original 
nineteen node network in this paper. 

The network provides store-and-forward communica
tion paths between the set of nineteen computer re-
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Figure I-Configuration of the ARPA network in Spring 1969 

search centers. The computers located at the various 
nodes are drawn from a variety of manufacturers and 
are highly incompatible both in hardware and soft
ware; this in fact presents the challenge of the network 
experiment, namely, to provide effective communica
tion among and utilization of this collection of incom
patible machines. The purpose is fundamentally for 
resource sharing where the resources themselves are 
highly specialized and take the form of unique hard
ware, programs, data bases, and human talent. For 
example, Stanford Research Institute will serve the 
function of network librarian as well as provide an 
efficient text editing system; the University of Utah 
provides efficient algorithms for the manipulation of 
figures and for picture processing; the University of 
Illinois will provide through its ILLIAC IV the power 
of its fantastic parallel processing capability; UCLA 
will serve as network measurement center and also 
provide mathematical models and simulation capability 
for network and time-shared system studies. 

The example set of nineteen nodes is shown in Fig~re 
1. The traffic matrix which describes the message flow 
required between various pairs of nodes is given in 
Reference 8 and will not be repeated here. An under
lying constraint placed upon the construction of this 
network was that network operating procedures would 
not interfere in any significant way with the operation 
of the already existing facilities which were to be con
nected together through this network. Consequently, 
the message handling tasks (relay, acknowledgment, 
routing, buffering, etc.) are carried out in a special 
purpose Interface Message Processor (IMP) co-located 
with the principal computer (denoted HOST com
puter) at each of the computer research centers. The 
communication channels are (in most cases) 50 kilobit 
per second full duplex telephone lines and only the 
IMPs are connected to these lines through data sets. 

Thus the communication net consists of the lines, the 
IMPs and the data sets and serves as the store-and
forward system for the HOST computer network. Mes
ages which flow between HOSTs are broken up into 
small entities referred to as packets (each of maximum 
size of approximately 1000 bits). The IMP accepts up 
to eight of these packets to create a maximum size 
message from the HOST. The packets make their way 
individually through the IMP network where the ap
propriate routing procedure directs the traffic flow. A 
positive acknowledgment is expected within a given 
time period for each inter-IMP packet transmission; 
the absence of an acknowledgment forces the trans
mitting IMP to repeat the transmission (perhaps over 
the same channel or some other alternate channel). 
An acknowledgment may not be returned for example, 
in the case of detected errors or for lack of buffer space 
in the receiving IMP . We estimate the average packet 
size to be 560 bits; the acknowledgment length is 
assumed to be 140 bits. Thus, if we assume that each 
packet transmitted over a channel causes the generation 
of a positive acknowle.dgment packet (the usual case, 
hopefully) , then the average packet transmission over a 
line is of size 350 bits. Much of the short interactive 
traffic is of this nature. We also anticipate message 
traffic of much longer duration and we refer to this as 
multi-packet traffic. The average input data rate to the 
entire net is assumed to be 225 kilobits per second and 
again the reader is referred to Reference 8 for further 
details of this traffic distribution. 

So much for the description of the ARP A network. 
Protocol and operating procedures for the ARP A com
puter network are described in References 1 and 6 in 
these proceedings in much greater detail. The history, 
development, motivation and cost of this network is 
described by its originator in Reference 12. Let us now 
proceed to the mathematical modeling, analysis and 
simulation of such networks. 

ANALYTIC AND SIlVIULATION METHODS 

The mathematical tools for computer network design 
are currently in the early stages of development. In 
many ways we are still at the stage of attempting to 
create computer network models which contain enough 
salient features of the network so that behavior of 
such networks may be predicted from the model 
behavior. 

In this section we begin with the problem of analysis 
for a given network structure. First we review the 
author's earlier analytic model of communication net
works and then proceed to identify those features which 
distinguish computer networks from strict communica-



tion networks. Some previously published results on 
computer networks are reviewed and then new im
provements on these results are presented. 

We then consider the synthesis and optimization 
question for networks. We proceed by first discussing 
the nature of the channel cost function as available 
under present tariff and charging structures. We con
sider a number of different cost functions which attempt 
to approximate the true data and derive relationships 
for optimizing the selection of channel capacities under 
these various cost functions. Comparisons among the 
optimal solutions are then made for the ARPA network. 

Finally in this section we consider the operating rules 
for computer networks. We present the results of 
simulation for the ARPA network regarding certain 
aspects ()f the routing procedure which provide im
provements in performance. 

A model from queueing theory-Analysis 

In a recent work8 this author presented some com
puter network models which were derived from his 
earlier research on communication networks.7 An 
attempt was made at that time to incorporate many of 
the salient features of the ARPA network described 
above into this computer network model. It was 
pointed out that computer networks differ from com
munication networks as studied in Reference 7 in at 
least the following features: (a) nodal storage capacity 
is finite and may be expected to fill occasionally; (b) 
channel and modem errors occur and cause retransmis
sion; (c) acknowledgment messages increase the mes
sage traffic rates; (d) messages from HOST A to 
HOST B typically create return traffic (after some 
delay) from B to A; (e) nodal delays become im
portant and comparable to channel transmission delays; 
(f) channel cost functions are more complex. We in
tend to include some of these features in OUr model 
below. 

The model proposed for computer networks is drawn 
from our communication network experience and in
cludes the following assumptions. We assume that the 
message arrivals form a Poisson process with average 
rates taken from a given traffic matrix (such as in 
Reference 8), where the message lengths are expo
nentially distributed with a mean 1/,u of 350 bits (note 
that we are only accounting for short messages and 
neglecting the multi-packet traffic in this model). As 
discussed at length in Reference 7, we also make the 
independence assumption which allows a very simple 
node by node analysis. We further assume that a fixed 
routing procedure exists (that is, a unique allowable 
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path exists from origin to destination for each origin
destination pair). 

From the above assumptions one may calculate the 
average delay Ti due to waiting for and transmitting 
over the ith channel from Equation (1), 

1 
T i =---

,uCi - Ai 
(1) 

where Ai is the average number of messages per second 
flowing over channel i (whose capacity is C i bits per 
second). This was the appropriate expression for the 
average channel delay in the study of communication 
nets7 and in that study we chose as our major per
formance measure the message delay T averaged over 
the entire network as calculated from 

(2) 

where 'Y equals the total input data rate. Note that the 
average on Ti is formed by weighting the delay on 
channel Ci with the traffic, Ai, carried on that channel. 
In the study of communication nets7 this last equation 
provided an excellent means for calculating the aver
age message delay. That study went on to optimize the 
selection of channel capacity throughout the network 
under the constraint of a fixed cost which was assumed 
to be linear with capacity; we elaborate upon this cost 
function later in this section. 

The computer network models studied in Reference 8 
also made use of Equation (1) for the calculation of 
the channel delays (including queueing) where param-:
eter choices were 1/,u = 350 bits, C i = 50 kilo bits and 
Ai = average message rate on channel i (as determined 
from the traffic matrix, the routing procedure, and ac
counting for the effect of acknowledgment traffic as 
mentioned in feature (c) above). In order to account 
for feature (e) above, the performance measure (taken 
as the average message delay T) was calculated from 

(3) 

where again 'Y = total input data rate and the term 
10-3 = 1 millisecond (nominal) is included to account 
for the assumed (fixed) nodal processing time. The 
result of this calculation for the ARPA network shown 
in Figure 1 may be found in -Reference 8. 

The computer network model described above is 
essentially the one used for calculating delays in the 
topological studies reported upon by Frank, et aI., in 
these proceedings.4 

A number of simulation experiments have been 
carried out using a rather detailed description of the 
ARPA network and its operating procedure. Some of 
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Figure 2-Comparison between theory and simulation for the 
ARPA network 

these results were reported upon in Reference 8 and a 
comparison was made there between the theoretical 
results obtained from Equation (3) and the simulation 
results. This comparison is reproduced in Figure 2 
where the lowest curve corresponds to the results of 
Equation (3). Clearly the comparison between simula
tion and theory is only mildly satisfactory. As pointed 
out in Reference 8, the discrepancy is due to the fact 
that the acknowledgment traffic has been improperly 
included in Equation (3). An attempt was made in 
Reference 8 to properly account for the acknowledg
ment traffic; however, this adjustment was unsatis
factory. The problem is that the average message length 
has been taken to be 350 bits and this length has 
averaged the traffic due to acknowledgment messages 
along with traffic due to real messages. These acknowl
edgments should not be included among those messages 
whose average system delay is being calculated and yet 
acknowledgment traffic must be. included to properly 
account for the true loading effect in the network. In 
fact, the appropriate way to include this effect is to 
recognize that the time spent waiting for a channel is 
dependent upon the total traffic (including acknowledg
ments) whereas the time spent in transmission over a 
channel should be proportional to the message length 
of the real message traffic. Moreover, our theoretical 

equations have accounted only for transmission delays 
which come about due to the finite· rate at which bits 
may be fed into the channel (i.e., 50. kilobits per 
second); we are required however to include also the 
propagation time for a bit to travel down the length of 
the channel. Lastly, an additional one millisecond 
delay is included in the final destination node in order 
to deliver the message to the destination HOST. These 
additional effects give rise to the following expression 
for the average message delay T. 

(4) 

where 1/~' = 560 bits (a real message's average length) 
and PLi is the propagation delay (dependent on the 
channel length, L i ) for the ith channel. The first term 
in parentheses is the average transmission time and 
the second term is the average waiting time. The result 
of this calculation for the ARP A network gives us the 
curve in Figure 2 labeled "theory with correct acknowl
edge adjustment and propagation delays." The corre
spondence now between simulation and theory is un
believably good and we are encouraged that this ap
proach appears to be a suitable one for the prediction 
of computer network performance for the assumptions 
made here. In fact, one can go further and include the 
effect on message delay of the priority given to acknowl
edgment traffic in the ARPA network; if one includes 
this effect, one obtains another excellent fit to the 
simulation data labeled in Figure 2 as "theory cor
rected and with priorities." 

As discussed in Reference 8 one may generalize the 
model considered herein to account for more general 
message length distributions by making use of the 
Pollaczek-Khinchin formula for the delay Ti of a 

TABLE I-Publicly Available Leased Transmission Line Costs 
from Reference 3 

Speed 

45 bps 
56 bps 
75 bps 

2400 bps 
41 KB 
82 KB 

230 KB 
1 MB 

12 MB 

Cost / mile/month 
(normalized to 

1000 mile distance) 

$ .70 
.70 
.77 

1. 79 
15.00 
20.00 
28.00 
60.00 

287.50 



channel with capacity C i, where the message lengths 
have mean 1/ ~ bits with variance 0"2, where Ai is the 
average message traffic rate and Pi = Ai/ ~C i which 
states 

(5) 

This expression would replace the first two terms in 
the parenthetical expression of Equation (4)'; of course 
by relaxing the assumption of an exponential distribu
tion we remove the simplicity provided by the Marko
vian property of the traffic flow. This approach, how
ever, should provide a better approximation to the 
true behavior when required. 

Having briefly considered the problem of analyzing 
computer networks with regard to a single performance 
measure (average message delay), we now move on 
to the consideration of synthesis questions. This in
vestigation immediately leads into optimal synthesis 
procedures. 

Optimization for various channel cost functions
Synthesis 

We are concerned here with the optimization of the 
channel capacity assignment under various assump
tions regarding the cost of these channels. This opti
mization must be made under the constraint of fixed 
cost. Our problem statement then becomes:* 

Select the {C i} so as. to minimize T 

subject to a fixed cost constraint (6) 

where, for simplicity, we use the expression in Equa
tion (2) to define T. 

Weare now faced with choosing an appropriate cost 
function for the system of channels. We assume that 
the total cost of the network is contained in these 
channel costs where we certainly permit fixed termina
tion charges, for example, to be included. In order to 
get a feeling for the correct form for the cost function 
let us examine some available data. From Reference 3 
we have available the costing data which we present 
in Table 1. From a schedule of costs for leased com
munication lines available at Telpak rates we. have the 
data presented in Table 2. 

We have plotted these functions in Figure 3. We 

* The dual to this optimization problem may also be considered: 
"Select the {Ci } so as to minimize cost, subject to a fixed 
message delay constraint." The solution to this dual problem gives 
the optimum Ci with the same functionai dependence on Xi as one 
obtains for the original optimization problem. 
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TABLE 2-Estimated Leased Transmission Line Costs 
Based on Telpak Rates. * 

Cost Cost/mile/rrwnth 
(termination + mileage) (normalized to 

Speed / month 1000 mile distance) 

150 bps $ 77.50 + $ . 12/mile $ .20 
2400 bps 232 + . 35/mile .58 
7200 bps 810 + . 35/mile 1.16 

19.2 KB 850 + 2.1O/mile 2.95 
50 KB 850 + 4.20/mile 5.05 

108 KB 2400 + 4.20/mile 6.60 
230.4 KB 1300 + 21.00/mile 22.30 
460.8 KB 1300 + 60.00/mile 61.30 

1.344 MB 500 + 75.00/mile 80.00 

*These costs are, in some cases, first estimates and are not to be 
considered as quoted rates. 

must now attempt to find an analytic function which 
fits cost functions of this sort. Clearly that analytic 
function will depend upon the rate schedule available 
to the computer network designer and user. Many 
analytic fits to this function have been proposed and 
in particular in Reference 3 a fit is proposed of the 
form: 

Cost of line = O.ICi o.44 Simile/month (7) 

Based upon rates available for private line channels, 
Mastromonaco1o arrives at the following fit for line 
costs where he has normalized to a distance of 50 miles 
(rather than 1000 miles in Equation (7)) 

Cost of line = L08Ci o.316 Simile/month (8) 

Referring now to Figure 3 we see that the mileage 
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Figure 3-Scanty data on transmission line costs:$/mile/month 
normalized to 1000 mile distance 
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costs from Table 2 rise as a fractional exponent of 
capacity (in fact with an exponent of .815) suggesting 
the cost function shown in Equation (9) below -

Cost of line = ACi o.815 $/mile/month (9) 

These last three equations give the dollar cost per mile 
per month where the capacity C i is given in bits per 
second. It is interesting to note that all three functions 
are of the form 

Cost of line = A Cia $/mile/month (10) 

It is clear from these simple considerations that the 
cost function appropriate for a particular application 
depends upon that application and therefore it is 
difficult to establish a unique cost function for all 
situations. Consequently, we satisfy ourselves below 
by considering a number of possible cost functions and 
study optimization conditions and results which follow 
from those cost functions. The designer may then 
choose from among these to match his given tariff 
schedule. These cost functions will form the fixed cost 
constraint in Equation (6). Let us now consider the 
collection of cost functions, and the related optimiza
tion questions. 

1. Linear cost function. We begin with this case since 
the analysis already exists in the author's Reference 7, 
where the assumed cost constraint took the form 

(11) 

where D = total number of dollars available to spend 
on channels, di = the dollar cost per unit of capacity 
on the ith channel, and C i once again is the capacity 
of the ith channel. Clearly Equation (11) is of the 
same form as Equation (10) with a = 1 where we now 
consider the cost of all channels in the system as having 
a linear form. This cost function assumes that cost is 
strictly linear with respect to capacity; of course this 
same cost function allows the assumption of a constant 
(for example, termination charges) plus a linear cost 
function of capacity. This constant (termination 
charge) for each channel may be subtracted out of 
total cost, D, to create an equivalent problem of the 
form given in Equation (11). The constant, di , allows 
one to account for the length of the channel since di 

may clearly be proportional to the length of the channel 
as well as anything else regarding the particular channel 
involved such as, for example, the terrain over which 
the channel must be placed. As was done in Reference 
7, one may carry out the minimization given by Equa
tion (6) using, for example, the method of Lagrangian 
undetermined multipliers.5 This procedure yields the 

following equation for the capacity 

where 

Ci = ~~ + (De) V~ 
J.I. di L VAjdj 

j 

De = D - L Ai di > 0 
i J.I. 

(12) 

(13) 

When we substitute this result back into Equation (2) 
we obtain that the performance measure for such a 
channel capacity assignment is 

where 

n( ~ VAi di/A)2 
T = ------------

J.l.De 

LAi 

(14) 

i A 
n = -- == - = average path length (15) 

~ ~ 

The resulting Equation (12) is referred to as the square 
root channel capacity assignment; this particular 
assignment first provides to each channel a capacity 
equal to A/ J.I. which is merely the average bit rate 
which must pass over that channel and which it must 
obviously be provided if the channel is to carry such 
traffic. In addition, surplus capacity (due to excess 
dollars, De) is assigned to this channel in proportion 
to the square root of the traffic carried, hence the 
name. In Reference 7 the author studied in great detail 
the particular case for which di = 1 (the case for which 
all channels cost the same regardless of length) and 
considerable information regarding topological design 
and routing procedures was thereby obtained. How
ever, in the case of the ARPA network a more reason
able choice for d i is that it should be proportional to 
the length Li of the ith channel as indicated in Equation 
(10) (for a = 1) which gives the per mileage cost; 
thus we may take di = ALi. This second case was con
sidered in Reference 8 and also in Reference 9. The 
interpretation for these two cases regarding the de
sirability of concentrating traffic into a few large and 
short channels as well as minimizing the average length 
of lines traversed by a message was well discussed and 
will not be repeated here. 

We observe in the ARPA network example since the 
channel capacities are fixed at 50 kilobits that there is 
no freedom left to optimize the choice of channel 
capacities; however it was shown in Reference 8 that 
one could take advantage of the optimization procedure 
in the following way: The total cost of the network 



using 50 kilobit channels may be calculated. One may 
then optimize the network (in the sense of minimizing 
T) by allowing the channel capacities to vary while 
maintaining the cost fixed at this figure. The result of 
such optimization will provide a set of channel capac
ities which vary considerably from the fixed capacity 
network. It was shown in Reference 8 that one could 
improve the performance of the network in an efficient 
way by allowing that channel which required the largest 
capacity as a result of optimization to be increased 
from 50 kilobits in the fixed net to 250 kilo bits. This 
of course increases the cost of the system. One may 
then provide a 250 kilobit channel for the second 
"most needy" channel from the optimization, increasing 
the cost further. One may then continue this procedure 
of increasing the needy channels to 250 kilobits while 
increasing the cost of the network and observe the way 
in which message delay decreases as system cost in
creases. It was found that natural stopping points for 
this procedure existed at which the cost increased 
rapidly without a similar sharp decrease in message 
delay thereby providing some handle on the cost
performance trade-o ff. 

Since we are more interested in the difference between 
results obtained when one varies the cost function in 
more significant ways, we now study additional cost 
functions. 

2. Logarithmic cost functions. The next case of interest 
assumes a cost function of the form 

(16) 

where D again is the total dollar cost provided for 
constructing the network, di is a coefficient of cost 
which may depend upon length of channel, a is an 
appropriate multiplier and C i is the capacity of the 
ith channel. We consider this cost function for two 
reasons: first, because it has the property that the in
cremental cost per bit decreases as the channel size 
increases; and secondly, because it leads to simple 
theoretical results. We now solve the minimization 
problem. expressed in Equation (6) where the fixed 
cost constraint is now given through Equation (16). 
We obtain the following equation for the capacity of 
the ith channel 

(17) 

In this solution the Lagrangian mUltiplier /3 must be 
adjusted so that Equation (16) is satisfied when Ci is 
substituted in from Equation (17) . Note the unusual 
simplicity for the solution of C i, namely that the channel 
capacity for the ith channel is directly proportional to the 
traffic carried by that channel, Ai/ JL. Contrast this 
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result with the result in Equation (12) where we had a 
square root channel capacity assignment. If we now 
take the simple result given in Equation (17) and use 
it in Equation (2) to find the performance measure T 
we obtain 

T-L-+-+-{I [ l' (1 )2JI/21-1 
- i 2 di/3 di/3 2 di/3 J (18) 

In this last result the performance measure depends 
upon the particular distribution of the internal traffic 
{Ail JL} through the constant /3 which is adjusted as 
described above. 

3. The power law cost function. As we saw in Equa
tions (7), (8), and (9) it appears that many of the 
existing tariffs may be approximated by a cost function 
of the form given in Equation (19) below. 

(19) 

where a is some appropriate exponent of the capacity 
and di is an arbitrary multiplier which may of course 
depend upon the length of the channel and other perti
nent channel parameters. Applying the Lagrangian 
again with an undetermined multiplier /3 we obtain as 
our condition for an optimal channel capacity the 
following non-linear equation: 

(20) 

where 

(
Ai )1/2 

g.- --
~ - JL'Y/3a di 

(21) 

Once again, /3 must be adjusted so as to satisfy the 
constraint Equation (19). 

It can be shown that the left hand side of Equation 
(20) represents a convex function and that it has a 
unique solution for some positive value C i. We assume 
that a is in the range 

as suggested from the data in Figure 3. We may also 
show that the location of the solution to Equation (20) 
is not especially sensitive to the parameter settings. 
Therefore, it is possible to use any efficient iterative 
technique for solving Equation (20) and we ha.ve 
found that such techniques converge quite rapidly to 
the optimal solution. 

4. Comparison of solutions for various cost functions. 
In the last three subsections we have considered three 
different cost functions: the linear cost function; the' 
logarithmic cost function; and the power law cost 
function. Of course we see immediately that the linear 
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Figure 4-Average message delay at fixed cost as a function of 
data rate for the power law and linear cost functions 

cost function is a special case a = 1 of the power law 
cost function. We wish now to compare the performance 
and cost of computer networks under these various 
cost functions. We use for our example the ARP A 
computer network as described above. 

It is not obvious how one should proceed in making 
this comparison. However, we adopt the following 
approach in an attempt to make some meaningful com
parisons. We consider the ARP A network at a traffic 
load of 100% of the full data rate, namely 225 kilobits 
per second (denoted by 'Yo). For the 50 kilobit net 
shown in Figure 1 we may calculate the line costs from 
Table 2 ( e~inating the termination charges since 
we recognize this causes no essential <!hange in our 
optimization procedures, as mentioned above); the 
resultant network cost is approximately $579,000 per 
year (which we denote by Do). Using this 'Yo and Do 
(as well as the other given input parameters) we may 
then carry out the optimization indicated in Equation 
(6) for the case of a linear cost function where di = ALi 
and A is immediately found from the mileage cost in 
Table 2. This calculation results in an average message 
delay To (calculated from Equation (14») whose value 
is approximately 24 milliseconds. We have now estab
lished an "operating point" for the three quantities 
'Yo, Do, and To, whose values are 100% of full data rate, 
$579,000, and 24 milliseconds, respectively. 

We may now examine all of our other cost functions 
by forcing them to pass through this operating point. 
We assume di = ALi throughout for these calculations. 
Also we choose a = 1 for the logarithmic case in Equa
tion (16). (Note for the logarithmic and power law 
cases that two unknown constants, (3 and A, must be 
determined; this is now easily done if we set ·T = To 
and D = Do for 'Y = 'Yo in each of these two cases inde-

pendently.) In particular now we wish to examine the 
behavior of the network under these various. cost func
tions. We do this first by fixing the cost of the network 
at D = Do and plotting T, the average time delay, as 
we vary the percentage of full data rate applied to the 
network; this performance is given in Figure 4 where 
we show the system behavior for the power law cost 
function and the linear cost function. The result is 
striking ! We see that the variation in average message 
delay is almost insignificant as a passes through the 
range from 0.3 to 1.0. It appears then that the very 
important power law cost function may be analyzed 
using a linear cost function when one is interested in 
evaluating the average time delay at fixed cost. * 

We also consider the variation of the network cost D 
as a function of data rate at fixed average message delay, 
namely T = To = 24 milliseconds. This performance is 
shown in Figure 5 for all three cost functions. We note 
here that the linear cost function is only a fair ap
proximation to the power law cost function over the 
range of a shown; the logarithmic cost function is also 
shown and behaves very much like the linear cost 
function for data rates above 'Yo but departs from that 
behavior for data rates below 'Yo. It can be shown that 
the network cost, D, at fixed T = To for the case 
a = 1 (linear cost function) varies as a constant plus 
a linear dependence on 'Y. It is also of interest to cross 
plot the average time delay T with the network cost 
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Figure 5-Network cost at fixed average message delay as a 
function of data rate 

* The logarithm cost function is not shown in Figure 4 since the 
time delay is extremely sensitive to the data rate and bears little 
resemblance to the power law case. 



D. This we do in Figure 6 for the class of power law 
cost functions. In Figures 6a and 6b we obtain points 
along the vertical and horizontal axes corresponding to 
fixed delay and fixed cost, respectively. These loci are 
obtained by varying 'Y and we connect the points for 
equal 'Y with straight lines as shown in the figure (how. 
ever, we in no way imply that the system passes along 
these straight· lines as both T and D are allowed to 
vary simultaneously) . We note the increased range of 
D as a varies from 0.3 to 1.0, but very little change in 
the range of T. In Figure 6c we collect together the 
behavior in this plane for many values of a where the 
lines labeled with a particular value of a correspond to 
the 50% data rate case in the lower left-hand portion 
of the figure and to the 130% data rate case in the upper 
right-hand portion of the figure. From Figqre 6c we 
clet1rly observe that for fixed cost the time delay range 
varies insignificantly as a changes (as we emphasized 
in discussing Figure 4). Similarly, we observe the 
moderate variation at fixed time delay of network cost 
as a ranges through its values (this we saw clearly in 
Figure 5). 

These studies of network optimization for various 
cost functions need further investigation. Our aim in 
this section has been to exhibit some of the performance 
characteristics under these cost functions and to com
pare them in some meaningful way. 

Simulated routing in the ARP A network-Operating 
procedure 

We have examined analysis and synthesis procedures 
for computer networks above. We now proceed to 
exhibit some properties of the network operating pro
cedure, in particular, the message routing procedure. 

The ARPA network uses a routing procedure which 
is local in nature as opposed to global. Some details of 
this procedure are available in Reference 6 in these 
proceedings and we wish to comment on the method 
used for updating the routing tables. For purposes of 
routing, each node maintains a list which contains for 
each destination an estimate of the delay a message 
would encounter in attempting to reach that destina
tion node were it to be sent out over a particular channel 
emanating from that node; the list contains an entry 
for· each destination and each line leaving the node in 
which this list is contained. Every half second (ap .. 
proximately) each node sends to all of its immediate 
neighbors a list which contains its estimate of the 
shortest delay time to pass to each destination; this 
list therefore contains a number of entries which is one 
less than the number of nodes in the network. Upon 
receiving this information from one of its neighbors, 
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the IMP adds to this list of estimated delays a measure 
of the current delays in passing from itself to the neigh
bor from whom it is receiving this list; this then pro
vides that IMP an estimate of the minimum delay 
required to reach all destinations if one traveled out 
over the line- connected to that· neighbor. The routing 
table for the IMP is then constructed by combining 
the lists of all of its neighbors into a set of columns and 
choosing as the output line for messages going to a 
particular destination that line for which the estimated 
delay over that line to that destination is minimum. 
What we have here described is essentially a periodic 
or synchronous updating method for the routing tables 
as currently used in the ARPA network. It has the 
clear advantages of providing reasonably accurate 
data regarding path debl.Ys as well as the important 
advantage of being a rather simple procedure both 
from an operational point of view and from an over
head point of view in terms of software costs inside the 
IMP program. 

We suggest that t1 more efficient procedure in terms 
of routing delays is to allow asynchronous updating; 
by this we mean that routing information is passed 
from a node to its nearest neighbors only when signifi
cant enough changes occurr in its own routing table 
to warrant such an information exchange. The defini
tion of "significant enough" must be studied carefully 
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but certainly implies the use of thresholds on the per
centage change' of estimated delays. When these 
thresholds are crossed in an IMP then routing informa
tion is transferred to that IMP's nearest neighbors. 
This asynchronous mode of updating implies a large 
overhead for updating and it remains to be seen whether 
the advantages gained through this more elaborate 
updating method overcome the disadvantages due to 
software costs and cycle-stealing costs for updating. 
We may observe the difference in performance between 
synchronous and asynchronous updating through the 
use· of simulation as shown in Figure 7. In this figure 
we plot the average time delay T versus the average 
path length for messages under various routing disci
plines. We observe immediately that the three points 
shown for asynchronous updating are significantly 
superior to those shown for synchronous updating. 
For a comparison we also show the result of a fixed 
routing algorithm which was computed by solving for 
the shortest delay path in an unloaded network ; the 
asynchronous updating shows superior performance 
to the fixed routing procedure. Moreover, the synchro
nous updating shows inferior performance compared to 
this very simple fixed routing procedure if we take as 
our performance measure the average message delay. 

It was observed that with synchronous updating it 
was possible for a message to get trapped temporarily 
in loops (i.e., traveling back and forth between the 
same pair of nodes). We suppressed this looping be
havior for two synchronous updating procedures with 
different parameter settings and achieved significant 

improvement; nevertheless, this improved version 
remains inferior to those simulated systems with asyn
chronous updating. As mentioned above, asynchronous 
updating contains many virtues, but one must consider 
the overhead incurred for such a sophisticated updating 
procedure before it can be incorporated and expected 
to yield a net improvement in performance. 

CONCLUSIONS 

Our goal in this paper has been to demonstrate the 
importance of analytical and. simulation techniques in 
evaluating computer networks in the early design 
stages. We have addressed ourselves to three areas of 
interest, namely the analysis of computer network 
performance using methods from' queueing theory, the 
optimal synthesis problem for a variety of cost func
tions, and the choice of routing procedure for these 
networks. Our results ~how that it is possible to obtain 
exceptionally good results in the analysis phase when 
one considers the "small" packet traffic only. As yet, 
we have not undertaken the study of the multi-packet 
traffic behavior. In examining available data we found 
that the power law cost function appears to be the ap
propriate one for high-speed data lines. We obtained 
optimal channel capacity assignment procedures for 
this cost function as well as the logarithmic cost func
tion and the linear cost function. A significant result 
issued from this study through the observation that the 
average message delay for the power law cost function 
could very closely be approximated by the average 
message delay through the system constrained by a 
linear cost function; this holds true in the case when 
the system cost is held fixed. For the fixed delay case 
we found that the variation of the system cost under a 
power law constraint could be represented by the cost 
variation for a linear cost constraint only to a limited 
extent. 

In conjunction with pure analytical results it is 
extremely useful to take advantage of system simula
tion. This is the approach we described in studying the 
effect of routing procedures and comparing methods 
for updating these procedures. We indicated that 
asynchronous updating was clearly superior to syn
chronous updating except in the case where the over
head for .asynchronous updating might be severe. 

The results referred to above serve to describe the 
behavior of computer network systems and are useful 
in the early stages' of system design. If one is desirous 
of obtaining' numerical tools for choosing the precise 
design parameters' of a system, then it is necessary to 
go to much more elaborate analytic models or else 
to resort to efficient search procedures (such as that 



described III Reference 4) III order to locate optimal 
designs. 
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Topological considerations in the design 
of the ARPA computer network* 

by H. FRANK, 1. T. FRISCH, and W. CHOU 

Network Analysis Corporation 
Glen Cove, N ew York 

INTRODUCTION 

The ARPA Network will provide store-and-forward 
communication paths between a set of computer centers 
distributed across the continental United States. The 
message handling tasks at each node in the network are 
performed by a special purpose Interface Message 
Processor (IMP) located at each computer center. The 
centers will be interconnected through the IMPs by 
fully duplex telephone lines, of typically 50 kilobit/sec 
capacity. 

When a message is ready for transmission, it will be 
broken up into a set of packets, each with appropriate 
header information. Each packet will independently 
make its way through the network to its destination. 
When a packet is transmitted between any pair of 
nodes, the transmitting IMP must receive a positive 
acknowledgement from the receiving IMP within a 
given interval of time. If this acknowledgement is not 
received, the packet will be retransmitted, either over 
the same or a different channel depending on the net
work routing doctrine being employed. 

One of the design goals of the system is to achieve a 
response time of less than 0.2 seconds for short messages. 
A measure of the efficiency with which this criterion is 
met is the cost per bit of information transmitted 
through the network when the total network traffic is 
at the level which yields 0.2 second average time delay. 
The goal of the network design is to achieve the re
quired response time with the least possible cost per 
bit. The final network design is subject to a number 
of additional constraints. It must be reliable, it must 
have reasonably flexible capacity in order to accommo-

* This work was supported by the Advanced Research Projects 
Agency of the Department of Defense (Contract No. DAHC15-
70-C-0120). 
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date variations in traffic flow without significant degra
dation in performance, and it must be neatly expand
able so that additional nodes and links can be added at 
later dates. The sequence and allowable variations with 
which the nodes are added to the network must also 
be taken into account. At any stage in the evolution 
of the network, there must be at least one communi
cation path between any pair of nodes that have already 
been activated. In order to achieve a reasonable level 
of reliability, the network must be designed so that at 
least two nodes and/or links must fail before the net
work becomes disconnected. 

To plan the orderly growth of the network, it is 
necessary to predict the behavior of proposed network 
designs. To do this, traffic flows must ,be projected and 
network routing procedures specified. The time delay 
analysis problem has been studied by Kleinrockl ,2 who 
considered several mathematical models of the ARPA 
Network. Kleinrock's comparison of his analysis with 
computer simulations indicates that network behavior 
can be qualitatively predicted with reasonable confi
dence. However, additional study in this area is needed 
before all the significant parameters which describe the 
system can be incorporated into the model. For the 
present, it appears that a combination of analysis and 
simulation can best be applied to determine a specific 
network's behavior. 

Even if a proposed network can be accurately 
analyzed, the most economical networks which satisfy 
all of the constraints are not easily found. This is be
cause of the enormous number of combinations of links 
that can be used to connect a relatively small number 
of nodes. It is not possible to examine even a small 
fraction of the possible network topologies that might 
lead to economical designs. In fact, the direct enumer
ation of all such configurations for a twenty node net
work is beyond the capabilities of the most powerful 
present day computer. 
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TOPOLOGICAL OPTIMIZATION 

As part of NAC's study of computer network design, 
a computer program was developed to find low cost 
topologies which satisfy the constraints on network 
time delay, reliability, congestion, and other perform
ance parameters. This program is structured to allow 
the network designer to rapidly investigate the tradeoffs 
between average time delay per message, network cost, 
and other factors of interest. 

The inputs to the program are: 

1. Existing network configuration (i.e., lines and 
nodes already installed and ordered) 

2. Estimated traffic between nodes 
3. Maximum average delay desired for short messages 

In addition, the user may specify to the program a 
maximum cost that no network design will be allowed 
to exceed. 

The output of the program is a sequence of low cost 
networks. Each network is identified by the following 
information: 

1. Network topology 

2. Cost per month 

3. Maximum throughput 

4. Estimated average traffic 

5. Message cost per megabit at maximum throughput 

6. Average message delay for short messages 

Each acceptable network design also conforms to the 
standard that at least two nodes and/or links must 
fail before all communication paths between any pair 
of nodes are disrupted. 

APPROACH 

The general design problem as stated above is similar 
to other network design problems for which compu
tationally practical solutions have recently been ob
tained. These problems include the minimum cost de
sign of survivable networks,3 the minimum cost se
lection and interconnection of Telpaks in telephone 
networks,4 the design of offshore natural gas pipeline 
networks,5 and the classical Traveling Salesman prob
lem.6 These problems have long resisted exact solution; 
however, recent work on approximate methods has 
been extremely successful and has led to efficient 
~ethods of finding low cost solutions in practical compu-

.. tation times. 

The design philosophy 

By a "feasible" solution, we mean one which satisfies 
all of the network constraints. By an "optimal" net
work, we mean the feasible network with the least 
possible cost. Our goal is to develop a method that can 
handle realistically large problems in a reasonable 
computation time and which can find feasible solutions 
wi th costs close to optimal. 

The method to be used has two main parts called the 
starting routine and the optimizing routine. The starting 
routine generates a feasible solution. The optimizing 
routine then examines networks derived from this 
starting network by means of local transformations 
applied to the network topology. When a feasible net
work with lower cost is found, it is adopted as a new 
starting network and the process is continued. IIi this 
way, a feasible network is eventually reached whose 
cost cannot be reduced by applying additional local 
transformations of the type being considered. Such a 
network is called a locally optimum network. 

Once a locally optimum network is found, the entire 
procedure is repeated by again using the starting rou
tine. The starting routine may incorporate suggestions 
made by a human designer. For example, the present 
tentative configurations for the ARPA Network have 
been used. Alternatively, if desired, the starting routine 
may generate feasible networks without such advice. 
At the present time, our starting routine is capable of 
generating about 100,000 low cost networks. 

By finding local optima from different starting net
works, a variety of solutions can be generated. Figure 1 
shows a diagrammatic representation of the process. 

Figure 1-Diagrammatic representation of the optimization 
procedure 
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Figure 2-Block diagram of optimization procedure 

The space of feasible solutions is represented by the 
area enclosed by the outer border of the figure; starting 
solutions are represented by light circles and local 
optima by dark circles. The practicality of the approach 
is based on the assumption that with a high probability 
some of the local optima found are close in cost to the 
global optimum. Naturally, this assumption is sensitive 
to the partiCUlar transformation used in the optimizing 
routine. A block diagram of the optimization procedure 
is shown in Figure 2. 

Local transformations 

A local transformation on a network is generated by 
identifying a set of links, removing these links, and 

adding a new set to the network. The method of 
selection of the number and location of the links to be 
removed and added determines the usefulness of the 
transformation and its applicability to the problem in 
hand. For example, in the problem of economically 
designing offshore natural gas pipeline networks, dra
matic cost reductions were achieved by removing and 
adding one link at a time.5 On the other hand, in a 
problem of the minimum cost design of survivable net
works, the most useful link exchange consisted of re
moving and adding two links at a time.3 In general, 
it is not necessary that the same number of links be 
added and removed during each application of the 
transformation. 

DESIGN CONSTRAINTS 

The preceding section has a given general approach 
for the design of low cost feasible net\v"orks. To imple
ment this approach, a number of specific problems 
must be considered. These include: 

1. The distribution of network traffic. 
2. Network Route Selection. 
3. Link capacity assignment. 
4. Node and Link Time Delays. 

Distribution of traffic 

At the present time, it is difficult to estimate the 
precise magnitude and distribution of the Host-to-Host 
traffic. However, one design goal is that the amount of 
flow that can be transmitted between nodes should 
not significantly vary with the locations of sender and 
receiver. Hence, two users several thousand miles apart 
should receive the same service as two users several 
hundred miles apart. A reasonable requirement is 
therefore that the network be designed so that it can 
accommodate equal traffic between all pairs of nodes. 
However, it is known that certain nodes have larger 
traffic requirements to and from the University of 
Illinois' Illiac IV than to other nodes. Consequently, 
information of this type is incorporated into the model. 

The magnitude of the network traffic is treated as 
variable. A "base" traffic requirement of 500·n bits per 
second (n is a positive real number) between all nodes 
is assumed. An additional 500·n bits per second is 
then added to and from the University of Illinois (node 
No.9) and nodes 4, 5, 12, 18, 19, and 20. The base 
traffic is used to determine the flows in each link and 
the link capacities as discussed in the following sections. 
n is then increased until the average time delay exceeds 
.2 seconds. The average number of bits per second per 
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node at average delay equal .2 seconds is taken as a 
measure of performance and the corresponding cost 
per bit is taken as a measure of efficiency of the network. 

Route selection 

In order to avoid the prohibitively long computation 
times required to analyze dynamic routing strategies, 
a fixed routing procedure is used. This procedure is 
similar to the one which will be used in the operating 
network but it has the advantage that it can be readily 
incorporated into analysis procedures which do not 
depend on simulation. 

The routing procedure is determined by the assump
tion that for each message a path which contains the 
few~st number of intermediate* nodes from origin to desti
nation is most desirable. Given a proposed network 
topology and traffic matrix, routes are determined as 
follows: For each i (i = 1,2, "', N = 20): 

1. With node i as an initial node, use a labelling 
procedure7 to generate all paths containing the fewest 
number of intermediate nodes, to all nodes which have 
non-zero traffic from node i. Such paths are called 
feasible paths. 

2. If node i has non-zero traffic to node j (j = 1, 
2, "', N, j ¢ i) and the feasible paths from i to j 
contain more than seven nodes, the topology is con
sidered infeasible. 

3. Nodes are grouped as follows: 

(a) All nodes connected to node i. 
(b) All nodes connected to node i by a feasible 

path with one intermediate node. 
( c) All nodes connected to node i by a feasible 

path with two intermediate nodes. 
(d) ----------
(e) ----------
(f) All nodes connected to node i by a feasible 

path with five intermediate nodes. 

Traffic is first routed from node i to any node j 
which is ,directly connected to i over link (i, j). Conse
quently, after this stage, some flows have been assigned 
to the network. Each node in group (b) is then con
sidered. For any node j in this group, all feasible paths 
from i to j are examin.ed, and the maximum flow thus 
far assigned in any link in each such path is found. 
All paths with the smallest maximum flow are then 
considered. The path whose total length is minimum 

* A node j ~ 8, t is called an intermediate node with respect to a 
message with origin 8 and destination t if the path from 8 to t over 
which the message is transmitted contains node j. 

is then selected and all traffic origin.ating at i and 
destined for j is routed over this path. * All nodes in 
group (b) are treated in this matter. The same pro
cedure is then applied to all nodes in group (c), (d), 
(e) and (f) in that order. 

Capacity assignment 

Link capacities could be assigned prior to routing. 
Then after route selection, if the flow in any link 
exceeds its assigned capacity, the network would be 
considered infeasible. On the other hand, link capacities 
may be assigned after all traffic is routed; we adopt 
this approach. The capacity of each link is chosen to 
be the least expensive option available from AT&T 
which satisfies the flow requirement. The line options 
which are presently being considered are: 50,000 bits/sec 
(bps), 108,000 bps, 230,400 bps, and 460,000 bps. 
Monthly link costs are the sum of a fixed terminal 
charge and a linear cost per mile. Thus, to satisfy a 
requirement of 85,000 bps, depending on the length of 
the link it is' sometimes cheaper to use two 50,000 bps 
parallel links and sometimes cheaper to use a single 
108,000 bps link. 

The following line options and costs have been in
vestigated: 

Type Speed Cost Per Month 

Full Group 
(303 data set) 50KB $850 + $4.20/mile 

Full Group 
(304 data set)** 108 KB $2400 + $4.20/mile 

Telpak C 230.4 KB $1300 + $21.00/mile 
Telpak D 460 KB $1300 + $60.00/mile 

Link and node delays 

Response time T is defined as the average time a 
message takes to make its way through the network 
from its origin to its destination. Short messages are 
considered to correspond to a single packet which may 
be as long as 1008 bits or as short as few bits, plus 
the header. If T i is the mean delay time for a packet 
passing through the ith link, then 

M 

T = r-1 LYiTi, 
i=l 

*It is also possible to divide the traffic from i to j and send it 
over more than one feasible path, but for uniform traffic this is 
not an important factor. 

* *N ot a standard AT&T offering. 
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where r is the total IMP-to-IMP traffic rate, Yi is the 
average traffic rate in the ith link, and M is the total 
number of links. T i can be approximated with the 
Pollaczak-Khinchin formula as: 

where 1/ po is the average packet length (in bits), C i is 
the capacity of the ith link (in bits/second), a is the 
coefficient of variance for the packet length. 

These parameters are evaluated as follows: 

1. r is the sum of all elements in the traffic matrix 
after each element has been adjusted to include headers, 
parity check and requests for next message (RFNM). 

2. Yi is determined by the routing strategy. 
3. In calculating 1/ po, we consider three kinds of 

packets: (a) packets generated by short messages and 
all other packets (except RFNM's) with length less 
than 1008 bits; (b) full length packets of 1008 bits 
belonging to long messages; (c) RFNM's. 

It is assumed that the packets of part (a) are uni
formly distributed with mean length equal to 560 bits. 
The packet length for part (b) is a constant equal to 
1008 bits. The average packet length is then calculated 
by first estimating the average number of packets with 
1008 bits. It is assumed that each long message consists 
of -an average of 4 packets. In many of our computations, 
we assume that 80% of the messages are short. The 
number of RFNM packets can then be estimated. 
Finally, since the average length of each type of packet 
is known and the number of each type of packet has 
been estimated, the average packet length can be 
estimated. 

4. Yi is adjusted to include the increased traffic due 
to acknowledgments. C i is then selected as already 
described. 

5. The larger the value of a, the larger the delay 
time. For the exponential distribution a = 1; for a 
constant, a = 0; and for many distributions 0 < a < 1. 
Since it is reasonable to assume that the packet length 
distribution being considered is very close to the combi
nation of a uniform distribution and a constant, the 
value of a should be less than one. To avoid under
estimating T, a is set equal to one in all calculations. 

The above analysis is based on the assumption that 
the number of available buffers is unlimited. When the 
traffic' is low, this assumption is very accurate. For 
high traffic, adjustments to account for the limitation 
of buffer space are necessary. 

There are two roles for buffers in an IMP; one for 
reassembling messages destined for that IMP"s Host 

and the other for store-and-forward traffic. At the 
present time, about one-half of the IMP's core is used 
for the operating program. The remainder contains 
about 84 buffers each of which can store a single packet. 
Up to i of the buffers rimy be used for reassembly. 
Buffers not used for reassembly are available for store
and-forward traffic. When no buffer is available for 
reassembly, any arriving packet which requires re
assembly but does not belong to any message in the 
process of reassembly will be discarded and no acknowl
edgment returned to the transmitting IMP. This packet 
must then be retransmitted, and the effective traffic in 
the link is therefore increased. In addition, each time a 
packet is retransmitted, its delay time is not only 
increased by the extra waiting and transmitting time, 
but also by the 100 ms time-out period. To account for 
these factors, an upper bound on the probability that 
no buffer is available is calculated for each IMP. The 
traffic between IMPs is then increased and extra delay 
time for the retransmitted packets is calculated. The 
increase in delay time is then averaged over all the 
packets. 

When no buffer is available for store-and-forward 
traffic, all incoming links become inactive. Effectively, 
the average usable capacities of these links is lower 
than their actual capacities. The probability that no 
buffer is available for store-and-forward traffic is set 
equal to the average of an upper bound and a lower 
bound; the upper bound is calculated by assuming that 
the ratio of flow to capacity of each link into the IMP 
is equal to the maximum ratio for' all links at that node 
while the lower bound is found by assuming that the 
ratio of flow to capacity for each link is equal to the 
minimum such ratio. Link capacities are then reduced 
to include this effect and the response time is then 
recalculated. An example of the effect of the above 
assumptions is shown in Figure 4. Figure 4 relates 
a verage time delay and throughput per node for the 
network shown in Figure 3. Two curves are shown. 
One is obtained by assuming that there are an infinite 
number of buffers at each node. The second curve is 
obtained by using the actual buffer limitations of the 
ARPA network. 

4 ~ <. ::::;;,?-~,~' " loe.... 1o",,& 
,8 ," 

loa .... 8 . 
7 5 

Figure 3 
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node 

Figure 4 

PRELIMINARY COMPUTATIONAL RESULTS 

The optimization procedures were employed to design 
many thousand twenty node networks. The parameters 
of the best of these networks were then plotted as 
scatter diagrams as indicated in Figure 5. The coordi
nate of the horizontal axis on the graph is cost in 
dollars. The coordinate of the vertical axis is the average 
throughput per node* in bits per second for a specified 
distribution of traffic. The graph shown is for an average 
message delay of .2 seconds for short messages. Each 
point in the graph corresponds to a network generated, 
evaluated, and optimized by the computer. 

Interpretation of results 

Consider any point P.l corresponding to a network 
N 1• Draw a horizontal line starting at PI to the right 

* throughput is the average number of bits/second out of each 
node. 

Figure 5 

of PI and a vertical line down from PI. Any point say 
P 2 which falls within the quadrant defined by the two 
lines is said to be dominated by PI, since in a sense, 
network N I is "better than" network N 2. Similarly N 1 

is said to be a dominant network. That is, for the same 
delay N 1 provides at least as much throughput as N 2 

at no higher cost. Horizontal and vertical lines can be 
drawn through certain points PI, ... , P n so that all 
other points are dominated by at least one of these. 
PI, ... , P n thus represent, in one sense, the best net
works. 

One must be cautious, however, in that a network 
which is dominant for one time delay may not be 
dominant for another. Many networks with this prop
erty have been found in our studies. 

Furthermore, in some cases a network may be domi
nated but might still be preferable to the network 
which dominates it because of other factors such as the 
order of leasing lines and plans for future growth. As 
an example, PI is a dominant point and yet there are 
many points which it dominates which are very close 
to it and might well be preferable. 

Some other conclusions can be drawn from the 
graphs. Examining the set of dominant points it appears 
that there are significant savings due to economies of 
scale in the range of costs of $64,000 to $80,000. That 
is, small increases in cost yield large gains in throughput. 
Similar savings are observed in 'the $90,000-$100,000 
cost range for average throughputs in the 30,000 bits/ 
second range. These savings are due to the utilization 
of 108 kilobit lines which have the same line cost as 
50 kilobit lines but a higher data set cost. This means 
that for a modest additional cost, the capacities of 
cross country lines can be more than doubled. To see 
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Figure 6 

the effect of eliminating the 108 kilobit line option 
(which is not a standard AT&T offering), the cost per 
megabit of transmitted data is plotted against the total 
monthly line cost in Figure 6 for low cost networks 
designed with and without this option. Each point in 
this figure represents a feasible network. The points 
are connected by straight lines for visual convenience. 

Additional investigations are presently under way 
to better understand the relationship between cost, 
delay and throughput, and the effect of the number of 

nodes on these parameters. Furthermore, alternative 
routing schemes will be considered as well as the cost
throughput tradeoffs that can be obtained by increasing 
the number of buffers at appropriate nodes. 
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INTRODUCTION 

The Advanced Research Projects Agency (ARPA) Com
puter N etwok (hereafter referred to as the "ARPA 
network") is one of the most ambitious computer net
works attempted to date.1 The types of machines and 
operating systems involved in the network vary widely. 
For example, the computers at the first four sites are 
an XDS 940 (Stanford Research Institute), an IBM 
360/75 (University of California, Santa Barbara), an 
XDS SIGMA-7 (University of California, Los Angeles), 
and a DEC PDP-I0 (University of Utah). The only 
commonality among the network membership is the 
use of highly interactive time-sharing systems; but, of 
course, these are all different in external appearance 
and implementation. Furthermore, no one node is in 
control of the network. This has insured generality and 
reliability but complicates the software. 

Of the networks which have reached the operational 
phase and been reported in the literature, none have 
involved the variety of computers and operating sys
tems found in the ARPA network. For example, the 
Carnegie-Mellon, Princeton, IBM network consists of 
360/67's with identical software.2 Load sharing among 
identical batch machines was commonplace at North 
American Rockwell Corporation in the early 1960's. 
Therefore, the implementers of the present network 
have been only slightly influenced by earlier network 
attempts. 

*This research was sponsored by the Advanced Research Projects 
Agency, Department of Defense, under contracts AF30(602)-4277 
and DAHC15-69-C-0285. 
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However, early time-sharing studies at the University 
of California at Berkeley, MIT, Lincoln Laboratory, 
and System Development Corporation (all ARPA spon
sored) have had considerable influence on the design 
of the network. In some sense, the ARPA network of 
time-shared computers is a natural extension of earlier 
time-sharing concepts. 

The network is seen as a set of data entry and exit 
points into which individual computers insert messages 
destined for another (or the same) computer, and from 
which such messages emerge. The format of such mes
sages and the operation of the network was specified 
by the network contractor (BB&N) and it became the 
responsibility of representatives of the various com
puter sites to impose such additional constraints and 
provide such protocol as necessary for users at one site 
to use resources at foreign sites. This paper details the 
decisions that have been made and the considerations 
behind these decisions. 

Several people deserve acknowledgment in this effort. 
J. Rulifson and W. Duvall of SRI participated in the 
early design effort of the protocol and in the discussions 
of NIL. G. Deloche of Thomson-CSF participated in 
the design effort while he was at UCLA and provided 
considerable documentation. J. Curry of Utah and 
P. Rovner of Lincoln Laboratory reviewed the early 
design and NIL. W. Crowther of Bolt, Beranek and 
Newman contributed the idea of a virtual net. The 
BB&N staff provided substantial assistance and guid
ance while delivering the network. 

We have found that, in the process of connecting 
machines and operating systems together, a great deal 
of rapport has been established between personnel at 
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SR I 

UCLA 

Figure 1-Initial network configuration 

the various network node sites. The resulting mixture 
of ideas, discussions, disagreements, and resolutions has 
been highly refreshing and beneficial to all involved, 
and we regard the human interaction as a valuable 
by-product of the main effort. 

THE NETWORK AS SEEN BY THE HOSTS 

Before going on to discuss operating system com
munication protocol, some definitions are needed. 

A HOST is a computer system which is part of the 
network. 

An IMP (Interface Message Processor) is a Honey
well DDP-516 computer which interfaces with up to 
four HOSTs at a particular site, and allows HOSTs 
access into the network. The configuration of the initial 
fqur-HOST network is given in Figure 1. The IMPs 

" form a store-and-forward communications network. A 
companion paper in these proceedings covers the IMPs 
in some detail,3 

A message is a bit stream less than 8096 bits long 
which is given to an IMP by a HOST for transmission 
to another HOST. The first 32 bits of the message are 
the leader. The leader contains the following infor
mation: 
(a) HOST 
(b) Message type 
(c) Flags 
(d) Link number 

When a message is transmitted from a HOST to its 
IMP, the HOST field of the leader names the receiving 
HOST. When the message arrives at the receiving 
HOST, the HOST field names the sending HOST. 

Only two message types are of concern in this paper. 
Regular messages are generated by a HOST and sent 
to its IMP for transmission to a foreign HOST. The 
other message type of interest is a RFNM (Request
for-Next-Message). RFNMs are explained in con
junction with links. 

The flag field of the leader controls special cases not 
of concern here. 

The link number identifies over which of 256 logical 
paths (links) between the sending HOST and the re
oeiving HOST the message will be sent. Each link is 
unidirectional and is controlled by the network so that 
no more than one message at a time may be sent over it. 
This control is implemented using RFNM messages. 
After a sending HOST has s"ent a message to a receiving 
HOST over a particular link, the sending HOST is 
prohibited from sending another message over that 
same link until the sending HOST receives a RFNM. 
The RFNM is generated by the IMP connected to the 
receiving HOST, and the RFNM is sent back to the 
sending HOST afteF the message has entered the re
ceiving HOST. It is important to remember that there 
are 256 links in each direction and that no relationship 
among these is imposed by the network. 

The purpose of the link and RFNM mechanism is 
to prohibit individual users from overloading an IMP 
or a HOST. Implicit in this purpose is the assumption 
that a user does not use multiple links to achieve a 
wide band, and to a large extent the HOST-HOST 
protocol cooperates with this assumption. An even 
more basic assumption, of course, is that the network's 
load comes from some users transmitting sequences of 
messages rather than many users transmitting single 
messages coincidently. 

In order to delimit the length of the message, and 
to make it easier for HOSTs of differing word lengths 
to communicate, the following formatting procedure is 
used. When a HOST prepares a message for output, it 
creates a 32-bit leader. Following the leader is a binary 
string, called marking, consisting of an arbitrary number 
of zeroes, followed by a one. Marking makes it possible 
for the sending HOST to synchronize the beginning of 
the text of a message with its word boundaries. When 
the last bit of a message has entered an IMP, the 
hardware interface between the IMP and HOST ap
pends a one followed by enough zeroes to make the 
message length a multiple of 16 bits. These appended 
bits are called padding. Except for the marking and 
padding, no limitations are placed on the text of a 
message. Figure 2 shows a typical message sent by a 
24-bit machine. 

DESIGN CONCEPTS 

The computers participating in the network are alike 
in two important respects: each supports research inde-



pendent of the network, and each is under the discipline 
of a time-sharing system. These facts contributed to 
the following design philosophy. 

First, because the computers in the network have 
independent purposes, it is necessary to preserve de
centralized administrative control of the various com
puters. Since all of the time-sharing supervisors possess 
elaborate and definite accounting and resource allo
cation mechanisms, we arranged matters so that these 
mechanisms would control the load due to the network 
in the same way they control locally generated load. 

Second, because the computers are all operated under 
time-sharing disciplines, it seemed desirable to facilitate 
basic interactive mechanisms. 

Third, because this network is used by experienced 
programmers it was imperative to provide the widest 
latitude in using the network. Restrictions concerning 
character sets, programming languages, etc., would not 
be tolerated and we avoided such restrictions. 

Fourth, again because the network is used by experi
enced programmers, it was felt necessary to leave the 
design open-ended. We expect that conventions will 
arise from time to time as experience is gained, but we 
felt constrained not to impose them arbitrarily. 

Fifth, in order to make network participation com
fortable, or in some cases, feasible, the software inter
face to the network should require minimal surgery on 
the HOST operating system. 

Finally, we accepted the assumption stated above 
that network use consists of prolonged conversations 
instead of one-shot requests. 

Those considerations led to the notions of connections, 
a Network Control Program, a control link, control 
commands, sockets, and virtual nets. 

A connection is an extension of a link. A connection 
connects two processes so that output from one process 

24 bits ---

Leader (32 bits) 

rIOO-- - ----(J' 

Text of message (96 bits) 

100---,,-

~ 
----0 I 

16 bits of padding 
added by the interface 

16 bits of marking 

~ 

Figure 2-A typical message from a 24-bit machine 
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24 8 8 

User Number 

L LAEN 

HOST number 

Figure 3-A typical socket 

is input to the other. Connections are simplex, so two 
connections are needed if two processes are to converse 
in both directions. 

Processes within a HOST communicate with the 
network through a Network Control Program (NCP). 
In most HOSTs, the NCP will be part of the executive, 
so that processes will use system calls to communicate 
with it. The primary function of the NCP is to establish 
connections, break connections, switch connections, and 
control flow. 

In order to accomplish its tasks, a NCP in one 
HOST must communicate with a NCP in another 
HOST. To this end, a particular link between each 
pair of HOSTs has been designated as the control link. 
Messages received over the control link are always 
interpreted by the NCP as a sequence of one or more 
control commands. As an example, one of the kinds of 
control commands is used to assign a link and initiate 
a connection, while another kind carries notification 
that a connection has been terminated. A partial sketch 
of the syntax and semantics of control commands is 
given in the next section. 

A major issue is how to refer to processes in a foreign 
HOST. Each HOST has some internal naming scheme, 
but these various schemes often are incompatible. Since 
it is not practical to impose a common internal process 
naming scheme, an intermediate name space was created 
with a separate portion of the name space given to 
each HOST. It is left to each HOST to map internal 
process identifiers into its name space. 

The elements of the name space are called sockets. 
A socket forms one end of a connection, and a con
nection is fully specified by a pair of sockets. A socket 
is specified by the concatenation of three numbers: 

(a) a user number (24 bits) 
(b) a HOST number (8 bits) 
(c) AEN (8 bits) 

A typical socket is illustrated in Figure 3. 
Each HOST is assigned all sockets in the name space 

which have field (b) equal to the HOST's own identifi
cation. 

A socket is either a receive socket or a send socket, 
and is so marked by the low-order bit of the AEN 
(0 = receive, 1 = send). The other seven bits of the 



592 Spring Joint Computer Conference, 1970 

connection 
~ ____ ~ __ ~A~ __________ ~ 

I p.oce .. r I link ;-B 
send socket receive socket 

Figure 4-The relationship between sockets and processes 

AEN simply provide a sizable population of sockets for 
each user number at each HOST. (AEN stands for 
"another eight-bit number".) 

Each user is assigned a 24-bit user number· which 
uniquely identifies him throughout the network. Gener
ally this will be the 8-bit HOST number of his home 
HOST, followed by 16 bits which uniquely identify 
him at that HOST. Provision can also be made for a 
user to have a user number not keyed to a particular 
HOST, an arrangement desirable for mobile users who 
might have no home HOST or more than one home 
HOST. This 24-bit user number is then used in the 
following manner. When a user signs onto a HOST, 
his user number is looked up. Thereafter, each process 
the user creates is tagged with his user number. When 
the user signs onto a foreign HOST via the network, 
his same user number is used to tag processes he creates 
in that HOST. The foreign HOST obtains the user 
number either by consulting a table at login time, as 
the home HOST does, or by noticing the identification 
of the caller. The effect of propagating the user's number 
is that each user creates his own virtual net consisting 
of processes he has created. This virtual net may span 
an arbitrary number of HOSTs. It will thus be easy 
for a user to connect his processes in arbitrary ways, 
while still permitting him to connect his processes with 
those in other virtual nets. 

The relationship between sockets and processes is 
now describable (see Figure 4). For each user number 
at each HOST, there are 128 send sockets and 128 
receive sockets. A process may request from the local 
NCP the use of anyone of the sockets with the same 
user number; the request is granted if the socket is not 
otherwise in use. The key observation here is that a 
socket requested by a process cannot already be in use 
unless it is by some other process within the same 
virtual net, and such a process is controlled by the 
same user. 

An unusual aspect of the HOST-HOST protocol is 
that a process may switch its end of a connection from 
one socket to another. The new socket may be in any 
virtual net and at any HOST, and the process may 

initiate a switch either at the time the connection is 
being established, or later. The most general forms of 
switching entail quite complex implementation, and 
are not germane to the ;rest of this paper, so only a 
limited form will be explained. This limited form of 
switching provides only that a process may substitute 
one socket for another while establishing a connection. 
The new socket must have the same user number and 
HOST number, and the connection is still established 
to the same process. This form of switching is thus 
only a way of relabelling a socket, for no change in 
the routing of messages takes place. In the next section 
we document the system calls and control commands; 
in the section after next, we consider how login might 
be implemented. 

SYSTE1Vr CALLS AND CONTROL COMMANDS 

Here we sketch the mechanics of establishing, switch
ing and breaking a connection. As noted above, the 
NCP interacts with user processes via system calls and 
with other NCPs via control commands. We therefore 
begin with a partial description of system calls and 
control commands. 

System calls will vary from one operating system to 
another, so the following description is only suggestive. 
We assume here that a process has several input-output 
paths which we will call ports. Each port may be con
nected to a sequential I/O device, and while connected, 
transmits information in only one direction. We further 
assume that the process is blocked (dismissed, slept) 
while transmission proceeds. The following is the list 
of system calls: 

Init (port), (AEN 1), (AEN 2), 
(foreign socket) 

where (port) is part of the process issuing the Init 

(AEN 1)} 
and are 8-bit AEN's (see Figure 3) 

(AEN 2) 

(foreign socket) is the 40-bit socket name of the distant 
end of the connection. 
The first AEN is used to initiate the connection; the 
second is used while the connection exists. 
The low-order bits of (AEN 1) and (AEN 2) must 
agree, and these must be the complement of the low
order bit of (foreign socket). 
The NCP concatenates (AEN 1) and (AEN 2) each 
with the user' number of the process and the HOST 
number to form 40-bit sockets. 
It then sends a Request for Connection (RFC) control 
command to the distant NCP. When the distant NCP 
responds positively, the connection is established and 



the process is unblocked. If the distant NCP responds 
negatively, the local NCP unblocks the requesting 
. process, but informs it that the system call has failed. 

Listen (port), (AEN 1 ) 

where (port) and (AEN 1) are as above. 
The NCP retains the ports and (AEN 1) and blocks 

the process. When an RFC control command arrives 
naming the local socket, the process is unblocked and 
notified that a foreign process is calling. 

Accept (AEN 2) 

After a listen has been sa tisfied, the process 
may either refuse the call or accept it and switch it to 
anoth~r socket. To. accept the call, the process issues the 
Accept system call. The NCP then sends back an RFC 
control command. 

Close (port) 

After establishing a connection, a process issues a 
Close to break the connection. The Close is also issued 
after a Listen to refuse a call. 

Transmit (port), (addr) 

If (port) is attached to a send socket, (addr) 
points to a message to be sent. This message is preceded 
by its length in bits. 

If (port) is attached to a receive socket, a message 
is stored at (addr). The length of the message is stored 
first. 

Control commands 

A vocabulary of control commands has been defined 
for communication between Network Control Programs. 
Each control command consists of an 8-bit operation 
code to indicate its function, followed by some param
eters. The number and format of parameters is fixed 
for each operation' code. A sequence of control com
mands destined for a particular HOST can be packed 
into a single control message. 

RFC (my socket I), (my socket 2), 

(your socket), «link») 

This command is sent because a process has executed 
either an Init system call or an Accept system call. A 
link is assigned by the prospective receiver, so it is 
omitted if (my socket 1) is a send socket. 

There is distinct advantage in using the same com
mands both to initiate a connection (Init) and to accept 
a call (Accept). If the responding command were 
different from the initiating command, then two proc
esses could call each other' and become blocked waiting 
for each other to respond. With this scheme no deadlock 
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occurs and it provides a more compact way to connect 
a set of processes. 

CLS (my socket), (your socket) 

The specified connection is terminated 

CEASE (link) 

When the receiving process does not consume its 
input as fast as it arrives, the buffer space in the 
receiving HOST is used to queue the waiting messages. 
Since only limited space is generally available, the 
receiving HOST may need to inhibit the sending HOST 
from sending any more messages over the offending 
connection. When the sending HOST receives this com
mand, it may block the process generating the messages. 

RESUME (link) 

This command is also sent from the receiving HOST 
to the sending HOST and negates a previous CEASE. 

LOGGING IN 

We assume that within each HOST there is always 
a process in execution which listens to login requests. 
We call this process the logger, and it is part of a special 
virtual net whose user number is zero. The logger is 
programmed to listen to calls on socket number O. U pnn 
receiving a call, the logger switches it to a higher 
(even) numbered socket, and returns a call to the 
socket numbered one less than the send socket originally 
calling. In this fashion, the logger can' initiate 127 
conversations. 

To illustrate, assume a user whose identification is 
X'010005' (user number 5 at UCLA) signs into UCLA, 
starts up one of his programs, and this program wants 
to start a process at SRI. No process at SRI except 
the logger is currently willing to listen to our user, so 
he executes 

Init, (port) = 1, (AEN 1) = 7, 

(AEN 2) = 7, 

(foreign socket) = O. 

His process is blocked, and the NCP at UCLA sends 

RFC (my socket 1) = X'0100050107', 

(my socket 2) = X'0100050107', 

(your socket) = X'0000000200' 

The logger at SRI is notified when this message IS 

received, because it has previously executed 

Listen (port( = 9, (AEN 1) = O. 
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(i) .LOGIN@ 

(ii) • R TELNET@ 

(iii) ESCAPE CHARACTER IS .@ 

( iv) 

(v) 

( vi) 

(vii) 

(viii) 

( ix) 

CONNECT TO SRI@ 

@ENTER CARR.@ 

@CAL!@ 

CAL AT YOUR SERVICE@ 

>READ FILE FROM NETWRK.@ 

.. NETWRK: +- OS K :MYFI LE • CAL@ 

Figure 5-A typical TELNET dialog 
Underlined characters are those typed by the user 

The logger then executes 

Accept (AEN 2) = 88. 

In response to the Accept, the SRI NCP sends 

RFC (my socket 1) = X'0000000200' 

(my socket 2) = X'0000000258' 

(your socket) = X'OI00050I07' 

(link) = 37 

where the link has been chosen from the set of available 
links. The SRI logger then executes 

Init (port) = 10 

(AEN 1) = 89, (AEN 2) = 89, 

(foreign socket) = X'OIOOO.10I06' 

which causes the NCP to send 

RFC (my socket 1) = X'0000000259' 

(my socket 2) = X'0000000259, 

(your socket) = X'0100050I06' 

The process at UCLA is unblocked and notified of the 
successful Init. Because the SRI logger always initiates 
a connection to the AEN one less than it has just been 
connected to, the UCLA process then executes 

Listen (port) = 11 

(AEN 1) = 6 

and when unblocked, 

Accept (AEN 2) = 6. 

When these transactions are complete, the UCLA 
process is doubly connected to the logger at SRI. The 
logger will then interrogate the UCLA process, and if 
satisfied, create a new process at SRI. This new process 
will be tagged with the user number X'OI0005', and 
both connections will be switched to the new process. 
In this case, switching the connections to the new 
process corresponds to "passing the console down" in 
many time-sharing systems. 

USER LEVEL SOFTWARE 

At the user level, subroutines which manage data 
buffers and format input destined for other HOSTs are 
provided. It is not mandatory that the user use such 
subroutines, since the user has access to the network 
system calls in his monitor. 

In addition to user programming access, it is desirable 
to have a subsystem program at each HOST which 
makes the network immediately accessible from a 
teletype-like device without special programming. Sub
systems are commonly used system components such 
as text editors, compilers and interpreters. An example 
of a network-related subsystem is TELNET, which 
will allow users at the University of Utah to connect 
to Stanford Research Institute and appear as regular 
terminal users. It is expected that more sophisticated 
subsystems will be developed in time, but this basic 
one will render the early network immediately useful. 

A user at the University of Utah (UTAH) is sitting 
at a teletype dialed into the University's PDP-IO/50 
time-sharing system. He wishes to operate the Conver
sational Algebraic Language (CAL) subsystem on the 
XDS-940 at Stanford Research Institute (SRI) in 
Menlo Park, California. A typical TELNET dialog is 
illustrated· in Figure .1. The meaning of each line of 
dialog is discussed here. 

(i) The user signs in at UTAH. 
(ii) The PDP-IO run command starts up the 

TEL NET subsystem at the user's HOST. 
(iii) The user identifies a break character which 

causes any message following the break to be 



interpreted locally rather than being sent on 
to the foreign HOST. 

(iv) The TELNET subsystem will make the ap
propriate system calls to establish a pair of 
connections to the SRI logger. The connections 
will be established only if SRI accepts another 
foreign user. 

The UTAH user is now in the pre-logged-in state at 
SRI. This is analogous to the standard teletype user's 
state after dialing into a computer and making a con
nection but before typing anything. 

(v) The user signs in to SRI with a standard login 
command. 

Characters typed on the user's teletype are transmitted 
unaltered through the PDP-10 (user HOST). and on 
to the 940 (serving HOST). The PDP-10 TELNET 
subsystem will have automatically switched to full
duplex, character-by-character transmission, since this 
is required by SRI's 940. Full duplex operation is 
allowed for by the PDP-10, though not used by most 
Digital Equipment Corporation subsystems. 

(vi) and (vii) The 940 subsystem, CAL, is started. 
At this point, the user wishes to load a CAL file into 
the 940 CAL subsystem from the file system on his 
local PDP-10. 

(viii) CAL is instructed to establish a connection to 
UTAH in order to receive the file. "NET
WRK" is a predefined 940 name similar in 
nature to "PAPER TAPE" or "TELETYPE". 

(ix) Finally, the user types the break character 
( #) followed by a command to his PDP-10 
TELNET program, which sends the desired 
file to SRI from Utah on the connection just 
established for this purpose. The user's next 
statement is in CAL again. 

The TEbNET subsystem coding should be minimal 
for it is essentially a shell program built over the net
work system calls. It effectively establishes a shunt 
in the user HOST between the remote user and a 
distant serving HOST. 

Given the basic system primitives, the TELNET 
subsystem at the user HOST and a manual for the 
serving HOST, the network can be profitably employed 
by remote users today. 

HIGHER LEVEL PROTOCOL 

The network poses special problems where a high 
degree of interaction is required between the user and 
a particular subsystem on a foreign HOST. These 
problems arise due to heterogeneous consoles, local 
operating system overhead, and network transmission 
delays. Unless we use special strategies it may be 
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difficult or even impossible for a distant user to make 
use of the more sophisticated subsystems offered. While 
these difficulties are especially severe in the area of 
graphics, problems may arise even for teletype inter
action. For example, suppose that a foreign subsystem 
is designed for teletype consoles connected by telephone, 
and then this subsystem becomes available to network 
users. This subsystem might have the following char
acteristics. 

1. Except for echoing and correction of mistypihg, no 
action is taken until a carriage return is typed. 

2. All characters except" i ", ,,~" and carriage return 
are echoed as the character typed. 

3. ~ causes deletion of the immediately preceding 
accepted character, and is echoed as that character. 

4. i causes all previously typed characters to be 
ignored. A carriage return and line feed are echoed. 

5. A carriage return is echoed as a carriage return fol
lowed by. a line feed. 
If each character typed is sent in its own message, 

then the characters 

H ELL 0 ~ ~ P c.r. 

cause nine messages in each direction. Furthermore, 
each character is handled by a user level program in 
the local HOST before being sent to the foreign HOST. 

Now it is clear that if this particular example were 
important, we would quickly implement rules 1 to 5 
in a local HOST program and send only complete 
lines to the foreign HOST. If the foreign HOST pro
gram could not be modified so as to not generate 
echoes, then the local program could not only echo 
properly, it could also throwaway the later echoes 
from the foreign HOST. However, the problem is not 
any particular interaction scheme; the problem is that 
we expect many of these kinds of schemes to occur. 
We have not found any. general solutions to these 
problems, but some observations and conjectures may 
lead the way. 

With respect to heterogeneous consoles, we note that 
although consoles are rarely compatible, many are 
equivalent. It is probably reasonable to treat a model 
37 teletype as the equivalent of an IBM 2741. Similarly, 
most storage scopes wiJl form an equivalence class, and 
most refresh display scopes will form another. Further
more, a hierarchy might emerge with members of one 
class usable in place of those in another, but not vice 
versa. We can imagine that any scope might be an 
adequate substitute for a teletype, but hardly the 
reverse. This observation leads us to wonder jf a net
work-wide language for consoles might be possible. 
Such a language would provide for distinct treatment 
of different classes of consoles, with semantics ap-
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propriate to each class. Each site could then write 
interface programs for its consoles to make them look 
like network standard devices. 

Another observation is that a user evaluates an 
interactive system by comparing the speed of the sys
tem's responses with his own expectations. Sometimes 
a user feels that he has made only a minor request, so 
the response should be immediate; at other times he 
feels he has made a substantial request, and is therefore 
willing to wait for the response. Some interactive sub
systems are especially pleasant to use because a great 
deal of work has gone into tailoring the responses to 
the- user's expectations In the network, however, a 
local user level process intervenes between a local 
console and a foreign subsystem, and we may expect 
the response time for minor requests to degrade. Now 
it may happen that all of ~his tailoring of the inter
action is fairly independent of the portion of the sub
system which does the heavy computing or I/O. In 
such a case, it may be possible to separate a subsystem 
into two sections. One section would be the "sub
stantive" portion; the other would be a "front end" 
which formats output to the user, accepts his inputs, 
and controls computationally simple responses such as 
echoes. In the example above, the program to accumu
late a line and generate echoes would be the front end 
of [ome subsystem. We now take notice of the fact 
that the local HOSTs have substantia~ computational 
power, but our current designs make ~se of the local 
HOST only as a data concentrator. This is somewhat 
ironic, for the local HOST is not only poorly utilized 
as a data concentrator, it also degrages performance 
because of the delays it introduces. 

These arguments have led us to consider the possi
bility of a Network Interface Language (NIL) which 
would be a network-wide language for writing the front 
end of interactive subsystems. This language would 
have the feature that subprograms communicate 
through network-like connections. The strategy is then 
to transport the source code for the front end of a 
subsystem to the local HOST, where it would be com
piled and executed. 

During preliminary discussions we have agreed that 
NIL should have at least the following semantic prop
erties not generally found in languages. 

1. Concurrency. Because messages arrive asynchro
nously on different connections, and because user 
input is not synchronized with subsystem output, 
NIL must include semantics to accurately model the 
possible con currencies. 

2. Program Concatenation. It is very useful to be able 
to insert a program in between two other programs. 
To achieve this, the interconnection of programs 

would be specified at run time and would not be 
implicit in the source code. 

3. Device substitutability. It is usual to define lan
guages so that one device may be' substituted for 
another. The requirement here is that any device 
can be modeled by a NIL'program. For example, 
if a network standard display cOLltroller manipulates 
tree-structures according to messages sent to it then 
these structures must be easily implementable in 
NIL. 

NIL has not been fully specified, and reservations have 
been expressed about its usefulness. These reservations 
hinge upon our conjecture that it is possible to divide 
an interactive subsystem into a transportable front end 
which satisfies a user's expectations at low cost and a 
more substantial stay-at-home section. If our conjecture 
is false, then NIL will not be useful; otherwise it seems 
worth pursuing. Testing of this conjecture and further 
development of NIL will take priority after low level 
HOST-HOST protocol has stabilized. 

HOST/IMP INTERFACING 

The hardware and software interfaces between HOST 
and IlVIP is an area of particular concern to the HOST 
organizations. Considering the diversity of HOST com
puters to which a standard IMP must connect, the 
hardware interface was made bit serial and full-duplex. 
Each HOST organization implements its half of this 
very simple interface. 

The software interface is equally simple and consists 
of messages passed back and forth between the IMP 
and HOST programs. Special error and signal messages 
are defined as well as messages containing normal data. 
1\1essages waiting in queues in either machine are sent 
at the pleasure of the machine in which they reside 
with no concern for the needs of the other computer. 

The effect of the present software interface is the 
needless rebuffering of all messages in the HOST in 
addition to the buffering in the IMP. The messages 
have no particular order other than arrival times at 
the IlVIP. The Network Control Program at one HOST 
(e.g., Utah) needs waiting RFNM's before all other 
messages. At another site (e.g., SRI), the NCP could 
benefit by receiving messages for the user who is next 
to be run. 

What is needed is coding representing the specific 
needs of the HOST on both sides of the interface to 
make intelligent decisions about what to transmit next 
over the channel. With the present software interface, 
the channel in one direction once committed to a par
ticular message is then locked up for up to 80 milli-



seconds. This approaches one teletype character time 
and needlessly limits full-duplex, character by character, 
interaction over the net. At the very least, the 
IMP jHOST· protocol should be expanded to permit 
each side to assist the other in scheduling messages 
over the channels. 

CONCLUSIONS 

At this time (February 1970) the initial network 
fo four sites is just beginning to be utilized. The 
communications system of four IMPs and wide 
band telephone· lines have been operational for two 
months. Programmers at UCLA have signed on as 
users of the SRI 940. More significantly, one of the 
authors (S. Carr) living in Palo Alto uses the Salt 
Lake PDP-10 on a daily basis by first connecting to 
SRI. We thus have first hand experience that remote 
interaction is possible and is highly effective. 

Work on the ARPA network has· generated new 
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areas of interest. NIL is one example, and interprocess 
communication is another. Interprocess communication 
over the network is a subcase of general interprocess 
communication in a multiprogrammed environment. 
The mechanism of connections seems to be new, and 
we believe this mechanism is useful even when the 
processes are within the same computer. 
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INTRODUCTION 

The advent of interactive computer systems and 
cathode ray tube terminals promises great achieve
ments in the area of managerial decision-making. Thus 
far, however, graphic terminals and light pens have 
been used mostly to solve scientific, engineering, and 
mathematical problems. They have been applied 
relatively little to the types of problems frequently 
encountered by business management. As a result, 
objective data on their effectiveness in this environ
ment are largely lacking. In order to provide some data, 
a study was undertaken to observe how the managerial 
decision-making process might be improved by a 
graphic man-computer interface and to measure 
quantitatively the gains that might be achieved. 

Many resource allocation tasks faced by management 
are combinatorial. Capital expenditure budgets, per
sonnel assignment, project selection, and many pro
duction scheduling tasks all have this feature in 
common. Demonstrating that a computer can be helpful 
in solving one managerial problem of this kind would 
therefore suggest its extrapolation to other such 
problems. Since job shop scheduling has frequently 
been considered to be the prototype of many complex 
combinational problems faced by industry, it \vas 
chosen as the problem for investigation in this 
study.I,4,8,9 

A great deal of effort has been devoted to finding the 
algorithmic and heuristic solutions to selecting the 
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best sequence for processing jobs through the different 
machines in a job shop. At present, there is still no 
feasible optimizing procedure for selecting the best 
sequence from among the . astronomical number of 
sequences possible even in a medium-sized job shop. In 
this sense, schedule-making is still an art. IS 

Since no single technique can satisfactorily provide 
an optimal answer, some recent effort2 ,S,5,7,10,l1 has 
been based on the premise that a production scheduler 
would find it helpful to have a computer assist him in 
generating and evaluating a number of alternative 
schedules. The scheduler could then bring to bear 
human cognition in further improving these computer
generated schedules and in selecting the best schedule 
based on his current knowledge of priority, cost, and 
personnel factors. 

In order to study the effect of different computer 
interfaces on the ability of managers to generate 
profitable schedules using the symbiotic model de
scribed, both a typewriter and a cathode-ray-tube 
terminal were programmed to control the job shop 
scheduling model. Because its light pen allowed greater 
ease and speed of operation, the display terminal 
promised to provide more effective man-machine 
interaction than the typewriter terminal. A study was 
therefore designed to test two hypotheses: (1) that 
computer-aided job scheduling using either terminal 
was superior to manual job scheduling, and (2) that a 
display terminal was superior to a typewriter terminal 
for job scheduling. 
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DESCRIPTION OF JOB SHOP MODEL 

The shop contains six machines: a lathe, a grinder, 
two boring machines, and two heat treating furnaces. 
The scheduler must devise a three-day job schedule 
for nine jobs presented to him for acceptance or re
jection. Each job carries with it a selling price, delivery 
date, penalty for lateness, fixed sequence of two to 
five operations on the various machines, and amount 
of time for each operation. The boring operation in
cludes three different set-ups with varying time require
ments for changing set-ups. The scheduler can authorize 
up to eight hours of overtime on each machine each 
day. 

Although in real life a production planner has to 
concern himself with a complex goal which includes 
terms relating to· customer service, worker satisfaction, 
machine efficiency, etc., the scheduler in this model is 
asked only to maximize profits. The calculation of the 
profit includes the penalty costs of late deliveries and 
overtime premium costs. The simplification of the goal 
permitted the results of schedules produced by different 
methods to be compared objectively. Three different 
methods were studied: manual, typewriter terminal, 
and display terminal. 

MANUAL JOB SCHEDULING 

For several years the job shop problem has been 
given at the Harvard Business School to graduate 
students and business executives to be solved with pencil 
and paper. Most schedulers have followed a similar 
procedure, consisting essentially of the following five 
steps: 

1. They make general arithmetic calculations based on 
noting the urgent jobs, profitable jobs, and loads on 
different machines. 

2. They layout some form of Gantt chart or paper 
analogue of the shop, usually consisting of a row for 
each machine and a column for each hour. 

3. They fill in blocks of time for job operations on 
different machines. They are rarely able to verbalize 
the process by which they decide on which operation 
to put in next. Their main goal is to layout some 
feasible way of getting through the three-day period. 

4. They "fine-tune" this schedule by such adjustments 
as adding a little overtime (e.g., "Job 2 is three 
hours late. If I work the lathe overtime on Day 1, I 
can get it out on time."), or swapping two jobs 
(e.g., "I need to get some work to the furnace 
earlier, so I'll put Job 4 on the lathe ahead of Job 6 
in order to use the furnace on the~econd day."). This 
fine-tuning can greatly improve a schedule. 

5. They calculate the costs and profits resulting from 
the final schedule. 

There is some looping and cycling through certain of 
the steps, but the five steps are usually followed in 
this sequence. The value of the final schedule achieved 
appears to depend largely upon two factors-the 
characteristics of the starting schedule and the improve
ments that can be made in that schedule. 

Obviously, not all first pass schedules are equally 
good bases for making improvements. One may involve 
higher costs than another. One will highlight a critical 
swap which will make it easy to achieve a larger increase 
in profit, while another will hide the opportunity for 
such a swap in a way that requires the patience and 
skill of a cryptographer to uncover it. 

The task of laying out a first pass schedule is quite 
time consuming. It takes the planner approximately 
forty-five minutes to an hour and a half. The result 
is that the manual schedulers are frequently stuck with 
their first pass because they do not have time to con
struct a second one. 

COMPUTER JOB SCHEDULING 

From these observations, there appeared to be four 
ways in which a computer could assist a planner: 

1. It could perform a variety of standardized calcula
tions giving him information on such variables as 
profit/hour for each jo~, hours of work required on 
critical machines, slack time on each job, etc. 

2. The computer could be programmed to generate 
different first pass schedules based on rules selected 
by the scheduler. For example, a brief coded input 
could tell the computer "show me the schedule 
that would result if I accepted all jobs, assigned 
jobs with the earliest promise data first to empty 
machines, and worked enough overtime to finish the 
work waiting for machines at the end of each regular 
shift." Selecting different combinations of rules 
would allow scores of schedules to be generated 
in much less time than it takes to generate one 
manually. The decision maker could then select the 
best of these for fine-tuning. 

3. The computer could present the information in a 
Gantt chart format to help the decision maker to 
scan it and to make improvements. It would be 
programmed to make it easy to enter modifications 
to the schedule. 

4. The· computer could carry out the bookkeeping so 
that the decision maker could quickly determine 
the profitability of his latest schedule. 
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TYPEWRITER TERMINAL 

A Fortran computer program using an electric 
typewriter interface (IBM 1050 or 2741) to provide 
these capabilities for job scheduling has been described 
elsewhere.7 The typewriter terminal, however, presents 
several obstacles to an effective "conversation" between 
the decision maker and the computer which a graphic 
terminal promises to remove: 

1. Printout on the electric typewriter is slow. The time 
lag involved in printing a 50-line schedule at about 
4 seconds a line is noticeable and breaks the con
centration of the decision maker. A cathode ray 
tube can output an entire page of data simul
taneously. 

2. An electric typewriter is not well suited to making 
small changes in a schedule because a complete 
new printout is required each time. On a cathode 
ray tube, it is possible to change only a few numbers 
on a page without disturbing the rest. 

3. It is cumbersome to type in code identifying the 
specific job, operation, and machine involved in a 
proposed change. With a light pen, the same input 
can be made merely by pointing at a location on a 
Gantt chart. Choosing a rule with a light pen from 
a table of alternatives also produces fewer errors 
than typing coded input, particularly for an in
experienced typist. 

5. A cathode ray tube allows the presentation of graphic 
displays which may enhance the decision maker's 
understanding of the problem. 

Figure 1-Decision rules for job shop scheduler, selected by 
light pen at IBM 2250 display unit 

Figure 2-0perating statement for job schedule produced by 
selecting decision rules 

GRAPHIC TERMINAL 

The IBM 2250 Display Unit was therefore pro
grammed to serve as another I/O device for the job 
shop scheduling model. At the display, the planner 
uses a light pen to select three decision rules from 
among three sets of rules (acceptance, sequence, over
time) displayed on the screen (Figure 1). He then 
light-pens "RUN" in order to view an operating 

Figure 3-Job schedule produced by selecting decision rules 
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Figur~ 4-Job schedule, produced by selecting decision rules, 
being adjusted with the light pen 

statement showing the net profit or loss from scneduling, 
errors in scheduling, and a summary of machine queue 
and overtime ·hours (Figure 2). By light-penning 
"MANUAL", he can examine the detailed hourly job 
schedule generated by the rules (Figure 3) and rearrange 
the job operations in the schedule manually with the 
light pen in an attempt to improve it. By means of the 
light pen, operations may be split, moved up or down 

Figure 5-Empty job schedule and list of jobs to be scheduled 
manually by light pen 

the job schedule, or moved back and forth between the 
hourly job schedule on the left and the jobs-to-be
scheduled section at the right. The scheduler moves 
operations by first light-penning the operation to be 
moved and then the location to which the operation is 
to be moved (Figure 4) . 

Instead of selecting decision rules and generating 
a schedule automatically, the planner can fill in the 
entire schedule manually by transferring job operations 
from the list of jobs to be scheduled on the right to the 
job schedule on the left (Figure 5). This operation is 
not exercised frequently, however, because generating a 
schedule by selecting rules is more efficient. The planner 
can also obtain printed copy of any display by light
penning "PRINT." In addition, he can store highly 
profitable schedules by light-penning "SAVE" and 
retrieve them later by light-penning "GET." 

The program for the display unit also provides 
additional information to the planner to aid him in 
making acceptance and sequencing decisions (Figure 6). 
If he light-pens the variable in the heading of any 
column (PRICE, PRICE PER HOUR, etc.) under the 
Sequence-of-Jobs section at the bottom, the display 
automatically puts the nine jobs in the order called 
for by the variable. For example, light-penning 
"PRICE" lists the jobs in descending order by price. 
When a satisfactory job sequence is obtained, the 
sequence and acceptance rules selected are transferred 
back to the original rules panel (Figure 1) by light-pen
ning "RULES," after which the simulation is run from 
the rules panel. 

Figure 6-Supplementary information panel to assist scheduler 
in making acceptance and sequencing decisions 
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TABLE I-Performance Data on Preliminary & Maximum Profit Schedules for Manual, Typewriter, and Display Samples 

Preliminary Schedule Maximum Profit Schedule 

Increase 
Profit Jobs Omitted Errors Profit Jobs Omitted Errors No. Runs In Profit 

Manual Sample (n = 5 teams) 
$ 914 6 0 $2923 2 0 1 $2009 
2546 3 0 
1411 4 3 
1913 3 4 
3425 1 1 

M 2042 3.4 1.6 
SD 982 1.8 1.8 

Typewriter Sample (n = 5 teams) 
2739 2 3 
1662 5 0 
1365 5 0 
2714 3 1 
2475 3 4 

M 2191 3.6 1.6 
SD 636 1.3 1.8 

Display Sample (n =.6 teams) 
3354 1 0 
3448 1 2 

695 ~ 0 
2694 2 4 
3521 1 2 
2737 3 1 

M 2741 2 1.5 
SD 1065 1.3 1.5 

* Data missing. 

THE EXPERIMENT 

Thirty-two production managers and schedulers 
from thirteen companies in the neighborhood of the 
IBM Education Center in Poughkeepsie, N ew York, 
participated in the study. They were formed into 16 
two-man· teams . and assigned by a randomization 
procedure (slightly modified by the exigencies of human 
and computer availability) to one of the three sched
uling techniques: manual, typewriter terminal and 
graphic terminal. 

The typewriter terminal was connected through 
public telephone lines to the MIT time-sharing com
puter (an IBM 7094) in Cambridge, Massachusetts, 
while the graphic terminal was directly conIlected to 
an IBM 360/40 in the IBM Education Center in 
Poughkeepsie. In the ·latter, the scheduling program 
was catalogued as a job under OS/360 and controlled 
by a display processing and tutorial system developed 

3555 
1880 
2838 
3425 

2924 
661 

3492 
3402 
3510 
3573 
3188 

3433 
150 

3444 
3448 
3444 
3576 
3501 
3477 

34tl6 
52 

1 0 1 1009 
3 2 2 469 
2 1 1 925 
1 1 3 0 

1.8 .8 1.6 882 
.8 .7 .9 748 

1 0 18 753 
1 0 11 1740 
1 0 10 2145 
1 0 10 859 
1 0 11 713 

1 0 12 1242 
0 0 3.4 657 

1 0 26 90 
1 0 14 0 
1 0 23 2749 
1 0 51 882 
1 0 22 20 

* 0 15 740 

1 0 25 724 
0 0 13.5 1058 

at the Poughkeepsie Education Center.6 On the MIT 
computer, the program was written in Fortran and 
operated under MIT's CTSS. The only difference be
tween the programs stemmed from the special capa
bilities. and limitations of the input-output devices. 

Each team received a 55-minute introductory session 
in which they were presented with a description of the 
scheduling problem ~nd asked to devise manually ~ 
three-day schedule for the hypothetical job shop. After 
a five-minute break, each team was sent to its assigned 
experimental method (typewriter or display terminal) 
to see if it could devise a better schedule. During these 
one hour and twenty-five minute experimental sessions, 
the authors explained how to use the terminal and 
remained present to answer questions. Instructions 
and descriptions of the scheduling rules were also 
provided in printed form. After the experimental 
session, the manual participants were given a chance 'to 
tryout the computer terminals. In addition, the type-
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writer teams were given an opportunity to work at the 
display terminals. 

The most profitable schedules achieved by each team 
during the introductory and experimental periods 
were collected for analysis. A program was written to 
collect data on various aspects of each team's per
formance at the terminals, such as amount of profit, 
number of schedules generated, number of jobs scheduled, 
and number of scheduling errors. In addition, the 
participants responded to written questionnaires asking 
about their previous experience and their attitude 
toward the scheduling task and the tools available to 
them. 

FINDINGS 

Table I summarizes the performance data for the 
schedules produced by the manual, typewriter, and 
display samples. The differences among the three 
samples in mean profit for the preliminary and maxi
mum profit schedules were not significant by analysis 
of variance (ANOV A). The mean increase in profit from 
preliminary to maximum schedule was also not signifi
cant. However, Bartlett's test of homogeneity. of 
variance for the maximum schedule profits was signifi
cant at the .01 level. The display group had a standard 
deviation of only $52, the typewriter group $150, and 
the manual group $661 (Table 1). All but one of the 
eleven display and typewriter teams had a maximum 
profit above $3,400, but three of the five manual teams 
did not achieve this figure. Thus, one result of com
puter scheduling apparently was to help the weaker 
teams-particularly those in the display sample-to 
raise their maximum profits closer to those of the top 
schedulers. On the other hand, there was little difference 
in profits among the top schedulers in all three samples. 

On other performance variables (Table I), the ex
pected differences in favor of the computer teams 
appeared. On the maximum profit schedule, each 
computer team omitted only one job, while three 
manual teams failed to schedule two or three jobs. The 
differences in mean jobs omitted among the three 
samples were significant at the .05 level by ANOV A. 
Three of the manual teams also made one or two 
errors in scheduling, while the computer program 
prevented the typewriter and display teams from 
making any errors. 

Striking differences among the three samples occurred 
in the number of runs or job schedules generated. The 
display sample had a mean of 25 schedules, the type
writer sample 12 schedules, and the manual sample 
1.6 schedules. The corresponding standard deviations 
were 13.5, 3.4, and .9. The differences in means and 
variances were significant at the .01 level by ANOV A 

and Bartlett's test, respectively. The typewriter and 
display teams thus not only generated more schedule 
runs, but showed more variation in the number gen
erated. The size of the difference between the display 
and typewriter teams indicated the potential advan
tages of the display over the typewriter iri. ease of 
selecting decision rules with a light pen and in speed of 
presenting results on the screen. 

On the questionnaire, all the schedulers expressed 
positive reactions to the use of the computer terminals. 
Seven of the nine participants who had a chance to 
try both typewriter and display terminals expressed a 
preference for the latter. 

DISCUSSION 

In addition to the objective results cited above, a 
number of observations of the behavior of the schedulers 
at the terminals were made. The approaches of the 
typewriter and display groups varied considerably. 
Once a schedule was generated by the computer in 
response to the selection of rules, it could be im
proved by making minor changes, i.e., "fine-tuning." 
The electric typewriter sample, however, found making 
these small adjustments too time consuming. As a 
result, none of them made more than one or two such 
changes. On the other hand, the display teams found 
the sliding and swapping of jobs such fun that they were 
seduced into a misallocation of time. They tended to 
spend too much time adjusting the first schedule that 
they generated and therefore did not have sufficient 
time later to adjust their best schedule. Experience 
with other planners has shown that they lost $50-$100 
by not taking the time to adjust their final schedule. 
Because of this situation, the profits attained by the 
display sample may very well have been understated. 
With more time to learn to become accustomed to the 
display, they undoubtedly would have done better. 

One of the original goals of the cathode ray tube 
programming was to provide an electronic analogue 
for constructing a two-dimensional job schedule by 
means of pencil and paper. Despite the ease of light
penning job operations into a blank schedule displayed 
on the screen, the display teams all preferred to use 
rule combinations to build a starting schedule rather 
than fitting jobs into the schedule one by one. 

If the three approaches to scheduling the shop are 
treated as a continuous spectrum running from no 
communication with a fast calculating device (the 
manual groups) through mediocre communication (the 
typewriter groups) to easy communication (the display 
groups), there is an interesting shift in the problem
solving techniques of schedulers in each sample. 
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The manual teams were clearly trying to make the 
best decision at each decision point. Thus, they would 
agonize over the decision to put Job 2 or Job 4 on the 
lathe. They would consider the effect of Job 2's delivery 
time, the amount of overtime on the lathe, the future 
requirements on the milling machine, etc. These 
decisions were usually inconclusive because it is not 
possible for most human minds to appreciate fully 
all the ramifications of the decision trees arising in 
job shop schedules. 

The typewriter teams were less bogged down in 
details. Instead of arguing about a specific sequencing 
decision, their conversations were concerned with the 
merit of following decision rules which emphasized 
machine utilization or delivery performance. In effect 
they said, "We can't hope to make all the separate 
decisions perfectly. Let's try to figure out which decision 
rules should give us the best schedule." Based on 
existing knowledge, this is not a soluble task. Although 
good rationales can be given for many different rules, 
even small changes in the operation times and sequences 
can cause any rule to provide a much less satisfactory 
result. 

The display tube teams were more pragmatic in that 
they spent less time discussing alternatives and more 
time generating schedules. They found it faster and 
easier to try a combination of rules than to attempt 
to reason out the logical value of the combination. 
Their replies to the attitude questionnaire showed an 
appreciation of the difficulty of reasoning their way 
to a conclusive answer. They saw the main contribution 
of the computer as a means of trying out more alterna
tives. Their colleagues using the typewriter terminals, 
on the other hand, emphasized the value of the com
puter in demonstrating the importance of using 
particular rules. 

This study has furnished some evidence of the extent 
to which an interactive terminal, and particularly a 
display terminal, can enhance the decision-making 
skills of a manager engaged in solving a fairly repre
sentative kind of business problem. This approach 
appears to offer opportunities for improved managerial 
decision-making in many areas where the ability to try 
out many alternatives rapidly by computer and to 
improve the best of these alternatives by human 
cognition can result in more profitable decisions. 
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INTRODUCTION 

With the advent of time-sharing and remote terminals, 
people who have little or no programming experience 
are becoming computer users. One of the reasons' these 
people have been attracted to using time-sharing 
computers is that the programming languages available 
have been made relatively simple and easy to use. 
BASIC is an ,example of the type of language that has 
become popular in the time-sharing community. Other 
languages have been developed for such fields as 
numerical control. Languages such as these which have 
been developed using terminology and syntax which 
are consistent with the terminology and syntax of a 
given field of interest are called natural languages. 1 

In the past few years there has been a· considerable 
amount of discussion about the use of natural languages 
for man-computer systems.2 Although many feel that 
natural languages are the wave of the future,3 some 
believe that there are some problems with the use of 
natural languages that must be solved before natural 
languages can become widely used. One of the problems 
associated with the use of a natural language is the 
input of statements and commands to the computer. 
N aturallanguages usually contain a number of English 
words and abbreviations. Because of this, statements 
written in a natural language often resemble sentences 
written in English. If an operator is a good typist, 
entering a natural language statement with a teletype 
or similar device presents no problem. However, if 
the operator is not a proficient typist, inputting a state-

* Patent Applied For. 
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ment in a natural language can be a time consuming 
process. 

In order to circumvent the problems associated 
with using a standard teletype, the interactive keyboard 
described in this paper was developed. Besides elimi
nating some of the problems associated with the teletype 
or similar device, the interactive keyboard has two 
other important features which enhance the performance 
of a man-computer communication system; they are: 
(1) error prevention in the form of electrical lockout of 
keys that would cause incorrect syntax to be generated 
and, (2) visual feedback to the operator in the form of 
lights under keys which will result in proper syntax 
generation. It is the visual feedback incorporated in 
the keyboard which makes the keyboard interactive 
as opposed to the static unidirectional information 
transfer provided by a standard keyboard. These 
features are described fully in the following section. 

An experiment which was conducted to obtain a 
measure of the performance of operators using the 
interactive keyboard and the results of this experiment 
are given in a later section of this paper. 

A DESCRIPTION OF AN INTERACTIVE 
KEYBOARD 

This section contains a detailed description of the 
interactive keyboard that was developed by Vincent 
J. Nicholson, James G. Rudolph and the author at 
Hewlett-Packard Laboratories. An application for a 
patent has been filed. The keyboard has three char
acteristics which make it very useful as an input 
device for an interactive system: (1) there is no multiple 
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Figure I-A block diagram of the basic elements of the. 
interactive keyboard 

use of keys, (2) lights under the keys are turned on to 
indicate which keys can be struck to given syntactically 
correct statements ·and (3) keys that are not lit are 
electrically locked out so that inputs which would 
result in incorrect syntax are prevented. The latter 
two are· the characteristics which make this keyboard 
unique. 

A block diagram that illustrates the basic elements of 
the keyboard is shown in Figure 1. The keyboard and 
its associated electronics can be broken down into 
four elements: the keys with lights, the decoding ma
trix, the state storage registers and the light and enable 
line drivers. The keys, which contain the lights, form 
the interface with the operator. When a key which 
has been enabled is pressed by the operator a character 
is sent to the processor, which in general would be the 
cpu of a computer; there the program resident in core 
will perform whatever action is required by the char
acter. Besides going to the processor the character is 
transmitted to the decoding matrix. In the decoding 
matrix the combination of the character plus the 
knowledge of the present state of the keyboard is used 
to determine the next state of the keyboard. The state 
of the keyboard in this case is determined by which 
keys are lighted and enabled. When the next state of 
the keyboard has been determined the correct light 
and enable line drivers are activated. The process can 
now start over again when the next key is depressed. 
In the brief description given above no mention was 
made as to the timing required; this is because the 
purpose of the paper is to discuss the man-computer 
communication problem and not to go into a detailed 
analysis of hardware. For the same reason, a description 
of the components of each of the elements of the key
board has been omitted. 

AN INTERACTIVE KEYBOARD FOR A 
COMPUTER-AIDED CHECKOUT SYSTEM 

The interactive keyboard described in the preceding 
section could be used with practically any system that 
required man-machine communications. In this section 
a description of a specific realization of such a keyboard 
is given. An interactive keyboard was designed for use 
with the Hewlett-Packard 9500A programmable check
out system.4 A brief description of the 9500A system 
is given in the Appendix. The interactive keyboard was 
used to replace the keyboard on the teletype. The 
printer portion of the teletype was still used as the 
computer output device. 

Figure 2 contains a layout of the interactive key
board as it was designed for the 9500A system. The 
keys were partitioned into three general groups: words 
associated with standard BASIC statements, words 
associated with programming instruments and keys 
that correspond to variables, operators and miscel
laneous functions such as carriage return and escape 
mode. These groups are enclosed by the dash lines in 
Figure 2. 

The following example is presented to show how the 
keyboard functions during the input of typical state
ments. Suppose the operator wanted to input the 
following statement: 

5 PROGRAM DVM FUNCT FREQ RANGE 
AUTO VAR A 

If the keyboard were not initialized, that is wating for 
the first character of a line, the programmer would 
first press CR for carriage return or ESC for escape 
mode (these keys are always enabled and lighted). This 
would initialize the keyboard. When the keyboard is 
initalized the only keys that are lighted and enabled 
are the digits keys 0 through 9, CR, ESC, SPACE and the 
system command keys, RUN, LIST, and SCRATCH. 
Since it is desired to· input the line shown above the 

t;':STRUMENT RELATED KEYS 

SERC 

·9 SIN SQR. 

<" DCV 

> FREQ tALt CAL~ 

1--1-- c·, t __ 1--+--+--1 

, AUTO 

·.'<,d~l~te::;. <!igit:> .:md miscell.',ncous keys 

Figure 2-Layout of interactive keyboard used with the 
Hewlett-Packard 9500A programmable checkout system 
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operator would first strike the "5" key. When he had 
done this, a "5" would be printed on the teletype 
and the set of keys corresponding to permissible next 
inputs would be lighted and enabled. At this point the 
keys corresponding to legal first words at a BASIC 
statement will be lighted and enabled. The digits will 
remain lighted and enabled because it is permissible to 
add to the line number. The system command keys are 
disabled and their lights go out because if a system 
com~and is to be given it must be the first input of a line. 
Since CR, ESC and SPACE are always lighted and 
enabled they will not be for the remainder of the 
example. 

The operator now presses the "PROG" Key. (See 

Sco 

7 8 9 

4 5 6 

2 3 

l-
I 0 

(a) 

-
7 8 9 

LIT llAl MTA 4 S 6 

2 3 _ "IIIT 

I---
SMeI I 0 

(~) 

I'S OSC 

-
ISC SMeI 

(e) 

ACV R.,ES 

I f"R':Q ,:.4;". ... CAi.-

-
SMeE 

(d) 

r---
ISC SMeI . I 0 

(.) 

S - D,," FUIICT Fllet MIl" AUTO VAl 

ISC SMeI 

(f) 

7 8 9 

4 S 6 

2 3 
Cl -

ESC SMeI I 0 

(9) 

Figure 3-Illustrations (a) through (g) show which keys are illuminated and enabled during the input sequence required to enter 
the program statement: 

5 PROGRAM DVM FUNCT FREQ RANGE AUTO V AR A 

Above the keys the statement being formed is shown 
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reference five for a description of programming lan
guage.) This will cause "PROGRAM" to be output on 
the teletype and also will cause the next bank of 
switches to be . lighted and enabled. At this point the 
only syntactically correct inputs are those from the 
keys that correspond to the programmable instruments: 
the "DVM," "SWT," "PS" and "OSC" keys. These 
keys refer to the digital volt meter, the programmable 
relay bank, thed.c. power supply and the oscillator, 
respectively. The operator now strikes the "DV1\tI" 
key. When he does this "DVM FUNCT" will be 
typed out and the keys associated with the permissible 
voltmeter functions, "DCV," "ACV," "RES.' 
"FREQ." "CAL+" and "CAL-," will be lighted and 
enabled. At this point the operator has two feedback 
signals from the system. The abbreviation "FUNCT" 
has been typed out to indicate that a voltmeter function 
is required next and the function keys on the keyboard 
are lighted. 

Next, the operator presses the "FREQ" key; this 
causes "FREQUENCY RANGE" to be typed out and 
the keys "I," "0," ".," and "AUTO." The operator 
may enter a specific range such as "10000.," or "10." or 
he may choose to use the auto ranging feature of the 
instrument. In this case the latter option is chosen. 
After he presses the "AUTO" key, "AUTO VAR" is 
typed out and the variable keys, "A," "B," "C" and 
"D," are lighted and enabled. The operator now presses 
the "A" key and "A" is printed and the keys "0" 
through "9' are lighted and enabled. The final input 
required is a carriage return to terminate the line and 
initialize the keyboard for the next line of input. 
Figures 3 (a) through (g) show the state of the lights 
for each of the steps described above and the printer 
output for each-step. 

AN EXPERIMENT USING THE 
INTERACTIVE KEYBOARD 

An experiment was conducted on the 9500A system 
to measure the performance of operators using the 
interactive system. Four engineers who were familiar 
with BASIC, but who had never used the computer 
aided checkout system were chosen and given approxi
mately an hour's training on the system. Two similar 
test procedures were given to the subjects. Two of 
them programmed and executed the tasks required in 
procedure 1 and the other two programmed and 
executed the tasks required in procedure 2. The time 
required to compose, enter and execute the programs 
and the number of lines required were recorded. In 
order to have a basis to judge the performance of the 
interactive keyboard, the subjects also did the re
quired programming on a standard keyboard that 

TABLE I-Summary of Data from Check-Out 
Language Experiments 

Natural Interactive 

Subject Time Lines Time Lines 

A 21 42 19 42 
B 17 45 16 43 
C 20 44 14 44 
D 22 43 16 44 

80 minutes 174 lines 65 minutes 173 lines 

had been modified for functional inputs. 5 For this 
experiment the two subjects who had worked with 
procedure 1 before were given procedure 2 and vice 
versa. 

The results of the experiment are obvious and show 
that the interactive keyboard improves the performance 
of the man-machine system significantly. A compari
son between using a natural language on the teletype 
modified for functional input and using the interactive 
keyboard with natural language shows that the tele
type method required 23 percent more time than 
the interactive keyboard method. 

CONCLUSIONS 

The main conclusion that can be drawn from the 
comparison of the data from the experiment described 
above is that the interactive keyboard provided a 
significantly improved method of man-machine com
munication. Two comments made by the test subjects 
seem worthy of noting: first, two of the subjects said 
that by the end of the test they were watching the 
keyboard almost exclusively and not referring to the 
teletype print-out; second, one subject said that 
programming with the interactive keyboard was more 
relaxing than programming with the teletype. 

Even though the improvements in performance 
that were calculated above are probably not exactly 
correct, they do provide a positive indication that the 
interactive keyboard is a definite improvement over the 
teletype in man-machine interactive systems. 

EXTENSIONS 

The type of interactive terminal described above does 
not have to be limited to a keyboard method of entry. 
If one has available a CRT with light pen input the 
same principles can be applied to the design of the 
system. In this case rather than just illuminating a key 
with a word written on it, the word can be written on 
the face of the CRT and if the operator desires to 
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input that work he touches the CRT in the area of the 
word with the light pen. 

With a little more imagination one could envision a 
system with a CRT to provide feedback to the operator 
and an audio processor to convert verbal commands 
into correct electrical signals. Since work is already 
being done to convert brain impulses into computer 
commands it is probably only a matter of time until 
complicated interactive systems such as these are in 
general use, 
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APPENDIX 

Description of the 9500A system and a natural language 
for computer aided checkout 

T he particular configuration of the system used to 
co~duct t~e experiments on is shown in Figure 4. For 
thIS experIment, the unit under test was the system 
itself. Measurements were made on the outputs of the 
6130 programmable dc power supply and the 157 
p~og~am~able oscillator and on resistors placed in the 
dIstrIbutIOn unit. 

The general purpose digital computer used in the 
system is a H-P 2114A with 8 K of core memory. Each 
of the instruments and input/output devices is con
nected to the computer through one of the 2114's 
interrupt connectors. The language used by the operator 
to communicate with the computer and the instruments 
is a modified version of BASIC. An earlier section of 
this paper contains a detailed description of the 
features of the modified portion of BASIC. 

There are two instruments in the system that are 
used to supply stimuli to the unit under test; these are 
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Figure 4-A block diagram of the 9500A system used to conduct 
the experiment on natural language and functional inputs 

the Hewlett-Packard 6130 DC voltage source and the 
Wavetek 157 waveform synthesizer. The 6130 is capable 
of suppling DC voltages from -50 to +50 volts. When 
using this instrument, the operator must supply three 
parameters to the system: 

1. The address of the particular 6130 to be used (in 
this special case there was only one 6130 so that the 
address was always 1). 

2. The desired voltage in volts. 
3. The desired current limit on the power supply. 

The 157 is a programmable waveform generator. It is 
capable of generating -sine, square and triangular 
waveforms with amplitudes of .001 to 10.volts peak-to
peak and with frequencies from .0001 to 1,000,000 
hertz. The generator has three modes of operation 
program, trigger and search. In this program mode, 
the specified output is provided continuously from 
the time the instrument is programmed until a new 
output is requested. In the trigger mode, the output 
is supplied only during the time that an external 
trigger pulse is applied. In the search mode, the 
frequency of the output is determined by a dc voltage 
that is supplied to the 157 through a rear panel con
nector by external equipment. To program the wave
form synthesizer the operator must, in general, supply 
four parameters to the system: 

1. The mode of operation 
2. The waveform type 
3. The frequency 
4. The amplitude 

The 2402A DVM is the only measurement device 
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Figure 5-(a) A typical relay switch bank in the 9400A 
distribution (b) Interconnections between the stimuli 

and DVM in the 9500A demonstration system 

in the system used for this experiment. The 2402A is 
capable of measuring DC voltages, AC voltages; 
frequency and DC resistance. Two other functions are 
available to check the calibration of the instrument; 
they are calibrate + and calibrate -. Besides the 

desired function, the operator must supply the system 
with two other parameters: 

1. The range for the instrument 
2. The identifier under which the measurement value 

is to be stored in the computer 

The 9400A distribution unit is used to connect the 
supplies and measuring devices to specified pins on the 
9400A. The unit contains four banks of relay operated 
switches. Figure 5 (a) shows a typical switch. The 
instrument connected to the input pin can be switched 
to anyone of the 16 output pins. Figure 5 (b) shows how 
the 9400A was wired for the system used in the 
experiment. 

To program the 9500A the operator must supply the 
desired output pin, 0 through 15, for each switch bank. 
If the operator does not want to change output con
nection of one of the switches, he can input a-I to the 
system rather than a number betwe~n 0 and 15. 

The language used with the 9500A system was a 
modified version of BASIC. Extensions were made to 
BASIC so that the system was capable of interpreting 
the statements used to control the various instruments. 
When the operator wants to give a command to one of 
the instruments he enters "PROGRAM" following 
the line number. The operator then enters the instru
ment, DVM, OSC, PS or SWT. Following this, modi
fiers associated with the instrument being used are 
input. For a complete description of the language see 
Reference 5. 



Linear current division in resistive areas: Its 
application to computer graphics 
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INTRODUCTION 

Present-day computer systems employ a variety of 
sophisticated peripheral equipments for the input and 
output of information. This paper describes a new 
method of obtaining (x, y) coordinate position informa
tion by means of linear current division in a resistive 
area. 1 

The method h3JS applications in many fields but 
particularly that of Computer Graphics where it can 
be used as an input device in the form of a Data Tablet, 
as an output device in the form of a precision Cathode
Ray-Tube Display and as an alternative to the 'light
pen'. 

Linear current division applied to Data Tablets 
differs radically from approaches used by Rand2 and 
Sylvania3 in that the operator's electronic pen or 
stylus injects a constant current into the tablet, the 
x and y coordinate position information being obtained 
from individual peripheral connections to the tablet. 
It has the advantage of being a basically accurate 
system which is simple to construct and therefore 
economical to manufacture. In addition, the coordinate 
information can be sampled at a high rate, 10KHz 
being achieved without difficulty on the prototype 
Data Tablet. 

Included in this paper are the experimental results 
obtained from a Data Tablet-results which can be 
applied to any system employing the principle of 
linear current division. Also presented is a theoretical 
verification of the principle. 

CURRENT DIVISION IN A RESISTIVE 
AREA 

If a current is injected at a point in a finite resistive 
area, the current must emerge at the boundary of the 
area. The coordinate position of the current source 
can be described by the distribution of current magni-

tudes at the boundary of this area, but this distribution 
generally will be a very complex function of position. 
Establishing certain symmetrical boundary conditions 
yields a simple relationship between coordinate position 
and boundary currents, as follows. 

Linear current division for the one-dimensional case 

Consider a rectangular area with uniform surface 
resistivity as shown in Figure l. 

The edges at x = 0 and x = Xo are reinforced with 
low resistivity material and are connected to earth. 
If a current I is injected into the area at a point (Xl, Yl), 
currents II and 12 flow in the conducting edges as shown. 

613 

Symmetry analysis yields the following relationship: 

12 Xl 
-= -
I Xo 

(see Appendix) 

This relationship has been verified experimentally 
using an x-y table with a constant current probe which 
could be moved over a rectangular sheet of com
mercially-available teledellos paper, one pair of opposite 
edges being reinforced with a coating of high con
ductivity silver paint. 

The results are shown in Figures 2 and 3. 
Note particularly that when moving the probe in 

the y-direction, the current 12 is constant whereas 
moving the probe in the x-direction produces a current 
12 which is linearly proportional to x position. 

When making these measurements, a random error 
of 0.25 per cent due to variations in surface resistivity 
of the teledeItos paper was observed. 

Linear current division for the two-dimensional case 

The method for measuring probe position previ
ously described can be extended to a two-coordinate 
system by presenting the resistive area with alter-
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Figure I-Current division in a resistive area 

nately conducting and non-conducting opposite 
pairs of edges. One method by which this may be 
achieved is illustrated in Figure 4(a). 

The periphery of the conducting area is connected to 
four groups of uniformly-spaced diodes, the direction of 
conduction of the diodes being appropriate to the 
polarity of the current source. In this case, the anodes 
of the diodes along a single edge of the resistive area 
are connected together and also to the emitter of an 
npn gating transistor (transistors Ql, Q2, Qa and Q4). 

1-0 

0·5 

o 0·5 1-0 

Figure 2-Linearity of current division 

Consider the waveforms shown in Figure 4(b). 
During the 'x period,' transistors Q2 and Q 4 are gated 
OFF so that 12 = 14 = 0, whereas Ql and Qa are gated 
ON. The diodes associated with Ql and Qa thus set up 
equipotential edges parallel to the y-axis so that the 
source current, 1, splits into II and Ia giving a voltage 
V Ra = I aR which is linearly proportional to the x
coordinate position of the source. During the 'y period,' 
trans!stors Ql and Qa are OFF whereas Q2 and Q4 are 
ON; thus V R2 = I2R is a voltage linearly proportional 
to the y-coordinate position of the source. 

If the gating is repetitive, integration of V R3 and 
V R2 respectively provide low-frequency analogue x-y 
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Figure 3-Constancy of current division 

information; alternatively, sampling of VRa and VR2 
may be performed during the appropriate gating periods 
to provide instantaneous measurements. 

An alternative method of operating the system is 
indicated in Figure 5 in which the current source is 
switched between +1 and - I. In this case opposite 
banks of diodes are arranged to conduct sequentially 
and are terminated in the low impedance virtual 
earths of operational current-to-voltage amplifiers. 
This method has the advantage of eliminating the 
varying emitter-base voltage drop associated with tran
sistors Ql, Q2, Qa and Q4. 



NON-LINEARITIES 

Although the simple one-dimensional system of 
Figure 1, with its completely reinforced edges, gives an 
ideal 'y-independent' and 'x-proportional' division of 
current, the two-dimensional systems described in the 
second section introduce non-linearities in current divi
sion. This is due to the small, discrete contact areas of the 
diode connections and to the fact that practical diodes 
have a finite and variable voltage drop when forward
biased as well as a leakage current when reverse-biased. 
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Figure 4 (a)-Basic (x, y) system 

The effect of discrete contact areas 

In order to separate out the effects of finite diode 
contact area and diode voltage drop, an experiment 
was performed in which a constant current probe was 
moved parallel to and at a fixed small distance, M, 
from a conducting edge. This conducting edge was 
provided by small circular discrete contact areas 
connected together using 'ideal' forward-conducting 
diodes, i.e., wire. 

The results are shown in Figure 6. 
It is seen that the current 12 is subject to regular 

variations (ripple), each peak corresponding in position 
to a contact area. This is to be expected because the 
division of current between two opposite edges is 
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Figure 4 (b)-Voltage drive waveforms 

dependent upon the relative impedances of the current 
paths from the current source contact point to the 
edges. A consequence of this behaviour is that the 
ripple should be reduced if the. probe is traversed at a 
greater distance from a conducting edge or if the 
number of contact areas,' n, on each edge is increased. 
These effects are illustrated in Figures 7 and 8. 

Since an edge of the resistive area is required to be 
conducting and non-conducting during successive 
half-cycles of the x-y coordinate position sampling 
waveform, two means whereby the ripple amplitude 
might have been reduced were investigated. Both 

Figure 5-Alternative (x, y) system 
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1-0 

attempted a closer approach to a reinforced edge than 
the dot contact structure described in the previous 
section. 

The first method involved extending the dots into 
lines along the edge of the conducting area, measure
ments of ripple amplitude being taken for various 
contact-to-space ratios (see Figure 9). 

It was found that the ripple remained substantially 
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Figure 7-Variation of error with edge approach distance 
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Figure 8-Variation of error with number of edge connections 

unchanged for contact-to-space ratios up to 75% but, 
more important, the current division plot showed a 
marked deviation from linearity in the form of stepping, 
even with a contact-to-space ratio as low as 25% 
(Figure 10). This approach was therefore rejected. 

resistive 
area 

Figure 9-Extension of dot contacts into lines 



The second method consisted of interposing isolated 
conducting dots between adjacent contact dots (Figure 
11), but no change in ripple amplitude could be observed 
even when interposing as many as fifteen isolated dots 

. between each pair of contact dots. 
It is therefore concluded that the ripple amplitude can 

be reduced by: . 

(a) increasing the number of contact dots per edge, and 
(b) increasing the minimum approach distance of the 

current source from an edge. 

The effect of diode voltage drop (ON diodes) 

Semiconductor diodes have a logarithmic current
voltage characteristic which is conveniently described 
by the relationship: 59m V change per decade of current 
change. Conducting diodes along a single edge in 
general carry currents which are different from one 
another; hence the edge is no longer an equipotential. 
This results in a 'bowing' superimposed on the ripple 
and gives rise to an increase in the overall error (solid 
curve Figure 8). 
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x, 
X. 

Figure lO-"Stepping" error due to finite contact dimensions 
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Figure 11-Interposed dot contact structure 

The effect of leakage current (OFF diodes) 

In order to obtain a non-conducting edge, the diodes 
associated with that edge are reverse-biased. Each 
reverse-biased diode exhibits a leakage current, and 
the net source current available for position measure
ment is therefore (I - 2nI8)' 

I is the source current-. 
n is the number of diodes per edge. 
18 is the reverse leakage current per diode. 

The EC402 diode has a typical 18 as low as 0.45nA 
at 5 volts reverse-bias, yielding a total error current 
of ~nA for n = 20. > If the source current is ImA, 
leakage will then account for a typical error of less than 
0.002 per cent of full scale. This error is insignificant 
compared with the other factors under consideration. 

Effects due to the resistive area 

Non-uniform surface resistivity causes the current 
division between opposite edges to be non-linear. This 
effect can be seen in Figure 8 in which a random error 
of 0.25 per cent is present when using teledeltos paper .. 
It is therefore essential to use a material with a uniform 
surface resistivity. 

For a constant current injected into the resistive 
area, the voltage developed at the point of contact 
will depend upon the surface resistivity. Since the 
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Figure 12-Feedback C.R.T. display system 

'bowing' non-linearity is due to variable forward
biased diode voltages, errors -due to 'bowing' can be 
minimised by using a material with large surface 
resistivity or injecting a large current. In both cases 
errors due to 'bowing' will be minimised when most of 
the voltage is dropped across the resistive area rather 
than the diodes. 

CATHODE RAY TUBE DISPLAY SYSTEMS 

The principle of linear current division can be applied 
most effectively in a Cathode Ray Tube in which the 
electron-beam is the current source and the resistive 
area is the aluminised backing to the phosphor, or a 
transparent conducting screen inner surface. The 
coordinates of spot position are obtained from the face 
of the tube allowing the tube to be included within 
a feedback loop, thus producing a deflection linearly 
proportional to input signal independent of the non
linearities within the loop (Figure 12). 

A C.R.T. of this type will find applications in 
professional display systems such as Computer Graphic 
and Radar Displays. 

THE DATA TABLET 

The two-coordinate systems described in an earlier 
section may be used as a Computer Graphic Input 
Device or Data Tablet. 

A prototype Data Tablet has been built (Figure 13) 
in which the analogue signals VR2 and VR3 of Figure 4(a) 
are connected to an x-y plotter in order to demonstrate 
the working capabilities of the system. x and y position 
information is sampled at 10KHz which is more than 

sufficiently fast for hand-written data to be reproduced 
without observable error. 

When hand-written information is presented to the 
Data Tablet, variations in pressure of the stylus input 
can be accommodated within the voltage swing capa
bility of the input current-source, but intermittent 
contact will give a false (0, 0) position. In any practical 
device, a finite peripheral margin will be required in 
order that the ripple non-linearities may be kept down 
to a pre-specified level. Under these conditions, a (0, 0) 
output will indicate that the stylus has been lifted. 
The lifting may be temporary in the case of intermittent 
contact, or semi-permanent in the case of finishing a 
hand-drawn line. Where intermittent contact takes 
place, the (0, 0) indication is obtained for a few cycles 
only of the (x, y) sampling waveform-in which case a 
peak-charging sample-and-hold circuit maintains thE; 
output at its last non-zero value. A continuous 
output of (0, 0) for, say, 500mS indicates that the 
stylus has been lifted. 

Where digital information of position is required, the 
sample-and-hold circuit is replaced by an output 
register. 

A Data Tablet in which the resistive area is trans
parent has the capability of being used as a 'light-pen' 
when the tablet is placed over the face of a Cathode
Ray-Tube. A tube of the type described in the above 
section with a linear x-y display is an obvious choice 
for this application. 

SUMMARY AND CONCLUSIONS 

The principle of linear current division in resistive areas 
has potential application in many fields, but particularly 
that of Computer Graphics where it may be used in 
both input and output devices. Attractive features of 

Figure 13-Prototype data tablet 



the system are: 

(a) High accuracy (better than 1 %) 
(b) Simplicity in concept and construction 
(c) (x, y) sampling rate» 10KHz 

The basic accuracy of the Data Tablet on which the 
experimental results were taken is better than 1%. 
With a suitable choice of margin and number of diodes 
per edge, the main sources of error are non-uniform 
s!lrface resistivity and the effects of forward-biased 
diode voltages. It is expected that considerable im
provement can be made, by careful choice of surface 
resistivity and input current magnitude. At present, 
information which has been hand-drawn is lost to the 
operator, unless a graphical output system is employed. 
It is, however, envisaged that transparent semi-flexible 
resistive areas 'in conjunction with a pressure-sensitive 
hard-copy material will allow the operator to see what 
he has drawn at the point of contact of the stylus, in 
addition to obtaining hard-copy. 

An area, as yet untouched in the electronics field, 
and in which linear current division has obvious 
application, is the extraction of analogue position 
information from a Cathode-Ray-Tube face. Output 
currents proportional to position are obtained when the 
beam current is a constant fixed value. An alternative 
method of operation requires a divider to evaluate 
12/1 in which case a continuous indication of beam 
position can be obtained even when the brightness of 
the trace is varying. Circuitry to perform this nor
malised analogue division is currently under develop
ment. 

ACKNOWLEDGMENTS 

The authors wish to thank the Department of Electrical 
Engineering Science of the University of Essex, Eng-

y 

y. ...... ----------resistive area conducting 
edge 

I, 
' . ......---. .. , 

51 
'2 

conducting (x,y') 
edge~ ___ ' __ ' __ ~ __________ _ 

o x x •. 

," 

Figure 14-Current division in a resistive area 

Linear Current Division in Resistive Areas 619 

I 
2 

.,II--_4---l. 

Y.-
1 

current 
boundary 

I I 
2 2 

----J~ -- ---------~j • 
I 
I 
I 

x, 

Figure 15-First-cycle even-mode configuration 

I 
2 

,I' 

land, for the facilities provided, and Automatic Radio, 
Melrose, Massachusetts for development funding. G. J. 
Ritchie is indebted to the Science Research Council 
and the Marconi Company Limited for an Industrial 
Studentship grant. 

Thanks are also due to Dr. L. F. Lind for many 
useful discussions regarding the appendix proof 

REFERENCES 

1 U.K. Patent Application No. 13341/69 
2 T 0 ELLIS M RDAVIS 

The Rand tablet: A man-machine communication device 
Proceedings Fall Joint Computer Conference pp 325-331 1964 

3 J F TEIXEIRA R P SALLEN . 
The Sylvania data tablet: A new approach to graphic data input 
Proceedings Spring Joint Computer Conference pp 315-321 
1968 

4 J REED G J WHEELER 
A method of analysis of symmetrical four-port networks 
IRE Transactions on Microwave Theory and Techniques pp 
246-252 October 1956 

APPENDIX 

Proof of the linearity of current division 

Consider the uniform, resistive, rectangular sheet 
shown in Figure 14. The edges at x = 0 and x = Xo are 
reinforced with a highly conductive material and are 
connected to earth. A current, 1, is injected' into the 
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sheet at source S(Xl' Yl) causing currents II and 12 to 
flow in the conducting edges as shown. 

It is required to establish the relationship between the 
currents II and 12, and the coordinate position of the 
source. Symmetry analysis (even and odd mode) 
yields the solution. 4 

C~nvention: A downwards arrow (!) denotes the 
injection of current, whilst an upwards arrow (1) 
denotes removal of current from the point indicated. 
First Cycle: The first line of symmetry is x = xo/2 
with Sf the image of S (Figure 15). The current, I, 
can be described by the sum of the even and odd 
mode contributions. 
Even mode: Equal currents of magnitude 1/2 injected 

at S and Sf give, by symmetry, contribu
tions of 1/2 to both II and 12 irrespective of 
YI and of whether S lies in the left.;.hand or 
right-hand half-plane. 

Odd mode: By symmetry x = xo/2 is an equipotential 
at earth potential in both cases of Figure 
16, but "the magnitudes of the boundary 
currents are not known. However, these 
may be established by sub-dividing this 
first cycle odd mode into further even and 
odd modes. Since each half-plane of 
Figure 16 is bounded by two earth 
equipotentials, the half-plane containing 
S may be treated as follows. 

Second Cycle: There are four possible cases for each 
mode. 
Even mode: The axes of symmetry occur at.x = xo/4 or 

x = 3xo/4 with S" the image (Figure 17). 
In (a) and (b), for which Xl < xo/2, there 
is a contribution of +1/4 to II and a 
-1/4 ~ontribution to 12. 

' ..... 

In (c) and (d), for Xl > xo/2, there is a 
+1/4 contribution to 12 and a -1/4 
contribution to II. 
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Figure 16-First-cycle odd-mode configurations 
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Figure 17-Second-cycle even-mode configurations 

Therefore, if Xl < xo/2, i.e. Xl/ Xo = 72 
- ~ ± (other terms) 

then 12/1 72 - ~ ± (odd mode, 
second cycle) 

and if Xl > xo/2, i.e. Xl/ Xo = 72 
+ ~ ± (other terms) 

then 12/1 72 + ~ ± (odd mode, 
second cycle) 

Study of the second cycle odd mode leads to the 
third cycle even mode contribution and introduces 
±I/8 terms in direct correspondence with the descrip
tion of Xl/ Xo by the series 72 + ~ ± % ± (other terms) 
or 72 - ~ ± % ± (other terms). 

The following pattern emerges: 

(i) The even modes contribute to 12/1 as terms of the 
form ± 72n forming a series 72 ± ~ ± ~~ ... , 
each sign being positive if the source lies in the 
right-hand side or negative if the source lies in the 
left-hand side of the appropriate sub-division of 
the plane. 

(ii) Xl/ Xo is also described by this series with a direct 
correspondence of signs. (The series 72 ± ~ ± % 
± ... ± 72n ••• is absolutely convergent, 
therefore this series is convergent, regardless of 
sign choice.) 

(iii) The currents are independent of Yl because of 
symmetry considerations, i.e., the images of S are 
at the same height as S. 

:. 12/1 =xI/xo and 11/1 is the complement of 12/1 

Thus, division of the current source, I, between the 
two conducting edges parallel to the y-axis has a linear 
dependence on the x-coordinate of the source and is 
independent of the y-positiori. 
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INTRODUCTION 

There are a variety of considerations which are per
tinent to the design of the interface between programs 
and typewriter-class remote terminal devices in a 
general-purpose time-sharing system. The conventions 
used for editing, converting, and reduction to canonical 
form of the stream of characters passing to and from 
remote terminals is the subject of this paper. The 
particular techniques used in the IV[ultics* system 
are presented as an example of a single unified design 
of the entire character stream processing interface. 
The sections which follow contain discussion of char
acter set considerations, character stream processing 
objectives, ,character stream reduction to canonical 
form, line and print position deletion, and other 
interface problems. An appendix gives a formal de
scription of the canonical form for stored character 
strings used in l\1ultics. 

CHARACTER SET CONSIDERATIONS 

Although for many years computer specialists have 
been willing to accept whatever miscellaneous collec
tion of characters and codes their systems were delivered 
with, and to invent . ingenious compromises when 
designing the syntax of programming languages, the 

* Multics is a comprehensive general purpose time-sharing 
system implemented on the General Electric 645 computer 
system. A general description of Multics can be found in Ref
erence 1 or 2. 

621 

impact of today's computer system is felt far beyond the 
specialist, and computer printout is (or should be) 
received by many who have neither time nor patience 
to decode information printed with inadequate graphic 
versatility. Report generation has, for some time, been 
a routine function. Recently, on-line documentation 
aids, such as RUNOFF,3 Datatext (IBM Corp.) or 
RAES (General Electric Co.) have attracted many 
users. Especially for the latter examples it is essential 
to have a character set encompassing both upper and 
lower case letters. l\1odern programming languages can 
certainly benefit from availability of a variety of special 
characters as syntactic delimiters, the ingenuity of 
PL/I in using a small set notwithstanding. 

Probably the minimum character set acceptable 
today is one like the USASCII 128-character set4 or 
IBlVI's EBCDIC set with the provision that they be 
fully supported by upper/lower case printer and 
terminal hardware. The definition of support of a 
character set is almost as important as the fact of 
support. To be fully useful, one should be able to use the 
same full character set in composing program or data 
files, in literal character strings of a programming 
language, in arguments of calls to the supervisor and to 
library routines requiring symbolic names, as embedded 
character strings in program linkage information, and in 
input and output to typewriters, displays, printers, and 
cards. However, it may be necessary to place conversion 
packages in the path to and from. some devices since it is 
rare to find that all the different hardware devices 
attached to a system use the same character set and 
character codes. 



622 Spring Joint Computer Conference, 1970 

TABLE I-Escape conventions for input and output 
of USASCII from an EBCDIC typewriter 

Normal 
ASCII Character ASCII EBCDIC 

Name Graphic Escape 

Right Square Bracket ¢> 
Left Square Bracket ¢< 
Right Brace ¢) 
Left Brace ¢( 
Tilde ¢t 
Grave Accent ¢' 

CHARACTER STREAIVr PROCESSING 
CONSIDERATIONS 

Alternate 
"edited" 
Escape 

± 
=t 
-+-
-+ 
+ 

The treatment of character stream input and output 
may be degraded, from a human engineering point of 
view, unless it is tempered by the following two 
considerations: 

1. If a computer system supports a variety of terminal 
devices (l\1ultics,. for example, supports both the 
IBl\1 Model 27415 and the Teletype IVlodel 376) 

then it should be possible to work with any program 
from any terminal. 

2. It should be possible to determine from the printed 
page, without ambiguity, both what went into the 
computer program and what the program tried to 
printout. 

To be fully effective, these two considerations must 
apply to all input and output to the system itself (e.g., 
when logging in!, choosing subsystems, etc.) as well as 
input and output from user programs, editors, etc. 

As an example of the "device independence" con
vention, l\1ultics uses the USASCII character set in 
all intern~l interfaces and provides standard techniques 
for dealing with devices which are non-USASCII. 
When using the GE-645 USASCII line printer or the 
Teletype l\10del 37, there is no difficulty in accepting 
any USASCII graphic for input or output from any 
user or system program. In order to use non-USASCII 
hardware devices, one USASCII graphic (the left slant) 
is set aside as a "software excape" character. When a 
non-USASCII device (say the IBl\1 2741 typewriter 
with an EBCDIC print element) is to be used, one 
first makes a correspondence, so far as possible, 
between graphics availa~le on the device and graphics 
of ,USASCII, being sure that some character of the 
device corresponds to the software escape character. 
Thus, for the IBl\1 2741, there are 85 obviously cor
responding graphics; the EBCDIC overbar, cent sign, 
and apostrophe can correspond to the USASCII 

circumflex, left slant, and acute accent respectively, 
leaving the IBl\12741 unable to represent six USASCII 
graphic characters. For each of the six missing char
acters a two character sequence beginning with the 
software escape character is defined, as shown in Table 
I. The escape character itself, as well as any illegal 
character code value, is represented by a four character 
sequence, namely the escape character followed by a 
3-digit octal representation of the character code. Thus, 
it is possible from an IBl\1 2741 to easily communicate 
all the characters in the full USASCII set. 

A similar, though much more painful, set of escape 
conventions has been devised for use of the ·l\10del 33 
and 35 Teletypes. The absence of upper and lower case 
distinction on these machines is the principal obstacle; 
two printed 2-character escape sequences are used to 
indicat~ that succeeding letters are to be interpreted 
in a specific case shift. 

Note that consideration number two above, that the 
printed record be unambiguous, militates against char
acter set extension conventions based on non-printing 
and otherwise unused control characters. Such con
ventions in~vitably lead to difficulty in' debugging, 
since the printed record cannot be used as a guide to the 
way in which the input was interpreted. 

The objective of typewriter device independence 
also has some implications for control characters. The 
l\1ultics strategy here is to choose a small subset of the 
possible control characters, give them precise meanings, 
and attempt to honor those meanings on every device, 
by interpretation if necessary. Thus, a "new page" 
character appears in the subset; on a l\1odel 37 teletype 
it is interpreted by issuing a form feed and a carriage 
return; on an IBl\1 2741 it is interpreted by giving an 
appropriate number of new line characters. * 

Of the 33 possible USASCII control characters, 11 are 
defined in l\1ultics as shown in Table II. 

Red and black shift characters appear in the set 
because of their convenience in providing emphasis in 
comments, both by system and by user routines. The 
half-line forward and half-line reverse feed characters 
were included to facilitate experimentation with the 
l\1odel 37 Teletype; these characters are not currently 
interpretable on other devices. 

One interesting point is the choice of a "null" or 
"padding" character used to fill out strings after the 
last meaningful character. By convention, padding 
characters appearing in an output stream are to be dis
carded, either by hardware or software. The USASCII, 
choice of code value zero for the null character has the 

*This interpretation of the form feed function is consistent with 
the International Standards Organization option of interpreting 
the "line feed" code as "new line" including carriage return. 
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interesting side effect that if an uninitialized string (or 
random storage area) is unintentionally added to the 
output stream, all of the zeros found there will be as
sumed nulls, and discarded, possibly leaving no effect 
at all on the output stream. Debugging a program 
in such a situation can be extraordinarily awkward, 
since there is no visible evidence that the code manipu
lating the offending string was ever encountered. 

In J\ifultics, this problem was considered serious 
enough that the USASCII character "delete" (all 
bits one) was chosen as the padding character code. The 
zero code is considered illegal, along with all other 
unassigned code values, and is printed in octal whenever 
encountered. 

As an example of a control function not appearing in 
the character set, the printer-on/printer-off function 
(to allow typing of passwords) is controlled by a special 
call which must be inserted before the next call to read 
information. This choice is dictated by the need to get 
back a status report which indicates that for the cur
rently attached device, the printer cannot be turned 
on and off. Such a status report can be returned as an 
error code on a special call; there would be no con
venient way to return such status if the function were 
controlled by a character in the output stream. ** 

CANONICAL FORlVI FOR STORED 
CHARACTER STRINGS 

Probably the most significant impact of the constraint 
that the printed record be unambiguous is the inter
action of that constraint with the carriage motion 
control characters of the USASCII and EBCDIC sets. 
Although most characters imply "type a character in 
the current position and move to the next one," 
three commonly provided characters, namely back
space, horizontal tab, and carriage return (no line 
feed) do cause ambiguity. 

For example, suppose that one chooses to implement 
an ALGOL language in which keywords are underlined. 
The keyword for may now be typed in at least a dozen 
different ways, all with the same printed result but all 
with. different orders for the individual letters and back
spaces. It is unreasonable to expect a translator to 
accept a dozen different, but equivalent, ways of typing 
every control word; it is equally unreasonable to require 

** The initial Multics implementation temporarily uses the 
character codes for USASCII ACK and N AK for this purpose, 
as an implementation expedient. In addition, a number of 
additional codes are accepted to permit experimentation with 
special features of the Model 37 Teletype; these codes may 
become standard if the features they trigger appear useful enough 
to simulate on all devices. 

TABLE II-USASCII Control Characters as Used in Multics 

USASCII MULTICS 
NAME NAME 

BEL 
BS 

HT 

LF 

SO 
SI 
VT 

FF 

DC2 
DC4 
DEL 

BEL 
BS 

HT 

NL 

RRS 
BRS 
VT 

NP 

HLF 
HLR 
PAD 

MULTICS MEANING 

Sound an audible alarm. 
Backspace. Move carriage back one 

column. The backspace implies over
striking rather than erasure. 

Horizontal Tabulate. Move carriage to 
next horizontal tab stop. Default tab 
stops are assumed to be at columns 
11, 21, 31, 41, etc. 

New Line. Move carriage to left edge 
of next line. 

Red Ribbon Shift. 
Black Ribbon Shift. 
Vertical Tabulate. Move carriage to 

next vertical tab stop. Default tab 
stops are assumed to be at lines 11, 
21, 31, etc. 

New Page. Move carriage to the left 
edge of the top of the next page. 

Half-Line Forward Feed. 
Half-Line Reverse Feed. 
Padding Character. This character is 

discarded when encountered in an 
output line. 

that the typist do his underlining in a standard way 
since if he slips, there is no way he can tell from his 
printed record (or later protestations of the compiler) 
what he has done wrong. A similar dilemma occurs in a 
manuscript editing system if the user types in under
lined words, and later tries to edit them. 

An answer to this dilemma is to process all character 
text entering the system to convert it into a canonical 
form. For example, on a "read" call Multics would 
return the string: 

_ (BS)f _ (BS)o _ (BS)r 

(where (BS) is the backspace character) as the 
canonical character string representation of the 
printed image of for independently of the way 
in which it had been typed. Canonical reduction is 
accomplished by scanning across a completed input 
line, associating a carriage position with each printed 
graphic encountered, then sorting the graphics into 
order by carriage or print position. When two or more 
graphics are found in the same print position, they are 
placed in order by numerical collating sequence with 
backspace characters between. Thus, if two different 
streams of characters produce the same printed image, 
after canonical reduction they will be represented by 
the same stored string. Any program can thus easily 
compare two canonical strings to discover if they 
produce the same printed image. No restriction is 
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placed on the human being at his console; he is free to 
type a non-canonical character stream. This stream will 
automatically be converted to the canonical form before 
it reaches his program. (There is also an escape hatch for 
the user who wants his program to receive the raw input 
from his typewriter, unprocessed in any way.) 

Similarly, a typewriter control module is free to 
rework a canonical stream for output into a different 
form if, for example, the different form happens to 
print more rapidly or reliably. 

In order to accomplish canonical reduction, it is 
necessary that the typewriter control module be able 
to determine unambiguously what precise physical 
motion of the device corresponds to the character stream 
coming from or going to it. In particular, it must know 
the location of physical tab settings. This requirement 
places a constraint on devices with movable tab stops; 
when the tab stops are moved, the system must be 
informed of the new settings. 

The apparent complexity of the l\1ultics canonical 
form, which is formally described in Appendix I, is a 
result of its generality in dealing with all possible 
combinations of typewriter carriage motions. Viewed 
in the perspective of present day language input to 
computer systems, one may observe that many of the 
alternatives are rarely, if ever, encountered. In fact for 
most input, the following three statements, describing a 
simplified canonical form, are completely adequate: 

1. A message consists of strings of character positions 
separated by carriage motion. 

2. Carriage motions consist of New Line or Space 
characters. 

3. Character positions consist of a single graphic or an 
overstruck graphic. A character position representing 
overstrikes contains a graphic, a backspace char
acter, a graphic, etc., with the graphics in ascending 
collating sequence. 

Thus we may conclude that for the most part, the 
canonical stream will differ little with the raw input 
stream from which it was derived. 

A strict application of the canonical form as given in 
Appendix I has a side effect which has affected its use in 
l\1ultics. Correct application leads to replacement of all 
horizontal tab characters with space characters in 
appropriate numbers. If one is creating a file of tabular 
information, it is possible that the ambiguity introduced 
by the horizontal tab character is in fact desirable; if a 
short entry at the left of a line is later expanded, words 
in that entry move over, but items in columns to the 
right of that entry should stay in their original cardage 
position; the horizontal tab facilitates expressing this 
concept. A similar comment applies to the form feed 
character. 

The initial l\1ultics implementation allows the hori
zontal tab character, if typed, to sneak through the 
canonical reduction process and appear in a stored 
string. A more elegant approach to this problem is 
to devise a set of conventions for a text editor which 
allows one to type in and edit tabular columns con
veniently, even though the information is stored in 
strictly canonical form. Since the most common way of 
storing a symbolic program is in tabular columns, the 
need for simple conventions to handle this situation 
cannot be ignored. 

It is interesting to note that most format statement 
interpreters, such as those commonly implemented 
for FORTRAN and PLjl, fail to maintain proper 
column alignment when handed character strings 
containing embedded backspaces, such as names 
containing overstruck accents. For complete integration 
of such character strings into a system, one should 
expand the notion of character counts to include 
print position counts as well as storage position counts. 
For example, the value returned by a built-in string 
length function should be a print position count if the 
result is used in formatting output; it should be a 
storage location count if the result is used to allocate 
space in memory. 

LINE AND PRINT POSITION DELETION 
CONVENTIONS 

Experience has shown that even with sophisticated 
editor programs available, two minimal editing con
ventions are very useful for human input to a computer 
system. These two conventions give the typist these 
editing capabilities at the instant he is typing: 

1. Ability to delete the last character or characters 
typed. 

2. Ability to delete all of the current line typed up to 
the point. 

(l\1ore complex editing capabilities must also be avail
able, but they fall in the domain of editing programs 
which can work with lines previously typed as well 
as the current input stream.) By framing these two 
editing conventions in the language of the canonical 
form, it is possible to preserve the ability to interpret 
unambiguously a typed line image despite the fact 
that editing was required. 

The first editing convention is to reserve one graphic, 
(in .:.Vlultics, the "number" sign), as the erase character. 
When this character appears in a print position, it 
crases itself and the contents of the previous print 
position. If the erase follows simple carriage motion, 
the entire carriage motion is erased. Several successive 
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erase characters will erase an equal number of preceding 
print positions or simple carriage motions. Since 
erase processing occurs after the transformation to 
canonical form, there is no ambiguity as to which print 
position is erased; the printed line image is always the 
guide. Whenever a print position is erased, the carriage 
motions (if any) on the two sides of the erased print 
position are combined into a single carriage motion. 

The second editing convention reserves another 
graphic (in Multics, the "commercial at" sign) as the 
kill character. When this character appears in a print 
position, the contents of that line up to and including 
the kill character are disca!'ded. Again, since the kill 
processing occurs after the conversion to canonical 
form, there can be no ambiguity about which characters 
have been discarded. By convention, kill is done before 
erase, so that it is not possible to erase a kill character. 

OTHER INTERFACE CONVENTIONS 

Two other conventions which can smooth the human 
interface on character stream input and output are 
worth noting. The first is that many devices contain 
special control features such as line feed without 
carriage movement, which can be used to speed up 
printing in special cases. If the system-supplied terminal 
control software automatically does whatever speedups 
it can identify, the user is not motivated to try to do 
them himself and risk dependence on the particular 
control feature of the terminal he happens to be working 
with. For example, the system can automatically insert 
tabs (followed by backspaces if necessary) in place of 
long strings of spaces, and it also can type centered 
short tabular information with line feed and backspace 
sequences between lines. 

The second convention has been alluded to already. 
If character string input is highly processed for routine 
use, there must be available an escape' by which a 
program can obtain the raw, unconverted, unreduced 
and unedited keystrokes of the typist, if it wants to. 
Only through such an escape can certain special situa
tions (including experimenting with a different set of 
proposed processing conventions) be handled. In 
l\1ultics, there are three modes of character handling
normal, raw, and edited.* The raw mode means no 
processing whatsoever on input or output streams, 
while the normal mode provides character escapes, 
canonical reduction, and erase and kill editing. The 
edited mode (effective only on output if requested) is 
designed to produce high quality, clean copy; every 
effort is made to av~id using escape conventions. For 
example, illegal characters are discarded and graphics 
no1i available on the output device used are typed with 

the "overstrike" escapes of Table I, or else left as a 
blank space so that they may be drawn in by hand. 

CONCLUSIONS 

The preceding sections have discussed both the back
ground considerations and the design of the l\1ultics 
remote terminal character stream interface. Several 
years of experience in using this interface, first in a 
special· editor on the 7094 Compatible Time-Sharing 
System and more recently as the standard system 
interface for lVlultics, have indicated that the design is 
implementable, usable and effective. Probably the most 
important aspect of the design is that the casual user, 
who has not yet encountered a problem for which 
canonical reduction, or character set escapes, or special 
character definitions are needed, does not need to 
concern himself with these ideas; yet as he expands his 
programming objectives to the point where he en
counters one of these needs, he finds that a method has 
been latently available all along in the standard system 
interface. 

There should be no assumption that the particular 
set of conventions described here is the only useful set. 
At the very least, there are issues of taste and opinion 
which have influenced the design. l\10re importantly, 
systems with only slightly different objectives may be 
able to utilize substantially different approaches to 
handling character streams. 
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APPENDIX I 

The M ultic8 canonical form 

To describe the Multics canonical form, we give a set 
of definitions of a canonical message. Each definition is 
followed by a discussion of its implications. PL/I-style 
formal definitions are included for the benefit of readers 
who find them useful.7 Other readers may safely ignore 
them at a small cost in precision. In the formal defini
tions, capitalized abbreviations stand for the control 
characters in Table II. 

1. The canonical form deals with messages. A 
message consists of a sequence of print positions, 
possibly separated by, beginning, or ending with carriage 
motion. 
message : : = [carriage motion] 

[[print position]· .. [carriage motion] J ... 
Typewriter input is usually delimited by action char
acters, that is, some character which, upon receipt by 
the system, indicates that the typist is satisfied with the 
previous string of typing. Most commonly, the new line 
character, or some variant, is used for this function. 

Receipt of the action character initiates canonical 
reduction. 

The most important property on the canonical form is 
that graphics are in the order that they appear on the 
printed page reading from left to right and top to 
bottom. Between the graphic characters appear only 
the carriage motion characters which are necessary to 
move the carriage from one graphic to the next. Over
struck graphics are stored in a standard form including 
a backspace character (see below). 

2. There are two mutually exclusive types of carriage 
motion, gross motion and simple motion. 

{

gross motion } 
carriage motion : : = simple motion 

gross motion simple motion 

Carriage motion generally appears between two graphics; 
the amount of motion represented depends only on the 
relative position of the two graphics on the page. Simple 
motion separates characters within a printed line; it 
includes positioning, for example, for superscripts and 
subscripts. Gross motion separates lines. 

3. Gross motion consists of any number of successive 
New Line (NL) characters. 

gross motion : : = {NL} .. • 

The system must translate vertical tabs and form feeds 
into new line characters on input. 

4. Simple motion consists of any number of Space 
characters (SP) followed by some number (possibly 
zero) of vertical half-line forward (HLF) or _ reverse 
(HLR) characters. The number of vertical half line feed 
characters is exactly the number needed to move the 
carriage from the lowest character of the preceding print 
position to the highest character of the next print 

position. [[HLF] .•• ] 

simple motion : : = {SP}.·· 
[HLR]·· • 

The basis for the amount of simple carriage motion 
represented is always the horizontal and vertical 
distance between successive graphics that appears on 
the actual device. In the translation to and from the 
canonical form, the system must of course take into 
account the actual (possibly variable) horizontal 
tab stops on the physical device. 

In some systems, a "relative horizontal tab" char
acter is defined. Some character code (for example, 
USASCII DCI) is reserved for this meaning, and by 
convention the immediately following character storage 
position contains a count which is interpreted as the 
size of the horizontal white space to be left. Such a 
character fits smoothly into the canonical form de-
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scribed here in place of the successive spaces implied 
by the definition above. It also minimizes the space 
requirement of a canonical string. It does tequire some 
language features, or subroutines, to extract the count 
as an integer, to determine its size. It also means that 
character comparison is harder to implement; equality 
of a character with one found in a string may mean 
either that the hoped for character has been found or 
it may mean that a relative tab count happens to have 
the same bit pattern as the desired character; reference 
to the previous character in the string is required to 
distinguish the two cases. 

5. A print position consists of some non-zero number 
of character positions, occupying different half line 
vertical positions in the same horizontal carriage 
position. All but the last character position of a print 
position are followed by a backspace character and some 
number of HLF characters. 

print position : : = character position 

[BS [HLF]· •. character position]· •• 

6. A character position consists of a sequence of 
graphic formers separated by backspace characters. 
The graphic formers are ordered according to the 
USASCII coded numeric value of the graphics they 
contain. (The first graphic former contains the graphic 
with the smallest code, etc.) Two graphic formers 
containing the same graphic will never appear in the· 
same character position. 

character position : : = graphic former 

[BS graphic former] . • • 

Note that all possible uses of a backspace character in a 
raw input stream have been covered by statements 
about horizontal carriage movements and overstruck 
graphics. 

7. A graphic former is a possibly zero-length setup 
sequence of graphic controls followed by one of the 94 
USASCII non-blank graphic characters. 

. 94 UASCII 

l
one of the) 

graphIc former : : = [setup sequence] h' . grap IC 
characters 

8. A graphic setup sequence is a color shift or a bell 
(BEL) or a color shift followed by a bell. The color shift 
only appears when the following graphic is to be a 
different color from the preceding one in the message. 

1 
[RRS Jl [BEL] 

setup sequence: : = BRS 

BEL 

in the absence of a color shift, the first graphic in a 
message is printed in black shift. Other control char
acters are treated similarly to bell. They appear 
immediately before the next graphic typed, in the 
order typed. 

By virtue of the above definitions, the control 
characters HT, VT, and· CR will never appear in a 
canonical stream. 





A study of heuristic learning methods for optimization tasks 
requiring a sequence of decisions* 
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INTRODUCTION 

Learning is a broad term covering many different 
phenomena. It is convenient to segment learning into 
three different problems in induction: the collection and 
use of stochastic information on past performance in 
order to improve performance, the determination of 
which variables are relevant to the decisions being 
made, and the derivation of performance rules in the 
predicate calculus from the collected data. This study 
concentrates on the first problem. 

THE ISSUES FOR INVESTIGATION 

(a) Can a digital computer program significantly 
improve its performance on an optimization task 
of real-world complexity (and generalize that 
improvement to other problems of the same 
type) solely through ordinal feedback from inter
comparisons of the solutions it has produced? 

Most of the previous work in machine learning dealt 
with pattern recognition or game playing tasks. Yet 
these tasks have specific characteristics that differ
entiate their requirements for a learning mechanism 
from other tasks' requirements. Both are essentially 
win-loss or right-wrong tasks. In addition, in pattern 
recognition, feedback about the success of a decision 
is usually immediate. Yet many tasks have other than 
binary outcomes-that is, they are optimization tasks 
or problems in finding the "best" solution, according 
to some objective criterion, from a set of feasible so
lutions. Usually, the problem solver does not even 

* This paper is based on a Ph.D. thesis completed at Carnegie
Mellon University, Pittsburgh, Pa. The project was supported 
in part by United States Public Health Service grants MH-07722 
and MH-30,606-01Al. The author is indebted to Mr. Herbert 
A. Simon for his advice and assistance. 
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know how well he can do. Consumer decisions, social 
decisions, and business decisions are often problems of 
this type. 

With many optimization tasks one can obtain interval 
information about the relative worth of two solutions, 
however for others -only an ordinal scale of solutions 
can be found. More important, it is often an order of 
mangnitude easier for a program to decide whether one
solution is better than another than for it to decide how 
much better. Hence, it is desirable to find a mechanism 
that can improve a program's performance solely from 
ordinal feedback. 

(b) Can significant improvement occur if the task 
environment is characterized for the program 
by a vector of relevant stimulus variables (a 
state vector)? 

Another characteristic of much of the previous work 
in machine learning is that most learning mechanisms 
have combined the stimulus variables in linear poly
nomials and selected a response on the basis of the 
various polynomials' values. Many of these schemes are 
called stimulus voting procedures because each stimulus 
votes separately for a response. 

The limitations of such linear machines are well 
known and have been analyzed in detail. l ,2 What is 
particularly disappointing is the simplicity of some 
patterns that cannot be handled by linear machines. 
For example, consider the association pattern in Table 1. 
When the values of the two features are the same, 
response R1 is required; otherwise, R2 is required. Let 
us now show that linear discriminant functions cannot 
be used to make this classification. 

Theorem: Linear discriminant functions do not exist 
for some very simple classifications of features. In par
ticular none exist for the classification shown in Table 1. 
Proof: The theorem will be proved by assuming the 
linear discriminant functions do exist and finding a 
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TABLE: I-A Simple Discrimination That Is Not Realizable 
with Linear Discriminant Functions 

VALUES OF FEATURES DESIRED RESPONSES 

(FI ) (F 2) (R I ) (R 2) 

FEATURE 1 FEATURE 2 RESPONSE 1 RESPONSE 2 

2 

1 

2 
1 

2 

x 

X 

x 
X 

contradiction. Let E1 be the linear discriminant function 
for R1 

Let E2 be the linear discriminant function for R2 

E2 = C21F 1 + C22F 2 

If linear discriminant functions exist that can make 
this discrimination, then 

For (F1 = 1, F2 = 2) and (F1 = 2, F2 = 1) 

E2 - El = C21F 1 + C22F 2 - CU FI - C12F 2 > 0 (1.1) 

For (Fl = 1, F2 = 1) and (Fl = 2, F2 = 2) 

El - E2 = CU FI + C12F 2 - C21F 1 - C22F 2 > 0 (1.2) 

Substituting the values of the features gives from (1.1) 

C21 + 2C22 - Cu - 2C12 > 0 (1.3) 
and 

2C21 + C22 - 2Cu - C12 > 0 (1.4) 

and from (1.2) 

Cu + C12 - C21 - C22 > 0 (1.5) 

- (C 11 + C 12 - C 21 - C 22) < 0 

C22 + C21 - Cu - C12 < 0 (1.6) 

But adding (1.3) and (1.4) gives 

3Cn +3Cu -3Cu -3Cu >O 

C22 + C21 - Cu - C12 > 0 (1.7) 

Equation (1.7) contradicts (1.6). Since the con
clusion of a correct line of reasoning has been a contra
diction, the assumption that a linear discriminant func
tion exists must be false, and the theorem is proved. 

A mechanism that associated states of the environ
ment with strategies or responses could learn such 
discriminations. Unfortunately, a state vector descrip
tion requires a great deal more computer storage. For 

example, for R stimulus variables and' N values per 
variable a parsimonious representation of the stimulus 
state requires on the order of NR storage cells. On the 
other hand, one needs only N* R cells to represent the 
status of each stimulus variable independently of the 
other variables and only R cells to represent the stimulus 
situation as the value of a linear polynomial. However, 
psychological evidence indicates that humans seldom 
attend to more than a few environmental features at a 
time3 so a state-vector of low dimensionality might be 
a reasonable representation for a learning program. 
This is the representation we adopted. 

The learning problem 

We view the learning problem as one of associating 
states of the environment, defined by some set. of 
stimulus variables to which the problem solver is' at
tending, with strategies for performance. The strength 
of such associations can be represented by the entries 
in a table of connections or matrix whose rows represent 
stimulus states and whose columns represent strategies. 
We want to see if significant learning can be accom
plished on a very complex optimization task if the 
stimulus environment is represented by a state vector of 
some of the most obvious relevant stimulus variables 
and only ordinal feedback is used. 

THE TASK TO BE LEARNED 

To avoid spending a majority of' the programming 
effort on a performance program for solving a very 
general class of optimization tasks, it was decided to 
restrict the study to one specific task, the project 
scheduling task. A sample problem for this task is 
shown in Figure 1. The objective is to complete all the 
jobs in as short a time as possibl~ by executing them 
in parallel. It is a difficult real-world task faced by 
management scientists, but it can be shown to be very 
similar to other optimization tasks requiring a sequential 
set of decisions, e.g., finding the minimum number of 
moves to checkmate, or the Traveling Salesman Prob
lem. A task very similar to the project scheduling task 
was used by Fisher and Thompson4 in a study that 
suggested the learning technique we have used. One 
can view optimization tasks that require a sequence of 
decisions as problems in finding the shortest or longest 
path through a decision tree. A feasible solution is any 
path from the root of the tree to a terminal or goal 
node. The branches descending from a node represent 
possible decisions and the nodes represent the status of 
the "system" after a decision is made. 



THE LEARNING TECHNIQUE 

Given a state-vector representation of the task en
vironment and a set of performance strategies, the 
learning mechanism must create a good (and gener
alizable) table of connections between stimulus states 
and strategies. An informal "hill climbing" procedure 
will be used to construct the table. Viewing learning 
as constructing a table of connections is not a new 
idea.5 However, unlike almost all previous learning 
programs, this one will have no way to make an 
absolute judgment about the utility of a solution. Since 
the problems to be attacked are optimization problems 
themselves, the learning program cannot determine 
when it has achieved the best solution. How will feed
back be obtained? 

The best previous solution will be designated as a 
bench mark solution and new solutions will be com
pared to it. If the new solution is better, the comparison 

Figure I-A sampie project scheduling problem. The leftmost 
jobs can be executed initially. The lines indicate the prerequisities 
for the other jobs: No job can be executed until all the jobs 
connected to it from the left are completed. The dotted line is the 
critical path for the execution times given below. This problem 
has only one resource need limiting how many jobs can be 
scheduled ip. parallel. 

Units of Time Units of Resource 
Job Needed Occupied 

job 1 4 5 
job 2 3 5 
job 3 2 1 
job 4 3 3 
job 5 4 6 
job 6 .5 4 
job 7 3 4 
job 8 3 2 
job 9 3 4 
job 10 3 6 
job 11 6 6 
job 12 8 4 
job 13 7 4 
job 14 1 6 
job 15 1 10 
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is positive; if it is worse, the comparison is negative. 
A fairly sophisticated comparison procedure was de
veloped to make comparisons feasible as frequently as 
possible during construction of a solution. Hence, one 
comparison corresponds to what is normally called one 
trial in the learning literature and one trial on a problem 
includes a whole series of comparisons. One can show 
that this technique can be applied (with a few restric
tions) to almost any optimization task requiring se
quential decisions. 

THE DESIGN OF THE PROGRAM 

This program, like most learning programs, should 
be viewed as two closely interacting routines-a per
formance routine and a learning routine. The routines 
were written in IPL-5. Let us first discuss the per
formance routine. 

The performance routine 

This routine is designed to find the shortest path 
through the tree of feasible solutions, i.e., feasible job 
schedules. Each level in the tree corresponds to a 
different time; each node in the tree specifies what jobs 
are completed, what jobs are currently being executed, 
and what jobs remain to be scheduled; each branch 
indicates the scheduling of a particular set of jobs. 
Hence, two geometrically different nodes may have the 
same meaning with different histories. Every path 
eventually leads to a node specifying that all jobs are 
complete. The objective of the performance program 
is to find a path through this tree that ends at the 
highest level terminal node (minimum time path). 

The performance program uses a "depth first" ap
proach to search. It looks ahead along a path through 
the tree until it detects a node where the path can be 
evaluated. Of course, there will be no evaluations during 
the production of the initial solution .since there is no 
solution for comparison. At each node encountered in 
the look ahead process, the program must decide what 
branch to follow next. This is equivalent to choosing 
the jobs that should be scheduled at that time. When 
a node is reached that can be evaluated, the learning 
program is called in to compare the current path with 
the bench mark solution. The comparison is either 
indeterminate, positive-the new path is more desirable, 
or negative-the present solution is more desirable. 
If the comparison is indeterminate or positive, the 
performance routine looks ahead deeper along the 
current path. In addition, when the evaluation is posi
tive, the current path is merged with the bench mark 
solution to form a new bench mark solution. On the 
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other hand, if the evaluation is negative, the perfor
mance routine abandons search along the current path. 
It may either return to the top of the solution tree and 
investigate a new path or look. ahead deeper from the 
corresponding but preferred node on the present bench 
mark solution's path. By "corresponding node" we 
mean the node on the solution path that was used in 
the evaluation. 

The tables of connections 

In carrying out this procedure the· performance pro
gram has to make two types of decisions. As mentioned 
above, following a negative comparison, the program 
must decide whether to back up to the start or con
tinue from a point on the present bench mark solution; 
the program must also decide what branch to follow 
(what jobs to schedule) at each node encountered in 
the look ahead process. While the former of these 
decisions requires a general-problem-solving strategy, 
the latter decision requires a task-specific strategy. To 
select these strategies, the performance routine employs 
two tables of connections. One table links a state vector 
composed of characteristics of the current search situ
ation to general strategies, in this case strategies speci
fying what to do after a. negative comparison. The 
other table connects a state vector of task relevant 
variables to a set of task specific strategies, in this case 
job selection strategies. 

Both of these tables are represented by tree structures 
in the computer's memory. A numerical value associated 
with Strategy i at State-node j will provide a measure 
of the past success of that strategy in State j relative 
to the success of other strategies in that state. 

Selecting a strategy 

The information in a state node could be used in 
any of several ways to select a strategy. For example, 
if one wishes to select a good strategy, one might choose 
the strategy whose success value is the greatest of all 
the values at the node, or one might select a strategy 
probabilistic ally in proportion to the success values. 
On the basis of several pilot runs it was decided that 
the performance program should construct the initial 
solution on each run by selecting the strategies with the 
highest success values (ties are broken randomly). 
During the rest of the run the performance routine 
would select strategies probabilistically. Specifically, 
the probability of choosing Strategy Si whose success 
value in the current state is Vi, from n strategies whose 

values in the current state are Vl ••• Vn is given by: 

Built-in heuristics 

The performance routine was not intended to begin 
as a completely naive problem solver. Certain general 
and task specific heuristics were built into the routine 
while other heuristics were introduced via the initial 
entries in the general-strategy table of connections. 
These heuristics were ones that most human problem 
solvers would have learned before ever attempting a 
problem of this type or ones that would be suggested 
by a cursory glance at the literature on the ·task. 
Foremost, among the general heuristics built into the 
program, is sub-goal evaluation. During the look-ahead 
process, the performance program asks the learning 
program to evaluate virtually every potential sub
goal-that is, every node on the current path that is 
on the same level as a node of the solution path. (In 
look-ahead searches on a typical problem twenty-eight 
sub-goals were evaluated for every evaluation of a 
complete path through the tree of feasible solutions.) 
A second built-in general heuristic is the program's 
"next event" approach to search. During the look
ahead process many nodes are encountered where no 
decisions need to be made. For example, no jobs can 
be scheduled at a node unless a job terminates there. 
Hence, the performance program jumps from node to 
node ignoring intervening nodes where no decisions 
need to be made. This heuristic speeds performance 
greatly, but it is dependent upon another heuristic-a 
task specific heuristic-included in the performance 
program. The performance routine always schedules 
as many jobs as resource constraints permit; so no 
new job can be scheduled until a job terminates and 
frees some resources. Such a heuristic is not without its 
drawbacks. There are a few situations where it prevents 
the program from searching a slightly superior branch. 
However, it is a heuristic with strong intuitive appeal, 
one that reduces the number of branches in the solution 
tree considerably, and one that permits implementation 
of the next event search process reducing the number 
of nodes to be analyzed during look-ahead. 

Three heuristics dealing with search behavior were 
introduced through the initial values of the success 
terms in the general-strategy table of connections. 
These heuristics deal with what the program should 
do following the discovery that a branch presently 
being searched can only be inferior to the solution 
(negative comparison). The probability of "backing 



up" to the start was made an inverse function of the 
depth that search had progressed into the solution tree 
and a direct function of the number of dead end 
branches encountered (negative comparisons and non
positive comparisons of complete paths). Thirdly, 
whichever "back up" strategy is selected, it should be 
tried several times consecutively before being 
abandoned. 

Storing a solution 

The performance program remembers only the pres
ent solution path and the path currently being searched. 
Both are stored as lists of scheduled jobs separated by 
time markers. The jobs preceding the nth time marker 
are the jobs being executed at time n. Associated with 
the list representing the path currently being searched 
is a list of the values in the tables of connections that 
have been selected during the search-that is, the 
values corresponding to the state-strategy pairings used 
to produce the path. Whenever a strategy is used, its 
value in the current state is added to this list. Hence, 
all the cells that the learning routine will modify are 
contained on this list. 

CONSTRuCT THE IN
ITIAL BENCH MARK 
SOLllTION BY SELECT
ING THE "BEST" 
STRATEGY IN EACH 
STIMUI.US STATE 

Figure 2-A flow chart of the performance routine. 
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BEGIN 
A NEW PATH 

FROM BEGINNIN 
OF THE PROB

LEM. 

INCREMENT 
STATE-STRATE 
PAIRS THAT 
WERE USED. 

COMBINE NEW 
PATH WITH 
BENCH MARK TO 
FORM A NEW 

BENCH MARK. 

BEGIN A NEW 
PArH FROM PRE
FERRED NODE 
ON BENCH MARK. 

Figure 3-A flow chart showing the steps the learning routine 
takes when called upon to compare part of a new solution 

with the bench mark solution. 

A gross flow chart of the performance procedure is 
presented in Figure 2. 

The learning routine 

The learning program evaluates paths through the 
tree of feasible solutions by comparing them with the 
bench mark solution (best solution so far), and it 
alters the tables of connections on the basis of these 
evaluations. 

Comparing solutions 

How does the program determine which of two paths 
is preferred? Path Zl up to node x is preferred to 
path Z2 up to node y if node x and yare at the same 
level in the tree of feasible solutions and if node x 
"dominates" node y. A node, one should remember, 
specifies the set of jobs currently completed and the 
set of jobs currently being executed. To say node x on 
Zl dominates node y on Z2 means that (a) all jobs 
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TABLE II-These Sample Schedules Illustrate the Construction of a New and Superior Bench Mark Solution (Z4) Out of the Old 
Bench Mark (Z2) and a New Partial Solution (Zl). 

TTME Zl 

SCHEDULES 

Z2 Z3 

1 
2 
3 
4 
5 
6 
7 
8 

job 1 job 2 
job 3 job 4 

I I 
job 5 I 

job 1 job 4 
job 2 I 
job 3 I 

I 
job 5 
job 6 job 7 
job 8 I 

I 

job 1 job 2 
job 3 job 4 

I I 
job 5 I 
job 5 
job 6 job 7 
job 8 I 

I 

job 1 job 2 
job 3 job 4 

I I 
job 5 I 
job 6 job 7 
job 8 I 

I 

LIST REPRESENTATION OF Zl: 

Zl-O 
job 1 
job 2 
time mark 
job 3 
job 4 
time mark 
job 3 
job 4 
time mark 
job 4 
job 5 
time mark-O 

scheduled on Z1 prior to x are completed by x, (b) all 
jobs on Z2 that are completed by y or being executed 
at yare completed by x on Z1 (from (a), any job on 
Z1 prior to x is completed by x), and (c) there is at 
least one job completed on Z1 prior to x that is not 
on Z2 prior to y. From this definition if any node x 
on Z1 dominates its corresponding node y on Z2 (the 
node at the same level), then combining Z1 prior to x 
with Z2 after y produces a new path at least as short 
as Z2 and in most cases shorter. Hence,_ Z1 prior to x 
is preferred to Z2 prior to y. One should be careful to 
clearly understand these statements as they are es
sential to the learning method. They form a task specific 
algorithm for judging partial schedules. To verify that 
the new path will indeed be no longer, one simply 
recognizes that Z2 after y can always be added onto 
Z1 before x without any changes since all jobs on Z1 
are completed at x. Furthermore, at least one job on 
Z2 after y has already been executed and can be 
deleted. If this deletion (or deletions) shortens Z2 after 
y the new path will be shorter. Consider as an example 
the schedules Z1 and Z2 in Table 2. At time 4 the node 
on Z1 dominates the corresponding node on Z2. As a 
result Z1 and Z2 can be combined into the new schedule 

Z3. By deleting "job 5" which had already been com
pleted on Z1 and moving the other jobs up in time, 
a shorter schedule Z4 was then produced. 

The large majority of evaluations turn out to be 
indeterminate. For example, during training on a typical 
problem about 94% were indeterminate. When the 
comparison is negative (the present bench mark so
lution is preferred), the tables of connections are not 
altered and control is returned to the performance 
routine which decides whether to look ahead from the 
corresponding node of the bench mark or back up to 
the top of the tree. When the comparison is positive 
(the current path is preferred), the learning program 
alters the tables of connections and constructs a new 
bench mark solution. 

Altering the memory structures 

Altering the tables of connections is fairly trivial. 
Remember that during look ahead a list is maintained 
of all the success terms associated with the selected 
state strategy pairings. This requires very little storage, 
only one cell for each decision made since the last 



positive or negative comparison. To positively reinforce 
the state-strategy pairings participating in the con
struction of a better solution, each element of this list 
is simply incremented. On the basis of pilot studies we 
selected an increment of 3 over smaller values. Larger 
values might produce more rapid learning but also less 
stable. Obviously, an entire study could be devoted to 
finding the optimal value for this increment. With an 
increment of 3 the probability of selecting each strategy 
is altered as follows. 

Let Pt(Si/R) be the probability at time t of selecting 
strategy Si in state R. 

Vi be the success value associated with the 
jth strategy in state R at time t. 

n be the total number of strategies. Then, as mentioned 
earlier, 

and if strategy Si is reinforced in state R at time t 

P,+l(s./R) = Vk / (tv; + 3), k,.. i 

or letting 

at time t 

These changes will be called positive reinforcement. 

Consistent decision making during learning 

This completes the description of the learning routine. 
One very important addition was made to the learning 
scheme as a result of some early failures in the pilot 
studies. 

Principle: While exploring a path through the tree 
of feasible solutions, a performance program used 
with a learning routine should employ the same 
strategy every time the same state occurs (make 
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the same decision in the same situation) until the 
path has been successfully evaluated (positively or 
negatively) . 

When this principle is not adhered to, credit assignment 
becomes almost impossible. Conceivably, all the strat
egies could be used in the same state before an evalu
ation occurred. -In this case the bad strategies may 
mask the good strategies, and one has no way to 
distinguish between them. Hence, it is not sufficient 
to "select a strategy in proportion to its past successes." 
One must first check to see if a strategy has already 
been paired with the current state, and, if so, use that 
strategy. 

SELECTING STRATEGIES AND FEATURES 

One might well argue that the major portion of this 
program's work is done by the programmer when he 
selects the stimulus features for attention and the 
potential strategies for use. Yet this is exactly what 
happens to the human beginner. He generally derives 
his first ideas about strategies and features from a 
teacher, a book, or his experience with other similar 
tasks. The features and strategies that we selected for 
use were simple ones that would occur to anyone who 
made a cursory glance at the literature on scheduling 
problems. Within the program the features and strat
egies were represented as lists of components in such a 
way that new strategies or features could be synthe
sized. Later we will see how this learning mechanism 
could employ its feedback to eliminate poor strategies 
or features and introduce new ones. 

Five task-specific strategies and three features of 3, 
3, and 4 values were used initially. Hence, there were 
3*4*3 or 36 state nodes in the task-specific table of 
connections. Each state, of course, really represented 
a broad class of stimulus situations. With five strategies 
per node the total storage requirement of the task 
specific table of connections was only 463 IPL-5 cells 
or 926 32-bit words. All the success values in this table 
were initially set at 10. Other smaller values were tried 
during the pilot studies and found to change the per
formance routine's behavior too radically in early 
training. 

The general-s_trategy table of connections used in 
these experiments was employed only to choose be
tween two search strategies. The "previous-strategy" 
feature thus had two values while the other two features 
had three value classes. Hence, there were 18 state 
nodes requiring 133 IPL-5 cells or 266 32-bit words. 
This means that the two tables' total storage require
ment was 1,192 computer words. The initial success 
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Figure 4.1-The solutions produced during training on 
Problem 1 with positive reinforcement. The discontinuities 
are points where all previous solutions were erased from the 
program's memory, and it began again on the problem from 
scratch. 

values in the general-strategy table were assigned to 
implement certain heuristics as discussed in the section 
on the performance routine. 

EXPERIMENT I 

To answer questions (a) and (b) we tested this 
program's learning ability on three project scheduling 
problems. 

The dependent variable on which a learning mecha
nism should be evaluated is improvement in perform
ance not the quality of performance. We want to 
demonstrate that the proposed learning mechanism, 
using only ordinal feedback, can learn what strategy 
to apply in what state so that the performance program 
performs significantly better on the training problem 
and on other problems of the same type. 

Fifteen project scheduling problems (unbiased in any 
obvious manner) were generated randomly by the com
puter to find three that satisfied hardware and com
plexity constraints (most were too simple). 

We will call these Problems 1, 2, and 3. The program 
was trained on Problem 1, trained more on Problem 2, 
and tested for ten minutes on Problem 3. Then we 
retrained the program from scratch on Problem 3 and 
tested it on Problem 1. No negative reinforcement was 
applied in this experiment. If the bench mark solution 
was definitely superior, the new path was abandoned 
and the program selected a general strategy telling it 
what to do next. 

Results 

The training significantly improved the performance 
program after only a moderate number of positive 
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Figure 4.2-The solutions produced during additional training 
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reinforcements. The improvement generalized to prob
lems other than the training problem. 

Figures 4.1 to 4.3 and 6.1 to 6.2 contain learning 
curves showing the improvement. The base solution to 
a problem is the average solution produced by random 
strategy selection. The improvement can be measured 
quantitatively by the ten-minute solution rate. The 
rates are shown in Table 3. A Mann-Whitney U test 
confirmed a highly significant difference (p < .0001) 
in rates on training and test trials. 

Each segment of the learning curves in Figures 4.1 
and 6.1 represents the performance from creation of an 
initial bench mark by using the highest valued state
strategy pairings until the program has not improved 
the bench mark in a specified time period. The bench 
mark is erased before a new segment starts. These 
segments are called training trials, but within anyone 
of them there are many comparisons of solutions which 
may result in reinforcements. About 94% of all com
parisons were indeterminate, i.e., neither the bench 
mark nor current solution was preferred. On the 
average 9 different state-strategy pairs were evaluated 
in a determinate comparison. One inevitable char
acteristic of an ordinal feedback system is that as 
learning progresses within a trial, positive comparisons 
become less frequent, and negative comparisons become 
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Figure 5.1-The probabilities of the program selecting each of 
the five strategies as a function of the number of comparisons 
during learning. The data are for one particular task situation 
(state) corresponding to average time requirements, average 
criticality, and the beginning of a solution. The data are from the 
first training trial on Problem 1 in Experiment 1. The strategies 
are described in Table 2. 
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Figure 6.2-The number of different state-strategy pairings 
used as a function of the number of comparisons of partial 
solutions during learning. The data are from the first training 
trial on Problem 1 in Experiment I. 

more frequent. Altogether, during the three training 
trials on Problem 1, there were 449 positive reinforce
ments of state-strategy pairs, while, during the training 
on Problem 3, there were 142 positive reinforcements 
of state-strategy pairs. The change in one individual 
row in the table of connections is displayed in Figure 5.1. 
One can see that an equilibrium was reached early in 
the trial. The changes in the table of connections can 
also be measured in terms of the entropy of the table 
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Figure 6.1-The solutions produced during training on Problem 3 
with positive reinforcement. 
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li'igure 6.2-The solutions produced during test trials on Problems 
1 and 2. 

of connections. The entropy of the table trained on 
Problem 1 was reduced from 83.6 bits to 71.7 bits 
during training. This was 93% of the maximum possible 
reduction for the number of reinforcements. The final 
table of connections for training on Problem 1 is summa-
rized in Table 4. 

On the basis of relatively brief exposure to one 
optimization problem the performance program's table 
of connections was changed so that the program pro-
duced good solutions significantly more rapidly. This 
learning generalized to two other problems .of the same 
type. Training from a naive state on these problems in 
turn improved performance on the original problem. 
Hence, significant learning is possible on a very complex 
optimization task with ordinal feedback and a state-
vector representation of a reduced task environment. 

EXPERIMENT II 

(c) Does improvement occur more rapidly if the 
program changes its structure following its fail-
ures to improve its performance as well as after 
its success? 

Having demonstrated that a learning mechanism 
based on ordinal feedback and us~ng a state-vector 
representation will work, we can turn to the central 
issue in this study: should negative reinforcement (or 
error correction training) be used in a learning mecha
nism for optimization tasks? 

The large majority of trainable pattern classifiers 
and game playing programs have used error correction 
training alone or in conjunction with positive reinforce
ment. This is somewhat surprising since the weight of 
evidence from psychology seems to indicate that posi
tive reinforcement plays the most important role in 
learning while negative reinforcement may speed learn
ing slightly by eliminating incorrect responses or may 
not help at all. Furthermore, we assert that error cor
rection training is useful only if the learning program 
receives feedback data on an interval or ratio scale; 
feedback on an ordinal scale, as one receives in optimi
zation tasks, while sufficient for positive reinforcement, 
is not sufficient for negative reinforcement (error cor
rection training). In fact, error correction training or 
negative reinforcement should adversely affect the 

T ABLE III -Solution Rates During Experiment I 
(Positive Reinforcement) 

First tra1:ning serie8 (Run 1) 

Ten 
Final Minute 

Trial Rate Rate 

Training on Problem 1: 
1 0.9 1.7 
2 1.2 1.3 
3 2.9 4.3 

Additional training on 
Problem 2: 

1 2.4 2.4 
2 2.9 2.9 

Test on Problem 1: 
1 5.0 

Test on Problem 3: 
1 5.1 

Second traim:ng series (Run 2) 

Ten 
Final Minute 

Trial Rate Rate 

Training on Problem 3: 
1 2.9 1.7 
2 2.2 1.7 
3 1.5 3.1 

Test on Problem 1: 
1 4.3 

Test on Problem 3: 
1 4.0 
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TABLE IV-A Summary of the Table of Connections in Experiment I 
(Both the mean success values and the probabilities of selection are given in each cell.) 

FEATURE STRATEGIES 

S21 S22 S23 S24 S25 SUM 

BEGINNING 11.8 12.8 13.0 17.8 33.0 88.4 
.133 .145 .147 .201 .373 

DEPTH IN MIDDLE 10.5 21.5 32.3 17.0 15.8 97.1 
SOLUTION . 108 .222 .333 . .175 .162 

END 16.8 11.3 23.8 10.5 14.5 76.9 
.218 .147 .309 .137 .189 

BELOW 12.8 10.0 10.0 10.0 15.0 57.8 
AVERAGE .221 .173 .173 .173 .257 

TIME NEEDS OF ABOUT 16.3 23.0 43.3 21.3 35.3 139.2 
EXECUTABLE JOBS AVERAGE .117 .165 .311 .153 .254 

ABOVE 10:0 12.5 15.8 13.5 13.0 64.8 
AVERAGE .154 .193 .244 .208 .199 

~ 1 16.7 18.7 21.0 11.7 18.7 86.8 
.192 .215 .242 .135 .215 

VARIANCE BELOW 12.3 16.7 27.7 19.7 12.6 89.0 
OF CRITICALITY AVERAGE .138 .188 .311 .221 .142 

ABOUT 11.0 14.0 15.0 11.0 40.3 91.3 
AVERAGE .120 .V53 .164 .120 .441 

ABOVE 12.0' 11.3 28.3 18.0 12.7 82.3 
AVERAGE .146 .137 .344 .219 .154 

MEANS 13.0 15.2 23.0 15.1 21.1 
.149 .173 .263 .173 .242 

Strategies: S21: Schedule job with minimum resource demands 
S22: Schedule job with maximum time demand 
S23: Schedule job with maximum criticality 
S24: Schedule job whose time demand is closest to the remaining time for a scheduled job 
S25: Schedule job with maximum resource demands 

learning ability of a program trying to learn an optimi
zation task. 

Before showing why error correction training should 
hamper this type of learning, we need to review three 
key features of our ordinal learning program. 

(a) The program possesses a preference routine that 
enables it to compare parts of new solutions with a 
bench mark solution. 

(b) The program implements positive (or negative) 

reinforcement by incrementing (or decrementing) those 
. cells in the table of connections (by Cpos or Cneg) 
that contributed to the new solution. 

( c) The program uses strategy j in state i with a 
probability equ~l to Viii 2:;:=1 Vik where VXY is the value of 
the cell corresponding to state x and strategy y. Hence, 
the summation is over all strategies in state i. 

Now we can state the theorem leading to our conclusion 
that error correction training will fail for any sequential 
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optimization task representable as finding the optimal 
path through a tree of feasible solution. 

. Theorem: For any ordinal-feedback learning pro
cedure possessing characteristics a, b, and c, error 
correction training will decrease the probability of 
selecting the "best" strategy or response in each 
stimulus situation as soon as 

(1) The "best" strategy is being used in over .50% 
of the situations encountered 

(2) The probability that the bench mark will be 
preferred to a new solution is greater than 
Cposj (Cpos + Cneg). 

In less formal terms, when the bench mark solution and 
the table of connections have both become pretty good, 
negative reinforcement will begin to make the table of 
connections worse. Though this theorem will be proved 
for a program with characteristics a, b, and c, the reader 
should realize that the theorem (in slightly different 
form) will hold for viable alternatives to characteristics 
band c. The central problem is that ordinal feedback 
becomes unreliable as the bench mark improves. 

Proof: 

Let Cpos be the increment for positive reinforcement. 
Cneg be the decrement for negative reinforce

ment. 
P be the probability that the bench mark solution 

is preferred after a determinate comparsion. 
V t ( i, j) be the entry in the table of connections 

corresponding to the ith state and the jth 
strategy (at time t). 

Et(V) be the average value of Vt(i, j) over all 
state-strategy pairs used in constructing a new 
path. 

q be the % of situations in which "best" strat
egies were used in constructing the new path 
(% of situations for which "best" strategies 
exist in which they were used). 

Now we can rewrite the two premises in the theorem as 

(P.1) q > .50 

(P.2) P > Cposj (Cpos + Cneg), Cpos> 0, Cneg> 0 

From our description of the learning mechanism, we 
know that after a positive comparison 

and after a negative comparison 

E't+l(V) = Et(V) - Cneg (2.2) 

Hence, the overall expectation following a determinate 
comparison is 

E t+1(V) = P*(Et(V) - Cneg) 

+ (1 - P)*(Et(V) + Cpos) 

E t+1(V) = Et(V) + Cpos - (Cpos + Cneg)*P (2.3) 

but from P.2 we know P > Cposj(Cpos + Cneg); 
therefore 

(Cpos + Cneg) * P > Cpos 

and from (2.3), 

E t+1(V) < Et(V) 

In other words, once P > Cposj (Cpos + Cneg) we 
can expect the pairs used in constructing new paths to 
be decremented. As a result those pairs not used on the 
path ",ill become more likely to be selected. 

Let D be the expected decrement in the probability 
of selecting a "best" strategy that was used 
on the new path. 

I be the expected increment in the probability 
of selecting a "best" strategy that was not 
used on the new path. 

Since the probabilities of selection in any state must 
sum to unity, and since there are more than two 
strategies per state, and only one is decremented, 

D > I (2.4) 

Now we can write an expression for the expected change 
in the probability of selecting a best strategy. 

Let ~prob be the expected increase in the probability 
of selecting a "best" strategy after a reinforce
ment. 

~prob = -q*D + (1 - q)*I (2 .• 5) 

but from P.2, 

q> .50 (q < 1) 

q > (1 - q) 

Therefore, using (2.4), we get from (2.5) that 

~prob < 0 

Hence, we have shown that the probability of selecting 
a "best" strategy must decrease, and our theorem is 
proved. 

To test this hypothesis we attempted to train the 
program again from scratch on the same problems using 
both positive and negative reinforcement (the decre
ment for negative reinforcement was 1). The procedure 
was the same as in Experiplent I, but the results were 
quite different. 



TABLE V-A Comparison of Solution Rates in Experiments 
I and II 

(1) 
Mean 

10 Minute 
Rate 

on First Two 
Learning Trials 

Experiment I 
(Positive 
Reinforcement) 1.6 

Experiment II 
(Positive and Negative 

Reinforcement) 1.9 

Difference (I) - (II) -0.3 

* t = 3.309, df = 10, p < .005 
** U = 0, p < .001 

(2)a 
Mean 

10 Minute 
Rate 

on Test 
Trials 

4.0 

1.5 

+2.5* 

a Including additional training on Problem 2. 

Results 

(2) - (1) 

+2.2** 

-0.4 

The improvement in performance was significantly 
less for training with both positive and negative rein
forcement than it had been in Experiment I for positive 
reinforcement alone. 

In Table 5 the solution rates for training and test 
trials in Experiments I and II are compared. One can 
see that the solution rates were significantly inferior 
when negative reinforcement was included. This is also 
quite clear from the learning curves shown in Figures 
7.1 to 7.3 and 9.1 to 9.2. The performance seems to 
have improved on the first training trial and then 
worsened. One can compare the test trials in this 
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Figure 7.1-The solutions produced during training on Problem 1 
with positive and negative reinforcement. 
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Figure 7.2-The solutions produced during additional training on 
Problem 2 with positive and negative reinforcement. 

experiment with those in the first experiment (Figures 
4.1 to 6.2) and note the substantial differences. 

The reduction in entropy in the tables of connections 
trained with negative reinforcement was also less. The 
reduction in the table trained on Problem 1 was only 
13% of the possible. One should not overemphasize 
this difference, however, since orderliness does not 
necessarily imply that the desired order has been 
achieved. Nevertheless, it is interesting to note that 
90% of the 13% reduction in entropy during training 
on Problem 1 occurred during the first training trial. 
This, of course, is in accord with our hypothesis. 

One can see some of the more subtle effects of 
negative reinforcement more clearly by looking at the 
within trial behavior of the program. During the three 
training trials on Problem 1 and the following two 
trials on Problem 2 there were 518 positive reinforce
ments of state-strategy pairs in contrast to 1701 nega
tive reinforcements of strategy pairs. Let us look in de
tail at the behavior of the program within Training 
Trial 1 on Problem 1 and compare it with the corre
sponding training trial in Experiment I. The rate of 
occurrence of negative comparisons was slightly less in 
this experiment. This is not surprising since negative re
inforcements would make it less likely that the program 
would repeat a series of bad decisions and encounter 
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Figure 7.3-The solutions produced during test trials on Problems 
1 and 3. 

another negative reinforcement. From the large fluctu-, 
ations in the sum of the entries in the table of con
nections during the trial, we could see that positive 
reinforcements were the dominant influence at the be
ginning of the trial, but that their effect could have 
been wiped out by the negative reinforcements later 
in the .trial. Besides preventing the repetition of bad 
decision sequences, negative reinforcement introduces 
more variety into the decision making process. In other 
words, negative reinforcement can move the table of 
connections off a locally optimal structure to search for 
a better structure. The greater variety in decision mak
ing is best seen by comparing Figure 8.2 with Figure 
5.2. However, the total effect of these characteristics 
of negative reinforcement in changing the structure of 
the table of connections is best shown by Figure 8.1. 
With negative reinforcement the changes in probability 
were more erratic. A new strategy suddenly increased 
in probability after the trial was half over. 

This experiment demonstrates that negative rein
forcement can never be ,used as freely as positive rein
forcement in learning optimization tasks. The many 
previous methods based solely on error correction train-
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Figure 8. I-The probabilities of the program selecting each of the 
five strategies as a function of the number of comparisons of 
partial solutions during learning. The data are for one particular 
task situation (state) corresponding to average time requirements, 
average criticality, and the beginning of a solution. The data are 
from the first training trial on Problem 1 in Experiment II. 

ing would perform poorly on optimization tasks. N ever
theless, one can see that negative reinforcement has 
some desirable effects: it prevents the table of con
nections from becoming stranded on local optima and 
causes a greater variety of decisions to be investigated. 
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Figure 8.2-The number of different state-strategy pairings 
used as a function of the number of comparisons of partial 
solutions during learning. The data are from the first training 
trial on Problem 1 in Experiment II. 
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Figure 9.1-The solutions produced during training on Problem 3 
with positive and negative reinforcement. 

Hence, we would like to find a way to reap some of the 
benefits of negative reinforcement while avoiding the 
pitfalls. 

EXPERIMENT III 

(d) During training should the program always 
strive to produce the best possible solution? 

An implicit assumption in many previous learning 
mechanisms is that the path to becoming an excellent 
problem solver is monotonic. However, if this assump
tion-that the strategies employed by a good problem 
solver will be worthwhile for an expert-is not always 
true, then a learning program needs a mechanism for ex
ploring solutions outside of those suggested by its pre
vious learning? In different terms, doesn't a learning 
program need a way to escape local optimums generated 
by particu1ar strategies and to experiment with new 
strategies that may lead to the global optimum? 

If one views an optimization problem as the problem 
of finding an ideal path in a tree of solutions, he can 
see why a learning program would need such mecha
nisms. The strategies that generate a path (solution) 
are reinforced if that path is superior to previous paths. 
Des~rably enough, this somewhat narrows the scope of 
future search to branches likely to be selected by the 
same strategies. Eventually, a solution will be reached 
that cannot be exceeded in a reasonable amount of 
time. At this point all branches off this path (assuming 
some entropy in the search process) and all branches 
likely to be reached with the same strategies should 
have been tried and found inferior. But there is no 
guarantee that a radical change in several strategies at 
some point on the path might not lead to an equal or 
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better path. The danger is that a few radical changes 
in strategies might consistently produce quite different 
paths and superior solutions, but these changes would 
never be investigated because anyone of them, alone, 
coupled with the learned series of strategies, only leads 
to a branch off the old path and a worse solution. There
fore, it is suggested that a program that adopts a short 
period of relatively non-directive search at the end of a 
learning sequence where improvement has terminated 
will learn a superior decision structure and eventually 
perform better than a program that spends all its time 
searching on the basis of its past experience. 

Admittedly, such a non-directive search would be 
time consuming and costly in that performance would 
be bad during learning. MacKay,8 . in fact, has sug
gested deliberately selecting bad strategies during learn
ing so that they can be eliminated with negative rein
forcement. However, such a method would not help 
much in selecting a strategy of little utility most of the 
time that is of the highest utility in moving from good 
to excellent solutions. It is suggested that what is 
needed is a mechanism for relatively random explo
ration of strategies whenever it appears that the pro
gram is "hung up" on a local optimum. How useful 
such an addition to a learning procedure would be is 
the fourth issue for study. 
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Figure 9.Z---':The solutions produced during test trials on Problems 
1 and 3. 
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Figure 1O.1-The solutions formed during special additional 
training on Problem 1 in Experiment III. The initial memory 
structure has been trained with positive reinforcement alone in 
Experiment I (see Figs. 4.1 and 4.2). Both positive and negative 
reinforcement were used on these three trials. In addition, after 
the first bench mark was formed, startegies were selected com-
pletely at random during '!'rials 1 and 3. . 

We began with the final table of connections from 
training on Problem 1 in Experiment 1. it appeared 
that this table had become stranded on a local optimum. 
Although it produced good solutions, better solutions 
existed that it could not find. Additional training did 
not help since improvement is needed for positive 
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Figure 10.2-The solutions produced during test trials on 
Problems 1, 2, and 3. The broken lines represent the solutions 
formed during the old test trials before this additional training. 
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Figure 11.1-The probabilities of the program selecting each 
of the five strategies as a function of the number of comparisons 
of partial solutions during learning. The data are for the state 
corresponding to average time requirements, average criticality, 
and the beginning of a solution. The data are from the first 
training trial on Problem 1 in Experiment III, a· trial during 
which strategies were selected at random. 

reinforcement to be applied. Hence, we decided to give 
the table of connections additional training with nega
tive reinforcement and with strategies selected at random. 
With this scheme good strategies would be no more 
likely to be selected than bad ones, and negative rein
forcement should not destroy the table of connections; 
rather it should move the table off the local optimum 
and allow the learning program to search for another 
optimum. 

Results 

The results of the experiment indicate that this is 
exactly what happened. Two random strategy selection 
trials were combined with one normal training trial. 
These are shown in Figure 10~1. During the first trial, 
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TABLE VI-A Summary of the Table of Connections in Experiment 3 
(Both the mean success values and the probabilities of selection are given in each cell.) 

FEATURE STRATEGIES 

S21 S22 823 S24 S25 

BEGINNING 6.58 8.08 7.25 16.33 40.00 
.084 .103 .093 .208 .511 

DEPTH IN MIDDLE 7.17 18.17 45.33 13.92 9.92 
SOLUTION .076 .192 .479 .147 .105 

END 18.58 9.92 30.25 10.08 13.25 
.226 .120 .368 .122 .161 

BELOW 12.92 8.58 8.42 10.17 13.58 
AVERAGE .241 .160 .157 .190 .253 

TIME NEEDS OF ABOUT 10.50 18.83 .56.67 20.83 39.67 
EXECUTABLE JOBS AVERAGE .072 .129 .389 .142 .271 

ABOVE 8.92 8.75 17.75 9.33 9.92 
AVERAGE .138 .135 .274 .299 .153 

~ 1 17.56 19.44 21.44 11.56 16.33 
.203 .225 .248 .134 .189 

VARIANCE BELOW 8.56 12.56 38.23 18.56 7.00 
OF CRITICALITY AVERAGE .101 .148 .450 .219 .082 

ABOUT 8.33 10.00 14 .. 56 9.11 54.00 
AVERAGE .087 .104 .152 .949 .563 

ABOVE 8.67 6.23 36.23 14.56 6.89 
AVERAGE .119 .086 .499 .201 .095 

MEANS 10.78 12.06 27.61 13.44 21.06 
.127 .142 .325 .158 .248 

Strategies: 
S21: Schedule job with minimum resource demands 
S22: Scheule job with maximum time demand 
S23: Schedule job with maximum criticality 
S24: Schedule job whose time demand is closest to the remaining time for a scheduled job 
S25: Schedule job with maximum resource demands 

where strategies were chosen at random, negative rein
forcement altered the table of connections moving it 
off its local peak. The second trial, a normal training 
trial, established new connections in the table with 
positive reinforcement. The third trial again varied 
the table with negative reinforcement and random 

strategy selection. Finally, on a test trial (Figure 10.2) 
the performance program produced good solutions to 
all three problems and the best solutions to Problems 1 
and 2 that were ever generated. The final table of 
connections is displayed in Table 6. 

A study of the within· trial behavior of the program 
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Figure 11.2-The number of different state-strategy pairings 
used as a function of the number of comparisons of partial 
solutions during learning. The data are from the first training 
trial on Problem 1 in Experiment III, a trial during which 
strategies were selected at random. 

confirms these effects. Comparing Figure 11.2 with 
Figures 5.2 and 8.2 indicates that a greater number of 
state-strategy pairings were investigated in this learning 
mode than in the other modes. The average value of 
cells in the table of connections dropped rapidly, 
making the table more susceptible to new applications 
of positive reinforcement. At the same time this random 
selection mode did not destroy all the previous learning. 
The random selection trial actually increased the superi
ority of strategy S25 in the state shown (Figure 11.1). 

From these results one can conclude that it is not 
always the best policy during learning to try and find 
good solutions. At some times one is better off investi
gating new state-strategy pairings and ignoring the 
immediate consequences. 

CONCLUSIONS 

The study demonstrated that a program for solving a 
very complex optimization task (a scheduling task) 

could learn generalizable performance principles solely 
through ordinal feedback from intercomparisons of the 
solutions it had produced. In particular connections 
were formed from a very restricted state description 
of the environment to basic performance strategies. 
Only a relatively small number of positive reinforce
ments were necessary to produce significant improve
ment. Furthermore, and perhaps most important of all, 
negative reinforcement or error correction training was 
shown to be a hindrance to learning when only ordinal 
feedback was available. Theoretical evidence was pro
vided in support of this empirical finding. Finally, the 
study established that some benefits can be derived 
from negative reinforcement by using it with a per
formance routine that does not always preform at its 
best . 

This study did not address (directly) the problem of 
how the program could generate the stimulus features 
and basic strategies that are the entries in the table of 
connections. However, a table of connections provides a 
great deal of information that can be used in eliminating 
old entries and introducing new entries. Some simple de
scriptive statistics about a table, e.g., variance of sub
sets of entries, provide information on just what basic 
strategies or features should be eliminated. Several 
algorithms have already been developed to make use 
of this information. 

Finally, this study raises some very interesting ques
tions about human learning ability. Do humans some
times ignore the consequence of their behavior in order 
to learn more rapidly? What is the relative power of 
ordinal, interval, and ratio feedback in learning complex 
tasks? Do humans change their state-strategy pairings 
on the basis of failures to improve? How large a set of 
state variables do humans attend to at anyone time? 
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Man-machine interaction for the discovery 
of high-level patterns · 

by DAVID F. FOSTER* 

General Electric Company 
Bethesda, Maryland 

Social scientists are largely concerned with the dis
covery of patterns and relationships in multivariate 
data. The· techniques used have been, for the most 
part, the standard tools of multivariate analysis
correlation, regression, factor analysis, and so forth. 
Unfortunately, the nature of these techniques has 
tended to impose implicit 'theoretical assumptions and 
constraints on the social sciences. The conceptualization 
of a variable as the weighted sum of other variables is 
methodologically unhealthy in the study of human 
beings and societies, in which it is precisely the complex 
interaction effects among variables which are of the 
most theoretical interest. In the social sciences it is 
especially prevalent, and especially significant, for the 
relationship between two variables to be dependent on 
the values of other variables-and for the nature of 
this dependence to be a function of still other variables. 
Traditional statistical methods are ill-suited for un
covering such hierarchies of interaction effects. 

Progress in this direction has been made through the 
pattern-analytic methods developed by Dr. Louis Mc
Quittyl,2 and others. These methods develop classifi
cations of individuals by searching for clusters of vari
ables on which groups of individuals tend to agree. 
Another approach has been taken by researchers at 
System Development Corporation with their time
sharing programs TRACE and IDEA.3,4 These pro
grams make it possible for a social scientist to interact 
on-line with his data-base, making possible the dis
covery of interactions which would be almost impossible 
to discover through batch processing and' standard 
techniques of statistical analysis. * The use of time-

* The opinions stated in this paper are the responsibility of the 
author alone. 
* TRACE and IDEA have been applied to numerous investiga
tions, including an interesting study of the Watts riot. Tn this 
study it was found that the effect of age on participation in the 
riot was directly opposite for men and women-younger men 
participated, while older women did. This is an example of the 
kind of effect which would not show up in a correlation or re
lO'ession analysis. 
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sharing is especially significant here. Searching for com
plex patterns is a process which inherently involves 
enormous amounts of combinatorial manipulation. 
Through time-sharing, a researcher in cootinuous inter
action with a computer can use his theoretical knowl
edge and common sense to greatly reduce the amount 
of effort that would have to be expended by a "blind" 
program. This is a significant example of the "augmen
tation of human intelligence" which has been talked 
about so much in connection with time-sharing. The 
researcher can explore his data heuristically, developing 
hypotheses and testing them as he goes along. This kind 
of interaction will permit the development of theoretical 
concepts which are more complex and more interesting 
than many of those now existing in the social sciences. 

HIGH-LEVEL PATTERNS 

In this paper, I wish. to introduce the concept of a 
high-level pattern, and to propose that while the dis
covery of such patterns in social science data is usually 
beyond the reach of either an unaided human being 
or an unaided computer, it can be accomplished by a 
symbiosis of the two. A high-level pattern is different 
from the kind of pattern sought by the pattern-analytic 
methods of McQuitty and others. Whereas they seek 
patterns which are partitions of a set of individuals 
into subsets of individuals who agree among themselves 
on certain groups of variables, a high-level pattern is a 
partition of the set of individuals into subsets within 
which a common set of linear, additive, non-:interactive 
relationships holds. That is, although there may be no 
significant correlations among variables for a certain 
sample of individuals, it is possible that there exists a 
partition of the sample into subsets within each of 
which there exist very strong correlations between 
variables. 

The existence and discovery of such partitions is 
most significant from a theoretical viewpoint in the 
social sciences. If it is true, as Robinson and I have 
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suggested in another paper,5 and as Peter Winch has 
cogently argued,6 that the structures of societies are 
best regarded not as something external, like physical 
laws, but as reflections of the ways in which individuals 
organize experiences into conceptual frameworks, then 
one might expect to find in a set of social data not 
one set of relationships, but multiple sets of relation
ships, partially separate and partially overlapping. In 
a study of political beliefs, for example, it might be 
found that there exists a subset of people whose beliefs 
can best be understood in terms of a conflict between 
the economic haves and have-nots. The attitudes of 
people within this subset could differ completely; they 
could include both John Birchers and Marxists, but 
they would be classified together in a high-level pattern 
because their beliefs could be explained in terms of a 
common correlation matrix, i.e., their beliefs are not the 
same, but the pattern of relationships among their 
various attitudes is. Another group might consist of 
people whose alignment is basically in terms of the 
dimension "authoritarianism" vs. "permissiveness," 
and this group would have a separate correlation 
matrix for the attitude variables. Then there would 
probably be a group of people whose attitude configu
rations could be understood in terms of either correlation 
matrix, and so on. It can be seen that the breakdown 
of a sample into types within which different relation
ships among variables hold would be of the greatest 
interest and theoretical importance to social scientists. 
However, the discovery of such types would be practi
cally impossible for an unaided computer program-the 
combinatorial problem in trying all possible types would 
be too vast, even with clever heuristics, and there is a 
strong possibility that the typology found would be 
spurious-due largely to sampling variation and theo
retically meaningless. The discovery of a high-level 
typology by an unaided individual is also practically 
out of the question-it is difficult enough to discover 
simple interrelationships in data, let alone this type of 
highly abstract pattern. Man-machine interaction can 
provide a possible answer. 

A TIME-SHARING PROGRAM FOR 
DISCOVERING HIGH-LEVEL PATTERNS 

As a step toward implementing this concept, a pro
gram has been written (for the GE time-sharing system) 
to carry out an interactive search for patterns of this 
type. Although primitive, the program provides an 
indication of the sort of thing that can be done in this 
area. The program provides the researcher with a set of 
simple commands, which are to be used heuristically
he can try arranging individuals in one way, see what 

happens, try another, and so on. Some of the available 
commands are given below: 

KEY,n and FILE,n will cause data records for n 
individuals to be read into memory from the tele
type or the disc file, respectively. 

INC,j and EXC,j cause individual j to be included 
or excluded "current subset"-the subset of indi
viduals under consideration at any given time. 

CORR causes the complete intervariable correlation 
matrix to be calculated for all the individuals in 
the current subset. The matrix is printed. 2 X 2 
frequency distribution tables are calculated for 
each possible pair of variables (the present version 
of the program is limited to dichotomous data). 
The frequency tables are not printed because this 
would be far too time-consuming and unwieldy 
for an interactive program. 

DIFF,i divides the current subset into two further 
subsets-all the individuals for which the value of 
variable i equals kl' and those for which the value 
of variable i equals k2, where kl and k2 are the 
possible responses on each variable. Correlation 
matrices are calculated for both subsets, and 

n n 

Q = L L (A 1jm - A 2jm)2, m ~ j ~ i 
j=l m=j 

is calculated and printed, where A 1jm is the corre
lation matrix for the subset in which the value of 
variable i = kl and A 2jm is the matrix for the subset 
in which the value of i = k2• This provides an 
index of the degree to which variable i affects the 
total structure of the data. If Q is large, it is a 
sign that variable i distinguishes between groups 
of individuals within which different sets of re
lationships hold among the variables. 

SEL, i,j takes the current subset and excludes from 
it all individuals for which the value of variable i 
is not equal to k j • That is, it partitions the current 
subset on a selected variable. SEL, DIF, and 
CORR can be used together to effectively investi
gate hierarchies of interaction effects. 

RANK provides an indication of the degree to which 
individual in the sample "belongs" to the high
level type represented by the individuals com
prising the current subset. That is, it indicates the 
degree to which each individual "fits" pattern of 
interrelationships between variables holding within 
the current subset. This is done by looking at the 
2 X 2 frequency tables calculated by CORR for 
each variable pair and summing the probabilities 
of occurrence for each combination actually oc
curring for an individual. This is not a particularly 
sophisticated estimator, statistically but it does 



provide a heuristically useful gauge of the degree 
of "belongingless" of each individual to a given 
high-level type. 

There are in addition other commands, such as 
FORCE, which permits one to ignore a particular 
relationship in a type if one suspects that it is spurious. 
I t is easy to· -think of other commands which would be 
us¢ufln investigating the structure of the data and 
uncovering high-level types. One particular set of 
commands, which will be implemented soon, will permit 
the user to give a name to a subset of individuals or 
variables and make it current at a later time by merely 
saying GET,xxx, where xxx is the name. Also planned 
are optimizing routines which will heuristically attempt 
to build the most cohesive possible high-level types 
around a few individuals selected by the researcher to 
represent a hypothetical type, within constraints im
posed by the researcher. (For example, the correlation 
between variables 2 and 7 must be positive.) This 
latter command is likely to cause problems because of 
excessive use of CPU time. 

This program, which is called INTERFORM, for 
INTERactive pattern FORMation, has as yet been 
tested only on made-up data, not real-world social 
science data. It is planned to eventually embed it in a 
general-purpose program for the analysis of social 
science data, along the lines of SDC's TRACE. 

COMMENTS 

This kind of interactive data manipulation is viewed 
with distaste by many statisticians-perhaps justifiably 
so, when one considers that you can find any kind of 
relationship you are looking for if you subdivide the 
data enough different ways. It must be emphasized that 
one can never regard the results of this or any similar 
program or procedure as "proof" of anything-only 
as a way to develop interesting concepts and hy
potheses. 

The susceptibility of INTERFORM and similar pro
grams to sampling fluctuations is, however, greatly re
duced by the fact that it looks at multiple relationships
between each variable and each other variable-rather 
than just between variables and a single criterion 
variable. This would seem to be a useful idea for 
pattern-recognition programs in general; to search for 
relationships between the component parts of the pat
tern as well as between the pattern and the criterion 
variable. (The relationship between social science data 
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analysis and artificial intelligence work has been too 
little noticed. Inasmuch as human beings are intelligent 
(?), it is reasonable to expect that the patterns formed 
in their interactions with one another might be of a 
kind and complexity similar to the problems dealt 
with in AI.) 

The interactive procedures discussed here should pro
vide new perspectives in many areas of the social 
sciences, especially in the study of anomie (social dis
organization) 7 and the study of the formation of co
alitions and issue alignments in politics. This kind of 
analysis is an example of the way in which man-machine 
interaction can be exploited not only to perform existing 
tasks better, but to do things which could perhaps 
otherwise not be done at all. Given the nature of social 
science data, the potentialities of time-sharing as an 
intelligence amplifier in the field are practically un
limited. 
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Completeness results for E-resolution* 

by ROBERT ANDERSON 

University of Texas 
Austin, Texas 

INTRODUCTION 

Since their introduction in 1965,7 resolution based 
deductive systems for the first-order predicate calculus 
have been extensively investigated and utilized by re
searchers in the field of automatic theorem-proving by 
computer. Part of this research has been directed at 
finding techniques for treating the equality relation 
within the framework of resolution based deductive 
systems.2 ,3,4,o,9,lO Perhaps the most natural treatment of 
equality, introduced so far, is by means of the para
modulation principle which when used in conjunction 
with resolution forms a complete deductive system for 
the first-order predicate calculus with equality.o,6,u A 
very similar technique for treating equality was intro
duced4 and called E-resolution. In fact E-resolution 
can be viewed as a restricted form of paramodulation 
and resolution. The purpose of this paper is to define 
E-resolution in terms:.of paramodulation and resolution 
and to prove the· completeness of E-resolution and 
several modifications of E-resolution. 

PRELIMINARIES AND TERMINOLOGY 

The reader is assumed to be familiar with the nota
tion and terminology of resolution and paramodula
tion.o,6,7,8,u In addition the reader is assumed to be 
familiar with the technique introduced in Reference 1, 
for establishing the completeness of resolution based 
deductive. systems. In that regard, recall that the 
technique is based on mathematical induction on the 
parameter k (the excess literal parameter) defined as 
follows: For any set S of clauses, k (S) is defined to be 
(the total number of appearances of literals in S) minus. 
(the number of clauses in S). To define E-resolution in 
terms of paramodulation and resolution we need the 

* This work was supported by National Institute of Health Grant 
GM 15760-02. 
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following definitions: 

Definition 1. If S is a set of clauses and C is a clause 
in Sand l is a literal in C then define 

P(O) (S, c, l) = {CJ 

p(l) (S, c, l) = the set of all clauses which can be 
obtained from C by paramodu
lating from some clause in S into 
the literall in C. 

and by induction, 

p(n) (S, C, l) = the set of all clauses which can be 
obtained from clauses C' E p(n-l) • 

(S, c, l) by paramodulating from 
some clause in S into the literal l' 
(in C'), which is descended from 
the literall in C. 

Definition 2. 

P(~) (8, C, l) U p(n) (S, C, l). 
nEintegers 

Thus P(~) (S, c, l) consists of all the clauses which 
can be obtained from C by paramodulating any finite 
number of times from clauses in S into the literal l (or 
its descendents) in C. There is no paramodulation into 
any other literal in C. 

Definition 3. If S is a set of clauses then C3 is an E-resol
vent of S iff there exist clauses Cl and C2 in Sand 
literals II in C1 and ~ in C2, and there exist clauses 
Cl' E P(~) (S, 0 1, ll) and C2' E P(~) (S, C2, ~) such that 
C3 is a resolvent of Cl' and C2' and the literals resolved 
upon in Cl' and C2' are those descended from II and ~ 
respectively. 

Thus E-resolution consists of paramodulation and 
resolution used in the following manner: Two clauses 
are selected an,d a literal is selected frofU each clause as 
possible literals to be resolved upon. One then searches 
(in a depth first manner) for all possible ways of uni-
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fying the selected literals by means of paramodulating 
into them and the unifications algorithm. Thus the 
only paramodulation which is done is paramodulation 
directly into the selected literals (or their descendents) . 
The idea being that this restricts paramodulation to 
those particular paramodulations which are immedi
ately relevant. Of course in actual practice one cannot 
search through the countable number of stages involved 
in generating pC«J) (8, G, l) and therefore one must 
utilize a cut-off parameter (called the tree level bound).4 
But by constantly increasing the cut-off parameter 
as one proceeds through a proof, any possible E-resol
vent can still be generated. Also one does not actually 
need to make the substitutions involved in generating 
pC«J) (8, Gl , ll) and pC«J) (8, G2, l2) unless and until a 
series of substitutions are found which do actually 
unify II and l2. Instead one may simply generate a tree 
of possible substitutions [see Reference 4 for details]. 

COMPLETENESS RESULTS FOR 
E-RESOLUTION 

Theorem 1. (Ground Completeness of E-resohition) 
If 8 is an R-unsatisfiable set of ground clauses, and 8' 
is the set of ground clauses obtained by adding to 8 all 
ground instances of the clause (x = x), then 0 can be 
deduced from 8' by E-resolution. 

Proof. The proof follows the general outline given in 
theorem 1 of Reference 1 and is by induction on k (8) . 

(i) Suppose k(8) = O. Then 8 must consist entirely 
of unit clauses. Since paramodulation and resolution 
is known to be complete,6 we know that 0 can be 
deduced from 8' by paramodulation and resolution. 
But since 8' consists entirely of unit clauses there can 
be only one resolution involved, since any resolvent of 
unit clauses is D. Thus this deduction of 0 must con
sist of a series of (0 or more) paramodulations followed 
by a single resolution. It is clear that all relevant 
paramodulations can be made into the two literals 
which are finally resolved upon. Thus 0 is in fact an 
E-resolvent of 8'. 

(ii) The induction step (k(8) = N) follows iden
tically the outline given in theorem 1 of Reference 1 
with the word "resolution" replaced by the word 
"E-resol u tion." 

Wos and Robinson11 extended the concept of set of 
support to cover paramodulation as well as resolution 
and showed the completeness of paramodulation and 
resolution with set of support. Since E-resolution is a 
restricted form of paramodulation and resolution, their 

definition of set of support can be immediately applied 
to E-resolution. Using this definition we obtain 

Theorem 2. (Ground completeness for E-resolution 
with set of support) If 8 is an R-unsatisfiable set of 
ground clauses and 8' is the set of ground clauses ob
tained by adding to 8 all ground instances of the 
clause (x = x) and T C 8 is such that 8' - T is R
satisfiable, then 0 can be deduced from 8' by E-resolu
tion with T as set of support. 

Proof. The proof is again by induction on k(8). 

(i) For k (8) = 0 we know that 8' consists entirely 
of unit clauses. Since paramodulation and resolu
tion with set of support is complete,l1 we know that 
there must exist a deduction of 0 from 8' by para
modulation and resolution with T as set of support. 
As in theorem 1 the fact that 8' consists entirely of 
unit clauses assures us that any such proof can be given 
the particular form defined as E-resolution and thus 
we obtain a deduction of 0 by E-resolution with T 
as set of support. 

(ii) The proof of the induction step (k(8) = N) 
follows exactly the outline given in theorem 3 of Refer
ence 1 where the word "resolution" is replaced by the 
word "E-resolution" and the word "satisfiable" is 
replaced by the word "R-satisfiable." 

In order to extend the concept of hyper-resolu
tionS to hyper-E-resolution we need the following 
technical definitions: 

Definition 4. If 8 is a set of clauses and G E 8 and 
literals ll' ••• , In occur in G then define 

P(O) (8, G, {ll' ••• , In}) = {G} 

P (1) (8, G, {ll' ••• , In}) = the set of all clauses which 
can be obtained from G by 
paramodulating from some 
clause in 8 into one of the 
literals ll' ••• , In in G and 
where the clauses from which 
paramodulation occur consist 
entirely of positive equality 
literals. 

and by induction, 

pCn) (8, G, {ll, ••• , In}) = the set of all clauses which 
can be obtained from clauses 
G' E pCn-l) (8, G, {ll, ••• , In}) 

by paramodulating from some clause in 8 into one of 
the literals It', •• ·In' (in G') descended from ll' ••• , In, 
and where the clauses from which paramodulation occur 
consist entirely of positive equality literals. 



Again we define, 

P(~)(8,C, {ll' ···,In}) 

U p(n) (8, C, {ll' ••• , In}) 
nElntegers 

Definition 5. If 8 is a set of clauses then C is a hyper
E-resolvent of 8 iff there exist clauses Co, C1, ••• , Cn in 
8 where 

1) the only negative literals in Co are 1"..111, ••• , I"..Iln, 
2) C1, ••• , Cn are all positive clauses, 
3) ll' is in C1, ••• , and In' is in Cn and C is a hyper

resolvent of some clauses Co' E P(~) (8, Co, {1"..I11, ••• , 

1"..I1n}) , C1' E P(~)(8, C1, {1I'}) , ••• , Cn' E P(~) 

(8, Cn, {In'}) , resolved upon the literals descended 
from 1"..111, ••• , 1"..I1n, 1', ••• , In'. 

Thus hyper-E-resolution is essentially hyper-resolution 
and paramodulation in which we restrict the paramodu
lation so that it occurs only into the literals to be re
solved upon. In addition we require that paramodula
tion occur only from clauses consisting entirely of posi
tive equality literals. 

Theorem 3. (Ground completeness for hyper-E
resolution) If 8 is an R-unsatisfiable set of ground 
clauses and 8 f is the set of ground clauses obtained by 
adding to 8 all ground instances of the clause (x = x), 
then D can be deduced from S' by hyper-E-resolution. 

rroof. The proof is again by induction on k (S) . 

(i) If k(S) = 0 then S' consists entirely of unit 
clauses. By theorem 1, we know there is a deduction of 
D from S' by E-resolution. But for unit clauses it can 
easily be verified that any proof by E-resolution is in 
fact a proof by hyper-E-resolution. For example, one 
needs to verify that all paramodulations occurring in 
the proof occur only from clauses consisting entirely 
of positive equality literals. But for unit clauses this 
is trivial since any paramodulation which occurs must 
occur from a clause consisting of entirely (one) positive 
equality literals. 

(ii) The induction step (k(S) = N) follows the 
general outline of theorem 2 of Reference 1 with 
the word "hyper-resolution". changed to "hyper
E-resolution." But it is necessary to use additional care 
in the selection of the clasue C to be split and the literall 
to be split out of C. If S contains a non-unit clause con
taining a positive equality literal then select that clause 
as C and split the positive equality literal out of C. Then 
since the literal split out of C is a positive equality 
literal adding it back will not affect the fact that 
all previous hyper-E-resolvents are still hyper-E
resolvents. This is so since adding a positive equality 
literal back will leave all clauses in the deduction with 
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the same negative literals as before (which is crucial 
for the definition) and because any paramodulation 
which occurred from clauses consisting entirely of 
positive equality literals will still occur from clauses 
consisting of entirely positive equality literals (since 
the literal added back is a positive equality literal). 
Thus in this case the induction step can be carried 
through. 

If all positive equality literals of S occur in unit 
clauses and S contains a non-unit clause containing a 
positive literal then select that clause as the clause to 
be split and the positive literal as the literal to be split 
out. Now when that literal is added back all hyper-E
resolvents will remain hyper-E-resolvents (because the 
literal added back is positive and because it can't affect 
the paramodulation since all positive equality literals 
from which paramodulation could occur are in unit 
clause). And so in this case also the induction step can 
be carried through. 

If all positive literals (both equality and non-equal
ity) occur in unit clauses, then it can be verified that D 
is an immediate hyper-E-resolvent of some clauses in S. 
This is the case for the following reason. We know that 
E-resolution is complete and thus there is a deduction 
of D from S by E-resolution. But when all positive 
literals occur in unit clauses it is easy to see that any 
deduction of D by E-resolution can be converted into 
a single step hyper-E-resolution deduction of D. 

LIFTING THE PRECEDING RESULTS TO THE 
GENERAL LEVEL 

The completeness results of the preceding section 
were all established for ground clauses and need to be 
"lifted" to the general level. Robinson and WOS5 
discuss the problem of lifting for paramodulation and 
show by an example that the lifting lemma needed 
does not hold (in contrast to resolution alone where the 
lifting is straightforward.7 In Reference 11 they show 
in great detail that if functional reflexivity units (unit 
clauses (x = x) and (f(X1, ••• , xn ) = f(X1, ••• , xn )) 

for each function symbol are present then the ground 
completeness results for paramodulation and resolution 
do lift to the general level. Since E-resolution has been 
defined in this paper in terms of paramodulation and 
resolution their proof can easily be carried over to give 
that the ground completeness results of theorems 1-3 
all lift to the general level for functionally reflexive 
systems. Whether or not paramodulation or E-resolu
tion are complete without functional reflexivity is not 
known. However, the following simple example does 
show that neither paramodulation with set of support 
nor E-resolution with set of support is complete with-
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out functional reflexivity. Let 

S = {( a = b), (r-..IQg (b) g (g ( a) ) ) , 

and 
(x = x), (Qxg(x»)} 

T = {(Qxg(x»)}. 

S is R-unsatisfiable and S - T is a R-satisfiable. 
However 0 cannot be deduced by either paramodula
tion with T as set of support or by E-resolution with T as 
set of support. Of course if we add the functional re
flexivity unit, (g(x) = g(x»), to S then both para
modulation and E-resolution can be used -to deduce 0 
with T as set of support. The completeness of hyper-E
resolution 'without functional reflexivity is unknown. 

FURTHER NOTES ON E-RESOLUTION 

The only purpose which the clause (x = x) serves 
in deductions using E-resolution (or paramodulation) 
is to resolve against, and thus eliminate trivial in
equalities of the form t rt= t. It is in fact more efficient 
to simply put in a special rule for eliminating trivial 
inequalities rather than always adding the clause 
(x =. x) to the set of R-unsatisfiable clauses, and that 
is what was done in the original definition and imple
mentation of E-resolution discussed in Reference 4. One 
can also increase the efficiency of E-resolution by always 
trying to unify the two literals upon which one is tryir g 
to E-resolve by means of the unification algorithm 
first and only use paramodulation to try and unify 
those terms in the two selected literals which are not 
unified by this initial attempt at unification. This is 
what was done in Reference 4. Unfortunately such a 
system is incomplete (though it may in fact be the 
better system to use) as shown by the following example. 

Let S = {(Pf(x)g(y) V Ph(x)i(y»), (r-..IPf(a)g(b»), 

((r-..IPh(b)i(b»), (f(a) = f(c»), (h(c) = h(b)} 

This set S is R-unsatisfiable but 0 cannot be deduced 
by the technique given in Reference 4, for the only E-

resolvents obtainable by the technique (where one 
always tries straight unification before paramodulating) 
(Ph(a)i(b» and (Pf(b)g(b) ) .. Of course with the 
modified definition of E-resolution given in this paper 
one can get a deduction of 0 by E-resolution. 
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INTRODUCTION 

The mini-computer** has a wide variety of uses: com
munications controller; instrument controller; large
system pre-processor; real-time data acquisition 
systems ... ; desk calculator. Historically, Digital 
Equipment Corporation's PDP-8 Family, with 6,000 
installations has been the archetype of these mini
computers. 

In some applications current mini-computers have 
limitations. These limitations show up when the scope 
of their initial task is increased (e.g., using a higher 
level language, or processing more variables). Increasing 
the scope of the task generally requires the use of 
more comprehensive executives and system control 
programs, hence larger memories and more processing. 
This larger system tends to be at the limit of current 
mini-computer capability, thus the user receives 
diminishing returns with respect to memory, speed 
efficiency and program development time. This limita-

* Also at Carnegie-Mellon University, Pittsburgh, Pennsylvania. 

tion is not surprising since the basic architectural 
concepts for current mini-computers were formed in 
the early 1960's. First, the design was constrained by 
cost, resulting in rather simple processor logic and 
register configurations. Second, application experience 
was not available. For example, the early constraints 
often created computing designs with what we now 
consider weaknesses: 

1. limited addressing capability, particularly of 
larger core sizes 

2. few registers, general registers, accumulators, 
index registers, base registers 

3. no hardware stack facilities 
4. limited priority interrupt structures, and thus 

slow context switching among mUltiple programs 
(tasks) 

5. no byte string handling 
6. no read only memory facilities 
7. very elementary I/O processing 

** The PDP-ll design is predicated on being a member of one (or more) of the micro, midi,· mini, ... , maxi (computer name) mark0ts. 
We will define these names as belonging to computers of the third generation (integrated circuit to medium scale integrated circuit 
technology), having a core memory with cycle time of .5 '" 2 microseconds, a clock rate of 5 '" 10 Mhz ... , a single processor with inter
rupts and usually applied to doing a particular task (e.g., controlling a memory or communications lines, pre-processing for a larger 
system, process control). The specialized names are defined as follows: 

micro 
mini 
midi 

maximum addressable 
primary memory (words) 

8K 
32K 

65 '" 128 K 

processor and 
memory cost 

(1970 kilodollars) 

rv5 
5 rv 10 

10 rv 20 

657 

word 
length 
(bits) 

8 rv 12 
12 '" 16 
16 '" 24 

processor 
state 

(words) 

2 
2-4 
4-16 

data types 

integers, words, boolean vectors 
vectors (i.e., indexing) 
double length floating point 

(occasionally) 
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8. no larger model computer, once a user outgrows a 
particular model 

9. high programming costs because users program 
in machine language. 

In developing a new computer the architecture 
should at least solve the above problems. Fortunately, 
in the late 1960's integrated circuit semiconductor 
technology became available so that newer computers 
could be designed which solve these problems at low 
cost. Also, by 1970 application experience was available 
to influence, the design. The new architecture should 
thus lower programming cost while maintaining the 
low hardware cost of mini-computers. 

The DEC PDP-ll, Model 20 is the first computer 
of a computer family designed to span a range of func
tions and performance. The Model 20 is specifically 
discussed, although design guidelines are presented 
for other members of the family. The Model 20 would 
nominally be classified as a third generation (integrated 
circuits), 16-bit word, 1 central processor with eight 
16-bit general registers, using two's complement 
arithmetic and addressing up to 216 eight bit bytes of 
primary memory (core). Though classified as a general 
register processor, the operand accessing mechanism 
allows it to perform equally well as a O-(stack), 
1-(general register) and 2-(memory-to-memory) address 
computer. The computer's components (processor, 
memories, controls, terminals) are connected via a 
single switch, called the Unibus. 

The machine is described using the PMS and ISP 
notation of Bell and Newell (1970) at different levels. 
The following descriptive sections correspond to the 
levels: external design constraints level; the PMS 
level-the way components are interconnected and 
allow information to flow; the program level or ISP 
(Instruction Set Processor)-the abstract machine 
which interprets programs; and finally, the logical 
design level. (We omit a discussion of the circuit 
level-the PDP-II being constructed from TTL inte
grated circuits.) 

DESIGN CONSTRAINTS 

The principal design objective is yet to be tested; 
namely, do users like the machine? This will be tested 
both in the market place and by the features that are 
emulated in newer machines; it will indirectly be 
tested by the life span of the PDP-II and any offspring. 

Word length 

The most critical constraint, word length (defined 
by IBM) was chosen to be a mUltiple of 8 bits. The 

memory word length for the Model 20 is 16 bits, 
although there are 32- and 48-bit instructions and 8-
and 16-bit data. Other members of the family might 
have up to 80 bit instructions with 8-, 16-, 32-and 
48-bit data. The internal, and preferred external 
character set was chosen to be 8-bit ASCII. 

Range and performance 

Performance and function range (extend ability) 
were the main design constraints; in fact, they were 
the main reasons to build a new computer. DEC 
already has (4) computer families that span a range* 
but are incompatible. In addition to the range, the 
initial machine was constrained to fall within the 
small-computer product line, which means to have 
about the same performance as a PDP-8. The initial 
machine outperforms the PDP-5, LINC, and PDP-4 
based families. Performance, of course, is both a 
function of the instruction set and the technology. 
Here, we're fundamentally only concerned with the 
instruction set performance because faster hardware 
will always increase performance for any family. 
Unlike the earlier DEC families, the PDP-II had to 
be designed so that new models with significantly 
more performance can be added to the family. 

A rather obvious goal is maximum performance for 
a given model. Designs were programmed using bench
marks, and the results compared with both DEC and 
potentially competitive machines. Although the selling 
price was constrained to lie in the $5,000 to $10,000 
range, it was realized that the decreasing cost of logic 
would allow a more complex organization than earlier 
DEC computers. A design which could take advantage 
of medium- and eventually large-scale integration was 
an important consideration. First, it could make the 
computer perform well; ~nd second, it would extend 
the computer family's life. For these reasons, a general 
registers organization was chosen. 

Interrupt response 

Since the PDP-ll will be used for real time control 
applications, it is important that devices can com
municate with one another quickly (i.e., the response 
time of a request should be short). A multiple priority 
level, nested interrupt mechanism was selected; addi
tional priority levels are provided by the physical 
position of a device on the Unibus. Software polling is 

* PDP-4, 7, 9, 15 family; PDP-5, 8, 8/S, 8/1, 8/L family; LINC, 
PDP-8/LINC, PDP-12 family; and PDP-6, 10 family. The 
initial PDP-1 did not achieve family status. 



unnecessary because each device interrupt corresponds 
to a unique address. 

Software 

The total system including software is of course the 
main objective of the design. Two techniques were 
used to aid programmability: first benchmarks gave a 
continuous indication as to how well the machine 
interpreted programs; second, systems programmer 
continually evaluated the design. Their evaluation 
considered: what code the compiler would produce; 
how would the loader work; ease of program reloc
ability; the use of a debugging program; how the 
compiler, assembler and editor would be coded-in 
effect, other benchmarks; how real time monitors 
would be written to use the various facilities and 
present a clean interface to the users; finally the ease 
of coding a program. 

llf odularity 

Structural flexibility (sometimes called modularity) 
for a particular model was desired. A flexible and 
straightforward method for interconnecting components 
had to be used because of varying user needs (among 
user classes and over time). Users should have the 
ability to configure an optimum system based on cost, 
performance and reliability, both by interconnection 
and, when necessary, constructing new components. 
Since users build special hardware, a computer should 
be easily interfaced. As a by-product of modularity, 
computer components can be produced and stocked, 
rather than tailor-made on order. The physical struc
ture is almost identical to the PMS structure discussed 
in the following section; thus, reasonably large building 
blocks are available to the user. 

Microprogramming 

A note on microprogramming is in order because of 
current interest in the "firmware" concept. We believe 
microprogramming, as we understand it (Wilkes, 1951), 
can be a worthwhile technique as it applies to processor 
design. For example, microprogramming can probably 
be used in larger computers when floating point data 
operators are needed. The IBM Systemj360 has 
made use of the technique for defining processors that 
interpret both the Systemj360 instruction set and 
earlier family instruction sets (e.g., 1401, 1620, 7090). 
In the PDP-II the basic instruction set is quite straight
forward and does not necessitate microprogrammed 
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interpretation. The processor-memory connection is 
asynchronous and therefore memory of any speed can 
be connected. The instruction set encourages the user 
to write reentrant programs; thus, read-only memory 
can be used as part of primary memory to gain the 
permanency and performance normally attributed to 
microprogramming. In fact, the Model 10 computer 
which will not be further discussed has a 1024-word 
read only memory, and a 128-word read-write memory. 

understandability 

Understandability was perhaps the most funda
mental constraint (or goal) although it is now somewhat 
less important to have a machine that can be quickly 
understood by a novice computer user than it was a 
few years ago. DEC's early success has been predi
cated on selling to an intelligent but inexperienced 
user. Understandability, though hard to measure, is 
an important goal because all (potential) users must 
understand the computer. A straightforward design 
should simplify the systems programming task; in the 
case of a compiler, it should make translation (par
ticularly code generation) easier. 

PDP-II STRUCTURE AT THE PMS LEVEL* 

Introduction 

PDP-II has the same organizational structure as 
nearly all present day computers (Figure 1). The 
primitive PMS components are: the primary memory 
(Mp) which holds the programs while the central 
processor (Pc) interprets them; io controls (Kio) which 
manage data transfers between terminals (T) or second
ary memories (Ms) to primary memory (Mp); the 
components outside the computer at periphery (X) 
either humans (H) or some external process (e.g., 
another computer); the processor console (T. console) 
by which humans communicate with the computer 
and observe its behavior and affect changes in its 
state; and a switch (S) with its control (K) which 
allows all the other components to communicate with 
one another. In the case of PDP-II, the central logical 
switch structure is implemented using a bus or chained 
switch (S) called the Unibus, as shown in Figure 2. 
Each physical component has a switch for placing 
messages on the bus or taking messages off the bus. 
The central control decides the next component to 

* A descriptive (block-diagram) level (Bell and Newell, 1970) to 
describe the relationship of the computer components: processors 
memories, switches, controls, links, terminals and data operators. 
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buman user 
or 

otber process 

Conventional block eliagram 

, 
Pc-- T.console --J.- H 
I / Mp-S----, / 

: I // 
• fio. • • fio. :,....... peripbery 

.r __ -~r"" 

forat 
CoiiiPonent/X 

a :- b 

X X 

Components :- (Processor/P I 
HelDOry/KISwitch/SI 
Control/K ITerminal/T I 
Data oJH!raUon/D I Link/L I 
HWI8n/H) 

X(a1:v1; a2:v2; ••• an:vb) 

ioclex number/' 

lPMS Hotation 

.laceUaneous abbreviations :- ( 

c_nt 
n;;;x1a an aUa. (abbreviation 

for a ~omponent is .eparated by /) 

a i8 asdaned the lleanins of b 

deUmita mutually excluslve alter
natives 

set of primitive components and 
their abbreviations 

n attribute/a, value/v pairs. 
Attribute ... y be omitted if it 
can be inferred from dimensiOD8 
of value. 

attribute aivins component number 

attribute. aiviDa component name 

Mp/prl"ry memory IM./aecooclary mellOry I.Pc/central proceaaor I 
Kio7io control}Pio/iO proce8aor I a/aec/.ecooclaIchar/character I 
b/blt Iw/word I i infor .. Clon I 

information carryins Unk 
(bi-directionsl) 

uni-directional inforution 
carryina links 

delimits alternative. 

Figure I-Conventional block diagram and PMS diagram 
of PDP-ll 

use the bus for a message (call). The S (Unibus)differs 
from most switches because any component can com-
municate with any other component. • 

The types of messages in the PDP-11 are along the 

lines of the hierarchical structure common to present 
day computers. The single bus makes conventional 
and other structures possible. The message processes 
in the structure which utilize S(Unibus) are: 

1. The central processor (Pc) requests that data 
be read or written from or to primary memory 
(Mp) for instructions and data. The processor 
calls a particular memory module by concur
rently specifying the module's address, and the 
address within the modules. Depending on wheth
er the processor requests reading or writing, 
data is transmitted either from the memory to 
the processor or vice versa. 

2. The central processor (Pc) controls the initializa
tion of secondary memory (Ms) and terminal (T) 
activity. The processor sets status bits in the 
control associated with a particular Ms or T, and 
the device proceeds with the specified action 
(e.g:, reading a card, or punching a character into 
paper tape). Since some devices transfer data 
vectors directly to primary memory, the vector 
control information (i.e., the memory location 
and length) is given as initialization information . 

3. Controls request the processor's attention in the 
form of interrupts. An interrupt request to the 
processor has the effect of changing the state of 
the processor; thus the processor begins executing 
a program associated with·· the interrupting 
process. Note, the interrupt process is only a 
signaling method, and when the processor inter
ruption occurs, the interruptee specifies a unique 
address value to the processor. The address is a 
starting address for a program. 

4. The central processor can control the transmission 
of data between a control (for T or Ms) and. 
either the processor or a primary memory for 
program controlled data transfers. The device 
signals for. attention using the interrupt dialogue 
and the central processor responds by managing 
the data transmission in a fashion similar to 
transmitting initialization information. 

:~~~;~Ht ____ t----~-
Ms... T ••• 

Mp Pc Ki, K;o 
s s s s } Unibus switchiq 

~1 ____ l&;:,.~=--_""'-..L.I ____ II...."j_r...s_t_ru_cture 

1 Unibus control packaged with Pc 

Figure 2-PDP-ll physical structure PMS diagram 



5. Some device controls (for T or Ms) transfer data 
directly Vo/from primary memory without central 
processor intervention. In this mode the device 
behaves similar to a processor; a memory address 
is specified, and the data is transmitted between 
the device and primary memory. 

6. The transfer of data between two controls, e.g., a 
secondary memory (disk) and say a terminal/To 
display is not precluded, provided the two use 
compatible message formats. ' 

As we show more detail in the structure there are, 
of course, more messages (and more simultaneous 
activity). The above does not describe the shared 
control and its associated switching which is typical of 
a magnetic tape and magnetic disk secondary memory 
systems. A control for a DECtape memory (Figure 3) 
has an S(,DECtape bus) for transmitting data between 

Ms(~O:7; 'DECtape) ••• 

~ 
Sr'DECtape bUS;] 
\l:oncurrency : 1 

Kio( 'DECtape) 
S Unibus 

I ~ 

Figure 3-DECt.ape control switching PMS diagram 

a single tape unit and the DECtape transport. The 
existence of this kind of structure is based on the 
relatively high cost of the control relative to the cost 
of the tape and the value of being able to run concur
rently with other tapes. There is also a dialogue at the 
periphery between X-T and X-Ms which does not use 
the Unibus. (For example, the removal of a magnetic 
tape reel from a tape unit or a human user (H) striking 
a typewriter key are typical dialogues.) 

All of these dialogues lead to the hierarchy of present 
computers (Fig. 4). In this hierarchy we can see the 
paths by which the above messages are passed 
(Pc-Mp; Pc-K; K-Pc; Kio-T and Kio-Ms; and Kio-Mp; 
and, at the periphery, T-X and T.,.Ms; and T.console-H). 

Model 20 implementation 

Figure 5 shows the detailed structure of a uni
processor, Model 20 PDP-II with its various 
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T 1 ---------, H ~ .conso e I periphery 

?l- s~~Cl-s-1 ~i°l-S--r f~X 
KiO~ L Ms-LX 

I 

Figure 4-Conventional hierarchy computer structure 

components (options). In Figure 5 the Unibus charac
teristics are surpressed. (The detailed properties of the 
switch are described in the logical design section.) 

Extensions to increase performance 

The reader should note (Figure 5) that the important 
limitations of the bus are: a concurrency of one, namely, 
only one dialogue can occur at a given time, and a 
maximum transfer rate of one I6-bit word per .75 JJ.sec., 
giving a transfer rate of 21.3 megabits/second. While 
the bus is not a limit for a uni-processor structure, it is 
a limit for multiprocessor structures. The bus also 
imposes an artificial limit on the system performance 
when high speed devices (e.g., TV cameras, disks) are 

MY. (fO) 

Mp(f7) 

Pc2 _ T .console _ 

T[Teletype; Model 33,35 ASR; 
full duplex; 10 char/sec; 

char set: ASCII; 8 bit/char 

T (paper tape; reader; 

~OO Char/sec; 8 bit/char 

Trpaper tape; punch; 

L100 Char/sec; 8 bit/char 

J~ 

J~ 

M[secondary/s; fixed head disk; J 
16 b/w; 32768 W; i.rate; 66 ~s/w; 
t.access: 0 _ 34 msec. 

(60 cycle clock)-L(60 cycle line)-
1 Mp(technology: core; 4096 words; t.cycle: 1.2 ~s; t.access: 

0.6 ~s; 16 bits/word) 

&P(central/c; Model 30; integrated circuit; general registers; 

2 addresses/instruction; addresses are: register, stack, 

~; data types: bits, bytes, words, word integers, byte 

integers, boolean vectors; 8 bitS/byte; 16 bits/word 

operations:{+, -, / ~optional), X (optional), /2, X2. 

" - (negate); V, ::»; 

M(processor state; 'general registers; 8 + 1 word; integrat

ed circuit» 

3S( 'Unibus; non-hierarchy; bus; concurrency: 1; 1 worod/. 75 \los) 

Figure 5-PDP-ll structure and characteristics PMS diagr.am 
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M 
S 
I 

a. 1 port 

M 

b. 4 port 

Figure 6-1 and 4 port memory modules PMS diagram 

s , 

transferring data to multiple primary memories. On a 
larger system with multiple independent memories the 
supply of memory cycles is 17 megabits/second times 
the number of modules. Since there is such a large 
supply of memory cycles/second and since the central 
processor can only absorb approximately 16 megabits/ 
second, the simple one Unibus structure must be 
modified to make the memory cycles available. Two 
changes are necessary: first, each of the memory modules 
have to be changed so that multiple units can access 
each module on an independent basis; and second, there 
must be independent control accessing mechanisms. 
Figure 6 shows how a single memory is modified to have 
more access ports (i.e., connect to 4 Unibusses). 

Figure 7 shows a system with 3 independent memory 
modules which are accessed by 2 independent Uni
busses. Note that two of the secondary memories and 
one of the transducers are connected to both Unibusses. 
It should be noted that devices which can potentially 
interfere with Pc-Mp accesses are constructed with 
two ports; for simple systems, the two ports are both 
connected to the same bus, but for systems with more 
busses, the second connection is to an independent bus. 

Mp 

initialization 

Pc K('Unibus) and interrupt 
rT--'--~-=:;:':'='~-~:..!..!...-i:==fr~me~ssages 

Ms or T to 
Mp messages 

Figure 7-Three Mp, 2 S('Unihus) structure PMS diagram 

Figure 8 shows a multiprocessor system with two 
central processors and three Unibusses. Two of the 
Unibus controls are included within the two processors, 
and the third bus is controlled by an independent con
trol unit. The structure also has a second switch to 
allow either of two processors (Unibusses) to access 
common shared devices. The interrupt mechanism 
allows either processor to respond to an interrupt and 
similarly either processor may issue initialization 
information on an anonymous basis. A control unit is 
needed so that two processors can communicate with 
one another; shared primary memory is normally used 
to carry the body of the message. A control connected 
t? two Pc's (see Figure 8) can be used for reliability; 
either processor or Unibus could fail, and the shared 
Ms would still be accessible. 

Higher performance processors 

Increasing the bus width has the greatest effect on 
performance. A single bus limits data transmission to 
21.4 megabits/second, and though Model 20 memories 
are 16 megabits/second, faster (or wider) data path 
width modules will be limited by the bus. The Model 
20 is not restricted, but for higher performance pro
cessors operating on double word (fixed point) or triple 
word (floating point) data two or three accesses are 
required for a single data type. The direct method to 
improve the performance is to double or triple the 
primary memory and central processor data path 
widths. Thus, the bus data' rate is automatically 
doubled or tripled. 

For 32- or 48-bit memories a coupling control unit 
is needed so that devices of either width appear iso
morphic to one another. The coupler maps a data 

1 1C( 'Unibus) 

2S( 'Unibus Multiple bus ·to single bus coupler; 

from: 2 Unibus; to: 1 Unibus) 

3IC('Processor to processor coupler) 

4.Ms(duplex) 

data transfers 

Figure 8-Duaf Pc multiprocessor system PMS diagram 



request of a given width into a higher- or lower-width 
request for the bus being coupled to, as shown in 
Figure 9. (The bus is limited to a fixed number of 
devices for electrical reasons; thus, to extend the bus 
a bus repeating unit is needed. The bus repeating 
control unit is almost identical to the bus coupler.) A 
computer with a 48-bit primary memory and processor 
and 16-bit secondary memory and terminals (trans
ducers) is shown in Figure 9. 

In summary, the design goal was to have a modular 
structure providing the final user with freedom and 
flexibility to match his needs. A secondary goal of the 
Unibus is open-endedness by providing multiple busses 
and defining wider path busses. Finally, and most 
important, the Unibus is straightforward. 

THE INSTRUCTION SET PROCESSOR (ISP) 
LEVEL-ARCHITECTURE* 

Introduction, background and design constraints 

The Instruction Set Processor (ISP) is the machine 
defined by hardware and/or software which interprets 
programs. As such, an ISP is independent of technology 
and specific implementations. 

The instruction set is one of the least understood 
aspects of computer design; currently it is an art. There 
is currently no theory of instruction sets, although 
there have been attempts to construct them (Maurer, 
1966), and there has also been an attempt to have a 
computer program design an instruction set (Haney, 
1968). We have used the conventional approach in 
this design: first a basic ISP was ad~pted and then 
incremental design modifications were made (based on 
the results of the benchmarks). ** 

* The word architecture has been operationally defined (Amdahl, 
Blaauw and Brooks 1964) as "the attributes of a system as seen 
by a programmer, i.e., the conceptual structure and functional 
behavior as distinct from the organization of the data flow and 
controls,' the logical design and the physical implementatio~." 
** A predecessor multiregister computer was proposed whICh 
used a similar design process. Benchmark programs were coded 
on each of 10 "competitive" machines, and the object of the 
design was to get a machine which gave the best score on the 
benchmarks. This approach had several fallacies: the machine 
had no basic character of its own; the machine was difficult to 
program since the multiple registers were assigned to specific 
functions and had inherent idiosyncrasies to score well on the 
benchmarks' the machine did not perform well for programs other 
than those ~sed in the benchmark test; and finally, compilers 
which took addvantage of the machine appeared to be difficult 
to write. Since all "competitive machines" had been hand-coded 
from a common flowchart rather than separate flowcharts for each 
machine, the apparent high performance may have been due to 
the flowchart organization. 
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Although the approach to the design was conven
tional, the resulting machine is not. A common classi
fication of processors is as zero-, one-, two-, three-, or 
three-plus-one-address machines. This scheme has the 
the form: 

op ll, l2, l3, l4 

where II specifies the location (address) in which to 
store the result of the binary operation (op ) of the 
contents of operand locations l2 and l3, and l4 specifies 
the location of the next instruction. 

The action of the instruction is of the form: 

II ~ l2 op l3; goto l4 

The other addressing schemes assume specific values 
for one or more of these locations. Thus, the one
address von Neumann (Burks, Goldstine and von 
Neumann, 1946) machines assume II = l2 = the 
"accumulator" and l4 is the location following that of 
the current instruction. The two-address machine 
assumes 11 = l2; l4 is the next address. 

Historically, the trend in machine design has been 
to move from a 1 or 2 word accumulator structure as 
in the von Neumann machine towards a machine with 
accumulator and index register(s).* As the number of 
registers is increased the assignment of the registers to 
specific functions becomes more undesirable and 
inflexible; thus, the general-register concept has 
developed. The use of an array of general registers in 
the processor was apparently first used in the first
generation, vacuum-tube machine, PEGASUS (Elliott 
et aI., 1956) and appears to be an outgrowth of both 
1- and 2-address structures. (Two alternative struc,;.. 
tures-the early 2- and 3-address per instruction 
computers may be disregarded, since they tend to 
always access primary memory for results as well as 
temporary storage and thus are wasteful of time and 
memory cycles, and require a long instruction.) The 
stack concept (zero-address) provides the most efficient 

Mp(48 b) Pc(48 b) Ms... T ••• 

I I K['BUS to Bus _ 
coupler; 

from: 48 16 bit Unibus 

to: 16 bits 

\ 
48 bit Unibus 

Figure 9-Computer with 48 bit Pc, Mp with 16 bit Ms, T 
PMS diagram 

* Due in part to needs, but mainly technology which dictates how 
large the structure can be. 
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access method for specifying algorithms, since very 
little space, only the access addresses and the operators, 
needs to be given. In this scheme the operands of an 
operator are always assumed to be on the "top of the 
stack". The stack has the additional advantage that 
arithmetic expression evaluation and compiler state
ment parsing have been developed to use a stack 
effectively. The disadvantage of the stack is due in 
part to the nature of current memory technology. That 
is, stack memories have to be simulated with random 
access memories, multiple stacks are usually required, 
and even though small stack memories exist, as the 
stack overflows, the primary memory (core) has to be 
used. 

Even though the trend has been toward the general 
register concept (which, of course, is similar to a two 
address scheme in which one of the addresses is limited 
to small values), it is important to recognize that any 
design is a compromise. There are situations for which 
any of these schemes can be shown to be "best". The 
IBM System/360 series uses a general register struc
ture, and their designers (Amdahl, Blaauw and Brooks, 
1964) claim the following advantages for the scheme: 

1. Registers can be assigned to various functions: 
base addressing, address calculation, fixed point 
arithmetic and indexing. 

2. Availability of technology makes the general 
registers structure attractive. 

The System/360 designers also claim that a stack 
organized machine such as the English Electric KD F 9 
(Allmark and Lucking, 1962) or the Burroughs B5000 
(Lonegran and King, 1961) has the following disad
vantages: 

1. Performance is derived from fast registers, not the 
way they are used. 

2. Stack organization is too limiting and requires 
many copy and swap operations. 

3. The overall storage of general registers and stack 
machines are the same, considering point #2. 

4. The stack has a bottom, and when placed in 
slower memory there is a performance loss. 

5. Subroutine transparency is not easily realized 
with one stack. . 

6. Variable length data is awkward with a stack. 

We generally concur with points 1, 2, and 4. Point 5 is 
an erroneous conclusion, and point 6 is irrelevant (that 
is, general register machines have the same problem). 
The general-register scheme also allows processor 
implementations with a high degree of parallelism since 
instructions of a local block all can operate on several 

registers concurrently. A set of truly general purpose 
registers should also have additional uses. For example, 
in the DEC PDP-IO, general registers are used for 
address integers, indexing, floating point, boolean 
vectors (bits), or program flags and stack pointers. The 
general registers are also addressable as primary 
memory, and thus, short program loops can reside 
within them and be interpreted faster. It was observed 
in operation that PDP-IO stack operations were very 
powerful and often used· ((accounting for as many as 
20% of the executed instructions, in some programs, 
e.g., the compilers.) 

The basic design decision which sets the PDP-II 
apart was based on the observation that by using 
truly general registers and by suitable addressing 
mechanisms it was possible to consider the machine as 
a zero-address (stack), one-address (general register), 
or two-address (memory-to-memory) computer. Thus, 
it is possible to use whichever addressing scheme, or 
mixture of schemes, is most appropriate. 

Another important design decision for the instruction 
set was to have only a few data types in the basic 
machine, and to have a rather complete set of opera
tions for each data type. (Alternative designs might 
have more data types with few operations, or few data 
types with few operations.) In part, this was dictated 
by the machine size. The conversion· between data 
types must be easily accomplished either automatically 
or with 1 or 2 instructions. The data types should 
also be sufficiently primitive to allow other data types 
to be defined by software (and by hardware in more 
powerful versions of the machine). The basic data 
type of the machine is the 16 bit integer which uses 
the two's complement convention for sign. This data 
type is also identical to an address. 

PDP-11 model 20 instruction set (basic instruction set) 

A formal description of the basic instruction set is 
given in Appendix 1 using the ISPL notation (Bell 
and Newell, 1970). The remainder of this section will 
discuss the machine in a conventional manner. 

Prhnary memory 

The primary memory (core) is addressed as either 
216 bytes qr 215 words using a 16 bit number. The 
linear address space is also used to access the input
output devices. The device state, data and control 
registers are read or written like normal memory 
locations. 



General register 

The general registers are named: R[0:7](15:0)*; 
that is, there are 8 registers each with 16 bits. The 
naming is done starting (at the left with bit 15 (the 
sign bit) to the least significant bit o. There are syno
nyms for R[6] and R[7]: 

Stack Pointer/SP(15:0) := R[6](15:0) 
used to access a special stack which is used to 
store the state of interrupts, traps and sub
routine calls 

Program Counter/PC(15:0) := R[7](15:0) 
points to the current instruction being inter
preted. It will be seen that the fact that PC is 
one of the general registers is crucial to the 
design. 

Any general register, R[0:7], can be used as a stack 
pointer. The special Stack Pointer (SP) has additional 
properties that force it to be used for changing processor 
state interrupts, traps, and subroutine calls (I t also 
can be used to control dynamic temporary storage 
subroutines. ) 

In addition to the above registers there are 8 bits 
used (from a possible 16) for processor status, called 
PS(15.0) register. Four bits are the Condition Codes 
(CC) associated with arithmetic results; the T-bit 
controls tracing; and three bits control the priority of 
running programs Priority (2:0). Individual bits are 
mapped in PS as shown in Appendix 1. 

Data types and primitive operations 

There are two data lengths in the basic machine: 
bytes and words, which are 8 and 16 bits, respectively. 
The non-trivial data types are word length integers 
(w.i.); byte length integers (by .i); word length boolean 
vectors (w.bv), i.e., 16 independent bits (booleans) in 
a 1 dimensional array; and byte length boolean vectors 
(by.bv}. The operations on byte and word boolean 
vectors are identical. Since a common use of a byte is 
to hold several flag bits (booleans), the operations can 
be combined to form the complete set of 16 operations. 
The logical operations are: "clear," "complement," 
"inclusive or," and "implication" (x ~ y or -'x V y). 

There is a, complete set of arithmetic operations for 
the word integers in the basic instruction set. The 
arithmetic operations are: add, subtract, multiply 
(optional), divide (optional), compare, add one, sub
tract one, clear, negate, and multiply and divide by 

.!!< A definition of the ISP notation used here may be found in 
Appendix 1. 
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powers of two (shift). Since the address integer size is 
16 bits, these data types are most important. Byte 
length integers are operated on as words by moving 
them to the general registers where they take on the 
value of word integers. Word length integer operations 
are carried out and the results are returned to memory 
(truncated). 

The floating point instructions defined by software 
(not part of the basic instruction set) require the 
definition of two additional data types (of length two 
and three), i.e., double word (d.w.) and triple (t.w.) 
words. Two additional data types, double integer 
(d.i.) and triple floating point (t.f. or f) are provided 
for arithmetic. These data types imply certain addi
tional operations and the conversion to the more 
primitive data types. 

Address (op~rand) calculation 

The general methods provided for accessing operands 
are the most interesting (perhaps unique) part of the 
machine's structure. By defini,g several access methods 
to a set of general registers, to memory, or to a stack 
(controlled by a general register), the computer is able 
to be a 0, 1 and 2 address machine. The encoding of 
the instruction Source (S) fields and Destination (D) 
fields are given in Fig. 10 together with a list of the 
various access modes that are possible. (Appendix 1 
gives a formal description of the effective address 
calculation process.) 

It should be noted from Figure 10 that all the com
mon access modes are included (direct, indirect, im
mediate, relative, indexed, and indexed indirect) plus 
several relatively uncommon ones. Relative (to PC) 
access· is used to simplify program loading, while 
immediate mode speeds up execution. The relatively 
uncommon access modes, auto-increment, -and auto
decrement, are used for two purposes: access to a 
stack under control of the registers* and access to 
bytes or words organized as strings or vectors. The 
indirect access mode allows a stack to hold addresses 
of data (instead of data). This mode is desirable when 
manipulating longer and variable-length data types 
(e.g., strings, double fixed and triple floating point). 
The register auto increment mode may be used to 
access a byte string; thus, for example, after each 
access, the register can be made to point to the next 
data item. This is used for moving data blocks, search
ing for particular elements of a vector, and byte
string operations (e.g., movement, comparisons, edit
ing). 

*N ote, by convention a stack builds toward register 0, and when 
the stack crosses 4008, a stack overflow occurs. 
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I , I d I 
{ 11 10 9 8 

sm sd sr 

e 4 3 

dm dd dr 

r • register specification R[r] 

d " defer (indirect) address bit 

bit 

bit 

m • mode COO "' R[rl; 01 "' R[r]; next R[r] +.i;l 

10 - R[r], R[r] -ai, next R[2] 

11 = indexed with next word) 

The following access modes can be specified: 

.0 direct-to a register, R[r} 

1 indirect-to a register, R[r] for address of data 

2 auto increment via register (pop) - use register as address, then 

3 autJ-Dflc?NJnlWltllgister (pop) - defer 
4 auto decrement via register (push) - decrement register, then use 

register as address 

5 auto decrement indirect - decrement register, then use register as the 

address of the address of data 

2 immediate data - next full word is the data (rape) 

3 direct data - next full word is the address of data (rape) 

6 direct indexed - use next full word indexed with R[rl as address of data 

7 direct indexed - indirect - use next full word indexed with R[r] as the 

address of the address of data 

6 relative access - next full word plus PC is the address (rape) 

7 relative indirect access - next full word plus PC is the address of the 

address of data (rape) 

1address incr.ent/ai value is 1 or 2 

Figure lO-Address calculation formats 

This addressing structure provides flexibility while 
retaining the same, or better, coding efficiency than 
classical machines. As an example of the flexibility 
possible, consider the variations possible with the most 
trivial word. instruction MOVE (see Figure 11). The 
MOVE instruction is coded as it would appear in 
conventional 2-address, I-address (general register) 
and O-address (stack) computers: The two-address 
format is particularly nice for MOVE, because it 
proviaes an efficient encoding for the common opera
tion: A ~ B (note, the stack and general registers are 
not involved). The vector move A[I] ~ B(I) is also 
efficiently encoded. For the general register (and 
I-address format), there are about 13 MOVE opera
tions that are commonly used. Six moves can be 
encoded for the stack (about the same number found 
in stack. machines). 

Instruction forlDats 

There are several instruction decoding formats 
depending on whether 0, 1, or 2 operands have to be 
explicitly referenced. When 2 operands are required, 
they are identified as Source/S and Destination/D and 

the result is placed at Destination/D. For single 
operand instructions (unary operators) the instruction 
action is D ~ u D; and for two operand instructions 
(binary operators) the action is D ~ D b S (where u 
and b are unary and binary operators, e.g., -', - and 
+, -, X, /, respectively. Instructions are specified 
by a 16-bit word. The most common binary operator 
format (that for operations requiring two addresses) 
is shown below. 

15 12 11 6 5 ° 
op D S 

The other instruction formats are given in Figure 12. 

Instruction interpretation process 

The instruction interpretation process is given in 
Figure 13, and follows the common fetch-execute 
cycle. There are three major states: (1) interrupting
the PC and PS are placed on the stack accessed by 
the Stack Pointer/SP, and the new state is taken from 
an address specified by the source requesting the trap 
or interrupt; (2) trace (controlled by T-bit)-essen
tially one instruction at a time is executed as a trace 

Assembler Formst 

Two Address Machine formst: 
MOVE B,A 1 

HOVE IN,A 

HOVE B(RZ), A(RZ) 

HOVE (1l
3

) +, (1l
4

) + 

A <- B 

A <-5 

A[I] <- B[I] 

A[I] <- B[I); 
1<-1+1 

General Register Machine format: 

HOVE A,lll III +-A 

HOVE Ill, A A <-Ill 

MOVE -',Rl III <-H(A] 

HOVE Ill, R3 III +- R3 
HOVE Rl, A(RZ) A[I] <- III 

HOVE -,(1l0),1l1 III +- M[A[I]] 
HOVE (R1), R3 III +-M[1l2] 
MOVE (1l1) +, R3 R3 +-H[I] 

Stack Machine forut: 

MOVE fIC, .(RO) S +-5 
HOVE A, .(1l0) S +-A 
MOVE .(IlO)+, .(1l0) S <-H(S] 

MOVE (1l0)+~ A A ..... S 

HOVE (IlO)+, .(1l0)+ M(S2] ..... SI 

1AS::I~~O~~.,;!~?) S ..... S 

o denotes contents of memory addressed by 
• decrement register fir .. t 
... increment register after 
@ indirect 
!! literal 

Description 

replace A with contents of B 

replace A with number, 5 

replace element of a connector 

replace element of a vector, 
move to next element 

load register 

store register 

load or store indirect via 
element A 

register to register transfer 

store indexed (load indexed) 
(or store) 

load (or store) indexed indirect 

load indirect via register 

load (or store) element indirect 
via register, move to next element 

load stack with literal 

load stack' with contents of A 

load stack with memory specified 
by top of stack 

store stack in A 

store stack top in memory 
addressed by stack top -1 

duplicate top of stack 

Figure ll-Coding for the MOVE instruction to compare with 
conventional machines 



Binary arithmetic and logical operations: bop Iso 11 
form: 0 +- S b 0 

example: AOO (bbop=OOIO) --+ (CC.O <- D+S); 

Unary arithmetic and logical operation: G::;:]Y] 
form: 0 +- u 0; 

examples: NEG (:=uop=OOOOIOIIOO) --+ (CC.O <- - D) - negate 

ASL (:=uop=OOOOOllOOll) .... (CC.D <- D X 2); shift left 

Branch (relative) operators: I brop I offset I 
form: !! brop condition !!w! (PC <- PC + offset); 

example: BEQ (: .. brop - 03 16) (Z ... (PC +-PC + offset»: 

Jump: J 0 000 000 001 I 0 I 
form: PC <- 0 + Pc 

Jump to subroutine: I 0 000 100 I 0 I 
save R[sr] on stack. enter subroutine at 0 + PC 

Misc. operations: ~ 
form: ST +- f 

example: HALT (: .. instruction = 0) ... (RUN +- 0); 

I Rote: these instructions are all 1 word. 0 and/or S may each require 1 

additional immediate data or address word. Thus instructions can 

be 1. 2, or 3 words 10Dg. 

Figure 12-PDP-ll instruction formats (simplified) 

Inl.tructioa lxecute 
Statel 

Figure 13-PDP-ll instruction interpretation process 
state diagram 
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trap occurs after each instruction, and (3) normal 
instruction interpretation. The five (lower) states in 
the diagram are concerned with instruction fetching, 
operand fetching, executing the operation specified by 
the instruction and storing the result. The non-trivial 
details for fetching and storing the operands are not 
shown in the diagram but can be constructed from the 
effective address calculation process (Appendix 1). The 
state diagram, though simplified, is similar to 2- and 
3-address computers, but is distinctly different than a 
1 address (1 accumulator) computer. 

The ISP description (Appendix 1) gives the opera
tion of each of the instructions, and the more conven
tional diagram (Fig. 12) shows the decoding of instruc
tion classes. The ISP description is somewhat incom
plete; for example, the add instruction is defined as: 
ADD (: = bop == 0010) ~ (CC,D ~ D + S); addition 
does not exactly describe the changes to the Condition 
Codes/CC (which means whenever a binary opcode 
[bop] of 00102 occurs the ADD instruction is executed 
with the above effect). In general, the CC are based 
on the result, that is, Z is set if the result is zero, N if 
negative, C if a carry occurs, and V if an overflow was 
detected as a result of the operation. Conditional 
branch instructions may thus follow the arithmetic 
instruction to test the results of the CC bits. 

Examples of addressing schemes 

Use as a stack (zero address) Dlachine 

Figure 14 lists typical zero-address machine instruc
tions together with the PDP-II instructions which 
perform the same function. It should be noted that 
translation (compilation) from normal infix expressions 
to reverse Polish is a comparatively trivial task. Thus, 
one of the primary reasons for using stacks is for the 
evaluation of expressions in reverse Polish form. 

Consider an assignment statement of the form 

D ~A + B/C 

which has the reverse Polish form 

DABC/+ ~ 

and would normally be encoded on a stack machine 
as follows 

load stack address of D . 
load stack A 
load stack B 
load stack C 
/ 
+ 
store 
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Csapop stack &pltrust'.: 

place address val ... II oa stack 

load stack froa __ ry sddre .. specified 
by stack 
load stack fro. __ ry locatioa A 

store stack at __ ry address specified 
by stack 

store stack at __ ry locatioa A 

duplicate top of stack 

+ , add 2 top data of stack to stack 

-, x, /; subtract, _ltiply, divide 

-; negate top data of stack 

clear top data of stack 

V; "inclusive or" 2 top data of stack "and" 
2 top data of stack 

-,; complement top of stack 

test top of stack (set branch indicators) 

branch oa indicator 

jump unconditional 

add addressed location A to top of stack -
(not COIlllllOll for stack machine) equivalent 
to: load stack, add swap top 2 stack data 

r.eset stack locatioa to N 

1\, "and" 2 top stack data 

Equivalent PDP-II instruction: 

MOVE fA, .(Rol 
MOVE .(RO)+, - (RO) 

MOVE A, -(RO) 

MOVE (RO)+, .(RO)+ 

MOVE (RO)+, II 

MOVE (RO), .(RO) 

ADD (RO) +, _0 

(see add) 

NIG _0 

CLR_O 

liSE! (RO)+, _0 

COM _0 
TST _0 
BR (., ~, >, Ot, <, ~) 

JUMP 

ADD A, _0 

MOVE (RO)+, Rl 
MOVE (RO)+, R2 
MOVE Rl, -(RO) 
MOVE R2, _(RO) 
MOVE fN, RO 
COM_O 
BCLR (RO)+, _0 

lStack pointer has been arbitrarily used as register RO for this example. 

Figure 14-Stack computer instructions and equivalent 
PDP-ll instructions 

However, with the PDP-ll there is an address method 
for improving the program encoding and run time, 
while not losing the stack concept. An encoding im
provement is made by doing an operation to the top 
of the stack from a direct memory location (while 
loading). Thus the previous example could be coded 
as: 

load stack B 
divide stack by C 
add A to stack 
store stack D 

Use as a one-address (general register) Illachine 

The PDP-II is a general register computer and 
should be judged on that basis. Benchmarks have 
been coded to compare the PDP-II with the larger 
DEC PDP-IO. A 16 bit processor performs better 
than the DEC PDP-IO in terms of bit efficiency, but 
not with time or memory cycles. A PDP-II with a 32 
bit wide memory would, however, decrease time by 
nearly a factor of two, making the times essentially 
comparable. 

Use as a two-address machine 

Figure 15 lists typical two-address machine instruc
tions together with the equivalent PDP-II instructions 

for performing the same operations. The most useful 
instruction is probably the MOVE instruction because 
it does not use the stack or general registers. Unary 
instructions which operate on and test primary memory 
are also useful and efficient instructions. 

Extensions oj the instruction set for real (floating point) 
arithmetic 

The most significant factor that affects performance 
is whether a machine has operators for manipulating 
data in a particular format. The inherent generality 
of a stored program computer allows any computer by 
subroutine to simulate another-given enough time 
and memory. The biggest and perhaps only factor 
that separates a small computer from a large computer 
is whether floating point data is understood by the 
computer. For example, a small computer with a 
cycle time of 1.0 microseconds and 16 bit memory 
width might have the following characteristics for a 
floating point add, excluding data accesses: 

programmed: 

programmed (but special normalize 
and differencing of exponent 
instructions) : 

microprogrammed hardware: 

hardwired: 

250 microseconds 

75 microseconds 

25 microseconds 

2 microseconds 

I t should be noted that the ratios between pro
grammed and hardwired interpretation varies by 
roughly two orders of magnitude. The basic hardwiring 
scheme and the programmed scheme should allow 
binary program compatibility, assuming there is an 
interpretive program for the various operators in the 
Model 20. For example, consider one scheme which 
would add eight 48 bit registers which are addressable 
in the extended instruction set. The eight floating 
registers, F, would be mapped into eight double length 

Two Address Computer 

A +- B; transfer B to A 

A +-AiB; add 

-, x, / 
A +- _A; negate 

A +-A V B; inclusive or 

A +-.., A; not 

jump UIlcOIldit101led 

Test A, and transfer to B 

!2!:::l! 
MOVE B,A 

ADD B,A 

(see add) 

NEG A 

'SETB,A 

COM 

.AAfP 

TST A 

BR (_. ~. >. ~. <. s) B 

Figure H)-Two address computer instructions and equivalent 
PDP-ll instructions 



(32 bit) registers, D. In order to access the various 
parts of F or D registers, registers FO and FI are 
mapped onto registers RO to R2 and R3 to R5. 

Since the instruction set operation code is almost 
completely encoded already for byte and word length 

binary ops op 

bop' S D f-

+ 

X 
/ 

compare 
unary ops 

uop' D 

LOGICAL DESIGN OF S(UNIBUS) AND PC 

The logical design level is concerned with the physi
cal implementation and the constituent combinatorial 
and sequential logic elements which form the various 
computer components (e.g., processors, memories, 
controls). Physically, these components are separate 
and connected to the Unibus following the lines of the 
PMS structure. 

Unibus organization 

Figure 16 gives a PMS diagram of the Pc and the 
entering signals from the Unibus. The control unit for 
the Unibus, housed in Pc for the Model 20, is not 
shown in the figure. 

The PDP-II Unibus has 56 bi-directional signals 
conventionally used for program-controlled data trans
fers (processor to control), direct-memory data trans
fers (processor or control to memory) and control-to
processor interrupt. The Unibus is interlocked; thus 
transactions operate independent of the bus length 
and response time of the master and slave. Since the 
bus is bi-directional and is used by all devices, any 
device can communicate with any other device. The 
controlling device is the master, and the device to 
which the master is communicating is the slave. For 
example, a data transfer from processor (master) to 
memory (always a slave) uses the Data Out dialogue 
facility for writing and a transfer from memory to 
processor uses the Data In dialogue facility for reading. 
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data, a new encoding scheme is nece~sary to specify 
the proposed additional instructions. This scheme adds 
two instructions: enter floating. point mode and execute 
one floating point instruction. The instructions for 
floating point and double word data would be: 

floating point/f and double word/ d 

FMOVE DMOVE 
FADD DADD 
FSUB DSUB 
FMUL DMUL 
FDIV DDIV 
FCMP DCMP 

FNEG DNEG 

Bus control 

Most of the time the processor is bus master fetching 
instructions and operands from memory and storing 
results in memory. Bus mastership is determined by 
the current processor priority and the priority line 
upon which a bus request is made and the physical 
placement of a requesting device on the linked bus. 

Unibuo 

. 
('Bul Addrell) 

.. s' 

\ '" / ... D(ohift) ' ... M r16 word; lntegrated~ 2 

~/ t( t/ circuit-, 8cratchpad', 
" t adder'loa~Cal OpI) 
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The assignment of bus mastership is done concurrent 
with normal communication (dialogues). 

D nibus dialogues 

Three types of dialogues use the Unibus. All the 
dialogues have a common protocol which first consists 
of obtaining the bus mastership (which is done con
current with a previous transaction) followed by a 
data exchange with the requested device. The dialogues 
are: Interrupt; Data In and Date In Pause; and Data 
Out and Data Out Byte. 

Interrupt 

Interrupt can be initiated by a master immediately 
after receiving bus mastership. An address is trans
mitted from the master to the slave on Interrupt. 
Normally, subordinate control devices use this method 
to transmit an interrupt signal to the processor. 

Data in and data in pause 

These two bus operations transmit slave's data 
(whose address is specified by the master) to the 
master. For the Data In Pause operation data is read 
into the master and the master responds with data 
which is to be rewritten in the slave. 

Data out and ~data out byte 

These two operations transfer data from the master 
to the slave at the address specified by the master. 
For Data Out a word at the address specified by .the 
address lines is transferred from master to slave. Data 
Out Byte allows a single data byte to be transmitted. 

Processor logical design 

The Pc is designed using TTL logical design com
ponents and occupies approximately eight 8" X 12" 
printed circuit boards. The organization of the logic is 
shown in Figure 17. The Pc is physically connected to 
two other components, the console and the Unibus. 
The control for the Unibus is housed in the Pc and 
occupies one of the printed circuit boards. The most 
regular part of the Pc, the arithmetic and state section, 
is shown at the top of the figure. The 16-word scratch
pad memory and combinatorial logic data operators, 
D(shift) and D(adder, logical ops) , form the most 
regular part of the processor's structure. The 16-word 

memory holds most of the 8-word processor state 
found in the ISP, and the 8 bits that form the Status 
word are stored in an 8-bit register. The input to the 
adder-shift network has two latches which are either 
memories or gates. The output of the adder-shift 
network can be read to either the data or address 
parts of the Unibus, or back to the scratch-pad array. 

The instruction decoding and arithmetic control are 
less regular than the above data and state and these 
are shown in the lower part of the figure. There are 
two major sections: the instruction fetching and 
decoding control and the instruction set interpreter 
(which in effect defines the ISP). The later control 
section operates on, hence controls, the arithmetic 
and state parts of the Pc. A final control is concerned 
with the interface to the Unibus (distinct from the 
Unibus control that is housed in the Pc). 

CONCLUSIONS 

In this paper we have endeavored to give a complete 
description of the PDP-II Model 20 computer at four 
descriptive levels. These present an unambiguous 
specification at two levels (the PMS structure and the 
ISP), and, in addition, specify the constraints for the 
design at the top level, and give the reader some idea 
of the implementation at the bottom level logical 
design. We have also presented guidelines for forming 
additional models that would belong to the same 
family. 
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DEC PDP-II instruction set processor Description (in ISPL*) 

The following description is not a detailed description of the instructions. The description omits the trap behavior of 
unimplemented instructions, references to non-existent primary memory and io devices, SP (stack) overflow, and power 
failure. 
Primary Memory State 

M/Mb/Memory[O:216 -1J(7:0) 
l\1w[O:215 -1J(15:0) : = l\tl[O:216-1J(7:0) 

Processor State (9 words) 

(byte memory) 
(word memory mapping) 

R/Registers[O: 7J (15: 0 ) 
SP(15:0) : = R[6J(15:0) 
PC(15:0) : = R[7J(15:0) 

(word general registers) 
(stack pointer) 
(program counter) 

*ISP NOTATION 

Although the ISP language has not been described in publications, its syntax is similar to other languages. The language is inherently 
interpreted in parallel, thus to get sequential evaluation the word "next" must be used. Italics are used for comments. The following 
notes are in order: 
a: = f( . .. ) equivalence or substitution process used for name and process substitution. For every occurrence of 

a+--f(· .. ) 

register declaration, e.g., 
Q[O:I] [0:4095] (15:0) 

(a:b )n 

[c:d] 

a-+b; 

"next" 

instruction declaration, e.g., 
ADD (: = bop = 0010) -+ 

(ee, D +--D + S) 

o 

a,f( . .. ) replaces it. 

Replacement operator; the contents in register a are replaced by the value of the function. 

an array of words of two dimensions 2 and 4096; each word has 16 bits denoted 15, 14, 13, ... , 1, 0 

Denotes a range of characters a, a + 1. ... , b to base n. If n is not given, the base is 2. 

Array designation c, c + 1, ... , d 

equivalent to ALGOL if a then b 

sequential interpretation 

defines the "ADD" instruction, assigns it a value, and gives its operation. ADD is executed when 
bop = 00102, Equivalent to: 

ADD -+ (ee, D +-- D + S) 
where 
ADD: = (bop = 0010) bop has been previously declared 

concatenation, consider the combined registers as one 

operators: = (+/add I-/subtract/negate I X/multiply I //divide I A/and I V lor I v'/not I ES/exclusiveor I =/equal/>/greater 

than I ~ I < I ~ I rE= I modulo I etc.) 
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PS(15:0) 
Priority/P(2:0) : = PS(7:5) 

CC/ConditionLJCodes(3:0) : = PS(3:0) 

Carry/C : = CC(O) 

Negative/N : = CC(3) 

Zero/Z : = CC(2) 

Overflow/V: = CC(I) 

Trace/T : = ST(4) 

Undefined(7:0) : = PS(15:8) 
Run 
Wait 

Instruction Format 
(Bit assignments used in the various instruction formats) 

i/instruction (15: 0) 
bop(3:0) : = i(15:12) 
uop(15: 6) : = i(15:6) 
brop(15:8) : = i(15:8) 
sop(15:6) : = i(15:6) 
s/source(5:0) : = i(II:6) 

sm(O: 1) : = s(5:4) 
sd : = s(3) 
sr : = s(2:0) 

d/destination(5:0) : = i(5:0) 
dm(O: 1) : = d(5:4) 
dd : = d(3) 
dr(2:0) : = d(2:0) 

offset(7:0 : = i(7:0) 
addressLJ increment/ ai 

Data Types 
by /byte(7:0) 
w/word(15:0) 
by.i/byte.integer(7: 0) 
w.i/word.integer(15: 0) 
by. bv /byte. booleanLJ vector (7: 0) 
w.bv /word.booleanLJ vector (15 :0) 

(processor state register) 
( under program control; priority 
level of the process currently being 
interpreted a higher level process 
may interrupt or trap this process) 

(under program control; when set, 
each instruction executed will trap; 
used for interpretive and break
point debugging) 

(a result condition code indicating 
an arithmetic carry from bit 15 of 
the last operation) 

(a result condition code indicating 
last result was negative) 

(a result condition code indicating 
last result was zero) 

(a result condition code indicating 
an arithmetic overflow of the last 
operation) 

( denotes whether instruction trace 
trap is to occur after each instruc
tion is executed) 

(unused) 
(denotes normal execution) 
(denotes waiting for an interrupt) 

(binary operation code) 
(unary operation code) 
(branch operation code) 
(shift operation code) 
(source control byte) 
(source mode control) 
(source defer bit) 
(source register) 
(destination control byte) 

(signed 7 bit integer) 
(implicit bit derived from i to denote 
byte or word length operations) 

(signed integers) 

(boolean vectors (bits» 



d/doubleLJ word(31:0) 
t/tripleLJ word (47: 0) 
f/t.f/triple.fioatingLJ Point(47: 0) 

Source/S and Destination/D Calculation 
S/Source(15:0) : = (-, sd ~ ( 

(sm = 00) ~ R[srJ; 
(sm = 01) /\ (sr ~ 7) ~ (M[R[srJJ; next R[srJ f- R[srJ + ai); 
(sm = 01) /\ (sr = 7) ~ (M[PCJ; PC f- PC + 2); 
(sm = 10) ~ (R[srJ f- R[srJ - ai; next M[R[srJJ); 
(sm = 11) /\ (sr ~ 7) ~ (M[M[PCJ + R[srJJ; PC f- PC + 2); 
(sm = 11) /\ (sr = 7) ~ (M[M[PCJ + PCJ; PC f- PC + 2)); 

sd~ ( 
(sm = 00) ~ M[R[srJJ; 
(sm = 01) /\ (sr ~ 7) ~ (M[M[R[srJJJ; next R[srJ f- R[srJ + ai); 
(sm = 01) A (sr = 7) ~ (M[lVI[PCJJ; PC f- PC + 2); 
(sm = 10) ~ (R[srJ f- R[srJ - ai; next M[R[srJJ); 
(sm = 11) /\ (sr ~ 7) ~ (M[M[PCJ + R[srJJ; PC f- PC + 2); 
(sm = 11) /\ (sr = 7) ~ (M[l\1[M[PCJ + PCJJ; PC f- PC + 2)) 
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(*double word) 
(*triple word) 
( *triple floating point) 

(direct access) 
(register) 
(auto increment) 
( immediate) 
(auto decrement) 
(indexed) 
(relative) 
(indirect access) 
(indirect via register) 
(indirect via stack, auto decrement) 
(direct absolute) 
(indirect via stack, auto increments) 
(indirect, indexed) 
(indirect relative) 

(The above process defines how operands are determined (accessed) from either memory or the registers. The various 
length operands, Db (byte) , Dw(word) , Dd(double) and Df(floating) are not completely defined. The Source/S and 
Destination/D processes are identical. In the case of jump instruction an address, D', is used-instead of the word in 
location M[CI].) 

Instruction Interpretation Process 
-, InterruptLJrqs /\ Run /\ Wait ~ (i f- M[PCJ; PC f- PC + 2; 

T ~ (SP f- SP + 2; next 
M[SPJ f- PS; 
SP f-SP + 2; next 
M[SPJ f-PC; 
PC f- M[14sJ 
ST f- M[16sJ)) 

next instructionLJ execution; next 

InterruptLJrq[j] /\ (CC[j] > CC) /\ Run ~ (T f- 0; 
SP f- SP + 2; next 
M[SPJ f-PS; 

SPf-SP + 2; 
M[SPJ f-PC 
PC f- M[f(j) J 
PS f- M[f(j) + 2J) 

Instruction Set and the Execution Process 

(fetch) 
(execute) 
(trace bit store state) 

( interrupt) 

(store state and PC enter new proc
ess). The locations M[ f( j) J are: 
reserved instruction = M[lOJ 
illegal instruction = M[ 4-J 
stack overflow = M[4-J 
bus errors = M[4-J) 

(The following instruction set will be defined briefly and is incomplete. It is intended to give the reader a simple under
standing of the machine operation.) 

InstructionLJ execution : = ( 
MOV(: = bop = 0001) ~ (CC,D f- S); 
MOVB(: = bop = 1001) ~ (CC,Db f- Sb); 

* not hardwired or optional 

(move word) 
(move byte) 
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Binary Arithmetic: D ~ D b S; 
ADD(: = bop = 0110) ~ (CC,D ~ D+s); 
SUB(: = bop = 1110) ~ (CC,D ~ D - S); 
CMP(: = bop = 0010) ~ (CC ~ D - S); 
CMPB(: = bop = 1010) ~ (CC ~ Db - Sb); 
MUL(: = bop = 0111) ~ (CC,D ~ D X S); 

DIV(: = bop = 1111) ~ (CC,D ~ D/S); 

Unary Arithmetic D ~ u S; 
CLR(: = uop = 0508) ~ (CC,D ~ 0); 
CLRB(: = uop = 10508) ~ (CC,Db ~ 0); 
COM(: = uop = 051 8) ~ (CC,D ~ -,D); 
COMB(: = uop = 10518) ~ (CC,Db ~ -,Db); 
INC(: = uop = 0528) ~ (CC,D ~ D + 1); 
INCB(: = uop = 10528) ~ (CC,Db ~ Db + 1); 
DEC(: = uop = 0538) ~ (CC,D ~ D - 1); 
DECB(: = uop = 10538) ~ (CC,Db ~ Db - 1); 
NEG(: = uop = 0548) ~ (CC,D ~ - D) ; 
NEGB(: = uop = 10548) ~ (CC,Db ~ -Db) 
ADC(: = uop = 0558) ~ (CC,D ~ D + C); 
ADCB(: = uop = 10558) ~ (CC,Db ~ Db + C); 
SBC(: = uop = 0568) ~ (CC,D ~ D - C); 
SBCB(: = uop = 10568) ~ (CC,Db ~ Db - C); 
TST(: = uop = 0578) ~ (CC ~ D); 
T8T(: = uop = 10578) ~ (CC ~ Db); 

Shift operations: D ~ D X 2n; 
ROR(: = sop = 0608) ~ (COD ~ COD/2{rotate}; 
RORB(: = sop = 10608) ~ (CODb ~ CODb/2{rotate}); 
ROL(: = sop = 061 8) ~ (COD ~ COD X 2{rotate}); 
ROLB(: = sop = 10618) ~ (CODb ~ CODb X 2{rotate}); 
ASR(: = sop = 0628) ~ (CC,D ~ D X 2); 
ASRB(: = sop = 10628) ~ (CC,Db ~ Db/2); 
ASL(: = sop = 0638) ~ (CC,D ~ D X 2); 
A8LB(: = sop = 10638) ~ (CC,Db ~ Db X 2); 
ROT(: = sop = 0648) ~ (COD ~ D X 28

); 

ROTB(.: = sop = 10648) ~ (CODb ~ D X 28
); 

LSH(: = sop = 0658) ~ (CC,D ~ D X 28 {logical}) ; 
LSHB(: = sop = 10658) ~ (CC,Db ~ Db X 28 {logical}) ; 
ASH(: = sop = 0668) ~ (CC,D ~ I)/X 28

); 

ASHB(: = sop = 10668) ~ (CC,Db ~ Db X 28
); 

NOR(: = sop = 0678) ~ (CC,D ~ normalize(D»; 
(R[r'] ~ normalizeL..Jexponent(D»; 

NORD(: = sop = 1067 8) ~ (Db ~ normalize (Dd) ; 
R[r'] ~ normalizeL..Jexponent(D»; 

SWAB(: = sop = 3) ~ (CC,D ~ D(7:0, 15:8» 

Logical Operations 
BIC(: = bop = 0100) ~ (CC,D ~ D ~ D 1\ -,8); 
BICB(: = bop = 1100) ~ (CC,Db ~ Db V -,Sb); 
BIS(: = bop = 0101) ~ (CC,D ~ D VS); 
BISB(: = bop = 1101) ~ (CC,Db ~ Db V Sb); 
BIT(: = bop = 0011) ~ (CC ~ D 1\ S); 
BITB(: = bop = 1011) ~ (CC ~ Db 1\ Sb); 

(add) 
(subtract) 
(word compare) 
(byte compare) 
(*multiply if D is a register then a 
double length operator) 

(*divide, if D is a register, then a 
remainder is saved) 

(clear word) 
(clear byte) 
(complement word) 
(complement byte) 
(increment word) 
(increment byte) 
(decrement word) 
(decrement byte) 
(negate) 
(negate byte) 
(add the carry) 
(add to byte the carry) 
(subtract the carry) 
( subtract from byte the carry) 
(test) 
(test byte) 

(rotate right) 
(byte rotate right) 
(rotate left) 
(byte rotate left) 
(arithmetic shift right) 
(byte arithmetic shift right) 
(arithmetic shift left) 
(byte arithmetic shift left) 
(rotate) 
(byte rotate) 
(*logical shift) 
(*byte logical shift) 
(*arithmetic shift) 
(*byte arithmetic shift) 
( *normalize) 

(*normalize double) 

(swap bytes) 

(bit clear) 
(byte bit clear) 
(bit set) 
(byte bit set) 
(bit test under mask) 
(byte bit test under mask) 



Branches and Subroutines Calling: PC f- f; 
JMP(: = sop = 0001s) ~ (PC f- D'); 
BR(: = brop = 01 16) ~ (PC f- PC + offset); 
BEQ(: = brop = 0316) ~ (Z ~ (PC f- PC + offset»; 
BNE(: = brop = 0216) ~ (-,Z ~ (PC f- PC + offset»; 
BLT(: = brop = 0516) ~ (N E9 V ~ (PC f- PC + offset»; 
BGE(: = brop = 0416) ~ (N == V ~ (PC f- PC + offset»; 
BLE(: = brop = 0716) ~ (Z V (N E9 V) ~ (PC f- PC + offset»; 
BGT(: = brop = 0616) ~ (---, (Z V (N E9 V» ~ (PC f- PC + offset»; 
BCS/BHIS(: = brop = 8716) ~ (C ~ (PC f- PC + offset»; 

BCC/BLO(: = brop = 8616) ~ (-,C ~ (PC f- PC + offset»; 
BLOS(: = brop = 8316) ~ (C /\ Z ~ (PC f- PC + offset»; 
BHI(: = brop = 8216) ~ « -,C V Z) ~ (PC f- PC + offset»; 
BVS(: = brop = 8516) ~ (V ~ (PC f- PC + offset»; 
BVC(: = brop = 8416) ~ (-, V ~ (PC f- PC + offset» ; 
BMT(: = brop = 8h6) ~ (N ~ (PC f- PC + offset»; 
BPL(: = brop = 8016) ~ (-,N ~ (PC f- PC + offset» ; 
JSR(: = sop = 0040s) ~ ( 

SP f- SP. - 2; next 
M[SP] f- R[sr]; 
R[sr] f- PC; 

PC f- D); 
RTS(: = i = 000200s) ~ ( 

PC f- R[dr]; 
R[dr] f- M[SP]; 
SPf-SP + 2); 

Miscellaneous processor state modification: 

RTl(: = i = 2s) ~ (PC f- M[SP]; 
SP f- SP + 2; next 
PS f- M[SP]; 
SPf-SP + 2); 

HALT(: = i = 0) ~ (Run f- 0); 
WAIT(: = i = 1) ~ (Waitf-1); 
TRAP(: = i = 3) ~ (SP f- SP + 2; next 

M[SP] f- PS; 
SP f- SP + 2; next 
M[SP]f-PC; 
PC f-l\1:[34s]; 
PS f-l\1:[12]); 

EMT(: = brop - 8216) ~ ( 
SP f- SP + 2; next 
M[SP]f-PS; 
SP f- SP + 2; next 
M[SP]f-PC; 
PC f- M[30s]; 
PS f- M[32s]) ; 

lOT(: = i = 4) ~ (see TRAP) 
RESET ( : = i = 5) ~ (not described) 
OPERATE(: = i(5: 15) = 5) ~ ( 

i(4) ~ (CC f- CC V i(3:0»; 
-,i(4) ~ (CC f- CC /\ -, i(3:0»); 

end lnstructionL...J execution 
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(jump unconditional) 
(branch unconditional) 
(equal to zero) 
(not equal to zero) 
(less than (zero» 
(greater than or equal (zero» 
(less than or equal (zero» 
(less greater than (zero» 
(carry set; higher or same (un-
signed» 

(carry clear; lower (unsigned» 
(lower or same (unsigned» 
(higher than (unsigned» 
(overflow) 
(no overflow) 
(minus) 
(plus) 
(jump to subroutine by putting 
R[ sr], PC on stack and loading 
R[sr] with PC, and going to sub
routine at D) 

(return from subroutine) 

(return from interrupt) 

(trap to M[34s] store status and 
PC) 

(enter new process) 

(emulator trap) 

(1/0 trap to M[20s]) 
(reset to external devices) 
(condition code operate) 
(set codes) 
(clear codes) 





A systems approach to minicomputer I/0 

by FRED F. COURY 

Hewlett-Packard Company 
Cupertino, California 

INTRODUCTION 

You can tell a lot about a guy by the way he draws a 
block diagram of a computer system. If he draws the 
central processor and memory as small boxes off in a 
corner, then proceeds to fill the page with an elaborate 
portrait of the input/ output system, he is" usually 
referred to as (among Dther things) an "I/O type". 

I have drawn several such diagrams, and I offer this 
information as a caveat to the reader. 

In the pages to follow, I shall outline and attempt 
to justify some of my views on minicomputer I/O, 
particularly on "where we should be going from here". 
If some of the suggestions are already being imple
mented, I think they are steps in the right direction. 
If, on the other hand, some of the ideas seem too far 
out, consider the source. 

A BIT OF HISTORY 

I guess things started the way they did for several 
reasons. Hardware (relays, vacuum tubes, power sup
plies, and air conditioners) was very expensive, espe
cially in the large quantities necessary for computing. 
The resulting machines were so incredibly complex 
(literally thousands of relays and vacuum tubes) that 
just getting one to work was a major accomplishment. 
In spite of the complexity involved, the actual capa
bility of the early machines was limited to large-scale 
automatic number-crunching. 

It is not hard to understand that hardware optimi
zation was foremost in the designers mind. U nfortu
nately, programming these first machines was quite 
difficult due to the limited storage available in the 
machines, and also due to the fact that no programming 
frills (such as assemblers) were provided. 

I/O was no real problem, since most of the early 
machines were clearly compute-bound, especially in 
number-crunching applications, and most I/O was 
simple card input, line printer (or card) output. 
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Engineers took advantage of technological develop
ments (core memories, transistors) to build faster, more 
powerful machines. Programmers began to apply the 
new machines to a wide variety of problems (such as 
writing assemblers) and began to explore the true po
tential of computers. 

As the number of machines increased, users (pro
grammers) began to outnumber designers (engineers). 
They wanted to have something to say about the design 
of the machines they would be using before it was 
too late. 

The engineers made the computers work, but the 
programmers made the computers do something. It was 
recognized that the important parameter to optimize 
was overall system performance. The engineers had to 
worry not only about how fast a machine could multiply 
two numbers together, but how efficiently the machine 
could be programmed to invert a matrix. 

I t is now common practice for computers to be de
signed by teams of engineers (with programming ex
perience) and systems programmers (with hardware 
understanding) in order to optimize the overall per
formance of the resulting hardware/software system. 

Also, the emphasis is shifting from hardware minimi
zation to people optimization. As the cost of hardware 
goes down, and the cost of people goes up, the way to 
minimize cost is to maximize the efficiency of people 
in the design, production, programming, and eventual 
use of the system. 

A GLIMPSE -INTO THE FUTURE 

In the near future, especially in some of the new 
minicomputer markets, the vast majority of computer 
users will not be programmers. As a matter of fact 
these users will not want to program computers. They 
won't particularly even want to use computers. They 
will have questions to be answered, problems to be 
solved, and things to be done. If a computer offers a 
better way (or, in some case, the only way) to do it, 
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people will consider using a computer. Otherwise, they 
will choose another method, or not do it at all. 

Let's face it ... the novelty is wearing off. The small 
computer industry must come of age. Weare ap
proaching the same position as the commercial airlines 
are in now. People don't fly just because they want a 
plane ride. They want to get somewhere, and flying 
happens to be the best (fastest, cheapest, most con
venient) way to get there. If it's not, they will choose 
a better way to go or they will stay at home. 

And most people are no longer interested in "roughing 
it" (wearing goggles and helping to start the engines). 
In most cases, the less they are aware of the fact that 
they are flying, the better they like it. This attitude is 
reflected in boarding ramps at the airports, and music, 
drinks, dinners, and movies while in flight. 

And people are only interested in new developments 
insofar as they are directly affected. A revolutionary 
new jet aircraft design is of interest only if it means a 
faster, quieter, or more comfortable trip. Note what is 
stressed in thp, Boeing 747 advertisements. New navi
gation, propulsion, and control systems are ignored in 
favor of winding staircases and plush accommodations. 
Pilots fly planes, people pay to ride in them, and there 
are a lot more people than pilots. 

The same rules will apply to minicomputers. New 
architectures, bussing structures, and addressing modes 
are only appreciated in terms of benefits which the 
user can see. Applications programs will be written for 
the user, not by him, and he will only be interested in 
the performance of the entire system as it affects his 
particular problem. 

THE MYTH OF THE ULTIMATE PROCESSOR 

But we are continually improving our machines. We 
are coming up with better performing hardware/soft
ware systems every day. 

I don't think that faster processors and more powerful 
languages are the whole solution. Let me illustrate by 
carrying the current trends to their ultimate goal. 

Suppose a man wants to generate an amortization 
schedule for a home loan. State of the art in mini
computers has reached the point where he can get a 
zero-cost infinitely-fast processor with 4K of memory 
and a super-powerful new compiler called "ENGLISH". 
The steps he goes through to generate the amortization 
schedule may be familiar to many readers: 

1. He sits down to tell the computer (in "ENG
LISH") to generate a loan amortization schedule. He 
discovers that no I/O device was provided. So he buys 
a teletype (with controller) for $2,000. 

2. He tries to load the "ENGLISH" compiler paper 
tape into the machine. Discovers that "ENGLISH" 
requires 8K of core; he only has 4K. So he buys another 
4K of core for $5,000. 

3. He is about to load "ENGLISH" when he dis
covers that the MTBF on the teletype is shorter than 
the time it takes to load the tape. So he buys a high
speed photoelectric paper tape reader for $3,000. 

4. He loads the "ENGLISH" compiler. 
5. He types (in "ENGLISH") "GENERATE 

AMORTIZATION SCHEDULE (CR, LF)" 
6. Immediately, the system starts to punch a binary 

tape. However, halfway through, the teletype punch 
breaks down. So he buys a high speed punch for $2,000. 

7. He punches the binary tape. 
8. He loads the binary tape. 
9. He starts the program and types in the amount 

of loan, interest rate, and term. 
10. Immediately, the system starts printing output, 

one line for each monthly payment. It takes a total of 
forty-five minutes to print all 360 lines. Meanwhile, 
the man stands there, with his fingers in his ears, 
hoping that the teletype printer will not break down 
before all the output has been printed. 

The following chart compares the price/performance 
characteristics at the beginning and at the end of the 
example: 

Price 

Speed 

Before 

$0 

Infinite 

After 

$12,000 

10 char/sec. 

Some may say that the example is an exaggeration. 
It may be, but I wonder if they have ever tried to 
generate an amortization schedule using a minicomputer 
in its "basic configuration". 

The point is, that if one were to substitute zero-cost, 
infinitely-fast processors into most existing minicom
puter systems, the total system cost and overall system 
throughput would not be significantly affected. 

A CALL FOR UNITY 

So far, I have tried to make three points: 

1. Computers should be designed for the user, not 
for the designers. The user wants a system to solve his 
problems, not a computer to program. 

2. The best way to optimize the overall performance 
of a system is to take a unified approach in the design 
of the system's components in order to optimize their 
performance together. 



3. I/O is by far the weakest link in current mini
computers. The total cost and overall performance of 
most existing minicomputer systems would not be 
greatly affected if we substituted a zero-cost, infinitely
fast processor and a super-powerful programming lan
guage. 

The conclusion I draw from these points is that if 
we are to improve the overall performance of mini
computers, we must concentrate more on I/O. However, 
I don't think that faster, cheaper I/O devices are the 
whole answer. There is no question that we need such 
devices, but we need something more. 

We need to include I/O in the design process from 
preliminary specification through actual construction. 
I/O is an integral part. of system performance and it 
should be an integral part of the design process. 
Processor architecture, instruction set, and I/O scheme 
should be developed together, from scratch, in order to 
truly optimize total system performance. 

I don't think we should discuss minicomputer I/O 
as an isolated topic; rather it should be treated as an 
integral part of the whole system. As soon as we look 
at I/O in this light, several very interesting possibilities 
appear. 

A BIT OF PHILOSOPHY 

Before we approach the problem of new I/O schemes, 
let us approach the problem of approaching problems. 
I think that we often misdirect our efforts due to 
taking too narl"ow a view of a given problem. It's like 
struggling to climb over a wall when, if we had stepped 
back and looked at the whole scene, we would have 
seen the open gate a short distance away. 

The important thing is to define the real problem 
(in this case, to get to the other side of the wall, not 
to climb over the wall) and to take a sufficiently broad 
view of the problem so as to include several alternative 
paths from which to select the best. 

Don't look for a way to improve existing methods. 
Rather, carefully define the real problem, then try to 
find the best way to solve that problem. The best 
solution may be to improve upon existing methods, 
but then it may be a totally different approach. 

Rapid advances in technology necessitate constant 
reevaluation of goals and methods. Decisions which 
were valid two years ago may have lost their validity 
due to technological developments. 

Let us try to reanalyze some of the basic character
istics of I/O and perhaps suggest some new approaches 
to minicomputer I/O design in the light of current 
(and projected) technolo~v 
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A VERY BASIC DISTINCTION 

I/O operations can be divided into two groups: 

1. Those which are intrinsic to the solution of the 
problem at hand, and 

2. Those which are incidental to the solution. 

Let us analyze the loan amortization problem dis
cussed earlier, and classify the I/O operations per
formed according to the above criteria. The problem, 
as you recall, was to generate a loan amortization 
schedule (not to program a computer to generate the 
schedule. The difference here is important as will be 
seen). 

The I/O operations involved are classified as follows: 

Intrinsic 

1. Input loan description 
2. Output amortization schedule 

Incidental 

1. Load compiler 
2. Type program 
3. Punch object tape 
4. Load program 

Note that the division would have been quite different 
if the problem had been defined in terms of program
ming a computer to generate the schedule. Unfortu
nately, we "computer types" have grown so a~customed 
to this rigmarole that we accept it as a part of problem 
solving. It is difficult for us to distinguish between the 
two because we are so used to working with machines. 

(If you have a hard t~.me categorizing the I/O steps 
in a particular applicatIon, try describing the sequence 
of operations to your wife. Those operations which she 
accepts and understands without further explanation 
are intrinsic, the others are incidental.) 

The goal of new I/O design approaches should be to 
streamline the intrinsics and to eliminate the inci
dentals. If an incidental operation cannot be eliminated, 
it should be made transparent or at least as painless 
as possible. 

COMPUTERS TA-LK TO PEOPLE 

Until recently, man/minicomputer communications 
have been rather poor. The teletype has been by far 
the predominate minicomputer I/O device, primarily 
due to an unapproachably low cost for a combined 
keyboard, printer, tape punch, and tape reader facility. 

Rather than ask how we can improve upon the 
teletype, let us ask "What is the best way to talk to 
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computers?" The answer is contained in the question. 
Most interpersonal information is conveyed by speech. 
~ven "HAL", the ultimate computer talked and 
listened to people. ("Yes", you might say, "but look 
what happened to him.") Notice, however, that not a 
single teletype was to be seen (or heard) throughout the 
entire Space Odyssey. 

Unfortunately, inexpensive spoken communication 
with minicomputers is not (yet) within the state of the 
art. So we must ask what is the next best method. 
Obviously it is visual communications. 

Man can as simulate visual information very rapidly. 
Ten characters per second is much too slow, one hundred 
per second is adequate, and a picture is worth a thou
sand and twenty-four words. I think that we are on 
the right track with some of the low-cost CRT terminals 
which have been and are being developed. One objection 
which is usually raised about CRT output is the lack 
of hard copy. True, this may be a limitation in some 
instances, but how often do you really need hard copy? 
Suppose you could store scrolls of output in a file 
somewhere and call them back for CRT display and 
manipulation very rapidly? Again, the solution space 
is different for different statements of a problem. 

N ow, how should man talk to a computer? Remem
ber, most new users will be non-technically oriented. 
We should attempt to tailor the computer to the 
people, not vice versa; Let the machine do the work. 
This is in keeping with the trend toward less expensive 
machines and more expensive people. 

I firmly believe that the human finger is much better 
for pointing than for typing. Given a fast CRT output, 
a very efficient input method is the selection of a reply 
from a computer-generated "menu". Let the computer 
guide the user and help, rather than hinder, in the 
solution of his problems. 

COMPUTERS ALSO TALK TO MACHINES 

Peripheral device interfacing is the area where we 
have had more experience, since we have long been 
attacking such problems as "How can we make our 
machine talk to a teletype?" (instead of "How can we 
make our machine talk to the person sitting at the 
teletype?") . 

I think new developments in technology and new 
applications areas warrant a new look at the area of 
interfacing peripheral devices to minicomputers. I think 
we can find ways to design better device controllers, 
faster and at a much lower cost. 

We spend most of our time trying to develop inte
grated processor/software systems. We take advantage 

of quantity production techniques to lower hardware 
costs. We do everything we can to minimize engineering 
and programming time for the basic system, then we 
design a unique controller (and write new support 
software) for each new peripheral device. 

Weare very interested in statistics concerning the 
amount of time our CPU's are busy, but do we realize 
how inefficiently our device controllers are used? Most 
integrated circuit devices can easily run at a ten mega
cycle clock rate. Yet an I.C. teletype interface runs on 
a 110 cps clock. A typical photoelectric reader reads 
300 characters per second. This means that such device 
controllers are only active on the order of 0.001 percent 
of the time. The remaining 99.999 percent of the time, 
the high speed logic gates are idle and only a few 
flip-flops are needed to hold some logical state infor
mation. 

To me, this clearly suggests multiplexing, or in some 
way time-sharing the control logic among several de
vices. 

PARTITIONING OF I/O FUNCTIONS 

The inclusion of I/O design as an intrinsic part of 
the overall computer system design provides a much 
larger space over which to distribute the functions 
necessary for I/O operations. 

For example, we could choose to implement a full 
duplex teletype controller using only one flip-flop, a 
clock, and two level converters, and provide timing 
and control functions in software. 

To add a photoreader merely requires device ad
dressing capability, perhaps another flip-flop, and an 
addition to the software. 

This argument begins to fall apart when we add too 
many devices, or hang on a fast device (such as a 
magnetic tape unit). But does it really fall apart? How 
much I/O could your minicomputer handle if all it 
had to do was I/O? How much more could it handle if 
the I/O routines were in read-only-memory, rather than 
in core? Minicomputers are commonly being used to 
handle I/O for larger machines. 

"But", you say, "separate I/O processors are only 
warranted for very large machines. They are much too 
expensive to .be included in a minicomputer." 

A WAY-OUT IDEA(?) 

Let us consider this approach before we dismiss it as 
unrealistic. Suppose we were designing a minicomputer 
as an integrated CPU/software/I/O system. We could 



choose to include two identical sets of processor logic, 
each with access to main memory and to each other. 
We could micro program one to act as a CPU and the 
other as an I/O processor. We could provide the 
absolute minimum hardware necessary in the device 
controllers and let the I/O processor do the rest of the 
work. 

Would this really be expensive? How much would 
it cost to add a duplicate set of cards? They have 
already been designed. Provisions have been made for 
their production and testing. Programming support 
has long since been developed. The existing core mem
ory, power supplies, and cabinet can be shared. 

The amount saved in device controller design and 
implementation should greatly exceed that spent for 
the I/O processor. 

And consider the power of such a system. I/O in
structions, block data transfers, virtual memory 
schemes, multi-level priority interrupts, and special 
user-defined I/O functions all take on a new dimension. 

A Systems Approach to Minicomputer I/O 681 

Whether or not such an I/O scheme is feasible re
quires much further consideration. The important point 
is that it is an example of what might be possible in an 
integrated design approach. 

SUMMARY 

1. Minicomputer performance and development is I/O 
bound, especially in the man/machine interface area. 
2. It is time we stood back and looked at minicomputer 
I/O, not in terms of how we can improve on existing 
techniques, but by analyzing what we want to do (the 
total problem) and deciding on the best way to do it 
(a total solution). 
3. I/O should be designed into not onto the system. 
An integrated CPU/software/I/O design will result in 
optimum performance. 
4. New approaches to existing problems might lead us 
in exciting new directions. 
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OVERVIEW 

The specific objective of this small computer system is 
to interface six to eight small graphical terminalsl to a 
large batch-processing computer. The small computer 
provides the graphical terminals with real-time process
ing for generating, editing and manipulating graphical 
or text files. The small computer passes along to the 
large computer requests for large tasks. Access to the 
data base in the large computer is provided. Another 
aspect of this objective is remote concentration. The 
terminals are connected to the small computer directly 
or through several DATA-PHONE® 103 data sets. 
The small computer is connected to the large computer 
through a single DATA-PHONE® 201 data set. This 
configuration reduces communication costs for a group 
of terminals located remotely from the large computa
tion center. 

The general objective of this system is to investigate 
memory management strategies in small computers. 
In particular, can large computer techniques be ap
plied? How big are the required programs? To what 
extent can high processor speed be substituted for 
large primary memory size? 

The hardware configuration for the system is as 
follows: The computer is a Honeywell DDP-516 with 
an 8192-word, 16-bit, .96 p,s core memory. Secondary 
memory is a special fixed-head disk by Data-Di,sk, 
Inc., which has 64 tracks, packed 8192 words/track, 
and operates at 30 rps rotational velocity. The disk is 
connected to the computer through a high-speed 
Direct Memory Access Channel. The disk is sectored 
in 8-word blocks (hence, a 16-bit address just suffices 
for the disk sectors). A Soroban 600 cpm card reader 
is connected to the computer I/O bus. A special serial 
transmission system (called the I/O loop) is also inter
faced to the I/O bus. Currently, four DATA-PHONE® 
103 data sets are connected to the I/O loop, but other 
I/O hardware may be added relatively easily. 
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Low-level software support (primarily, a fancy 
MACRO assembler) is provided on a GE-635 com
puter, not on the DDP-516 itself. Loaders and debug
ging aids have been written for the DDP-516 .. 

The system supports a virtual-memory addressing 
scheme and a multiprogramming user environment.2 

The system manages memory (moves programs and 
data between core and disk, on demand) and all disk 
I/O, and provides the low-level interrupt handler for 
the local teletypewriter, the card reader, and the I/O 
loop. The system supports virtual addressing by pro
viding a mechanism to convert virtual addresses to 
real core addresses, a task that requires memory man
agement if the addressed data is not currently in core. 
The mUltiprogramming support is provided in the 
form of the tables and memory management required 
to automatically switch control from one user to another 
without interference. 

MEMORY MANAGEMENT 

Segmentation 

In order to free the programmer from the task of 
memory management, that is, the supervision of the 
movement of data and programs between primary 
(core) and secondary (disk) memories, it was decided 
that the programmer should address a large virtual 
memory space rather than the physical storage media. 
The system handles the tasks of converting virtual 
addresses into physical addresses and of making the 
data available for processing (moving data into core). 
Space is allocated within the virtual memory on the 
basis of segments.2 As usual, a segment is a named 
block of storage which contains contiguous words. The 
first word of a segment is at relative address O. In. our 
system, a segment may contain any number of words 
up to 2047. Furthermore, the segment is the physical 
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storage allocation unit; segments are not physically 
subdivided (paged). A physical segment consists of a 
logical segment plus a few extra words required by 
the memory management system. 

Although segments are permitted to contain 2000 
words, in practice most segments are limited to 512 or 
fewer words. One reason for this limitation is that a 
DDP-516 memory-reference instruction has a 9-bit 
address field, so that a reference to a location greater 
than 511 would require indirect addressing. Moreover, 
the approximately 4000 words of core storage available 
for segments would be too easily clogged by larger 
segments. 

For convenience, ID's (segment numbers) rather 
than segment names are used internally for segment 
references. An ID is assigned the first time the segment 
is encountered, e.g., when it is first loaded into the 
system, or when a data segment is created at run 
time. Whenever a segment is deleted, its ID is reclaimed 
for future use. The ID is a 15-bit number, which 
means that the system can handle in excess of 32,000 
segments. Hence, if each segment contained 500 words, 
the virtual memory space would contain 16,000,000 
words, far in excess of our present physical storage 
capacity. As a practical matter, the current imple
mentation permits just 4096 ID numbers, but this 
can easily be expanded if required. 

Files 

In order to facilitate handling large character strings 
that would not fit into a convenient size segment, we 
have implemented, a higher-level storage classification 
called the file. A' file is a linked group of segments. 
Each segment in a file has a forward and backward 
pointer ID to the succeeding or preceding segment in 
the string. A user has a private file directory which 
lists his ow~ files by name. The directory provides a 
link from file name into the file via the ID of the first 
segment in the file. Note that files may be any size, 
because there is no imposed limit on the number of 
segments that may be linked together, other than the 
total number of ID's available. 

The system provides routines for accessing files by 
name a;nd for fetching and storing characters in a file. 
These routines make the segment boundaries invisible 
to the user, which is a great programming convenience. 

The system also provides a public file directory so 
that data may be shared. One user's private files are 
inaccessible to other users. 

Addressing 

The hard-core system program uses conventional 
DDP-516 addressing,' without any special software 

structure or restrictions. Since the hard-core system is 
"bolted in," the memory management system does not 
have to handle it. The segmented programs (those 
which are handled by the memory manager and use 
the virtual memory space mentioned previously) 
require four specialized addressing modes for various 
purposes. Before these modes are described, it would 
be helpful to consider two major system requirements 
that the addressing scheme was designed to support. 
First, it was required that the memory manager not 
have to relocate addresses within a segment when 
that segment moved from one core location to another. 
This requirement could be removed, but it would 
significantly increase system overhead (both space 
and time). Second, it was required that segmented 
programs not contain internal variable storage, so that 
such segments could be used concurrently by any 
number of users without interference. Thus, it is not 
necessary to provide multiple copies of such "pure 
procedure" segments, which saves core storage space. 

The first specialized address to be considered is the 
intra-segment pointer, i.e., an address that points to a 
location within the same segment that contains the 
pointer. Fortunately, it was possible to satisfy the 
relocation requirement by pre-empting the DDP-516 
index (X) register for use as a base register. This 
scheme works because the index register can be at
tached to any address, whether it be in a memory
reference instruction or a full-word indirect address. 
Furthermore, indexing is controlled independently of 
indirect addressing. In particular, whenever a se'gment 
is in execution, the index register contains the starting 
address of that segment. Then, all intra-segment 
references have the index bit "on" and the address 
field set to the desired relative address within the 
segment. 

The second specialized address is the absolute ad
dress. As its name implies, this address points to a 
fixed core location in sector 0 (otherwise, such an 
address could not be used in a memory-reference 
instruction). Hence, the index bit is O. There are two 
distinct uses for the absolute address. One use is to 
refer to fixed information in the system. In particular, 
a transfer vector is required in order to reach various 
system subroutines, none of which are located in sector 
O. In addition, a pool of generally useful constants is 
provided so that segments may be spared the necessity 
of containing their own copies of these constants. The 
other distinct use of sector 0 is to provide a pool of 
temporary storage locations for use by segmented 
programs. This pool of variables (the "thread-save") 
belongs to the currently executing thread. The thread
saves of all other existing threads occupy other places 
within core. When another thread is given control, its 



pool must be moved into sector O. It should be noted 
in passing that if our computer had possessed a second 
index or base register, we would have used it to point 
to the thread-save and thus avoided the need to 
physically swap thread-save data when switching 
threads. 

The third specialized address is a software-interpreted 
address called the virtual address. The virtual address 
is the general inter-segment address. It consists of 
two words. The first word contains the ID of the 

o ID(15) 

LL(7) I RA(9) 

desired segment. The second word contains two fields. 
The low-order 9 bits (RA) of the second word is the 
relative address of the word within the segment. Note 
that only the first 512 words of a long segment can be 
referenced, which matches the limitation of memory
reference ·instructions. The left 7 bits of the second 
word (LL) form the "loose link," which is a pointer 
into the 128-entry table of in-core segments. The 
loose link need not point to the correct entry in the 
table, but if it does, conversion from virtual to physi
cal core address is relatively rapid ('"'-'25 microseconds). 
Hence, whenever the system is required to convert a 
virtual address into a physical address, the loose link 
is properly set, so that subsequent address conversions 
will go at maximum speed. Note that the loose link 
contradicts the "no variable storage within a seg
ment" requirement, because the system can change 
the loose link. However, such a change is never harm
ful, because the segment table entry is checked before 
it is used. Also, since the same segment table is used 
for all threads, a correct loose link for one thread will 
be correct for any thread. 

The fourth specialized address is a direct address. A 
direct address is an absolute core address of a location 
inside a segment. A direct address must be stored within 
a certain subset of the thread save, in order that the 
system be able to find and relocate the address if the 
segment is shifted to a new core location. Moreover, a 
segment that is referenced by a direct address is locked 
into core, else use of the direct address could give a 
spurious result. The direct address does not add any 
significantly new addressing capability beyond that 
provided by the virtual address. However, it is useful 
because it is fast (hardware interpretation) compared 
to the virtual address. Use of the direct address does 
inflict some costs, in particular, the locking into core 
of the referenced segment, and the system overhead 
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required to relocate the direct addresses during a core 
shift. 

CORE MANAGEMENT 

The 8192-word memory of the DDP-516 is divided 
into two approximately equal parts, the hard-core 
system and segment storage. The hard-core system is 
the portion of the system that resides permanently in 
core memory. The rest of memory is allocated in 
variable size blocks to segments, as required. Each 
in-core segment is accessed through its entry in the 
segment table. A segment table entry is composed of 
two words, the segment ID and the segment location 
in core. 

ID 

BASE ADDR. OF SEG. j 

A virtual address (ID, RA) is converted to an absolute 
core address by adding the. relative address (RA) to 
the base address of the segment (second word of seg
ment table entry). If the ID of the desired segment 
cannot be found in the segment table, then the seg
ment is not in core and must be fetched from disk. 

When core is filled with segments and a new seg
ment is required, one or more of the in-core segments 
must be pushed (written onto disk or just discarded) 
to make room for the new segment. The algorithm for 
choosing which segments to push out of core is simple. 
A sequential scan of the segment table produces push 
candidates. The scan begins where the last push scan 
ended and ends when successful pushes have yielded 
the desired amount of space. A candidate is pushed if 
and only if the second of the two segment header 
words contains, zero, i.e., there are no direct or inter-

BASE 
ADDR. 

SEG. TYPE(5) SEG. SIZE(II) 

INTERRUPT DIRECT ADDR. 
ADDR. COUNT COUNT 

(6) (10) 

SEGMENT 
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rupt addresses pointing to the segment. The leading 
bit of the first header word (hence, the leading bit of 
the segment type) tells whether the segment must be 
written on disk when it is pushed. 

Each time the user establishes a direct address to a 
segment, the direct address count for that segment is 
incremented. When the direct address is deleted the 
count is decremented. The. direct addresses stored on 
the users' call push down lists are also included in this 
count. When a call is executed a direct address to the 
called segment is pushed on the list and the count for 
the called segment is incremented. Upon execution of a 
return the direct address is popped off the list and the 
count is decremented. Hence, all segments on user 
push down lists are locked into core, as are all seg
ments pointed to by direct addresses established by 
the user. I/O interrupt handlers are also allowed to be 
segments; when in use they are locked into core by 
incrementing the interrupt address count (high order 
six bits of the second segment header word). 

When enough segments have been pushed out of 
core to make the desired· amount of space, the holes 
left by the pushed out segments are gathered at the 
top of core. This is accomplished by moving all the 
segments above the holes down over the holes. Moving 
the segments in core requires that all direct addresses 
be changed to reflect the core shift. These include the 
segment addresses in the segment table, the users' call 
push down lists, direct addresses established by the 
users and various other system pointers. Since this is a 
long list and shifting the segments down is a long task 
(about 50 milliseconds), an attempt is made to free a 
large block of space (currently 1000 words) instead of 
just the amount requested. This makes the next few 
space requests easier to fill since a segment push and 
core shift are not required. 

DISK MANAGEMENT 

The half-million-word disk attached to the DDP-516 
is divided into three areas. Eight K (K = 1024 words) 
is reserved for saving and restoring the hard-core 
system, 32K is allotted to disk management tables and 
the remaining 472K is used to store segments that 
have been pushed out of core. These segments on disk 
can be accessed by name or ID using the disk name 
table or disk ID table. Both tables are themselves on 
disk and comprise the disk management table area. 
Each entry of the disk ID table contains four words. 

SEG. DISK ADDR. 

SEG. HEADER 

NAME CROSS REF. 

CHECKSUM 

When a segment on disk is accessed using its ID the 
corresponding disk ID table entry is read and the 
segment's size is extracted from the segment header 
word (2nd word of entry). Then the system makes 
sufficient space in core for the segment. N ext the 
segment's disk address (1st word of entry) together 
with its size and the starting core address of the space 
just acquired are given to a routine that reads the 
segment into core. 

Each entry of the disk name table also contains 
four words. 

SEGMENT 

NAME 

ID 

CHECKSUM 
I 

When a segment is accessed using its name, the cor
responding disk name table entry is accessed with the 
aid of a hash coding technique.3 The ID (3rd word) is 
then used to access the segment as previously de
scribed. The cross-referencing words in the two disk 
tables facilitate conversion from name to ID or ID to 
name. 

When a segment is pulled into core from disk a flag 
bit in the segment's header word called the disk restore 
bit is reset. If any changes are made to the segment 
while it is in core, this bit is set to 1, which indicates 
that the segment should be rewritten on disk if it· is 
pushed out of core. Otherwise, the segment is thrown 
away when pushed, since an up-to-date copy already 
exists on disk. A new segment is created with the disk
restore bit set; when it is pushed out of core, a zero 
disk address in its disk ID table entry indicates that 
space for it must first be allocated on the disk. Seg
ments can also change size while in core. If a segment 
is too large for its old slot on disk a new disk slot is 



allocated and the old one is marked as a hole to be 
collected later. 

Disk garbage collection is triggered when the disk 
allocation pointer approaches the end of disk storage. 
An autonomous thread is then initiated in the multi
programming system which relocates the segments on 
disk, bubbling the holes to the top. This is a long 
procedure and executes concurrently with other threads. 

MULTIPROGRAMMING 

The multiprogramming system uses a pure road
block strategy, i.e., it gives a thread control and lets 
it compute until it roadblocks. The next thread is 
then given control until it roadblocks, etc. There is no 
fixed maximum slice of time for each thread. A thread 
can roadblock for several reasons. If the thread re
quests input or output a roadblock occurs and the 
I/O proceeds under interrupt control. When the I/O 
is complete the thread is unroadblocked. A thread can 
also address a segment which is not in core and road
block until the segment is brought in from disk. If a 
thread is still roadblocked (I/O not completed yet) 
when its turn comes around again it will be skipped. 
Thus a thread is given control only when its road
block is removed and its turn comes around. 

The heart of the multiprogramming system is the 
thread table. It contains a six-word entry for each of 
the possible ten threads. 

I 
ROADBLOCK B IT 

I I RESTART ADDRESS 

4 THREAD TEMP. 
DATA CELLS 

PTR. TO THREAD SAVE BLOCK 

When the system is otherwise idle it scans this table 
for an unroadblocked thread (roadblock bit = 0). 
When a thread, does um;oadblock, its four temporary 
data cells are transferred to core sector zero, and the 
thread is restarted at the address specified by the 
first word of the thread table entry. This restart address 
is always within the hard-core system; before control 
is' pussed to an outside program segment the thread's 
save block is moved into core sector zero. The thread 
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save block is 80 words long and resides in the segment 
storage part of core. However, it is never pushed out 
of core. 

THREAD SAVE BLOCK 
FUNCTION 

PUSH DOWN LISTS 
USER TEMP'DATA 
USED DIRECT ADDR. 
SYS. TEMP DATA 
SYS. DIRECT ADDR. 
MISC. SYS. POINTERS 

AND DATA 

NO. OF WORDS 

24 
16 
8 
8 

15 

9 

The thread save block contains all the data and 
pointers required by system and user in order to im
plement pure procedure programs. Before a thread's 
save block is moved into core sector zero the save 
block in core sector zero is restored to the previous 

-thread's save block. This data movement constitutes 
most of the overhead involved in changing threads 
and takes about a millisecond. However, most of the 
roadblocks that occur when' a thread is using hard 
core system programs require only the four data cells 
in the thread table entry to be in core sector zero. This 
brings the thread changing time down to about 50 
/Lsec. For example, when an out-of-core segment is 
addressed a thread could be roadblocked three or four 
times for things like reading the disk ID table, making 
space for the segment, and finally transferring the 
segment into core. Only after the segment is in core 
and the address is about to be computed is the com
plete thread save block required to be in sector zero. 

There are several other interesting roadblocks which 
can occur. For example, a low usage program may be 
more compact and simpler if it is not pure, procedure 
(required by multiprogramming). This is allowed by 
using a GATE statement at the start of the program. 
The gate allows only one thread to be in the program. 
Any other threads that tried to enter would be road
blocked until the first thread opens the gate on its 
way out. Of course, allowing only one thread at a 
time rules out this technique for high usage programs. 
A program can also-request a thread to give up con
trol. This is a useful technique' to break up programs 
with long execution times or to wait for some external 
event to occur without locking the other threads out 
of the machine. 

INPUT/OUTPUT 

All input/output in the computer is done under the 
interrupt system with the aid of the I/O table. This 
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table contains a five-word entry for every I/O device 
attached to the computer. 

INTERRUPT HANDLER ADDRESS 

BUFFER ADDRESS 

MAXIMUM CHAR. CURRENT CHAR 
POINTER POINTER 

ESCAPE CHAR. INITIAL CHAR. 
POINTER 

THREAD TABLE POINTER 

The above example is a table entry for a character
oriented device. When input or output are desired 
the appropriate program is called with the buffer 
segment and the escape character supplied as argu
ments. The called I/O program then fills in the I/O 
table entry, primes the I/O device and roadblocks the 
thread. When an interrupt occurs, the system gives 
control to the location specified by the interrupt 
handler address in the I/O table entry for the inter
rupting device. For input, the characters would then 
be inserted in the buffer using the buffer address and 
the current character pointer. 

About 300 microseconds are required to handle each 
character interrupt for the teletypes. When an escape 
character match or ·full buffer is encountered the 
thread :table pointer in the I/O table entry enables 
the program to unroadblock the thread, and the I/O 
functiori is complete. 

Since a large number of different I/O devices are 
expected to be connected to the computer, with only a 
few of them active at one time, interrupt handlers are 
allowed to be program segments. When an I/O device 
becomes active its interrupt handler segment is fetched 
and locked into core for the duration of its activity. 

Disk I/O is controlled by the disk I/O queue, which 
contains twenty entries of five words each. 

DISK TRANSFER PROGRAM 

DISK ADDRESS 

CORE ADDRESS 

THREAD TABLE POINTER 

OTHER DATA 

A disk transfer is initiated by finding an empty queue 
entry and inserting the address of the appropriate 
disk transfer program and its arguments. The request
ing thread is then roadblocked. 

The disk I/O handler is an autonomous process 
which goes on in the background of thread processing. 
When a disk I/O task is finished, the current disk 
rotational position is read and the disk addresses on 
the disk I/O queue are scanned to pick the task with 
the least latency. Control is then given to the picked 
entry's disk transfer program, which sets up the disk 
I/O. Upon completion of the task, the thread is un
roadblocked using the thread table entry address in 
the queue entry. 

USAGE 

A brief description of currently available programs 
is provided in order to demonstrate some of the system 
capability. The system does not as yet serve a com
munity of "outside" users or applications program
mers. 

Log-in 

The teletypewriter log-in procedure is controlled by 
a segmented program. When a user dials the system, 
the interrupt handler answers the telephone and 
initiates a thread for the user. The new thread executes 
the log-in program, which requests a password. The 
password identifies a user catalog of files. Then the 
log:-in programs sends thread execution to the monitor, 
which permits the user to select an applications pro
gram. 

Text editor 

One currently available applications program is a 
text editor. This is a very simple, line-oriented editor. 
It has the ability to enter one or more lines of text 
anywhere within an existing text file and to delete one 
or more existing lines. Of course, selected lines may 
also be printed out on the teletypewriter. The text 
input mechanism has a tab feature which permits the 
user to select the tab key as well as to position the 
tab stops. The command format is a single command 
letter followed by arguments, if any. The arguments 
are decimal line numbers for the print and delete 
commands, for example, or a line of text for the enter
text command. 

The text editor may create or delete files, as well a~ 
attach any· existing file. This capability is also pro-



vided by other programs, but it is convenient to have 
these features available from within the editor. 

Interpreter 

The second available applications program is a 
TRAC-like interpretive program.4 This program can 
be used for text editing, but it is a general character
string manipulator. Like the editor, it is a "safe" 
program in that user errors do not bring down the 
system. Also, this interpreter provides a high-level 
programming language in which other applications 
programs can be written. 

. Debugging 

We have provided a low-level debugging tool for use 
with segmented programs. This debugger is itself a 
segmented program, and it is designed to operate in 
the multiprogramming system environment. This is 
important, because it allows one user to debug without 
blocking other users. Also, it aids the programmer by 
freeing him from the necessity of knowing absolute 
addresses, which would be a painful requirement when 
the segments move within core or between core and 
disk. 

The debugger allows the user to print out or alter 
the contents of selected locations within a segment. 
The user may also print or alter some of the data in 
his thread-save block. The command format consists 
of a one-letter command, followed by arguments, if 
needed. Numerical arguments are given in octal; 
segments may be referred to by ID or by name, as in 
the following address: 

segname/ra 

where segname is the segment name (in ASCII) or ID 
(in octal), and ra is the relative address (in octal). 

SOFTWARE SUPPORT 

It is becoming common practice to support small
computer programming on a large computer system. 
We have available a GE-635 computer in our compu
tation center, and we use it to assemble all of our DDP-
516 programs .. The most important reason for using 
this kind of computation center support is that, by 
using the available assembler (GMAP), we have 
access to MACRO instructions and many powerful 
pseudo-operations that are not available in the manu
facturer's assembler (DAP). The difference may not 
be important for small programs, but it makes a vast 
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difference in a comparatively complex project, such as 
the current effort. Another significant advantage of 
computation-center assembly is that it uses convenient 
output peripheral equipment, in particular, card 
punches and line printers. 

Our use of the large computer assembler to generate 
small computer code is not novel, but apparently it is 
not widely used. I t works well in our case because 
the two computers (GE-635 and DDP-516) are organ
ized similarly (e.g., they are both word-organized, 
single-address), and in a rough sense, the smaller 
computer is almost a "subset" of the larger computer. 
Moreover, GMAP has provision for redefining old 
instructions and for defining new ones. Hence, it is 
relatively easy to get GMAP to accept DDP-516 
assembly code (in GMAP format, but with DAP 
mnemonics). The G MAP binary output cannot be 
changed so easily, however, so a separate program, 
called a post processor, has been written to convert the 
GMAP binary output into a more suitable format for 
our requirements. 

For this project it was convenient to have two 
assembler/post processor packages, one for segmented 
programs, and one for system programs. The segment 
assembler helps the user with the special segment 
addressing modes, and simplifies access to system 
programs callable from segments. The segment post 
processor converts the resulting binary into a form 
suitable for use by the segment loader. The system 
assembler is simpler -and less restrictive than the 
segment assembler, and it uses conventional (for 
GMAP) inter-program linkage features. The system 
post processor includes a linking, desectorizing loader 
which loads one or more relocatable programs into a 
core memory image, then punches the result as an 
absolute program which can be loaded into the DDP-
516 by a simple, compact loader. In both cases, the 
post processor prints an octal listing of the final output 
as a debugging aid. 

We have found it convenient to incorporate octal 
patch card facilities in both the segment loader and 
the system loader. Thus, the user is able to patch 
known errors in his binary decks before he has had a 
chance to reassemble. 

STATUS REPORT 

The system described above is currently working 
stand-alone (the 201 data set link to the large com
puter has not yet been implemented). The system 
supports four 103 data sets for communication with 
teletypewriter consoles. The graphical terminals are 
not yet available for connection to the system. Hence, 
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it is too soon to conclude whether the system can be 
used as a remote concentrator for graphical or other 
terminals connected to a large computer system. 
However, we can comment on the memory-manage
ment aspects of the objectives. 

The current size of the hard-core system is just 
under four thousand words. This includes character 
handling routines, a 103 data set communication 
package, card reader package, in addition to the mem
ory manager and multiprogramming support software. 
Hence, approximately four thousand words remain 
for program and data segments. The system has been 
exercised with four concurrent users; the segmented 
programs in use during this exercise included the text 
editor, the interpreter, and the segment debugger, 
which altogether represents five thousand words of 
program. The experiment generated and accessed 
several tens of thousands of data words. Delays due to 
multiprogramming were scarcely noticeable compared 
to delays due to disk latency. For example, it took ten 
seconds to sequentially access every character in a 
20,OOO-character file. Note that this sequential access 
time is a function of the size of data segments that 
make up the file. The data segment for this experi
ment was 64 words in order to minimize the amount 

of core required by each user. Doubling the data seg
ment size would halve the access time; it would also 
increase multiprogramming interference. More experi
ments are needed in order to explore such trade-offs. 
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Applications and implications of mini-computers 

by C. B. NEWPORT 

Honeywell, Inc. 
Framingham, Massachusetts 

Over the past four or five years the largest growth 
segment of the computer industry has been mini
computers and it appears that this trend will continue 
into the foreseeable future. 

Mini-computers have typically been defined by their 
price rather than by performance. As recently as early 
in 1969, some observers were classifying mini-computers 
as those having a price for a minimum system of less 
than $50,000. Today a more reasonable figure would be 
$20,000 and some people may even press for $15,000 or 
even $10,000, but perhaps at this level one is talking of 
micro-computers. 

These machines have had a fairly remarkable impact 
on the comp~ter industry since in some respects their 
performance is even better than that of their big 
brothers which have built up the computer industry 
over the past 20 years. For instance, many computers 
have core cycle times and peripheral transfer rates which 
are considerably higher than the conventional large 
scale computers. Core cycle times of less than 1 micro
second are common and some machines are in the region 
of ~ of a microsecond. Maximum I/O transfer rates 
are frequently determined solely by the memory speed 
and with 16 bit machines transfer rates of over 2 million 
characters per second are quite common. 

It is interesting to compare these parameters with an 
IBM System 360/50 which has a core cycle time of 
2 microseconds and a maximum I/O data rate of 800K 
bytes per second on the selector channel. The 360/50 
could in no sense be classed as a mini-computer and of 
course in other areas such as core size, instruction 
repertoire, range of peripherals, standard software, etc., 
it is a far m9re powerful one than any mini-computer. 
Nevertheless this does indicate that for those applica
tions where high speed minimum complexity processing 
is required, and rapid I/O transfers are needed, mini
computers may well be more effective than their large 
brothers. 

Most large computers were designed basically for 
batch processing either s~ip.nt.if1,. OY' hll~iness and the 
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concept of high speed real time interaction with these 
machines tends to have been added as an afterthought .. 
Thus, when one attempts to use large machines for 
systems such as air lines reservations, time sharing, 
messaging switching, industrial process control, etc., 
one finds that it is relatively easy to burden the large 
processor with the simple tasks of handling communica
tion lines, attending to external interrupts, and inter-

. rogating large data files, thus leaving no time for the 
basic computation that may need to be done. The 
realization of this is leading to the off-loading of the 
simple jobs handled by large machines on to small 
peripheral machines (mini-computers) which can be 
dedicated to high speed but relatively simple tasks. 
Tasks include the handling of error control, polling, and 
conventional communication disciplines, over a number 
of communication lines, and then, presenting packaged 
and checked messages to the large processor for 
subsequent handling. 

In time sharing, it is becoming clear that the "number 
crunching" machine used to invert matrices, solve linear 
programming problems and so on, should be isolated 
from the relatively trivial tasks of sending and receiving 
messages to and from users and from the tasks of 
scheduling and monitoring the performance of the 
overall system. Mini-computers designed for high speed 
character manipulation rather than computation can 
undertake many of these housekeeping chores more 
effectively than the big machines. 

In some instances mini-computers have proven to be 
very effective in taking on complete jobs that were 
previously'thought to be the province of large machines. 
A good example is in message switching where mini
computers are showing that they can handle effectively 
the switching of messages between as many as 100 or 
128 low speed communication lines. In this application 
essentially no calculation is required but there is an 
extensive amount of character manipUlation, checking 
of character strings, and elaborate real time house
keeping. Figure 1 shows a diagram of a typical message 



692 Spring Joint Computer Conference, 1970 

FIXED HEAD 
DISC 

FIXED HEAD 
DISC 

Figure I-Message switching system 

switch indicating the way in which two computers may 
be used to provide a switching function, and redundancy 
in the case of equipment failure. In a typical application, 
the CPUs would be DDP-516 class computers with 16K 
to 32K words of core, and a fixed head disc on each 
machine would be used for in-transit storage. The long 
term storage requirements for journaling and intercept 
would use moving head discs with replaceable disc packs. 

The incoming communications lines, some having 
relay interface to dc lines, and others having EIA type 
interfaces to modems, would be connected into indi
vidual line termination units. These feed partially 
formed characters into the multi-line controllers (MLCs) 
which completely format the characters, check for 
parity, and perform other control functions before 
passing the characters and line identification into the 
CPU s. Input is- taking place in parallel on both machines 
so that in normal operation they can both build up 
identical information on the in-transit disc stores. 
Communication between the CPU s is via the inter
computer communication unit (ICCU) and allows both 
machines to insure that they are in step on a message or 
partial message basis. The watchdog timer (WDT) is an 
independent hardware device monitoring the perform
ance of both CPUs and providing an alarm and switch
over if one of the CPU s should fail. It will be seen that 
messages are inputted in parallel into both systems but 
outputted from only one of them. 

Figure 2 shows a block diagram of the program which 
would be running in one of the processors. Input char
acters from the multi-line controller are passed through 
the input processor and assembled into partial message 
blocks in the input buffer area. These messages con
sisting of heading and text blocks are then passed to the 
disc queue and transferred from core to the fixed head 

disc. As messages are completed on the disc they are 
transferred back into core one at a time for header 
analysis and routing. This is undertaken by the message 
processing program, and completely processed messages 
are returned to the fixed head disc where they are queued 
ready for output to the appropriate line. As the lines 
become free the output processor program takes the 
messages off the fixed head disc, a block at a time, 
buff~r~ them temporarily in cores and then transfers 
theta to the multi-line controller~CJr~ 

It will be seen that the majority of the processing 
involved is examining strings of characters for particular 
sequences, and manipulating blocks of core storage 
being used for queues. Efficient data handling in both 
these areas and also the ability to operate with a high 
speed fixed head disc enables mini-computers to handle 
between one thousand and two thousand characters per 
second in a typical message switching application. 

Mini-computers are normally quite limited in the 
amount of core storage they can have and it is interesting 
to note that in most communications applications there 
is a trade off between the amount of core storage 
required for input/output buffer blocks and queues, and 
the speed of the fixed head disc. With a high speed disc 
small buffer blocks can be used in core since these can 
be unloaded rapidly onto the disc before core saturation 
occurs. With a disc providing about 100 independent 
random accesses per second, buffer blocks holding in the 
region of 64 characters are normally acceptable and do 
not demand excessive core storage. However, if it were 
possible to increase the speed of the fixed. head disc, by 
say 4 times, an approximately equivalent reduction in 
the size of the buffer blocks could be made and a 
corresponding reduction in the amount of core storage 
and hence in the cost of the system. 

FIXED HEAD 
DISC 

RECALL IUl'ERVlIORY FUNCTIONS 

Figure 2-Diagram of basic message switching programs 



It is interesting to note that there are essentially 3 
different parts of the program: input processing, message 
processing and output processing. The communication 
between these 3 basic program segments is almost 
entirely through data held on the fixed head disc, with 
the exception of pointers and status words. This leads 
directly to the consideration of multi-processor systems 
to handle applications beyond the capability of one 
mini-computer. One Cf" "'nuter'would be assigned to I' ~h 
of the major procesb ...... J.f;; areas and they would all ,.:.d.ve 
access to the common fixed head disc. Some simple 
means of passing limited amounts of status information 
between the computers would be necessary but :all the 
major data flow would be thru the disc. The a~ount of 
core on each processor could be optimized to the task it 
had to perform and in principle so could the power of 
the processors, although in practice it would be simpler 
to maintain identical processors in all cases. 

One would not expect the throughput to be as much 
as 3 times greater than that of a single processor 
because of the inability to share spare time between the 
processors. For instance, if the input is particularly 
heavy and the input processor is becoming overloaded 
it would be very difficult to arrange for, say, the output 
processor to take some of this load, whereas in a single 
computer system this can be arranged to happen 
automatically. While 3 computers might be expected to 
give somewhat less than 3 times the thruput of one 
computer, significant economies can be obtained in the 
redundancy since now one standby machine can be used 
to replace anyone of the 3 n«?rmally operating 
computers. Thus 4 machines connected in the appro
priate way can provide between 2 and 3 times the 
thruput of 2 machi~es connected in a normal redundant 
configuration. This \type of configuration clearly gives 
savings in cost and an increase in reliability over the use 
of one or two large machines. In addition, it can simplify 
the programming and the checkout since separate tasks 
are confined to separate pieces of hardware. 

Time sharing is another application area that has 
until recently been the province of large computers. 
There are, however, now on the market a number of 
small time sharing systems based on a single mini
computer. These systems typically provide for 16 or 20 
users working with the interactive terminal language 
BASIC, or sometimes FORTRAN. These systems 
clearly do not 'compete with the larger time sharing 
systems in data storage, power and the varity of language 
facilities, library facilities, or ability to undertake 
extensive mathematical calculations. They do, however, 
provide a very useful service where simple fast access 
computation and data retrieval is required. The use of a 
multiple mini-computer configuration to extend the 
capability of the smaller systems upwards towards that 
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Figure 3-Timesharing system 

of the large systems is well illustrated in the H1648 time 
sharing system. Figure 3 shows how the 3 computers are 
connected together to provide up to 48 simultaneous 
terminal users with the capability of programming in 
FORTRAN, BASIC, TEACH or SOLVE. 

The terminals are handled by a DDP-416 with 4K of 
core. This machine passes characters to and from the 
terminals, provides echo-back for transmission verifica
tion, provides some buffering, and passes characters one 
at a time into the control computer. The control compu
ter and the job computer both share moving head disc 
files for data interchange, and they pass control informa
tion thru an ICCD. The control computer is essentially 
the executive of the system and provides the normal 
interaction between the user and his programs and data 
files which are held on the discs. The user may build up 
programs and data files upon the discs and when he 
requests that these programs be run, the control 
computer will queue his request for execution on the job 
computer. When the job computer is ready to execute 
the program, it will read the necessary files ·from the 
disc and will bring in any required system programs 
from the system disc. It will then compute for a prede
termined period of time, in the region of 7.4: second, and 
if the job has not been completed, swap it out on to 
the system disc and bring in the next job for a similar 
period of time. 

In this system, the tasks have been divided fairly 
cleanly between the 3 computers. There is considerable 
difference in the computing power of the machines, each 
machine being matched reasonably well to the task 
required of it. The communications computer is a 
DDP-416 with 4K of memory, while the control 
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computer and the job computer are both DDP-516s 
with 32K of memory. The use of the multiple computer 
configuration has considerably increased the power of 
this system over that which would be possible with all 
functions undertaken in one machine, and it has 
simplified the task of implementing the software and 
of adding modifications. 

As a simple example of the independent usage of the 
computers, the control computer and the job computer 
can be isolated from the normal time sharing function 
and used for software development by the system 
programmers, while the front end communications 
computer can remain online to the terminal users. 
Clearly the terminal users cannot do their normal 
computation, but when they attempt to sign on the 
communications computer can reply to them with a 
standard message informing them of the state of the 
system and when it will be back on the air. This is much 
more satisfactory than receiving no reply at all to an 
attempted sign-on and having to make a telephone call 
to verify the state and availability of the system. 

The two applications so far discussed are indicative 
of how mini-computers can take on tasks normally 
assigned to larger machines and provide benefits of low 
cost, separation of programming tasks, and economical 
provision of redundancy. In examining these and other 
similar applications of small computers, various ques
tions arise which need answering if these mini-computers 
are to be as widely used as I believe they should. The 
main points of discussion are: 

1. Shared peripherals versus shared core memories. The 
two applications mentioned have used shared discs as a 
means for transferring data between computers, but an 
alternative is to share core storage or at least portions 
of it between two or more processors. This has the 
immediate advantage that data is accessible to both 
machines without any need for an ICCU, and no time is 
lost in making data transfers. There may, however, be 
hardware difficulties in that shared core may cause a 
slowing down of the normal operation and can negate 
the conceptual speed of advantage. It also becomes 
more difficult to provide redundant backup for the 
shared core memory, and the attempt to do so almost 
inevitably causes further slowing down of the effective 
cycle time. Probably the optimum solution is the large 
private memory on each processor, a small somewhat 
slower shared memory with redundant backup, to 
provide data transfer between machines, and a large high 
speed shared disc to provide the basic bulk data 
transfer. 

2. Efficient, simple, modular operating systems are 
required. If multiple mini-computers are really destined 
to effectively challenge the large computer business in 

the real time application area, it is vital that they 
develop some sophistication and maturity in their 
software systems. I t is impractical to develop new 
software for every new application and an attempt to do 
so will simply delay the introduction of these machines. 
Large, all embracing operating systems are not required, 
but simple, high speed, standard executives are badly 
needed. These should provide high speed handling of 
interrupts, simple task dispatching, clearly defined 
interfaces with application programs, and the ability for 
the user to start very simply and elaborately by adding 
modules as required to do his particular job. 

3. Large data storage peripherals. Most mini-computers 
have only been available with relatively small bulk 
storage devices, because their designers anticipated that 
these machines would only be used on small scale 
applications. The realization that large scale applica
tions are also appropriate for mini-computers means 
that large bulk storage devices, 10 million to 100 million 
or more characters, are required .. Because of the 
inherently limited core storage capabilities of mini
computers, these bulk store devices must have fast 
access. Moving head discs are the only acceptable de
vices at present but even these are too. slow in many 
applications. A typical moving head disc provides 
approximately 10 random accesses per second on an 
average, but some applications require that this be 
increased by an order of magnitude. Fixed head discs 
can be used but it may also be possible to design some 
form of hardware queueing into the disc file controller. 
This would enable the computer to output a series of 
requests, perhaps 10 or 20, to the disc file controller, 
which would then compare its current position 
simultaneously with all the stored access requests. It 
would then automatically make those transfers which 
were closest to its current position and so minimize the 
average disc latency. Assuming requests for access are 
made at random· positions on the disk, the effective 
reduction in latency would be dependent on the number 
of requests that could be stored in the controller and 
searched simultaneously. It seems plausible that an 
improvement of 5 or 10 times could be made. 
4. Some problems will always require large machines. 
When a problem requires extensive scientific calcula
tion, long word length, hardware floating point, and 
extensive demands on core storage, it will always 
require the use of large machines. This will also be true 
of problems that cannot reasonably be broken down. 
into small component parts. In these cases mini
computers could still be expected to serve as peripheral 
processors around the large machine. 

5. Manufacturer support. The widespread use of mini
computers will depend on the support available to 



design and implement actual systems since ideas for 
applications will always exceed the supply of those 
capable of seeing the application through to successful 
implementation. It will be essential for manufacturers 
to supply simple and efficient software modules, all 
useable with each other, and supported with high 
quality documentation. Also implementation assistance, 
effective field service, and maintenance support will be 
needed. System analysis and design may also come from 
the manufacturers, in some cases, but will be more 
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likely to be provided by consultants. Manufacturers 
must provide meaningful training courses and effective 
manuals on the equipment, the software, and its 
potential applications. Too few people know what to do 
and those who do must generalize, write it down, and 
distribute it as widely as possible so that others may 
learn. 

l\1ini-computers have a great future limited more by 
our collective ability to understand how they can be 
used than by an deficiences or omissions in the hardware. 





Teleprocessing systems software for a 
large corporate information system 
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INTRODUCTION 

One of the functions of management is to control the 
organization in such a way that it responds to changes 
and deviations in the optimum manner. 

The magnitude of the deviation from the established 
goal often depends upon the ,length of the delay in 
response, any deviation from the best performance ob
jectives must be quickly detected and corrective meas
ures applied promptly. 

A fast response corporate information system is de
signed to accommodate this criterion with the following 
capabilities: 

1. Keeping the. Corporate Data Base Freshly updated 

Source data may be transmitted directly into the 
computer to improve the efficiency of the infor
mation flow, thus providing prompt and accurate 
collection of data from widely dispersed areas. This 
capability can at least provide the following benefits: 

• Reduction in human waiting time. 
• Reduction in idle resources. 

2. Extending the usage of the Corporate Data Base 

New applications could be added to provide bene
fits not previously available. 
• Direct exchange of information with the corporate 

data base helps users in diverse locations keep 
abreast of rapidly changing events. For example: 

• • Immediate presentation of operating status 
aids decision making. 

• • Rapid transmission of decisions to the point 
of execution can be accomplished. 
Swift distribution of decisions to the associ
ated parties for supplemental decision-making 
are completed within the time frame. 
Timely feedback of the results of the decisions 
allows adjustments to the operating environ
ment in an incremental manner. 
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A well planned and developed teleprocessing system 
will provide the backbone of a fast response corporate 
information system. The remainder of this paper de
scribes the requirements, strategy, facilities, and actual 
implementation of such teleprocessing system. 

SYSTEM REQUIREMENTS 

The following requirements are essential for a tele
processing support of a growth-oriented corporate infor
mation system. 

1. Support for a Variety of Terminal Types 

Each terminal installation must be reviewed to 
determine the specific terminal type which can best 
handle the types and volumes of information proc
essing typical of that location. The system must be 
capable· of supporting, in addition to the standard 
devices, several special devices tailored to satisfy 
special situations. 
• The standard devices will include: 

• • Typewriter terminals 
• • CRT terminals 
• • Low-price, short-message terminals for data 

entry 
• • Card readers, card punches, and line printers 

for remote locations. 
• The special devices could include: 

• • Analog transducers 
• • Process control computers 

2. Centralized Control of Tele-Communications Network 

To assure efficient information flow and optimal 
utilization of the communications network, control 
of the teleprocessing system should be centralized 
so that resources can be allocated dynamically to 
satisfy changing demands. Conventional systems 
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PERMANENT DEVIATION (fAILURE TO ACCOfI'LlSH GOAl) 

DELAY IN RESPONSE 

Figure 1 

have often allowed segmentation of the system 
resources into disassociated subsystems between 
which temporarily unused resources cannot be 
shared. 

For a large scale party-line (multidrop) network, 
provisions should be made to maintain a network 
discipline that will ensure increased system efficiency 
as well as dependable service. For example, con
tinuing to poll a malfunctioning terminal which fails 
to reply degrades service to other terminals on the 
same line and wastes central processor time. Such a 
terminal, therefore, should be deleted logically from 
the network until it is capable of replying. 

By contrast, when maintenance personnel are 
testing a malfunctioning terminal on-line, the system 
must poll this terminal as usual until testing is 
completed. 

The network control program should provide at 
least the following functions: 

• Polling and addressing network discipline. 
• Threshold error counters to allow automatic de

letion of malfunctioning lines and terminals. 
• Diagnostic terminal mode which bypasses the 

automatic deletion of malfunctioning lines or 
terminals to allow for on-line hardware main
tenance. 

• Manual stop and start for lines and terminals to 
allow console operator to control network. 

3. Support for a Variety of Message Types 

Each application project should be able to select 
the message types best suited for its needs. The 
system should support a variety of basic message 
types which may be used independently or as build
ing blocks for more complex activities. 

These basic types of messages are: 

• INQUIRY: An operator may ask predefined ques
tions by specific transaction codes. 

• RETRIEVAL: A user may select and examine 
information elements from the data base. 

• DATA ENTRY: An operator enters new infor
mation into the data base, whether update occurs 
immediately or later. 

• JOURNAL: An application project reports the 
status of transactions previously processed. 

• MULTIPLE DESTINATION: A message proc
essing program responds to a single request with 
messages directed to two or more locations. 

A complex activity example: 

• DATA CHANGE (INQUIRY + DATA EN
TRY): An operator inquires into the data base 
and then enters changes based on the inquiry 
response. 

4. Versatile and Balanced Message Control Facility 

In support of these message types, the message 
control program should also provide the following 
services: 

• HEADER BUILDING: Identification, time 
stamping,· routing, and classification of messages 
to permit off-line analysis of message flow in 
addition to on-line control. 

• QUEUE MANAGEMENT: For a large real-time 
system, the interval between message arrivals is 
often less than the service time so that messages 
cannot be processed serially nor can the system 
keep up with the demand for its resources. The 
resulting backlog of messages must be managed 
to smooth out peak loads and provide a tolerable 
response time. 

• PRIORITY MANAGEMENT: Certain activities 
are of such importance that they .demand im
mediate attention regardless of the backlog of 
other messages. A priority scheduling mechanism 
would permit such activity to avoid long waits 
in queues by providing express routes throughout 
the system. 

5. Efficient and Easy Applications Programming 

Economic considerations require an approach be 
taken which reduces programming, testing, and 
maintenance costs of message processing programs. 
The teleprocessing system should present an inter
face which permits such cost reduction. 



6. Testing Provision for Message Processing Programs 

To facilitate testing new or modified message 
processing programs in an actual operational en
vironment without endangering the on-going oper
ations. The system should protect at least the 
following resources: 

• DATA BASE: Retrieval of data elements from 
the data base should function normally for the 
testing program, but any attempts to update the 
data base, directly or indirectly, must be inter
cepted. 

• OPERATION AL PROGRAM: A different storage 
protection key should be assigned to the testing 
programs. 

The system should also provide the following 
functions: 

• MESSAGE TRACE: Print or log every work area 
associated with a testing program to show the 
message in different stages during processing as a 
diagnostic aid. This function should be available 
by request for operational programs also. 

• REFRESHING: After trying a specific condition 
to which the testing program fails to respond 
normally, it is desirable to refresh the copy of the 
testing program from the library so that different 
conditions can be tested to speed up the debugging 
cycle. 

• TASK INDEPENDENCE: If one testing pro
gram fails, the system must take action for ab
normal termination of this individual program 
(subtask); however, all the other programs in the 
same region should continue processing inde
pendently of this failure. 

• TIME LIMITING: A program should be termi
nated if it does not complete within a specified 
time limit. This function is of value for operational 
programs but especially for testing programs to 
break tight programming loops. 

7. Data Base Security 

To protect the integrity of the corporate infor
mation system data base, security measures must be 
provided against unauthorized update and retrieval 
of privileged information. 

Security should be a function of the operator's 
level of authority, the location of the terminal, the 
transaction code, as compared to the sensitivity of 
the data element. 

8. System Reliability 
A real-time information processing system must 

demonstrate its reliability to its users. 
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There are three aspects to reliability in any system: 

• ENDURANCE: Protection against failure of its 
own programs, and graceful degradation of the 
system under adverse conditions. 

• RECOVERY: Provision for restarting the system 
close to the point of failure after the disturbance 
has been removed or corrected. 

• AUDIT TRAIL: Each day's message log should 
be retained for a period of time to permit recon
struction of a single event or a sequence of events 
which led to failure of a program module or the 
system. 

After the fact analysis is often the only tech
nique possible for problem identification/solution 
in a real-time environment. Some provision should 
be included for a computer search of the message 
log when specific selection criteria permit. 

9. Facility to Evaluate System Performance 

Usage statistics should be gathered to detect prob
lem areas of the system worthy of special attention, 
so that solutions can be implemented to improve: 

• Main frame through-put 
• Network traffic 
• Terminal operation efficiency 
• Application program proficiency 

STRATEGY OF THE SYSTEM 

The principal strategy entails the reduction of re
dundant coding otherwise inherent in the massive appli
cation programming effort by shared system modules, 
wherein the following disciplines should be imposed on 
the system directly or indirectly: 

• Application Program Proficiency 
• Network Traffic Efficiency 
• Terminal Operating Efficiency 
• Main-Frame Throughput Efficiency 

Let us define the term "application program" as 
referring to a message processing program tailored to 
handle one or more varieties of messages as identified 
by the transaction codes. 

The three stages of application program structure 
described below will demonstrate the progression of 
teleprocessing software architecture for a large corporate 
information system. 

STAGE 1: Centralized Data Management Functions for 
All Application Programs 

A previous paper (1) has described in detail how to 
centralize the data management functions to obtain 
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MESSAGE PROCESSING FUNCTIONS EXCLUDING 

FILE ~lANAGH'iENT FliNcnONS 

1 INPUT BUFFER MESSAGE I N TERM I NAL FORM 

2 I NPUT ED ITOR MESSAGE NOR~IALIZED IN FIXED FORM 

3 DATA VALIDATION VERIFY INP~T DATA 

PROCESS ROUTINE PROCESSING LOGIC 
4 ,------- _._------

FILE ACCESS EXCHANGE INFORMATION FROM DATA BASE 

5 OUTPlJ T EDITOR MESSAGE FOR~IATED TO TER~lINAL FORM 

6 OUTPUT BUFFER MESSAGE IN TERMINAL FORM 

Figure 2-Stage 1 

the following benefits: 

• Reduction of Core Memory Requirement 
• Reduction of Program Loading Time 
• Centralized Control of Shared Data Base 
• Optimal Allocation of Resources Associated with 

Shared Data Base 
• Flexibility in File Design and Record Layout 

After excluding the data management function from 
an application program (Figure 2), the following SIX 

key functions remained to be performed: 

1. Input Buffer 

Get message from message queue as it arrived at 
input buffer; the message string is in original terminal 
form, containing terminal control characters and 
varies in length and format. 

2. Input Edit 

Normalize the input message string to fixed form 
by interpreting the terminal control characters, re
placing absent characters and fields with nulls. Be
cause different types of terminals have unique sets 
of control characters and logic, an application pro
gram that contains this function will always be 
d~pendent on the type of terminal and its logic. 

3. Data Validation 

Validity check the information content of the in
coming message string to intercept bad data and 
send out error messages so the user may correct and 
reenter the message. 

4. Process and Access Data Base 

Process message content and exchange information 
with the corporate data base. Construct the logical 

response message to the user in fixed form without 
terminal control characters. 

5. Output Editor 

Convert the logical response message from internal 
format to display format inse~ing terminal control 
characters for transmission. If there is more than 
one message to be sent to different types of terminals, 
construct different message strings to corresponding 
terminals. 

6. Output Buffer 

Dispatch message in terminal form. 

STAGE 2: Independence of Application Program From 
Terminal Hardware Characteristics 

§Oared message editors normalize input messages and 
format output messages in order to isolate the appli
cation programs from the tedious function of terminal 
control character interpretation. 

Several advantages are derived from this approach: 

1. Programming Proficiency 

• One application program can handle similar infor
mation from several types of terminals each with 
a format most suited to its special features. 

• Shared message editors permit optimization of 
terminal characteristics at low programming cost 
since they need be programmed only once. 

• New terminal types may be added and input/ out
put display formats redesigned without application 
reprogramming. 

• High-level languages, such as COBOL and PL/1, 
can be easily applied to process fixed format 
message records. 

IrmEPENVEliCE OF MESSAGE PROCESSING PROGRAtl 

FRO~; TERW;AL HARDWARE CHARACTERISTICS 

OPE.RATING SYSTEM FACILITY 

NETWORK 
IIlPLT CONTROL 

PROGRAM MESSAGE 
EDITOR 

MESSAGE. 
PROCESS I r~G SECOND 

OUTPUT PROGRAM REGION 
MESSAGE MESSAGE 
CONTROL EDITOR 
PROGRAM 

Figure 3-Stage 2 

~lllI 
REGION 



• Applications programs are easier to design, pro
gram, and test. 

2. Main-Frame Efficiency 

• Static core requirements for application programs 
and work areas are reduced. 

• Application prugrams process a message more 
quickly, reducing the dynamic core requirements, 
measured in bytes occupied per second. 

3. Network Efficiency 

Optimized use of terminal control characters 
shortens the message length, conserves message 
transmission time, reduces line load, and permits 
an increase in the number of terminals per line; the 
communications network may then comprise fewer 
lines at a sizable reduction in installation and main
tenance costs for a given number of terminals. 

4. Operator Efficiency 

Optimal use of terminal format control characters 
increases operator efficiency as much as it relates to 
display readability and input cursor control. Since 
the application program is truly independent of the 
display format, it need not be changed when a 
display format is redesigned or modified. This feature 
simplifies making improvements in terminal display 
design formats. 

STAGE 3: A Single Retrieval Module Replaces]{any 
A pplication Programs 

Progressive reduction of redundant coding from Stage 
1 and Stage 2 application programs have already placed 
the following functions in the shared system modules. 

• Network and Message Control 
• File Definition and File Access 

NETWORK 
CONTROL 
PROGRAM 

r.ESSAGE 
CONTROL 
PROGRAM 

A S I NG.LE.. REJRl£VAL lIDDULE REMCES 
MANY MESSAGE PROCESSING PROGRAMS 

OPERATING SYSTEM FACILITY 
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INPUT 
MESSAGE 
EDITOR 

OUTPUT 
MESSAGE 
EDITOR 

GENERAL 
RETRIEVAL 

MODULE 
SECOND 
REGION 

FILE f"IANAGEMENT FACILITY 

Figure 4-Stage 3 
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• Data Definition and Data Retrieval 
• Input and Output Buffer Management 
• Input Message Normalization and Editing 
• Output Message Formatting 

Only three functions remain to be performed by the 
application program. 

• Input Data Validation 
• Processing logic and the interface with file manage

ment programs for data retrieval from the shared 
data base 

• Pattern editing for output message; i.e., insert deci
mal point, comma, $, etc. 

Expanding the input message editor to perform the 
function of "input data validation" and the output 
message editor,"pattern editing," there remains only 
one function for the message processing program, and 
even this very last function can be performed by shared 
system modules. 

• A shared system module can obtain information from 
the message descriptor to request data element re
trieval from tl:e data base via the data management 
modules. 

• For most basic message types, such as INQUIRY, 
RETRIEVAL, DATA ENTRY, JOURNAL, etc., 
the processing logic can be easily represented by a 
simple list which defines the processing path through 
and within the shared system modules. 

Therefore, if we create a simple list for each trans
action code, the shared system, modules can perform 
the required processing logic without recourse to an 
application program except when extraordinary proc
essing logic' occurs. The Stage 3 teleprocessing system 
will add benefits in addition to those previously derived 
in Stage 2. 

1. Programming Proficiency 

• Shared input data validation and output pattern 
editing permit optimization in program design and 
efficiency, 
• • Input data validation can be designed, coded, 

and tested in optimal fashion at low pro
gramming cost '. since they need be pro
grammed only once. 
Standard error messages can be generated 
tiirectly. 

• Application programming, testing, debugging for 
most transactions . are eliminated. 

2. NI qin-Frame Efficiency 

A single resident reentrant module replaces many 
many application programs, eliminating the roll-in, 
roll-out time. 
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3. Network Efficiency 

A well designed input data validation and error 
message notification technique can effectively cut 
down the amount of bad message traffic in the 
network. 

4. Operator Efficiency 

Standard error messages make it easy for the 
operator to take corrective action on bad input data; 
the problem of inferring the same meaning from 
different error messages coded by programmers in 
various application programs is avoided. 

SYSTEM LOGIC FLOW 

The system support package comprises the regional 
resource manager, the two message editors, the retrieval 

Figure 5-System logic flow 

module, and the data control manager. Refer to Figure 
5. The following paragraphs describe the general system 
logic flow. 

1. Initialization 

At the beginning of the day, the regional resource 
manager performs the following functions: 

• Builds program and descriptor directories to 
expedite the paging activities. 

• Opens the message queues and on-line files. 
• Prepares the shared buffer pools. 
• Loads the resident modules. 
• Attaches input and output message editors as 

operationally independent subtasks. 

When initialization is complete, the input editor 
is activated and begins to scan the input queues 
for a message to process. 

2. GET Message 

Scanning of the message is accomplished by 
means of a table of displacements into a list of 
message queue control blocks. A pointer to a con
trol block may appear up to four times depending 
upon the priority assigned to the message queue. 

If a scan of the entire list fails to find a message, 
scanning is suspended for a predetermined period 
of time and then recommenced. 

3. Application Message Header 

After a message is gotten from the input queues, 
the input message editor constructs a message 
header for the application program (see Appendix 
II). This header serves the following functions: 

• Passes pertinent information relevant to: 

• • Message disposition. 
• • Message status. 
• • System status. 

Passes information to the application program 
in a form readily usable by high level languages. 

• Permits the application program to pass certain 
information back to the system. 

4. Process Routing 

The input editor obtains the process routing 
information from the transaction code table and 
constructs a control list for the regional resource 
manager. 

For the majority of transactions, this control list 
will make no reference· to an application program. 
For those special transaction codes requiring com
plex processing logic, however, a reference to the 



associated application program will be included in 
the list. 

5. Message Format 

The message may simply be a request for a 
message format. The input message editor posts 
control to the output message editor to generate a 
message format (captions and control characters) 
based on the information in the message descriptor. 

6. Normalize I nput Message 

The input message editor processes the elements 
in an order controlled by the input message de
scriptor (Appendix I). The input message descriptor 
sequentially defines the attributes of each message 
field: 

• The starting position in vertical and horizontal 
coordinates. 

• The maximum length. 
• A field designated as caption will be eliminated 

from processing. 
• A field designated as mandatory infor~ation must 

be present or the entire message will be rej ected. 
• The retrieval descriptor index points into the 

retrieval descriptor so that additional editing 
may be performed. 

The retrieval descriptor defines additional attri
butes for the message field: 

• The length and location of the area reserved for 
the message field. 

• The data class expected; i.e., numeric or alpha
meric. 

Based on the above information, the input mes
sage editor performs the following functions: 

• Checks for invalid characters, such as a letter 
in a numeric field, posts error condition if invalid 
character found. 
Deletes punctuation, such as commas in a nu
meric field. 

• Aligns to the left or right. 
• Truncates if the input message descriptor length 

exceeds the retrieval descriptor length, such as if 
the operator included too many decimal positions. 

7. Data Validation 

The retrieval descriptor serves for both editing 
and data validation. As many as 256 data validation 
routines may be programmed to permit the choic~ 
of an appropriate validation technique. Some ex
amples of checking. 
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• RANGE: Test the numerical value of a data 
field against a predetermined range of values. 

• CODE: If the input data field is a code argument 
in a table, the system will perform a table look-up 
to determine if it is a valid argument. 

• RECORD KEY: If the input data field references 
a record key in an on-line file, the system can 
issue a read (key) against that file to determine 
if it is valid. 

• FIELD ASSOCIATION: When one or more 
input fields depend upon the value of another 
input field, the system can match them against 
a predefined associative decision table. 

• DATE: The following tests can be applied to a 
date field: 

• • Any valid date. 
A holiday. 
A work day. 
Today's date. 

• • Test a range of predefined work days from 
today's date. 
Test a range of predefined elapsed days from 
today's date. 

S. Standard Error Message 

If any errors have been identified, a standard 
error message is prepared. 

The following considerations are taken to design 
the standard error messages: 

• FIXED LOCATION: Error messages always ap
pear in the same location to attract the terminal 
operator's attention. For example, all the error 
messages will appear on the last two lines of the 
CRT screens. 

• MULTIPLE ERRORS: To conserve network 
efficiency and eliminate unnecessary traffic aris
ing from bad messages, the system will handle 
up to four errors per message at a time. 

• STANDARD PHRASE: The error message will 
reference the specific input field and indicate the 
kind of error the system detected for that field. 

9. General Retrieval Module 

The message may have been a general retrieval 
request. The retrieval descriptor would then have 
been a core-resident skeleton sufficient to satisfy 
the normalization and validation routines. The data 
identification information (element control num
bers) supplied by the operator will be inserted in a 
copy of the skeleton so that data retrieval may 
proceed. 

The retrieval routine builds a list containing the 
file name, the record key, and one or more data 
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element control number and receiving area pairs, 
and requests the services of the data control 
manager. Nulls are returned for a data element 
when the operator's or terminal's security clearance 
is less than that assigned to the element. A status 
code informs the retrieval routine of any abnor
mality. The retrieval descriptor defines whether an 
abnormal status code is to be ignored or considered 
an error. 

10. Output Message Editor 

The output message editor pattern edits the 
data field if it is required, prefaces whatever control 
characters are necessary to position the message 
character string in the terminal format. It has the 
following three modes of operation: 

• Device With Non-Formatted Memory 
• • Blanks between graphics in the same line 

and blanks at the front of the· line are re
placed everywhere possible with control 
characters. 
Lines are truncated on the right after the 
last graphic. 

• Device With Formatted Memory: When the 
transaction requires a new format at the device. 

The memory of the device is cleared. 
• • Fields marked as variable in the output 

message descriptor (device dependent op
tion) are inserted in the message string full 
size without the blanks. suppressed, even if 
they are completely blank. 
Blanks in caption and format fields are re
placed with control characters wherever pos;.. 
sible. 

• Device With Pre-Formatted Memory: When the 
transaction requires the same format as is at the 
device. 

Caption and format fields are omitted. 
• • Blanks in variable fields are replaced with 

control characters wherever possible. 
• • The effect of each controLcharacter is con

sidered with respect to the existiIlg format. 

11. PUT Message 

This routine places the prepared· response mes
sage in the proper destination queue for dispatch 
to the receiving terminal. 

12. Termination 

A privileged transaction code allows the console 
operator to terminate the· teleprocessing. system.. 

The system termination module directs the mes
sage control region to discontinue polling on all 

lines as soon as incoming messages have been re
ceived. 

When polling has been discontinued, the input 
editors are directed to return control to the regional 
resource manager whenever they find the process 
queues empty. Normally, they wait a predetermined 
period of time and then scan the queues again. 

When all message processing is complete, the 
regional resource manager terminates the tele
processing system. 

SYSTEM FACILITIES 

This section will briefly describe some system support 
functions not mentioned in the previous section: 

1. Terminal Start-Up Procedure 

An operator must log-on before attempting. any 
other activity on a terminal. For his own protection, 
he should log-off when his work is completed or 
during an interruption in which he leaves the 
terminal. 

When log-on occurs, an employee number is en
tered in the terminal table. This employee number 
is used to set up individual restrictions on the 
terminal and to facilitate error and security violation 
tracing. Each time a log-off is processed, a corre
sponding log-on is required before business can be 
resumed. 

A second operator may log-on at a terminal with
out the· previous . operator logging off; the second 
operator's employee number and restriction code 
replace the first's. 

2. Data Base Security 

SIx modes of operation are supported for terminals: 

• Business: Normal mode for business work. Most 
applications functions are valid in this mode. 
INQUIRY, RETRIEVAL, DATA ENTRY, 
nATA CHANGE, MULTIPLE DESTINATION 
and JOURNAL are available and work as defined. 

• Training: Operator training mode for practicing 
business work. 
• • INQUIRY and RETRIEVAL work as de

fined. 
• • DATA ENTRY and DATA CHANGE ap

pear to the operator as defined but fail to 
update the data base. 

• Supervisor: Extended mode for business work. All 
applications functions are valid in this mode. At 
the. application's discretion certain transactions 
may be reserved for supervisor mode or more 
information· may be passed in this mode. 



A terminal in supervisor mode may: 

Put another terminal in the same office in 
supervisor mode if that terminal is authorized 
for supervisor mode. 

• • Display the employee presently logged on a 
particular terminal. 

• • Copy a message to another terminal in the 
same office. 

• Diagnostic: Systems aid for on-line engineering 
maintenance; message directed to special. diag
nostic programs which display generated status 
information on the console terminal. 
• • A terminal in diagnostic mode may return 

itself to any mode authorized for it. 
• • I t may copy any terminal in training mode 

and any terminal may copy it. 
• Console: Network control terminal located at the 

computer console; terminal, line, and transaction 
code status tables may be altered from this 
terminal. 

• Master: Network monitor terminal; permits dy
namic observation of system for debugging and 
audit control. Master mode terminals may change 
the mode status of other terminals to any mode 
of operation, including master. 

3. Network Monitoring 

Hardware errors will be analyzed and may cause 
the following actions to be taken: 

• Send an Et"i-or Message 
• • Describes the error to the console operator. 
• • Describes action being taken by the system. 
• • Suggests action which should be followed by 

~the operator. 
• Manually start or stop a terminal, line segment, 

line, or group of lines from operation on request. 
• Automatically stop a terminal, line segment, or 

group of lines, depending on error which occurred. 
• Redirect messages to an alternate terminal (which 

may be a different type) when the original desti
nation terminal has any type of hardware error 
which renders it unable to transact business. 

4. Formats 

For data entry, a formatting facility preformats a 
terminal's memory with caption material and con
trol characters at the- operator's request. The oper
ator indicates· the particular transaction format re
quired by suffixing a letter Ii' to the associated trans
action code. The facility responds with the format, 
and the operator simply fills in the data. 

If the information content· of the message is ac
ceptable for processing, the system restores the vari-
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able fields to blanks, and the operator can proceed 
to the next transaction if it is the same. If it is not, 
a new format may be requested. 

5. Data Collection 

A data collection facility stores audit trail records 
created by application modules which update the 
data base and transaction records destined for off-line 
batch processing programs. These records are sorted 
and cataloged by off-line programs for easy retrieval 
at the end of the on-line day. 

6. Testing Program Library 

A special program module library contains all test 
status programs. Any module loaded from this li
brary is automatically placed in test status to protect 
the integrity of the data base from unproved routines. 

IMPLEMENTATION OF THE SYSTEM 

The teleprocessing system package has been written 
in IBM-360 Operating System Assembly Language 
(ALC). 

1. It is fully interfaced with the IBM -360 operating 
system MVT (multiprogramming with variable num
ber of tasks) environment. 
• The application programs and the system pro

grams operate as independent subtasks of the 
regional resource manager; abnormal termination 
of a subtask will not stop the remaining subtasks 
in the region. 

• The package is not tied to any particular release 
of O/S; hence, if a new version is released, there 
should be little effect on this package. 

2. The teleprocessing system package takes full ad
vantage of the existing operating system facilities. 

3. It is intended to interface with all the operating 
system supported languages (COBOL and ALC 
interface have been implemented). 

4. The entire package has been designed to be dynamic 
in nature; that is, all programs are load modules. 
They are not linkage edited into the application 
program; thus, the" package may be redesigned and 
improved without any appreciable effect on the 
application programs. 

5. The entire package has been programmed in re
entrant code. 

6. The system has been coded in a modular fashion. 
Each routine was individually coded, tested in detail, 
subgrouped, and finally all routines were combined 
together. 

7. The message control and message processing regions 
are independent of each other to permit relocation 
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of the control program to a front-end communi
cations computer when the network size warrants 
the change. 

8. The hardware anticipated over the next several 
years includes two large central processors with a 
million bytes of main memory, supported by smaller 
satellite computers and a score of multi-drive disk 
storage units. The system is being designed to sup
port several hundred terminals, most of which are 
expected to be high speed CRT display units. 
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APPENDIX I 

Input message descriptor (fixed form) 

1. Retrieval Descriptor Index 
2. Message Field Length 

3. Mandatory Field Indicator 
4. Line N umber (Vertical Spacing) 
5. Spare 
6. Spare 
7. Position (Horizontal Spacing) 

8. Caption Delete 

Input message descriptor (free form) 

1. Retrieval Descriptor Index 

2. Message Field Length 
3. Spare 

Output message descriptor 

1. Retrieval Descriptor Index 
2. Device Dependent Options 
3. Line Number (Vertical Spacing) 

4. Data Scan Override 
5. Format 
6. Position (Horizontal Spacing) 
7. Caption Field 

BITS 
3 1. Data Class 

BITS 

8 

7 
1 

6 
1 

1 

7 
1 

4 BYTES 

8 

7 
1 

2 BYTES 

8 

8 

6 
1 
1 

7 
1 

4 BYTES 

a. Arithmetic (Right Numeric, Left Zero 
Fill, Decimal Alignment (0-7» 

0 0 0 Binary, Display As Decimal 
0 0 1 Binary, Display As Hex 
0 1 0 Packed 
0 1 1 Zoned 

b. Alphameric (Left Alignment, ~ight Blank 
Fill) 

1 0 0 Graphics (Terminal's Entire 
Character Set) 

1 0 1 Alphabetic 
1 1 0 Alphanumeric 
1 1 1 Numeric 

3 2. Decimal Alignment (For Arithmetic Class 
Only) 

o to 7 Places or Date Verification Decision 
Table (Replaces Decimal Alignment Table) 



0 0 0 Any Valid Date 
0 0 1 Today's Date 
0 1 0 Any Holiday 
0 1 1 Any Working Day 
1 0 0 Prior Date 
1 0 1 Prior Date or Today 
1 1 0 Future Date 
1 1 1 Future Date or Today 

10 3. File ID Table Index/Code Table Number 

3 4. Verification/Retrieval 

0 0 0 Bypass Verification/Retrieval 
0 0 1 Date Verification 
0 1 0 Data Verification 
0 1 1 Duplicate (Descriptor Points to 

Argument 
Cross Index Points to Receiv-

ing Area Descriptor) 
1 0 0 Verify Code Argument (De-

scriptor Points to Argument) 
1 0 1 Verify File Key 
1 1 0 Retrieve Code Function (De-

scriptor Points to Argument) 
1 1 1 Retrieve File Element (Cross 

Index Points to Receiving 
Area Descriptor) 

1 5. Pattern Edit Output Field 
12 6. Displacement 
7 7. Field Length 
1 8. Spare 
8 9. Retrieval Descriptor Cross Index (See Item 

4) or Data Verification Range Table Index 
16 10. DCM File Element Control Number (Binary 

Half Word) (See Item 4) or Associative 
Decision Table Index and Data Verification 
Routine Index 

Retrieval descript01' (normalize input) (format output) 

BITS 
3 1. Data Class 
3 2. Decimal Alignment (Ignore If Date Indi

cated) 
10 3.-
3 4. Date Indicator (Output: Format 

YYMMDD as MM-DD-YY) 
1 5. Pattern Edit Output Field (Input: N orma

lize MM-DD-YY as YYMMDD) 
12 6. Displacement 
7 7. Field Length 
1 8.-
8 9.-

16 10.-
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Retrieval descriptor (validation) 

BITS 
3 1. Data Class 
3 2. Date Verification Decision Table 

10 3.-
3 4. Verification Indicators 
1 5.-

12 6. Displacement 
7 7. Field Length 
1 8.-
8 9. Data Verification Range Table Index 

16 10. Associative Decision Table Index and Data 
Verification Routine Index 

APPENDIX II 

A pplication message header 

TPCMSHDR 

TPCINTM 

TPCUSER 

The 40 byte application message header 
allows communication between the 
message editors, MSGIN and MSOUT, 
and the application module. Use of the 
information is left to the discretion of 
the application analyst. 

Arrival Time of Day 

A . binary clock maintains the time of 
day in units of 1/150 second (6% milli
seconds). The high order byte contains 
binary zeros 

The application may insert this field 
in the generated transaction records' 
sort keys to post by arrival sequence. 

Because the conversion of this field to 
decimal hours, minutes, and seconds is 
time consuming, it is not appropriate 
to do so in the on-line environment. 

User Status Flags 

MSGIN initializes this field to binary 
zeros. 

MSOUT logs it in the QTAM message 
header. 

QDUMP retrieves it at the end of the 
day for application analysis 

Each application may define its own 
coding structure. However, the codes 
should, in the least, describe the 
TPCSCODE selected and explain why, 
so that the application analysis can 
reconstruct the process condition. 
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TPCMODE Terminal Mode 

A terminal may be placed in one of 
several operations modes which define 
how the system will react to messages 
from it. 
1. Training-The application appears 

normal to the operator, but no trans
action records should be generated 
or posted to the masterfile. 

An application may desire" to main
tain special files of pseudo accounts 
for training and testing and post 
these in training mode. 

2. BUSINESS-The application reacts 
normally to all stimuli. 

3. Supervisor-This mode is normally 
for terminal operator supervision 
but on occasion some business work 
will arrive from a terminal in 
'supervisor' mode. The application 
may handle such work as business 
or may grant special privileges. 

Supervisor mode is allowed only for 
specific terminals and specific em
ployees in supervisory positions. 

4. Operator-This mode is normally 
for systems operation, but on occa
sion some business work will arrive 
from a terminal in 'operator' mode. 

5. Master-This mode is normally for 
systems programming, but on occa
sion some business work will arrive 
from a terminal in 'master' mode. 

TPCSOTRM Terminal of Origin 

Each terminal has a unique five char
acter identifier comprising: 

DIVISION 
OFFICE 
LOCATION 
UNIT 

1 byte alphabetic 
1 byte alphabetic 
1 byte numeric 
2 bytes numeric 

The application may insert this field 
in the generated transaction records 
for journal distribution or as a de
bugging trace. 

TPCDSTRM Terminal of Destination 

The name redefines TPCSOTRM. 

The application module may alter this 

TPCINNR 

TPCDATE 

field to redirect the response to a 
different terminal. 

Such a receiving terminal must be a 
hard copy device. 

Creation of an invalid terminal identi
fier will direct the response to a dead 
letter queue. 

Message Sequence Number In 

QTAM maintains an input message 
sequence number for each terminal 

The application may insert this field 
in the generated transaction records for 
journal sequencing or as a debugging 
trace. 

Today's Julian Date, YYDDD+. 

This field is supplied for the appli
cation's convenience. 

Because the conversion of this field to 
calendar format, e.g., YYMMDD, is 
time consuming, it is not appropriate 
to do so in the on-line environment. 

TPCSCODE Transaction Code Modifier 

TPCTCODE Transaction Code 

A transaction code identifies an entry 
from the operator and the related re
sponse to the operator. 

The transaction code modifier X'FO' 
is assigned to the entry on input and 
to the standard response for a valid 
entry on output. 

The modifiers X'Fl', X'F2', X'F3', 
X'F4' designate alternate responses se
lected by the application module proc
essing the entry. They must, however, 
be designed to fit the display format of 
the standard response 

X'FO' is the standard response. 

X'Fl' is the error description response 
For Data Entry and Data Change 
X'Fl' is the standard acceptance re
sponse which re-initializes the terminal 
buffer and screen for the next entry 



from the operator since the TP System 
assumes the next entry will be similar 
to the one just processed. 

X'F2', X'F3', and for INQUIRY, 
X'Fl' are available to the Application 
for alternate responses as they require. 

COBOL linkage section for application message header 

01 TPCMSHDR. 
03 TPCINTM 

03 TPCUSER 

03 FILLER 

PICTURE S9(004) 
COMPUTATIONAL. 

PICTURE S9(002) 
COMPUTATIONAL. 

PICTURE X(010) 
VALUE SPACE. 
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03 TPCMODE 
03 TPCSOTRM. 

05 TPCTDST. 
06 TPCTDVS 
06 FILLER 

05 TPCTOFC 
05 TPCTNUM 

03 TPCDSTRM 
REDEFINES 
TPCSOTRM 

03 TPCINNR 

03 TPCDATE 

03 TPCSCODE 
03 TPCTCODE 

PICTURE X(OOI) 

PICTURE X(OOI). 
PICTURE X(OOI). 
PICTURE X(OOI). 
PICTURE 9(002). 

PICTURE X(005). 
PICTURE 89(002) 

COMPUTATIONAL. 
PICTURE S9(005) 

COMPUTATIONAL-3. 
PICTURE 9(001). 
PICTURE X(004). 





The selection and training of computer personnel 
at the Social Security Administration 

by EDWARD R. COADY 

Social Security Administration 
Baltimore, Maryland 

INTRODUCTION 

How many computer systems managers have claimed 
their individual systems and operating environments 
contain a unique group of applications? 

I suggest the majority answer yes. The "slow-down" 
in implementing third generation computer systems is 
implied in this answer. The dilemma that many systems 
managers are confronted with in the conversion from 
second to third generation systems is rooted in the 
educational process or lack of it. 

This paper will present the social security data 
processing system, in general terms; the recruitment, 
selection and training systems for computer personnel 
and the future tasks of computers and their program
mers at the Social Security Administration. 

THE SOCIAL SECURITY DATA PROCESSING 
SYSTEM 

The mission of the Social Security Administration is 
to operate a social insurance program for the American 
people. The Bureau of Data Processing and Accounts 
which is headquartered in Baltimore, Maryland main
tains the earnings history for each person with covered 
earnings who is assigned a social security account 
number. These earnings records are kept so that when it 
is time to decide on a person's eligibility for benefits and 
on his benefit amount, his earnings history is available. 
To handle these tasks we have 50 computer systems and 
supporting peripheral gear and over 1200 personnel to 
program and man these systems. I would like to briefly 
discuss the major EDP functions to provide an overview 
for recruitment, selection, and training of programmers 
at Social Security. 

The EDP activities of the Bureau of Data Processing 
and Accounts of the Social Security Administration can 
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be classified into the following categories: (Figure 1) 

(1) The New Account Establishment and Correction 
Process-This process involves the establishment 
of various records used to identify social security 
account number holders. Identifying information 
is maintained on printed listings by account 
number and on microfilm by name and date of 
birth. Approximately 250,000,000 names are 
found in this file. The establishment process also 
prepares the magnetic tape record to which 
worker's earnings information will be posted. 

(2) The Earnings Record Maintenance Process-The 
earnings information of individuals participating 
in the social security program is maintained in 
two forms, magnetic tape for computer processing 
and microfilm for visual examination. Each of 
these earnings data files is updated four times a 
year. 

After the earnings data is converted to mag
netic tape, the individual employer reports are 
balanced in a computer process. N ext, the 
balanced items are processed through a series of 
sorting operations which provide for the arrange
ment of items in social security account number 
sequence. Finally, the current earnings, balanced 
and sorted, are compared with the summary 
earnings tape and those records matching on 
account number and surname are updated. A new 
summary record is prepared. A microfilm record 
of those items which match is prepared as a 
by-product of this operation. 

(3) The File Search-Benefit Computation-Earn
ings Statement Process-The magnetic tape file 
containing 185,000,000 summary earnings records 
is searched daily to obtain the necessary earnings 
information for benefit computation and earnings 
and coverage statement requests. The finder 
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Figure 1-EDP applications at SSA 

1. NEW ACCOUNT ESTABLISHMENT 
2. EARNINGS RECORD MAINTENANCE 
3. BENEFIT COMPUTATION 
4. REINSTATING 
5. BENEFIT MAINTENANCE 
6. HEALTH INSURANCE 

items to be located number about 55,000 and are 
received from several sources. All of the requests 
concerning earnings information are arrayed on 
the finder tape which is processed through editing 
and sorting operations. The search of the sum
mary earnings records is made, and the records 
located for claims and statement requests are 
written out for processing through separate 
operations. The desired data is prepared on 
appropriate forms, certified, and forwarded to 
the requesting individual, organization, or district 
office. 

(4) The Reinstating Process-Each year approxi
mately 312 million earnings items are received in 
the Bureau of Data Processing and Accounts for 
posting to individual earnings records. Of this 
amount nearly 3 million items are reported 
without an account number and are immediately 
deleted for correspondence. Of the 309 million 
items which we attempt to post slightly over 14 
million reject because of an improperly reported 
name or account number. These rejected items 
are subjected to a series of computer and manual 
reinstating operations designed to locate and 
correct these reporting errors. The series of 
computer operations involved in these processes 
is based upon a thorough analyses of repetitive 
error" statistics and the nature of the errors 
encountered in the reporting of account numbers. 

(5) A master record of all social security beneficiaries 
is maintained on magnetic tape. This record, 
arranged in account number sequence, contains 
complete identification of the beneficiaries-in
cluding mailing address, entitlement data, benefit 
amount, and benefit payment history. The 
primary use of the record include adding new 
beneficiaries to the system, correcting and 
changing information already in the system, 
identifying beneficiaries becoming eligible for 
health insurance protection, updating the actual 
master tape record, preparing transcripts of the 
updated record for check printing purposes, and 
preparing a microfilm of the master record for 
visual reference purposes. 

(6) The Health Insurance Identification and Enroll
ment Process-Monthly, the Bureau of Data 
Processing and Accounts searches magnetic tape 
records to identify those social security bene
ficiaries about to obtain age 65. An "Application 
for Enrollment in Supplementary Medical 
Insurance" is mailed to each beneficiary identi
fied. A· search of the summary earnings record is 
also made". to identify non-beneficiaries about to 
attain age 65, and every effort is made to develop 
a claim for social security benefits, including 
Medicare. The combined identifying and response 
information is processed through a distribution 
operation to produce Health Insurance cards 
showing entitlement to Hospital Insurance and 
Supplemental Medical Insurance. 

In support of these functions, the Bureau employs 
approximately 9,000 people. Of this number, over 1,200 
persons are directly engaged in our EDP activities. In 
calendar year 1968, these people were responsible for the 
processing of over 7,000 different computer applications. 

We maintain a magnetic tape library of over 160,000 
reels and process on the average 5,000 reels per day. It is 
not uncommon to process a file of 500 or more reels in 
one operation, for example, in the Health Insurance 
operations, over 900 reels are needed each month to 
record information that is subsequently converted to a 
microfilm file. 

About 82 million earnings items are posted to the 185 
million master earnings accounts each quarter. The 
actual update operation is handled in a batch processing 
mode and over 250 hours of computer time are used. 

An analysis of our system usage reflects the following 
data in terms of major application areas: (Figure 2) 

(1) 33 percent to the claims operations-from the 
initial file of a claim through the continuing 
maintenance of the account for as long as a 
benefit is paid. 

(2) 21 percent to the statistical operations-covering 
all phases of statistical activities. 

(3) 19 percent to the health insurance operations
from the initial placement on the Master Health 
Insurance file through the continuing mainte
nance of the account. 

Figure 2-Computer usage at SSA 

1. CLAIMS 33% 
2. STATISTICAL 21% 
3. HEALTH INSURANCE 19% 
4. EARNINGS 16% 
5. MISCELLANEOUS 11 % 



(4) 16 percent to the earnings account operations
from the point of establishing the social security 
account through all of the postings to the master 
account and the policing of the account when it is 
in beneficiary status. 

(5) 10 percent to miscellaneous functions-these 
include our own systems software activities, 
management information, and utility operations. 

At the present time and during the next two to three 
years, we will be dedicating all the resources that we can 
spare from current operating demands in order to 
exploit the full potential of the third generation. 

THE RECRUITMENT AND SELECTION OF 
COMPUTER PROGRAMMERS 

Where do computer programmers come from? Any
where you can find them. At SSA, we have' discovered 
them within and without our organization; in our 
headquarters in Baltimore, our payment center in 
Birmingham and our district office in Klamath Falls , 
Oregon. From within the organization, they have come 
from a variety of occupations: correspondence clerks, 
secretaries, computer operators, claims examiners, etc. 
From withoutSSA, we have hired and lured a small 
number of experienced programmers from private 
industry and other government agencies. Our most 
lucrative area of new programmer blood has come from 
the selectees we have hired through the Federal Service 
Entrance Examination process. These . trainees are 
generally fresh from the college campus and have 
developed into a cadre of valuable employees. We have 
been using this recruitment source since 1966. The 
selection system, except for the . experienced hires, is 
based on an aptitude test score. Actually, two tests are 
used, one for the SSA employees and the other for the 
FSEE trainees. 

The FSEE examination isa general· abilities test 
which covers vocabulary, reading comprehension and 
quantitative reasoning. It is used by most government 
agencies forentry positions in a variety of career fields. 
The in-house test, which we call the. Organization and 
Methods examination, was developedbySSA test 
psychologists and is given for three job categories: 
management analyst, budget analyst and . computer 
programmer. There are three parts to the test: verbal, 
quantitative and abstract reasoning .. Individual test 
items are statistically related to job success in each part. 
The emphasis is placed on the job relatedness of the test. 
Although the test may lack academic flavor it does allow 
SSA employees to use their backgrounds to demonstrate 
their abilities in the test areas. The test was developed 
after the jobs were studied, a validation of the test items 
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Figure 3~Programmer selection criteria 

APPRAISALS 38% 
APTITUDE TEST 35% 
EDUCATION 7% 
INCENTIVE AWARDS 3% 
RELATED WORK EXPERIENCE 12% 
RELATED OUTSIDE ACTIVITIES 5% 

were made and weights assigned based on the correlation 
of test score to job success. We have found both the 
FSEE and the 0&11 tests to be good predictors of 
success in the .training program and on-the-job. 
Additionally, we have given the IBM Programmer 
Aptitude Test to several hundred trainees. The PAT 
scores, also are indicative of success in programming and 
correlate with the other tests. We feel the aptitUde test 
is an integral part of the recruitment and selection 
system for programmers. 

The mix of inputs for programming positions is also 
desirable because: 

(1) In-house employees generally require less on-the
job training tohecome productive. 

(2) Organizational morale is boosted when the rank 
and file employee makes the grade as a 
programmer. 

(3) Selecting, only in-house perso;nnel; however, 
would ultimately weaken the organization, so the 
infusion of new blood results in strengthening the 
competitive spirit. 

The selection for training in computer programming 
is based. on criteria in addition to the aptitude test 
score. (FigUre 3) For internal employees we apply 
numerical weights to' the selection elements as follows: 
the employee appraisal-38%, the aptitude test score-
35%, related work experience-12%, education-7%, 
incentive awards-3%, and related outside activities-
5%. 

To illustrate this point, the following is a breakdown 
of th.e employee' appraisal and the respective element 
weights: 

Element Outstanding Above Standard Meets 
Standard 

Productivity 7 4 2 

Work 7 4 2 
Quality 

Initiative 7 4 2 

Resolution of 10 6 3 
Problems 
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Working 5 2 1 
With Others 

Adjustments 7 4 2 
to Work 
Pressures 

Total Points = 43 

To give you an idea of the great interest in getting 
into programming work, let me mention some data from 
our most recent selection process. 

Nine hundred and sixty-three employees filed appli
cations in response to a bulletin board advertisement for 
twenty trainee programmer positions. The selection 
criteria was applied to each applicant. The applicants 
were ranked by total points. The twenty trainees were 
selected to attend the training program. These twenty 
employees had 'A' in aptitude test, most were college 
graduates, all had above standard or outstanding on all 
appraisal elements and some had several incentive 
awards. 

N ext, we subject the group to an eight week train
ing program. It will be described in detail later. Our 
historical data reflects; that only thirteen of the twenty 
will be successful in the training program. This provides 
support for those employers who are extremely cautious 
in their programmer selection and hiring practices. We 
are no exception. Let me summarize the objectives of 
our selection system: 

(a) to identify employees for a career program leading 
to a seniol' supervisory systems analyst, 

(b) to provide the opportunity for in-house employees 
to enter this job stream, and 

(c) to provide the infusion of highly qualified people 
from outside the organization via the Federal 
Service Entrance Examination. 

THE COMPUTER PROGRAMMER TRAINING 
PROGRAM 

Armed with highly qualified internal employees and 
FSEE candidates, as input, we give the candidates a 
rigorous eight week computer programming training 
course. The course has three phases; the first three week 
period consists of presentations on computer funda
mentals (we use a hypothetical computer as an 
example), introduction to System/360 and assembly 
language coding for S/360. Frequent review quizzes and 
an examination at end of the third week are given. 
A comprehensive evaluation by the course instructors 
of each candidate is then made and unsuccessful 
candidates are cut from the training program. In-house 
employees return to their former jobs, and FSEE 

Figure 4-8ource of programmers at SSA 

WITHIN INPUT NOW 

Headquarters 572 285 
Field Offices 349 141 

WITHOUT 
FSEE 162 81 
OTHER 10 10 

candidates are assigned to other responsible positions in 
the Administration. Approximately, one third of the 
class is phased out at this point. 

The second phase of the training course consists of 
one week of advanced assembly language techniques and 
three weeks of COBOL coding. Several lectures on 
operating system techniques and job control language 
are also covered in this phase. The third phase of the 
course is a series of briefings by members of the 
programming staffs on special systems, techniques, 
administrative writing, operational procedures, stan-· 
dards, etc. (Figure 4) 

Our history of using the training class as a screening 
device has been successful. Since 1955, we have selected 
1083 employees for training, 507 are programming for us 
today, 359 or 33% were phased out or voluntarily 
withdrew during the training course. The remaining 217 
have migrated into other organizations, advanced into 
management positions in other parts of our organization, 
retired or died. In analyzing, where our strength is, in 
terms of the most valuable long term employee, we have 
experienced less turnover in headquarters people than 
field people. Field office personnel seem to have a strain 
of nomad in them which shows up as soon as enough 
experience is gained in programming to make them 
marketable. The cost in attracting the field employee is 
high, since the costs of travel, per diem while in training, 
household moves, etc. are paid to lure him to the 
headquarters installation. For example, from 1959-1964, 
we brought 125 field employees into the headquarters 
for the training program, 46 were cut (37%); of the 
remaining 79 graduates only 26 (20%) are with us today 
in programming work. 

In summing up the training program, our objectives 
are: 

(a) to identify those who can program a digital 
computer, that is, to assimilate, analyze, solve 
problems, code solutions and evaluate results; 

(b) to prepare the trainee for the on-the-job environ
ment through training in assembly language and 
COBOL and the techniques for using these 
languages. 

The training program is conducted by our own staff 



of administrative specialists. The class is limited to 30 
trainees. The methodology consists of a lecture-problem 
solving sequence which provides sufficient time for 
instructor-student counselling and assistance. The 
manufacturer's manuals are used for reference by the 
trainees. Several problems in each language are compiled 
and analyzed during the course. 

Following the training course, a one year on-the-job 
training phase takes place. During this period the 
trainee is evaluated on his programming assignments. 
The elements used are: 

(a) ability to absorb and retain information, 
(b) originality and creative imagination, 
(c) analytical ability, 
(d) thoroughness, 
(e) initiative, 
(f) industry, 
(g) working with others, 
(h) oral expression, and 
(i) written expression. 

Even after our refined system of selecting program
mers, we have a few trainees that cannot cope with the 
rigors and frustrations associated with programming 
work. These employees are phased into other staff or 
administrative positions. 

The total system for selecting, training and ultimately 
promoting employees functions under the legal aegis of a 
training agreement approved by the U.S. Civil Service 
Commission. The salary range in this program starts at 
$7,639 at the entry to a maximum of $11,233. Advances 
at one year intervals are provided to $9,320 and then 
to $10,203. These raises are automatic providing satis
factory performance and meeting the time-in-grade 
requirements. Trainees may enter the stream at any of 
these levels dependent on their present salary level and 
experience. Beyond the $11,233 level, competitive 
promotional procedures are used. 

THE ADP TRAINING STAFF 

For those who can afford their own ADP training 
staff, I like to briefly mention the fruitful experience we 
have had with ours. In the early 1950's, the EAM days, 
we had the need for a variety of training courses in 
machine operation and wiring. One training officer was 
dedicated to the development and tailoring of these 
courses for SSA personnel. 

We soon reaped benefits from this arrangement. 
We. incorporated our own procedures in the training, 
conducted the courses at our convenience at our 
installation. This experience laid the foundation 
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for using our own people for computer programmer and 
operator training in 1956. The amount of training 
needed initially and continuously justified the enlarge
ment of the staff to the six instructors we have today. 
Last year, over 1,200 employees were trained in 78 
courses of instruction. Our instructors spent over 5,000 
hours in the classroom in the conduct of these courses. 
In addition to the initial training course, we conduct 
courses in FORTRAN, COBOL, OS Concepts, Job 
Control Language and operations courses tailored for 
medium and large scale systems as well as Operating 
Systems training for senior operators and job schedulers. 

The selection of our instructor staff has been based 
primarily on the following criteria: 

1. desire to instruct 
2. high performance In the programmer training 

program 
3. programming ability 
4. strong administrativB skills 

THE FUTURE TASKS 

The problems that we face today with the implemen
tation of third generation systems, and will face in the 
future with the fourth generation, have their roots in 
the past. The problems of the second generation and 
how they were solved dictate to a large degree how we 
must now proceed. A look at the evolution of automatic 
data processing at Social Security will serve to give an 
appreciation of our current problems. Keeping abreast 
of the processing workloads is not enough, we are 
required to make major changes in our processes each 
time Congress enacts a change to the Social Security Act 
and often the time frame that must be adhered to is not 
of our choosing. Although we have many large jobs, 
large data files, and large volume detailed transactions, 
our conversion effort is not limited to the conversion of a 
few large jobs. Rather, our activities require the running 
of many jobs, both large and small. As mentioned 
earlier, last year we processed over 7,000 jobs: some 
daily, weekly, monthly, quarterly, annually, and some 
were one-time operations. 

With second generation hardware we adhered to the 
concept of integrating the large computers and the 
peripheral systems. That is, keep the big machines going 
with the fastest input/output devices available and 
burden the smaller equipment with the necessary 
editing, formatting, printing, and punching. This 
permeated our every operation-it was a way of life. 
Most of the almost 500 programmers and systems 
analysts grew up with this concept. Each of our 
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programmers was imbued with a consciousness of the 
cost of the operation. He set about· to . maximize the 
utilization of the resources at his command, use all of the 
tape drives and all of the memory in the system to the 
extent that their use made his operation the most 
efficient possible. If he didn't use them, those resources 
would remain idle during the running of that program. 
At the same time, he was aware of the relatively high 
cost of processing a reel of tape, and therefore strove to 
reduce file sizes. Also, he saved tape space with special 
non-standard labels; by combining, where feasible, more 
than one data file on a tape reel; by manipulating the 
memory character to save space when indicators and 
codes were needed; and by using many sizesof.variable 
length records. For example, in our Master Earnings 
file, we indicated the quarter of coverage pattern by the 
use of bit codes over the earnings field. I mentioned 
variable records, our record blocks . vary from 15 
characters to nearly 18,000 characters. To illustrate the 
effect of adding additional characters to each record in 
our large files, if only one character was added to . each 
of our 185 million master earnings accounts that we 
search daily, would result in that file being expanded by 
25 reels of tape. Since the file is processed daily, it 
represents substantial time and cost factors. 

The preceding are some of the facts and considerations 
that have led us to where we are today-in the midst 
of converting to third generation systems. We believe 
that we had a most efficient second generation installa
tion. We utilized the resources effectively and created a 
smoothly running program. Now, as We move forward, 
we have no choice but. to live with, and to remain 
compatible with, what we created in the past, pending 
redesign of master records and processing systems. The 
biggest problem that faces us in the conversion to the 
third generation is the need to keep the social security 
program running smoothly while making a gradual 
transition. Each month, 25 million beneficiary checks 
must be mailed; new claims for OASDI benefits must be 
processed and added to the beneficiary reels; and the 
utilization of health insurance benefits must be recorded. 

Returning to the training aspect, we find that a 
properly paced education program is the key to . an 
orderly conversion period from second to· third genera.,.. 
tion systems. To date, virtually our entire programming 
staff has received training on third generation systems. 
This training program had some problems· of its own. 
The vetern programmers have·a· wealth of .. knowledge 
and experience with second generation equipment. They 
are skilled in their own fields. They had to start from 
scratch. They had to return to class; learn new 
concepts, . and jargon hardware/software, etc. -in short, 
they (the pros) were trainees. They not only had to learn 
new programming skills, but had to keep current 

operations going full tilt. And all this at a time when we 
are working in a rapidly expanding work environment. 

One of the problems we encountered in training for 
the third generation was the scheduling of people for 
these classes. The people who needed training were also 
needed to keep our day-to-day activities current with 
planned modifications, necessary changes, and scheduled 
commitments. We solved this by conducting half-day 
training sessions. Without in-house training capability, 
training and· conversion would have been seriously 
hindered. 

We envision that in several years a real-time claims 
process . will be available that will permit "instant 
updating"of our master files. To do this we will have 
to eliminate our tape files and the 5,000 mountings 
required each day in our present system. The real-time 
files would take the· form of large scale. random access 
devices· and mass storage devices which are capable of 
supporting a continuous updating process. Response to 
inquiry and.· request for action would be based on the 
most recent data possible which would be instantly 
accessible. For example, we anticipate that a district 
office will be able to request information over a tele
processing· system and receive a reply in the same day. 
The telecommunications linkage is already available
all that is needed is a means of instantly tapping the file 
to· retrieve and forward the requested data. From 
75-100 billion bytes of information will have to be 
accessible. Our earnings file alone will probably require 
40 . billion bytes. To support this vast information 
storage. and retrieval system there will need to be high 
speed printers.·or graphic display and photocopy units 
in each district office. The same devices will be used 
in other locations where correspondence is handled or 
where action decisions are made outside of the 
automated system and inputted to the system. The 
same basic capabilities will enable us to process a large 
number of claims in the briefest imaginable time. Data 
will be wired by the district office, the· earnings record 
will be summarized instantly and complete claims 
information will be channelled through to a point 
where, on receipt of a signal that no problem exists, or on 
receipt of correcting information, the payment of 
benefits will be started. 

To support this system of real-time access and in
stantly updated input, devices will be needed which 
place claims application forms and reports requiring 
action in as direct contact as possible with the EDP 
system. With proper design of input documents and low 
equipment cost,the idea of optical scanning devices in 
district offices will be entertained. . These optical 
scanners, will have to handle not only claims application 
data, but reports prepared by beneficiaries as well. 

As mentioned earlier, the lines of communication 



exist today. With the development of random access 
files and rapid response input/output devices, our ideal 
system can be attained perhaps within the next several 
years. 

In summary, at present, Automatic Data Processing 
in the Social Security Administration is in a highly 
dynamic state of flux from second generation to third 
generation systems. At the same time our sights must 
be on the issues and problems we will face with the 
fourth generation. At the same time and almost in 
spite of this, our basic mission must remain ever 
dominant, the administration of the terms of the Social 
Security Act with all its amendments and related 
legislation in a timely fashion and with due regard for 
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the rights and needs of that segment of the public whom 
we serve. 
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